WO2018034194A1 - 変性共役ジエン系重合体、ゴム組成物、及びタイヤ - Google Patents
変性共役ジエン系重合体、ゴム組成物、及びタイヤ Download PDFInfo
- Publication number
- WO2018034194A1 WO2018034194A1 PCT/JP2017/028653 JP2017028653W WO2018034194A1 WO 2018034194 A1 WO2018034194 A1 WO 2018034194A1 JP 2017028653 W JP2017028653 W JP 2017028653W WO 2018034194 A1 WO2018034194 A1 WO 2018034194A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conjugated diene
- diene polymer
- modified conjugated
- mass
- polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0016—Compositions of the tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0025—Compositions of the sidewalls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C1/0041—Compositions of the carcass layers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/22—Incorporating nitrogen atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/30—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
- C08C19/42—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
- C08C19/44—Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/30—Introducing nitrogen atoms or nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/42—Introducing metal atoms or metal-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L21/00—Compositions of unspecified rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L47/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
- B60C2001/005—Compositions of the bead portions, e.g. clinch or chafer rubber or cushion rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/06—Butadiene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a modified conjugated diene polymer, a rubber composition, and a tire.
- Examples of the material that meets the above-described requirements include a material containing rubber and a reinforcing filler such as carbon black or silica.
- a material containing silica when used, it is possible to improve the balance between low hysteresis loss and wet skid resistance.
- a functional group having affinity or reactivity with silica into the molecular end of a rubber having high mobility, the dispersibility of silica in the material is improved, and further, Attempts have been made to reduce the hysteresis loss by reducing the mobility of the rubber molecule end by bonding.
- Patent Document 1 proposes a modified diene rubber obtained by reacting a modifier having a glycidylamino group with a polymer active terminal.
- Patent Documents 2 to 4 propose a modified diene rubber obtained by reacting an alkoxysilane containing an amino group with the active terminal of a polymer, and a composition of this with a silica.
- Patent Documents 5 and 6 propose polymers in which a cyclic azasilacycle compound is reacted with a polymer active terminal to functionalize the polymer.
- Patent Document 7 proposes a diene rubber obtained by a coupling reaction between a polymer active terminal and a polyfunctional silane compound.
- silica-containing materials have a hydrophilic surface, they have a lower affinity with conjugated diene rubbers than carbon blacks with hydrophobic surfaces and dispersibility compared with carbon blacks. Has the disadvantage of being bad. Therefore, when a material containing silica is used, it is necessary to separately contain a silane coupling agent or the like in order to provide a bond between silica and rubber and improve dispersibility.
- a material in which a functional group having high reactivity with silica, such as an alkoxysilyl group is introduced into the molecular end of the rubber, the reaction with the silica particles proceeds during the kneading process, and the viscosity of the composition increases.
- the present invention is particularly suitable for modified conjugated diene heavy polymers having sufficient Mooney viscosity over time, excellent processability when used as a vulcanized product, and low hysteresis loss when used as a vulcanized product.
- the purpose is to provide coalescence.
- the inventors of the present invention contain a predetermined proportion of the coupling polymer, and the modification rate is equal to or higher than a predetermined value.
- the ratio (Mp 1 / Mp 2 ) of the peak top molecular weight (Mp 1 ) to the peak top (Mp 2 ) of the non-coupled polymer is not less than a predetermined value, and the contraction factor (g ′) is a predetermined value. It has been found that a certain modified conjugated diene polymer can solve the above-mentioned problems of the prior art, and the present invention has been completed. That is, the present invention is as follows.
- the ratio of the coupling polymer by gel permeation chromatography (GPC) is 30% by mass or more and less than 70% by mass with respect to the whole modified conjugated diene polymer, and the modification rate by adsorption GPC is the weight of the modified conjugated diene polymer. 30% by mass or more and less than 70% by mass of the whole coalescence,
- Mp 1 peak top molecular weight of the coupling polymer by GPC of the modified conjugated diene polymer
- Mp 2 peak top molecular weight of the non-coupling polymer
- [2] The modified conjugated diene polymer according to [1], containing a nitrogen atom and / or a silicon atom.
- [3] The modified conjugated diene polymer according to the above [1] or [2], wherein (Mp 1 / Mp 2 ) ⁇ 3.8.
- [4] The modified conjugated diene polymer according to any one of [1] to [3], wherein the contraction factor (g ′) is less than 0.50.
- [5] The modified conjugated diene polymer according to any one of [2] to [4], wherein the nitrogen atom and the silicon atom are a nitrogen atom and a silicon atom derived from a coupling agent.
- [6] The modified conjugated diene polymer according to any one of [1] to [5], which has a branch and has a branching degree of 6 or more.
- [7] The modified conjugated diene polymer according to any one of [1] to [6], which has a branch and has a branching degree of 8 or more.
- [8] The modified conjugated diene polymer according to any one of [1] to [7], wherein the molecular weight distribution obtained by GPC is composed of two peaks.
- the modified conjugated diene-based heavy polymer having sufficient Mooney viscosity over time, excellent processability when used as a vulcanized product, and excellent low hysteresis loss when used as a vulcanized product. Coalescence is obtained.
- this embodiment for implementing this invention is demonstrated in detail, this invention is not limited to the following description, Various within the range of the summary. It can be implemented with deformation.
- the modified conjugated diene polymer of this embodiment is The ratio of the coupling polymer by gel permeation chromatography (GPC) is 30% by mass or more and less than 70% by mass with respect to the whole modified conjugated diene polymer, and the modification rate by adsorption GPC is the weight of the modified conjugated diene polymer.
- GPC gel permeation chromatography
- the modified conjugated diene polymer of the present embodiment has the above configuration, the Mooney viscosity has sufficient temporal stability, excellent workability and wear resistance are obtained, and a vulcanized product is obtained. In addition, it has excellent low hysteresis loss.
- the modified conjugated diene polymer of the present embodiment preferably has a coupling residue and a conjugated diene polymer chain bonded to the coupling residue.
- the “conjugated diene polymer chain” in the modified conjugated diene polymer of the present embodiment is a structural unit of a modified conjugated diene polymer bonded to a coupling residue. It is a structural unit derived from a conjugated diene polymer produced by reacting a coalescence with a coupling agent.
- the “coupling residue” in the modified conjugated diene polymer of the present embodiment is a constituent unit of the modified conjugated diene polymer bonded to the conjugated diene polymer chain. It is a structural unit derived from a coupling agent produced by reacting a polymer and a coupling agent.
- the ratio of the coupling polymer by GPC (gel permeation chromatography) (hereinafter also referred to as “coupling ratio”) is the total of the modified conjugated diene polymer. 30% by mass or more and less than 70% by mass.
- the coupling rate of the modified conjugated diene polymer of this embodiment can be determined as follows. First, using the molecular weight distribution curve by GPC of the modified conjugated diene polymer of the present embodiment, a conjugated diene polymer peak (hereinafter referred to as “non-coupling”) which is not reacted with a coupling agent and is the lowest molecular weight component. "Polymer peak”)) and “coupled polymer peak” which is a higher molecular weight component in which the conjugated diene polymer chain is bonded via a coupling residue. In the molecular weight distribution curve, a peak having a peak area of less than 5% of the whole is not regarded as a peak. It is considered that there is. The ratio of the “coupling polymer peak” relative to the total mass expressed as a percentage is the coupling rate (mass%).
- the coupling rate of the modified conjugated diene polymer of the present embodiment is preferably 40 to 70% by mass, more preferably 50 to 70% by mass. When the coupling rate is 30% by mass or more, a modified conjugated diene polymer having low hysteresis loss that is excellent when a vulcanized product is obtained can be obtained. If the coupling rate is less than 70% by mass, a modified conjugated diene polymer having sufficient Mooney viscosity over time can be obtained. GPC can be measured by the method described in the examples described later.
- the coupling rate of the modified conjugated diene polymer can be controlled by adjusting the number of functional groups, the amount added, etc. of the coupling agent when the modified conjugated diene polymer of the present embodiment is produced.
- the modification rate by adsorption GPC (hereinafter also simply referred to as “modification rate”) is 30% by mass or more and less than 70% by mass of the entire modified conjugated diene polymer. .
- the modification rate by adsorption GPC can be measured as follows. First, adsorption GPC using a column to which the modified conjugated diene polymer is adsorbed and non-adsorption GPC using a column to which the modified conjugated diene polymer is not adsorbed are measured.
- the modification rate (mass%) represents the mass of the adsorbed polymer as a percentage of the total mass with the difference in GPC.
- the modification rate by adsorption GPC can be determined by the method described in Examples described later.
- the modification rate of the modified conjugated diene polymer of the present embodiment is preferably 40 to 70% by mass, more preferably 50 to 70% by mass.
- a silica column can be used as the adsorption GPC.
- a polystyrene column can be used as the non-adsorbing GPC.
- the modification rate by adsorptive GPC means measuring the content of the polymer having an amine structure or a basic nitrogen atom.
- the modification rate is 30% by mass or more, a modified conjugated diene copolymer having excellent low hysteresis loss when obtained as a vulcanized product can be obtained.
- the modification rate is less than 70% by mass, the Mooney viscosity of the modified conjugated diene polymer exhibits sufficient stability over time.
- the modification rate of the modified conjugated diene polymer is determined by the amount of coupling agent added, the reaction temperature, the reaction time, etc. This can be controlled by adjusting the reaction conditions.
- the modified conjugated diene polymer of this embodiment has a nitrogen atom and / or a silicon atom. Since the modified conjugated diene polymer of the present embodiment has a nitrogen atom and / or a silicon atom, it has excellent processability when used as a vulcanized product, and has low hysteresis loss when used as a vulcanized product. The balance between the low hysteresis loss and wet skid resistance and the wear resistance are excellent.
- a silicon atom can be introduced into a modified conjugated diene polymer as a coupling agent residue, for example, by reacting a conjugated diene polymer with a coupling agent having a silicon atom.
- the silicon atom is derived from the coupling agent.
- the presence of silicon atoms in the modified conjugated diene polymer can be confirmed by a metal analysis method described in the examples described later.
- the nitrogen atom is, for example, a compound having a nitrogen atom as a polymerization initiator for a conjugated diene polymer to be described later, or by reacting a conjugated diene polymer with a coupling agent having a nitrogen atom. It can be introduced into the modified conjugated diene polymer as a residue. That is, in this case, the nitrogen atom is derived from the coupling agent.
- the presence of a nitrogen atom in the modified conjugated diene polymer can be confirmed by a method for detecting the presence or absence of adsorption to a specific column described in the examples described later.
- the modified conjugated diene-based polymer of the present embodiment is from the viewpoint of workability when making a vulcanized product, low hysteresis loss when using a vulcanized product, and balance between the low hysteresis loss and wet skid resistance.
- it has a branched structure having 6 or more branches, preferably has a branched structure having 7 or more branches, and preferably has a branched structure having 8 or more branches.
- the number of branched structures in the modified conjugated diene polymer of the present embodiment can be controlled by adjusting the stoichiometric ratio between the active terminal of the conjugated diene polymer and the amount of coupling agent added.
- the modified conjugated diene polymer of the present embodiment preferably has a Mooney viscosity ML 1 + 4 (100 ° C.) measured at 100 ° C. of 30 to 150.
- Mooney viscosity ML 1 + 4 100 degreeC becomes like this.
- they are 40 or more and 120 or less, More preferably, they are 45 or more and 100 or less.
- the Mooney viscosity is measured using a non-oil-extended modified conjugated diene polymer.
- the Mooney viscosity can be measured by the method described in Examples described later.
- the Mooney viscosity of the modified conjugated diene polymer of the present embodiment can be controlled by adjusting the amount of polymerization initiator and monomer, polymerization temperature and polymerization time in the polymerization step. Moreover, in the modification
- the modified conjugated diene polymer of the present embodiment preferably has a weight average molecular weight (Mw) of 200,000 to 2,000,000.
- the modified conjugated diene polymer of the present embodiment is a modified conjugated diene polymer having a weight average molecular weight of 2 million or more with respect to the total amount of the modified conjugated diene polymer from the viewpoint of workability and wear resistance. Is preferably less than 0.3% by mass, more preferably 0.2% by mass or less, and even more preferably 0.15% by mass or less.
- a weight average molecular weight is the said range, there exists a tendency which is excellent in the workability at the time of setting it as a vulcanizate.
- the weight average molecular weight of the modified conjugated diene polymer of the present embodiment is more preferably 400,000 or more and 1.8 million or less, still more preferably 400,000 or more and 1,000,000 or less, and even more preferably 500,000 or more and 1,000,000 or less.
- the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.15 to 2.30. 1.30 to 2.00 is more preferable, and 1.40 to 1.80 is even more preferable.
- a modified conjugated diene polymer having a molecular weight distribution in this range tends to be excellent in low hysteresis loss, wear resistance, and processability when used as a vulcanized product.
- the modified conjugated diene-based polymer of the present embodiment preferably has two molecular weight peaks in GPC from the viewpoint of low hysteresis loss, wear resistance, and workability.
- the molecular weight distribution of the peak is preferably from 1.0 to 1.3, more preferably from 1.0 to 1.2, and even more preferably from 1.0 to 1.1.
- the molecular weight peak on the polymer side is the molecular weight peak of the coupled polymer.
- the method of controlling to the above range is not limited, for example, the number of molecular weight peaks in GPC can be controlled to two or more by polymerizing in a batch method described later, and the molecular weight peak on the high molecular weight side.
- the molecular weight distribution can be controlled within the above range.
- the “molecular weight” is a standard polystyrene equivalent molecular weight obtained by GPC (gel permeation chromatography).
- the number average molecular weight, the weight average molecular weight, the molecular weight distribution, and the content of specific high molecular weight components for the modified conjugated diene polymer and the conjugated diene polymer described later can be measured by the method described in the examples described later. it can.
- the modified conjugated diene polymer of the present embodiment is preferably one in which a non-coupling polymer peak and a single coupling polymer peak are detected in a molecular weight curve by GPC.
- GPC molecular weight curve
- the (Mp 1 / Mp 2 ) is more preferably 4.0 or more.
- Mp 2 is preferably 100,000 or more and 800,000, more preferably 120,000 or more and 700,000 or less, and further preferably 150,000 or more and 500,000 or less. Further, Mp 1 is preferably 200,000 to 1,500,000, more preferably 300,000 to 1,300,000, and further preferably 400,000 to 1,200,000. Mp 1 and Mp 2 can be obtained by the method described in Examples described later. In addition, by using a coupling agent having a functional group of 6 functional groups or more, and adjusting the stoichiometric amount of the active terminal of the conjugated diene polymer and the addition amount of the coupling agent, the above (Mp 1 / The value of Mp 2 ) can be controlled.
- the modified conjugated diene polymer of this embodiment has a shrinkage factor (g ′) of less than 0.60.
- a polymer having a branch tends to have a smaller molecular size when compared with a linear polymer having the same absolute molecular weight.
- the contraction factor (g ′) of the present embodiment is an index of the ratio of the size occupied by the molecule to the linear polymer having the same absolute molecular weight. That is, as the degree of branching of the polymer increases, the shrinkage factor (g ′) tends to decrease.
- intrinsic viscosity is used as an index of molecular size
- the shrinkage factor (g ′) at each absolute molecular weight of the modified conjugated diene polymer is calculated. From the peak top molecular weight of the peak derived from the coupling polymer, the peak height decreases as the molecular weight increases. The average value of the shrinkage factor (g ′) corresponding to the molecular weight until the height of the peak top molecular weight is less than 10% is calculated and used as the shrinkage factor (g ′) of the modified conjugated diene polymer.
- the “branch” is formed by bonding one polymer directly or indirectly with another polymer.
- the “degree of branching” is the number of polymers that are directly or indirectly bonded to one branch. For example, when five conjugated diene polymer chains are bonded to each other indirectly via a coupling agent residue, the degree of branching is 5.
- the modified conjugated diene polymer of this embodiment has a shrinkage factor (g ′) of less than 0.60, preferably less than 0.50, more preferably 0.45 or less, and even more preferably 0. .42 or less.
- the lower limit of the contraction factor (g ′) is not particularly limited and may be not more than the detection limit value, but is preferably 0.20 or more, more preferably 0.22 or more, and further preferably 0. .25 or more.
- Modified conjugated diene polymers having a shrinkage factor (g ′) in this range are excellent in processability when used as a vulcanized product, and tend to be excellent in low hysteresis loss and wear resistance when used as a vulcanized product. It is in.
- the contraction factor (g ′) tends to depend on the degree of branching, for example, the contraction factor (g ′) can be controlled using the degree of branching as an index. Specifically, when a modified conjugated diene polymer having a branching degree of 6 is used, the shrinkage factor (g ′) tends to be 0.55 or more and less than 0.60. When a modified conjugated diene polymer is used, the shrinkage factor (g ′) tends to be 0.38 or more and 0.44 or less.
- the contraction factor (g ′) can be measured by the method described in Examples described later.
- the modified conjugated diene polymer of the present embodiment preferably has a branch and has a branching degree of 6 or more.
- the modified conjugated diene polymer has one or more coupling residues and a conjugated diene polymer chain bonded to the coupling residue, and the branch is one of the cups. More preferably, it contains a branch in which 6 or more of the conjugated diene polymer chain is bonded to the ring residue.
- the structure of the modified conjugated diene polymer so that the degree of branching is 6 or more, and the branch includes a branch in which 6 or more conjugated diene polymer chains are bonded to one coupling residue.
- the contraction factor (g ′) can be made less than 0.60 more reliably.
- the modified conjugated diene polymer of the present embodiment has a branch, and the branching degree is more preferably 7 or more, and the branching degree is more preferably 8 or more.
- the upper limit of the degree of branching is not particularly limited, but is preferably 18 or less.
- the modified conjugated diene polymer has one or more coupling residues and a conjugated diene polymer chain bonded to the coupling residue, and the branch is one of the cups. More preferably, it contains a branch in which 7 or more of the conjugated diene polymer chain is bonded to the ring residue, and 8 or more of the conjugated diene polymer chain to 1 of the coupling residue. Even more preferably, it comprises a branch to which are attached.
- the number of conjugated diene polymer chains bonded to one coupling residue can be confirmed from the contraction factor (g ′), the degree of branching is 8 or more, and By specifying the structure of the modified conjugated diene polymer so that it contains a branch in which 8 or more conjugated diene polymer chains are bonded to one coupling residue, a shrinkage factor (g ′) Can be made 0.44 or less. Furthermore, the shrinkage factor (g ′) can be controlled to be less than 0.50 by using a coupling agent having a specific structure and controlling the addition amount within a specific range.
- the modified conjugated diene polymer of the present embodiment preferably has a silicon atom, and at least one of the silicon atoms is a silicon atom constituting an alkoxysilyl group or silanol group having 1 to 20 carbon atoms. It is preferable.
- the alkoxysilyl group or silanol group reacts with the silica to improve the dispersibility of the silica, resulting in a vulcanized product.
- the silicon atom is preferably derived from a coupling residue in the modified conjugated diene polymer.
- the coupling agent used in the coupling reaction step is a compound having a silicon atom, and the silicon atom is an alkoxysilyl group having 1 to 20 carbon atoms, A compound that forms a halogenated silyl group or an azasilyl group is preferred.
- the nitrogen-silicon bond is easily broken by hydrolysis. Therefore, even if the structure of the coupling agent is a structure in which the polymer has a branched structure, the reaction between the polymer and the step of removing the solvent by steam stripping or the like breaks the bond between nitrogen and silicon. Thus, the branched structure is lost.
- the ratio (Mp 1 / Mp 2 ) of the peak top molecular weight (Mp 1 ) of the polymer of this embodiment to the peak top (Mp 2 ) of the non-coupled polymer is set to a predetermined value or more, and the shrinkage factor (g ') Cannot be set to a predetermined value, so it is not suitable as a coupling agent.
- the coupling residue is more preferably a compound having an amine structure or a basic nitrogen atom.
- the modified conjugated diene polymer of the present embodiment preferably has a coupling residue and a conjugated diene polymer chain bonded to the coupling residue.
- the residue preferably has a silicon atom
- the conjugated diene polymer chain is preferably bonded to the silicon atom of the coupling residue.
- the conjugated diene polymer chain and an alkoxy group or a hydroxyl group are bonded to one silicon atom.
- at least one of the silicon atoms is bonded to the conjugated diene polymer chain and an alkoxysilyl group or It may be a silicon atom constituting a silanol group.
