[go: up one dir, main page]

WO2017150735A1 - Air conditioner for vehicles - Google Patents

Air conditioner for vehicles Download PDF

Info

Publication number
WO2017150735A1
WO2017150735A1 PCT/JP2017/008636 JP2017008636W WO2017150735A1 WO 2017150735 A1 WO2017150735 A1 WO 2017150735A1 JP 2017008636 W JP2017008636 W JP 2017008636W WO 2017150735 A1 WO2017150735 A1 WO 2017150735A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
temperature
compressor
radiator
Prior art date
Application number
PCT/JP2017/008636
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 石関
雄満 山崎
耕平 山下
竜 宮腰
めぐみ 重田
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2017150735A1 publication Critical patent/WO2017150735A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to an air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
  • Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side.
  • a system has been developed that switches the cooling operation to dissipate the generated refrigerant in the outdoor heat exchanger and absorb the heat in the heat absorber.
  • an accumulator is provided on the refrigerant suction side of the compressor, gas and liquid are separated by temporarily storing the refrigerant in the accumulator, and liquid return to the compressor is prevented by sucking the gas refrigerant into the compressor. It was made to suppress (for example, refer patent document 1).
  • the refrigerant gradually leaks from the refrigerant circuit of the vehicle air conditioner as time elapses, but conventionally, there is nothing other than protecting and stopping the compressor after most of the refrigerant disappears from the circuit. It was.
  • the present invention has been made to solve the conventional technical problem, and provides a vehicle air conditioner that can detect aged refrigerant leakage at the earliest possible stage and protect the compressor. For the purpose.
  • the vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior.
  • the outdoor heat exchanger absorbs heat to heat the vehicle interior, and the control device detects the amount of liquid refrigerant in the accumulator.
  • the occurrence of refrigerant leakage is determined based on the amount of the liquid refrigerant.
  • the control device is based on the difference TXO-Ts between the temperature TXO of the outdoor heat exchanger and the suction refrigerant temperature Ts of the compressor. When becomes smaller than a predetermined value, it is determined that refrigerant leakage has occurred.
  • a vehicular air conditioner according to the first aspect of the present invention It is characterized in that it is determined that occurrence has occurred.
  • a vehicle air conditioner according to a fourth aspect of the present invention is characterized in that, in each of the above inventions, the control device performs a predetermined notification operation when it is determined that refrigerant leakage has occurred.
  • a compressor for compressing the refrigerant an air flow passage through which air to be supplied to the vehicle interior flows, a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage, and provided outside the vehicle interior
  • an outdoor heat exchanger an accumulator connected to the refrigerant suction side of the compressor, and a control device, and at least the refrigerant discharged from the compressor is radiated by the heat radiator by the control device and radiated.
  • a vehicle air conditioner that depressurizes the refrigerant and then absorbs heat with an outdoor heat exchanger to heat the vehicle interior, if the refrigerant gradually leaks, the amount of liquid refrigerant that accumulates in the accumulator decreases.
  • the control device detects the amount of liquid refrigerant in the accumulator and determines the occurrence of refrigerant leakage based on the amount of liquid refrigerant, the refrigerant gradually leaks. In addition, it is possible to determine that refrigerant leakage has occurred at an early stage, and to avoid the inconvenience that causes serious damage to the compressor.
  • the temperature of the liquid refrigerant in the accumulator is the temperature of the outdoor heat exchanger (TXO).
  • TXO temperature of the outdoor heat exchanger
  • the control device is configured such that the difference TXO-Ts becomes smaller than a predetermined value based on the difference TXO-Ts between the temperature TXO of the outdoor heat exchanger and the suction refrigerant temperature Ts of the compressor.
  • a predetermined value based on the difference TXO-Ts between the temperature TXO of the outdoor heat exchanger and the suction refrigerant temperature Ts of the compressor.
  • the difference TXO-Ts is also correlated with the superheat degree SH of the refrigerant sucked into the compressor.
  • the control device may determine that refrigerant leakage has occurred when the superheat degree SH is greater than a predetermined value based on the superheat degree SH of the refrigerant sucked into the compressor. It becomes possible to accurately determine the occurrence of refrigerant leakage. Similarly, there is no need to provide a sensor or the like that directly detects the amount of liquid refrigerant in the accumulator.
  • the control device determines that refrigerant leakage has occurred as in the fourth aspect of the invention, by executing a predetermined notification operation, the user is warned of the occurrence of refrigerant leakage and prompt action is taken. It will be able to encourage.
  • FIG. 2 is a Ph diagram in a heating mode of the vehicle air conditioner of FIG. 1. It is another Ph diagram in the heating mode of the vehicle air conditioner of FIG.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery.
  • EV electric vehicle
  • an engine internal combustion engine
  • the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, And each operation mode of MAX cooling mode (maximum cooling mode) is selectively performed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment.
  • an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator during cooling and functions as a radiator during heating, and exchanges heat between the refrigerant and the outside air so as to function as an evaporator during heating.
  • An outdoor heat exchanger 7 that performs the above operation, an indoor expansion valve 8 that is an electric valve that decompresses and expands the refrigerant, and a heat absorber 9 that is provided in the air flow passage 3 and absorbs heat from outside the vehicle interior to the refrigerant during cooling and dehumidification.
  • And accumulator 12 etc. Are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • the outdoor heat exchanger 7 has a receiver dryer unit 14 and a supercooling unit 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode,
  • the refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8 via the electromagnetic valve 17 for cooling opened in the MAX cooling mode. It is connected to the.
  • the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
  • the refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is connected to the internal heat exchanger via a heating electromagnetic valve 21 opened in the heating mode.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is reheated in the heating mode, the dehumidifying cooling mode, and the cooling mode, and closed in the dehumidifying heating mode and the MAX cooling mode.
  • An electromagnetic valve 30 is provided.
  • the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened in the dehumidifying heating mode and the MAX cooling mode, and is heated, dehumidified and cooled, and cooled.
  • the refrigerant pipe 13E is connected to the downstream side of the outdoor expansion valve 6 through a bypass electromagnetic valve 40 that is closed in the mode.
  • Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45. Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment.
  • the auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the air upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. Yes.
  • the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated.
  • the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
  • air in the air flow passage 3 on the upstream side of the auxiliary heater 23 flows into the air flow passage 3 and assists air (inside air or outside air) in the air flow passage 3 after passing through the heat absorber 9.
  • An air mix damper 28 is provided for adjusting the ratio of ventilation through the heater 23 and the radiator 4.
  • FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 as a representative in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4.
  • the air outlet 29 is provided with an air outlet switching damper 31 that performs switching control of air blowing from the air outlets.
  • reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor.
  • the controller 32 detects the outside air temperature (Tam) of the vehicle.
  • the outside air temperature sensor 33 for detecting the outside air humidity
  • the HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the passenger compartment.
  • An inside air temperature sensor 37 that detects the temperature
  • an inside air humidity sensor 38 that detects the humidity of the air in the vehicle interior
  • an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior
  • an air outlet from the air outlet 29 And a discharge pressure sensor 41 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2.
  • a discharge temperature sensor 43 that detects the refrigerant discharge temperature of the compressor 2
  • a suction pressure sensor 44 that detects the suction refrigerant pressure of the compressor 2
  • a suction temperature sensor 55 that detects the suction refrigerant temperature (Ts), and heat dissipation that detects the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TH).
  • the input of the controller 32 further includes the temperature of the auxiliary heater 23 (auxiliary). Temperature of the air immediately after being heated at over data 23, or, auxiliary heater 23 itself temperature is also connected the output of the auxiliary heater temperature sensor 50 for detecting the auxiliary heater temperature TPTC).
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the solenoid valve, the indoor expansion valve 8, the auxiliary heater 23, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), and the solenoid valve 40 (for bypass) are connected. Has been.
  • the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode.
  • Heating mode When the heating mode is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21 (for heating) and opens the solenoid valve. Close 17 (for cooling).
  • the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30.
  • the air in the airflow passage 3 Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4.
  • the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • FIG. 4 shows a cross-sectional view of the accumulator 12.
  • the accumulator 12 is a so-called gas-liquid separator for separating the liquid refrigerant and the gas refrigerant flowing in via the refrigerant pipe 13C, and has a tank 57 having upper and lower predetermined dimensions and a predetermined capacity inside, and the tank 57
  • the baffle plate 58 disposed in the upper part of the tank 57 and spaced apart from the side wall and the upper wall of the tank 57, and enters the inside from the upper wall of the tank 57, penetrates the baffle plate 58, and once reaches the bottom of the tank 57.
  • the outlet pipe 61 is opened after being lowered, and the raised tip is opened below the baffle plate 58 with an interval.
  • the lowermost part of the outlet pipe 61 is located immediately above the bottom wall of the tank 57 with a small clearance, and an oil return hole 62 formed of a small hole is formed at the lowermost part. Further, the upper end of the outlet pipe 61 exits from the upper wall of the tank 57 and is connected to the suction side of the compressor 2. Then, the refrigerant pipe 13 ⁇ / b> C enters from the upper wall of the tank 57 and opens on the upper side of the baffle plate 58.
  • the gas refrigerant evaporated in the outdoor heat exchanger 7 and the non-evaporated liquid refrigerant pass through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D as described above and from the refrigerant pipe 13C to the tank 57 of the accumulator 12 as shown by the arrow in FIG. Get inside.
  • the refrigerant in the gas-liquid mixed state flowing into the tank 57 first collides with the baffle plate 58 and spreads outward, and flows down between the outer edge of the baffle plate 58 and the tank 57 as shown by the arrows and into the lower part of the tank 57. To do.
  • the liquid refrigerant is stored in the lower part of the tank 57, and the gas refrigerant and the gas refrigerant in which the liquid refrigerant has evaporated in the accumulator 12 pass through the gap between the tip of the outlet pipe 61 and the baffle plate 58 as shown by the arrows. After entering the outlet pipe 61 from the opening at the tip and flowing down, it rises again and exits from the accumulator 12.
  • the tank 57 also stores oil (for lubricating the compressor 2) circulating in the refrigerant circuit R together with the refrigerant. A part of the oil and liquid refrigerant enters the outlet pipe 61 from the oil return hole 62 formed in the lowermost part of the outlet pipe 61 and rises and exits from the accumulator 12.
