WO2017052344A1 - 발광소자, 발광소자 패키지 및 발광장치 - Google Patents
발광소자, 발광소자 패키지 및 발광장치 Download PDFInfo
- Publication number
- WO2017052344A1 WO2017052344A1 PCT/KR2016/010785 KR2016010785W WO2017052344A1 WO 2017052344 A1 WO2017052344 A1 WO 2017052344A1 KR 2016010785 W KR2016010785 W KR 2016010785W WO 2017052344 A1 WO2017052344 A1 WO 2017052344A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- electrode
- emitting device
- layer
- semiconductor layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
- H10H20/8316—Multi-layer electrodes comprising at least one discontinuous layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/811—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
- H10H20/812—Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/82—Roughened surfaces, e.g. at the interface between epitaxial layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/825—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/831—Electrodes characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/833—Transparent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/83—Electrodes
- H10H20/832—Electrodes characterised by their material
- H10H20/835—Reflective materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/84—Coatings, e.g. passivation layers or antireflective coatings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/8506—Containers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/851—Wavelength conversion means
- H10H20/8511—Wavelength conversion means characterised by their material, e.g. binder
- H10H20/8512—Wavelength conversion materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
- H10H20/854—Encapsulations characterised by their material, e.g. epoxy or silicone resins
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/855—Optical field-shaping means, e.g. lenses
- H10H20/856—Reflecting means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/857—Interconnections, e.g. lead-frames, bond wires or solder balls
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1204—Optical Diode
- H01L2924/12041—LED
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/181—Encapsulation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/032—Manufacture or treatment of electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/816—Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
- H10H20/8162—Current-blocking structures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
Definitions
- the embodiment relates to a light emitting device, a method of manufacturing the light emitting device, a light emitting device package, and a light emitting device.
- a light emitting device may be generated by combining elements of group III and group V on a periodic table of a p-n junction diode having a characteristic in which electrical energy is converted into light energy. LED can realize various colors by adjusting the composition ratio of compound semiconductors.
- the light emitting device emits energy corresponding to the band gap energy of the conduction band and the valence band by combining electrons of n-layer and holes of p-layer when forward voltage is applied. When energy is emitted in the form of light, it becomes a light emitting device.
- nitride semiconductors are receiving great attention in the field of optical devices and high power electronic devices due to their high thermal stability and wide bandgap energy.
- blue light emitting devices, green light emitting devices, and ultraviolet light emitting devices using nitride semiconductors are commercially used and widely used.
- the light emitting device may be classified into a horizontal type and a vertical type according to the position of the electrode.
- the horizontal type light emitting devices are formed such that a nitride semiconductor layer is formed on a substrate, and two electrode layers are disposed above the nitride semiconductor layer.
- light emitting devices have recently been applied for various IT devices or mobile phones
- small LED chips have been employed for light emitting devices for IT devices or mobile phones.
- small horizontal LED chips have recently been adopted for mobile phones.
- the light emitting device chip for a mobile phone in the prior art has a limitation of the distance between the n electrode and the p electrode, depending on the size (size), there is a technical problem that can not reflect the distance design between electrodes in consideration of the current diffusion distance.
- Embodiments provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package, and an illumination device capable of improving optical characteristics.
- the light emitting device includes a first conductive semiconductor layer, an active layer on the first conductive semiconductor layer, a second conductive semiconductor layer on the active layer, a light-transmitting ohmic layer on the second conductive semiconductor layer, and A first electrode may be electrically connected to a first conductive semiconductor layer, and a second electrode may be included on the light-transmitting ohmic layer.
- the first electrode may include a first pad electrode and a first branch electrode
- the second electrode may include a second pad electrode and a second branch electrode
- the light emitting device may include two first sides facing each other and two second sides facing each other.
- the width of the first side is greater than the width of the second side, and the first side and the second side may be perpendicular to each other.
- the distance between the first branch electrode and the second branch electrode may be 1/6 to 1/2 of the width of the second side.
- the light emitting device of the embodiment may include two long sides facing each other and two short sides facing each other, and the long side and the short sides may be perpendicular to each other. Accordingly, the light emitting device may have a rectangular shape including a long side and a short side. In this embodiment, the distance between the first branch electrode and the second branch electrode may be 1/6 to 1/2 of the short side width of the light emitting device.
- the light emitting device package according to the embodiment may include the light emitting device.
- the light emitting device may include the light emitting device package.
- the embodiment can provide a light emitting device, a method of manufacturing a light emitting device, a light emitting device package, and a lighting device that can improve optical characteristics of a light emitting device through an interelectrode distance design considering a current spreading distance.
- the current through the light emitting device chip analysis By calculating the current spreading length (Ls) and designing between branch electrodes suitable for Ls, the operating voltage Vf can be lowered, and there is a technical effect that the light output Po is equal to or increased.
- FIG. 1 is a plan view of a light emitting device according to a first embodiment
- FIG. 2 is a cross-sectional view of a light emitting device according to the first embodiment
- FIG. 3 is a conceptual diagram of current spreading of a light emitting device according to an embodiment
- FIG. 4 is a view of characteristic change first data of a light emitting device according to an embodiment
- FIG. 6 is a plan view of a light emitting device according to a second embodiment
- FIG. 7 is a partial sectional view of a light emitting device according to a second embodiment
- FIG. 8 is a partial sectional view of a light emitting device according to a third embodiment
- FIG. 9 is a cross-sectional view of a light emitting device package according to the embodiment.
- each layer, region, pattern, or structure is “on / over” or “under” the substrate, each layer, layer, pad, or pattern.
- “on / over” and “under” include both “directly” or “indirectly” formed. do.
- the criteria for the above / above or below of each layer will be described based on the drawings.
- FIG. 1 is a plan view of a light emitting device 100 according to the first embodiment
- FIG. 2 is a cross-sectional view taken along line II ′ of the light emitting device 100 according to the embodiment.
- the light emitting device 100 may include a light emitting structure 110 on the substrate 105.
- the substrate 105 may include an insulating substrate or a conductive substrate, and may be formed of a single layer or a plurality of layers.
- the substrate 105 may include sapphire (Al 2 O 3 ), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga 2 0 3 At least one or a combination thereof may be used, but is not limited thereto.
- a predetermined concave-convex structure R is formed on the substrate 105 to increase light extraction efficiency, but is not limited thereto.
- a predetermined buffer layer 107 may be formed on the substrate 105 to mitigate lattice mismatch between the light emitting structure 110 and the substrate 105 formed thereafter.
- the buffer layer 107 may be formed of a single layer or a plurality of layers, and may be formed of at least one or a combination of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN, but is not limited thereto.
- the light emitting structure 110 may include a first conductive semiconductor layer 112 on the substrate 105, an active layer 114 and an active layer 114 on the first conductive semiconductor layer 112.
- the second conductive semiconductor layer 116 may be included.
- the first conductivity type semiconductor layer 112 may be implemented as a group III-V compound semiconductor doped with a first conductivity type dopant.
- the first conductivity type dopant is an n type dopant and may include Si, Ge, Sn, Se, Te, but is not limited thereto. It doesn't work.
- a semiconductor material having the compositional formula of the first conductive semiconductor layer 112 may be In x Al y Ga 1 -x- y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1) It may include, and may be formed of a single layer or a plurality of layers.
- the first conductive semiconductor layer 112 is formed of any one or more of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP. Can be.
- the active layer 114 electrons injected through the first conductive semiconductor layer 112 and holes injected through the second conductive semiconductor layer 116 formed thereafter meet each other, thereby inducing energy of an active layer (light emitting layer) material. It is a layer that emits light with energy determined by the band.
- the active layer 114 may be formed of at least one of a single quantum well structure, a multi quantum well structure (MQW), a quantum-wire structure, or a quantum dot structure.