- the modified conjugated diene polymer of the present embodiment or the conjugated diene polymer before modification described later is further hydrogenated in an inert solvent to convert all or part of the double bonds into saturated hydrocarbons. be able to. In that case, heat resistance and weather resistance are improved, deterioration of the product when processed at high temperature can be prevented, and exercise performance as rubber tends to be improved. As a result, it exhibits even better performance in various applications such as automotive applications.
- the hydrogenation rate of the unsaturated double bond based on the conjugated diene compound can be arbitrarily selected according to the purpose and is not particularly limited. When used as a vulcanizate, it is preferable that the double bond of the conjugated diene part partially remains.
- the hydrogenation rate of the conjugated diene part in the conjugated diene polymer is preferably 3.0% or more and 70% or less, more preferably 5.0% or more and 65% or less. It is further more preferable that it is 60% or more. In particular, heat resistance and exercise performance tend to be improved by selectively hydrogenating vinyl groups.
- the hydrogenation rate can be determined by a nuclear magnetic resonance apparatus (NMR).
- the modified conjugated diene copolymer of the present embodiment can be an oil-extended polymer to which an extending oil is added.
- the modified conjugated diene copolymer of the present embodiment is non-oil-extended, oil-extended, processability when used as a rubber vulcanized product, and wear resistance when used as a vulcanized product.
- the Mooney viscosity ML 1 + 4 measured at 100 ° C. is preferably 30 or more and 150 or less, more preferably 20 or more and 100 or less, and further preferably 30 or more and 80 or less.
- the Mooney viscosity can be measured by the method described in Examples described later.
- the modified conjugated diene polymer of this embodiment preferably has a structure represented by the following general formula (I).
- D 1 represents a conjugated diene polymer chain
- R 1 to R 3 each independently represents an alkylene group having 1 to 20 carbon atoms
- R 4 and R 7 each independently Represents an alkyl group having 1 to 20 carbon atoms
- R 5 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
- R 6 and R 10 are each independently Represents an alkylene group having 1 to 20 carbon atoms
- R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.
- m and x represent an integer of 1 to 3, x ⁇ m, p represents 1 or 2, y represents an integer of 1 to 3, y ⁇ (p + 1), z is 1 Or represents the integer of 2.
- R 1 to R 11 , m, p, x, y, and z are each independent and may be the same or different.
- i represents an integer of 0 to 6
- j represents an integer of 0 to 6
- k represents an integer of 0 to 6
- (i + j + k) represents an integer of 3 to 10
- ((x ⁇ i) + (Y ⁇ j) + (z ⁇ k)) is an integer of 6 to 30.
- A has a hydrocarbon group having 1 to 20 carbon atoms or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and an active hydrogen. It represents an organic group that does not have.
- the hydrocarbon group having 1 to 20 carbon atoms represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
- the organic group having no active hydrogen is an organic group that inactivates the active terminal of the conjugated diene polymer.
- organic groups having no active hydrogen include active hydrogens of a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH).
- An organic group having no functional group examples include a tertiary amino group and a siloxane group.
- R 1 to R 3 are each independently more preferably a single bond or an alkylene group having 1 to 5 carbon atoms, and more preferably a single bond or an alkylene group having 1 to 3 carbon atoms.
- R 5 , R 8 , and R 9 are each independently preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Even more preferably, a hydrogen atom, methyl or ethyl.
- a in the general formula (I) is any one of the following general formulas (II) to (V): It is preferable that it represents.
- B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When a plurality of B 1 are present, each is independent and may be the same or different. B 1 is preferably a hydrocarbon group having 1 to 8 carbon atoms. a is preferably an integer of 1 to 4, more preferably an integer of 2 to 4, and still more preferably 2.
- B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- B 3 represents an alkyl group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10 To express.
- B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When a plurality of B 4 are present, each is independent and may be the same or different.
- B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10.
- a represents an integer of 1 to 10.
- the effect of the present embodiment tends to be superior to the workability when the vulcanized product is obtained.
- the balance between low hysteresis loss and wet skid resistance and wear resistance tend to be superior.
- it tends to be easily available for practical use.
- A represents formula (II) or (III), and k is more preferably 0.
- A represents formula (II) or (III), k is 0, and in formula (II) or (III), a is an integer of 2 to 10 preferable.
- A represents formula (II), j is 0, k is 0, and in formula (II), a is more preferably an integer of 2 to 4.
- A represents formula (II), j is 0, k is 0, and in formula (II), a is more preferably 2.
- the method for producing a modified conjugated diene polymer according to the present embodiment includes an organic monolithium compound as a polymerization initiator, polymerizing at least a conjugated diene compound to obtain a conjugated diene polymer, and the conjugated diene polymer polymer.
- the ratio of the coupling polymer by GPC is 30% by mass or more and less than 70% by mass of the entire modified conjugated diene polymer, and by adsorption GPC.
- the modification ratio is expressed the modified conjugated a diene less than the entire polymer of 30 wt% to 70 wt%, a peak top molecular weight of the coupling polymer by GPC of the modified conjugated diene polymer in Mp 1, uncoupled Producing a modified conjugated diene-based polymer having (Mp 1 / Mp 2 ) ⁇ 3.4 and a shrinkage factor (g ′) of less than 0.60 when the peak top molecular weight of the polymer is expressed in Mp 2 Can do.
- the coupling ratio and the modification ratio can be controlled by setting the number of moles of the functional group of the coupling agent within a specific range. By using a coupling agent having a functional group of 6 or more functions, Mp 1 / Mp 2.
- the contraction factor (g ′) can be controlled.
- an organic monolithium compound is used as a polymerization initiator and at least a conjugated diene compound is polymerized to obtain a conjugated diene polymer.
- the polymerization step is preferably polymerization by a growth reaction by living anion polymerization reaction, whereby a conjugated diene polymer having an active end can be obtained, and a modified diene polymer having a high modification rate tends to be obtained. is there.
- the conjugated diene polymer produced in the ⁇ polymerization step> in the method for producing a modified conjugated diene polymer of the present embodiment is obtained by polymerizing at least a conjugated diene compound, and optionally substituted with a conjugated diene compound and vinyl. It can be obtained by copolymerizing both aromatic compounds.
- the conjugated diene compound is not particularly limited as long as it is a polymerizable monomer.
- a conjugated diene compound containing 4 to 12 carbon atoms per molecule is preferable, and more preferably containing 4 to 8 carbon atoms. It is a conjugated diene compound.
- Examples of such a conjugated diene compound include, but are not limited to, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl -1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene.
- 1,3-butadiene and isoprene are preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
- the vinyl-substituted aromatic compound is not particularly limited as long as it is a monomer copolymerizable with a conjugated diene compound, but a monovinyl aromatic compound is preferable.
- the monovinyl aromatic compound include, but are not limited to, styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene, and diphenylethylene.
- styrene is preferable from the viewpoint of industrial availability. These may be used alone or in combination of two or more.
- the conjugated diene compound and / or the vinyl-substituted aromatic compound contains allenes, acetylenes or the like as impurities, the reaction in the reaction step described later may be hindered. Therefore, the total content concentration (mass) of these impurities is preferably 200 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less.
- allenes include propadiene and 1,2-butadiene.
- acetylenes include ethyl acetylene and vinyl acetylene.
- the conjugated diene polymer may be a random copolymer or a block copolymer.
- the random copolymer is not limited to the following, but for example, a random copolymer comprising two or more conjugated diene compounds such as a butadiene-isoprene random copolymer, a butadiene-styrene random copolymer, and an isoprene-styrene. And a random copolymer comprising a conjugated diene of a butadiene-isoprene-styrene random copolymer and a vinyl-substituted aromatic compound.
- the composition distribution of each monomer in the copolymer chain is not particularly limited.
- a completely random copolymer close to a statistical random composition a taper (gradient) random in which the composition is distributed in a tapered shape.
- a copolymer is mentioned.
- the bonding mode of the conjugated diene that is, the composition of 1,4-bonds, 1,2-bonds, etc. may be uniform or distributed.
- the block copolymer is not limited to the following, but for example, a 2 type block copolymer (diblock) consisting of 2 blocks, a 3 type block copolymer (triblock) consisting of 3 blocks, 4 4 type block copolymer (tetrablock) which consists of a piece is mentioned.
- the polymer constituting one block may be a polymer composed of one type of monomer or a copolymer composed of two or more types of monomers.
- a polymer block composed of 1,3-butadiene is represented by “B”
- a copolymer of 1,3-butadiene and isoprene is represented by “B / I”
- a copolymer of 1,3-butadiene and styrene is not limited to the following, but for example, a 2 type block copolymer (diblock) consisting of 2 blocks, a 3 type block copolymer (triblock) consisting of 3 blocks, 4 4 type block copolymer (
- each block need not be clearly distinguished. Further, when one polymer block is a copolymer composed of two types of monomers A and B, A and B in the block may be distributed uniformly or in a tapered shape. Good.
- the organic monolithium compound include, but are not limited to, low molecular compounds and solubilized oligomeric organic monolithium compounds.
- the organic monolithium compound include a compound having a carbon-lithium bond, a compound having a nitrogen-lithium bond, and a compound having a tin-lithium bond in the bonding mode between the organic group and the lithium.
- the amount of the organic monolithium compound used as a polymerization initiator is preferably determined by the molecular weight of the target conjugated diene polymer or modified conjugated diene polymer.
- the amount of the monomer such as the conjugated diene compound used relative to the amount of the polymerization initiator is related to the degree of polymerization, that is, tends to be related to the number average molecular weight and the weight average molecular weight. Therefore, in order to increase the molecular weight, it is preferable to adjust in the direction of decreasing the polymerization initiator, and in order to decrease the molecular weight, it is preferable to adjust in the direction of increasing the amount of polymerization initiator.
- the organic monolithium compound is preferably an alkyllithium compound having a substituted amino group or a dialkylaminolithium.
- a conjugated diene polymer having a nitrogen atom that is a component of an amino group at the polymerization initiation terminal is obtained.
- the substituted amino group is an amino group having no active hydrogen or having a structure in which active hydrogen is protected.
- the alkyl lithium compound having an amino group having no active hydrogen include, but are not limited to, 3-dimethylaminopropyl lithium, 3-diethylaminopropyl lithium, 4- (methylpropylamino) butyl lithium, 4-hexamethyleneiminobutyllithium is mentioned.
- the alkyllithium compound having an amino group having a structure in which active hydrogen is protected include, but are not limited to, 3-bistrimethylsilylaminopropyllithium and 4-trimethylsilylmethylaminobutyllithium.
- dialkylamino lithium examples include, but are not limited to, lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium dibutylamide, lithium di-n-hexylamide, lithium diheptylamide, lithium diisopropylamide, lithium Dioctylamide, lithium-di-2-ethylhexylamide, lithium didecylamide, lithium ethylpropylamide, lithium ethylbutyramide, lithium ethylbenzylamide, lithium methylphenethylamide, lithium hexamethyleneimide, lithium pyrrolidide, lithium piperidy , Lithium heptamethyleneimide, lithium morpholide, 1-lithioazacyclooctane, 6-lithio-1,3,3-trimethyl-6-aza Cyclo [3.2.1] octane, and 1-lithio-1,2,3,6-tetrahydropyridine.
- organic monolithium compounds having a substituted amino group are obtained by reacting a small amount of a polymerizable monomer, for example, a monomer such as 1,3-butadiene, isoprene, or styrene, solubilized oligomeric organic monolithium. It can also be used as a compound.
- a polymerizable monomer for example, a monomer such as 1,3-butadiene, isoprene, or styrene. It can also be used as a compound.
- the organic monolithium compound is preferably an alkyllithium compound.
- a conjugated diene polymer having an alkyl group at the polymerization initiation terminal is obtained.
- the alkyl lithium compound include, but are not limited to, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, n-hexyl lithium, benzyl lithium, phenyl lithium, and stilbene lithium.
- n-butyllithium and sec-butyllithium are preferable from the viewpoints of industrial availability and ease of control of the polymerization reaction.
- organic monolithium compounds may be used individually by 1 type, and may use 2 or more types together. Moreover, you may use together with another organometallic compound.
- the other organometallic compounds include alkaline earth metal compounds, other alkali metal compounds, and other organometallic compounds.
- alkaline earth metal compounds include, but are not limited to, organic magnesium compounds, organic calcium compounds, and organic strontium compounds. Also included are alkaline earth metal alkoxides, sulfonates, carbonates and amide compounds.
- examples of the organic magnesium compound include dibutyl magnesium and ethyl butyl magnesium.
- other organometallic compounds include organoaluminum compounds.
- the polymerization reaction mode in the polymerization step is not limited to the following, but includes, for example, a batch type (also referred to as “batch type”) and a continuous polymerization reaction mode, and a batch type is more preferable.
- a batch reactor for example, a tank type equipped with a stirrer is used.
- the monomer, inert solvent, and polymerization initiator are initially fed to the reactor, and if necessary the monomer is added continuously or intermittently during the polymerization, A polymer solution containing the polymer is obtained, and the polymer solution is discharged after completion of the polymerization.
- a plug flow reactor can be preferably used.
- a monomer, an inert solvent, and a polymerization initiator are continuously fed to a reactor, and a polymer solution containing the polymer is obtained in the reactor. The coalescence solution is drained.
- the polymerization step is preferably performed in an inert solvent.
- the inert solvent include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons.
- hydrocarbon solvents include, but are not limited to, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic carbons such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane.
- Hydrogen Hydrocarbons composed of aromatic hydrocarbons such as benzene, toluene and xylene and mixtures thereof.
- a conjugated diene polymer having a high concentration of active terminals tends to be obtained, and modification with a high modification rate
- a conjugated diene polymer is preferred because it tends to be obtained.
- a polar compound may be added.
- the aromatic vinyl compound can be randomly copolymerized with the conjugated diene compound, and can also be used as a vinylating agent for controlling the microstructure of the conjugated diene moiety. It is also effective in promoting polymerization initiation reaction and growth reaction.
- polar compounds include, but are not limited to, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, 2,2-bis (2 Ethers such as -oxolanyl) propane; tertiary amine compounds such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; potassium-tert-amylate, potassium-tert-butyrate, sodium-tert- Alkali metal alkoxide compounds such as butyrate and sodium amylate; phosphine compounds such as triphenylphosphine It is below. These polar compounds may be used alone or in combination of two or more.
- the amount of the polar compound used is not particularly limited and can be selected according to the purpose, but is preferably 0.01 mol or more and 100 mol or less with respect to 1 mol of the polymerization initiator.
- An appropriate amount of such a polar compound (vinylating agent) can be used as a regulator of the microstructure of the polymer conjugated diene moiety depending on the desired vinyl bond amount.
- Many polar compounds simultaneously have an effective randomizing effect in the copolymerization of conjugated diene compounds and aromatic vinyl compounds, and tend to be used to adjust the distribution of aromatic vinyl compounds and adjust the amount of styrene block It is in.
- the total amount of styrene and a part of 1,3-butadiene may be used together.
- a method in which a polymerization reaction is started and the remaining 1,3-butadiene is intermittently added during the copolymerization reaction may be used.
- the polymerization temperature is preferably a temperature at which living anion polymerization proceeds, and is preferably 0 ° C. or higher and 120 ° C. or lower from the viewpoint of productivity. By being in such a range, it exists in the tendency which can fully ensure the reaction amount of the coupling agent with respect to the active terminal after completion
- the conjugated diene polymer obtained before the ⁇ reaction step> described later in the polymerization step preferably has a Mooney viscosity measured at 100 ° C. of 10 to 60, more preferably 15 to 50, and more More preferably, it is 20 or more and 45 or less.
- Mooney viscosity of the conjugated diene polymer is in the above range, the modified conjugated diene polymer of this embodiment tends to be excellent in processability, low hysteresis loss, and wear resistance.
- the amount of bonded conjugated diene in the modified conjugated diene polymer of the present embodiment or the conjugated diene polymer before ⁇ reaction step> described later is not particularly limited, but may be 40% by mass or more and 100% by mass or less. Preferably, it is 55 mass% or more and 80 mass% or less. Further, the amount of bonded aromatic vinyl in the modified conjugated diene polymer of the present embodiment or the conjugated diene polymer before ⁇ reaction step> described later is not particularly limited, but is 0% by mass or more and 60% by mass or less. It is preferably 20% by mass or more and 45% by mass or less.
- the amount of bound conjugated diene and bound aromatic vinyl is in the above range, when a vulcanized product is obtained, the low hysteresis loss property, and the balance between the low hysteresis loss property and wet skid resistance, the wear resistance, It tends to be better.
- the amount of bonded aromatic vinyl can be measured by ultraviolet absorption of a phenyl group, and the amount of bonded conjugated diene can also be obtained from this. Specifically, it can measure according to the method as described in the Example mentioned later.
- the vinyl bond amount in the conjugated diene bond unit is not particularly limited, but is 10 mol% or more and 75 mol% or less. It is preferable that it is 20 mol% or more and 65 mol% or less.
- the vinyl bond amount is in the above range, when the vulcanized product is used, the low hysteresis loss property, the balance between the low hysteresis loss property and the wet skid resistance, and the wear resistance tend to be more excellent.
- the branched modified diene polymer is a copolymer of butadiene and styrene, it is determined by the method of Hampton (RR Hampton, Analytical Chemistry, 21, 923 (1949)) in the butadiene bond unit.
- the vinyl bond amount (1,2-bond amount) can be determined. Specifically, it can measure by the method as described in the Example mentioned later.
- the amount of each bond in the modified conjugated diene polymer is in the above range, and the glass transition temperature (Tg) of the modified conjugated diene polymer is When the temperature is in the range of ⁇ 45 ° C. or higher and ⁇ 15 ° C. or lower, there is a tendency that a vulcanizate with a further excellent hysteresis loss and a balance between the low hysteresis loss and the wet skid resistance can be obtained.
- the DSC curve is recorded while the temperature is raised in a predetermined temperature range, and the peak top (Inflection point) of the DSC differential curve is set as the glass transition temperature. Specifically, it can measure by the method as described in the Example mentioned later.
- the modified conjugated diene polymer of the present embodiment is a conjugated diene-aromatic vinyl copolymer
- the number of blocks in which 30 or more aromatic vinyl units are linked may be small or not. preferable.
- the copolymer is a butadiene-styrene copolymer
- the Kolthoff method method described in IM KOLTHOFF, et al., J. Polym. Sci. 1, 429 (1946)
- a block in which 30 or more aromatic vinyl units are chained is preferable with respect to the total amount of the modified conjugated diene copolymer. Is 5.0% by mass or less, more preferably 3.0% by mass or less.
- the conjugated diene polymer before the ⁇ reaction step> described later of the modified conjugated diene polymer of the present embodiment is a conjugated diene-aromatic vinyl copolymer
- the copolymer is a butadiene-styrene copolymer
- the copolymer is decomposed by an ozonolysis method known as Tanaka et al. (Polymer, 22, 1721 (1981)).
- the amount of isolated styrene is 40% by mass or more with respect to the total amount of styrene bonded, and the chain styrene structure having 8 or more styrene chains is 5% by mass or less. preferable.
- the vulcanized rubber obtained tends to have excellent performance with particularly low hysteresis loss.
- the molecular weight of the modified conjugated diene polymer of this embodiment can be controlled, for example, by adjusting the amount of the organic monolithium compound used as a polymerization initiator as described above.
- the molecular weight distribution of the modified conjugated diene polymer of this embodiment can be effectively controlled by adjusting the residence time distribution in a batch or continuous polymerization mode. For example, when the residence time distribution is reduced, that is, when the growth reaction time distribution is narrowed, the molecular weight distribution tends to be reduced.
- the polymerization initiator is preferably added at the same time as the monomer or within a short time after the addition of the monomer, and the polymerization start temperature is set at, for example, 30 ° C. or higher so that the polymerization start rate is increased. More preferably, a method of starting the polymerization at 40 ° C. or higher is preferable. In order to increase the polymerization initiation rate, a method of adding a polar compound to the reaction system is preferred.
- the manufacturing method of the modified conjugated diene polymer of this embodiment implements the reaction process with which the conjugated diene polymer obtained at the said polymerization process and a predetermined coupling agent are made to react after the polymerization process mentioned above.
- the reaction step preferably includes a reaction step of reacting the conjugated diene polymer with a coupling agent having a functional group having 6 or more functional groups, and reacting a coupling agent having a functional group having 8 or more functional groups. It is more preferable to have a reaction step.
- the addition amount of the coupling agent is such that the number of moles of the functional group of the coupling agent is 0.3 mol or more and less than 0.7 mol with respect to 1 mol of the organic monolithium compound used in the polymerization step. It is preferable to react.
- the coupling rate and the modification rate can be controlled within the range of the present invention, and a coupling agent having 6 or more functional groups is used as described above.
