WO2018047599A1 - Heat pump cycle, vehicle air conditioning device comprising same, and refrigeration cycle - Google Patents
Heat pump cycle, vehicle air conditioning device comprising same, and refrigeration cycle Download PDFInfo
- Publication number
- WO2018047599A1 WO2018047599A1 PCT/JP2017/029580 JP2017029580W WO2018047599A1 WO 2018047599 A1 WO2018047599 A1 WO 2018047599A1 JP 2017029580 W JP2017029580 W JP 2017029580W WO 2018047599 A1 WO2018047599 A1 WO 2018047599A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- heat
- heat exchanger
- air
- compressor
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/22—Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/32—Cooling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
- F25B41/24—Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B45/00—Arrangements for charging or discharging refrigerant
Definitions
- the present invention relates to a heat pump cycle including a compressor, a radiator, a decompressor, and a heat exchanger for heat absorption, an air conditioner for a vehicle that includes the same and air-conditions a vehicle interior, and a refrigeration cycle. .
- this type of heat pump cycle particularly a heat pump cycle that constitutes an air conditioner for vehicles, includes a compressor that compresses a refrigerant, a radiator that radiates the refrigerant (a heat exchanger for heat dissipation), and an expansion valve as a pressure reducing device. And an outdoor heat exchanger (an endothermic heat exchanger or a heat dissipation heat exchanger) and an indoor evaporator (an endothermic heat exchanger) are sequentially connected to form a refrigerant circuit.
- the supplied air is heated and the vehicle interior is heated by absorbing heat with an outdoor heat exchanger, and the vehicle interior is cooled by absorbing heat of the refrigerant with an indoor evaporator (see, for example, Patent Document 1). ).
- an accumulator as a gas-liquid separator is connected to the refrigerant suction side of the compressor.
- a service valve called a charging port was attached to the piping from the outlet side of the accumulator to the compressor. Then, when the refrigerant is filled in the refrigerant circuit, the refrigerant in the circuit is once evacuated and collected from the service valve and then filled.
- the accumulator is equipped with a tank with a predetermined capacity, and an outlet pipe that opens at the upper part of the tank and that has the other end drawn out of the tank and connected to the compressor.
- the inlet pipe is connected to the tank. And open at the top of the tank. Then, the liquid refrigerant out of the refrigerant flowing in from the inlet pipe is temporarily stored in the tank, and the two-phase refrigerant mixed with part of the liquid refrigerant in which the gas refrigerant and oil are dissolved flows out from the opening at one end of the outlet pipe.
- It is supposed to be a structure that allows The tank also stores oil circulating in the refrigerant circuit together with the refrigerant.
- the outlet pipe Since this oil also needs to be returned to the compressor, the outlet pipe has a shape that descends from the opening at one end to the bottom of the tank, forms an oil return hole at the lowest point, and this oil return hole enters the tank. It was configured to return the accumulated oil to the compressor.
- the service valve since the service valve is attached to the outlet pipe of the accumulator, the oil in the accumulator is also sucked when evacuating and the oil in the refrigerant circuit is exhausted. .
- the present invention was made in order to solve the conventional technical problem, and a heat pump cycle capable of preventing oil from being sucked out when recovering the refrigerant in the refrigerant circuit, An object is to provide a vehicle air conditioner and a refrigeration cycle using the same.
- the heat pump cycle of the present invention includes a refrigerant circuit having a compressor that compresses a refrigerant, a heat exchanger for heat dissipation that dissipates the refrigerant, a decompression device, and a heat exchanger that absorbs heat from the refrigerant.
- An accumulator connected to the refrigerant suction side of the compressor is provided, and a service valve is provided in an inlet pipe of the accumulator.
- the accumulator includes a tank having a predetermined capacity inside and an outlet pipe that opens at an upper part of the tank, and the inlet pipe is connected to the upper part of the tank.
- a vehicle air conditioner includes an air flow passage through which air to be supplied into the passenger compartment flows in addition to the heat pump cycle of each of the above inventions, and a heat exchanger for heat dissipation is provided in the air flow passage.
- the endothermic heat exchanger is provided outside the passenger compartment, and the refrigerant discharged from the compressor is radiated by the heat radiating heat exchanger, and the radiated refrigerant is decompressed by the decompression device, and then the heat absorbing heat exchanger.
- the vehicle interior is heated by absorbing heat.
- a vehicle air conditioner includes an air flow passage through which air to be supplied into the vehicle compartment flows in addition to the heat pump cycle of the first or second aspect of the invention, and the heat absorption heat exchanger is an air
- the heat dissipation heat exchanger is provided outside the passenger compartment, and the refrigerant discharged from the compressor is radiated by the heat dissipation heat exchanger.
- the interior of the vehicle is cooled by absorbing heat with a heat exchanger.
- the refrigeration cycle of the invention of claim 5 comprises at least a compressor, a radiator, a decompressor, a heat exchanger for heat absorption, and an accumulator, comprising an accumulator connected to the refrigerant suction side of the compressor, A service valve is provided in the inlet pipe of the accumulator.
- the accumulator connected to the refrigerant suction side of the compressor is provided, and the service valve is provided in the inlet pipe of the accumulator. It is possible to avoid the disadvantage that the oil is sucked out.
- the accumulator includes a tank having a predetermined capacity inside and an outlet pipe opened at the upper part of the tank, and the inlet pipe is connected to the upper part of the tank. This is extremely effective when the outlet pipe has an oil return hole that opens at the bottom of the tank.
- the disadvantage that the oil in the circuit is exhausted due to the recovery of the refrigerant from the refrigerant circuit. This is particularly effective in a vehicle air conditioner that heats or cools the passenger compartment as in the inventions of claims 3 and 4.
- FIG. 1 It is a block diagram of one Example of the air conditioning apparatus for vehicles provided with the heat pump cycle to which this invention is applied. It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. It is a perspective view of the accumulator of the air conditioning apparatus for vehicles of FIG. It is a schematic sectional drawing of the accumulator of the vehicle air conditioner of FIG.
- FIG. 1 shows a configuration diagram of an embodiment of a vehicle air conditioner 1 provided with a heat pump cycle HP as an example of the refrigeration cycle of the present invention.
- the vehicle according to the embodiment to which the vehicle air conditioner 1 of FIG. 1 is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and an electric motor for traveling with electric power charged in a battery is used.
- EV electric vehicle
- the vehicle is driven and driven (none of which is shown), and the vehicle air conditioner 1 is also driven by the power of the battery.
- the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, And each operation mode of MAX cooling mode is selectively performed.
- the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
- the vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air.
- a heat absorber 9 as a heat exchanger for heat absorption to absorbed by the refrigerant from the cabin outside when fine dehumidification, the accumulator 12 and the like are provided sequentially connected heat pump cycle HP of the refrigerant circuit R is constituted by a refrigerant pipe 13.
- the refrigerant circuit R of the heat pump cycle HP is filled with a predetermined amount of refrigerant and lubricating oil.
- an outdoor fan 15 is provided in the outdoor heat exchanger 7 (a heat exchanger for heat dissipation or a heat exchanger for heat absorption).
- the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
- the outdoor heat exchanger 7 has a receiver dryer unit 14 and a supercooling unit 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode,
- the refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the inlet of the heat absorber 9 via the indoor expansion valve 8 via a cooling electromagnetic valve 17 opened in the MAX cooling mode.
- the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
- the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
- the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
- the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is connected to the internal heat exchanger via a heating electromagnetic valve 21 opened in the heating mode.
- the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12 as an inlet pipe as described later, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
- the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
- the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is reheated in the heating mode, the dehumidifying cooling mode, and the cooling mode, and closed in the dehumidifying heating mode and the MAX cooling mode.
- An electromagnetic valve 30 is provided.
- the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened in the dehumidifying heating mode and the MAX cooling mode, and is heated, dehumidified and cooled, and cooled.
- the refrigerant pipe 13E is connected to the downstream side of the outdoor expansion valve 6 through a bypass electromagnetic valve 40 that is closed in the mode.
- Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
- the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1).
- a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment.
- an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
- 23 is an auxiliary heater provided in the vehicle air conditioner 1 of the embodiment.
- the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the air upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. Yes.
- the auxiliary heater 23 When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
- the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
- air in the air flow passage 3 on the upstream side of the auxiliary heater 23 flows into the air flow passage 3 and assists air (inside air or outside air) in the air flow passage 3 after passing through the heat absorber 9.
- An air mix damper 28 is provided for adjusting the ratio of ventilation through the heater 23 and the radiator 4.
- FOOT foot
- VENT vent
- DEF (def) outlets represented by the outlet 29 as a representative in FIG.
- FIGS. 3 and 4 show a perspective view and a sectional view of the accumulator 12 described above.
- the accumulator 12 is a so-called gas-liquid separator for separating the liquid refrigerant and the gas refrigerant flowing in via the refrigerant pipe 13C, and has a tank 57 having upper and lower predetermined dimensions and a predetermined capacity inside, and the tank 57
- the baffle plate 58 disposed in the upper part of the tank 57 and spaced apart from the side wall and the upper wall of the tank 57, and enters the inside from the upper wall of the tank 57, penetrates the baffle plate 58, and once reaches the bottom of the tank 57.
- the outlet pipe 61 is opened at one end (tip) that is opened at a distance below the baffle plate 58.
- one end of the outlet pipe 61 is opened at the upper part in the tank 57 below the baffle plate 58.
- the lowermost part of the outlet pipe 61 is located immediately above the bottom wall of the tank 57 with a small clearance, and an oil return hole 62 formed of a small hole is formed at the lowermost part. That is, the oil return hole 62 opens at the bottom of the tank 57.
- the other end of the outlet pipe 61 exits from the upper wall of the tank 57 and is connected to the suction side of the compressor 2.
- a refrigerant pipe 13 ⁇ / b> C serving as an inlet pipe of the accumulator 12 enters the tank 57 from the upper wall and opens above the baffle plate 58.
- the refrigerant pipe 13 ⁇ / b> C is connected to the upper part of the tank 57, and opens at the upper part in the tank 57 above the baffle plate 58. Further, a service valve 64 is attached to the refrigerant pipe 13C (inlet pipe), which is a little before the portion connected to the accumulator 12.