- MQW multi quantum well structure
- quantum-wire structure a quantum-wire structure
- quantum dot structure a quantum dot structure
- the active layer 114 may have a well layer / barrier layer structure.
- the active layer 114 may be formed of any one or more pair structures of InGaN / GaN, InGaN / InGaN, GaN / AlGaN, InAlGaN / GaN, GaAs / AlGaAs, GaP / AlGaP, InGaAs / AlGaAs, InGaP / AlGaP. But it is not limited thereto.
- the well layer may be formed of a material having a lower band gap than the band gap of the barrier layer.
- an electron blocking layer may be formed on the active layer 114.
- the electron blocking layer may be formed of an Al x In y Ga (1-xy) N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1) based semiconductor, and an energy band gap of the active layer 114. Rather, it may have a higher energy band gap.
- the electron blocking layer 160 may efficiently block electrons overflowed by ion implantation into a p-type and increase the injection efficiency of holes.
- the second conductivity-type semiconductor layer 116 may be a Group III-V compound semiconductor layer doped with a second conductivity type dopant.
- the second conductivity type semiconductor layer 116 is a semiconductor having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). It may comprise a material and may be formed of a single layer or a plurality of layers.
- the second conductivity type semiconductor layer 116 is a p type semiconductor layer
- the second conductivity type dopant may include Mg, Zn, Ca, Sr, Ba, or the like as a p type dopant.
- a portion of the second conductive semiconductor layer 116 and a portion of the active layer 114 may be removed to expose a portion of the first conductive semiconductor layer 112.
- the light-transmitting ohmic layer 120 is formed on the second conductivity-type semiconductor layer 116, and the second electrode 140 and the exposed first conductivity-type semiconductor layer (120) are formed on the light-transmitting ohmic layer 120.
- the first electrode 130 may be formed on the 112.
- the translucent ohmic layer 120 may be formed by stacking a single metal, a metal alloy, a metal oxide, or the like in multiple layers so as to efficiently inject carriers.
- the light transmissive ohmic layer 120 may be formed of a light transmissive electrode to increase light extraction efficiency and to lower reliability of the operating voltage.
- the translucent ohmic layer 120 may be formed of indium tin oxide (ITO), indium zinc oxide (IZO), indium zinc tin oxide (IZTO), indium aluminum zinc oxide (IZO), indium gallium zinc oxide (IGZO), IGTO (indium gallium tin oxide), AZO (aluminum zinc oxide), ATO (antimony tin oxide), GZO (gallium zinc oxide), IZON (IZO Nitride), AGZO (Al-Ga ZnO), IGZO (In-Ga ZnO) , ZnO, IrOx, RuOx, NiO, RuOx / ITO, Ni / IrOx / Au, and Ni / IrOx / Au / ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, At least one of Pt, Au, Hf, or a combination thereof may be formed, but is not limited thereto.
- ITO indium
- the light transmissive ohmic layer 120 may be about 40nm to 60nm. When the thickness of the light-transmitting ohmic layer 120 is less than 40 nm, the sheet resistance may be increased, and thus electrical properties may be degraded.
- the first electrode 130 may include a first pad electrode 132 and a first branch electrode 134
- the second electrode 140 may include a second pad electrode 142 and a second electrode. It may include a branch electrode 144.
- the first electrode 130 or the second electrode 140 may be formed of a single layer or a plurality of layers, and may include titanium (Ti), chromium (Cr), nickel (Ni), aluminum (Al), and platinum (Pt). ), Gold (Au), tungsten (W), molybdenum (Mo) may be formed of at least one or a combination thereof, but is not limited thereto.
- One of the technical problems of the embodiment is to provide a light emitting device that can improve the optical characteristics of the light emitting device through the inter-electrode distance design in consideration of the current diffusion distance.
- the distance between the first branch electrode and the second branch electrode is spaced apart as much as possible to improve current spreading efficiency.
- a small LED chip is used in a mobile phone or an IT device.
- the area of the small light emitting device chip is small.
- the length of the short side is about 300 ⁇ m or less, and the area of the chip itself is small, so that the distance between the branch electrodes is as far as possible. In this case, the current spreading efficiency is not properly improved.
- FIG. 3 is a conceptual diagram illustrating current diffusion of a light emitting device according to an embodiment.
- Equation 1 the current spreading density (J (x)) relation according to the distance to the electrode is expressed by Equation 1 below.
- x is the current density diffusion distance at the center of the second branch electrode 144
- r c is the half width of the second branch electrode 144
- L s is the current spreading length
- n ideal is the diode ideality factor of the light emitting device
- ⁇ is the resistivity of the translucent ohmic layer
- n ideal The value can be obtained by the following equation (Shockley equation).
- the electrode design of the light emitting device chip in particular with respect to the distance design between the first branch electrode 134 on the n-type semiconductor layer and the second branch electrode 144 on the p-type semiconductor layer, by calculating the current spreading length (Ls) through the analysis and design between the branch electrodes suitable for Ls, the operating voltage (Vf) can be lowered and the effect of increasing or decreasing the light output (Po) can be obtained. have.
- the light emitting device chip 100 may have a polygonal shape, and the light emitting device chip 100 may have a rectangular shape including a long side and a short side.
- the light emitting device may include two first sides facing each other and two second sides facing each other.
- the width L of the first side may be greater than the width S of the second side, and the first side and the second side may be perpendicular to each other.
- the distance between the first branch electrode and the second branch electrode may be 1/6 to 1/2 of the width S of the second side.
- the light emitting device chip 100 of the embodiment may include two long sides facing each other and two short sides facing each other, and the long side and the short sides may be perpendicular to each other.
- the long side may be a long side among the outer edges of the light emitting device chip 100
- the short side may be a relatively short side among the outer edges of the light emitting device chip 100.
- the distance D between the first branch electrode 134 and the second branch electrode 144 may be 1/6 to 1/2 of the short side width S of the light emitting device.
- the distance between the second branch electrode 144 and the edge of the light emitting device is controlled to 1/6 to 1/4 of the short side width S of the light emitting device, thereby decreasing the operating voltage according to the increase of current diffusion efficiency.
- luminous efficiency can be increased.
- an edge of the light emitting device may be a nearest edge parallel to the second branch electrode 144.
- the distance between the second branch electrode 144 and the edge of the light emitting device is controlled to be 1/6 to 1/5 of the short side width S of the light emitting device, thereby increasing current spreading efficiency.
- the distance D between the first branch electrode 134 and the second branch electrode 144 will be described.
- the short side width S may be about 200 ⁇ m to 300 ⁇ m, and the first branch electrode 134 and the second branch electrode 144 may be used.
- the distance D) may be 1/6 to 1/2 of the short side width S of the light emitting device.
- the short side width S may be about 300 ⁇ m
- the long side width L may be about 1,000 ⁇ m
- the distance D between the 134 and the second branch electrode 144 may be about 50 to 150 ⁇ m, but is not limited thereto.
- the short side width S may be about 200 ⁇ m to 300 ⁇ m
- the distance D between 144 may be 3/10 to 11/30 of the short side width S of the light emitting device.
- the short side width S may be about 300 ⁇ m
- the long side width L may be about 1,000 ⁇ m
- the light emitting device chip analysis is performed in particular with respect to the distance design between the first branch electrode 134 on the n-type semiconductor layer and the second branch electrode 144 on the p-type semiconductor layer.
- the operating voltage (Vf) can be lowered, and the technical effect that the light output (Po) is equal to or rises have.
- the short side width S is in the range of about 200 ⁇ m to 300 ⁇ m, and the total chip area is 300,000 ⁇ m 2 or less.
- the long side can be determined.
- the light emitting device of the embodiment may be a small light emitting device chip, and the planar area may be a light emitting chip having about 300,000 ⁇ m 2 or less.