- (Mp 1 / Mp 2 ) ⁇ 3.4 and the contraction factor (g ′) can be controlled to be less than 0.60.
- the amount of coupling agent added is 1 mol of the organic monolithium compound used in the polymerization step.
- the reaction is preferably performed so that the number of moles of the group is 0.3 mol or more and less than 0.7 mol. This is a small amount as the addition amount of the coupling agent in the modification step of the modified conjugated diene polymer.
- an alkoxy compound is used as the coupling agent, usually, the Mooney viscosity of the modified conjugated diene polymer may change with time due to self-condensation between alkoxy groups.
- the number of alkoxy groups remaining in the modified conjugated diene polymer after the reaction can be reduced, and the Mooney viscosity can be effectively changed over time. It tends to be suppressed.
- the “hexafunctional or higher” means having six or more functional groups that react with the active terminal of the conjugated diene polymer.
- the halogenated silyl group has the same number of halogens as the number of functional groups
- the azasilyl group has one functional group
- the carbonyl group has one functional group
- the epoxy group has one functional group
- the ester group has two functional groups
- the total of the compounds Find the number of functional groups.
- the coupling agent has an alkoxysilyl group
- all alkoxy groups bonded to silicon atoms do not react, and one alkoxy group tends to remain per one silicon atom.
- the time-dependent change of a polymer viscosity is small, and when it is set as a vulcanizate, the especially outstanding low hysteresis loss property and the balance of the said low hysteresis loss property and wet skid resistance can be obtained. Therefore, the number of functional groups of the alkoxysilyl group is a number obtained by subtracting 1 from the number of alkoxy groups bonded to the same silicon atom.
- the number of functional groups of the coupling agent is calculated assuming that the trialkoxysilyl group is a bifunctional group, the dialkoxysilyl group is a monofunctional group, and the monoalkoxysilyl group is a zero functional group.
- the counting method of the functional group is important.
- the number of functional groups of the coupling agent is preferably from 6 functional groups to 30 functional groups, more preferably from 6 functional groups to 20 functional groups, still more preferably from 6 functional groups to 12 functional groups, and even more preferably. It is 8 functional or more and 12 functional or less.
- the compound used as a coupling agent does not have active hydrogen.
- the coupling agent does not have active hydrogen, side reactions are suppressed, the coupling rate, the modification rate, the peak top molecular weight Mp 1 of the coupling polymer and the peak top molecular weight Mp 2 of the non-coupling polymer described above.
- the ratio (Mp 1 / Mp 2 ) and the contraction factor (g ′) tend to be adjusted easily.
- an amine structure or basicity in the molecule of the compound used as the polymerization initiator in the polymerization step Either a method for producing a conjugated diene polymer having a nitrogen atom, or a method for producing an amine structure or a structure having a basic nitrogen atom in the molecule of a compound used as a coupling agent in the reaction step, or It is preferred to use both methods.
- a coupling agent that does not have an amine structure or a basic nitrogen atom in the molecule can be used.
- the coupling agent having no amine structure or basic nitrogen atom in the molecule include, but are not limited to, for example, hexafunctional 1,3,5-tris (3-trimethoxysilylpropyl) ) Cyclohexane, hexafunctional 1,2-bis (trichlorosilyl) ethane, hexafunctional tetradecane-2,4,6,8,10,12-hexaone, octafunctional bis (3-trichlorosilylpropyl) Examples include dichlorosilane.
- the coupling agent having an amine structure or a basic nitrogen atom in the molecule is not limited to the following.
- hexafunctional tris (3-trimethoxysilylpropyl) amine hexafunctional Bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] amine, hexafunctional bis (3-trichlorosilylpropyl) methylamine, 6
- Examples include functional 1,3,5-tris (diglycidylaminomethyl) cyclohexane and tetrafunctional tetrakis (3-trimethoxylylpropyl) -1,3-propanediamine.
- the reaction temperature in the reaction step is preferably the same as the polymerization temperature of the conjugated diene polymer, more preferably 0 ° C. or more and 120 ° C. or less, and further preferably 50 ° C. or more and 100 ° C. or less. .
- the reaction time in the reaction step is preferably 10 seconds or longer, more preferably 30 seconds or longer.
- Mixing in the reaction step may be either mechanical stirring, stirring with a static mixer, or the like.
- the reaction process is also preferably a batch process.
- the reaction process is also preferably continuous.
- the reactor in the reaction step for example, a tank type with a stirrer or a tube type is used.
- the coupling agent may be continuously supplied to the reactor after being diluted with an inert solvent.
- the reaction process may be performed by transferring the coupling agent to a polymerization reactor or by transferring it to another reactor.
- the time from the polymerization step to the reaction step should be short, preferably within 10 minutes, more preferably within 5 minutes. In that case, a high coupling rate and a high modification rate tend to be obtained.
- the time from the polymerization step to the reaction step is, for example, when the polymerization step is a batch type, the time from when the peak temperature of polymerization is reached until the coupling agent is added, and when the polymerization step is a continuous type, the reactor is It means the time until the coupling agent is added to the solution containing the conjugated diene polymer.
- R 12 to R 14 each independently represents an alkylene group having 1 to 20 carbon atoms
- R 15 to R 18 and R 20 each independently represents an alkyl group having 1 to 20 carbon atoms
- R 19 and R 22 each independently represents an alkylene group having 1 to 20 carbon atoms
- R 21 represents an alkyl group or trialkylsilyl group having 1 to 20 carbon atoms
- m represents an integer of 1 to 3
- p represents 1 or 2.
- A has a hydrocarbon group having 1 to 20 carbon atoms, or at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom, and has active hydrogen. Represents an organic group that does not.
- the hydrocarbon group having 1 to 20 carbon atoms represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
- An organic group having at least one atom selected from the group consisting of an oxygen atom, a nitrogen atom, a silicon atom, a sulfur atom, and a phosphorus atom and having no active hydrogen is an active terminal of the conjugated diene polymer.
- An organic group to be deactivated examples of the organic group having no active hydrogen include active hydrogens of a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH).
- An organic group having no functional group having Examples of the organic group include a tertiary amino group and a siloxane group.
- (i + j + k) is preferably an integer of 3 to 6, more preferably 3 or 4.
- R 12 to R 14 are each independently preferably a single bond or an alkylene group having 1 to 5 carbon atoms, and more preferably a single bond or an alkylene group having 1 to 3 carbon atoms.
- R 16 , R 18 , and R 20 are each independently more preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and methyl or ethyl. Even more preferred.
- the coupling agent represented by the general formula (VI) has at least three silicon-containing functional groups, and the types of the silicon-containing functional groups are 1 to 3 as described above. . That is, there are 1 to 3 types of silicon-containing functional groups that can be contained in one coupling agent.
- the alkoxysilyl group of the coupling agent represented by the general formula (VI) reacts with the active terminal of the conjugated diene polymer to dissociate the alkoxylithium, thereby coupling the terminal of the conjugated diene polymer chain with the terminal. It tends to form a bond with the silicon of the ring residue.
- the coupling agent represented by the general formula (VI) has an azasilacycle group when j ⁇ 0 and / or k ⁇ 0.
- the azasilacycle group forms a> N—Li bond and a bond between the conjugated diene polymer terminal and the coupling residue silicon. Note that> N—Li bonds tend to easily become> NH and LiOH due to water or the like at the time of finishing.
- Examples of the coupling agent represented by the general formula (VI) include, but are not limited to, tris (3-trimethoxysilylpropyl) amine, tris (3-triethoxysilylpropyl) amine, Tris (3-tripropoxysilylpropyl) amine, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] amine, tetrakis (3-tri Methoxysilylpropyl) -1,3-propanediamine, tris (3-trimethoxysilylpropyl)-[3- (1-methoxy-2-trimethylsilyl-1-sila-2-azacyclopentane) propyl] -1,3 -Propanediamine, tris (3-trimethoxysilylpropyl)-[3- (1-methoxy-2-methyl- -Sila-2-azacyclopentane) propy
- A preferably represents any one of the following general formulas (II) to (V).
- B 1 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When a plurality of B 1 are present, each is independent and may be the same or different. B 1 is preferably a hydrocarbon group having 1 to 8 carbon atoms. a is preferably an integer of 1 to 4, more preferably an integer of 2 to 4, and still more preferably 2.
- B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
- B 3 represents an alkyl group having 1 to 20 carbon atoms
- a represents an integer of 1 to 10 .
- B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10. When a plurality of B 4 are present, each is independent and may be the same or different.
- B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, and a represents an integer of 1 to 10.
- each is independent and may be the same or different. Thereby, it exists in the tendency which can obtain the modified conjugated diene polymer which has the more superior performance of this embodiment.
- the coupling agent when A is represented by the above formula (II) is not limited to the following, but examples include tris (3-trimethoxysilylpropyl) amine, tris (3 -Triethoxysilylpropyl) amine, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] amine, bis [3- (2,2 -Dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) amine, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] amine , Tris (3-ethoxysilylpropyl) amine, bis (3-triethoxysilylpropyl)-[3- (2,2-diethoxy-1-aza-2 Silacyclopentane) propyl
- the coupling agent when A is represented by the formula (III) is not limited to the following, but for example, tris (3-trimethoxysilylpropyl) -methyl-1, 3-propanediamine, bis (2-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -methyl-1,3-propanediamine, bis [3 -(2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) -methyl-1,3-propanediamine, tris (3-triethoxysilylpropyl) -methyl -1,3-propanediamine, bis (2-triethoxysilylpropyl)-[3- (2,2-diethoxy-1-aza-2-silacyclopenta ) Propyl] -methyl-1,3-propanediamine, bis [3-[3-trime
- the coupling agent when A is represented by the formula (IV) is not limited to the following, but examples include tetrakis [3- (2,2-dimethoxy-1-aza -2-silacyclopentane) propyl] silane, tris [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-(3-trimethoxysilylpropyl) silane, tris [3- ( 2,2-dimethoxy-1-aza-2-silacyclopentane) propyl]-[3- (1-methoxy-2-trimethylsilyl-1-sila-2-azacyclopentane) propyl] silane, bis (3-tri Methoxysilylpropyl) -bis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] silane, (3-trimethoxysilyl)-[3- 1-methoxy-2-trimethylsilyl
- the coupling agent in the case where A is represented by the formula (V) is not limited to the following.
- A preferably represents the formula (II) or the formula (III), and k represents 0.
- This tends to be a coupling agent that is easily available, and when the modified conjugated diene polymer is used as a vulcanizate, it tends to be more excellent in wear resistance and low hysteresis loss.
- Such coupling agents are not limited to the following, but include, for example, bis (3-trimethoxysilylpropyl)-[3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl.
- Examples of such a coupling agent include, but are not limited to, tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, Tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine, tetrakis (3-triethoxysilylpropyl) -1,3-propanediamine, tris (3-trimethoxysilylpropyl)-[3- (2, 2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-bisaminomethylcyclohexane, tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane, N 1- (3 - (bis (3- (trimethoxysilyl) propyl) amino) propyl) -N 1 - methyl -N 3
- Such coupling agents are not limited to the following, but examples include tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine, tetrakis (3-triethoxysilylpropyl) -1,3- Examples thereof include propanediamine and tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane.
- the number of functional groups ((m ⁇ 1) ⁇ i + p ⁇ j + k) of the coupling agent is an integer of 6 to 30, preferably an integer of 6 to 10, and an integer of 7 to 10 It is more preferable that
- the reaction may be performed so that the mole number of the functional group of the coupling agent is 0.3 mol or more and less than 0.7 mol with respect to 1 mol of the organic monolithium compound used in the polymerization step. Is 0.4 mol or more and less than 0.7 mol, more preferably 0.5 mol or more and less than 0.7 mol.
- Some of the organic monolithium compounds added in the polymerization step tend not to participate in the coupling reaction. In other words, the active end of the conjugated diene polymer is partially deactivated during the polymerization process or between the polymerization process and the reaction process, so the coupling agent to be added is the organic monolithium used in the polymerization process.
- the number of moles of the functional group of the coupling agent When the number of moles of the functional group of the coupling agent is 0.7 or more with respect to 1 mole of the compound, it tends to be excessive. When it is excessive, the coupling rate and the modification rate, which are requirements for the modified conjugated diene polymer of the present embodiment, tend not to be satisfied.
- the amount of the coupling agent used so that the number of moles of the functional group of the coupling agent relative to 1 mol of the organic monolithium compound used in the polymerization step falls within the above numerical range, There is a tendency to be more excellent in workability at the time of processing, low hysteresis loss when vulcanized, balance between the low hysteresis loss and wet skid resistance, and wear resistance.
- the number of moles of the functional group of the coupling agent to be added is adjusted with respect to 1 mole of the organic monolithium compound.
- the ratio of the polymer having 5 branches or less, which is smaller than that, tends to be less likely to satisfy the shrinkage factor (g ′) and Mp 1 / Mp 2 requirements of the present embodiment. Therefore, it is preferable to prevent the deactivation of the polymerization initiator while making the addition amount of the coupling agent not greatly deviate from the coupling rate.
- the deviation of the coupling rate with respect to the amount of coupling agent added is within 10%, more preferably within 8%, and even more preferably within 5%.
- the coupling rate is 30% by mass or more and less than 70% by mass
- the modification rate is 30% by mass or more and less than 70% by mass
- the peak top molecular weight (Mp 1 ) of the coupling polymer and the non-coupling polymer In order to satisfy that the peak top molecular weight (Mp 2 ) of (Mp 1 / Mp 2 ) ⁇ 3.4 and the shrinkage factor (g ′) is less than 0.60, a specific branched structure is used. In order to selectively produce the polymer having it, it is necessary to precisely control the addition amount of the coupling agent within a predetermined range.
- the addition amount of the coupling agent is controlled so that the number of moles of the functional group of the coupling agent is in the range of 0.3 mol or more and less than 0.7 mol with respect to 1 mol of the addition amount of the organic monolithium compound. Furthermore, it is necessary to apply a method for preventing an error in the addition amount. Examples of such a method include a monomer and polymerization solvent before polymerization, and a method for treating impurities in a reactor.
- Examples of the method for treating the impurities in the reactor include a method in which impurities such as moisture existing in the reactor before the polymerization reaction and can interfere with the polymerization reaction are neutralized with a polymerization initiator.
- the conjugated diene portion may be appropriately hydrogenated.
- the method for hydrogenating the conjugated diene part of the modified conjugated diene polymer of the present embodiment is not particularly limited, and a known method can be used.
- a suitable hydrogenation method includes a method of hydrogenating by blowing gaseous hydrogen into the polymer solution in the presence of a catalyst.
- a catalyst for example, a heterogeneous catalyst such as a catalyst in which a noble metal is supported on a porous inorganic substance; a catalyst in which a salt such as nickel or cobalt is solubilized and reacted with organic aluminum or the like, or a metallocene such as titanocene is used. Examples thereof include homogeneous catalysts such as catalysts. Among these, titanocene catalysts are preferable from the viewpoint of selecting mild hydrogenation conditions.
- the hydrogenation of the aromatic group can be performed by using a noble metal supported catalyst.
- the hydrogenation catalyst is not limited to the following, but, for example, (1) a supported heterogeneous hydrogenation in which a metal such as Ni, Pt, Pd, or Ru is supported on carbon, silica, alumina, diatomaceous earth, or the like.
- a catalyst (2) a so-called Ziegler-type hydrogenation catalyst using an organic acid salt such as Ni, Co, Fe, Cr or a transition metal salt such as acetylacetone salt and a reducing agent such as organic aluminum, (3) Ti, Ru, Examples include so-called organometallic complexes such as organometallic compounds such as Rh and Zr.
- hydrogenation catalysts for example, JP-B-42-8704, JP-B-43-6636, JP-B-63-4841, JP-B-1-37970, JP-B-1-53851, Examples also include known hydrogenation catalysts described in Japanese Patent Publication No. 2-9041 and Japanese Patent Application Laid-Open No. 8-109219.
- a preferable hydrogenation catalyst includes a reaction mixture of a titanocene compound and a reducing organometallic compound.
- a deactivator, a neutralizing agent, and the like may be added to the copolymer solution after the reaction step, if necessary.
- the deactivator include, but are not limited to, water; alcohols such as methanol, ethanol, and isopropanol.
- the neutralizing agent include, but are not limited to, for example, stearic acid, oleic acid, versatic acid (a mixture of carboxylic acids having 9 to 11 carbon atoms, mainly 10 and having many branches), etc.
- a stabilizer for rubber from the viewpoint of preventing gel formation after polymerization and improving the stability during processing.
- the rubber stabilizer is not limited to the following, and known ones can be used.
- BHT 2,6-di-tert-butyl-4-hydroxytoluene
- n-octadecyl-3 Antioxidants such as — (4′-hydroxy-3 ′, 5′-di-tert-butylphenol) propinate and 2-methyl-4,6-bis [(octylthio) methyl] phenol are preferred.
- an extending oil can be added to the modified conjugated diene copolymer as necessary.
- the method of adding the extender oil to the modified conjugated diene polymer is not limited to the following, but the extender oil is added to the modified conjugated diene polymer solution and mixed to remove the oil-extended copolymer solution. Solvent methods are preferred.
- the extending oil include aroma oil, naphthenic oil, paraffin oil, and the like. Among these, from the viewpoint of environmental safety, oil bleed prevention and wet grip characteristics, an aromatic substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less by the IP346 method is preferable.
- PCA polycyclic aromatic
- aroma substitute oil examples include TDAE (Treated Distillate Aromatic Extracts) and MES (Mil Extraction Solvate) such as RDAE (Karateschuk Kunststoffe 52 (12) 799 (1999)), RA (e.
- TDAE Teated Distillate Aromatic Extracts
- MES Mel Extraction Solvate
- RDAE Rasterschuk Kunststoffe 52 (12) 799 (1999)
- RA e.
- the addition amount of extending oil is not specifically limited, 1 mass part or more and 50 mass parts or less are preferable with respect to 100 mass parts of modified conjugated diene polymers, and 2 mass parts or more and 37.5 mass parts or less are more preferable.
- a known method can be used as a method for obtaining the modified conjugated diene polymer of the present embodiment from the polymer solution.
- the method is not limited to the following, for example, after separating the solvent by steam stripping or the like, the polymer is filtered off, and further dehydrated and dried to obtain the polymer, A method of concentrating in a flushing tank and further devolatilizing with a vent extruder or the like, and a method of devolatilizing directly with a drum dryer or the like can be mentioned.
- the modified conjugated diene polymer of this embodiment is suitably used as a vulcanizate.
- the vulcanizate include tires, hoses, shoe soles, vibration-insulating rubbers, automobile parts, and vibration-insulating rubbers, and also include resin-reinforced rubbers such as impact-resistant polystyrene and ABS resin.
- the modified conjugated diene polymer is suitably used for a tread rubber composition for tires.
- the vulcanized product may be, for example, a modified conjugated diene polymer of the present embodiment, if necessary, an inorganic filler such as a silica-based inorganic filler or carbon black, or a modified conjugated diene polymer of the present embodiment.
- a modified conjugated diene polymer composition is kneaded with a rubber-like polymer, a silane coupling agent, a rubber softener, a vulcanizing agent, a vulcanization accelerator, a vulcanization aid, etc. It can be obtained by sulfuration.
- the rubber composition of this embodiment contains a rubber component and a silica-based filler of 5.0 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
- the rubber component contains 10% by mass or more of the modified conjugated diene polymer of the present embodiment described above with respect to 100% by mass of the rubber component.
- the rubber composition tends to be superior in processability when a vulcanized product is obtained by dispersing a silica-based filler.
- a silica-based filler is included.
- a rubbery polymer other than the modified conjugated diene polymer of the present embodiment (hereinafter simply referred to as “rubbery polymer”) is combined with the modified conjugated diene polymer of the present embodiment.
- rubbery polymer is not limited to the following, but for example, a conjugated diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and a vinyl aromatic compound, or a Examples thereof include hydrogenated products, block copolymers of conjugated diene compounds and vinyl aromatic compounds, or hydrogenated products thereof, non-diene polymers, and natural rubber.
- Specific rubbery polymers include, but are not limited to, for example, butadiene rubber or hydrogenated product thereof, isoprene rubber or hydrogenated product thereof, styrene-butadiene rubber or hydrogenated product thereof, styrene- Examples thereof include butadiene block copolymers or hydrogenated products thereof, styrenic elastomers such as styrene-isoprene block copolymers or hydrogenated products thereof, acrylonitrile-butadiene rubber or hydrogenated products thereof.