- the service valve 64 is a valve used when evacuating the refrigerant from the refrigerant circuit R of the heat pump cycle HP and filling the refrigerant into the refrigerant circuit R as will be described later.
- reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor.
- the controller 32 detects the outside air temperature (Tam) of the vehicle.
- the outside air temperature sensor 33 for detecting the outside air humidity
- the HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the passenger compartment.
- An inside air temperature sensor 37 that detects the temperature
- an inside air humidity sensor 38 that detects the humidity of the air in the vehicle interior
- an indoor CO2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
- an air outlet 29 is blown into the vehicle interior.
- the radiator pressure sensor 47 for detecting the refrigerant pressure of the radiator 4 (in the radiator 4 or immediately after exiting the radiator 4: the pressure of the radiator: PCI) and the temperature of the heat absorber 9 (the heat absorber)
- An air conditioning (air conditioner) operation unit 53 for setting the switching, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7 (the refrigerant flowing into the accumulator 12 in the heating mode described later)
- the input of the controller 32 further includes the temperature of the auxiliary heater 23 (auxiliary heater 23). Also connected to the output of the auxiliary heater temperature sensor 50 for detecting the temperature of the air immediately after being heated or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc).
- the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
- the solenoid valve, the indoor expansion valve 8, the auxiliary heater 23, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), and the solenoid valve 40 (for bypass) are connected. Has been.
- the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
- the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode.
- Heating mode When the heating mode is selected by the controller 32 (auto mode) or by manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (for cooling). Close.
- the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30.
- the air in the airflow passage 3 Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4.
- the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
- the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
- the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
- the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the outdoor heat exchanger 7 becomes a heat exchanger for heat absorption. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C via the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D. In this case, the gas refrigerant evaporated in the outdoor heat exchanger 7 and the non-evaporated liquid refrigerant pass through the refrigerant pipe 13A, the electromagnetic valve 21, and the refrigerant pipe 13D as described above from the refrigerant pipe 13C with arrows in FIG.
- the refrigerant in the gas-liquid mixed state flowing into the tank 57 first collides with the baffle plate 58 and spreads outward, and flows down between the outer edge of the baffle plate 58 and the tank 57 as shown by the arrows and into the lower part of the tank 57. To do.
- the liquid refrigerant is stored in the lower part of the tank 57, and the gas refrigerant and the gas refrigerant in which the liquid refrigerant has evaporated in the accumulator 12 pass through the gap between the tip of the outlet pipe 61 and the baffle plate 58 as shown by the arrows.
- the tank 57 also stores oil (for lubricating the compressor 2) circulating in the refrigerant circuit R together with the refrigerant.
- the oil and a part of the liquid refrigerant enter the outlet pipe 61 from the oil return hole 62 formed at the lowermost part of the outlet pipe 61 and rise and exit from the accumulator 12.
- the refrigerant and oil thus separated into gas and liquid are sucked into the compressor 2 through the outlet pipe 61 of the accumulator 12, and this circulation is repeated thereafter.
- the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
- the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
- the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
- the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
- the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
- the refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above.
- the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant
- the controller 32 energizes the auxiliary heater 23 to generate heat.
- the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
- the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
- the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
- the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
- the air is cooled and dehumidified.
- the refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above.
- the controller 32 does not energize the auxiliary heater 23
- the air cooled by the heat absorber 9 is reheated (reheated in the process of passing through the radiator 4). )
- dehumidifying and cooling in the passenger compartment is performed.
- the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode.
- the controller 32 controls the air mix damper 28, and the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 as shown by a solid line in FIG.
- the rate of ventilation through the vessel 4 is adjusted.
- the controller 32 does not energize the auxiliary heater 23.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
- the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. That is, the outdoor heat exchanger 7 serves as a heat exchanger for heat dissipation.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and after being gas-liquid separated as described above, the circulation sucked into the compressor 2 is repeated.
- the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state in which the air in the air flow passage 3 is not passed through the auxiliary heater 23 and the radiator 4. However, there is no problem even if it is ventilated somewhat.
- the controller 32 does not energize the auxiliary heater 23. Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
- the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
- the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled.
- the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
- the air flowing through the air flow passage 3 is subjected to cooling from the heat absorber 9 and heating action from the heat radiator 4 (and the auxiliary heater 23) (adjusted by the air mix damper 28) in each of the above operation modes. Is blown out into the passenger compartment.
- the controller 32 is set by the air-conditioning operation unit 53, the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature in the vehicle interior detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like.
- the target blowout temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the temperature of the air blown from the blowout port 29 is controlled to this target blowout temperature TAO by switching each operation mode.
- the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior.
- each operation mode based on parameters such as, etc., it switches between heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode and MAX cooling mode accurately according to the environmental conditions and necessity of dehumidification.
- the service valve 64 is attached to the refrigerant pipe 13 ⁇ / b> C serving as the inlet pipe of the accumulator 12, and the refrigerant pipe 13 ⁇ / b> C opens at the upper part in the tank 57 of the accumulator 12.
- the gasified liquid refrigerant is sucked, and the oil stored in the bottom of the tank 57 is not sucked out or the amount sucked out is minimized.
- a refrigerant filling device (not shown) is connected to the service valve 64 and a predetermined amount of refrigerant is filled in the refrigerant circuit R.
- the accumulator 12 connected to the refrigerant suction side of the compressor 2 that compresses the refrigerant is provided, and the service valve 64 is provided in the refrigerant pipe 13C that is the inlet pipe of the accumulator 12, A tank 57 having a predetermined capacity is provided inside, and an outlet pipe 61 opened at the upper part of the tank 57.
- the refrigerant pipe 13C is connected to the upper part of the tank 57 and opens into the tank 57. Even when the accumulator 12 having the oil return hole 62 opened at the bottom in the tank 57 is used, the inconvenience that the oil in the accumulator 12 is sucked out when the service valve 64 is used for evacuation. It can be avoided.
- the present invention is applied to the heat pump cycle HP of the vehicle air conditioner 1 that air-conditions the interior of the vehicle.
- the present invention is not limited to this, and the compressor 2 that compresses the refrigerant, the heat exchanger for heat dissipation (the radiator 4,
- the present invention is effective for various heat pump cycles including a refrigerant circuit R having an outdoor heat exchanger 7), a pressure reducing device (expansion valves 6, 8), and a heat absorbing heat exchanger (heat absorbing device 9, outdoor heat exchanger 7). It is.
- the present invention is also effective for a refrigeration facility having a refrigeration cycle including at least a compressor, a radiator, a decompressor, a heat exchanger for heat absorption, and an accumulator, a refrigeration facility, and the like.
- the operation mode of the vehicle air conditioner 1 has been described as an example of switching each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode.
- the present invention is also effective for a vehicle air conditioner that executes only the heating mode or only the cooling mode.
- the configuration of the refrigerant circuit R described in the embodiments is not limited thereto, and can be changed without departing from the spirit of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Provided is a heat pump cycle (HP) that comprises a refrigerant circuit (R) having: a compressor (2) that compresses a refrigerant; a heat exchanger for heat radiation (a radiator (4) and an outdoor heat exchanger (7)) that radiates heat from the refrigerant; a pressure reducer (an outdoor expansion valve (6) and an indoor expansion valve (7)); and a heat exchanger for heat absorption (an outdoor heat exchanger (7) and a heat sink (9)) that absorbs heat from the refrigerant. The heat pump cycle comprises an accumulator (12) that is connected to the refrigerant intake side of the compressor (2). A service valve (64) is provided on inlet piping (refrigerant piping (13C)) of the accumulator (12). Thus, oil is prevented from being drawn out when recovering refrigerant in the refrigerant circuit (R).
Description
本発明は、圧縮機と、放熱器と、減圧装置と、吸熱用熱交換器を備えたヒートポンプサイクル、それを備えて車室内を空調する車両用空気調和装置、及び、冷凍サイクルに関するものである。
The present invention relates to a heat pump cycle including a compressor, a radiator, a decompressor, and a heat exchanger for heat absorption, an air conditioner for a vehicle that includes the same and air-conditions a vehicle interior, and a refrigeration cycle. .
従来よりこの種のヒートポンプサイクル、特に車両用の空調装置を構成するヒートポンプサイクルは、冷媒を圧縮する圧縮機と、冷媒を放熱させる放熱器(放熱用熱交換器)と、減圧装置としての膨張弁と、室外熱交換器(吸熱用熱交換器又は放熱用熱交換器)と、室内蒸発器(吸熱用熱交換器)を順次接続して冷媒回路が構成されており、放熱器で車室内に供給される空気を加熱し、室外熱交換器で吸熱させることで車室内を暖房し、室内蒸発器で冷媒を吸熱させることで車室内を冷房する構成とされていた(例えば、特許文献1参照)。
また、圧縮機の冷媒吸込側には気液分離器としてのアキュムレータが接続されるが、特に走行時の震動が加わる車両用の空調装置では、冷媒回路からの冷媒漏洩が問題となるため、このアキュムレータの出口側から圧縮機に至る配管にはチャージングポートと称するサービスバルブが取り付けられていた。そして、冷媒回路内に冷媒を充填する際には、一旦このサービスバルブから回路内の冷媒を真空引きして回収した後、充填するものであった。 Conventionally, this type of heat pump cycle, particularly a heat pump cycle that constitutes an air conditioner for vehicles, includes a compressor that compresses a refrigerant, a radiator that radiates the refrigerant (a heat exchanger for heat dissipation), and an expansion valve as a pressure reducing device. And an outdoor heat exchanger (an endothermic heat exchanger or a heat dissipation heat exchanger) and an indoor evaporator (an endothermic heat exchanger) are sequentially connected to form a refrigerant circuit. The supplied air is heated and the vehicle interior is heated by absorbing heat with an outdoor heat exchanger, and the vehicle interior is cooled by absorbing heat of the refrigerant with an indoor evaporator (see, for example, Patent Document 1). ).
In addition, an accumulator as a gas-liquid separator is connected to the refrigerant suction side of the compressor. Especially in a vehicle air conditioner that is subject to vibration during traveling, refrigerant leakage from the refrigerant circuit becomes a problem. A service valve called a charging port was attached to the piping from the outlet side of the accumulator to the compressor. Then, when the refrigerant is filled in the refrigerant circuit, the refrigerant in the circuit is once evacuated and collected from the service valve and then filled.