  • the suction temperature sensor 55 detects the temperature of the refrigerant (suction refrigerant temperature Ts). Since the air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlet 29, the vehicle interior is thereby heated.
  • the controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from a target radiator temperature TCO (target value of the radiator temperature TH) calculated from a target outlet temperature TAO described later,
  • the number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47.
  • the controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TH) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47.
  • the supercooling degree SC of the refrigerant at the outlet of the radiator 4 (calculated from the radiator temperature TH and the radiator pressure PCI) is controlled to a predetermined target supercooling degree TGSC which is the target value.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
  • the auxiliary heater 23 is disposed on the air downstream side of the radiator 4
  • the auxiliary heater 23 is configured by a PCT heater as in the embodiment
  • the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4
  • the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases.
  • the auxiliary heater 23 by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant
  • the controller 32 energizes the auxiliary heater 23 to generate heat.
  • the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
  • the controller 32 controls the rotational speed of the compressor 2 on the basis of the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value, and the auxiliary heater temperature.
  • auxiliary heater 23 By controlling the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the sensor 50 and the target radiator temperature TCO described above, while appropriately cooling and dehumidifying the air in the heat absorber 9, A decrease in the temperature of the air blown from the outlet 29 into the passenger compartment by heating by the auxiliary heater 23 is accurately prevented. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
  • the air mix damper 28 is in a state where all the air in the air flow passage 3 is passed through the auxiliary heater 23 and the radiator 4, so that the air passing through the heat absorber 9 is efficiently assisted. Heating by the heater 23 can improve the energy saving performance, and the controllability of the dehumidifying heating air conditioning can also be improved.
  • the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above.
  • the controller 32 does not energize the auxiliary heater 23
  • the air cooled by the heat absorber 9 is reheated (reheated in the process of passing through the radiator 4). )
  • dehumidifying and cooling in the passenger compartment is performed.
  • the controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and also uses the outdoor expansion valve based on the high pressure of the refrigerant circuit R described above. 6 is controlled to control the refrigerant pressure of the radiator 4 (radiator pressure PCI).
  • the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode.
  • the controller 32 controls the air mix damper 28, and the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 as shown by a solid line in FIG. The rate of ventilation through the vessel 4 is adjusted.
  • the controller 32 does not energize the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
  • the refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and after being gas-liquid separated as described above, the circulation sucked into the compressor 2 is repeated. Since the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 (partly passes through the radiator 4 to exchange heat), the vehicle interior is thereby cooled. become. In this cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. To control.
  • MAX cooling mode (maximum cooling mode)
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 keeps the air in the air flow passage 3 from passing through the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if it is ventilated somewhat. Further, the controller 32 does not energize the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16.
  • the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant
  • the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment.
  • the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. Control the number. (6) Switching of each operation mode The air flowing through the air flow passage 3 is cooled from the heat absorber 9 and heated from the radiator 4 (and the auxiliary heater 23) in each operation mode (by the air mix damper 28). In response, the air is blown out from the air outlet 29 into the passenger compartment.
  • the controller 32 is set by the air-conditioning operation unit 53, the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature in the vehicle interior detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like.
  • the target blowout temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the temperature of the air blown from the blowout port 29 is controlled to this target blowout temperature TAO by switching each operation mode.
  • the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior. By switching each operation mode based on parameters such as, etc., it switches between heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode and MAX cooling mode accurately according to the environmental conditions and necessity of dehumidification. In addition, efficient cabin air conditioning is realized.
  • the temperature of the liquid refrigerant in the accumulator 12 is the outdoor heat exchanger temperature TXO.
  • the refrigerant discharged from the accumulator 12 includes a part of the liquid refrigerant together with the oil. Therefore, when sufficient liquid refrigerant is stored in the accumulator 12, more liquid refrigerant exits from the accumulator 12 through the outlet pipe 61, but the liquid refrigerant output from the accumulator 12 reaches the compressor 2. Evaporates by absorbing heat from the surroundings. And temperature falls under the influence of pressure loss with saturation temperature.
  • FIG. 5 is a Ph diagram of the refrigerant circuit R when the evaporation temperature of the refrigerant in the outdoor heat exchanger 7 is 0 ° C.
  • FIG. 6 is when the evaporation temperature is ⁇ 10 ° C.
  • the line shown by L1 is a case where the refrigerant
  • the line shown by L2 is a case where the refrigerant
  • L3 is a saturated vapor line.
  • the temperature of the refrigerant in the accumulator 2 is the outdoor heat exchanger temperature TXO (0 ° C.), and the time when the refrigerant leaves the accumulator 12 (in FIGS. 5 and 6).
  • TXO 0 ° C.
  • Ts ⁇ 17 ° C.
  • FIG. 7 shows the results of measuring this correlation. It can be seen that the difference TXO-Ts decreases as the refrigerant charge amount decreases. If the minimum refrigerant charging amount allowed in the refrigerant circuit R is, for example, 550 g, it can be seen that the refrigerant must be replenished when the difference TXO-Ts is reduced to 5K.
  • the controller 32 determines the difference TXO ⁇ Ts based on the difference TXO ⁇ Ts between the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54 and the suction refrigerant temperature Ts of the compressor 2 detected by the suction temperature sensor 55.
  • -Ts becomes smaller than 5K (predetermined value)
  • the occurrence of refrigerant leakage is displayed by the air conditioning operation unit 53 and notified to the user (notification operation).
  • the amount of liquid refrigerant in the accumulator 12 is detected based on a change in the difference TXO-Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts.
  • the difference TXO-Ts is reduced as described above, and the superheat degree SH of the refrigerant sucked into the compressor 2 is increased. That is, the greater the difference TXO-Ts, the smaller the superheat degree SH, and the smaller the difference TXO-Ts, the greater the superheat degree SH.
  • the superheat degree SH when the above-described difference TXO-Ts is 5K is about 7K.
  • the superheat degree SH obtained from the pressure and temperature of the suction refrigerant detected by the suction pressure sensor 44 and the suction temperature sensor 55
  • 5K predetermined value
  • the occurrence of refrigerant leakage can be accurately determined by the superheat degree SH of the refrigerant sucked into the compressor 2 as described above.
  • the amount of liquid refrigerant in the accumulator 12 is detected based on the difference TXO-Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts and the degree of superheat SH of the refrigerant sucked into the compressor 2.
  • the invention of claim 1 is not limited to this, and a plurality of temperature sensors are attached to the accumulator 12 to detect the amount of liquid refrigerant stored therein, and the amount of liquid refrigerant is directly determined. You may make it determine.
  • the present invention has been described with an example in which each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode is switched.
  • the present invention is not limited thereto, and the vehicle air that executes only the heating mode.
  • the present invention is also effective for a harmony device.
  • the switching control of each operation mode shown in the embodiment is not limited thereto, and the outside air temperature Tam, the humidity in the passenger compartment, the target outlet temperature TAO, depending on the capability and usage environment of the vehicle air conditioner, Adopt any one of parameters such as radiator temperature TH, target radiator temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in vehicle interior, or a combination thereof, or all of them. Appropriate conditions should be set.
  • the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water.
  • the structure of the refrigerant circuit R demonstrated in the Example is not limited to it, It can change in the range which does not deviate from the meaning of this invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is an air conditioner for vehicles, which is capable of protecting a compressor by detecting the leakage of a refrigerant over time as early as possible. The present invention is provided with: a compressor 2; a heat radiator 4 that radiates heat from the refrigerant; an outdoor heat exchanger 7 provided outside a vehicle room; and an accumulator 12 connected to the refrigerant suction side of the compressor. The refrigerant discharged from the compressor is subjected to heat radiation by the heat radiator to warm the inside of the vehicle room, and the heat is absorbed by the outdoor heat exchanger. A controller detects the amount of a liquid refrigerant inside the accumulator, and determines the occurrence of refrigerant leakage on the basis of the amount of the liquid refrigerant.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特にハイブリッド自動車や電気自動車に適用可能な空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and more particularly to an air conditioner that can be applied to a hybrid vehicle or an electric vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房運転と、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿暖房運転や除湿冷房運転と、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房運転を切り換えて実行するものが開発されている。
 また、圧縮機の冷媒吸込側にはアキュムレータが設けられ、このアキュムレータに冷媒を一旦貯留することで気液を分離し、ガス冷媒を圧縮機に吸い込ませることによって圧縮機への液戻りを防止若しくは抑制するようにしていた(例えば、特許文献1参照)。
Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side and dissipates the refrigerant, and is provided on the vehicle interior side. A heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is provided outside the passenger compartment to dissipate or absorb heat from the passenger compartment, dissipate the refrigerant discharged from the compressor in the radiator, and dissipate the refrigerant dissipated in the radiator Heating operation that absorbs heat in the outdoor heat exchanger, dehumidifying heating operation and dehumidifying cooling operation that cause the refrigerant discharged from the compressor to dissipate heat in the radiator, and the refrigerant that dissipated heat in the radiator absorbs heat in the heat absorber, and discharge from the compressor A system has been developed that switches the cooling operation to dissipate the generated refrigerant in the outdoor heat exchanger and absorb the heat in the heat absorber.
In addition, an accumulator is provided on the refrigerant suction side of the compressor, gas and liquid are separated by temporarily storing the refrigerant in the accumulator, and liquid return to the compressor is prevented by sucking the gas refrigerant into the compressor. It was made to suppress (for example, refer patent document 1).
特開2012−228945号公報JP 2012-228945 A
 ここで、車両用空気調和装置の冷媒回路からは時間の経過と共に冷媒が徐々に漏洩していくものであるが、従来では回路から殆どの冷媒が無くなってから圧縮機を保護停止する以外に無かった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、経年の冷媒漏洩をできるだけ早い段階で検知し、圧縮機を保護することができる車両用空気調和装置を提供することを目的とする。
Here, the refrigerant gradually leaks from the refrigerant circuit of the vehicle air conditioner as time elapses, but conventionally, there is nothing other than protecting and stopping the compressor after most of the refrigerant disappears from the circuit. It was.