- the light emitting device of the embodiment may include a rectangular planar shape, and may include two long sides facing each other rather than two short sides facing each other, and one short side width S may be about 200 ⁇ m to 300 ⁇ m. It is not limited to this.
- the distance D between the first branch electrode 134 and the second branch electrode 144 contributes to the improvement of the operating voltage Vf and the light output Po, the current spreading distance Ls in the chip. Considering this, an optimal design for the distance D between the branch electrodes is needed.
- the short side width S ranges from about 200 ⁇ m to 300 ⁇ m
- the first branch when the area of a horizontal chip for IT or a mobile phone is less than 300,000 ⁇ m 2 , the short side width S ranges from about 200 ⁇ m to 300 ⁇ m, the first branch.
- the distance D between the electrode 134 and the second branch electrode 144 may be designed to be about 50 ⁇ m to about 150 ⁇ m.
- the optical characteristics may be improved as shown in Table 1 below.
- the distance D between the first branch electrode 134 and the second branch electrode 144 is from 1/6 to the short side width S of the light emitting device.
- the operating voltage Vf decreased and the luminance Po also increased.
- FIG. 4 is first characteristic data of the light emitting device according to the embodiment
- FIG. 5 is second characteristic data of the light emitting device according to the embodiment.
- chip design information of the first experimental example E1, the second experimental example E2, and the third experimental example E3 is shown in Table 2 below.
- the intensity (X-axis data) may be shifted upward to the right. That is, as the second branch electrode moves inside the chip and the distance between the branch electrodes is higher than the current diffusion distance Ls, the operating voltage Vf decreases and the brightness Po may be improved.
- the Y position may indicate a position in a line passing through two electrodes to be parallel to a short side of the light emitting device chip.
- the first branch electrode 134 and the second branch electrode 144 may be disposed in parallel to each other. Accordingly, in the light emitting device according to the embodiment, the current spreading efficiency between the branch electrodes is increased, and the luminous efficiency can be increased with the decrease of the operating voltage.
- the length of the first branch electrode 134 and the length of the second branch electrode 144 may be the same or similar to each other, and may be disposed to overlap each other in a short side direction.
- the current spreading efficiency is increased by uniformly controlling the current spreading length, thereby increasing the luminous efficiency and reducing the operating voltage.
- the embodiment can provide a light emitting device capable of improving optical characteristics of the light emitting device through an interelectrode distance design considering a current spreading distance.
- the current through the light emitting device chip analysis By calculating the current spreading length (Ls) and designing between branch electrodes suitable for Ls, the operating voltage Vf can be lowered, and there is a technical effect that the light output Po is equal to or increased.
- FIG. 6 is a plan view of the light emitting device 102 according to the second embodiment
- FIG. 7 is a partial cross-sectional view of the light emitting device 102 according to the second embodiment.
- the second embodiment can employ the technical features of the first embodiment, and will be described below mainly on the main features of the second embodiment.
- the light emitting device 102 includes a substrate 105, a first conductive semiconductor layer 112, and a first conductive semiconductor layer on the substrate 105.
- the first branch electrode 130 includes a through electrode 136 contacting the first conductive semiconductor layer 112 through a through hole (not shown), thereby removing the active layer 114.
- the light emitting efficiency can be improved by reducing the area of the active layer to be relatively large.
- the area where the through electrode 136 of the first electrode is in contact with the first conductive semiconductor layer 112 is sufficiently secured to prevent an increase in operating voltage, thereby maximizing reliability and luminous efficiency of the device.
- the first horizontal width W1 of any one of the through electrodes 136 electrically connected to the first conductivity type semiconductor layer 112 may be formed between two adjacent first through electrodes 136.
- the through electrode 136 is sufficiently secured to the area electrically connected to the first conductivity-type semiconductor layer 112 to prevent the rise of the operating voltage to increase the reliability of the light emitting device Can be.
- the first horizontal width W1 of the through electrode 136 electrically connected to the first conductivity type semiconductor layer 112 is 2.5 times the first distance D1 between the through electrodes 136. It may be abnormal.
- the first horizontal width W1 of any one of the through electrodes 136 may be about 50 ⁇ m or more, and the first distance D1 between the through electrodes 136 may be about 20 ⁇ m. It is not limited to this.
- the first horizontal width W1 of any one of the through electrodes 136 may be about 50 ⁇ m to 70 ⁇ m, and the first distance D1 between the through electrodes 136 may be about 15 ⁇ m or more. It may be 25 ⁇ m, but is not limited thereto.
- the first horizontal width W1 of any one of the through electrodes 136 is less than 50 ⁇ m, the effect of reducing the operating voltage may be low.
- the first horizontal width W1 is more than 70 ⁇ m, the active region may be removed. As the number increases, the overall light emitting area becomes smaller, which may lower the light output.
- the first distance D1 between the through electrodes 136 is less than 15 ⁇ m, the light emitting area may be small because the volume of the active layer is small.
- an increase in operating voltage may occur. have.
- FIG 8 is a partial cross-sectional view of the light emitting element 103 according to the third embodiment.
- the third embodiment may employ the technical features of the first embodiment or the second embodiment, and will be described below based on the main features of the third embodiment.
- the first electrode 130 includes a first ohmic branch electrode 139 in contact with the first conductive semiconductor layer 112, and a first reflection disposed on the through electrode 136.
- the branch electrode 137 may be included.
- the ohmic characteristic of the through electrode 136 and the first conductive semiconductor layer 112 is maximized. It is possible to increase the electrical reliability by reducing the operating voltage.
- the first ohmic branch electrode 139 may include at least one or a combination of Cr, Ni, Ti, Rh, Pd, Ir, Ru, Pt, Au, and Hf, but is not limited thereto.
- the first electrode 130 is provided with a first reflective branch electrode 137 under the first branch electrode 134 to minimize light absorption by the first branch electrode 134 and thus externally. It is possible to increase the light extraction efficiency.
- the first reflective branch electrode 137 may be formed including at least one of Ag, Al, Ni, Ti, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf, or a combination thereof. It is not limited.
- the first reflective branch electrode 137 may be formed of a plurality of layers, but is not limited thereto.
- two layers of the first reflective branch electrode 137 may be Al / Ni or Ag / Ni, or a single layer may be provided with a distributed bragg reflector (DBR), but is not limited thereto.
- DBR distributed bragg reflector
- FIG. 9 is a view illustrating a light emitting device package in which a light emitting device is installed, according to embodiments.
- the light emitting device package 200 may include a package body 205, a third electrode layer 213 and a fourth electrode layer 214 installed on the package body 205, and the package body 205.
- a molding member 230 disposed at the light emitting element 100 and electrically connected to the third electrode layer 213 and the fourth electrode layer 214 and a phosphor 232 to surround the light emitting element 100. Included.
- the third electrode layer 213 and the fourth electrode layer 214 are electrically separated from each other, and serve to provide power to the light emitting device 100.
- the third electrode layer 213 and the fourth electrode layer 214 may serve to increase light efficiency by reflecting the light generated from the light emitting device 100, and generated from the light emitting device 100. It may also serve to release heat to the outside.
- the light emitting device 100 may be electrically connected to the third electrode layer 213 and / or the fourth electrode layer 214 by any one of a wire method, a flip chip method, and a die bonding method.
- the light emitting device may be applied to a backlight unit, a lighting unit, a display device, an indicator device, a lamp, a street light, a vehicle light emitting device, a vehicle display device, a smart watch, but is not limited thereto.
- a plurality of light emitting devices according to the embodiment may be arranged on the substrate in the form of a package.
- An optical member, a light guide plate, a prism sheet, a diffusion sheet, a fluorescent sheet, or the like, may be disposed on a path of light emitted from the light emitting device package of the embodiment.