また、圧縮機の冷媒吸込側には気液分離器としてのアキュムレータが接続されるが、特に走行時の震動が加わる車両用の空調装置では、冷媒回路からの冷媒漏洩が問題となるため、このアキュムレータの出口側から圧縮機に至る配管にはチャージングポートと称するサービスバルブが取り付けられていた。そして、冷媒回路内に冷媒を充填する際には、一旦このサービスバルブから回路内の冷媒を真空引きして回収した後、充填するものであった。 Conventionally, this type of heat pump cycle, particularly a heat pump cycle that constitutes an air conditioner for vehicles, includes a compressor that compresses a refrigerant, a radiator that radiates the refrigerant (a heat exchanger for heat dissipation), and an expansion valve as a pressure reducing device. And an outdoor heat exchanger (an endothermic heat exchanger or a heat dissipation heat exchanger) and an indoor evaporator (an endothermic heat exchanger) are sequentially connected to form a refrigerant circuit. The supplied air is heated and the vehicle interior is heated by absorbing heat with an outdoor heat exchanger, and the vehicle interior is cooled by absorbing heat of the refrigerant with an indoor evaporator (see, for example, Patent Document 1). ).
In addition, an accumulator as a gas-liquid separator is connected to the refrigerant suction side of the compressor. Especially in a vehicle air conditioner that is subject to vibration during traveling, refrigerant leakage from the refrigerant circuit becomes a problem. A service valve called a charging port was attached to the piping from the outlet side of the accumulator to the compressor. Then, when the refrigerant is filled in the refrigerant circuit, the refrigerant in the circuit is once evacuated and collected from the service valve and then filled.
ここで、アキュムレータは所定容量のタンクと、このタンク内の上部で一端が開口し、他端がタンクから引き出されて圧縮機へと接続される出口配管を備えており、タンクに入口配管を接続してタンク内の上部にて開口させる。そして、この入口配管から流入した冷媒のうちの液冷媒をタンク内に一旦貯留し、ガス冷媒とオイルが溶け込んでいる液冷媒の一部を混合した2相冷媒を出口配管の一端の開口から流出させる構造とされている。
また、タンク内には冷媒と共に冷媒回路内を循環するオイルも貯留される。このオイルも圧縮機に戻す必要があるため、出口配管は一端の開口からタンク内の底部まで降下する形状とされ、この最も低い箇所にオイル戻し孔を形成し、このオイル戻し孔からタンク内に溜まったオイルを圧縮機に戻す構成とされていた。
しかしながら、従来ではサービスバルブがこのアキュムレータの出口配管に取り付けられていたため、真空引きの際にアキュムレータ内のオイルも吸引されてしまい、冷媒回路内のオイルが枯渇してしまうと云う問題が生じていた。
本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒回路内の冷媒を回収する際に、オイルが吸い出されてしまうことを防止することができるヒートポンプサイクル、それを用いた車両用空気調和装置、及び、冷凍サイクルを提供することを目的とする。 Here, the accumulator is equipped with a tank with a predetermined capacity, and an outlet pipe that opens at the upper part of the tank and that has the other end drawn out of the tank and connected to the compressor. The inlet pipe is connected to the tank. And open at the top of the tank. Then, the liquid refrigerant out of the refrigerant flowing in from the inlet pipe is temporarily stored in the tank, and the two-phase refrigerant mixed with part of the liquid refrigerant in which the gas refrigerant and oil are dissolved flows out from the opening at one end of the outlet pipe. It is supposed to be a structure that allows
The tank also stores oil circulating in the refrigerant circuit together with the refrigerant. Since this oil also needs to be returned to the compressor, the outlet pipe has a shape that descends from the opening at one end to the bottom of the tank, forms an oil return hole at the lowest point, and this oil return hole enters the tank. It was configured to return the accumulated oil to the compressor.
However, conventionally, since the service valve is attached to the outlet pipe of the accumulator, the oil in the accumulator is also sucked when evacuating and the oil in the refrigerant circuit is exhausted. .
The present invention was made in order to solve the conventional technical problem, and a heat pump cycle capable of preventing oil from being sucked out when recovering the refrigerant in the refrigerant circuit, An object is to provide a vehicle air conditioner and a refrigeration cycle using the same.
また、タンク内には冷媒と共に冷媒回路内を循環するオイルも貯留される。このオイルも圧縮機に戻す必要があるため、出口配管は一端の開口からタンク内の底部まで降下する形状とされ、この最も低い箇所にオイル戻し孔を形成し、このオイル戻し孔からタンク内に溜まったオイルを圧縮機に戻す構成とされていた。
しかしながら、従来ではサービスバルブがこのアキュムレータの出口配管に取り付けられていたため、真空引きの際にアキュムレータ内のオイルも吸引されてしまい、冷媒回路内のオイルが枯渇してしまうと云う問題が生じていた。
本発明は、係る従来の技術的課題を解決するために成されたものであり、冷媒回路内の冷媒を回収する際に、オイルが吸い出されてしまうことを防止することができるヒートポンプサイクル、それを用いた車両用空気調和装置、及び、冷凍サイクルを提供することを目的とする。 Here, the accumulator is equipped with a tank with a predetermined capacity, and an outlet pipe that opens at the upper part of the tank and that has the other end drawn out of the tank and connected to the compressor. The inlet pipe is connected to the tank. And open at the top of the tank. Then, the liquid refrigerant out of the refrigerant flowing in from the inlet pipe is temporarily stored in the tank, and the two-phase refrigerant mixed with part of the liquid refrigerant in which the gas refrigerant and oil are dissolved flows out from the opening at one end of the outlet pipe. It is supposed to be a structure that allows
The tank also stores oil circulating in the refrigerant circuit together with the refrigerant. Since this oil also needs to be returned to the compressor, the outlet pipe has a shape that descends from the opening at one end to the bottom of the tank, forms an oil return hole at the lowest point, and this oil return hole enters the tank. It was configured to return the accumulated oil to the compressor.
However, conventionally, since the service valve is attached to the outlet pipe of the accumulator, the oil in the accumulator is also sucked when evacuating and the oil in the refrigerant circuit is exhausted. .
The present invention was made in order to solve the conventional technical problem, and a heat pump cycle capable of preventing oil from being sucked out when recovering the refrigerant in the refrigerant circuit, An object is to provide a vehicle air conditioner and a refrigeration cycle using the same.
本発明のヒートポンプサイクルは、冷媒を圧縮する圧縮機と、冷媒を放熱させる放熱用熱交換器と、減圧装置と、冷媒を吸熱させる吸熱用熱交換器を有する冷媒回路を備えたものであって、圧縮機の冷媒吸込側に接続されたアキュムレータを備え、このアキュムレータの入口配管にサービスバルブを設けたことを特徴とする。
請求項2の発明のヒートポンプサイクルは、上記発明においてアキュムレータは、内部に所定容量を有するタンクと、このタンク内の上部にて開口する出口配管を備え、入口配管は、タンクの上部に接続されて当該タンク内に開口すると共に、出口配管は、タンク内の底部にて開口するオイル戻し孔を有することを特徴とする。
請求項3の発明の車両用空気調和装置は、上記各発明のヒートポンプサイクルに加えて車室内に供給する空気が流通する空気流通路を備え、放熱用熱交換器は空気流通路に設けられ、吸熱用熱交換器は車室外に設けられると共に、圧縮機から吐出された冷媒を放熱用熱交換器にて放熱させ、放熱した当該冷媒を減圧装置により減圧した後、吸熱用熱交換器にて吸熱させることで車室内の暖房を行うことを特徴とする。
請求項4の発明の車両用空気調和装置は、請求項1又は請求項2の発明のヒートポンプサイクルに加えて車室内に供給する空気が流通する空気流通路を備え、吸熱用熱交換器は空気流通路に設けられ、放熱用熱交換器は車室外に設けられると共に、圧縮機から吐出された冷媒を放熱用熱交換器にて放熱させ、放熱した当該冷媒を減圧装置により減圧した後、吸熱用熱交換器にて吸熱させることで車室内の冷房を行うことを特徴とする。
請求項5の発明の冷凍サイクルは、少なくとも、圧縮機、放熱器、減圧装置、吸熱用熱交換器及びアキュムレータを備えたものであって、圧縮機の冷媒吸込側に接続されたアキュムレータを備え、このアキュムレータの入口配管にサービスバルブを設けたことを特徴とする。 The heat pump cycle of the present invention includes a refrigerant circuit having a compressor that compresses a refrigerant, a heat exchanger for heat dissipation that dissipates the refrigerant, a decompression device, and a heat exchanger that absorbs heat from the refrigerant. An accumulator connected to the refrigerant suction side of the compressor is provided, and a service valve is provided in an inlet pipe of the accumulator.
In the heat pump cycle according to the second aspect of the present invention, in the above invention, the accumulator includes a tank having a predetermined capacity inside and an outlet pipe that opens at an upper part of the tank, and the inlet pipe is connected to the upper part of the tank. While opening in the said tank, outlet piping has an oil return hole opened in the bottom part in a tank, It is characterized by the above-mentioned.
A vehicle air conditioner according to a third aspect of the invention includes an air flow passage through which air to be supplied into the passenger compartment flows in addition to the heat pump cycle of each of the above inventions, and a heat exchanger for heat dissipation is provided in the air flow passage. The endothermic heat exchanger is provided outside the passenger compartment, and the refrigerant discharged from the compressor is radiated by the heat radiating heat exchanger, and the radiated refrigerant is decompressed by the decompression device, and then the heat absorbing heat exchanger. The vehicle interior is heated by absorbing heat.
A vehicle air conditioner according to a fourth aspect of the invention includes an air flow passage through which air to be supplied into the vehicle compartment flows in addition to the heat pump cycle of the first or second aspect of the invention, and the heat absorption heat exchanger is an air The heat dissipation heat exchanger is provided outside the passenger compartment, and the refrigerant discharged from the compressor is radiated by the heat dissipation heat exchanger. The interior of the vehicle is cooled by absorbing heat with a heat exchanger.
The refrigeration cycle of the invention of claim 5 comprises at least a compressor, a radiator, a decompressor, a heat exchanger for heat absorption, and an accumulator, comprising an accumulator connected to the refrigerant suction side of the compressor, A service valve is provided in the inlet pipe of the accumulator.