- Non-diene polymers are not limited to the following, but include, for example, ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, ethylene-octene rubber, etc.
- Olefin-based elastomer butyl rubber, brominated butyl rubber, acrylic rubber, fluorine rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylate ester-conjugated diene copolymer rubber, urethane rubber, polysulfide Rubber.
- Examples of natural rubber include, but are not limited to, smoked sheet RSS 3-5, SMR, and epoxidized natural rubber.
- the various rubber-like polymers described above may be modified rubbers to which functional groups having polarity such as hydroxyl groups and amino groups are added.
- functional groups having polarity such as hydroxyl groups and amino groups are added.
- butadiene rubber, isoprene rubber, styrene-butadiene rubber, natural rubber, and butyl rubber are preferably used.
- the weight average molecular weight of the rubbery polymer is preferably 2,000 or more and 2,000,000 or less, and 5,000 or more and 1,500,000 or less, from the viewpoint of the balance between wear resistance and workability. It is more preferable.
- a low molecular weight rubbery polymer, so-called liquid rubber, can also be used. These rubber-like polymers may be used individually by 1 type, and may use 2 or more types together.
- the content ratio (mass ratio) of the modified conjugated diene polymer to the rubber-like polymer is (modified conjugated diene).
- System polymer / rubbery polymer) is preferably 10/90 or more and 100/0 or less, more preferably 20/80 or more and 90/10 or less, and even more preferably 50/50 or more and 80/20 or less. Therefore, the rubber component preferably contains the modified conjugated diene polymer of the present embodiment in an amount of 10 parts by mass or more and 100 parts by mass or less, more preferably 20 parts by mass with respect to the total amount of the rubber component (100 parts by mass).
- the content ratio of (modified conjugated diene polymer / rubber-like polymer) is in the above range, when it is used as a vulcanized product, it has an excellent balance between low hysteresis loss and low hysteresis loss and wet skid resistance. Excellent wear resistance.
- the content of the silica-based filler in the rubber composition is 5.0 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer, and 20 parts by mass or more and 100 parts by mass. It is preferable that it is below, and 25 to 60 mass parts is more preferable.
- the content of the silica-based filler is 5.0 parts by mass or more from the viewpoint of manifesting the effect of adding the filler, and the filler is sufficiently dispersed to make the processability and mechanical strength of the rubber composition practical. From the viewpoint of ensuring sufficient, the amount is 150 parts by mass or less.
- the silica-based filler is not particularly limited, but may be a known, for example, solid particles comprising SiO 2 or Si 3 Al as a constituent unit is preferred, the structural units of SiO 2 or Si 3 Al Solid particles contained as a main component are more preferable.
- the main component means a component contained in the silica-based filler in an amount of 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more.
- silica-based filler examples include, but are not limited to, inorganic fibrous materials such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber.
- silica type inorganic filler which hydrophobized the surface and the inorganic filler other than a silica type inorganic filler and a silica type is also mentioned.
- silica and glass fiber are preferable, and silica is more preferable from the viewpoints of strength and wear resistance.
- silica include, but are not limited to, dry silica, wet silica, and synthetic silicate silica. Among these silicas, wet silica is preferable from the viewpoint of excellent balance of wet skid resistance.
- the nitrogen adsorption specific surface area determined by the BET adsorption method of the silica-based filler is 100 m 2 / g or more and 300 m 2 / g or less. It is preferably 170 m 2 / g or more and 250 m 2 / g or less. If necessary, a silica-based filler having a relatively small specific surface area (for example, a specific surface area of less than 200 m 2 / g) and a silica-based filler having a relatively large specific surface area (for example, 200 m 2 / g or more). It can be used in combination with an agent.
- the modified conjugated diene-based polymer improves the dispersibility of silica, and particularly wear resistance. And low hysteresis loss tend to be improved.
- other fillers may be used in addition to the silica-based filler.
- examples of other fillers include, but are not limited to, carbon black, metal oxides, and metal hydroxides. Among these, carbon black is preferable. These may be used alone or in combination of two or more.
- the carbon black is not limited to the following, and examples thereof include carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or less is preferable.
- the content of carbon black is preferably 0.5 parts by mass or more and 100 parts by mass or less, and more preferably 3.0 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the rubber component including the modified conjugated diene polymer. 5.0 parts by mass or more and 50 parts by mass or less are more preferable.
- the content of carbon black is preferably 0.5 parts by mass or more from the viewpoint of expressing the performance required for applications such as dry grip performance and conductivity, and from the viewpoint of dispersibility, 100 parts by mass. The following is preferable.
- the metal oxide refers to solid particles having a chemical unit MxOy (M represents a metal atom, and x and y each independently represents an integer of 1 to 6) as a main component of a structural unit.
- MxOy M represents a metal atom, and x and y each independently represents an integer of 1 to 6
- Examples of the metal oxide include, but are not limited to, alumina, titanium oxide, magnesium oxide, and zinc oxide.
- Examples of the metal hydroxide include, but are not limited to, aluminum hydroxide, magnesium hydroxide, and zirconium hydroxide.
- the rubber composition may contain a silane coupling agent.
- the silane coupling agent has a function to close the interaction between the rubber component and the silica filler, and has an affinity or binding group for each of the rubber component and the silica filler.
- a compound having a sulfur bond portion and an alkoxysilyl group or silanol group portion in one molecule is preferable. Examples of such compounds include, but are not limited to, bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl]- And disulfide, bis- [2- (triethoxysilyl) -ethyl] -tetrasulfide.
- the content of the silane coupling agent is preferably 0.1 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 20 parts by mass or less, with respect to 100 parts by mass of the silica filler described above. More preferably, the content is not less than 0.0 parts by mass and not more than 15 parts by mass. When the content of the silane coupling agent is within the above range, the addition effect of the silane coupling agent tends to be more remarkable.
- the rubber composition of the present embodiment may contain a rubber softener from the viewpoint of improving processability.
- a rubber softener mineral oil or a liquid or low molecular weight synthetic softener is suitable.
- Mineral oil-based rubber softeners called process oils or extender oils that are used to soften, increase volume and improve processability of rubbers are mixtures of aromatic, naphthenic and paraffin chains. Yes, paraffin chains that occupy 50% or more of all carbons are called paraffinic, and naphthenic ring carbons that occupy 30% to 45% of all carbons are naphthenic or aromatic What accounts for more than 30% of the total carbon is called aromatic.
- the rubber softener to be used is one having an appropriate aromatic content. This is preferable because it tends to be familiar with the coalescence.
- the content of the rubber softener in the rubber composition of the present embodiment is preferably 0 part by mass or more and 100 parts by mass or less, and preferably 5 parts by mass or more with respect to 100 parts by mass of the rubber component containing the modified conjugated diene polymer. 60 mass parts or less are more preferable, and 5 mass parts or more and 30 mass parts or less are still more preferable.
- the content of the rubber softening agent is 100 parts by mass or less with respect to 100 parts by mass of the rubber component, bleeding out tends to be suppressed and stickiness of the rubber composition surface tends to be suppressed.
- the rubber composition of the present embodiment includes a modified conjugated diene polymer, a silica-based inorganic filler, other rubbery polymers as required, carbon black and other fillers, silane coupling agents, and rubber softening. It can be obtained by mixing additives such as an agent.
- the method of mixing the modified conjugated diene polymer and other rubbery polymers, silica-based fillers, carbon black and other fillers, silane coupling agents, rubber softeners, etc. is limited to the following. For example, melt kneading methods using general mixers such as open rolls, Banbury mixers, kneaders, single screw extruders, twin screw extruders, multi-screw extruders, etc.
- a method of removing the solvent by heating can be mentioned.
- a melt kneading method using a roll, a Banbury mixer, a kneader, or an extruder is preferred from the viewpoint of productivity and good kneading properties.
- any of a method of kneading the rubber component and other fillers, silane coupling agents, and additives at a time, and a method of mixing in multiple times can be applied.
- the rubber composition of the present embodiment may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
- the vulcanizing agent include, but are not limited to, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, and sulfur compounds.
- Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
- the content of the vulcanizing agent is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component.
- the vulcanization method a conventionally known method can be applied, and the vulcanization temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower.
- a vulcanization accelerator and a vulcanization aid may be used as necessary.
- the vulcanization accelerator conventionally known materials can be used, and are not limited to the following materials. For example, sulfenamide, guanidine, thiuram, aldehyde-amine, aldehyde-ammonia, thiazole Thiourea and dithiocarbamate vulcanization accelerators.
- cure adjuvant although not limited to the following, For example, zinc white and a stearic acid are mentioned.
- the content of the vulcanization accelerator is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component.
- softening agents and fillers other softening agents and fillers other than those described above, heat stabilizers, antistatic agents, weathering stabilizers, antiaging agents, coloring, within the range not impairing the object of the present invention
- Various additives such as an agent and a lubricant may be used.
- known softeners can be used.
- specific examples of other fillers include calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
- Known materials can be used as the above heat stabilizer, antistatic agent, weathering stabilizer, anti-aging agent, colorant, and lubricant.
- the rubber composition of the present embodiment is suitably used as a tire rubber composition.
- the tire rubber composition of the present embodiment is not limited to the following, but for example, various tires such as fuel-saving tires, all-season tires, high-performance tires, studless tires: treads, carcass, sidewalls, bead portions, etc. It can be used for each tire part.
- the rubber composition for tires is excellent in the balance between low hysteresis loss and wet skid resistance and wear resistance when used as a vulcanized product, for fuel-saving tires and treads for high-performance tires, More preferably used.
- the tire of this embodiment contains the rubber composition of this embodiment.
- the tire of this embodiment is not limited to the following, For example, various tires, such as a fuel-saving tire, an all-season tire, a high performance tire, a studless tire, may be sufficient.
- the tire which uses the rubber composition of this embodiment for at least one of the tire parts selected from the group which consists of a tread, a carcass, a sidewall, and a bead part may be sufficient.
- the tire of the present embodiment is suitably used as a fuel-saving tire and a high-performance tire because it has low hysteresis loss, a balance between the low hysteresis loss and wet skid resistance, and excellent wear resistance.
- Amount of bound styrene A 100 mg sample was diluted to 100 mL with chloroform and dissolved to prepare a measurement sample. The amount of bound styrene (% by mass) was measured by absorption at 254 nm by the phenyl group of styrene (manufactured by Shimadzu Corporation, spectrophotometer “UV-2450”).
- Mooney viscosity ML 1 + 4 (100 ° C) The Mooney viscosity was measured using a Mooney viscometer (“VR1132” manufactured by Ueshima Seisakusho Co., Ltd.) in accordance with JIS K6300 (ISO 289-1) and ISO 289-4. The measurement temperature was 100 ° C. First, after preheating the sample for 1 minute, the rotor was rotated at 2 rpm, and the torque after 4 minutes was measured to obtain the Mooney viscosity (ML 1 + 4 (100 ° C.)).
- Glass transition temperature (Tg) In accordance with ISO 22768: 2006, a DSC curve was recorded using a differential scanning calorimeter “DSC3200S” manufactured by Mac Science, while increasing the temperature from ⁇ 100 ° C. to 20 ° C./min under a flow of helium at 50 mL / min. The peak top (Inflection point) of the DSC differential curve was taken as the glass transition temperature.
- Mp 1 represents the peak top molecular weight of the coupling polymer by GPC of the modified conjugated diene polymer, and when there are multiple coupling polymer peaks, the peak with the highest peak height top molecular weight is referred to as Mp 1.
- the mp 2 represents a peak top molecular weight of the non-coupling polymerization of a conjugated diene polymer chain (lowest molecular weight side peak).
- Tetrahydrofuran (THF) was used as the eluent.
- guard column TSK guard column Super H-H manufactured by Tosoh Corporation
- column TSK gel Super H 5000, TSK gel Super H 6000, TSK gel Super H 7000 manufactured by Tosoh Corporation were used.
- An RI detector manufactured by Tosoh Corporation, “HLC8020” was used under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min. 10 mg of a sample for measurement was dissolved in 20 mL of THF to prepare a measurement solution, and 20 ⁇ L of the measurement solution was injected into a GPC measurement device and measured.
- Denaturation rate It measured by applying the characteristic which the component modified
- -GPC measurement conditions using a polystyrene column Using THF as an eluent, 20 ⁇ L of the sample solution was injected into the apparatus for measurement.
- guard column TSK guard column Super H-H manufactured by Tosoh Corporation
- column TSK gel Super H 5000, TSK gel Super H 6000, TSK gel Super H 7000 manufactured by Tosoh Corporation were used.
- a chromatogram was obtained by measurement using a RI detector (HLC8020 manufactured by Tosoh Corporation) under conditions of a column oven temperature of 40 ° C. and a THF flow rate of 1.0 mL / min.
- M is an absolute molecular weight. From the peak top molecular weight of the peak derived from the coupling polymer, the peak height decreases as the molecular weight increases, and the shrinkage factor corresponding to the molecular weight until the peak top molecular weight is less than 10% (g The average value of ') was used as the shrinkage factor (g') of the modified conjugated diene polymer.
- the eluent used was THF containing 5 mmol / L triethylamine.
- TSKgel G4000HXL As the column, Tosoh Corporation trade names “TSKgel G4000HXL”, “TSKgel G5000HXL”, and “TSKgel G6000HXL” were used.
- a 20 mg sample for measurement was dissolved in 10 mL of THF to prepare a measurement solution, and 100 ⁇ L of the measurement solution was injected into a GPC measurement apparatus, and the measurement was performed at an oven temperature of 40 ° C. and a THF flow rate of 1 mL / min.
- Example 1 Using an autoclave with an internal volume of 5 L (L / D: 3.4) and a temperature-controllable autoclave equipped with a stirrer and a jacket, it may interfere with the polymerization reaction existing in the reactor with 1995 g of normal hexane.
- n-butyllithium was charged into the reactor, stirred at 70 ° C. for 5 minutes, cooled to room temperature, the solution was taken out, and the reactor was emptied.
- Example 2 The addition amount of the polymerization initiator was changed from 2.30 mmol to 1.55 mmol. The amount of coupling agent added was changed from 0.27 mmol to 0.090 mmol. The polymerization initiation temperature was 57 ° C. and the polymerization peak temperature was 73 ° C. Moreover, the addition amount of the polar substance was changed to 0.886 mmol. Others were the same as in Example 1, and modified conjugated diene polymer B was obtained. The analysis results of the modified conjugated diene polymer B are shown in Table 1.
- Example 3 The coupling agent was changed from tris (3-trimethoxysilylpropyl) amine to tris (3-triethoxysilylpropyl) amine (abbreviated as “b” in the table).
- the polymerization initiation temperature was 57 ° C. and the polymerization peak temperature was 75 ° C. Otherwise, the modified conjugated diene polymer C was obtained in the same manner as in Example 1.
- the analysis results of the modified conjugated diene polymer C are shown in Table 1.
- Example 4 The addition amount of the polymerization initiator was changed from 2.30 mmol to 2.12 mmol.
- the coupling agent was changed from tris (3-trimethoxysilylpropyl) amine to tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (abbreviated as “c” in the table), and the addition amount was 0.27 mmol. To 0.18 mmol.
- the polymerization initiation temperature was 56 ° C and the polymerization peak temperature was 79 ° C.
- the addition amount of the polar substance was changed to 1.12 mmol.
- the modified conjugated diene polymer D was obtained in the same manner as in Example 1.
- the analysis results of the modified conjugated diene polymer D are shown in Table 1.
- Example 5 The addition amount of the polymerization initiator was changed from 2.30 mmol to 1.47 mmol.
- the coupling agent was changed from tris (3-trimethoxysilylpropyl) amine to tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (abbreviated as “c” in the table), and the addition amount was 0.27 mmol.
- c tris (3-trimethoxysilylpropyl) amine to tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine
- the addition amount was 0.27 mmol.
- the polymerization initiation temperature was 56 ° C and the polymerization peak temperature was 78 ° C.
- the addition amount of the polar substance was changed to 0.840 mmol. Otherwise in the same manner as in Example 1, a modified conjugated diene polymer E was obtained.
- the analysis results of the modified conjugated diene polymer E
- Example 6 The polymerization monomer was adjusted to the amount shown in Table 1 below.
- the polymerization initiation temperature was 57 ° C and the polymerization peak temperature was 79 ° C. Also, the amount of polar substance added was changed to 1.10 mmol. Otherwise, the modified conjugated diene polymer F was obtained in the same manner as in Example 1.
- the analysis results of the modified conjugated diene polymer F are shown in Table 1.
- Example 7 The polymerization monomer was adjusted to the amount shown in Table 1 below.
- the addition amount of the polymerization initiator was changed from 2.30 mmol to 2.12 mmol.
- the coupling agent was changed from tris (3-trimethoxysilylpropyl) amine to tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (abbreviated as “c” in the table), and the addition amount was 0.27 mmol. To 0.18 mmol.
- the polymerization initiation temperature was 56 ° C and the polymerization peak temperature was 77 ° C.
- the addition amount of the polar substance was changed to 1.08 mmol. Otherwise, the modified conjugated diene polymer G was obtained in the same manner as in Example 1.
- the analysis results of the modified conjugated diene polymer G are shown in Table 1.
- NBL Normal butyl lithium * 2 Uses 2,2-bis (2-oxolanyl) propane * 3 a: Tris (3-trimethoxysilylpropyl) amine: (hexafunctional) b: Tris (3-triethoxysilylpropyl) amine: (hexafunctional) c: Tetrakis (3-trimethoxylylpropyl) -1,3-propanediamine: (8 functional) d: 1,2-bis (trichlorosilyl) ethane: (hexafunctional) e: Bis (3-trimethoxysilylpropyl) -N-methylamine: (tetrafunctional) * 4
- the trialkoxysilyl group in the coupling agent molecule is a bifunctional group, the dialkoxysilyl group is a monofunctional group, the monoalkoxysilyl group is a zero functional group, and the halogenated silyl group has the same number of
- Example 8 to 14 [Comparative Examples 8 to 14] Using the modified conjugated diene polymers (samples A to N) obtained in Examples 1 to 7 and Comparative Examples 1 to 7 as raw material rubbers, rubber compositions containing the respective raw rubber materials according to the following formulation Manufactured.
- Modified conjugated diene polymer 100 parts by mass (without oil) Silica (Evonik Degussa, “Ultrasil 7000 GR”, nitrogen adsorption specific surface area 170 m 2 / g): 75.0 parts by mass Carbon black (manufactured by Tokai Carbon Co., “Seast KH (N339)”): 5.0 parts by mass Silane coupling agent (Evonik Degussa, “Si75”, bis (triethoxysilylpropyl) disulfide): 6.0 parts by mass S-RAE oil (JX Nippon Oil & Energy, “Process NC140”): 30.
- Zinc white 2.5 parts by mass Stearic acid: 2.0 parts by mass Anti-aging agent (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine): 2.0 parts by mass Sulfur: 1.7 parts by mass Vulcanization accelerator 1 (N-cyclohexyl-2-benzothiazylsulfinamide): 1.7 parts by mass Vulcanization accelerator 2 ( Phenyl guanidine): 2.0 parts by weight Sum: 227.9 parts by weight
- the above materials were kneaded by the following method to obtain a rubber composition.
- a closed kneader (with an internal volume of 0.3 L) equipped with a temperature control device, as the first stage kneading, under the conditions of a filling rate of 65% and a rotor rotation speed of 30 to 50 rpm, raw rubber (samples A to M), A filler (silica, carbon black), a silane coupling agent, process oil, zinc white, and stearic acid were kneaded.
- the temperature of the closed mixer was controlled, and each rubber composition (compound) was obtained at a discharge temperature of 155 to 160 ° C.
- the mixture obtained in the first kneading was cooled to room temperature, an anti-aging agent was added, and the mixture was kneaded again to improve silica dispersion. Also in this case, the discharge temperature of the blend was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
- sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. as the third kneading. Then, it shape
- the rubber composition before vulcanization and the rubber composition after vulcanization were evaluated. Specifically, the evaluation was performed by the following method. The results are shown in Table 2.
- Viscoelastic Parameters Viscoelastic Parameters Viscoelastic parameters were measured in a torsion mode using a viscoelastic tester “ARES” manufactured by Rheometrics Scientific. Each measured value was indexed with the result for the rubber composition of Comparative Example 7 as 100. Tan ⁇ measured at 50 ° C. with a frequency of 10 Hz and a strain of 3% was used as an indicator of low hysteresis loss. It shows that low hysteresis loss property is so favorable that an index
- Example 8 to 14 modified conjugated diene polymer composition
- the rubber compositions of Example 8 to 14 were compared with the rubber composition of Comparative Example 8 although the Mooney viscosity before compounding was similar, It was confirmed that the compound Mooney viscosity at the time of making a vulcanizate was low, showed good processability, and was excellent in low hysteresis loss when made into a vulcanized product.