Landscapes
- Led Devices (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Led Device Packages (AREA)
- Pinball Game Machines (AREA)
Abstract
실시예는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 발광장치에 관한 것이다. 실시예에 따른 발광소자는 제1 도전형 반도체층과, 상기 제1 도전형 반도체층 상에 활성층과, 상기 활성층 상에 제2 도전형 반도체층과, 상기 제2 도전형 반도체층 상에 투광성 오믹층과, 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극과, 상기 투광성 오믹층 상에 제2 전극을 포함할 수 있다. 상기 발광소자는 상호 마주보는 2개의 제1 변과 상호 마주보는 2개의 제2 변을 포함할 수 있다. 상기 제1 변의 폭은 상기 제2 변의 폭보다 크며, 상기 제1 변과 상기 제2 변은 상호 직교할 수 있다. 상기 제1 가지전극과 상기 제2 가지전극 사이의 거리는 상기 어느 하나의 제2 변의 폭의 1/6 내지 1/2일 수 있다.
Description
실시예는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 발광장치에 관한 것이다.
발광소자(Light Emitting Device)는 전기에너지가 빛 에너지로 변환되는 특성의 p-n 접합 다이오드를 주기율표상에서 Ⅲ족과 Ⅴ족의 원소가 화합하여 생성될 수 있다. LED는 화합물 반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다.
발광소자는 순방향전압 인가 시 n층의 전자(electron)와 p층의 정공(hole)이 결합하여 전도대(Conduction band)와 가전대(Valance band)의 밴드갭 에너지에 해당하는 만큼의 에너지를 발산하는데, 에너지가 빛의 형태로 발산되면 발광소자가 되는 것이다.
예를 들어, 질화물 반도체는 높은 열적 안정성과 폭넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 청색(Blue) 발광소자, 녹색(Green) 발광소자, 자외선(UV) 발광소자 등은 상용화되어 널리 사용되고 있다.
발광소자는 전극의 위치에 따라 수평형 타입(Lateral Type)과 수직형 타입(Vertical type)으로 구분될 수 있다.
종래기술에 의한 발광소자 중 수평형 타입의 발광소자는 기판 상에 질화물 반도체층을 형성하고, 질화물 반도체층의 상측에 두개의 전극층이 배치되도록 형성한다.
한편, 최근 각종 IT 장치나 휴대폰(Mobile phone) 용으로 발광소자가 적용되고 있으며, IT 장치 또는 휴대폰용 발광소자는 소형 발광소자 칩(small LED chip)이 채용되고 있다. 예를 들어, 최근 휴대폰용으로 소형 수평형 발광소자 칩(Lateral LED chip)이 채용되고 있다.
한편, 종래기술에서 휴대폰용 발광소자 칩은 사이즈(size)의 제약에 따라, n전극과 p전극 간의 거리 제한이 있는데, 전류확산 거리를 고려한 전극 간 거리 설계가 반영되지 못하는 기술적인 문제가 있다.
실시예는 광특성을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명장치를 제공하고자 한다.
실시예에 따른 발광소자는 제1 도전형 반도체층, 상기 제1 도전형 반도체층 상에 활성층, 상기 활성층 상에 제2 도전형 반도체층, 상기 제2 도전형 반도체층 상에 투광성 오믹층, 상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극, 상기 투광성 오믹층 상에 제2 전극을 포함할 수 있다.
실시예에서 상기 제1 전극은 제1 패드전극과 제1 가지전극을 포함하고, 상기 제2 전극은 제2 패드전극과 제2 가지전극을 포함할 수 있다.
상기 발광소자는 상호 마주보는 2개의 제1 변과 상호 마주보는 2개의 제2 변을 포함할 수 있다. 상기 제1 변의 폭은 상기 제2 변의 폭보다 크며, 상기 제1 변과 상기 제2 변은 상호 직교할 수 있다. 상기 제1 가지전극과 상기 제2 가지전극 사이의 거리는 상기 어느 하나의 제2 변의 폭의 1/6 내지 1/2일 수 있다.
예를 들어, 실시예의 발광소자는 상호 마주보는 2개의 장변과 상호 마주보는 2개의 단변을 포함하고, 상기 장변과 상기 단변은 상호 직교할 수 있다. 이에 따라 상기 발광소자는 장변과 단변을 포함한 사각형 형상일 수 있다. 이때, 실시예에서 상기 제1 가지전극과 상기 제2 가지전극 사이의 거리는 상기 발광소자의 단변 폭의 1/6 내지 1/2일 수 있다.
실시예에 따른 발광소자 패키지는 상기 발광소자를 구비할 수 있다.
실시예에 따른 발광장치는 상기 발광소자 패키지를 구비할 수 있다.
실시예는 전류확산 거리를 고려한 전극간 거리 설계를 통해 발광소자의 광특성을 향상시킬 수 있는 발광소자, 발광소자의 제조방법, 발광소자 패키지 및 조명장치를 제공할 수 있다.
예를 들어, 실시예에 의하면 발광소자 칩의 전극설계에 있어, 특히 n형 반도체층 상의 제1 가지전극과 p형 반도체층 상의 제2 가지전극 간의 거리 설계 관련하여, 발광소자 칩 분석을 통한 전류확산 거리(Current Spreading Length: Ls) 계산 및 Ls 에 적합한 가지 전극 간의 설계에 의해 동작전압(Vf)을 낮출 수 있고, 광출력(Po)이 동등수준이거나 상승되는 기술적 효과가 있다.
도 1은 제1 실시예에 따른 발광소자의 평면도.
도 2는 제1 실시예에 따른 발광소자의 단면도.
도 3은 실시예에 따른 발광소자의 전류확산 개념도.
도 4는 실시예에 따른 발광소자의 특성 변화 제1 데이터.
도 5는 실시예에 따른 발광소자의 특성 변화 제2 데이터.
도 6은 제2 실시예에 따른 발광소자의 평면도.
도 7은 제2 실시예에 따른 발광소자의 부분 단면도.
도 8은 제3 실시예에 따른 발광소자의 부분 단면도.
도 9는 실시예에 따른 발광소자 패키지 단면도.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
(실시예)
도 1은 제1 실시예에 따른 발광소자(100)의 평면도이며, 도 2는 실시예에 따른 발광소자(100)의 I-I'선을 따른 단면도이다.
실시예에 따른 발광소자(100)는 기판(105) 상에 발광구조물(110)을 포함할 수 있다.
상기 기판(105)은 절연성 기판 또는 전도성 기판을 포함할 수 있고, 단층 또는 복수의 층으로 형성될 수 있다. 예컨대, 상기 기판(105)은 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga203
중 적어도 하나 또는 이들의 조합이 사용될 수 있으나 이에 한정되지 않는다.
상기 기판(105) 위에는 소정의 요철 구조(R)가 형성되어 광추출 효율을 높일 수 있으나 이에 대해 한정되지 않는다.
실시예는 상기 기판(105) 위에 소정의 버퍼층(107)이 형성되어 이후 형성되는 발광구조물(110)과 기판(105) 간의 격자 부정합을 완화시켜 줄 수 있다.
상기 버퍼층(107)은 단층 또는 복수의 층으로 형성될 수 있으며, GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중 적어도 하나 또는 이들의 조합으로 형성될 수 있으나 이에 한정되지 않는다.
상기 발광구조물(110)은 상기 기판(105) 상에 제1 도전형 반도체층(112)과, 상기 제1 도전형 반도체층(112) 상에 활성층(114) 및 상기 활성층(114) 상에 제2 도전형 반도체층(116)을 포함할 수 있다.
상기 제1 도전형 반도체층(112)은 제1 도전형 도펀트가 도핑된 3족-5족 화합물 반도체로 구현될 수 있다. 예를 들어, 상기 제1 도전형 반도체층(112)이 n형 반도체층인 경우, 상기 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되지 않는다.