The present invention has been made to solve the conventional technical problem, and provides a vehicle air conditioner that can detect aged refrigerant leakage at the earliest possible stage and protect the compressor. For the purpose.
 本発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、圧縮機の冷媒吸込側に接続されたアキュムレータと、制御装置とを備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房するものであって、制御装置は、アキュムレータ内の液冷媒の量を検知し、この液冷媒の量に基づいて冷媒漏洩の発生を判定することを特徴とする。
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、室外熱交換器の温度TXOと、圧縮機の吸込冷媒温度Tsとの差TXO−Tsに基づき、この差TXO−Tsが所定値より小さくなった場合、冷媒漏洩が発生していると判定することを特徴とする。
 請求項3の発明の車両用空気調和装置は、請求項1の発明において制御装置は、圧縮機に吸い込まれる冷媒の過熱度SHに基づき、過熱度SHが所定値より大きくなった場合、冷媒漏洩が発生していると判定することを特徴とする。
 請求項4の発明の車両用空気調和装置は、上記各発明において制御装置は、冷媒漏洩が発生していると判定した場合、所定の報知動作を実行することを特徴とする。
The vehicle air conditioner of the present invention heats the compressor that compresses the refrigerant, the air flow passage through which the air supplied to the vehicle interior flows, and the air that dissipates the refrigerant and is supplied from the air flow passage to the vehicle interior. A heat radiator, an outdoor heat exchanger provided outside the passenger compartment, an accumulator connected to the refrigerant suction side of the compressor, and a control device, and at least the refrigerant discharged from the compressor by the control device After the heat is dissipated by the radiator and the refrigerant that has been radiated is decompressed, the outdoor heat exchanger absorbs heat to heat the vehicle interior, and the control device detects the amount of liquid refrigerant in the accumulator. The occurrence of refrigerant leakage is determined based on the amount of the liquid refrigerant.
In the vehicle air conditioner according to the second aspect of the present invention, in the above invention, the control device is based on the difference TXO-Ts between the temperature TXO of the outdoor heat exchanger and the suction refrigerant temperature Ts of the compressor. When becomes smaller than a predetermined value, it is determined that refrigerant leakage has occurred.
According to a third aspect of the present invention, there is provided a vehicular air conditioner according to the first aspect of the present invention. It is characterized in that it is determined that occurrence has occurred.
A vehicle air conditioner according to a fourth aspect of the present invention is characterized in that, in each of the above inventions, the control device performs a predetermined notification operation when it is determined that refrigerant leakage has occurred.
 冷媒を圧縮する圧縮機と、車室内に供給する空気が流通する空気流通路と、冷媒を放熱させて空気流通路から車室内に供給する空気を加熱するための放熱器と、車室外に設けられた室外熱交換器と、圧縮機の冷媒吸込側に接続されたアキュムレータと、制御装置とを備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させて車室内を暖房する車両用空気調和装置において、冷媒が徐々に漏洩していった場合、アキュムレータ内に溜まる液冷媒の量が減少してくる。
 そこで、本発明では制御装置が、アキュムレータ内の液冷媒の量を検知し、この液冷媒の量に基づいて冷媒漏洩の発生を判定するようにしたので、徐々に冷媒が漏洩していった場合にも、早期に冷媒漏洩が発生していることを判定し、圧縮機に甚大な損害が生じる不都合を未然に回避することができるようになる。
 この場合、アキュムレータには室外熱交換器から出た冷媒が貯留されるので、アキュムレータ内の液冷媒の温度は室外熱交換器の温度(TXO)である。また、アキュムレータからはオイルも圧縮機に戻さなければならない関係上、アキュムレータから出る冷媒には一部液冷媒も含まれることになる。従って、アキュムレータ内に十分な液冷媒が貯留されている場合、アキュムレータから出て行く液冷媒も多くなるが、アキュムレータから出た液冷媒は、周囲から吸熱して蒸発する。
 そして、飽和温度のまま圧力損失の影響で温度が低下することになるが、冷媒漏洩の結果、アキュムレータ内の液冷媒の量が減少した場合、このアキュムレータから出て行く液冷媒も少なくなり、或いは、殆ど出て行かなくなるため、周囲からの熱の影響で圧縮機に吸い込まれる冷媒の温度(吸込冷媒温度Ts)が上昇して来る。
 そこで、請求項2の発明の如く制御装置が、室外熱交換器の温度TXOと、圧縮機の吸込冷媒温度Tsとの差TXO−Tsに基づき、この差TXO−Tsが所定値より小さくなった場合、冷媒漏洩が発生していると判定することにより、的確に冷媒漏洩の発生を判定することができるようになると共に、アキュムレータ内の液冷媒の量を直接検出するセンサ等を設ける必要もなくなる。
 また、上記差TXO−Tsは圧縮機に吸い込まれる冷媒の過熱度SHとも相関関係があり、差TXO−Tsが大きい程、過熱度SHは小さくなり、差TXO−Tsが小さい程、過熱度SHは大きくなる。そこで、請求項3の発明の如く制御装置が、圧縮機に吸い込まれる冷媒の過熱度SHに基づき、過熱度SHが所定値より大きくなった場合、冷媒漏洩が発生していると判定することでも的確に冷媒漏洩の発生を判定することができるようになる。また、同様にアキュムレータ内の液冷媒の量を直接検出するセンサ等を設ける必要もなくなる。
 そして、請求項4の発明の如く制御装置が、冷媒漏洩が発生していると判定した場合、所定の報知動作を実行することにより、使用者に冷媒漏洩の発生を警告して迅速な対処を促すことができるようになるものである。
A compressor for compressing the refrigerant, an air flow passage through which air to be supplied to the vehicle interior flows, a radiator for heating the air to be radiated from the refrigerant and supplied to the vehicle interior from the air flow passage, and provided outside the vehicle interior Provided with an outdoor heat exchanger, an accumulator connected to the refrigerant suction side of the compressor, and a control device, and at least the refrigerant discharged from the compressor is radiated by the heat radiator by the control device and radiated. In a vehicle air conditioner that depressurizes the refrigerant and then absorbs heat with an outdoor heat exchanger to heat the vehicle interior, if the refrigerant gradually leaks, the amount of liquid refrigerant that accumulates in the accumulator decreases. Come.
Therefore, in the present invention, since the control device detects the amount of liquid refrigerant in the accumulator and determines the occurrence of refrigerant leakage based on the amount of liquid refrigerant, the refrigerant gradually leaks. In addition, it is possible to determine that refrigerant leakage has occurred at an early stage, and to avoid the inconvenience that causes serious damage to the compressor.
In this case, since the refrigerant discharged from the outdoor heat exchanger is stored in the accumulator, the temperature of the liquid refrigerant in the accumulator is the temperature of the outdoor heat exchanger (TXO). Further, since the oil must be returned from the accumulator to the compressor, the refrigerant exiting from the accumulator partially includes liquid refrigerant. Therefore, when sufficient liquid refrigerant is stored in the accumulator, more liquid refrigerant exits the accumulator, but the liquid refrigerant exiting the accumulator absorbs heat from the surroundings and evaporates.
Then, the temperature will decrease due to the pressure loss with the saturation temperature, but if the amount of liquid refrigerant in the accumulator decreases as a result of refrigerant leakage, less liquid refrigerant will exit the accumulator, or However, since it hardly goes out, the temperature of the refrigerant sucked into the compressor (suction refrigerant temperature Ts) rises due to the influence of heat from the surroundings.
Therefore, as in the invention of claim 2, the control device is configured such that the difference TXO-Ts becomes smaller than a predetermined value based on the difference TXO-Ts between the temperature TXO of the outdoor heat exchanger and the suction refrigerant temperature Ts of the compressor. In this case, it is possible to accurately determine the occurrence of refrigerant leakage by determining that refrigerant leakage has occurred, and it is not necessary to provide a sensor or the like that directly detects the amount of liquid refrigerant in the accumulator. .
The difference TXO-Ts is also correlated with the superheat degree SH of the refrigerant sucked into the compressor. The greater the difference TXO-Ts, the smaller the superheat degree SH, and the smaller the difference TXO-Ts, the superheat degree SH. Will grow. Therefore, as in the third aspect of the invention, the control device may determine that refrigerant leakage has occurred when the superheat degree SH is greater than a predetermined value based on the superheat degree SH of the refrigerant sucked into the compressor. It becomes possible to accurately determine the occurrence of refrigerant leakage. Similarly, there is no need to provide a sensor or the like that directly detects the amount of liquid refrigerant in the accumulator.
When the control device determines that refrigerant leakage has occurred as in the fourth aspect of the invention, by executing a predetermined notification operation, the user is warned of the occurrence of refrigerant leakage and prompt action is taken. It will be able to encourage.
本発明を適用した一実施形態の車両用空気調和装置の構成図である(暖房モード、除湿暖房モード、除湿冷房モード及び冷房モード)。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied (heating mode, dehumidification heating mode, dehumidification cooling mode, and cooling mode). 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図1の車両用空気調和装置のMAX冷房モード(最大冷房モード)のときの構成図である。It is a block diagram at the time of the MAX cooling mode (maximum cooling mode) of the vehicle air conditioner of FIG. 図1の車両用空気調和装置のアキュムレータの概略断面図である。It is a schematic sectional drawing of the accumulator of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の暖房モードにおけるP−h線図である。FIG. 2 is a Ph diagram in a heating mode of the vehicle air conditioner of FIG. 1. 図1の車両用空気調和装置の暖房モードにおけるもう一つのP−h線図である。It is another Ph diagram in the heating mode of the vehicle air conditioner of FIG. 図1の車両用空気調和装置の室外熱交換器温度TXOと吸込冷媒温度Tsとの差TXO−Tsと冷媒充填量の関係を示す図である。It is a figure which shows the relationship between the difference TXO-Ts of the outdoor heat exchanger temperature TXO of the vehicle air conditioner of FIG. 1, and the suction refrigerant temperature Ts, and refrigerant | coolant filling amount. 図1の車両用空気調和装置の室外熱交換器温度TXOと吸込冷媒温度Tsとの差TXO−Tsと圧縮機に吸い込まれる冷媒の過熱度SHの関係を示す図である。It is a figure which shows the relationship between the difference TXO-Ts of the outdoor heat exchanger temperature TXO of the vehicle air conditioner of FIG. 1, and the suction refrigerant temperature Ts, and the superheat degree SH of the refrigerant | coolant sucked in by a compressor.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1も、バッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房モードを行い、更に、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モード(最大冷房モード)の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、車室外に設けられて冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 そして、この冷媒回路Rには所定量の冷媒と潤滑用のオイルが充填されている。尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードで開放される冷房用の電磁弁17を介してレシーバドライヤ部14に接続され、過冷却部16の出口側の冷媒配管13Bは室内膨張弁8介して吸熱器9の入口側に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成している。
 また、過冷却部16と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側の冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは冷媒配管13Dに分岐しており、この分岐した冷媒配管13Dは、暖房モードで開放される暖房用の電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6を介して室外熱交換器7の入口側に接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには、暖房モード、除湿冷房モード、及び、冷房モードで開放され、除湿暖房モードとMAX冷房モードで閉じられるリヒート用の電磁弁30が介設されている。この場合、冷媒配管13Gは電磁弁30の上流側でバイパス配管35に分岐しており、このバイパス配管35は、除湿暖房モード及びMAX冷房モードで開放され、暖房モード、除湿冷房モード、及び、冷房モードで閉じられるバイパス用の電磁弁40を介して室外膨張弁6の下流側の冷媒配管13Eに連通接続されている。これらバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45が構成される。
 このようなバイパス配管35、電磁弁30及び電磁弁40によりバイパス装置45を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モード、除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環モード)と、車室外の空気である外気(外気導入モード)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた補助加熱装置としての補助ヒータである。実施例の補助ヒータ23は電気ヒータであるPTCヒータにて構成されており、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電されて発熱すると、吸熱器9を経て放熱器4に流入する空気流通路3内の空気が加熱される。即ち、この補助ヒータ23が所謂ヒータコアとなり、車室内の暖房を行い、或いは、それを補完する。
 また、補助ヒータ23の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を補助ヒータ23及び放熱器4に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。
 次に、図2において32はプロセッサを備えたコンピュータの一例であるマイクロコンピュータから構成された制御装置としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、アキュムレータ12から出て圧縮機2に吸い込まれる冷媒の温度である吸込冷媒温度(Ts)を検出する吸込温度センサ55と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度:放熱器温度TH)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力:放熱器圧力PCI)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度:吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度(後述する暖房モードのときにアキュムレータ12に流入する冷媒の温度:室外熱交換器温度TXO)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力:室外熱交換器圧力PXO)を検出する室外熱交換器圧力センサ56の各出力が接続されている。また、コントローラ32の入力には更に、補助ヒータ23の温度(補助ヒータ23で加熱された直後の空気の温度、又は、補助ヒータ23自体の温度:補助ヒータ温度Tptc)を検出する補助ヒータ温度センサ50の出力も接続されている。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、補助ヒータ23、電磁弁30(リヒート用)、電磁弁17(冷房用)、電磁弁21(暖房用)、電磁弁40(バイパス用)の各電磁弁が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、及び、MAX冷房モードの各運転モードを切り換えて実行する。先ず、各運転モードにおける冷媒の流れと制御の概略について説明する。
 (1)暖房モード
 コントローラ32により(オートモード)或いは空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17(冷房用)を閉じる。また、電磁弁30(リヒート用)を開放し、電磁弁40(バイパス用)を閉じる。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は当該放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。
 ここで、図4はこのアキュムレータ12の断面図を示している。アキュムレータ12は冷媒配管13Cを経て流入する液冷媒とガス冷媒とを分離するための所謂気液分離器であり、上下の所定寸法を有し、内部に所定容量を有するタンク57と、このタンク57内の上部に配置され、タンク57の側壁及び上壁から離間して設けられた邪魔板58と、タンク57の上壁から内部に進入し、邪魔板58を貫通して一旦タンク57内の底部まで降下した後に上昇し、上昇した先端が邪魔板58の下側で間隔を存して開口する出口配管61とから構成されている。
 この出口配管61の最下部はタンク57の底壁直上に少許間隔を存して位置しており、この最下部には小孔から成るオイル戻し孔62が形成されている。また、出口配管61の上端はタンク57の上壁から出て圧縮機2の吸込側に接続されている。そして、冷媒配管13Cがタンク57の上壁から内部に進入し、邪魔板58の上側にて開口している。
 室外熱交換器7で蒸発したガス冷媒及び未蒸発の液冷媒は、前述した如く冷媒配管13A、電磁弁21及び冷媒配管13Dを経て冷媒配管13Cから図4に矢印で示す如くアキュムレータ12のタンク57内に入る。タンク57内に流入した気液混合状態の冷媒は、先ず邪魔板58に衝突して外側に広がり、矢印で示す如く邪魔板58の外縁とタンク57の間を通ってタンク57内の下部に流下する。
 液冷媒はこのタンク57内の下部に貯留され、ガス冷媒及びアキュムレータ12内で液冷媒が蒸発したガス冷媒は、矢印で示す如く出口配管61の先端と邪魔板58の間を経て出口配管61の先端の開口から当該出口配管61内に入り、流下した後、再び上昇してアキュムレータ12から出て行く。また、タンク57内には冷媒と共に冷媒回路R内を循環するオイル(圧縮機2の潤滑用)も貯留される。このオイル及び液冷媒の一部は、出口配管61の最下部に形成されたオイル戻し孔62から出口配管61内に入って上昇し、アキュムレータ12から出て行く。
 アキュムレータ12から出た係る冷媒及びオイルのうちの液冷媒は、圧縮機2に至る過程で外部から吸熱し、蒸発するので、圧縮機2にはガス冷媒とオイルのみが吸い込まれるかたちとなる。前記吸込温度センサ55はこの冷媒の温度(吸込冷媒温度Ts)を検出している。
 放熱器4(補助ヒータ23が動作するときは当該補助ヒータ23及び放熱器4)にて加熱された空気は吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。この場合、コントローラ32は、後述する目標吹出温度TAOから算出される目標放熱器温度TCO(放熱器温度THの目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器圧力センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御する。また、コントローラ32は、放熱器温度センサ46が検出する放熱器4の温度(放熱器温度TH)及び放熱器圧力センサ47が検出する放熱器圧力PCIに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SC(放熱器温度THと放熱器圧力PCIから算出される)をその目標値である所定の目標過冷却度TGSCに制御する。前記目標放熱器温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。