- the Mooney viscosity before blending was similar, but the blended Mooney viscosity when vulcanized was low, indicating good processability.
- the Mooney viscosity increase after storage for one month was low, and good quality stability was exhibited.
- the modified conjugated diene polymer according to the present invention exhibits excellent low hysteresis loss when used as a vulcanized rubber, and is processed when it is mixed with other components to form a composition or vulcanized rubber. It is also excellent in performance and can be suitably used as a material for various members such as tire treads, footwear, and industrial articles.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Tires In General (AREA)
Abstract
Description
近年、転がり抵抗が小さい、すなわち低ヒステリシスロス性を有する材料の開発が求められてきている。
また、タイヤを軽量化するため、タイヤのトレッド部の厚みを減らす必要があり、さらに加工性、耐摩耗性の高い材料も求められている。
例えば、シリカを含む材料を用いると、低ヒステリシスロス性及びウェットスキッド抵抗性とのバランス向上を図ることができる。また、運動性の高いゴムの分子末端部に、シリカとの親和性又は反応性を有する官能基を導入することによって、材料中におけるシリカの分散性を改良して、さらには、シリカ粒子との結合でゴム分子末端部の運動性を低減して、ヒステリシスロスを低減化する試みがなされている。
また、特許文献2~4には、アミノ基を含有するアルコキシシラン類を重合体活性末端に反応させて得られる変性ジエン系ゴム、及びこれとシリカとの組成物が提案されている。
さらに、特許文献5及び6には、環式アザシラサイクル化合物を重合体活性末端と反応させて官能化したポリマーが提案されている。
さらにまた、特許文献7には、重合体活性末端と多官能性シラン化合物をカップリング反応させて得られるジエン系ゴムが提案されている。
また、ゴムの分子末端にシリカとの反応性の高い官能基、例えばアルコキシシリル基を導入した材料は、混練工程中にシリカ粒子との反応が進行して、組成物の粘度が上昇してしまい、練り難くなったり、又は、混練り後にシートにする際に肌荒れが生じたり、シート切れが生じやすくなったりするといった、加工性が悪化する傾向があるという問題を有している。さらに、このような材料を加硫物としたとき、特にシリカ等の無機充填剤を含む加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、及び耐摩耗性が十分ではないという問題も有している。さらにまた、アルコキシシリル基含有ポリマーは、自己縮合反応によりムーニー粘度の継時的安定性が十分でない場合があるという問題も有している。
すなわち、本発明は以下の通りである。
ゲルパーミテーションクロマトグラフィー(GPC)によるカップリング重合体の割合が、変性共役ジエン系重合体全体の30質量%以上70質量%未満であり、かつ吸着GPCによる変性率が、前記変性共役ジエン系重合体全体の30質量%以上70質量%未満であり、
前記変性共役ジエン系重合体のGPCによるカップリング重合体のピークトップ分子量をMp1で表し、非カップリング重合体のピークトップ分子量をMp2で表したとき、(Mp1/Mp2)≧3.4であり、
収縮因子(g’)が、0.60未満である、変性共役ジエン系重合体。
〔2〕
窒素原子及び/又は珪素原子を含有する、前記〔1〕に記載の変性共役ジエン系重合体。
〔3〕
(Mp1/Mp2)≧3.8である、前記〔1〕又は〔2〕に記載の変性共役ジエン系重合体。
〔4〕
前記収縮因子(g’)が、0.50未満である、前記〔1〕乃至〔3〕のいずれか一に記載の変性共役ジエン系重合体。
〔5〕
前記窒素原子及び珪素原子が、カップリング剤に由来する窒素原子及び珪素原子である、前記〔2〕乃至〔4〕のいずれか一に記載の変性共役ジエン系重合体。
〔6〕
分岐を有し、分岐度が6以上である、前記〔1〕乃至〔5〕のいずれか一に記載の変性共役ジエン系重合体。
〔7〕
分岐を有し、分岐度が8以上である、前記〔1〕乃至〔6〕のいずれか一に記載の変性共役ジエン系重合体。
〔8〕
GPCにより得られる分子量分布が、2つのピークからなる、前記〔1〕乃至〔7〕のいずれか一に記載の変性共役ジエン系重合体。
〔9〕
前記〔1〕乃至〔8〕のいずれか一に記載の変性共役ジエン系重合体を10質量%以上含むゴム成分と、
前記ゴム成分100質量部に対して5.0質量部以上150質量部以下のシリカ系充填剤と、を含む、ゴム組成物。
〔10〕
前記〔9〕に記載のゴム組成物を含有するタイヤ。
本実施形態の変性共役ジエン系重合体は、
ゲルパーミテーションクロマトグラフィー(GPC)によるカップリング重合体の割合が、変性共役ジエン系重合体全体の30質量%以上70質量%未満であり、かつ吸着GPCによる変性率が、前記変性共役ジエン系重合体全体の30質量%以上70質量%未満であり、
前記変性共役ジエン系重合体のGPCによるカップリング重合体のピークトップ分子量をMp1で表し、非カップリング重合体のピークトップ分子量をMp2で表したとき、(Mp1/Mp2)≧3.4であり、
収縮因子(g’)が、0.60未満である。
本実施形態の変性共役ジエン系重合体は、上記構成とすることにより、ムーニー粘度の継時的安定性が十分で、優れた加工性及び耐摩耗性が得られ、かつ加硫物としたときに低ヒステリシスロス性に優れたものとなる。
本実施形態の変性共役ジエン系重合体は、カップリング残基と、当該カップリング残基と結合した共役ジエン系重合体鎖を有することが好ましい。
本実施形態の変性共役ジエン系重合体における「共役ジエン系重合体鎖」とは、カップリング残基に結合した、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、共役ジエン系重合体由来の構造単位である。
本実施形態の変性共役ジエン系重合体における「カップリング残基」とは、共役ジエン系重合体鎖に結合された、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、カップリング剤由来の構造単位である。
本実施形態の変性共役ジエン系重合体は、GPC(ゲルパーミエーションクロマトグラフィー)によるカップリング重合体の割合(以下、「カップリング率」ともいう。)が、前記変性共役ジエン系重合体全体の30質量%以上70質量%未満である。
まず、本実施形態の変性共役ジエン系重合体のGPCによる分子量分布曲線を用い、カップリング剤と反応しておらず最も低分子量の成分である共役ジエン系重合体ピーク(以下、「非カップリング重合体ピーク」という。)と、共役ジエン系重合体鎖がカップリング残基を介して結合したより高分子量成分である「カップリング重合体ピーク」とに分ける。
前記分子量分布曲線において、ピーク面積が全体の5%未満のピークは、ピークとみなさず、非カップリング重合体に由来するピークと、カップリング重合体に由来するピークの、それぞれ1つずつ、ピークがあるとみなす。
全質量に対する「カップリング重合体ピーク」の割合をパーセントで表したものがカップリング率(質量%)である。
カップリング率が30質量%以上であると、加硫物としたときに優れた低ヒステリシスロス性の変性共役ジエン系重合体が得られる。
カップリング率が70質量%未満であると、ムーニー粘度の継時的安定性が十分な変性共役ジエン系重合体が得られる。
GPCの測定は、後述する実施例に記載する方法により行うことができる。
変性共役ジエン系重合体のカップリング率は、本実施形態の変性共役ジエン系重合体を製造する際、カップリング剤の官能基数、添加量等を調整することにより制御することができる。
本実施形態の変性共役ジエン系重合体は、吸着GPCによる変性率(以下、単に「変性率」ともいう。)が、前記変性共役ジエン系重合体全体の30質量%以上70質量%未満である。
まず、変性共役ジエン系重合体が吸着されるカラムを用いる吸着GPC、及び、変性共役ジエン系重合体が吸着しないカラムを用いる非吸着GPCを測定する。これらのGPCの差をもって、吸着された重合体の質量を、全質量に対するパーセントで表したものが変性率(質量%)である。
吸着GPCによる変性率は、具体的には、後述する実施例に記載の方法により求めることができる。
本実施形態の変性共役ジエン系重合体が、例えば、分子中にアミン構造または塩基性の窒素原子を有する変性共役ジエン系重合体の場合、吸着GPCとしては、シリカ系カラムを使用することができ、非吸着GPCとしては、ポリスチレン系カラムを使用することができる。この場合、吸着GPCによる変性率は、アミン構造または塩基性の窒素原子を有する重合体の含有割合を測定することを意味する。
変性率が70質量%未満であると、変性共役ジエン系重合体のムーニー粘度が十分な継時的安定性を示す。
変性共役ジエン系重合体の変性率は、本実施形態の変性共役ジエン系重合体を製造する際の、カップリング剤を反応させる反応工程において、カップリング剤の添加量、反応温度、反応時間等の反応条件を調整することにより制御することができる。
本実施形態の変性共役ジエン系重合体が窒素原子及び/又は珪素原子を有していることにより、加硫物とする際の加工性に優れ、加硫物としたときの低ヒステリシスロス性、当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、及び耐摩耗性に優れたものとなる。
珪素原子は、例えば、共役ジエン系重合体と珪素原子を有するカップリング剤とを反応させることによって、カップリング剤残基として変性共役ジエン系重合体中に導入することができる。すなわちこの場合、珪素原子はカップリング剤由来のものである。変性共役ジエン系重合体中に珪素原子があることは、後述する実施例に記載する金属分析による方法によって確認することができる。
窒素原子は、例えば、後述する共役ジエン系重合体の重合開始剤として窒素原子を有するものを用いること、共役ジエン系重合体と窒素原子を有するカップリング剤とを反応させることによって、カップリング剤残基として変性共役ジエン系重合体中に導入することができる。すなわちこの場合、窒素原子はカップリング剤由来のものである。変性共役ジエン系重合体中に窒素原子があることは、後述する実施例に記載する特定のカラムへの吸着の有無を検出する方法によって確認することができる。
本実施形態の変性共役ジエン系重合体における分岐構造の数は、共役ジエン系重合体の活性末端とカップリング剤の添加量との化学量論比を調整することにより制御することができる。
本実施形態の変性共役ジエン系重合体は、100℃で測定したムーニー粘度ML1+4(100℃)が30~150であることが好ましい。
ムーニー粘度が前記範囲であると、加硫物とする際の加工性、加硫物としたときの低ヒステリシスロス性、及び当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、かつ耐摩耗性に優れる傾向にある。
ムーニー粘度ML1+4(100℃)は、好ましくは40以上120以下、より好ましくは45以上100以下である。
ムーニー粘度の測定は、非油展の変性共役ジエン系重合体を用いて測定する。
ムーニー粘度の測定は、後述する実施例に記載の方法により行うことができる。
本実施形態の変性共役ジエン系重合体のムーニー粘度は、重合工程において、重合開始剤や単量体の量、重合温度や重合時間を調整することにより制御することができる。
また、変性工程において、カップリング剤の添加量を調整することにより制御することができる。
本実施形態の変性共役ジエン系重合体は、重量平均分子量(Mw)が20万以上200万以下であることが好ましい。
また、本実施形態の変性共役ジエン系重合体は、加工性及び耐摩耗性の観点から、当該変性共役ジエン系重合体の総量に対して重量平均分子量が200万以上の変性共役ジエン系重合体が0.3質量%未満であることが好ましく、0.2質量%以下であることがより好ましく、0.15質量%以下であることがさらに好ましい。重量平均分子量が上記範囲である場合、加硫物とする際の加工性に優れる傾向がある。
本実施形態の変性共役ジエン系重合体の重量平均分子量は、より好ましくは40万以上180万以下、さらに好ましくは40万以上100万以下、さらにより好ましくは50万以上100万以下である。
本実施形態の変性共役ジエン系重合体においては、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布(Mw/Mn)は、1.15~2.30が好ましく、1.30~2.00がより好ましく、1.40~1.80がさらにより好ましい。この範囲の分子量分布である変性共役ジエン系重合体は、加硫物としたときの低ヒステリシスロス性、耐摩耗性、及び加工性に優れる傾向にある。
また、本実施形態の変性共役ジエン系重合体は、低ヒステリシスロス性、耐摩耗性、及び加工性の観点から、GPCにおいて二つの分子量ピークを有することが好ましく、かかる場合、高分子側の分子量ピークの分子量分布が1.0~1.3であることが好ましく、1.0~1.2であることがより好ましく、1.0~1.1であることがさらに好ましい。ここで、高分子側の分子量ピークはカップリングされた重合体の分子量ピークである。
上記範囲に制御する方法は限定されるものではないが、例えば、後述するバッチ式で重合することによりGPCにおける分子量ピーク数を二つ以上に制御することができ、かつ、高分子量側の分子量ピークの分子量分布を上記範囲に制御することができる。
本明細書において「分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって得られる、標準ポリスチレン換算分子量である。
変性共役ジエン系重合体及び後述する共役ジエン系重合体に対する、数平均分子量、重量平均分子量、分子量分布、特定の高分子量成分の含有量は、後述する実施例に記載の方法により測定することができる。
この場合、加硫物としたときの低ヒステリシスロス性、及び当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、加工性及び耐摩耗性に優れる傾向にある。
本実施形態の変性共役ジエン系重合体は、当該変性共役ジエン系重合体のGPCによるカップリング重合体のピークトップ分子量をMp1、非カップリング重合体のピークトップ分子量をMp2とした場合、以下の関係式が成り立つものとする。
(Mp1/Mp2)≧3.4
また、以下の関係式が成り立つことが好ましい。
(Mp1/Mp2)≧3.8
上記関係式が成り立つ場合、加硫物とする際の優れた加工性、加硫物としたときの優れた低ヒステリシスロス性、当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、並びに耐摩耗性により優れる傾向にある。
前記(Mp1/Mp2)は、4.0以上であることがより好ましい。
また、Mp1は20万以上150万以下であることが好ましく、30万以上130万以下であることがより好ましく、40万以上120万以下であることがさらに好ましい。
Mp1及びMp2は、後述する実施例に記載の方法により求めることができる。
また、6官能基以上の官能基を有するカップリング剤を用い、かつ共役ジエン系重合体の活性末端とカップリング剤の添加量とを化学量論的に調整することにより、上記(Mp1/Mp2)の値を制御することができる。
また、(Mp1/Mp2)≧3.8の場合、変性共役ジエン系重合体中の主成分が1個のカップリング残基に8分子以上の共役ジエン系重合体鎖が結合している傾向がある。
本実施形態の変性共役ジエン系重合体は、収縮因子(g’)が0.60未満である。
一般的に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にある。本実施形態の収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。すなわち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。
本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883M0.771の関係式に従うものとする(Mは絶対分子量である)。
変性共役ジエン系重合体の各絶対分子量のときの収縮因子(g’)を算出する。カップリング重合体に由来するピークのピークトップ分子量から、分子量の増大に従ってピークの高さが小さくなっていく。ピークトップ分子量の高さの10%未満になるまでの分子量に対応する収縮因子(g’)の平均値を算出し、その変性共役ジエン系重合体の収縮因子(g’)として用いる。
ここで、「分岐」とは、1つの重合体に対して、他の重合体とが直接的又は間接的に結合することにより形成されるものである。また、「分岐度」は、1の分岐に対して、直接的又は間接的に互いに結合している重合体の数である。
例えば、カップリング剤残基を介して間接的に、5つの共役ジエン系重合体鎖が互いに結合している場合には、分岐度は5である。
また、収縮因子(g’)の下限は特に限定されず、検出限界値以下であってもよいが、好ましくは0.20以上であり、より好ましくは0.22以上であり、さらに好ましくは0.25以上である。
収縮因子(g’)がこの範囲である変性共役ジエン系重合体は、加硫物とする際の加工性に優れ、加硫物としたときの低ヒステリシスロス性と耐摩耗性にも優れる傾向にある。
具体的には、分岐度が6である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.55以上0.60未満となる傾向にあり、分岐度が8である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.38以上0.44以下となる傾向にある。収縮因子(g’)は、後述する実施例に記載の方法により測定することができる。
また、変性共役ジエン系重合体は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して6以上の当該共役ジエン系重合体鎖が結合している分岐を含むことがより好ましい。
分岐度が6以上であること、及び、分岐が、1のカップリング残基に対して6以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、より確実に収縮因子(g’)を0.60未満にすることができる。
また、変性共役ジエン系重合体は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して7以上の当該共役ジエン系重合体鎖が結合している分岐を含むことがよりさらに好ましく、1の当該カップリング残基に対して8以上の当該共役ジエン系重合体鎖が結合している分岐を含むことがさらにより好ましい。
1のカップリング残基に対して結合している共役ジエン系重合体鎖の数は、収縮因子(g’)の値から確認することができ、分岐度が8以上であること、及び、分岐が、1のカップリング残基に対して8以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、収縮因子(g’)を0.44以下にすることができる。
さらに、特定の構造を有するカップリング剤を使用し、特定の範囲内に添加量を制御することにより、収縮因子(g’)を0.50未満に制御することができる。
このことにより、本実施形態の変性共役ジエン系重合体をシリカとの組成物にした際に、アルコキシシリル基又はシラノール基がシリカと反応し、シリカの分散性が良くなり、加硫物とする際の加工性、加硫物としたときの低ヒステリシスロス性、及び当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れる傾向にある。
ここで珪素原子は、変性共役ジエン系重合体中のカップリング残基に由来するものであることが好ましい。
上記のような変性共役ジエン系重合体を製造する工程においては、カップリング反応工程で用いるカップリング剤は、珪素原子を有する化合物であって、珪素原子は炭素数1~20のアルコキシシリル基、ハロゲン化シリル基、又はアザシリル基を形成する化合物であることが好ましい。
カップリング剤の構造において、アザシリル基を除き、窒素原子と珪素原子が直接単結合している構造は、加水分解により窒素-珪素結合が切れやすい。そのため、カップリング剤の構造としては重合体が分岐構造になる構造であっても、重合体に反応させ、スチームストリッピング等によって溶媒を除去する工程等を経ると、窒素と珪素の結合が切れて、分岐構造でなくなってしまう。そのため、本実施形態の重合体のピークトップ分子量(Mp1)の、非カップリング重合体のピークトップ(Mp2)に対する比(Mp1/Mp2)を所定の値以上とし、収縮因子(g’)を所定の値とする事ができないため、カップリング剤として適していない。
カップリング残基は、アミン構造又は塩基性の窒素原子を有する化合物であることがより好ましい。
これによって、加硫物とする際の加工性、加硫物としたときの低ヒステリシスロス性、及び当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、並びに耐摩耗性により優れる傾向にある。
この場合、1個の珪素原子に対して、複数の共役ジエン系重合体鎖が結合していてもよい。また、共役ジエン系重合体鎖と、アルコキシ基又は水酸基とが、一つの珪素原子に結合し、その結果として、珪素原子の少なくとも1つが、共役ジエン系重合体鎖に結合すると共にアルコキシシリル基又はシラノール基を構成する珪素原子となっていてもよい。
その場合、耐熱性、耐候性が向上し、高温で加工する場合の製品の劣化を防止することができ、ゴムとしての運動性能が向上する傾向にある。その結果、自動車用途等種々の用途で一層優れた性能を発揮する。
共役ジエン化合物に基づく不飽和二重結合の水素化率は、目的に応じて任意に選択でき、特に限定されない。加硫物として用いる場合には、共役ジエン部の二重結合が部分的に残存していることが好ましい。かかる観点から、共役ジエン系重合体中の共役ジエン部の水添率は、3.0%以上70%以下であることが好ましく、5.0%以上65%以下であることがより好ましく、10%以上60%以下であることがさらに好ましい。特に、ビニル基を選択的に水素化することで、耐熱性及び運動性能が向上する傾向にある。
水素化率は、核磁気共鳴装置(NMR)により求めることができる。
本実施形態の変性共役ジエン系共重合体は、非油展であっても、油展であっても、ゴム加硫物とする際の加工性と加硫物としたときの耐摩耗性との観点から、100℃で測定されるムーニー粘度ML1+4が、30以上150以下であることが好ましく、20以上100以下であることがより好ましく、30以上80以下であることがさらに好ましい。
ムーニー粘度は、後述する実施例に記載の方法により測定することができる。
本実施形態の変性共役ジエン系重合体は、下記一般式(I)で表される構造であることが好ましい。
m及びxは、1~3の整数を表し、x≦mであり、pは、1又は2を表し、yは1~3の整数を表し、y≦(p+1)であり、zは、1又は2の整数を表す。
複数存在する場合のD1、R1~R11、m、p、x、y、及びzは、各々独立しており、同一であっても異なっていてもよい。
iは、0~6の整数を表し、jは0~6の整数を表し、kは0~6の整数を表し、(i+j+k)は3~10の整数であり、((x×i)+(y×j)+(z×k))は、6~30の整数である。
Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を表す。
活性水素を有しない有機基とは、共役ジエン系重合体が有する活性末端を不活性化させる有機基である。活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、及びスルフヒドリル基(-SH)の活性水素を有する官能基がない、有機基である。
当該有機基としては、例えば、第3級アミノ基、シロキサン基が挙げられる。
これによって、変性共役ジエン系重合体は、加硫物とする際の加工性、加硫物としたときの低ヒステリシスロス性、並びに耐摩耗性により優れる傾向にある。
また、(i+j+k)は、3~6の整数であることがより好ましく、3又は4であることがさらに好ましい。
R1~R3は、各々独立に、単結合又は炭素数1~5のアルキレン基であることがより好ましく、単結合又は炭素数1~3のアルキレン基であることがさらに好ましい。
R5、R8、及びR9は、各々独立に、水素原子又は炭素数1~5のアルキル基であることがより好ましく、水素原子又は炭素数1~3のアルキル基であることがさらに好ましく、水素原子、メチル又はエチルであることがさらにより好ましい。
B1は、好ましくは、炭素数1~8の炭化水素基である。
aは、好ましくは1~4の整数、より好ましくは2~4の整数、さらに好ましくは2である。
一般式(I)中、Aは、式(II)又は(III)を表し、kが0であり、かつ、式(II)又は(III)において、aが2~10の整数であることが好ましい。
一般式(I)中、Aは、式(II)を表し、jが0、kが0であり、かつ、式(II)において、aが2~4の整数であることがより好ましい。
一般式(I)中、Aは、式(II)を表し、jが0、kが0であり、かつ、式(II)において、aが2であることがよりさらに好ましい。
本実施形態の変性共役ジエン系重合体の製造方法は、有機モノリチウム化合物を重合開始剤として用い、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る重合工程と、前記共役ジエン系重合体と、6官能以上、好ましくは8官能以上の官能基を有するカップリング剤とを反応させる反応工程であって、前記重合工程において使用した有機モノリチウム化合物1モルに対して、前記カップリング剤の官能基のモル数が0.3モル以上0.7モル未満となるように反応させる、反応工程とを有するものとすることが好ましい。
特に、カップリング剤の官能基のモル数を特定の範囲とすることにより、カップリング率と変性率を制御でき、6官能以上の官能基を有するカップリング剤を用いることにより、Mp1/Mp2、収縮因子(g’)を制御することができる。
本実施形態の変性共役ジエン系重合体の製造方法における重合工程では、有機モノリチウム化合物を重合開始剤とし、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る。
重合工程は、リビングアニオン重合反応による成長反応による重合が好ましく、これにより、活性末端を有する共役ジエン系重合体を得ることができ、高変性率の変性ジエン系重合体を得ることができる傾向にある。
共役ジエン化合物としては、重合可能な単量体であれば特に限定されないが、例えば、1分子当り4~12の炭素原子を含む共役ジエン化合物が好ましく、より好ましくは4~8の炭素原子を含む共役ジエン化合物である。
このような共役ジエン化合物としては、以下に限定されるものではないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエンが挙げられる。
これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、イソプレンが好ましい。
これらは1種単独で用いてもよいし、2種以上を併用してもよい。
モノビニル芳香族化合物としては、以下に限定されるものではないが、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレンが挙げられる。
これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。
これらは1種単独で用いてもよいし、2種以上を併用してもよい。
アレン類としては、例えば、プロパジエン、1,2-ブタジエンが挙げられる。
アセチレン類としては、例えば、エチルアセチレン、ビニルアセチレンが挙げられる。
共重合体鎖中の各単量体の組成分布としては、特に限定されず、例えば、統計的ランダムな組成に近い完全ランダム共重合体、組成がテーパー状に分布しているテーパー(勾配)ランダム共重合体が挙げられる。
共役ジエンの結合様式、すなわち1,4-結合や1,2-結合等の組成は、均一であってもよいし、分布があってもよい。
1つのブロックを構成する重合体としては、1つの種類の単量体からなる重合体であっても、2種以上の単量体からなる共重合体であってもよい。例えば、1,3-ブタジエンからなる重合体ブロックを「B」で表し、1,3-ブタジエンとイソプレンの共重合体を「B/I」で表し、1,3-ブタジエンとスチレンの共重合体を「B/S」で表し、スチレンからなる重合体ブロックを「S」で表すと、B-B/I2型ブロック共重合体、B-B/S2型ブロック共重合体、S-B2型ブロック共重合体、B-B/S-S3型ブロック共重合体、S-B-S3型ブロック共重合体、S-B-S-B4型ブロック共重合体等で表される。
有機モノリチウム化合物としては、以下に限定されるものではないが、例えば、低分子化合物、可溶化したオリゴマーの有機モノリチウム化合物が挙げられる。
また、有機モノリチウム化合物としては、その有機基とそのリチウムの結合様式において、例えば、炭素-リチウム結合を有する化合物、窒素-リチウム結合を有する化合物、錫-リチウム結合を有する化合物が挙げられる。
活性水素を有しないアミノ基を有するアルキルリチウム化合物としては、以下に限定されるものではないが、例えば、3-ジメチルアミノプロピルリチウム、3-ジエチルアミノプロピルリチウム、4-(メチルプロピルアミノ)ブチルリチウム、4-ヘキサメチレンイミノブチルリチウムが挙げられる。
活性水素を保護した構造のアミノ基を有するアルキルリチウム化合物としては、以下に限定されるものではないが、例えば、3-ビストリメチルシリルアミノプロピルリチウム、4-トリメチルシリルメチルアミノブチルリチウムが挙げられる。
アルキルリチウム化合物としては、以下に限定されるものではないが、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウムが挙げられる。アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、sec-ブチルリチウムが好ましい。
前記他の有機金属化合物としては、例えば、アルカリ土類金属化合物、他のアルカリ金属化合物、その他の有機金属化合物が挙げられる。
アルカリ土類金属化合物としては、以下に限定されるものではないが、例えば、有機マグネシウム化合物、有機カルシウム化合物、有機ストロンチウム化合物が挙げられる。
また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート、アミドの化合物も挙げられる。
有機マグネシウム化合物としては、例えば、ジブチルマグネシウム、エチルブチルマグネシウムが挙げられる。
その他の有機金属化合物としては、例えば、有機アルミニウム化合物が挙げられる。
回分式の反応器は、例えば、攪拌機付の槽型のものが用いられる。
回分式においては、好ましくは、単量体、不活性溶媒、及び重合開始剤が初めに反応器にフィードされ、必要により単量体が重合中に連続的又は断続的に追加され、当該反応器内で重合体を含む重合体溶液が得られ、重合終了後に重合体溶液が排出される。
連続式においては、好ましくは、プラグフロー型反応器を用いることができる。連続式においては、好ましくは、連続的に単量体、不活性溶媒、及び重合開始剤が反応器にフィードされ、当該反応器内で重合体を含む重合体溶液が得られ、連続的に重合体溶液が排出される。
不活性溶媒としては、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。
炭化水素系溶媒としては、以下に限定されるものではないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。
重合反応に供する前に、不純物であるアレン類、及びアセチレン類を有機金属化合物で処理することで、高濃度の活性末端を有する共役ジエン系重合体が得られる傾向にあり、高い変性率の変性共役ジエン系重合体が得られる傾向にあるため好ましい。
極性化合物を添加することにより芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させることができ、共役ジエン部のミクロ構造を制御するためのビニル化剤としても用いることができる。
また、重合の開始反応及び成長反応の促進等にも効果がある。
これらの極性化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
また、本実施形態の変性共役ジエン系重合体又は後述する<反応工程>前の共役ジエン系重合体中の結合芳香族ビニル量は、特に限定されないが、0質量%以上60質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
結合共役ジエン量及び結合芳香族ビニル量が上記範囲であると、加硫物としたときに、低ヒステリシスロス性、及び当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性が、より優れる傾向にある。
ここで、結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。具体的には、後述する実施例に記載の方法に準じて測定することができる。
ビニル結合量が上記範囲であると、加硫物としたときに、低ヒステリシスロス性、及び当該低ヒステリシスロス性とウェットスキッド抵抗性のバランスと、耐摩耗性がより優れる傾向にある。ここで、分岐変性ジエン系重合体がブタジエンとスチレンの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2-結合量)を求めることができる。
具体的には、後述する実施例に記載の方法により測定することができる。
ガラス転移温度については、ISO 22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とする。
具体的には、後述する実施例に記載の方法により測定することができる。
具体的には、共重合体がブタジエン-スチレン共重合体の場合、田中らの方法(Polymer,22,1721(1981))として知られているオゾン分解による方法で、前記共重合体を分解し、GPCによりスチレン連鎖分布を分析した場合、全結合スチレン量に対し、単離スチレン量が40質量%以上であり、スチレンの連鎖が8個以上の連鎖スチレン構造が5質量%以下であることが好ましい。この場合、得られる加硫ゴムが特に低ヒステリシスロスである優れた性能となる傾向にある。
本実施形態の変性共役ジエン系重合体の分子量は、例えば、上述したように重合開始剤としての有機モノリチウム化合物の使用量を調整することにより制御することができる。
また、本実施形態の変性共役ジエン系重合体の分子量分布は、回分式、連続式の重合様式において、滞留時間分布を調整することにより、有効に制御できる。例えば、滞留時間分布を小さくする、すなわち、成長反応の時間分布を狭くすると、分子量分布が小さくなる傾向にある。回分式においては、好ましくは反応器内の組成が均一になる程度に十分な攪拌が行われる攪拌機付槽型反応器を用いる方法、連続式ではバックミックスがほとんどない管型反応器を用いる方法が好ましい。いずれの方法でも重合開始剤を好ましくは単量体と同時に、又は単量体を加えてから短時間の間に加え、重合開始速度が速くなるように、重合開始温度を、例えば30℃以上で、より好ましくは40℃以上として重合を開始する方法が好ましい。また、重合開始速度を速くするために、極性化合物を反応系に加える方法が好ましい。
本実施形態の変性共役ジエン系重合体の製造方法は、上述した重合工程後、当該重合工程で得られた共役ジエン系重合体と、所定のカップリング剤を反応させる反応工程を実施する。
反応工程においては、前記共役ジエン系重合体と、6官能以上の官能基を有するカップリング剤とを反応させる反応工程を有することが好ましく、8官能以上の官能基を有するカップリング剤を反応させる反応工程を有することがより好ましい。
このとき、カップリング剤の添加量としては、重合工程において使用した有機モノリチウム化合物1モルに対して、カップリング剤の官能基のモル数が0.3モル以上0.7モル未満となるよう反応させることが好ましい。
カップリング剤の官能基のモル数を特定の範囲とすることにより、カップリング率と変性率を本発明範囲に制御でき、6官能以上の官能基を有するカップリング剤を使用し、上記のような添加量とすることにより、(Mp1/Mp2)≧3.4、収縮因子(g’)を0.60未満に制御することができる。
カップリング剤として、例えばアルコキシ化合物を用いた場合、通常、アルコキシ基同士が自己縮合をすることにより、変性共役ジエン系重合体のムーニー粘度が経時変化を起こすおそれがある。
一方、上記のように、変性工程におけるカップリング剤の添加量を少なくすることにより、反応後に変性共役ジエン系重合体中に残存するアルコキシ基の数を低減でき、ムーニー粘度の経時変化を効果的に抑制することができる傾向にある。
例えば、ハロゲン化シリル基はハロゲンの数と同数をその官能基数とし、アザシリル基は1官能基、カルボニル基は1官能基、エポキシ基は1官能基、エステル基は2官能基として、化合物の合計の官能基数を求める。
分子中にアミン構造または塩基性の窒素原子を有しないカップリング剤としては、以下に限定されるものではないが、例えば、6官能である1,3,5-トリス(3-トリメトキシシリルプロピル)シクロヘキサン、6官能である1,2-ビス(トリクロロシリル)エタン、6官能であるテトラデカン-2,4,6,8,10,12-ヘキサオン、8官能であるビス(3-トリクロルシリルプロピル)ジクロルシラン等が挙げられる。
反応工程における反応時間は、好ましくは10秒以上、より好ましくは30秒以上して反応させるものとする。
反応工程における混合は、機械的な攪拌、スタティックミキサーによる攪拌等のいずれでもよい。
重合工程がバッチ式である場合は、反応工程もバッチ式であることが好ましい。
重合工程が連続式である場合は、反応工程も連続式であることが好ましい。
反応工程における反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。
カップリング剤は、不活性溶媒により希釈して反応器に連続的に供給してもよい。重合工程が回分式の場合は、重合反応器にカップリング剤を投入する方法でも、別の反応器に移送して反応工程を行ってもよい。
重合工程から反応工程への時間は短い方がよく、好ましくは10分以内、より好ましくは5分以内である。その場合、高いカップリング率、高い変性率が得られる傾向にある。
重合工程から反応工程への時間とは、例えば、重合工程がバッチ式の場合、重合のピーク温度を迎えてからカップリング剤を添加するまでの時間、重合工程が連続式の場合、反応器を出た共役ジエン系重合体を含む溶液に、カップリング剤を添加するまでの時間のことを指す。
mは、1~3の整数を表し、pは、1又は2を表す。複数存在する場合のR12~R22、m、及びpは、各々独立しており、同一であっても異なっていてもよい。
iは、0~6の整数を表し、jは、0~6の整数を表し、kは、0~6の整数を表し、(i+j+k)は、3~10の整数であり、((m-1)×i+p×j+k)は、6~30の整数を表す。
Aは、炭素数1~20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、リン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を表す。
酸素原子、窒素原子、珪素原子、硫黄原子、リン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ活性水素を有しない有機基とは、共役ジエン系重合体が有する活性末端を不活性化させる有機基である。当該活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、及びスルフヒドリル基(-SH)の活性水素を有する官能基がない、有機基である。
当該有機基としては、例えば、第3級アミノ基、シロキサン基が挙げられる。
R12~R14は、各々独立に、単結合又は炭素数1~5のアルキレン基であることがより好ましく、単結合又は炭素数1~3のアルキレン基であることがさらに好ましい。R16、R18、及びR20は、各々独立に、炭素数1~5のアルキル基であることがより好ましく、炭素数1~3のアルキル基であることがさらに好ましく、メチル又はエチルであることがさらにより好ましい。
カップリング剤1分子が有するSiORの総数から、反応により減じたSiOR数を差し引いた値が、カップリング残基が有するアルコキシシリル基の数となる。未反応で残存したアルコキシシリル基は、仕上げ時の水等により容易にシラノール(Si-OH基)となり得る。
アザシラサイクル基は、>N-Li結合及び共役ジエン系重合体末端とカップリング残基の珪素との結合を形成する。なお、>N-Li結合は、仕上げ時の水等により容易に>NH及びLiOHとなる傾向にある。
なお、アルコキシ基がカップリング残基中に多く残存すると、仕上げ時、貯蔵時に縮合反応を起こすことに起因して、重合体粘度が大きく変わる傾向にある。
本実施形態において、1つの珪素原子当たり1個のアルコキシシリル基を未反応で残すことが好ましい。その場合、重合体粘度の変化が小さく、加硫物としたときに、特に優れた低ヒステリシスロス性とウェットスキッド抵抗性とのバランスを得ることができる。
B1は、好ましくは、炭素数1~8の炭化水素基である。
aは、好ましくは1~4の整数、より好ましくは2~4の整数、さらに好ましくは2である。
B2及びB3がそれぞれ複数存在する場合には、各々独立しており、同一であっても異なっていてもよい。
このようなカップリング剤としては、以下のものに限定されないが、例えば、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、トリス(3-トリメトキシシリルプロピル)アミン、トリス(3-トリエトキシシリルプロピル)アミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、トリス(3-トリメトキシシリルプロピル)-メチル-1,3-プロパンジアミン、ビス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-(3-トリスメトキシシリルプロピル)-メチル-1,3-プロパンジアミンが挙げられる。
この場合、aは、より好ましくは2~4の整数を表す。
これにより、加硫したときに、耐摩耗性及び低ヒステリシスロス性がより優れるものとなる傾向にある。
このようなカップリング剤としては、以下のものに限定されないが、例えば、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、トリス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-ビスアミノメチルシクロヘキサン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサン、N1-(3-(ビス(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N1-メチル-N3-(3-(メチル(3-(トリメトキシシリル)プロピル)アミノ)プロピル)-N3-(3-(トリメトキシシリル)プロピル)-1,3-プロパンジアミンが挙げられる。
さらにより好ましくは、前記式(VI)中、Aは前記式(II)を表し、jは0を表し、kは0を表し、かつ、前記式(II)においてaは2を表す。
これにより、加硫したときに、耐摩耗性及び低ヒステリシスロス性がより優れるものとなる傾向にある。
このようなカップリング剤としては、以下のものに限定されないが、例えば、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリエトキシシリルプロピル)-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサンが挙げられる。
重合工程において使用した有機モノリチウム化合物1モルに対するカップリング剤の官能基のモル数との関係を、上記数値範囲となるように、カップリング剤の使用量を調整することにより、加硫物とする際の加工性、加硫物としたときの低ヒステリシスロス性、当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、並びに耐摩耗性により優れる傾向にある。
所望のカップリング率になるように反応工程を実施するには、有機モノリチウム化合物1モルに対し、添加するカップリング剤の官能基のモル数を調整するが、これが過剰であると、6分岐よりも少ない5分岐以下の重合体の割合が増加し、本実施形態の収縮因子(g’)やMp1/Mp2の要件を満足しにくい傾向にある。
したがって、カップリング剤の添加量をカップリング率に対して大きく乖離しない量にしつつ、重合開始剤の失活を防ぐのが好ましい。好ましくは、カップリング剤の添加量に対する、カップリング率の乖離が、10%以内、より好ましくは、8%以内、さらに好ましくは、5%以内である。これに加え、カップリング率が30質量%以上70質量%未満、変性率が30質量%以上70質量%未満であるとき、収縮因子(g’)やMp1/Mp2の要件を満足しやすい傾向にある。
しかし、分岐数が大きい重合体を得るためには、6官能以上の官能基を有するカップリング剤を用いる必要があり、カップリング剤の官能数が大きくなるほど反応比の制御が困難になってくる。
カップリング剤の添加量は、有機モノリチウム化合物の添加量1モルに対して、カップリング剤の官能基のモル数が0.3モル以上0.7モル未満の範囲になるように制御し、さらに添加量に誤差が生じないようにする方法を適用することが必要である。このような方法としては、例えば、重合前の単量体や重合溶媒、及び反応器の不純物処理を行う方法等が挙げられる。
本実施形態の変性共役ジエン系重合体の共役ジエン部を水素化する方法は、特に限定されず、公知の方法が利用できる。
好適な水素化の方法としては、触媒の存在下、重合体溶液に気体状水素を吹き込む方法で水素化する方法が挙げられる。
触媒としては、例えば、貴金属を多孔質無機物質に担持させた触媒等の不均一系触媒;ニッケル、コバルト等の塩を可溶化し有機アルミニウム等と反応させた触媒、チタノセン等のメタロセンを用いた触媒等の均一系触媒が挙げられる。これら中でも、マイルドな水素化条件を選択できる観点から、チタノセン触媒が好ましい。また、芳香族基の水素化は、貴金属の担持触媒を用いることによって行うことができる。
失活剤としては、以下に限定されるものではないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。
中和剤としては、以下に限定されるものではないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガスが挙げられる。
伸展油を変性共役ジエン系重合体に添加する方法としては、以下に限定されないが、伸展油を変性共役ジエン系重合体溶液に加え、混合して、油展共重合体溶液としたものを脱溶媒する方法が好ましい。
伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
伸展油の添加量は、特に限定されないが、変性共役ジエン系重合体100質量部に対し、1質量部以上50質量部以下が好ましく、2質量部以上37.5質量部以下がより好ましい。
加硫物としては、例えば、タイヤ、ホース、靴底、防振ゴム、自動車部品、免振ゴムが挙げられ、また、耐衝撃性ポリスチレン、ABS樹脂等の樹脂強化用ゴムも挙げられる。特に、変性共役ジエン系重合体は、タイヤ用のトレッドゴムの組成物に好適に用いられる。加硫物は、例えば、本実施形態の変性共役ジエン系重合体を、必要に応じて、シリカ系無機充填剤、カーボンブラック等の無機充填剤、本実施形態の変性共役ジエン系重合体以外のゴム状重合体、シランカップリング剤、ゴム用軟化剤、加硫剤、加硫促進剤、加硫助剤等と混練して、変性共役ジエン系重合体組成物とした後、加熱して加硫することにより得ることができる。
本実施形態のゴム組成物は、ゴム成分と、前記ゴム成分100質量部に対して5.0質量部以上150質量部以下のシリカ系充填剤とを含む。
前記ゴム成分は、当該ゴム成分100質量%に対して、上述した本実施形態の変性共役ジエン系重合体を10質量%以上含む。
本実施形態のゴム組成物が、タイヤ、防振ゴム等の自動車部品、靴等の加硫ゴム用途に用いられる場合にも、シリカ系充填剤を含むことが好ましい。
このようなゴム状重合体としては、以下に限定されるものではないが、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、非ジエン系重合体、天然ゴムが挙げられる。
具体的なゴム状重合体としては、以下に限定されるものではないが、例えば、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル-ブタジエンゴム又はその水素添加物が挙げられる。
したがって、ゴム成分は、該ゴム成分の総量(100質量部)に対して、本実施形態の変性共役ジエン系重合体を、好ましくは10質量部以上100質量部以下含み、より好ましくは20質量部以上90質量部以下含み、さらに好ましくは50質量部以上80質量部以下含む。
(変性共役ジエン系重合体/ゴム状重合体)の含有比率が上記範囲であると、加硫物としたときに、低ヒステリシスロス性、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れ、耐摩耗性に優れる。
シリカ系充填剤の含有量は、当該充填剤の添加効果が発現する観点から、5.0質量部以上であり、充填剤を十分に分散させ、ゴム組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下である。
ここで、主成分とは、シリカ系充填剤中に50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上含有される成分をいう。
また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も挙げられる。
これらの中でも、強度及び耐摩耗性等の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。
シリカとしては、以下に限定されるものではないが、例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカが挙げられる。これらのシリカの中でも、ウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
本実施形態において、特に比較的比表面積の大きい(例えば、200m2/g以上の)シリカ系充填剤を用いる場合に、変性共役ジエン系重合体は、シリカの分散性を改善し、特に耐摩耗性と低ヒステリシスロス性が向上する傾向にある。
他の充填剤としては、以下のものに限定されないが、例えば、カーボンブラック、金属酸化物、金属水酸化物が挙げられる。この中でも、カーボンブラックが好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
カーボンブラックの含有量は、ドライグリップ性能、導電性等のタイヤ等の用途に求められる性能を発現する観点から、0.5質量部以上とすることが好ましく、分散性の観点から、100質量部以下とすることが好ましい。
シランカップリング剤は、ゴム成分とシリカ系充填剤との相互作用を緊密にする機能を有しており、ゴム成分及びシリカ系充填剤のそれぞれに対する親和性又は結合性の基を有しており、硫黄結合部分とアルコキシシリル基又はシラノール基部分とを一分子中に有する化合物が好ましい。
このような化合物としては、以下に限定されるものではないが、例えば、ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィドが挙げられる。
ゴム用軟化剤としては、鉱物油、又は、液状若しくは低分子量の合成軟化剤が好適である。
ゴムの軟化、増容、及び加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系のゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が全炭素中30%以上45%以下を占めるものがナフテン系、芳香族炭素数が全炭素中30%を超えて占めるものが芳香族系と呼ばれている。
本実施形態の変性共役ジエン系重合体が共役ジエン化合物とビニル芳香族化合物との共重合体の変性物である場合、用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共重合体との馴染みがよい傾向にあるため好ましい。
ゴム用軟化剤の含有量がゴム成分100質量部に対して100質量部以下であることで、ブリードアウトを抑制し、ゴム組成物表面のベタツキを抑制する傾向にある。
変性共役ジエン系重合体とその他のゴム状重合体、シリカ系充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤を混合する方法については、以下に限定されるものではないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法が挙げられる。
これらのうち、ロール、バンバリーミキサー、ニーダー、押出機による溶融混練法が生産性、良混練性の観点から好ましい。
また、ゴム成分とその他の充填剤、シランカップリング剤、及び添加剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
加硫剤としては、以下のものに限定されないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が挙げられる。
硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。
加硫剤の含有量は、ゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、120℃以上200℃以下が好ましく、より好ましくは140℃以上180℃以下である。
加硫促進剤としては、従来公知の材料を用いることができ、以下のものに限定されないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の加硫促進剤が挙げられる。
また、加硫助剤としては、以下のものに限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。加硫促進剤の含有量は、ゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