請求項2の発明のヒートポンプサイクルは、上記発明においてアキュムレータは、内部に所定容量を有するタンクと、このタンク内の上部にて開口する出口配管を備え、入口配管は、タンクの上部に接続されて当該タンク内に開口すると共に、出口配管は、タンク内の底部にて開口するオイル戻し孔を有することを特徴とする。
請求項3の発明の車両用空気調和装置は、上記各発明のヒートポンプサイクルに加えて車室内に供給する空気が流通する空気流通路を備え、放熱用熱交換器は空気流通路に設けられ、吸熱用熱交換器は車室外に設けられると共に、圧縮機から吐出された冷媒を放熱用熱交換器にて放熱させ、放熱した当該冷媒を減圧装置により減圧した後、吸熱用熱交換器にて吸熱させることで車室内の暖房を行うことを特徴とする。
請求項4の発明の車両用空気調和装置は、請求項1又は請求項2の発明のヒートポンプサイクルに加えて車室内に供給する空気が流通する空気流通路を備え、吸熱用熱交換器は空気流通路に設けられ、放熱用熱交換器は車室外に設けられると共に、圧縮機から吐出された冷媒を放熱用熱交換器にて放熱させ、放熱した当該冷媒を減圧装置により減圧した後、吸熱用熱交換器にて吸熱させることで車室内の冷房を行うことを特徴とする。
請求項5の発明の冷凍サイクルは、少なくとも、圧縮機、放熱器、減圧装置、吸熱用熱交換器及びアキュムレータを備えたものであって、圧縮機の冷媒吸込側に接続されたアキュムレータを備え、このアキュムレータの入口配管にサービスバルブを設けたことを特徴とする。 The heat pump cycle of the present invention includes a refrigerant circuit having a compressor that compresses a refrigerant, a heat exchanger for heat dissipation that dissipates the refrigerant, a decompression device, and a heat exchanger that absorbs heat from the refrigerant. An accumulator connected to the refrigerant suction side of the compressor is provided, and a service valve is provided in an inlet pipe of the accumulator.
In the heat pump cycle according to the second aspect of the present invention, in the above invention, the accumulator includes a tank having a predetermined capacity inside and an outlet pipe that opens at an upper part of the tank, and the inlet pipe is connected to the upper part of the tank. While opening in the said tank, outlet piping has an oil return hole opened in the bottom part in a tank, It is characterized by the above-mentioned.
A vehicle air conditioner according to a third aspect of the invention includes an air flow passage through which air to be supplied into the passenger compartment flows in addition to the heat pump cycle of each of the above inventions, and a heat exchanger for heat dissipation is provided in the air flow passage. The endothermic heat exchanger is provided outside the passenger compartment, and the refrigerant discharged from the compressor is radiated by the heat radiating heat exchanger, and the radiated refrigerant is decompressed by the decompression device, and then the heat absorbing heat exchanger. The vehicle interior is heated by absorbing heat.
A vehicle air conditioner according to a fourth aspect of the invention includes an air flow passage through which air to be supplied into the vehicle compartment flows in addition to the heat pump cycle of the first or second aspect of the invention, and the heat absorption heat exchanger is an air The heat dissipation heat exchanger is provided outside the passenger compartment, and the refrigerant discharged from the compressor is radiated by the heat dissipation heat exchanger. The interior of the vehicle is cooled by absorbing heat with a heat exchanger.
The refrigeration cycle of the invention of claim 5 comprises at least a compressor, a radiator, a decompressor, a heat exchanger for heat absorption, and an accumulator, comprising an accumulator connected to the refrigerant suction side of the compressor, A service valve is provided in the inlet pipe of the accumulator.
請求項1又は請求項5の発明によれば、圧縮機の冷媒吸込側に接続されたアキュムレータを備え、このアキュムレータの入口配管にサービスバルブを設けたので、サービスバルブを用いた真空引き時にアキュムレータ内のオイルが吸い出されてしまう不都合を回避することが可能となる。
これは、例えば請求項2の発明の如くアキュムレータが、内部に所定容量を有するタンクと、このタンク内の上部にて開口する出口配管を備え、入口配管が、タンクの上部に接続されて当該タンク内に開口すると共に、出口配管が、タンク内の底部にて開口するオイル戻し孔を有している場合に極めて有効である。
これにより、冷媒回路からの冷媒回収により回路内のオイルが枯渇してしまう不都合を解消することができるようになる。これは、特に請求項3や請求項4の発明の如く車室内の暖房や冷房を行う車両用空気調和装置において極めて有効なものとなる。 According to the first or fifth aspect of the invention, the accumulator connected to the refrigerant suction side of the compressor is provided, and the service valve is provided in the inlet pipe of the accumulator. It is possible to avoid the disadvantage that the oil is sucked out.
This is because, for example, as in the invention ofclaim 2, the accumulator includes a tank having a predetermined capacity inside and an outlet pipe opened at the upper part of the tank, and the inlet pipe is connected to the upper part of the tank. This is extremely effective when the outlet pipe has an oil return hole that opens at the bottom of the tank.
As a result, it is possible to eliminate the disadvantage that the oil in the circuit is exhausted due to the recovery of the refrigerant from the refrigerant circuit. This is particularly effective in a vehicle air conditioner that heats or cools the passenger compartment as in the inventions of claims 3 and 4.
これは、例えば請求項2の発明の如くアキュムレータが、内部に所定容量を有するタンクと、このタンク内の上部にて開口する出口配管を備え、入口配管が、タンクの上部に接続されて当該タンク内に開口すると共に、出口配管が、タンク内の底部にて開口するオイル戻し孔を有している場合に極めて有効である。
これにより、冷媒回路からの冷媒回収により回路内のオイルが枯渇してしまう不都合を解消することができるようになる。これは、特に請求項3や請求項4の発明の如く車室内の暖房や冷房を行う車両用空気調和装置において極めて有効なものとなる。 According to the first or fifth aspect of the invention, the accumulator connected to the refrigerant suction side of the compressor is provided, and the service valve is provided in the inlet pipe of the accumulator. It is possible to avoid the disadvantage that the oil is sucked out.
This is because, for example, as in the invention of
As a result, it is possible to eliminate the disadvantage that the oil in the circuit is exhausted due to the recovery of the refrigerant from the refrigerant circuit. This is particularly effective in a vehicle air conditioner that heats or cools the passenger compartment as in the inventions of
以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1は本発明の冷凍サイクルの一例としてのヒートポンプサイクルHPを備えた車両用空気調和装置1の一実施例の構成図を示している。図1の車両用空気調和装置1を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを選択的に実行するものである。
尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器用熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る減圧装置としての室外膨張弁6と、車室外に設けられて冷房時には放熱用熱交換器として機能し、暖房時には吸熱用熱交換器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る減圧装置としての室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱用熱交換器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続されて冷媒回路Rが構成されたヒートポンプサイクルHPを備えている。
そして、このヒートポンプサイクルHPの冷媒回路R内には、所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7(放熱用熱交換器又は吸熱用熱交換器)には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードで開放される冷房用の電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8を介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房モードで開放される暖房用の電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cが後述する如く入口配管としてアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには、暖房モード、除湿冷房モード、及び、冷房モードで開放され、除湿暖房モードとMAX冷房モードで閉じられるリヒート用の電磁弁30が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は、除湿暖房モード及びMAX冷房モードで開放され、暖房モード、除湿冷房モード、及び、冷房モードで閉じられるバイパス用の電磁弁40を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
また、図1において23は実施例の車両用空気調和装置1に設けられた補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
ここで、図3、図4は前述したアキュムレータ12の斜視図、及び、断面図を示している。アキュムレータ12は冷媒配管13Cを経て流入する液冷媒とガス冷媒とを分離するための所謂気液分離器であり、上下の所定寸法を有し、内部に所定容量を有するタンク57と、このタンク57内の上部に配置され、タンク57の側壁及び上壁から離間して設けられた邪魔板58と、タンク57の上壁から内部に進入し、邪魔板58を貫通して一旦タンク57内の底部まで降下した後に上昇し、上昇した一端(先端)が邪魔板58の下側で間隔を存して開口する出口配管61とから構成されている。即ち、出口配管61の一端は邪魔板58の下側のタンク57内の上部にて開口している。
この出口配管61の最下部はタンク57の底壁直上に少許間隔を存して位置しており、この最下部には小孔から成るオイル戻し孔62が形成されている。即ち、このオイル戻し孔62はタンク57内の底部にて開口している。また、出口配管61の他端はタンク57の上壁から出て圧縮機2の吸込側に接続されている。
そして、アキュムレータ12の入口配管となる冷媒配管13Cがタンク57の上壁から内部に進入し、邪魔板58の上側にて開口している。即ち、冷媒配管13Cはタンク57の上部に接続され、邪魔板58の上側のタンク57内の上部で開口している。また、このアキュムレータ12に接続される部分の少許手前の冷媒配管13C(入口配管)にはサービスバルブ64が取り付けられている。このサービスバルブ64は後述する如くヒートポンプサイクルHPの冷媒回路R内から冷媒を真空引きする際、及び、冷媒回路R内に冷媒を充填する際に用いられるバルブである。
次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力Psを検出する吸込圧力センサ44と、アキュムレータ12から出て圧縮機2に吸い込まれる冷媒の温度である吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度(後述する暖房モードのときにアキュムレータ12に流入する冷媒の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。
一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
(1)暖房モード
コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。
そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、室外熱交換器7は吸熱用熱交換器となる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入る。
この場合、室外熱交換器7で蒸発したガス冷媒、及び、未蒸発の液冷媒は、前述した如く冷媒配管13A、電磁弁21、及び、冷媒配管13Dを経て冷媒配管13Cから図4に矢印で示す如くアキュムレータ12のタンク57内に入る。タンク57内に流入した気液混合状態の冷媒は、先ず邪魔板58に衝突して外側に広がり、矢印で示す如く邪魔板58の外縁とタンク57の間を通ってタンク57内の下部に流下する。
液冷媒はこのタンク57内の下部に貯留され、ガス冷媒及びアキュムレータ12内で液冷媒が蒸発したガス冷媒は、矢印で示す如く出口配管61の先端と邪魔板58の間を経て出口配管61の先端の開口から当該出口配管61内に入り、流下した後、再び上昇してアキュムレータ12から出て行く。また、タンク57内には冷媒と共に冷媒回路R内を循環するオイル(圧縮機2の潤滑用)も貯留される。このオイル、及び、液冷媒の一部は、出口配管61の最下部に形成されたオイル戻し孔62から出口配管61内に入って上昇し、アキュムレータ12から出て行く。
このようにして気液分離された冷媒、及び、オイルはアキュムレータ12の出口配管61を経て圧縮機2に吸い込まれ、以後この循環を繰り返す。放熱器4(放熱用熱交換器)や補助ヒータ23にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
(2)除湿暖房モード
次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離されて圧縮機2に吸い込まれる循環を繰り返す。
このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
(3)除湿冷房モード
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離されて圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(リヒート。暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
(4)冷房モード
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。即ち、室外熱交換器7は放熱用熱交換器となる。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離された後、圧縮機2に吸い込まれる循環を繰り返す。吸熱器9(吸熱用熱交換器)にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。
(5)MAX冷房モード
次に、MAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。
(6)各運転モードの切換
空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。
(7)サービスバルブ64を用いた真空引きと冷媒充填
次に、前述したサービスバルブ64を用いた冷媒回路Rからの冷媒の真空引きと冷媒充填作業について説明する。実施例の如き車両用空気調和装置1は走行に比較的大きな震動に晒されるため冷媒回路Rからの冷媒漏洩が発生する。その場合は、サービスバルブ64を用いて冷媒充填を行うことになる。
この場合、先ず室外膨張弁6、及び、室内膨張弁8を全開とし、電磁弁17、21、30、40を開く。次に、サービスバルブ64に図示しない真空引き装置を接続して冷媒回路Rから冷媒を真空引きする。このとき、サービスバルブ64はアキュムレータ12の入口配管となる冷媒配管13Cに取り付けられており、この冷媒配管13Cはアキュムレータ12のタンク57内の上部にて開口しているので、タンク57内のガス冷媒とガス化した液冷媒が吸引され、タンク57内の底部に貯留されているオイルは吸い出されず、或いは、吸い出される量は最小限となる。
このようにして冷媒回路R内の冷媒を真空引きした後、今度はサービスバルブ64に図示しない冷媒充填装置を接続して所定量の冷媒を冷媒回路R内に充填する。
以上のように本発明によれば、冷媒を圧縮する圧縮機2の冷媒吸込側に接続されたアキュムレータ12を備え、このアキュムレータ12の入口配管である冷媒配管13Cにサービスバルブ64を設けたので、内部に所定容量を有するタンク57と、このタンク57内の上部にて開口する出口配管61を備え、冷媒配管13Cが、タンク57の上部に接続されて当該タンク57内に開口すると共に、出口配管61が、タンク57内の底部にて開口するオイル戻し孔62を有したアキュムレータ12を使用した場合にも、サービスバルブ64を用いた真空引き時にアキュムレータ12内のオイルが吸い出されてしまう不都合を回避することが可能となる。