 また、コントローラ32はこの暖房モードにおいては、車室内空調に要求される暖房能力に対して放熱器4による暖房能力が不足する場合、その不足する分を補助ヒータ23の発熱で補完するように補助ヒータ23の通電を制御する。それにより、快適な車室内暖房を実現し、且つ、室外熱交換器7の着霜も抑制する。このとき、補助ヒータ23は放熱器4の空気上流側に配置されているので、空気流通路3を流通する空気は放熱器4の前に補助ヒータ23に通風されることになる。
 ここで、補助ヒータ23が放熱器4の空気下流側に配置されていると、実施例の如くPCTヒータで補助ヒータ23を構成した場合には、補助ヒータ23に流入する空気の温度が放熱器4によって上昇するため、PTCヒータの抵抗値が大きくなり、電流値も低くなって発熱量が低下してしまうが、放熱器4の空気上流側に補助ヒータ23を配置することで、実施例の如くPTCヒータから構成される補助ヒータ23の能力を十分に発揮させることができるようになる。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離されて圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ23に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ23を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御すると共に、補助ヒータ温度センサ50が検出する補助ヒータ温度Tptcと前述した目標放熱器温度TCOに基づいて補助ヒータ23の通電(発熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ23による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。
 これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。また、前述した如く除湿暖房モードではエアミックスダンパ28は空気流通路3内の全ての空気を補助ヒータ23及び放熱器4に通風する状態とされるので、吸熱器9を経た空気を効率良く補助ヒータ23で加熱して省エネ性を向上させ、且つ、除湿暖房空調の制御性も向上させることができるようになる。
 尚、補助ヒータ23は放熱器4の空気上流側に配置されているので、補助ヒータ23で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ23にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (3)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を開放し、電磁弁40を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図1に破線で示す如く、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全ての空気が補助ヒータ23及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離されて圧縮機2に吸い込まれる循環を繰り返す。この除湿冷房モードではコントローラ32は補助ヒータ23に通電しないので、吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(リヒート。暖房時よりも放熱能力は低い)される。これにより車室内の除湿冷房が行われることになる。
 コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)に基づいて圧縮機2の回転数を制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
 (4)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において室外膨張弁6の弁開度を全開とする。尚、コントローラ32はエアミックスダンパ28を制御し、図1に実線で示す如く、室内送風機27から吹き出されて吸熱器9を通過した後の空気流通路3内の空気が、補助ヒータ23及び放熱器4に通風される割合を調整する。また、コントローラ32は補助ヒータ23に通電しない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は電磁弁30を経て冷媒配管13Gから放熱器4に流入すると共に、放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので冷媒はそれを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着する。
 吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、前述した如く気液分離された後、圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気が吹出口29から車室内に吹き出されるので(一部は放熱器4を通過して熱交換する)、これにより車室内の冷房が行われることになる。また、この冷房モードにおいては、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
 (5)MAX冷房モード(最大冷房モード)
 次に、最大冷房モードとしてのMAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁30を閉じ、電磁弁40を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は図3に示す如く補助ヒータ23及び放熱器4に空気流通路3内の空気が通風されない状態とする。但し、多少通風されても支障はない。また、コントローラ32は補助ヒータ23に通電しない。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管35に流入し、電磁弁40を経て室外膨張弁6の下流側の冷媒配管13Eに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数を制御する。
 (6)各運転モードの切換
 空気流通路3内を流通される空気は上記各運転モードにおいて吸熱器9からの冷却や放熱器4(及び補助ヒータ23)からの加熱作用(エアミックスダンパ28で調整)を受けて吹出口29から車室内に吹き出される。コントローラ32は外気温度センサ33が検出する外気温度Tam、内気温度センサ37が検出する車室内の温度、前記ブロワ電圧、日射センサ51が検出する日射量等と、空調操作部53にて設定された車室内の目標車室内温度(設定温度)とに基づいて目標吹出温度TAOを算出し、各運転モードを切り換えて吹出口29から吹き出される空気の温度をこの目標吹出温度TAOに制御する。
 この場合、コントローラ32は、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードを切り換え、快適且つ効率的な車室内空調を実現する。
 (7)暖房モードにおけるコントローラ32による冷媒漏洩の判定1
 次に、図5~図8を参照しながらコントローラ32による冷媒回路Rからの冷媒漏洩の判定制御について説明する。特に、通常の空気調和装置に比して振動の多い環境で使用される車両用空気調和装置1では、経年使用により冷媒回路Rから冷媒が徐々に漏洩していく問題がある。冷媒回路R内の冷媒充填量が減少すると、圧縮機2に甚大な損傷を来すため、早期に冷媒漏洩の発生を判定することが機器の保護上、極めて重要となる。
 ここで、暖房モードにおいては、室外熱交換器7から出た冷媒がアキュムレータ12内に貯留されるので、アキュムレータ12内の液冷媒の温度は室外熱交換器温度TXOである。また、前述した如くアキュムレータ12からはオイルも圧縮機2に戻さなければならない関係上、アキュムレータ12から出る冷媒にはオイルと共に一部液冷媒も含まれることになる。
 従って、アキュムレータ12内に十分な液冷媒が貯留されている場合、アキュムレータ12から出口配管61を通って出て行く液冷媒も多くなるが、アキュムレータ12から出た液冷媒は、圧縮機2に至るまでに周囲から吸熱して蒸発する。そして、飽和温度のまま圧力損失の影響で温度が低下することになる。
 図5と図6を参照しながらアキュムレータ12から圧縮機2に吸い込まれる冷媒の状態を説明する。図5は室外熱交換器7における冷媒の蒸発温度が0℃のときの冷媒回路RのP−h線図であり、図6は蒸発温度が−10℃のときのものである。また、各図においてL1で示す線は冷媒回路R内の冷媒充填量が十分ある場合、L2で示す線は冷媒充填量が不足している場合である。また、L3は飽和蒸気線である。
 この図からも明らかな如く、冷媒充填量が十分ある場合、アキュムレータ2内の冷媒の温度は室外熱交換器温度TXO(0℃)であり、アキュムレータ12から出た時点(図5、図6中にTXOで示す)から圧縮機2に吸い込まれる時点(図5、図6中にTsで示す)までの過程で、この場合には飽和蒸気線L3に略沿って温度が低下している。従って、図5の場合、室外熱交換器温度TXOと吸込冷媒温度Tsの差TXO−Tsは17K程となり(TXO=0℃、Ts=−17℃)、図6の場合、差TXO−Tsは10K程となる(TXO=−5℃、Ts=−15℃)。
 一方、冷媒回路Rから冷媒が徐々に漏洩してしまい、冷媒充填量が不足してくると、アキュムレータ12内に貯留される液冷媒の量も減少するため、このアキュムレータ12から出て行く液冷媒も少なくなり、或いは、殆ど出て行かなくなる。そのため、周囲からの熱の影響で圧縮機2に吸い込まれる冷媒の温度(吸込冷媒温度Ts)が上昇して来る。
 この様子は図5、図6にL2で示される。図5の場合、吸込冷媒温度Tsは−5℃程であり、図6の場合も同様に−5℃程となっている。そのため、図5の場合、室外熱交換器温度TXOと吸込冷媒温度Tsの差TXO−Tsは5K程となり(TXO=0℃、Ts=−5℃)、図6の場合、差TXO−Tsは0K程となる(TXO=−5℃、Ts=−5℃)。
 即ち、室外熱交換器温度TXOと吸込冷媒温度Tsとの差TXO−Tsと冷媒回路R内の冷媒充填量と相関関係があることが分かる。図7はこの相関関係を測定した結果を示している。冷媒充填量が少なくなる程、差TXO−Tsが小さくなっていることが分かる。そして、冷媒回路Rで許容される最小の冷媒充填量を、例えば550gであるとすると、差TXO−Tsが5Kまで小さくなったとき、冷媒を補充しなければならなくなると云うことが分かる。
 そこで、コントローラ32は室外熱交換器温度センサ54が検出する室外熱交換器温度TXOと、吸込温度センサ55が検出する圧縮機2の吸込冷媒温度Tsとの差TXO−Tsに基づき、この差TXO−Tsが5K(所定値)より小さくなった場合、冷媒漏洩が発生していると判定する。そして、空調操作部53で冷媒漏洩の発生を表示し、使用者に報知する(報知動作)。
 即ち、実施例では室外熱交換器温度TXOと吸込冷媒温度Tsとの差TXO−Tsの変化に基づいてアキュムレータ12内の液冷媒の量を検知している。そして、この液冷媒の量に基づいて冷媒漏洩の発生を判定する。これにより、冷媒回路Rから徐々に冷媒が漏洩していった場合にも、早期に冷媒漏洩が発生していることを判定し、圧縮機2に甚大な損害が生じる不都合を未然に回避することができるようになる。
 そして、コントローラ32は冷媒漏洩が発生していると判定した場合、空調操作部53で報知動作を実行するので、使用者に冷媒漏洩の発生を警告して迅速な冷媒補充等の対処を促すことができるようになる。
 特に、実施例では室外熱交換器温度TXOと、圧縮機2の吸込冷媒温度Tsとの差TXO−Tsに基づき、この差TXO−Tsが所定値より小さくなった場合、冷媒漏洩が発生していると判定しているので、的確に冷媒漏洩の発生を判定することができるようになる。また、室外熱交換器温度センサ54と吸込温度センサ55を兼用して冷媒漏洩判定を行うことができるので、アキュムレータ12内の液冷媒の量を直接検出するための複数の温度センサ等を設ける必要もなくなり、部品点数の削減を図ることができるようになる。
 (8)暖房モードにおけるコントローラ32による冷媒漏洩の判定2
 ここで、上記室外熱交換器温度TXOと吸込冷媒温度Tsとの差TXO−Tsは圧縮機2に吸い込まれる冷媒の過熱度SHとも相関関係がある。この様子を図8に示している。アキュムレータ12内の液冷媒の量が十分ある場合には、前述した如く差TXO−Tsが大きくなり、圧縮機2に吸い込まれる冷媒の過熱度SHは小さくなる。一方、アキュムレータ12内の液冷媒の量が不足すると、前述した如く差TXO−Tsが小さくなり、圧縮機2に吸い込まれる冷媒の過熱度SHは大きくなる。
 即ち、差TXO−Tsが大きい程、過熱度SHは小さくなり、差TXO−Tsが小さい程、過熱度SHは大きくなる。そして、前述した差TXO−Tsが5Kのときの過熱度SHは7K程である。そこで、コントローラ32により、圧縮機2に吸い込まれる冷媒の過熱度SH(吸込圧力センサ44と吸込温度センサ55が検出する吸込冷媒の圧力と温度から求められる)が5K(所定値)より大きくなった場合、冷媒漏洩が発生していると判定するようにしてもよい。このような圧縮機2に吸い込まれる冷媒の過熱度SHによっても的確に冷媒漏洩の発生を判定することができるようになる。また、同様にアキュムレータ12内の液冷媒の量を直接検出する複数の温度センサ等を設ける必要もなくなる。
 尚、上記各実施例では室外熱交換器温度TXOと吸込冷媒温度Tsの差TXO−Tsや圧縮機2に吸い込まれる冷媒の過熱度SHに基づいてアキュムレータ12内の液冷媒の量を検知し、冷媒漏洩の発生を判定したが、請求項1の発明ではそれに限らず、アキュムレータ12に上下に複数の温度センサを取り付けて内部に貯留される液冷媒の量を検出し、直接液冷媒の量を判定するようにしてもよい。
 また、実施例では暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モードの各運転モードを切り換える例で本発明を説明したが、それに限らず、暖房モードのみを実行する車両用空気調和装置にも本発明は有効である。
 更に、実施例で示した各運転モードの切換制御は、それに限られるものでは無く、車両用空気調和装置の能力や使用環境に応じて、外気温度Tam、車室内の湿度、目標吹出温度TAO、放熱器温度TH、目標放熱器温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータの何れか、又は、それらの組み合わせ、それらの全てを採用して適切な条件を設定すると良い。
 更にまた、補助加熱装置は実施例で示した補助ヒータ23に限られるものでは無く、ヒータで加熱された熱媒体を循環させて空気流通路内の空気を加熱する熱媒体循環回路や、エンジンで加熱されたラジエター水を循環するヒータコア等を利用してもよい。また、実施例で説明した冷媒回路Rの構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Yes (both not shown), the vehicle air conditioner 1 of the present invention is also driven by the power of the battery. That is, the vehicle air conditioner 1 of the embodiment performs a heating mode by a heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, And each operation mode of MAX cooling mode (maximum cooling mode) is selectively performed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a vehicle interior of an electric vehicle, and includes an electric compressor 2 that compresses refrigerant and vehicle interior air. Is provided in the air flow passage 3 of the HVAC unit 10 through which air is circulated, and the high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G, and dissipates the refrigerant into the vehicle compartment. And an outdoor expansion valve 6 comprising an electric valve that decompresses and expands the refrigerant during heating, and functions as a radiator during cooling and functions as a radiator during heating, and exchanges heat between the refrigerant and the outside air so as to function as an evaporator during heating. An outdoor heat exchanger 7 that performs the above operation, an indoor expansion valve 8 that is an electric valve that decompresses and expands the refrigerant, and a heat absorber 9 that is provided in the air flow passage 3 and absorbs heat from outside the vehicle interior to the refrigerant during cooling and dehumidification. And accumulator 12 etc. Are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
The refrigerant circuit R is filled with a predetermined amount of refrigerant and lubricating oil. The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The outdoor heat exchanger 7 has a receiver dryer unit 14 and a supercooling unit 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 includes a dehumidifying heating mode, a dehumidifying cooling mode, a cooling mode, The refrigerant pipe 13B on the outlet side of the supercooling section 16 is connected to the inlet side of the heat absorber 9 via the indoor expansion valve 8 via the electromagnetic valve 17 for cooling opened in the MAX cooling mode. It is connected to the. In addition, the receiver dryer part 14 and the supercooling part 16 structurally constitute a part of the outdoor heat exchanger 7.
The refrigerant pipe 13B between the subcooling section 16 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C on the outlet side of the heat absorber 9, and constitutes an internal heat exchanger 19 together. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched into a refrigerant pipe 13D, and the branched refrigerant pipe 13D is connected to the internal heat exchanger via a heating electromagnetic valve 21 opened in the heating mode. 19 is connected to a refrigerant pipe 13 </ b> C on the downstream side. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2. Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is connected to the inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
In addition, the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is reheated in the heating mode, the dehumidifying cooling mode, and the cooling mode, and closed in the dehumidifying heating mode and the MAX cooling mode. An electromagnetic valve 30 is provided. In this case, the refrigerant pipe 13G is branched into a bypass pipe 35 on the upstream side of the electromagnetic valve 30, and the bypass pipe 35 is opened in the dehumidifying heating mode and the MAX cooling mode, and is heated, dehumidified and cooled, and cooled. The refrigerant pipe 13E is connected to the downstream side of the outdoor expansion valve 6 through a bypass electromagnetic valve 40 that is closed in the mode. Bypass pipe 45, solenoid valve 30 and solenoid valve 40 constitute bypass device 45.
Since the bypass device 45 is configured by the bypass pipe 35, the electromagnetic valve 30, and the electromagnetic valve 40, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the air introduced into the air flow passage 3 between the inside air (inside air circulation mode) which is air inside the passenger compartment and the outside air (outside air introduction mode) which is outside the passenger compartment. Yes. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device provided in the vehicle air conditioner 1 of the embodiment. The auxiliary heater 23 of the embodiment is composed of a PTC heater which is an electric heater, and is provided in the air flow passage 3 on the air upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. Yes. When the auxiliary heater 23 is energized and generates heat, the air in the air flow passage 3 flowing into the radiator 4 through the heat absorber 9 is heated. In other words, the auxiliary heater 23 serves as a so-called heater core, which heats or complements the passenger compartment.
In addition, air in the air flow passage 3 on the upstream side of the auxiliary heater 23 flows into the air flow passage 3 and assists air (inside air or outside air) in the air flow passage 3 after passing through the heat absorber 9. An air mix damper 28 is provided for adjusting the ratio of ventilation through the heater 23 and the radiator 4. Further, FOOT (foot), VENT (vent), and DEF (def) outlets (represented by the outlet 29 as a representative in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The air outlet 29 is provided with an air outlet switching damper 31 that performs switching control of air blowing from the air outlets.
Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control device composed of a microcomputer which is an example of a computer provided with a processor. The controller 32 detects the outside air temperature (Tam) of the vehicle. The outside air temperature sensor 33 for detecting the outside air humidity, the HVAC suction temperature sensor 36 for detecting the temperature of the air sucked into the air flow passage 3 from the suction port 25, and the air (inside air) in the passenger compartment. An inside air temperature sensor 37 that detects the temperature, an inside air humidity sensor 38 that detects the humidity of the air in the vehicle interior, an indoor CO 2 concentration sensor 39 that detects the carbon dioxide concentration in the vehicle interior, and an air outlet from the air outlet 29 And a discharge pressure sensor 41 for detecting the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2. , A discharge temperature sensor 43 that detects the refrigerant discharge temperature of the compressor 2, a suction pressure sensor 44 that detects the suction refrigerant pressure of the compressor 2, and the temperature of the refrigerant that comes out of the accumulator 12 and is sucked into the compressor 2 A suction temperature sensor 55 that detects the suction refrigerant temperature (Ts), and heat dissipation that detects the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4 or the temperature of the radiator 4 itself: the radiator temperature TH). A radiator temperature sensor 46, a radiator pressure sensor 47 for detecting the refrigerant pressure of the radiator 4 (the pressure of the refrigerant in the radiator 4 or immediately after leaving the radiator 4: the radiator pressure PCI), and the heat absorber 9. And a refrigerant pressure of the heat absorber 9 (in the heat absorber 9, or the temperature of the air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself: the heat absorber temperature Te) The refrigerant pressure immediately after exiting the heat absorber 9) An endothermic pressure sensor 49, a photosensor-type solar sensor 51 for detecting the amount of solar radiation into the passenger compartment, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, set temperature and driving An air conditioning (air conditioner) operation unit 53 for setting the mode switching, and the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7 (flowing into the accumulator 12 in the heating mode described later) The temperature of the refrigerant to be cooled: the outdoor heat exchanger temperature sensor 54 for detecting the outdoor heat exchanger temperature TXO) and the refrigerant pressure of the outdoor heat exchanger 7 (in the outdoor heat exchanger 7 or from the outdoor heat exchanger 7) Each output of the outdoor heat exchanger pressure sensor 56 that detects the pressure of the refrigerant immediately after: the outdoor heat exchanger pressure PXO) is connected to the controller 32. Further, the input of the controller 32 further includes the temperature of the auxiliary heater 23 (auxiliary). Temperature of the air immediately after being heated at over data 23, or, auxiliary heater 23 itself temperature is also connected the output of the auxiliary heater temperature sensor 50 for detecting the auxiliary heater temperature TPTC).
On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. The solenoid valve, the indoor expansion valve 8, the auxiliary heater 23, the solenoid valve 30 (for reheating), the solenoid valve 17 (for cooling), the solenoid valve 21 (for heating), and the solenoid valve 40 (for bypass) are connected. Has been. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53. FIG.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode. First, an outline of refrigerant flow and control in each operation mode will be described.
(1) Heating mode When the heating mode is selected by the controller 32 (auto mode) or by the manual operation (manual mode) to the air conditioning operation unit 53, the controller 32 opens the solenoid valve 21 (for heating) and opens the solenoid valve. Close 17 (for cooling). Further, the electromagnetic valve 30 (for reheating) is opened, and the electromagnetic valve 40 (for bypass) is closed.
Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the airflow passage 3 is passed through the radiator 4, the air in the airflow passage 3 is converted into the high-temperature refrigerant in the radiator 4 (when the auxiliary heater 23 operates, the auxiliary heater 23 and the radiator 4. On the other hand, the refrigerant in the radiator 4 is cooled by being deprived of heat by the air, and is condensed and liquefied.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 through the refrigerant pipe 13C through the refrigerant pipe 13A, the solenoid valve 21 and the refrigerant pipe 13D, and is gas-liquid separated there. Repeated circulation inhaled.
Here, FIG. 4 shows a cross-sectional view of the accumulator 12. The accumulator 12 is a so-called gas-liquid separator for separating the liquid refrigerant and the gas refrigerant flowing in via the refrigerant pipe 13C, and has a tank 57 having upper and lower predetermined dimensions and a predetermined capacity inside, and the tank 57 The baffle plate 58 disposed in the upper part of the tank 57 and spaced apart from the side wall and the upper wall of the tank 57, and enters the inside from the upper wall of the tank 57, penetrates the baffle plate 58, and once reaches the bottom of the tank 57. The outlet pipe 61 is opened after being lowered, and the raised tip is opened below the baffle plate 58 with an interval.
The lowermost part of the outlet pipe 61 is located immediately above the bottom wall of the tank 57 with a small clearance, and an oil return hole 62 formed of a small hole is formed at the lowermost part. Further, the upper end of the outlet pipe 61 exits from the upper wall of the tank 57 and is connected to the suction side of the compressor 2. Then, the refrigerant pipe 13 </ b> C enters from the upper wall of the tank 57 and opens on the upper side of the baffle plate 58.
The gas refrigerant evaporated in the outdoor heat exchanger 7 and the non-evaporated liquid refrigerant pass through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D as described above and from the refrigerant pipe 13C to the tank 57 of the accumulator 12 as shown by the arrow in FIG. Get inside. The refrigerant in the gas-liquid mixed state flowing into the tank 57 first collides with the baffle plate 58 and spreads outward, and flows down between the outer edge of the baffle plate 58 and the tank 57 as shown by the arrows and into the lower part of the tank 57. To do.
The liquid refrigerant is stored in the lower part of the tank 57, and the gas refrigerant and the gas refrigerant in which the liquid refrigerant has evaporated in the accumulator 12 pass through the gap between the tip of the outlet pipe 61 and the baffle plate 58 as shown by the arrows. After entering the outlet pipe 61 from the opening at the tip and flowing down, it rises again and exits from the accumulator 12. The tank 57 also stores oil (for lubricating the compressor 2) circulating in the refrigerant circuit R together with the refrigerant. A part of the oil and liquid refrigerant enters the outlet pipe 61 from the oil return hole 62 formed in the lowermost part of the outlet pipe 61 and rises and exits from the accumulator 12.
Since the liquid refrigerant out of the refrigerant and oil that has come out of the accumulator 12 absorbs heat and evaporates from the outside in the process of reaching the compressor 2, only the gas refrigerant and oil are sucked into the compressor 2. The suction temperature sensor 55 detects the temperature of the refrigerant (suction refrigerant temperature Ts).
Since the air heated by the radiator 4 (when the auxiliary heater 23 is operated, the auxiliary heater 23 and the radiator 4) is blown out from the outlet 29, the vehicle interior is thereby heated. In this case, the controller 32 calculates a target radiator pressure PCO (target value of the radiator pressure PCI) from a target radiator temperature TCO (target value of the radiator temperature TH) calculated from a target outlet temperature TAO described later, The number of revolutions of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure of the refrigerant circuit R) detected by the radiator pressure sensor 47. Further, the controller 32 determines the valve opening degree of the outdoor expansion valve 6 based on the temperature of the radiator 4 (the radiator temperature TH) detected by the radiator temperature sensor 46 and the radiator pressure PCI detected by the radiator pressure sensor 47. And the supercooling degree SC of the refrigerant at the outlet of the radiator 4 (calculated from the radiator temperature TH and the radiator pressure PCI) is controlled to a predetermined target supercooling degree TGSC which is the target value. The target radiator temperature TCO is basically set to TCO = TAO, but a predetermined restriction on control is provided.
Further, in this heating mode, when the heating capacity by the radiator 4 is insufficient with respect to the heating capacity required for the vehicle interior air conditioning, the controller 32 assists so that the shortage is supplemented by the heat generated by the auxiliary heater 23. The energization of the heater 23 is controlled. Thereby, comfortable vehicle interior heating is realized and frost formation of the outdoor heat exchanger 7 is also suppressed. At this time, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air flowing through the air flow passage 3 is vented to the auxiliary heater 23 before the radiator 4.
Here, when the auxiliary heater 23 is disposed on the air downstream side of the radiator 4, when the auxiliary heater 23 is configured by a PCT heater as in the embodiment, the temperature of the air flowing into the auxiliary heater 23 is determined by the radiator. 4, the resistance value of the PTC heater increases, the current value also decreases, and the heat generation amount decreases. However, by arranging the auxiliary heater 23 on the air upstream side of the radiator 4, Thus, the capacity of the auxiliary heater 23 composed of the PTC heater can be sufficiently exhibited.
(2) Dehumidification heating mode Next, in the dehumidification heating mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the controller 32 energizes the auxiliary heater 23 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 23 and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
The controller 32 controls the rotational speed of the compressor 2 on the basis of the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value, and the auxiliary heater temperature. By controlling the energization (heat generation) of the auxiliary heater 23 based on the auxiliary heater temperature Tptc detected by the sensor 50 and the target radiator temperature TCO described above, while appropriately cooling and dehumidifying the air in the heat absorber 9, A decrease in the temperature of the air blown from the outlet 29 into the passenger compartment by heating by the auxiliary heater 23 is accurately prevented.
As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior. Further, as described above, in the dehumidifying heating mode, the air mix damper 28 is in a state where all the air in the air flow passage 3 is passed through the auxiliary heater 23 and the radiator 4, so that the air passing through the heat absorber 9 is efficiently assisted. Heating by the heater 23 can improve the energy saving performance, and the controllability of the dehumidifying heating air conditioning can also be improved.
In addition, since the auxiliary heater 23 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 23 passes through the radiator 4. In this dehumidifying heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 23 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(3) Dehumidifying and Cooling Mode Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is opened and the electromagnetic valve 40 is closed. Then, the compressor 2 and each of the blowers 15 and 27 are operated, and the air mix damper 28 is blown out from the indoor blower 27 and passes through the heat absorber 9 as shown by a broken line in FIG. It is assumed that air is passed through the auxiliary heater 23 and the radiator 4. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 through the refrigerant pipe 13C, and repeats circulation that is separated into gas and liquid and sucked into the compressor 2 as described above. In this dehumidifying and cooling mode, since the controller 32 does not energize the auxiliary heater 23, the air cooled by the heat absorber 9 is reheated (reheated in the process of passing through the radiator 4). ) As a result, dehumidifying and cooling in the passenger compartment is performed.
The controller 32 controls the rotational speed of the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48, and also uses the outdoor expansion valve based on the high pressure of the refrigerant circuit R described above. 6 is controlled to control the refrigerant pressure of the radiator 4 (radiator pressure PCI).
(4) Cooling Mode Next, in the cooling mode, the controller 32 fully opens the valve opening degree of the outdoor expansion valve 6 in the dehumidifying and cooling mode. The controller 32 controls the air mix damper 28, and the air in the air flow passage 3 after being blown out from the indoor blower 27 and passing through the heat absorber 9 as shown by a solid line in FIG. The rate of ventilation through the vessel 4 is adjusted. Further, the controller 32 does not energize the auxiliary heater 23.
As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 from the refrigerant pipe 13G via the electromagnetic valve 30, and the refrigerant exiting the radiator 4 passes through the refrigerant pipe 13E and the outdoor expansion valve 6. To. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through it and flows into the outdoor heat exchanger 7 as it is, where it is cooled by air or by outside air that is ventilated by the outdoor blower 15 and condensed. Liquefaction. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. Further, moisture in the air condenses and adheres to the heat absorber 9.
The refrigerant evaporated in the heat absorber 9 passes through the internal heat exchanger 19 and reaches the accumulator 12 via the refrigerant pipe 13C, and after being gas-liquid separated as described above, the circulation sucked into the compressor 2 is repeated. Since the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 (partly passes through the radiator 4 to exchange heat), the vehicle interior is thereby cooled. become. In this cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. To control.