本実施形態のタイヤ用ゴム組成物は、以下のものに限定されないが、例えば、省燃費タイヤ、オールシーズンタイヤ、高性能タイヤ、スタッドレスタイヤ等の各種タイヤ:トレッド、カーカス、サイドウォール、ビード部等のタイヤ各部位への利用が可能である。特に、タイヤ用ゴム組成物は、加硫物としたときに低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れているので、省燃費タイヤ、高性能タイヤのトレッド用として、より好適に用いられる。
本実施形態のタイヤは、本実施形態のゴム組成物を含有する。
本実施形態のタイヤは、以下に限定されるものではないが、例えば、省燃費タイヤ、オールシーズンタイヤ、高性能タイヤ、スタッドレスタイヤ等の各種タイヤであってよい。また、トレッド、カーカス、サイドウォール、及びビード部からなる群から選択されるタイヤ部位の少なくとも一つに本実施形態のゴム組成物を用いてなるタイヤであってよい。
特に、本実施形態のタイヤは、低ヒステリシスロス性、当該低ヒステリシスロス性とウェットスキッド抵抗性とのバランス、耐摩耗性に優れているので、省燃費タイヤ、高性能タイヤとして好適に用いられる。
なお、実施例1~7、並びに、比較例1~7の重合体の分析は以下に示す方法で行った。
試料100mgをクロロホルムで100mLにメスアップ、溶解して測定サンプルとした。
スチレンのフェニル基によるUV254nmの吸収により結合スチレン量(質量%)を測定した(島津製作所社製、分光光度計「UV-2450」)。
試料50mgを10mLの二硫化炭素に溶解して測定サンプルとした。
溶液セルを用いて、赤外線スペクトルを600~1000cm-1の範囲で測定して所定の波数における吸光度によりハンプトンの方法の計算式に従いブタジエン部分のミクロ構造を求めた(日本分光社製、フーリエ変換赤外分光光度計「FT-IR230」)。
ムーニー粘度計(上島製作所社製、「VR1132」)を用い、JIS K6300(ISO289-1)及びISO289-4に準拠し、ムーニー粘度を測定した。測定温度は、100℃とした。まず、試料を1分間予熱した後、2rpmでローターを回転させ、4分後のトルクを測定してムーニー粘度(ML1+4(100℃))とした。
ISO 22768:2006に準拠して、マックサイエンス社製、示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、-100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて、カップリング率、重量平均分子量(Mw)、及び数平均分子量(Mn)、ピークトップ分子量(Mp1、Mp2)を求めた。
ただし、Mp1とは、変性共役ジエン系重合体のGPCによるカップリング重合体のピークトップ分子量を表し、カップリング重合体のピークが複数存在する場合は、ピークの高さが最も高いピークのピークトップ分子量をMp1とする。
Mp2とは、共役ジエン系重合鎖の非カップリング重合体(最も低分子量側ピーク)のピークトップ分子量を表す。
溶離液はテトラヒドロフラン(THF)を使用した。カラムは、ガードカラム:東ソー社製 TSKguardcolumn SuperH-H、カラム:東ソー社製 TSKgel SuperH5000、TSKgel SuperH6000、TSKgel SuperH7000を使用した。オーブン温度40℃、THF流量1.0mL/分の条件で、RI検出器(東ソー社製、「HLC8020」)を用いた。測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液20μLをGPC測定装置に注入して測定した。
シリカ系ゲルを充填剤としたGPCカラムに変性した成分が吸着する特性を応用することにより測定した。具体的には、試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムの差分よりシリカカラムへの吸着量を測定し変性率を求めた。
・試料溶液の調製:
試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とした。
・ポリスチレン系カラムを用いたGPC測定条件:
THFを溶離液として用い、試料溶液20μLを装置に注入して測定した。カラムは、ガードカラム:東ソー社製 TSKguardcolumn SuperH-H、カラム:東ソー社製 TSKgel SuperH5000、TSKgel SuperH6000、TSKgel SuperH7000を使用した。カラムオーブン温度40℃、THF流量1.0mL/分の条件で、RI検出器(東ソー社製 HLC8020)を用いて測定しクロマトグラムを得た。
・シリカ系カラムを用いたGPC測定条件:
THFを溶離液として用い、試料50μLを装置に注入して測定した。カラムは、ガードカラム:DIOL 4.6×12.5mm 5micron、カラム:Zorbax PSM-1000S、PSM-300S、PSM-60Sを使用した。カラムオーブン温度40℃、THF流量0.5mL/分で、東ソー社製 CCP8020シリーズ ビルドアップ型GPCシステム:AS-8020、SD-8022、CCPS、CO-8020、RI-8021で、RI検出器を用いて測定し、クロマトグラムを得た。
・変性率の計算方法:
ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積P1、標準ポリスチレンのピーク面積P2の値を算出した。また、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積P3、標準ポリスチレンのピーク面積P4の値を算出した。これらの値を用い、下記式より変性率(%)を求めた。
変性率(%)=[1-(P2×P3)/(P1×P4)]×100
(ただし、P1+P2=P3+P4=100)
前記(6)と同様の測定を行い、算出された変性率が10%以上であった場合、窒素原子を有していると判断した。これにより、実施例1~7、及び比較例2~5、7の変性共役ジエン系重合体が窒素原子を有すること、比較例1、6の変性共役ジエン系重合体が窒素原子を有しないことを確認した。
変性共役ジエン系重合体0.5gを試料として、JIS K 0101 44.3.1に準拠して、紫外可視分光光度計(島津製作所社製の商品名「UV-1800」)を用いて測定し、モリブデン青吸光光度法により定量した。これにより、珪素原子が検出された場合(検出下限10質量ppm)、珪素原子を有していると判断した。これにより、実施例1~7、及び比較例1~7の変性共役ジエン系重合体が珪素原子を有することを確認した。
変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用して、光散乱検出器、RI検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて、標準ポリスチレンに基づいて、光散乱検出器とRI検出器の測定結果から絶対分子量を求め、RI検出器と粘度検出器の測定結果から固有粘度を求めた。直鎖ポリマーは、固有粘度[η]=-3.883M0.771に従うものとし、各分子量に対応する固有粘度の比としての収縮因子(g’)を算出した。上記式中、Mは、絶対分子量である。
カップリング重合体に由来するピークのピークトップ分子量から、ピークの高さは分子量の増大に従って小さくなっていき、ピークトップ分子量の高さの10%未満になるまでの分子量に対応する収縮因子(g’)の平均値をその変性共役ジエン系重合体の収縮因子(g’)として用いた。
溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用した。測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定した。
内容積5L(L/D:3.4)で、攪拌機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、ノルマルヘキサン1995gと反応器内に存在する重合反応の妨げになり得る不純物の中和用としてn-ブチルリチウムを反応器に入れ、70℃で5分撹拌した後、室温まで冷却して溶液を抜出し、反応器内を空にした。次に、予め不純物を除去した、ノルマルヘキサン1670g、スチレン83g、1,3-ブタジエン236g、極性物質として2,2-ビス(2-オキソラニル)プロパン1.15mmolを反応器に入れ、反応器内が58℃のときに重合開始剤としてn-ブチルリチウム(表1中、「NBL」と記載する。)2.30mmolを添加し、重合を開始した。
重合開始直後から、反応器内の温度は上昇していき、ピーク温度を迎え、その温度は78℃であった。温度の低下が確認されたところで、カップリング剤としてトリス(3-トリメトキシシリルプロピル)アミン(表中、「a」と略す。)を0.27mmol添加し、さらに10分撹拌した。カップリング剤を添加したのは、ピーク温度に達した2分後であった。
重合停止剤としてエタノールを2.30mmol加え、反応を停止させ、変性共役ジエン系重合体含有ポリマー溶液を得た。
得られた重合溶液に、酸化防止剤として2,6-ジ-tert-ブチル-4-ヒドロキシトルエンを0.64g添加した後、スチームストリッピングにより溶媒を除去し、真空乾燥を経て、変性共役ジエン系重合体Aを得た。
変性共役ジエン系重合体Aの分析結果を表1に示す。
重合開始剤の添加量を2.30mmolから1.55mmolに変更した。
カップリング剤の添加量を0.27mmolから0.090mmolに変更した。
重合開始温度は57℃、重合ピーク温度は73℃であった。
また、極性物質の添加量を0.886mmolに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Bを得た。
変性共役ジエン系重合体Bの分析結果を表1に示す。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンからトリス(3-トリエトキシシリルプロピル)アミン(表中、「b」と略す。)に変更した。
重合開始温度は57℃、重合ピーク温度は75℃であった。
その他は実施例1と同様にして、変性共役ジエン系重合体Cを得た。
変性共役ジエン系重合体Cの分析結果を表1に示す。
重合開始剤の添加量を2.30mmolから2.12mmolに変更した。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「c」と略す。)に、添加量を0.27mmolから0.18mmolに変更した。
重合開始温度は56℃、重合ピーク温度は79℃であった。
また、極性物質の添加量を1.12mmolに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Dを得た。
変性共役ジエン系重合体Dの分析結果を表1に示す。
重合開始剤の添加量を2.30mmolから1.47mmolに変更した。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「c」と略す。)に、添加量を0.27mmolから0.067mmolに変更した。
重合開始温度は56℃、重合ピーク温度は78℃であった。
また、極性物質の添加量を0.840mmolに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Eを得た。
変性共役ジエン系重合体Eの分析結果を表1に示す。
重合単量体を、下記表1に示す量に調整した。
重合開始温度は57℃、重合ピーク温度は79℃であった。
また、極性物質の添加量を1.10mmоlに変更した。
その他は、実施例1と同様にして、変性共役ジエン系重合体Fを得た。
変性共役ジエン系重合体Fの分析結果を表1に示す。
重合単量体を、下記表1に示す量に調整した。
重合開始剤の添加量を2.30mmolから2.12mmolに変更した。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンからテトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(表中、「c」と略す。)に、添加量を0.27mmolから0.18mmolに変更した。
重合開始温度は56℃、重合ピーク温度は77℃であった。
また、極性物質の添加量を1.08mmolに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Gを得た。
変性共役ジエン系重合体Gの分析結果を表1に示す。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンから1,2-ビス(トリクロロシリル)エタン(表中、「d」と略す。)に変更した。
重合開始温度は56℃、重合ピーク温度は76℃であった。
その他は実施例1と同様にして、変性共役ジエン系重合体Hを得た。
変性共役ジエン系重合体Hの分析結果を表1に示す。
重合開始剤の添加量を2.30mmolから2.64mmolに変更した。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンからビス(3-トリメトキシシリルプロピル)-N-メチルアミン(表中、「e」と略す。)に、添加量を0.27mmolから0.46mmolに変更した。
重合開始温度は58℃、重合ピーク温度は74℃であった。
また、極性物質の添加量を1.24mmolに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Iを得た。
変性共役ジエン系重合体Iの分析結果を表1に示す。
重合開始剤の添加量を2.30mmolから2.35mmolに変更した。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンからビス(3-トリメトキシシリルプロピル)-N-メチルアミン(表中、「e」と略す。)に、添加量を0.27mmolから0.79mmolに変更した。
重合開始温度は58℃、重合ピーク温度は75℃であった。
また、極性物質の添加量を1.24mmolに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Jを得た。
変性共役ジエン系重合体Jの分析結果を表1に示す。
カップリング剤添加量を0.27mmolから0.39mmolに変更した。
重合開始温度は57℃、重合ピーク温度は77℃であった。
その他は実施例1と同様にして、変性共役ジエン系重合体Kを得た。
変性共役ジエン系重合体Kの分析結果を表1に示す。
重合開始剤の添加量を2.30mmolから1.50mmolに変更した。
カップリング剤の添加量を0.27mmolから0.073mmolに変更した。
重合開始温度は57℃、重合ピーク温度は74℃であった。
また、極性物質の添加量を0.800mmolに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Lを得た。
変性共役ジエン系重合体Lの分析結果を表1に示す。
重合単量体を、下記表1に示す量に調整した。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンから1,2-ビス(トリクロロシリル)エタン(表中、「d」と略す。)に変更した。
重合開始温度は57℃、重合ピーク温度は74℃であった。
また、極性物質の添加量を1.100mmоlに変更した。
その他は実施例1と同様にして、変性共役ジエン系重合体Mを得た。
変性共役ジエン系重合体Mの分析結果を表1に示す。
カップリング剤をトリス(3-トリメトキシシリルプロピル)アミンからトリス(3-トリエトキシシリルプロピル)アミン(表中、「b」と略す。)に、添加量を0.27mmolから0.33mmolに変更した。
重合開始温度は57℃、重合ピーク温度は75℃であった。
その他は実施例1と同様にして、変性共役ジエン系重合体Nを得た。
変性共役ジエン系重合体Nの分析結果を表1に示す。
*1
NBL:ノルマルブチルリチウム
*2
2,2-ビス(2-オキソラニル)プロパンを使用
*3
a:トリス(3-トリメトキシシリルプロピル)アミン:(6官能)
b:トリス(3-トリエトキシシリルプロピル)アミン:(6官能)
c:テトラキス(3-トリメトキシリルプロピル)-1,3-プロパンジアミン:(8官能)
d:1,2-ビス(トリクロロシリル)エタン:(6官能)
e:ビス(3-トリメトキシシリルプロピル)-N-メチルアミン:(4官能)
*4
カップリング剤分子中のトリアルコキシシリル基は2官能基、ジアルコキシシリル基は1官能基、モノアルコキシシリル基は0官能基、ハロゲン化シリル基はハロゲンの数と同数を官能基数とし、アザシリル基は1官能基としてカップリング剤の官能基数を計算し、その官能基数を重合開始剤のモル数で割った値をリチウム当量比として表した。
表1中の変性率において「-」は、変性率が検出されなかったことを意味する。
実施例1~7、並びに、比較例1~7で得られた変性共役ジエン系重合体(試料A~N)を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を製造した。
変性共役ジエン系重合体(試料A~N):100質量部(オイル抜き)
シリカ(エボニック デグサ社製、「Ultrasil 7000 GR」、窒素吸着比表面積170m2/g):75.0質量部
カーボンブラック(東海カーボン社製、「シーストKH(N339)」):5.0質量部
シランカップリング剤(エボニック デグサ社製、「Si75」、ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
S-RAEオイル(JX日鉱日石エネルギー社製、「プロセスNC140」):30.0質量部
亜鉛華:2.5質量部
ステアリン酸:2.0質量部
老化防止剤(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン):2.0質量部
硫黄:1.7質量部
加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
加硫促進剤2(ジフェニルグアニジン):2.0質量部
合計:227.9質量部
温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム(試料A~M)、充填剤(シリカ、カーボンブラック)、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
第二の混練で得た配合物を室温まで冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練した。
その後、成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。
具体的には、下記の方法により評価した。その結果を表2に示す。
上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、JIS K6300-1に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後のムーニー粘度を測定した。
値が小さいほど加工性に優れることを示す。
レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
各々の測定値は、比較例7のゴム組成物に対する結果を100として指数化した。
50℃において周波数10Hz、ひずみ3%で測定したtanδを低ヒステリシスロス性の指標とした。指数が小さいほど低ヒステリシスロス性が良好であることを示す。
変性共役ジエン系重合体を、常温・常圧下で1か月間保管し、保管後のムーニー粘度を測定し、重合直後に測定したムーニー粘度との差異を算出した。
値が小さいものほど、経時変化が少なく、品質安定性が優れていることを示す。
実施例9のゴム組成物と比較例12のゴム組成物を比較すると、加硫物としたときの低ヒステリシスロス性が優れることが確認された。
実施例8、9、10のゴム組成物と比較例8のゴム組成物を比較すると、配合前のムーニー粘度が同程度にも関わらず、加硫物とする際の配合物ムーニー粘度が低く、良好な加工性を示し、加硫物としたときの低ヒステリシスロス性に優れ、さらに、実施例8、9、10のゴム組成物は、重合1か月後のムーニー粘度上昇も低く、良好な品質安定性を示すことが確認された。
表2より、実施例13、14のゴム組成物は、比較例13と比較して配合前のムーニー粘度が同程度にも関わらず、加硫物とする際の配合物ムーニー粘度が低く、良好な加工性を示し、加硫物としたときの低ヒステリシスロス性に優れることが確認された。
Claims (10)
- ゲルパーミテーションクロマトグラフィー(GPC)によるカップリング重合体の割合が、変性共役ジエン系重合体全体の30質量%以上70質量%未満であり、かつ吸着GPCによる変性率が、前記変性共役ジエン系重合体全体の30質量%以上70質量%未満であり、
前記変性共役ジエン系重合体のGPCによるカップリング重合体のピークトップ分子量をMp1で表し、非カップリング重合体のピークトップ分子量をMp2で表したとき、(Mp1/Mp2)≧3.4であり、
収縮因子(g’)が、0.60未満である、変性共役ジエン系重合体。 - 窒素原子及び/又は珪素原子を含有する、請求項1に記載の変性共役ジエン系重合体。
- (Mp1/Mp2)≧3.8である、請求項1又は2に記載の変性共役ジエン系重合体。
- 前記収縮因子(g’)が、0.50未満である、請求項1乃至3のいずれか一項に記載の変性共役ジエン系重合体。
- 前記窒素原子及び珪素原子が、カップリング剤に由来する窒素原子及び珪素原子である、請求項2乃至4のいずれか一項に記載の変性共役ジエン系重合体。
- 分岐を有し、分岐度が6以上である、請求項1乃至5のいずれか一項に記載の変性共役ジエン系重合体。
- 分岐を有し、分岐度が8以上である、請求項1乃至6のいずれか一項に記載の変性共役ジエン系重合体。
- GPCにより得られる分子量分布が、2つのピークからなる、請求項1乃至7のいずれか一項に記載の変性共役ジエン系重合体。
- 請求項1乃至8のいずれか一項に記載の変性共役ジエン系重合体を10質量%以上含むゴム成分と、
前記ゴム成分100質量部に対して5.0質量部以上150質量部以下のシリカ系充填剤と、を含む、ゴム組成物。 - 請求項9に記載のゴム組成物を含有するタイヤ。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112019002833-1A BR112019002833B1 (pt) | 2016-08-19 | 2017-08-07 | Polímero de dieno conjugado modificado, composição de borracha e pneu |
EP17841419.9A EP3502145A4 (en) | 2016-08-19 | 2017-08-07 | MODIFIED CONJUGATED DIENPOLYMER, RUBBER COMPOSITION, AND TIRES |
JP2018534358A JP6830103B2 (ja) | 2016-08-19 | 2017-08-07 | 変性共役ジエン系重合体、ゴム組成物、及びタイヤ |
KR1020197004696A KR102225164B1 (ko) | 2016-08-19 | 2017-08-07 | 변성 공액 디엔계 중합체, 고무 조성물 및 타이어 |
US16/326,581 US11414503B2 (en) | 2016-08-19 | 2017-08-07 | Modified conjugated diene-based polymer, rubber composition, and tire |
CN201780050072.9A CN109563184B (zh) | 2016-08-19 | 2017-08-07 | 改性共轭二烯系聚合物、橡胶组合物以及轮胎 |
SG11201900914XA SG11201900914XA (en) | 2016-08-19 | 2017-08-07 | Modified conjugated diene-based polymer, rubber composition and tire |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016161429 | 2016-08-19 | ||
JP2016-161429 | 2016-08-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018034194A1 true WO2018034194A1 (ja) | 2018-02-22 |
Family
ID=61196604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/028653 WO2018034194A1 (ja) | 2016-08-19 | 2017-08-07 | 変性共役ジエン系重合体、ゴム組成物、及びタイヤ |
Country Status (9)
Country | Link |
---|---|
US (1) | US11414503B2 (ja) |
EP (1) | EP3502145A4 (ja) |
JP (1) | JP6830103B2 (ja) |
KR (1) | KR102225164B1 (ja) |
CN (1) | CN109563184B (ja) |
BR (1) | BR112019002833B1 (ja) |
SG (1) | SG11201900914XA (ja) |
TW (1) | TWI648294B (ja) |
WO (1) | WO2018034194A1 (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018186367A1 (ja) * | 2017-04-06 | 2018-10-11 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JP2020026494A (ja) * | 2018-08-14 | 2020-02-20 | 住友化学株式会社 | 酸変性共役ジエン系重合体組成物及び酸変性共役ジエン系重合体組成物の製造方法 |
JP2020037676A (ja) * | 2018-08-30 | 2020-03-12 | 旭化成株式会社 | 変性共役ジエン系重合体組成物 |
JP2020041136A (ja) * | 2018-09-05 | 2020-03-19 | 旭化成株式会社 | ゴム組成物 |
WO2020070961A1 (ja) * | 2018-10-03 | 2020-04-09 | 旭化成株式会社 | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ |
JP2020059778A (ja) * | 2018-10-05 | 2020-04-16 | 株式会社ブリヂストン | ゴム組成物、トレッド及びタイヤ |
JPWO2021044921A1 (ja) * | 2019-09-05 | 2021-03-11 | ||
WO2021200098A1 (ja) * | 2020-04-03 | 2021-10-07 | 株式会社ブリヂストン | タイヤ |
JPWO2021206068A1 (ja) * | 2020-04-06 | 2021-10-14 | ||
WO2021205932A1 (ja) * | 2020-04-07 | 2021-10-14 | Zsエラストマー株式会社 | 共役ジエン系重合体、共役ジエン系重合体組成物、ゴム架橋物、およびタイヤ |