상기 제1 도전형 반도체층(112)은 InxAlyGa1
-x-
yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있고, 단층 또는 복수의 층으로 형성될 수 있다. 예를 들어, 상기 제1 도전형 반도체층(112)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN,AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상으로 형성될 수 있다.
상기 활성층(114)은 상기 제1 도전형 반도체층(112)을 통해서 주입되는 전자와 이후 형성되는 제2 도전형 반도체층(116)을 통해서 주입되는 정공이 서로 만나서 활성층(발광층) 물질 고유의 에너지 밴드에 의해서 결정되는 에너지를 갖는 빛을 방출하는 층이다.
상기 활성층(114)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다.
상기 활성층(114)은 우물층/장벽층 구조를 구비할 수 있다. 예를 들어, 상기 활성층(114)은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs/AlGaAs, GaP/AlGaP, InGaAs/AlGaAs, InGaP/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 상기 우물층은 상기 장벽층의 밴드 갭보다 낮은 밴드 갭을 갖는 물질로 형성될 수 있다.
실시예에 의하면, 상기 활성층(114) 상에 전자차단층(미도시)이 형성될 수 있다. 예를 들어, 상기 전자차단층은 AlxInyGa(1-x-y)N(0≤x≤1,0≤y≤1)계 반도체로 형성될 수 있으며, 상기 활성층(114)의 에너지 밴드 갭보다는 높은 에너지 밴드 갭을 가질 수 있다. 상기 전자차단층(160)은 p형으로 이온주입되어 오버플로우되는 전자를 효율적으로 차단하고, 홀의 주입효율을 증대시킬 수 있다.
실시예에서 상기 제2 도전형 반도체층(116)은 제2 도전형 도펀트가 도핑된 3족-5족 화합물 반도체층일 수 있다. 예를 들어, 상기 제2 도전형 반도체층(116)은 InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있고, 단층 또는 복수의 층으로 형성될 수 있다. 상기 제2 도전형 반도체층(116)이 p형 반도체층인 경우, 상기 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
다음으로, 제2 도전형 반도체층(116)의 일부와 활성층(114)의 일부가 제거되어 제1 도전형 반도체층(112)의 일부가 노출될 수 있다.
실시예는 상기 제2 도전형 반도체층(116) 상에 투광성 오믹층(120)이 형성되고, 상기 투광성 오믹층(120) 상에 제2 전극(140) 및 노출된 제1 도전형 반도체층(112) 상에 제1 전극(130)이 형성될 수 있다.
상기 투광성 오믹층(120)은 캐리어 주입을 효율적으로 할 수 있도록 단일 금속 혹은 금속합금, 금속산화물 등을 다중으로 적층하여 형성할 수 있다. 상기 투광성 오믹층(120)은 투광성 전극으로 형성되어 광추출 효율을 높임과 아울러 동작전압을 낮추어 신뢰성을 향상시킬 수 있다.
예를 들어, 상기 투광성 오믹층(120)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나 또는 이들의 조합을 포함하여 형성될 수 있으나, 이러한 재료에 한정되는 않는다.
상기 투광성 오믹층(120)은 약 40nm 내지 60 nm일 수 있다. 상기 투광성 오믹층(120)의 두께가 40nm 미만인 경우 면저항의 증대되어 전기적인 특성이 저하될 수 있으며, 60nm를 초과하는 경우 광투과도가 저하되어 광추출 효율이 저하될 수 있다.
실시예에서 상기 제1 전극(130)은 제1 패드전극(132)과 제1 가지전극(134)을 포함할 수 있고, 상기 제2 전극(140)은 제2 패드전극(142)과 제2 가지전극(144)을 포함할 수 있다.
상기 제1 전극(130) 또는 상기 제2 전극(140)은 단층 또는 복수의 층으로 형성될 수 있으며, 티탄(Ti), 크롬(Cr), 니켈(Ni), 알루미늄(Al), 백금(Pt), 금(Au), 텅스텐(W), 몰리브덴(Mo) 중 적어도 어느 하나 또는 이들의 합급으로 형성될 수 있으나 이에 한정되는 것은 아니다.
실시예의 기술적 과제 중의 하나는 전류확산 거리를 고려한 전극간 거리 설계를 통해 발광소자의 광특성을 향상시킬 수 있는 발광소자를 제공하고자 함이다.
한편, 종래기술에서는 전류확산 효율을 향상시키기 위해 제1 가지전극과 제2 가지전극의 거리를 최대한 이격시키고 있는데, 최근 휴대폰이나 IT 장치에는 소형 발광소자 칩(small LED chip)이 채용되고 있다. 이러한 소형 발광소자 칩의 면적은 작은데, 예를 들어 발광소자의 칩의 평면이 직사각형 형상인 경우, 단변의 길이가 약 300㎛ 이하인데, 칩 자체의 면적이 작게 되어 가지전극 사이의 거리를 최대한 이격시키는 것으로는 전류확산 효율을 제대로 향상시키지 못하는 실정이다.
도 3은 실시예에 따른 발광소자의 전류확산 개념도이다.
예를 들어, 전극과의 거리에 따른 전류확산밀도(Current Spreading density: J(x)) 관계식은 아래 수학식 1과 같다.
(단, x: 제2 가지전극(144) 중심에서 전류밀도 확산 거리, rc: 제2 가지전극(144)의 반치폭, Ls: 전류확산거리(Current Spreading Length))
Ls(전류확산거리)는 아래 수학식 2로 표현된다.
(단, t: 투광성 오믹층의 두께, nideal: 발광소자의 Diode ideality factor, ρ: 투광성 오믹층의 비저항(Resistivity))
nideal
값은 아래 수학식 3(Shockley equation)에 의해 구해질 수 있다.
이에 따라, 아래와 같이 전류확산거리(Ls)로 제1 가지전극(134) 및 제2 가지전극(144)의 간의 거리(x-rc)를 설계할 때, 최적의 전류확산밀도(J(x))를 획득할 수 있다.
즉, 실시예에 의하면 발광소자 칩의 전극설계에 있어, 특히 n형 반도체층 상의 제1 가지전극(134)과 p형 반도체층 상의 제2 가지전극(144) 간의 거리 설계 관련하여, 발광소자 칩 분석을 통한 전류확산 거리(Current Spreading Length: Ls)계산 및 Ls 에 적합한 가지 전극 간의 설계에 의해 동작전압(Vf)을 낮출 수 있고, 광출력(Po)이 동등수준이거나 상승되는 효과를 도출할 수 있다.
예를 들어, 도 1을 참조하면 발광소자 칩(100)은 다각형 형상일 수 있으며, 실시예의 발광소자 칩(100)이 장변과 단변을 포함한 직사각형 형상일 수 있다. 예를 들어, 상기 발광소자는 상호 마주보는 2개의 제1 변과 상호 마주보는 2개의 제2 변을 포함할 수 있다. 상기 제1 변의 폭(L)은 상기 제2 변의 폭(S)보다 크며, 상기 제1 변과 상기 제2 변은 상호 직교할 수 있다. 상기 제1 가지전극과 상기 제2 가지전극 사이의 거리는 상기 어느 하나의 제2 변의 폭(S)의 1/6 내지 1/2일 수 있다.
예를 들어, 실시예의 발광소자 칩(100)은 상호 마주보는 2개의 장변과 상호 마주보는 2개의 단변을 포함할 수 있고, 상기 장변과 상기 단변은 상호 직교할 수 있다. 상기 장변은 상기 발광소자 칩(100)의 외곽 모서리 중에 긴 변일 수 있고, 상기 단변은 상기 발광소자 칩(100)의 외곽 모서리 중에 상대적으로 짧은 변일 수 있다.