(5) MAX cooling mode (maximum cooling mode)
Next, in the MAX cooling mode as the maximum cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 30 is closed, the electromagnetic valve 40 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 keeps the air in the air flow passage 3 from passing through the auxiliary heater 23 and the radiator 4 as shown in FIG. However, there is no problem even if it is ventilated somewhat. Further, the controller 32 does not energize the auxiliary heater 23.
Accordingly, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 35 without going to the radiator 4, passes through the electromagnetic valve 40, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13E. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the controller 32 rotates the compressor 2 based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO that is the target value. Control the number.
(6) Switching of each operation mode The air flowing through the air flow passage 3 is cooled from the heat absorber 9 and heated from the radiator 4 (and the auxiliary heater 23) in each operation mode (by the air mix damper 28). In response, the air is blown out from the air outlet 29 into the passenger compartment. The controller 32 is set by the air-conditioning operation unit 53, the outside air temperature Tam detected by the outside air temperature sensor 33, the temperature in the vehicle interior detected by the inside air temperature sensor 37, the blower voltage, the amount of solar radiation detected by the solar radiation sensor 51, and the like. The target blowout temperature TAO is calculated based on the target passenger compartment temperature (set temperature) in the passenger compartment, and the temperature of the air blown from the blowout port 29 is controlled to this target blowout temperature TAO by switching each operation mode.
In this case, the controller 32 determines whether the outside air temperature Tam, the humidity in the vehicle interior, the target outlet temperature TAO, the radiator temperature TH, the target radiator temperature TCO, the heat absorber temperature Te, the target heat absorber temperature TEO, or the dehumidification request in the vehicle interior. By switching each operation mode based on parameters such as, etc., it switches between heating mode, dehumidifying heating mode, dehumidifying cooling mode, cooling mode and MAX cooling mode accurately according to the environmental conditions and necessity of dehumidification. In addition, efficient cabin air conditioning is realized.
(7) Determination 1 of refrigerant leakage by the controller 32 in the heating mode
Next, the refrigerant leakage determination control from the refrigerant circuit R by the controller 32 will be described with reference to FIGS. In particular, in the vehicle air conditioner 1 that is used in an environment with much vibration as compared with a normal air conditioner, there is a problem that the refrigerant gradually leaks from the refrigerant circuit R over time. When the refrigerant charge amount in the refrigerant circuit R is reduced, the compressor 2 is seriously damaged. Therefore, it is extremely important for the protection of the device to determine the occurrence of refrigerant leakage at an early stage.
Here, in the heating mode, since the refrigerant discharged from the outdoor heat exchanger 7 is stored in the accumulator 12, the temperature of the liquid refrigerant in the accumulator 12 is the outdoor heat exchanger temperature TXO. Further, as described above, since the oil must be returned from the accumulator 12 to the compressor 2, the refrigerant discharged from the accumulator 12 includes a part of the liquid refrigerant together with the oil.
Therefore, when sufficient liquid refrigerant is stored in the accumulator 12, more liquid refrigerant exits from the accumulator 12 through the outlet pipe 61, but the liquid refrigerant output from the accumulator 12 reaches the compressor 2. Evaporates by absorbing heat from the surroundings. And temperature falls under the influence of pressure loss with saturation temperature.
The state of the refrigerant sucked into the compressor 2 from the accumulator 12 will be described with reference to FIGS. 5 and 6. FIG. 5 is a Ph diagram of the refrigerant circuit R when the evaporation temperature of the refrigerant in the outdoor heat exchanger 7 is 0 ° C., and FIG. 6 is when the evaporation temperature is −10 ° C. Moreover, in each figure, the line shown by L1 is a case where the refrigerant | coolant filling amount in the refrigerant circuit R is enough, and the line shown by L2 is a case where the refrigerant | coolant filling amount is insufficient. L3 is a saturated vapor line.
As is apparent from this figure, when the refrigerant charging amount is sufficient, the temperature of the refrigerant in the accumulator 2 is the outdoor heat exchanger temperature TXO (0 ° C.), and the time when the refrigerant leaves the accumulator 12 (in FIGS. 5 and 6). In this case, the temperature decreases substantially along the saturated vapor line L3 in the process from the time when it is sucked into the compressor 2 (indicated by Ts in FIGS. 5 and 6). Therefore, in the case of FIG. 5, the difference TXO−Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts is about 17K (TXO = 0 ° C., Ts = −17 ° C.). In the case of FIG. 6, the difference TXO−Ts is It becomes about 10K (TXO = −5 ° C., Ts = −15 ° C.).
On the other hand, if the refrigerant gradually leaks from the refrigerant circuit R and the refrigerant charging amount becomes insufficient, the amount of liquid refrigerant stored in the accumulator 12 also decreases, so that the liquid refrigerant exiting the accumulator 12 Less, or almost never go out. Therefore, the temperature of the refrigerant sucked into the compressor 2 (suction refrigerant temperature Ts) increases due to the influence of heat from the surroundings.
This state is indicated by L2 in FIGS. In the case of FIG. 5, the suction refrigerant temperature Ts is about −5 ° C., and in the case of FIG. Therefore, in the case of FIG. 5, the difference TXO−Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts is about 5K (TXO = 0 ° C., Ts = −5 ° C.). In FIG. 6, the difference TXO−Ts is It becomes about 0K (TXO = −5 ° C., Ts = −5 ° C.).
That is, it can be seen that there is a correlation between the difference TXO-Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts and the refrigerant charge amount in the refrigerant circuit R. FIG. 7 shows the results of measuring this correlation. It can be seen that the difference TXO-Ts decreases as the refrigerant charge amount decreases. If the minimum refrigerant charging amount allowed in the refrigerant circuit R is, for example, 550 g, it can be seen that the refrigerant must be replenished when the difference TXO-Ts is reduced to 5K.
Therefore, the controller 32 determines the difference TXO−Ts based on the difference TXO−Ts between the outdoor heat exchanger temperature TXO detected by the outdoor heat exchanger temperature sensor 54 and the suction refrigerant temperature Ts of the compressor 2 detected by the suction temperature sensor 55. When -Ts becomes smaller than 5K (predetermined value), it is determined that refrigerant leakage has occurred. Then, the occurrence of refrigerant leakage is displayed by the air conditioning operation unit 53 and notified to the user (notification operation).
In other words, in the embodiment, the amount of liquid refrigerant in the accumulator 12 is detected based on a change in the difference TXO-Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts. And generation | occurrence | production of a refrigerant | coolant leakage is determined based on the quantity of this liquid refrigerant. As a result, even when the refrigerant gradually leaks from the refrigerant circuit R, it is determined that the refrigerant has leaked at an early stage, thereby avoiding inconvenience that the compressor 2 is seriously damaged. Will be able to.
When the controller 32 determines that the refrigerant leakage has occurred, the air conditioning operation unit 53 performs a notification operation, so that the user is warned of the occurrence of the refrigerant leakage and prompts the user to take quick measures such as refrigerant replenishment. Will be able to.
In particular, in the embodiment, based on the difference TXO-Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts of the compressor 2, when this difference TXO-Ts becomes smaller than a predetermined value, refrigerant leakage occurs. Therefore, it is possible to accurately determine the occurrence of refrigerant leakage. In addition, since the refrigerant leakage determination can be performed by using the outdoor heat exchanger temperature sensor 54 and the suction temperature sensor 55 together, it is necessary to provide a plurality of temperature sensors for directly detecting the amount of liquid refrigerant in the accumulator 12. As a result, the number of parts can be reduced.
(8) Refrigerant leakage determination 2 by the controller 32 in the heating mode 2
Here, the difference TXO−Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts is also correlated with the superheat degree SH of the refrigerant sucked into the compressor 2. This is shown in FIG. When the amount of liquid refrigerant in the accumulator 12 is sufficient, the difference TXO-Ts increases as described above, and the superheat degree SH of the refrigerant sucked into the compressor 2 decreases. On the other hand, when the amount of the liquid refrigerant in the accumulator 12 is insufficient, the difference TXO-Ts is reduced as described above, and the superheat degree SH of the refrigerant sucked into the compressor 2 is increased.
That is, the greater the difference TXO-Ts, the smaller the superheat degree SH, and the smaller the difference TXO-Ts, the greater the superheat degree SH. The superheat degree SH when the above-described difference TXO-Ts is 5K is about 7K. Therefore, the superheat degree SH (obtained from the pressure and temperature of the suction refrigerant detected by the suction pressure sensor 44 and the suction temperature sensor 55) of the refrigerant sucked into the compressor 2 by the controller 32 is larger than 5K (predetermined value). In such a case, it may be determined that refrigerant leakage has occurred. The occurrence of refrigerant leakage can be accurately determined by the superheat degree SH of the refrigerant sucked into the compressor 2 as described above. Similarly, it is not necessary to provide a plurality of temperature sensors that directly detect the amount of liquid refrigerant in the accumulator 12.
In each of the above embodiments, the amount of liquid refrigerant in the accumulator 12 is detected based on the difference TXO-Ts between the outdoor heat exchanger temperature TXO and the suction refrigerant temperature Ts and the degree of superheat SH of the refrigerant sucked into the compressor 2. Although the occurrence of refrigerant leakage has been determined, the invention of claim 1 is not limited to this, and a plurality of temperature sensors are attached to the accumulator 12 to detect the amount of liquid refrigerant stored therein, and the amount of liquid refrigerant is directly determined. You may make it determine.
In the embodiment, the present invention has been described with an example in which each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, and the MAX cooling mode is switched. However, the present invention is not limited thereto, and the vehicle air that executes only the heating mode. The present invention is also effective for a harmony device.
Furthermore, the switching control of each operation mode shown in the embodiment is not limited thereto, and the outside air temperature Tam, the humidity in the passenger compartment, the target outlet temperature TAO, depending on the capability and usage environment of the vehicle air conditioner, Adopt any one of parameters such as radiator temperature TH, target radiator temperature TCO, heat absorber temperature Te, target heat absorber temperature TEO, presence / absence of dehumidification request in vehicle interior, or a combination thereof, or all of them. Appropriate conditions should be set.
Furthermore, the auxiliary heating device is not limited to the auxiliary heater 23 shown in the embodiment, and a heat medium circulation circuit that heats the air in the air flow passage by circulating the heat medium heated by the heater or an engine. You may utilize the heater core etc. which circulate through the heated radiator water. Moreover, the structure of the refrigerant circuit R demonstrated in the Example is not limited to it, It can change in the range which does not deviate from the meaning of this invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 17、21、30、40 電磁弁
 23 補助ヒータ(補助加熱装置)
 27 室内送風機(ブロワファン)
 28 エアミックスダンパ
 32 コントローラ(制御装置)
 35 バイパス配管
 44 吸込圧力センサ
 54 室外熱交換器温度センサ
 55 吸込温度センサ
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 17, 21, 30, 40 Electromagnetic valve 23 Auxiliary heater (auxiliary heating device)
27 Indoor blower
28 Air Mix Damper 32 Controller (Control Device)
35 Bypass piping 44 Suction pressure sensor 54 Outdoor heat exchanger temperature sensor 55 Suction temperature sensor R Refrigerant circuit