JP2022518540A (ja) * | 2019-09-11 | 2022-03-15 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物 |
RU2779290C1 (ru) * | 2018-10-03 | 2022-09-05 | Асахи Касеи Кабусики Кайся | Полимер на основе сопряженного диена, агент ветвления, способ производства полимера на основе сопряженного диена, наполненный полимер на основе сопряженного диена, резиновая композиция и шина |
WO2022230725A1 (ja) * | 2021-04-27 | 2022-11-03 | Zsエラストマー株式会社 | 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ |
JP7536383B2 (ja) | 2020-10-12 | 2024-08-20 | エルジー・ケム・リミテッド | 油展変性共役ジエン系重合体、その製造方法、及びそれを含むゴム組成物 |
US12129317B2 (en) | 2019-09-11 | 2024-10-29 | Lg Chem, Ltd. | Modified conjugated diene-based polymer and rubber composition including the same |
US12162964B2 (en) | 2019-09-11 | 2024-12-10 | Lg Chem, Ltd. | Modified conjugated diene-based polymer and rubber composition including the same |
US12215179B2 (en) | 2019-08-06 | 2025-02-04 | Asahi Kasei Kabushiki Kaisha | Conjugated diene-based polymer, branching agent, production method for conjugated diene-based polymer, oil extended conjugated diene-based polymer, rubber composition, and tire |
JP7626631B2 (ja) | 2020-04-03 | 2025-02-04 | 旭化成株式会社 | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113493543B (zh) * | 2020-04-08 | 2023-09-05 | 旭化成株式会社 | 共轭二烯系聚合物及其制造方法以及橡胶组合物 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015131955A (ja) * | 2013-12-13 | 2015-07-23 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
JP2016079217A (ja) * | 2014-10-10 | 2016-05-16 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
KR20160063980A (ko) * | 2014-11-27 | 2016-06-07 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물 |
WO2016133154A1 (ja) * | 2015-02-19 | 2016-08-25 | 旭化成株式会社 | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ |
WO2016199779A1 (ja) * | 2015-06-12 | 2016-12-15 | 旭化成株式会社 | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ |
JP2017002189A (ja) * | 2015-06-10 | 2017-01-05 | 旭化成株式会社 | 変性ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ |
JP2017014339A (ja) * | 2015-06-29 | 2017-01-19 | 旭化成株式会社 | タイヤ用ゴム組成物及びその製造方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3895446B2 (ja) | 1997-12-26 | 2007-03-22 | 株式会社ブリヂストン | 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物 |
DE60027704T3 (de) | 1999-09-27 | 2012-04-05 | Asahi Kasei Kabushiki Kaisha | Kautschukmischung |
JP4129619B2 (ja) | 2001-09-27 | 2008-08-06 | Jsr株式会社 | 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ |
JP2005290355A (ja) | 2004-03-11 | 2005-10-20 | Sumitomo Chemical Co Ltd | 変性ジエン系重合体ゴム及びその製造方法 |
ES2390283T3 (es) | 2005-01-14 | 2012-11-08 | Bridgestone Corporation | Polímeros funcionalizados y neumáticos mejorados de los mismos |
EP2003146B1 (en) | 2006-03-31 | 2012-12-26 | Zeon Corporation | Use of a conjugated diene rubber for a tire |
JP5520829B2 (ja) * | 2008-10-14 | 2014-06-11 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体、その製造方法、変性共役ジエン系重合体組成物、及びタイヤ |
JP5521698B2 (ja) * | 2009-03-31 | 2014-06-18 | 日本ゼオン株式会社 | 防振ゴム部材、架橋物、防振ゴム用組成物、ならびに防振ゴム用共役ジエンゴム組成物およびその製造方法 |
KR101413791B1 (ko) * | 2009-10-02 | 2014-06-30 | 아사히 가세이 케미칼즈 가부시키가이샤 | 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체 및 변성 공액 디엔계 중합체 조성물 |
WO2011129425A1 (ja) | 2010-04-16 | 2011-10-20 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
JP5646947B2 (ja) * | 2010-10-19 | 2014-12-24 | 旭化成ケミカルズ株式会社 | 分岐変性共役ジエン系重合体の製造方法及び分岐変性共役ジエン系重合体組成物 |
SG2014014575A (en) * | 2011-08-26 | 2014-06-27 | Asahi Kasei Chemicals Corp | Method for producing modified conjugated diene polymer, modified conjugated diene polymer, modified conjugated diene polymer composition, rubber composition, rubber composition and tire |
JP5861459B2 (ja) * | 2011-12-29 | 2016-02-16 | 日本ゼオン株式会社 | タイヤトレッド用共役ジエン系ゴム組成物の製造方法 |
JP6101459B2 (ja) * | 2012-09-13 | 2017-03-22 | 日本エラストマー株式会社 | 変性共役ジエン系重合体、変性共役ジエン系重合体組成物及びその製造方法 |
-
2017
- 2017-08-07 US US16/326,581 patent/US11414503B2/en active Active
- 2017-08-07 JP JP2018534358A patent/JP6830103B2/ja active Active
- 2017-08-07 EP EP17841419.9A patent/EP3502145A4/en active Pending
- 2017-08-07 KR KR1020197004696A patent/KR102225164B1/ko active Active
- 2017-08-07 CN CN201780050072.9A patent/CN109563184B/zh active Active
- 2017-08-07 BR BR112019002833-1A patent/BR112019002833B1/pt active IP Right Grant
- 2017-08-07 SG SG11201900914XA patent/SG11201900914XA/en unknown
- 2017-08-07 WO PCT/JP2017/028653 patent/WO2018034194A1/ja unknown
- 2017-08-16 TW TW106127743A patent/TWI648294B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015131955A (ja) * | 2013-12-13 | 2015-07-23 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
JP2016079217A (ja) * | 2014-10-10 | 2016-05-16 | 旭化成ケミカルズ株式会社 | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 |
KR20160063980A (ko) * | 2014-11-27 | 2016-06-07 | 주식회사 엘지화학 | 변성 공역디엔계 중합체, 이의 제조방법, 및 이를 포함하는 고무 조성물 |
WO2016133154A1 (ja) * | 2015-02-19 | 2016-08-25 | 旭化成株式会社 | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ |
JP2017002189A (ja) * | 2015-06-10 | 2017-01-05 | 旭化成株式会社 | 変性ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ |
WO2016199779A1 (ja) * | 2015-06-12 | 2016-12-15 | 旭化成株式会社 | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ |
JP2017014339A (ja) * | 2015-06-29 | 2017-01-19 | 旭化成株式会社 | タイヤ用ゴム組成物及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3502145A4 * |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018186367A1 (ja) * | 2017-04-06 | 2018-10-11 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JPWO2018186367A1 (ja) * | 2017-04-06 | 2020-05-14 | 株式会社ブリヂストン | ゴム組成物及びタイヤ |
JP2020026494A (ja) * | 2018-08-14 | 2020-02-20 | 住友化学株式会社 | 酸変性共役ジエン系重合体組成物及び酸変性共役ジエン系重合体組成物の製造方法 |
JP7364324B2 (ja) | 2018-08-14 | 2023-10-18 | 住友化学株式会社 | 酸変性共役ジエン系重合体組成物及び酸変性共役ジエン系重合体組成物の製造方法 |
JP2020037676A (ja) * | 2018-08-30 | 2020-03-12 | 旭化成株式会社 | 変性共役ジエン系重合体組成物 |
JP7312638B2 (ja) | 2018-08-30 | 2023-07-21 | 旭化成株式会社 | 変性共役ジエン系重合体組成物の製造方法 |
JP2020041136A (ja) * | 2018-09-05 | 2020-03-19 | 旭化成株式会社 | ゴム組成物 |
JP7315409B2 (ja) | 2018-09-05 | 2023-07-26 | 旭化成株式会社 | ゴム組成物 |
JPWO2020070961A1 (ja) * | 2018-10-03 | 2021-02-15 | 旭化成株式会社 | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ |
KR102485758B1 (ko) | 2018-10-03 | 2023-01-09 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
WO2020070961A1 (ja) * | 2018-10-03 | 2020-04-09 | 旭化成株式会社 | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ |
KR20200128094A (ko) * | 2018-10-03 | 2020-11-11 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
CN111936536B (zh) * | 2018-10-03 | 2023-04-07 | 旭化成株式会社 | 共轭二烯系聚合物、支化剂、共轭二烯系聚合物的制造方法、充油共轭二烯系聚合物、橡胶组合物以及轮胎 |
CN111936536A (zh) * | 2018-10-03 | 2020-11-13 | 旭化成株式会社 | 共轭二烯系聚合物、支化剂、共轭二烯系聚合物的制造方法、充油共轭二烯系聚合物、橡胶组合物以及轮胎 |
RU2779290C1 (ru) * | 2018-10-03 | 2022-09-05 | Асахи Касеи Кабусики Кайся | Полимер на основе сопряженного диена, агент ветвления, способ производства полимера на основе сопряженного диена, наполненный полимер на основе сопряженного диена, резиновая композиция и шина |
US11339240B2 (en) | 2018-10-03 | 2022-05-24 | Asahi Kasei Kabushiki Kaisha | Conjugated diene-based polymer, branching agent, production method for conjugated diene-based polymer, extended conjugated diene-based polymer, rubber composition, and tire |
KR20220003150A (ko) * | 2018-10-03 | 2022-01-07 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
KR102356180B1 (ko) | 2018-10-03 | 2022-02-08 | 아사히 가세이 가부시키가이샤 | 공액 디엔계 중합체, 분지화제, 공액 디엔계 중합체의 제조 방법, 신전 공액 디엔계 중합체, 고무 조성물 및 타이어 |
JP2020059778A (ja) * | 2018-10-05 | 2020-04-16 | 株式会社ブリヂストン | ゴム組成物、トレッド及びタイヤ |
US12215179B2 (en) | 2019-08-06 | 2025-02-04 | Asahi Kasei Kabushiki Kaisha | Conjugated diene-based polymer, branching agent, production method for conjugated diene-based polymer, oil extended conjugated diene-based polymer, rubber composition, and tire |
WO2021044921A1 (ja) * | 2019-09-05 | 2021-03-11 | 旭化成株式会社 | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。 |
CN114341206A (zh) * | 2019-09-05 | 2022-04-12 | 旭化成株式会社 | 共轭二烯系聚合物、共轭二烯系聚合物的制造方法、共轭二烯系聚合物组合物以及橡胶组合物 |
JPWO2021044921A1 (ja) * | 2019-09-05 | 2021-03-11 | ||
JP7315686B2 (ja) | 2019-09-05 | 2023-07-26 | 旭化成株式会社 | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。 |
US12110353B2 (en) | 2019-09-11 | 2024-10-08 | Lg Chem, Ltd. | Modified conjugated diene-based polymer, method for preparing the same and rubber composition including the same |
JP7225418B2 (ja) | 2019-09-11 | 2023-02-20 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物 |
JP2022518540A (ja) * | 2019-09-11 | 2022-03-15 | エルジー・ケム・リミテッド | 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物 |
US12129317B2 (en) | 2019-09-11 | 2024-10-29 | Lg Chem, Ltd. | Modified conjugated diene-based polymer and rubber composition including the same |
US12162964B2 (en) | 2019-09-11 | 2024-12-10 | Lg Chem, Ltd. | Modified conjugated diene-based polymer and rubber composition including the same |
JP7626631B2 (ja) | 2020-04-03 | 2025-02-04 | 旭化成株式会社 | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物 |
JP7637670B2 (ja) | 2020-04-03 | 2025-02-28 | 株式会社ブリヂストン | タイヤ |
WO2021200098A1 (ja) * | 2020-04-03 | 2021-10-07 | 株式会社ブリヂストン | タイヤ |
RU2826498C1 (ru) * | 2020-04-03 | 2024-09-11 | Асахи Касеи Кабусики Кайся | Полимер на основе сопряженного диена, способ его производства, полимерная композиция на основе сопряженного диена и резиновая композиция |
JPWO2021206068A1 (ja) * | 2020-04-06 | 2021-10-14 | ||
WO2021206068A1 (ja) * | 2020-04-06 | 2021-10-14 | 旭化成株式会社 | 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 |
JP7381725B2 (ja) | 2020-04-06 | 2023-11-15 | 旭化成株式会社 | 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 |
WO2021205932A1 (ja) * | 2020-04-07 | 2021-10-14 | Zsエラストマー株式会社 | 共役ジエン系重合体、共役ジエン系重合体組成物、ゴム架橋物、およびタイヤ |
JP7536383B2 (ja) | 2020-10-12 | 2024-08-20 | エルジー・ケム・リミテッド | 油展変性共役ジエン系重合体、その製造方法、及びそれを含むゴム組成物 |
WO2022230725A1 (ja) * | 2021-04-27 | 2022-11-03 | Zsエラストマー株式会社 | 共役ジエン系重合体、ゴム組成物、ゴム架橋物、およびタイヤ |
Also Published As
Publication number | Publication date |
---|---|
SG11201900914XA (en) | 2019-02-27 |
EP3502145A4 (en) | 2019-09-18 |
KR20190032437A (ko) | 2019-03-27 |
JPWO2018034194A1 (ja) | 2019-06-13 |
CN109563184A (zh) | 2019-04-02 |
JP6830103B2 (ja) | 2021-02-17 |
CN109563184B (zh) | 2021-04-09 |
BR112019002833B1 (pt) | 2023-02-14 |
KR102225164B1 (ko) | 2021-03-09 |
EP3502145A1 (en) | 2019-06-26 |
BR112019002833A2 (pt) | 2019-05-21 |
TWI648294B (zh) | 2019-01-21 |
US20210301046A1 (en) | 2021-09-30 |
TW201815830A (zh) | 2018-05-01 |
US11414503B2 (en) | 2022-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6501847B2 (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ | |
WO2016199779A1 (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ | |
JP6830103B2 (ja) | 変性共役ジエン系重合体、ゴム組成物、及びタイヤ | |
KR102143416B1 (ko) | 변성 공액 디엔계 중합체, 그의 제조 방법, 고무 조성물, 타이어 | |
JP5911524B2 (ja) | 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP5705120B2 (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP6769780B2 (ja) | 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ | |
JP5348763B2 (ja) | 変性共役ジエン−芳香族ビニル共重合体、その製造方法、及びその共重合体組成物 | |
JP6032880B2 (ja) | 変性共役ジエン系重合体組成物、トレッド用組成物、サイドウォール用組成物及びタイヤ | |
KR102141469B1 (ko) | 변성 공액 디엔계 중합체 및 그의 고무 조성물, 그리고 타이어 | |
JP7343589B2 (ja) | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ | |
JP2018028018A (ja) | 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ | |
JP2018002986A (ja) | 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ | |
JP7315686B2 (ja) | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。 | |
JP7381725B2 (ja) | 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 | |
WO2020070961A1 (ja) | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ | |
JP6487220B2 (ja) | 変性共役ジエン系重合体、変性共役ジエン系重合体の製造方法及びその組成物 | |
WO2018199267A1 (ja) | 変性共役ジエン系重合体、重合体組成物、及びゴム組成物 | |
JP2019131723A (ja) | 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17841419 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018534358 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197004696 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019002833 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2017841419 Country of ref document: EP Effective date: 20190319 |
|
ENP | Entry into the national phase |
Ref document number: 112019002833 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190212 |