실시예에서 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)는 상기 발광소자의 단변 폭(S)의 1/6 내지 1/2 일 수 있다. 이때, 실시예에서 제2 가지전극(144)과 발광소자의 가장자리 까지의 거리는 상기 발광소자의 단변 폭(S)의 1/6 내지 1/4 로 제어됨에 따라 전류확산 효율 증대에 따라 동작전압 감소 및 발광효율이 증대될 수 있다. 이때, 상기 발광소자의 가장자리는 상기 제2 가지전극(144)과 평행한 최근접 가장자리일 수 있다. 또한 실시예에서 제2 가지전극(144)과 발광소자의 가장자리 까지의 거리는 상기 발광소자의 단변 폭(S)의 1/6 내지 1/ 5로 제어됨에 따라 보다 전류확산 효율이 증대될 수 있다.
좀 더 구체적으로, 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)에 대해 설명하기로 한다. 실시예의 발광소자의 면적이 약 300,000㎛2 이하인 소형 발광칩인 경우, 단변 폭(S)은 약 200㎛ 내지 300㎛일 수 있고, 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)는 상기 발광소자의 단변 폭(S)의 1/6 내지 1/2일 수 있다. 예를 들어, 실시예의 발광소자의 면적이 약 300,000㎛2 인 경우, 단변 폭(S)은 약 300㎛일 수 있고, 장변의 폭(L)은 약 1,000㎛일 수 있으며, 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)는 약 50 내지 150㎛일 수 있으나 이에 한정되는 것은 아니다.
또한, 실시예의 발광소자의 면적이 약 300,000㎛2 이하인 소형 발광칩인 경우, 단변 폭(S)은 약 200㎛ 내지 300㎛일 수 있고, 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)는 상기 발광소자의 단변 폭(S)의 3/10 내지 11/30일 수 있다. 예를 들어, 실시예의 발광소자의 면적이 약 300,000㎛2 인 경우, 단변 폭(S)은 약 300㎛일 수 있고, 장변의 폭(L)은 약 1,000㎛일 수 있으며, 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)는 약 90 내지 110㎛로 제어됨에 따라 보다 전류확산 효율을 향상시킬 수 있다.
실시예에 의하면 발광소자 칩의 전극설계에 있어, 특히 n형 반도체층 상의 제1 가지전극(134)과 p형 반도체층 상의 제2 가지전극(144) 간의 거리 설계 관련하여, 발광소자 칩 분석을 통한 전류확산 거리(Current Spreading Length: Ls) 계산 및 Ls 에 적합한 가지 전극 간의 거리(D) 제어를 통해 동작전압(Vf)을 낮출 수 있고, 광출력(Po)이 동등수준이거나 상승되는 기술적 효과가 있다.
예를 들어, IT나 휴대폰(Mobile phone)용 수평형 칩(Lateral chip) dimension에 있어, 단변 폭(S)은 약 200㎛ 내지 300㎛ 범위 내에서, 전체 칩 면적은 300,000㎛2 이하의 면적으로 장변이 결정될 수 있다. 실시예의 발광소자는 소형 발광소자 칩을 수 있는데, 그 평면 면적은 약 300,000㎛2 이하인 발광 칩일 수 있다. 또한 실시예의 발광소자는 직사각형 평면 형상을 포함할 수 있으며, 마주보는 두개의 단변과 마주보다는 두개의 장변을 포함할 수 있으며, 어느 하나의 단변 폭(S)은 약 200㎛ 내지 300㎛일 수 있으나 이에 한정되는 것은 아니다.
이때, 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)가 동작전압(Vf) 및 광출력(Po)의 향상에 기여하므로 칩에서의 전류확산 거리(Ls)를 고려하여 가지 전극 사이의 거리(D)에 대한 최적의 설계가 필요하다.
예를 들어, IT나 휴대폰(Mobile phone)용 수평형 칩(Lateral chip)의 면적이 300,000㎛2 이하의 칩에서 단변 폭(S)이 약 200㎛ 내지 300㎛ 범위인 경우에, 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리(D)는 약 50㎛ 내지 약 150㎛로 설계 될 수 있다. 또한 실시예에서 상기 제1 가지전극(134)과 상기 제2 가지전극(144) 사이의 거리가 90㎛ 내지 110㎛일 때 아래 표1과 같이 보다 향상된 광특성을 나타낼 수 있다.
표 1
가지전극간 거리 | Vf | Po(@ 20mA) | |
비교예 | 175㎛ | 2.85 | 31.7 |
실험예 | 110㎛ | 2.83 | 31.8 |
예를 들어, 수학식 2에 따라 실험대상 칩의 전류확산 거리(Ls)를 계산한 경우, 약 110㎛가 나오는 경우에, 표 1의 실험예와 비교예와 같이 가지 전극간 거리를 달리 할 때, 동작전압(Vf)과 광도(Po) 데이터의 결과는 표1과 같았다.
실시예에 의하면, 비교예와 달리, 실험예와 같이 제1 가지전극(134)과 제2 가지전극(144) 사이의 거리(D)가 상기 발광소자의 단변 폭(S)의 1/6 내지 1/2로 제어 될 때, 동작전압(Vf)이 감소하고 광도(Po)도 상승하였다.
도 4는 실시예에 따른 발광소자의 제1 특성 데이터이며, 도 5는 실시예에 따른 발광소자의 제2 특성 데이터이다.
예를 들어, 도 4에서 제1 실험예(E1), 제2 실험예(E2), 제3 실험예(E3)의 칩(Chip) 설계 정보는 아래 표2와 같다.
표 2
@20mA | 고속 Sweep | 가지전극간 거리(㎛) | Po(mW) | ||
Vf(V) | Rs | n | |||
E1 | 2.88 | 6.63 | 1.19 | 110 | 31.5 |
E2 | 2.87 | 6.30 | 1.24 | 100 | 31.7 |
E3 | 2.86 | 6.21 | 1.12 | 90 | 31.8 |
도 4에서와 같이, 가지전극간의 거리가 약 110㎛에서 약 90㎛로 변화함에 따라 Intensity(X축 데이터)가 우측으로 상향 이동(Shift)될 수 있다. 즉, 제2 가지전극이 칩 안쪽으로 이동하여 가지 전극간의 거리가 전류확산 거리(Ls)와 일치 정도가 높을수록 동작전압(Vf)이 감소하고, 광도(Po)가 향상될 수 있다.
또한 도 5와 같이, 제2 가지전극이 칩 안쪽으로 이동하여 가지 전극간의 거리가 전류확산 거리(Ls)와 일치 정도가 높을수록 가지 전극 사이에 위치하는 칩의 중심(Center) 영역의 Intensity 상승하여 발광특성이 향상됨에 따라 동작전압(Vf)이 감소하고, 광도(Po)가 증가될 수 있다. 도 5에서 Y position은 발광소자 칩의 단변에 평행하도록 두 가지전극을 관통하는 선에서의 위치를 나타낼 수 있다.
다시 도 1을 참조하면, 실시예에서 제1 가지전극(134)과 상기 제2 가지전극(144)은 상호 평행하게 배치될 수 있다. 이에 따라 실시예에 따른 발광소자는 가지전극 사이의 전류확산 효율이 증대되며, 동작전압의 감소와 더불어 발광효율이 증대될 수 있다.
또한 실시예에서 제1 가지전극(134)의 길이와 상기 제2 가지전극(144)의 길이는 상호 같거나 유사하게 형성될 수 있으며, 상호 단변 방향으로 중첩되게 배치될 수 있다. 이를 통해 전류확산 길이를 균일하게 제어함으로써 전류확산 효율이 증대되어 발광효율의 증대와 동작전압의 감소의 기술적 효과가 있다.