Claims (4)

  1.  冷媒を圧縮する圧縮機と、
     車室内に供給する空気が流通する空気流通路と、
     冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を加熱するための放熱器と、
     前記車室外に設けられた室外熱交換器と、
     前記圧縮機の冷媒吸込側に接続されたアキュムレータと、
     制御装置とを備え、
     該制御装置により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させて前記車室内を暖房する車両用空気調和装置において、
     前記制御装置は、前記アキュムレータ内の液冷媒の量を検知し、該液冷媒の量に基づいて冷媒漏洩の発生を判定することを特徴とする車両用空気調和装置。
    A compressor for compressing the refrigerant;
    An air flow passage through which air to be supplied into the passenger compartment flows;
    A radiator for radiating the refrigerant to heat the air supplied from the air flow passage to the vehicle interior;
    An outdoor heat exchanger provided outside the vehicle compartment;
    An accumulator connected to the refrigerant suction side of the compressor;
    A control device,
    At least the refrigerant discharged from the compressor is radiated by the radiator by the control device, and the radiated refrigerant is decompressed and then absorbed by the outdoor heat exchanger to heat the vehicle interior. In the air conditioner,
    The vehicle air conditioner characterized in that the control device detects the amount of liquid refrigerant in the accumulator and determines the occurrence of refrigerant leakage based on the amount of liquid refrigerant.
  2.  前記制御装置は、前記室外熱交換器の温度TXOと、前記圧縮機の吸込冷媒温度Tsとの差TXO−Tsに基づき、差TXO−Tsが所定値より小さくなった場合、冷媒漏洩が発生していると判定することを特徴とする請求項1に記載の車両用空気調和装置。 When the difference TXO-Ts becomes smaller than a predetermined value based on the difference TXO-Ts between the temperature TXO of the outdoor heat exchanger and the suction refrigerant temperature Ts of the compressor, refrigerant leakage occurs. The vehicle air conditioner according to claim 1, wherein the air conditioner for a vehicle is determined.
  3.  前記制御装置は、前記圧縮機に吸い込まれる冷媒の過熱度SHに基づき、過熱度SHが所定値より大きくなった場合、冷媒漏洩が発生していると判定することを特徴とする請求項1に記載の車両用空気調和装置。 2. The control device according to claim 1, wherein the controller determines that refrigerant leakage has occurred when the superheat degree SH is greater than a predetermined value based on the superheat degree SH of the refrigerant sucked into the compressor. The vehicle air conditioning apparatus described.
  4.  前記制御装置は、前記冷媒漏洩が発生していると判定した場合、所定の報知動作を実行することを特徴とする請求項1乃至請求項3のうちの何れかに記載の車両用空気調和装置。 The vehicle air conditioner according to any one of claims 1 to 3, wherein the control device performs a predetermined notification operation when it is determined that the refrigerant leakage has occurred. .
PCT/JP2017/008636 2016-03-02 2017-02-24 Air conditioner for vehicles WO2017150735A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016039869A JP2017156019A (en) 2016-03-02 2016-03-02 Vehicle air conditioning device
JP2016-039869 2016-03-02