これにより、冷媒回路Rからの冷媒回収により回路内のオイルが枯渇してしまう不都合を解消することができるようになる。これは、特に実施例の如く車室内の暖房や冷房等を行う車両用空気調和装置1において極めて有効なものとなる。
尚、実施例では車室内を空調する車両用空気調和装置1のヒートポンプサイクルHPに本発明を適用したが、それに限らず、冷媒を圧縮する圧縮機2、放熱用熱交換器(放熱器4、室外熱交換器7)、減圧装置(膨張弁6、8)、吸熱用熱交換器(吸熱器9、室外熱交換器7)を有する冷媒回路Rを備えた種々のヒートポンプサイクルに本発明は有効である。
更には、本発明は少なくとも圧縮機、放熱器、減圧装置、吸熱用熱交換器及びアキュムレータを備えた冷凍サイクルを有する冷凍設備、冷蔵設備等にも本発明は有効である。
また、上述した実施例では車両用空気調和装置1の運転モードとして暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードの各運転モードを切り換える例で説明したが、それに限らず、暖房モードのみ、或いは、冷房モードのみを実行する車両用空気調和装置にも本発明は有効である。更に、実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of an embodiment of avehicle air conditioner 1 provided with a heat pump cycle HP as an example of the refrigeration cycle of the present invention. The vehicle according to the embodiment to which the vehicle air conditioner 1 of FIG. 1 is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and an electric motor for traveling with electric power charged in a battery is used. The vehicle is driven and driven (none of which is shown), and the vehicle air conditioner 1 is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, And each operation mode of MAX cooling mode is selectively performed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
Thevehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G and dissipates the refrigerant into the passenger compartment. A radiator 4 as an exchanger, an outdoor expansion valve 6 as a decompression device comprising a motor-operated valve that decompresses and expands the refrigerant during heating, and functions as a heat-dissipating heat exchanger that is provided outside the passenger compartment during cooling and absorbs heat during heating An outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air so as to function as a heat exchanger, an indoor expansion valve 8 as a decompression device comprising an electric valve for decompressing and expanding the refrigerant, and the air flow passage 3 It is provided in the air conditioner A heat absorber 9 as a heat exchanger for heat absorption to absorbed by the refrigerant from the cabin outside when fine dehumidification, the accumulator 12 and the like are provided sequentially connected heat pump cycle HP of the refrigerant circuit R is constituted by a refrigerant pipe 13.
The refrigerant circuit R of the heat pump cycle HP is filled with a predetermined amount of refrigerant and lubricating oil. Note that anoutdoor fan 15 is provided in the outdoor heat exchanger 7 (a heat exchanger for heat dissipation or a heat exchanger for heat absorption). The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
Theoutdoor heat exchanger 7 has a receiver dryer unit 14 and a supercooling unit 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, The refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the inlet of the heat absorber 9 via the indoor expansion valve 8 via a cooling electromagnetic valve 17 opened in the MAX cooling mode. Connected to the side. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
Therefrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, therefrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is connected to the internal heat exchanger via a heating electromagnetic valve 21 opened in the heating mode. 19 is connected to a refrigerant pipe 13 </ b> C on the downstream side. The refrigerant pipe 13 </ b> C is connected to the accumulator 12 as an inlet pipe as described later, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
In addition, therefrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is reheated in the heating mode, the dehumidifying cooling mode, and the cooling mode, and closed in the dehumidifying heating mode and the MAX cooling mode. An electromagnetic valve 30 is provided. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened in the dehumidifying heating mode and the MAX cooling mode, and is heated, dehumidified and cooled, and cooled. The refrigerant pipe 13E is connected to the downstream side of the outdoor expansion valve 6 through a bypass electromagnetic valve 40 that is closed in the mode. Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
Theair flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 is an auxiliary heater provided in thevehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the air upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. Yes. When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
In addition, air in theair flow passage 3 on the upstream side of the auxiliary heater 23 flows into the air flow passage 3 and assists air (inside air or outside air) in the air flow passage 3 after passing through the heat absorber 9. An air mix damper 28 is provided for adjusting the ratio of ventilation through the heater 23 and the radiator 4. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 as a representative in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The air outlet 29 is provided with an air outlet switching damper 31 that performs switching control of air blowing from the air outlets.
Here, FIGS. 3 and 4 show a perspective view and a sectional view of theaccumulator 12 described above. The accumulator 12 is a so-called gas-liquid separator for separating the liquid refrigerant and the gas refrigerant flowing in via the refrigerant pipe 13C, and has a tank 57 having upper and lower predetermined dimensions and a predetermined capacity inside, and the tank 57 The baffle plate 58 disposed in the upper part of the tank 57 and spaced apart from the side wall and the upper wall of the tank 57, and enters the inside from the upper wall of the tank 57, penetrates the baffle plate 58, and once reaches the bottom of the tank 57. And the outlet pipe 61 is opened at one end (tip) that is opened at a distance below the baffle plate 58. That is, one end of the outlet pipe 61 is opened at the upper part in the tank 57 below the baffle plate 58.
The lowermost part of theoutlet pipe 61 is located immediately above the bottom wall of the tank 57 with a small clearance, and an oil return hole 62 formed of a small hole is formed at the lowermost part. That is, the oil return hole 62 opens at the bottom of the tank 57. Further, the other end of the outlet pipe 61 exits from the upper wall of the tank 57 and is connected to the suction side of the compressor 2.
Arefrigerant pipe 13 </ b> C serving as an inlet pipe of the accumulator 12 enters the tank 57 from the upper wall and opens above the baffle plate 58. That is, the refrigerant pipe 13 </ b> C is connected to the upper part of the tank 57, and opens at the upper part in the tank 57 above the baffle plate 58. Further, a service valve 64 is attached to the refrigerant pipe 13C (inlet pipe), which is a little before the portion connected to the accumulator 12. The service valve 64 is a valve used when evacuating the refrigerant from the refrigerant circuit R of the heat pump cycle HP and filling the refrigerant into the refrigerant circuit R as will be described later.
Next, in FIG. 2,reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor. The controller 32 detects the outside air temperature (Tam) of the vehicle. The outside air temperature sensor 33 for detecting the outside air humidity, the HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the passenger compartment. An inside air temperature sensor 37 that detects the temperature, an inside air humidity sensor 38 that detects the humidity of the air in the vehicle interior, an indoor CO2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and an air outlet 29 is blown into the vehicle interior. A discharge temperature sensor 41 for detecting the temperature of the air to be discharged, a discharge pressure sensor 42 for detecting the discharge refrigerant pressure Pd of the compressor 2, and a pressure A discharge temperature sensor 43 that detects a discharge refrigerant temperature Td of the compressor 2, a suction pressure sensor 44 that detects a suction refrigerant pressure Ps of the compressor 2, and a suction that is the temperature of the refrigerant that comes out of the accumulator 12 and is sucked into the compressor 2 A suction temperature sensor 55 that detects the refrigerant temperature Ts, and a radiator temperature sensor 46 that detects the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TH). The radiator pressure sensor 47 for detecting the refrigerant pressure of the radiator 4 (in the radiator 4 or immediately after exiting the radiator 4: the pressure of the radiator: PCI) and the temperature of the heat absorber 9 (the heat absorber) The temperature of the air that has passed through the heat sink 9 or the temperature of the heat absorber 9 itself: the heat absorber temperature sensor 48, and the refrigerant pressure of the heat absorber 9 (within the heat absorber 9 or the heat absorber 9 The refrigerant pressure immediately after Pressure sensor 49, photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, set temperature and operation mode An air conditioning (air conditioner) operation unit 53 for setting the switching, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7 (the refrigerant flowing into the accumulator 12 in the heating mode described later) Temperature: outdoor heat exchanger temperature sensor 54 for detecting the outdoor heat exchanger temperature TXO) and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat exchanger 7 or immediately after it has come out of the outdoor heat exchanger 7) Each output of the outdoor heat exchanger pressure sensor 56 for detecting refrigerant pressure: outdoor heat exchanger pressure PXO) is connected to the controller 32. Further, the input of the controller 32 further includes the temperature of the auxiliary heater 23 (auxiliary heater 23). Also connected to the output of the auxiliary heater temperature sensor 50 for detecting the temperature of the air immediately after being heated or the temperature of the auxiliary heater 23 itself: the auxiliary heater temperature Tptc).