실시예는 전류확산 거리를 고려한 전극간 거리 설계를 통해 발광소자의 광특성을 향상시킬 수 있는 발광소자를 제공할 수 있다.
예를 들어, 실시예에 의하면 발광소자 칩의 전극설계에 있어, 특히 n형 반도체층 상의 제1 가지전극과 p형 반도체층 상의 제2 가지전극 간의 거리 설계 관련하여, 발광소자 칩 분석을 통한 전류확산 거리(Current Spreading Length: Ls) 계산 및 Ls 에 적합한 가지 전극 간의 설계에 의해 동작전압(Vf)을 낮출 수 있고, 광출력(Po)이 동등수준이거나 상승되는 기술적 효과가 있다.
도 6은 제2 실시예에 따른 발광소자(102)의 평면도이며, 도 7은 제2 실시예에 따른 발광소자(102)의 부분 단면도이다.
제2 실시예는 제1 실시예의 기술적인 특징을 채용할 수 있으며, 이하 제2 실시예의 주된 특징을 중심으로 기술하기로 한다.
도 6 및 도 7과 같이, 제2 실시예에 따른 발광소자(102)는 기판(105)과, 상기 기판(105) 상에 제1 도전형 반도체층(112), 상기 제1 도전형 반도체층(112) 상에 활성층(114), 상기 활성층(114) 상에 제2 도전형 반도체층(116), 상기 제2 도전형 반도체층(116) 상에 투광성 오믹층(120), 상기 투광성 오믹층(120) 상에 절연층(160), 상기 제1 도전형 반도체층(112)과 전기적으로 연결된 제1 가지전극(134); 상기 제1 가지전극(134)과 연결되며 상기 절연층(160)을 관통하여 상기 제1 도전형 반도체층(112)에 전기적으로 연결된 복수의 관통전극(136), 상기 제1 가지전극(134)에 전기적으로 연결된 제1 패드전극(132)을 포함할 수 있다.
제2 실시예에 의하면, 제1 가지전극(130)이 관통홀(미도시)을 통해 제1 도전형 반도체층(112)과 접하는 관통전극(136)을 구비함으로써 활성층(114)이 제거되는 영역을 줄여 활성층 면적을 상대적으로 넓게 확보하여 발광효율을 향상시킬 수 있다.
또한 제2 실시예의 의하면 제1 전극의 관통전극(136)이 제1 도전형 반도체층(112)과 접하는 면적을 충분히 확보하여 동작전압 상승을 방지하여 소자의 신뢰성 및 발광효율을 극대화할 수 있다.
예를 들어, 상기 제1 도전형 반도체층(112)과 전기적으로 연결되는 상기 관통전극(136) 중 어느 하나의 제1 수평폭(W1)은 서로 인접한 두 개의 제1 관통전극(136) 사이의 제1 거리(D1)보다 큼으로써, 상기 관통전극(136)이 제1 도전형 반도체층(112)과 전기적으로 연결되는 면적을 충분히 확보하여 동작전압의 상승을 방지하여 발광소자의 신뢰성을 증대시킬 수 있다.
제2 실시예에서 상기 제1 도전형 반도체층(112)과 전기적으로 연결되는 관통전극(136)의 제1 수평폭(W1)은 관통전극(136) 사이의 제1 거리(D1)의 2.5 배 이상일 수 있다.
예를 들어, 상기 관통전극(136) 중 어느 하나의 제1 수평폭(W1)은 약 50㎛ 이상 일 수 있으며, 관통전극(136) 사이의 제1 거리(D1)은 약 20㎛일 수 있으나 이에 한정되는 것은 아니다.
예를 들어, 상기 관통전극(136) 중 어느 하나의 제1 수평폭(W1)은 약 50㎛ 내지 70㎛일 수 있으며, 관통전극(136) 사이의 제1 거리(D1)은 약 15㎛ 내지 25㎛일 수 있으나 이에 한정되는 것은 아니다. 상기 관통전극(136) 중 어느 하나의 제1 수평폭(W1)이 50㎛ 미만의 경우 동작전압 감소의 효과가 낮을 수 있고, 제1 수평폭(W1)이 70㎛ 초과의 경우 활성층의 제거 영역이 많아져서 전체 발광 영역이 작아져서 광출력이 저하될 수 있다. 상기 관통전극(136) 사이의 제1 거리(D1)가 15㎛ 미만의 경우 활성층의 볼륨이 작아 발광영역이 작을 수 있으며, 제1 거리(D1)가 25㎛ 초과인 경우 동작전압 상승이 발생할 수 있다.
도 8은 제3 실시예에 따른 발광소자(103)의 부분 단면도이다.
제3 실시예는 제1 실시예 또는 제2 실시예의 기술적인 특징을 채용할 수 있으며, 이하 제3 실시예의 주된 특징을 중심으로 기술하기로 한다.
제3 실시예에 의하면, 상기 제1 전극(130)은 상기 제1 도전형 반도체층(112)과 접하는 제1 오믹 가지전극(139)과, 상기 관통 전극(136) 상에 배치된 제1 반사 가지전극(137)을 포함할 수 있다.
제3 실시예에 의하면, 제1 도전형 반도체층(112)과 접하는 제1 오믹 가지전극(139)을 채용함으로써 관통전극(136)과 제1 도전형 반도체층(112)과의 오믹특성을 최대한 확보하여 동작전압 감소를 통한 전기적인 신뢰성을 증대시킬 수 있다.
예를 들어, 상기 제1 오믹 가지전극(139)은 Cr, Ni, Ti, Rh, Pd, Ir, Ru, Pt, Au, Hf 중 적어도 하나 또는 이들의 조합을 포함할 수 있으나 이에 한정되지 않는다.
또한 제3 실시예에 의하면, 제1 전극(130)은 제1 가지전극(134) 하측에 제1 반사 가지전극(137)을 구비하여 제1 가지전극(134)에 의한 광흡수를 최소화하여 외부 광추출 효율을 증대시킬 수 있다.
상기 제1 반사 가지전극(137)은 Ag, Al, Ni, Ti, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나 또는 이들의 조합을 포함하여 형성될 수 있으나 이에 한정되지 않는다.
상기 제1 반사 가지전극(137)은 복수의 층으로 형성될 수 있으나 이에 한정되지 않는다. 예를 들어, 상기 제1 반사 가지전극(137)의 두개의 층인경우 Al/Ni 또는 Ag/Ni이거나, 단일층인 경우 DBR(Distributed Bragg Reflector)을 구비할 수 있으나 이에 한정되지 않는다.
도 9는 실시예들에 따른 발광소자가 설치된 발광소자 패키지를 설명하는 도면이다.
실시예에 따른 발광 소자 패키지(200)는 패키지 몸체부(205)와, 상기 패키지 몸체부(205)에 설치된 제3 전극층(213) 및 제4 전극층(214)과, 상기 패키지 몸체부(205)에 설치되어 상기 제3 전극층(213) 및 제4 전극층(214)과 전기적으로 연결되는 발광 소자(100)와, 형광체(232)를 구비하여 상기 발광 소자(100)를 포위하는 몰딩부재(230)가 포함된다.
상기 제3 전극층(213) 및 제4 전극층(214)은 서로 전기적으로 분리되며, 상기 발광 소자(100)에 전원을 제공하는 역할을 한다. 또한, 상기 제3 전극층(213) 및 제4 전극층(214)은 상기 발광 소자(100)에서 발생된 빛을 반사시켜 광 효율을 증가시키는 역할을 할 수 있으며, 상기 발광 소자(100)에서 발생된 열을 외부로 배출시키는 역할을 할 수도 있다.