Publications (1)

Publication Number Publication Date
WO2017150735A1 true WO2017150735A1 (en) 2017-09-08

Family

ID=59744095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/008636 WO2017150735A1 (en) 2016-03-02 2017-02-24 Air conditioner for vehicles

Country Status (2)

Country Link
JP (1) JP2017156019A (en)
WO (1) WO2017150735A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6746742B1 (en) 2019-03-15 2020-08-26 三菱重工サーマルシステムズ株式会社 Vehicle air conditioning system and method for controlling vehicle air conditioning system
CN118575046A (en) * 2022-03-25 2024-08-30 日本开利株式会社 Refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088590A1 (en) * 2011-12-12 2013-06-20 三菱電機株式会社 Outdoor unit and air-conditioning device
WO2014203356A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
JP2015140961A (en) * 2014-01-28 2015-08-03 株式会社デンソー Refrigeration cycle device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088590A1 (en) * 2011-12-12 2013-06-20 三菱電機株式会社 Outdoor unit and air-conditioning device
WO2014203356A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Refrigeration cycle device
JP2015140961A (en) * 2014-01-28 2015-08-03 株式会社デンソー Refrigeration cycle device

Also Published As

Publication number Publication date
JP2017156019A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6125325B2 (en) Air conditioner for vehicles
JP6040099B2 (en) Air conditioner for vehicles
JP6767841B2 (en) Vehicle air conditioner
JP6241595B2 (en) Air conditioner for vehicles
WO2017146270A1 (en) Vehicle air conditioning device
WO2019039153A1 (en) Vehicle air-conditioning device
WO2020066719A1 (en) Vehicle air conditioner
JP6680600B2 (en) Vehicle air conditioner
WO2017208834A1 (en) Vehicle air conditioning device
JP2017154521A (en) Air conditioner for vehicle
JP2017190075A (en) Air conditioner for vehicle
CN109070693B (en) Air conditioner for vehicle
WO2018047599A1 (en) Heat pump cycle, vehicle air conditioning device comprising same, and refrigeration cycle
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2017150735A1 (en) Air conditioner for vehicles
JP2019073053A (en) Air-conditioner for vehicle
JP2017198404A (en) Accumulator and vehicular air conditioner including the same
WO2018079122A1 (en) Vehicular air-conditioning apparatus and manufacturing method therefor
JP2019018709A (en) Air conditioner for vehicle
WO2017146265A1 (en) Vehicle air conditioner
JP6754214B2 (en) Vehicle air conditioner
JP2021020572A (en) Vehicular air-conditioner
WO2019017151A1 (en) Vehicular air conditioning device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17760197

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17760197

Country of ref document: EP

Kind code of ref document: A1