On the other hand, the output of thecontroller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. The solenoid valve, the indoor expansion valve 8, the auxiliary heater 23, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), and the solenoid valve 40 (for bypass) are connected. Has been. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53. FIG.
Next, the operation of thevehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode. First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode
When the heating mode is selected by the controller 32 (auto mode) or by manual operation (manual mode) to the airconditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 (for heating) and the electromagnetic valve 17 (for cooling). Close. Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed.
Then, thecompressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in theradiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the outdoor heat exchanger 7 becomes a heat exchanger for heat absorption. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C via the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D.
In this case, the gas refrigerant evaporated in theoutdoor heat exchanger 7 and the non-evaporated liquid refrigerant pass through the refrigerant pipe 13A, the electromagnetic valve 21, and the refrigerant pipe 13D as described above from the refrigerant pipe 13C with arrows in FIG. It enters into the tank 57 of the accumulator 12 as shown. The refrigerant in the gas-liquid mixed state flowing into the tank 57 first collides with the baffle plate 58 and spreads outward, and flows down between the outer edge of the baffle plate 58 and the tank 57 as shown by the arrows and into the lower part of the tank 57. To do.
The liquid refrigerant is stored in the lower part of thetank 57, and the gas refrigerant and the gas refrigerant in which the liquid refrigerant has evaporated in the accumulator 12 pass through the gap between the tip of the outlet pipe 61 and the baffle plate 58 as shown by the arrows. After entering the outlet pipe 61 from the opening at the tip and flowing down, it rises again and exits from the accumulator 12. The tank 57 also stores oil (for lubricating the compressor 2) circulating in the refrigerant circuit R together with the refrigerant. The oil and a part of the liquid refrigerant enter the outlet pipe 61 from the oil return hole 62 formed at the lowermost part of the outlet pipe 61 and rise and exit from the accumulator 12.
The refrigerant and oil thus separated into gas and liquid are sucked into thecompressor 2 through the outlet pipe 61 of the accumulator 12, and this circulation is repeated thereafter. Since the air heated by the radiator 4 (heat dissipation heat exchanger) or the auxiliary heater 23 is blown out from the outlet 29, the vehicle interior is thereby heated.
(2) Dehumidification heating mode
Next, in the dehumidifying and heating mode, thecontroller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from thecompressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited thesupercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above.
At this time, since the valve opening degree of theoutdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
(3) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, thecontroller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited theradiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited thesupercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in theheat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above. In this dehumidifying and cooling mode, since the controller 32 does not energize the auxiliary heater 23, the air cooled by the heat absorber 9 is reheated (reheated in the process of passing through the radiator 4). ) As a result, dehumidifying and cooling in the passenger compartment is performed.
(4) Cooling mode
Next, in the cooling mode, thecontroller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. The controller 32 controls the air mix damper 28, and the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 as shown by a solid line in FIG. The rate of ventilation through the vessel 4 is adjusted. Further, the controller 32 does not energize the auxiliary heater 23.
As a result, the high-temperature and high-pressure gas refrigerant discharged from thecompressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. That is, the outdoor heat exchanger 7 serves as a heat exchanger for heat dissipation. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited thesupercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in theheat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and after being gas-liquid separated as described above, the circulation sucked into the compressor 2 is repeated. Air that has been cooled and dehumidified by the heat absorber 9 (heat exchanger for heat absorption) is blown out from the air outlet 29 into the vehicle interior (partly passes through the radiator 4 to exchange heat), so that the vehicle Indoor cooling will be performed.
(5) MAX cooling mode
Next, in the MAX cooling mode, thecontroller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state in which the air in the air flow passage 3 is not passed through the auxiliary heater 23 and the radiator 4. However, there is no problem even if it is ventilated somewhat. Further, the controller 32 does not energize the auxiliary heater 23.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from thecompressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited thesupercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through theradiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
(6) Switching each operation mode
The air flowing through theair flow passage 3 is subjected to cooling from the heat absorber 9 and heating action from the heat radiator 4 (and the auxiliary heater 23) (adjusted by the air mix damper 28) in each of the above operation modes. Is blown out into the passenger compartment. The controller 32 is set by the air-conditioning operation unit 53, the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature in the vehicle interior detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like. The target blowout temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the temperature of the air blown from the blowout port 29 is controlled to this target blowout temperature TAO by switching each operation mode.
In this case, thecontroller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior. By switching each operation mode based on parameters such as, etc., it switches between heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode and MAX cooling mode accurately according to the environmental conditions and necessity of dehumidification. In addition, efficient cabin air conditioning is realized.
(7) Vacuum drawing and refrigerant filling usingservice valve 64
Next, the refrigerant evacuation and refrigerant filling operation from the refrigerant circuit R using theservice valve 64 described above will be described. Since the vehicle air conditioner 1 as in the embodiment is exposed to relatively large vibrations during traveling, refrigerant leakage from the refrigerant circuit R occurs. In that case, refrigerant filling is performed using the service valve 64.
In this case, first, theoutdoor expansion valve 6 and the indoor expansion valve 8 are fully opened, and the electromagnetic valves 17, 21, 30, and 40 are opened. Next, an evacuation device (not shown) is connected to the service valve 64 to evacuate the refrigerant from the refrigerant circuit R. At this time, the service valve 64 is attached to the refrigerant pipe 13 </ b> C serving as the inlet pipe of the accumulator 12, and the refrigerant pipe 13 </ b> C opens at the upper part in the tank 57 of the accumulator 12. The gasified liquid refrigerant is sucked, and the oil stored in the bottom of the tank 57 is not sucked out or the amount sucked out is minimized.
After the refrigerant in the refrigerant circuit R is evacuated in this manner, a refrigerant filling device (not shown) is connected to theservice valve 64 and a predetermined amount of refrigerant is filled in the refrigerant circuit R.
As described above, according to the present invention, theaccumulator 12 connected to the refrigerant suction side of the compressor 2 that compresses the refrigerant is provided, and the service valve 64 is provided in the refrigerant pipe 13C that is the inlet pipe of the accumulator 12, A tank 57 having a predetermined capacity is provided inside, and an outlet pipe 61 opened at the upper part of the tank 57. The refrigerant pipe 13C is connected to the upper part of the tank 57 and opens into the tank 57. Even when the accumulator 12 having the oil return hole 62 opened at the bottom in the tank 57 is used, the inconvenience that the oil in the accumulator 12 is sucked out when the service valve 64 is used for evacuation. It can be avoided.
Thereby, the problem that the oil in the circuit is exhausted due to the recovery of the refrigerant from the refrigerant circuit R can be solved. This is particularly effective in thevehicle air conditioner 1 that performs heating or cooling of the vehicle interior as in the embodiment.
In the embodiment, the present invention is applied to the heat pump cycle HP of thevehicle air conditioner 1 that air-conditions the interior of the vehicle. However, the present invention is not limited to this, and the compressor 2 that compresses the refrigerant, the heat exchanger for heat dissipation (the radiator 4, The present invention is effective for various heat pump cycles including a refrigerant circuit R having an outdoor heat exchanger 7), a pressure reducing device (expansion valves 6, 8), and a heat absorbing heat exchanger (heat absorbing device 9, outdoor heat exchanger 7). It is.
Furthermore, the present invention is also effective for a refrigeration facility having a refrigeration cycle including at least a compressor, a radiator, a decompressor, a heat exchanger for heat absorption, and an accumulator, a refrigeration facility, and the like.
In the above-described embodiment, the operation mode of thevehicle air conditioner 1 has been described as an example of switching each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode. The present invention is also effective for a vehicle air conditioner that executes only the heating mode or only the cooling mode. Furthermore, the configuration of the refrigerant circuit R described in the embodiments is not limited thereto, and can be changed without departing from the spirit of the present invention.
尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器用熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る減圧装置としての室外膨張弁6と、車室外に設けられて冷房時には放熱用熱交換器として機能し、暖房時には吸熱用熱交換器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る減圧装置としての室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱用熱交換器としての吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続されて冷媒回路Rが構成されたヒートポンプサイクルHPを備えている。
そして、このヒートポンプサイクルHPの冷媒回路R内には、所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7(放熱用熱交換器又は吸熱用熱交換器)には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードで開放される冷房用の電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8を介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房モードで開放される暖房用の電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cが後述する如く入口配管としてアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには、暖房モード、除湿冷房モード、及び、冷房モードで開放され、除湿暖房モードとMAX冷房モードで閉じられるリヒート用の電磁弁30が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は、除湿暖房モード及びMAX冷房モードで開放され、暖房モード、除湿冷房モード、及び、冷房モードで閉じられるバイパス用の電磁弁40を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
また、図1において23は実施例の車両用空気調和装置1に設けられた補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
ここで、図3、図4は前述したアキュムレータ12の斜視図、及び、断面図を示している。アキュムレータ12は冷媒配管13Cを経て流入する液冷媒とガス冷媒とを分離するための所謂気液分離器であり、上下の所定寸法を有し、内部に所定容量を有するタンク57と、このタンク57内の上部に配置され、タンク57の側壁及び上壁から離間して設けられた邪魔板58と、タンク57の上壁から内部に進入し、邪魔板58を貫通して一旦タンク57内の底部まで降下した後に上昇し、上昇した一端(先端)が邪魔板58の下側で間隔を存して開口する出口配管61とから構成されている。即ち、出口配管61の一端は邪魔板58の下側のタンク57内の上部にて開口している。
この出口配管61の最下部はタンク57の底壁直上に少許間隔を存して位置しており、この最下部には小孔から成るオイル戻し孔62が形成されている。即ち、このオイル戻し孔62はタンク57内の底部にて開口している。また、出口配管61の他端はタンク57の上壁から出て圧縮機2の吸込側に接続されている。
そして、アキュムレータ12の入口配管となる冷媒配管13Cがタンク57の上壁から内部に進入し、邪魔板58の上側にて開口している。即ち、冷媒配管13Cはタンク57の上部に接続され、邪魔板58の上側のタンク57内の上部で開口している。また、このアキュムレータ12に接続される部分の少許手前の冷媒配管13C(入口配管)にはサービスバルブ64が取り付けられている。このサービスバルブ64は後述する如くヒートポンプサイクルHPの冷媒回路R内から冷媒を真空引きする際、及び、冷媒回路R内に冷媒を充填する際に用いられるバルブである。
次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力Pdを検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度Tdを検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力Psを検出する吸込圧力センサ44と、アキュムレータ12から出て圧縮機2に吸い込まれる冷媒の温度である吸込冷媒温度Tsを検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度(後述する暖房モードのときにアキュムレータ12に流入する冷媒の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。
一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
(1)暖房モード
コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。
そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、室外熱交換器7は吸熱用熱交換器となる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入る。
この場合、室外熱交換器7で蒸発したガス冷媒、及び、未蒸発の液冷媒は、前述した如く冷媒配管13A、電磁弁21、及び、冷媒配管13Dを経て冷媒配管13Cから図4に矢印で示す如くアキュムレータ12のタンク57内に入る。タンク57内に流入した気液混合状態の冷媒は、先ず邪魔板58に衝突して外側に広がり、矢印で示す如く邪魔板58の外縁とタンク57の間を通ってタンク57内の下部に流下する。
液冷媒はこのタンク57内の下部に貯留され、ガス冷媒及びアキュムレータ12内で液冷媒が蒸発したガス冷媒は、矢印で示す如く出口配管61の先端と邪魔板58の間を経て出口配管61の先端の開口から当該出口配管61内に入り、流下した後、再び上昇してアキュムレータ12から出て行く。また、タンク57内には冷媒と共に冷媒回路R内を循環するオイル(圧縮機2の潤滑用)も貯留される。このオイル、及び、液冷媒の一部は、出口配管61の最下部に形成されたオイル戻し孔62から出口配管61内に入って上昇し、アキュムレータ12から出て行く。
このようにして気液分離された冷媒、及び、オイルはアキュムレータ12の出口配管61を経て圧縮機2に吸い込まれ、以後この循環を繰り返す。放熱器4(放熱用熱交換器)や補助ヒータ23にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
(2)除湿暖房モード
次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離されて圧縮機2に吸い込まれる循環を繰り返す。
このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
(3)除湿冷房モード
次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離されて圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(リヒート。暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
(4)冷房モード
次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。即ち、室外熱交換器7は放熱用熱交換器となる。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離された後、圧縮機2に吸い込まれる循環を繰り返す。吸熱器9(吸熱用熱交換器)にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。
(5)MAX冷房モード
次に、MAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。
(6)各運転モードの切換
空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。
(7)サービスバルブ64を用いた真空引きと冷媒充填
次に、前述したサービスバルブ64を用いた冷媒回路Rからの冷媒の真空引きと冷媒充填作業について説明する。実施例の如き車両用空気調和装置1は走行に比較的大きな震動に晒されるため冷媒回路Rからの冷媒漏洩が発生する。その場合は、サービスバルブ64を用いて冷媒充填を行うことになる。
この場合、先ず室外膨張弁6、及び、室内膨張弁8を全開とし、電磁弁17、21、30、40を開く。次に、サービスバルブ64に図示しない真空引き装置を接続して冷媒回路Rから冷媒を真空引きする。このとき、サービスバルブ64はアキュムレータ12の入口配管となる冷媒配管13Cに取り付けられており、この冷媒配管13Cはアキュムレータ12のタンク57内の上部にて開口しているので、タンク57内のガス冷媒とガス化した液冷媒が吸引され、タンク57内の底部に貯留されているオイルは吸い出されず、或いは、吸い出される量は最小限となる。
このようにして冷媒回路R内の冷媒を真空引きした後、今度はサービスバルブ64に図示しない冷媒充填装置を接続して所定量の冷媒を冷媒回路R内に充填する。
以上のように本発明によれば、冷媒を圧縮する圧縮機2の冷媒吸込側に接続されたアキュムレータ12を備え、このアキュムレータ12の入口配管である冷媒配管13Cにサービスバルブ64を設けたので、内部に所定容量を有するタンク57と、このタンク57内の上部にて開口する出口配管61を備え、冷媒配管13Cが、タンク57の上部に接続されて当該タンク57内に開口すると共に、出口配管61が、タンク57内の底部にて開口するオイル戻し孔62を有したアキュムレータ12を使用した場合にも、サービスバルブ64を用いた真空引き時にアキュムレータ12内のオイルが吸い出されてしまう不都合を回避することが可能となる。
これにより、冷媒回路Rからの冷媒回収により回路内のオイルが枯渇してしまう不都合を解消することができるようになる。これは、特に実施例の如く車室内の暖房や冷房等を行う車両用空気調和装置1において極めて有効なものとなる。
尚、実施例では車室内を空調する車両用空気調和装置1のヒートポンプサイクルHPに本発明を適用したが、それに限らず、冷媒を圧縮する圧縮機2、放熱用熱交換器(放熱器4、室外熱交換器7)、減圧装置(膨張弁6、8)、吸熱用熱交換器(吸熱器9、室外熱交換器7)を有する冷媒回路Rを備えた種々のヒートポンプサイクルに本発明は有効である。
更には、本発明は少なくとも圧縮機、放熱器、減圧装置、吸熱用熱交換器及びアキュムレータを備えた冷凍サイクルを有する冷凍設備、冷蔵設備等にも本発明は有効である。
また、上述した実施例では車両用空気調和装置1の運転モードとして暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードの各運転モードを切り換える例で説明したが、それに限らず、暖房モードのみ、或いは、冷房モードのみを実行する車両用空気調和装置にも本発明は有効である。更に、実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration diagram of an embodiment of a
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The
The refrigerant circuit R of the heat pump cycle HP is filled with a predetermined amount of refrigerant and lubricating oil. Note that an
The
The
Further, the
In addition, the
The
Moreover, in FIG. 1, 23 is an auxiliary heater provided in the
In addition, air in the
Here, FIGS. 3 and 4 show a perspective view and a sectional view of the
The lowermost part of the
A
Next, in FIG. 2,
On the other hand, the output of the
Next, the operation of the
(1) Heating mode
When the heating mode is selected by the controller 32 (auto mode) or by manual operation (manual mode) to the air
Then, the
The refrigerant liquefied in the
In this case, the gas refrigerant evaporated in the
The liquid refrigerant is stored in the lower part of the
The refrigerant and oil thus separated into gas and liquid are sucked into the
(2) Dehumidification heating mode
Next, in the dehumidifying and heating mode, the
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the
The refrigerant that has exited the
At this time, since the valve opening degree of the
(3) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, the
The refrigerant that has exited the
The refrigerant that has exited the
The refrigerant evaporated in the
(4) Cooling mode
Next, in the cooling mode, the
As a result, the high-temperature and high-pressure gas refrigerant discharged from the
The refrigerant that has exited the
The refrigerant evaporated in the
(5) MAX cooling mode
Next, in the MAX cooling mode, the
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the
The refrigerant that has exited the
Here, since the high-temperature refrigerant flows through the
(6) Switching each operation mode
The air flowing through the
In this case, the
(7) Vacuum drawing and refrigerant filling using
Next, the refrigerant evacuation and refrigerant filling operation from the refrigerant circuit R using the
In this case, first, the
After the refrigerant in the refrigerant circuit R is evacuated in this manner, a refrigerant filling device (not shown) is connected to the
As described above, according to the present invention, the
Thereby, the problem that the oil in the circuit is exhausted due to the recovery of the refrigerant from the refrigerant circuit R can be solved. This is particularly effective in the
In the embodiment, the present invention is applied to the heat pump cycle HP of the
Furthermore, the present invention is also effective for a refrigeration facility having a refrigeration cycle including at least a compressor, a radiator, a decompressor, a heat exchanger for heat absorption, and an accumulator, a refrigeration facility, and the like.
In the above-described embodiment, the operation mode of the
1 車両用空気調和装置
2 圧縮機
3 空気流通路
4 放熱器(放熱用熱交換器)
6 室外膨張弁(減圧装置)
7 室外熱交換器(放熱用熱交換器、吸熱用熱交換器)
8 室内膨張弁(減圧装置)
9 吸熱器(吸熱用熱交換器)
12 アキュムレータ
13C 冷媒配管(入口配管)
17、21、30、40 電磁弁
32 コントローラ(制御装置)
57 タンク
61 出口配管
62 オイル戻し孔
64 サービスバルブ
HP ヒートポンプサイクル(冷凍サイクル)
R 冷媒回路 DESCRIPTION OFSYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator (Heat dissipation heat exchanger)
6 Outdoor expansion valve (pressure reduction device)
7 Outdoor heat exchanger (heat exchanger for heat dissipation, heat exchanger for heat absorption)
8 Indoor expansion valve (pressure reduction device)
9 Heat absorber (heat exchanger for heat absorption)
12Accumulator 13C Refrigerant piping (inlet piping)
17, 21, 30, 40Solenoid valve 32 Controller (control device)
57Tank 61 Outlet piping 62 Oil return hole 64 Service valve HP Heat pump cycle (refrigeration cycle)
R refrigerant circuit
2 圧縮機
3 空気流通路
4 放熱器(放熱用熱交換器)
6 室外膨張弁(減圧装置)
7 室外熱交換器(放熱用熱交換器、吸熱用熱交換器)
8 室内膨張弁(減圧装置)
9 吸熱器(吸熱用熱交換器)
12 アキュムレータ
13C 冷媒配管(入口配管)
17、21、30、40 電磁弁
32 コントローラ(制御装置)
57 タンク
61 出口配管
62 オイル戻し孔
64 サービスバルブ
HP ヒートポンプサイクル(冷凍サイクル)
R 冷媒回路 DESCRIPTION OF
6 Outdoor expansion valve (pressure reduction device)
7 Outdoor heat exchanger (heat exchanger for heat dissipation, heat exchanger for heat absorption)
8 Indoor expansion valve (pressure reduction device)
9 Heat absorber (heat exchanger for heat absorption)
12
17, 21, 30, 40
57
R refrigerant circuit
Claims (5)
- 冷媒を圧縮する圧縮機と、冷媒を放熱させる放熱用熱交換器と、減圧装置と、冷媒を吸熱させる吸熱用熱交換器を有する冷媒回路を備えたヒートポンプサイクルにおいて、
前記圧縮機の冷媒吸込側に接続されたアキュムレータを備え、
該アキュムレータの入口配管にサービスバルブを設けたことを特徴とするヒートポンプサイクル。 In a heat pump cycle including a compressor that compresses a refrigerant, a heat exchanger for heat dissipation that dissipates the refrigerant, a decompression device, and a refrigerant circuit that includes a heat exchanger for heat absorption that absorbs heat from the refrigerant,
An accumulator connected to the refrigerant suction side of the compressor;
A heat pump cycle, wherein a service valve is provided in an inlet pipe of the accumulator. - 前記アキュムレータは、内部に所定容量を有するタンクと、該タンク内の上部にて開口する出口配管を備え、
前記入口配管は、前記タンクの上部に接続されて当該タンク内に開口すると共に、前記出口配管は、前記タンク内の底部にて開口するオイル戻し孔を有することを特徴とする請求項1に記載のヒートポンプサイクル。 The accumulator includes a tank having a predetermined capacity inside, and an outlet pipe that opens at an upper portion in the tank,
The said inlet piping is connected to the upper part of the said tank, and while it opens in the said tank, the said outlet piping has an oil return hole opened in the bottom part in the said tank. Heat pump cycle. - 車室内に供給する空気が流通する空気流通路を備え、
前記放熱用熱交換器は前記空気流通路に設けられ、前記吸熱用熱交換器は車室外に設けられると共に、
前記圧縮機から吐出された冷媒を前記放熱用熱交換器にて放熱させ、放熱した当該冷媒を前記減圧装置により減圧した後、前記吸熱用熱交換器にて吸熱させることで前記車室内の暖房を行うことを特徴とする請求項1又は請求項2に記載のヒートポンプサイクルを備えた車両用空気調和装置。 An air flow passage through which air to be supplied into the passenger compartment flows is provided.
The heat dissipating heat exchanger is provided in the air flow passage, the heat absorbing heat exchanger is provided outside the passenger compartment,
The refrigerant discharged from the compressor is radiated by the heat radiating heat exchanger, the radiated refrigerant is depressurized by the pressure reducing device, and then is absorbed by the heat absorbing heat exchanger, thereby heating the vehicle interior. The vehicle air conditioner provided with the heat pump cycle according to claim 1 or 2. - 車室内に供給する空気が流通する空気流通路を備え、
前記吸熱用熱交換器は前記空気流通路に設けられ、前記放熱用熱交換器は車室外に設けられると共に、
前記圧縮機から吐出された冷媒を前記放熱用熱交換器にて放熱させ、放熱した当該冷媒を前記減圧装置により減圧した後、前記吸熱用熱交換器にて吸熱させることで前記車室内の冷房を行うことを特徴とする請求項1又は請求項2に記載のヒートポンプサイクルを備えた車両用空気調和装置。 An air flow passage through which air to be supplied into the passenger compartment flows is provided.
The heat-absorbing heat exchanger is provided in the air flow passage, and the heat-dissipating heat exchanger is provided outside the passenger compartment,
The refrigerant discharged from the compressor is radiated by the heat radiating heat exchanger, the radiated refrigerant is depressurized by the decompression device, and is then absorbed by the heat absorbing heat exchanger, thereby cooling the vehicle interior. The vehicle air conditioner provided with the heat pump cycle according to claim 1 or 2. - 少なくとも、圧縮機、放熱器、減圧装置、吸熱用熱交換器及びアキュムレータを備えた冷凍サイクルにおいて、
前記圧縮機の冷媒吸込側に接続されたアキュムレータを備え、
該アキュムレータの入口配管にサービスバルブを設けたことを特徴とする冷凍サイクル。 At least in a refrigeration cycle including a compressor, a radiator, a decompressor, a heat exchanger for heat absorption, and an accumulator,
An accumulator connected to the refrigerant suction side of the compressor;
A refrigeration cycle, wherein a service valve is provided in an inlet pipe of the accumulator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016173673A JP2018040518A (en) | 2016-09-06 | 2016-09-06 | Heat pump cycle, vehicular air conditioning device comprising the same, and refrigeration cycle |
JP2016-173673 | 2016-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018047599A1 true WO2018047599A1 (en) | 2018-03-15 |
Family
ID=61562654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/029580 WO2018047599A1 (en) | 2016-09-06 | 2017-08-10 | Heat pump cycle, vehicle air conditioning device comprising same, and refrigeration cycle |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018040518A (en) |
WO (1) | WO2018047599A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115315601A (en) * | 2020-03-23 | 2022-11-08 | 株式会社电装 | Refrigeration cycle device |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112378119B (en) * | 2020-11-03 | 2022-06-07 | 浙江理工大学 | Vacuum low-temperature open absorption heat pump drying system and use method |
CN114484931A (en) * | 2022-03-28 | 2022-05-13 | 烟台鲁吉汽车科技有限公司 | Absorption heat pump device for vehicle |
WO2023199421A1 (en) * | 2022-04-13 | 2023-10-19 | 三菱電機株式会社 | Refrigeration cycle device |
WO2024070359A1 (en) * | 2022-09-28 | 2024-04-04 | 株式会社村田製作所 | Vehicular air conditioning device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5977275A (en) * | 1982-09-23 | 1984-05-02 | リチヤ−ド・ジヨン・アベリイ・ジユニア | Refrigerant accumulator-feeder for steam compression refrigerator and method of determining quantity of refrigerant and method of supplying refrigerant |
JPH10281598A (en) * | 1997-03-31 | 1998-10-23 | Sanyo Electric Co Ltd | Air conditioner |
JP2004085038A (en) * | 2002-08-26 | 2004-03-18 | Yanmar Co Ltd | Air conditioner and operation method for air conditioner |
JP2008298335A (en) * | 2007-05-30 | 2008-12-11 | Fujitsu General Ltd | Refrigerating device, additional refrigerant filling kit used in the same, and additional refrigerant filling method of refrigerating device |
JP2015137779A (en) * | 2014-01-21 | 2015-07-30 | 株式会社デンソー | heat pump cycle |
JP2017026272A (en) * | 2015-07-27 | 2017-02-02 | 三菱電機株式会社 | Refrigerant recovery device |
-
2016
- 2016-09-06 JP JP2016173673A patent/JP2018040518A/en active Pending
-
2017
- 2017-08-10 WO PCT/JP2017/029580 patent/WO2018047599A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5977275A (en) * | 1982-09-23 | 1984-05-02 | リチヤ−ド・ジヨン・アベリイ・ジユニア | Refrigerant accumulator-feeder for steam compression refrigerator and method of determining quantity of refrigerant and method of supplying refrigerant |
JPH10281598A (en) * | 1997-03-31 | 1998-10-23 | Sanyo Electric Co Ltd | Air conditioner |
JP2004085038A (en) * | 2002-08-26 | 2004-03-18 | Yanmar Co Ltd | Air conditioner and operation method for air conditioner |
JP2008298335A (en) * | 2007-05-30 | 2008-12-11 | Fujitsu General Ltd | Refrigerating device, additional refrigerant filling kit used in the same, and additional refrigerant filling method of refrigerating device |
JP2015137779A (en) * | 2014-01-21 | 2015-07-30 | 株式会社デンソー | heat pump cycle |
JP2017026272A (en) * | 2015-07-27 | 2017-02-02 | 三菱電機株式会社 | Refrigerant recovery device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115315601A (en) * | 2020-03-23 | 2022-11-08 | 株式会社电装 | Refrigeration cycle device |
CN115315601B (en) * | 2020-03-23 | 2024-02-23 | 株式会社电装 | Refrigeration cycle device |
Also Published As
Publication number | Publication date |
---|---|
JP2018040518A (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111615464B (en) | Air conditioner for vehicle | |
JP6418787B2 (en) | Air conditioner for vehicles | |
WO2018047599A1 (en) | Heat pump cycle, vehicle air conditioning device comprising same, and refrigeration cycle | |
JP6571405B2 (en) | Air conditioner for vehicles | |
WO2017146270A1 (en) | Vehicle air conditioning device | |
JP6842375B2 (en) | Vehicle air conditioner | |
CN107709067B (en) | Air conditioner for vehicle | |
WO2018070178A1 (en) | Vehicle air conditioner | |
JP2022010766A (en) | Refrigeration cycle device | |
WO2017179596A1 (en) | Vehicle air conditioning device | |
WO2017179594A1 (en) | Vehicle air conditioning device | |
WO2017150592A1 (en) | Vehicle air-conditioning device | |
WO2017208834A1 (en) | Vehicle air conditioning device | |
WO2017179597A1 (en) | Vehicle air conditioner | |
WO2017146266A1 (en) | Air-conditioning device for vehicle | |
JP2021020570A (en) | Vehicular air conditioner | |
JP2018100031A (en) | Vehicular air conditioning device | |
JP6747857B2 (en) | Accumulator and vehicle air conditioner including the same | |
JP6738156B2 (en) | Vehicle air conditioner | |
JP2014069639A (en) | Refrigeration cycle device | |
WO2018079122A1 (en) | Vehicular air-conditioning apparatus and manufacturing method therefor | |
WO2017150735A1 (en) | Air conditioner for vehicles | |
JP7221789B2 (en) | Vehicle air conditioner | |
JP7521481B2 (en) | Vehicle air conditioning system | |
JP6754214B2 (en) | Vehicle air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17848542 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17848542 Country of ref document: EP Kind code of ref document: A1 |