상기 발광 소자(100)는 상기 제3 전극층(213) 및/또는 제4 전극층(214)과 와이어 방식, 플립칩 방식 또는 다이 본딩 방식 중 어느 하나에 의해 전기적으로 연결될 수도 있다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예에 따른 발광소자는 백라이트 유닛, 조명 유닛, 디스플레이 장치, 지시 장치, 램프, 가로등, 차량용 발광장치, 차량용 표시장치, 스마트 시계 등에 적용될 수 있으나 이에 한정되는 것은 아니다.
실시예에 따른 발광소자는 패키지 형태로 복수개가 기판 상에 어레이될 수 있다. 실시예의 발광소자 패키지에서 방출되는 광의 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트, 형광 시트 등이 배치될 수 있다.
Claims (10)
- 제1 도전형 반도체층;상기 제1 도전형 반도체층 상에 활성층;상기 활성층 상에 제2 도전형 반도체층;상기 제2 도전형 반도체층 상에 투광성 오믹층;상기 제1 도전형 반도체층과 전기적으로 연결되는 제1 전극;상기 투광성 오믹층 상에 제2 전극;을 포함하고,상기 제1 전극은 제1 패드전극과 제1 가지전극을 포함하고,상기 제2 전극은 제2 패드전극과 제2 가지전극을 포함하며,상기 발광소자는 상호 마주보는 2개의 제1 변과 상호 마주보는 2개의 제2 변을 포함하고, 상기 제1 변의 폭은 상기 제2 변의 폭보다 크며, 상기 제1 변과 상기 제2 변은 상호 직교하며, 상기 제1 가지전극과 상기 제2 가지전극 사이의 거리는 상기 어느 하나의 제2 변의 폭의 1/6 내지 1/2 인 발광소자.
- 제1 항에 있어서,상기 어느 하나의 제2 변의 폭은 200㎛ 내지 300㎛이며,상기 제1 가지전극과 상기 제2 가지전극 사이의 거리는 50㎛ 내지 150㎛인 발광소자.
- 제2 항에 있어서,상기 발광소자 칩의 상측 면적은 300,000㎛2 이하이며,상기 제1 가지전극과 상기 제2 가지전극 사이의 거리는 90㎛ 내지 110㎛인 발광소자.
- 제1 항에 있어서,상기 투광성 오믹층 상에 절연층을 더 포함하고,상기 제1 전극은,상기 제1 가지전극과 연결되며 상기 절연층을 관통하여 상기 제1 도전형 반도체층에 전기적으로 연결된 복수의 관통전극을 더 포함하는 발광소자.
- 제4 항에 있어서,상기 제1 도전형 반도체층과 전기적으로 연결되는 상기 관통전극 중 어느 하나의 제1 수평폭은 서로 인접한 두개의 제1 관통전극 사이의 제1 거리보다 큰 발광소자.
- 제4 항에 있어서,상기 제1 전극은,상기 복수의 관통전극 아래에 상기 제1 도전형 반도체층과 접하는 제1 오믹 가지전극을 더 포함하는 발광소자.
- 제6 항에 있어서,상기 제1 전극은,상기 관통 전극 상에 배치된 제1 반사 가지전극을 더 포함하는 발광소자.
- 제7 항에 있어서,상기 제1 반사 가지전극은,상기 제1 가지전극 하측에 배치되는 발광소자.
- 제1 항 내지 제8 항 중 어느 하나의 발광소자를 포함하는 발광소자 패키지.
- 제9항의 발광소자 패키지를 포함하는 발광장치.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680056091.8A CN108140699B (zh) | 2015-09-25 | 2016-09-26 | 发光器件,发光元件封装和照明装置 |
US15/762,356 US10497835B2 (en) | 2015-09-25 | 2016-09-26 | Light emitting device, light emitting element package, and light emitting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20150136863 | 2015-09-25 | ||
KR10-2015-0136863 | 2015-09-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017052344A1 true WO2017052344A1 (ko) | 2017-03-30 |
Family
ID=58386541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/010785 WO2017052344A1 (ko) | 2015-09-25 | 2016-09-26 | 발광소자, 발광소자 패키지 및 발광장치 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10497835B2 (ko) |
KR (1) | KR102623615B1 (ko) |
CN (1) | CN108140699B (ko) |
WO (1) | WO2017052344A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102016112587A1 (de) | 2016-07-08 | 2018-01-11 | Osram Opto Semiconductors Gmbh | Strahlungsemittierender Halbleiterchip |
KR102769519B1 (ko) * | 2018-02-14 | 2025-02-17 | 에피스타 코포레이션 | 발광 장치, 그 제조 방법 및 디스플레이 모듈 |
CN111048639B (zh) * | 2019-01-31 | 2022-06-24 | 深圳第三代半导体研究院 | 一种正装集成单元发光二极管 |
TWI819073B (zh) | 2019-08-22 | 2023-10-21 | 晶元光電股份有限公司 | 發光裝置、其製造方法及顯示模組 |
TW202143511A (zh) * | 2020-05-04 | 2021-11-16 | 晶元光電股份有限公司 | 發光元件 |
CN115332415A (zh) * | 2021-01-05 | 2022-11-11 | 朗明纳斯光电(厦门)有限公司 | 发光二极管、发光装置及其投影仪 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009043934A (ja) * | 2007-08-08 | 2009-02-26 | Toyoda Gosei Co Ltd | フリップチップ型発光素子 |
JP2012089695A (ja) * | 2010-10-20 | 2012-05-10 | Sharp Corp | 窒化物半導体発光素子 |
KR20120064870A (ko) * | 2010-12-10 | 2012-06-20 | 엘지이노텍 주식회사 | 발광소자 및 발광소자 패키지 |
KR20120086876A (ko) * | 2011-01-27 | 2012-08-06 | 엘지이노텍 주식회사 | 발광 소자 |
KR20140062945A (ko) * | 2012-11-15 | 2014-05-27 | 엘지이노텍 주식회사 | 발광소자 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3956918B2 (ja) * | 2002-10-03 | 2007-08-08 | 日亜化学工業株式会社 | 発光ダイオード |
JP4415575B2 (ja) | 2003-06-25 | 2010-02-17 | 日亜化学工業株式会社 | 半導体発光素子及びそれを用いた発光装置 |
CN100468788C (zh) * | 2003-12-15 | 2009-03-11 | 洲磊科技股份有限公司 | 发光元件的电极结构 |
KR100631975B1 (ko) | 2005-03-30 | 2006-10-11 | 삼성전기주식회사 | 질화물 반도체 발광소자 |
US20070190675A1 (en) * | 2006-02-10 | 2007-08-16 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of display device |
JP2008034822A (ja) * | 2006-06-28 | 2008-02-14 | Nichia Chem Ind Ltd | 半導体発光素子 |
US8217568B2 (en) * | 2007-09-26 | 2012-07-10 | Nichia Corporation | Light emitting element and light emitting device using the light emitting element |
BE1018563A4 (nl) * | 2009-01-09 | 2011-03-01 | Dredging Int | Snijkop voor het baggeren van ondergrond en gebruik van deze snijkop voor het baggeren van ondergrond. |
JP4583487B2 (ja) * | 2009-02-10 | 2010-11-17 | Dowaエレクトロニクス株式会社 | 半導体発光素子およびその製造方法 |
CN102074636B (zh) * | 2009-11-19 | 2013-04-10 | 亿光电子工业股份有限公司 | 一种倒装芯片结构的发光二极管装置 |
US9611544B2 (en) * | 2010-04-15 | 2017-04-04 | Novellus Systems, Inc. | Plasma activated conformal dielectric film deposition |
JP2012028383A (ja) * | 2010-07-20 | 2012-02-09 | Sharp Corp | 半導体発光素子およびその製造方法 |
WO2012026695A2 (en) * | 2010-08-27 | 2012-03-01 | Seoul Opto Device Co., Ltd. | Light emitting diode with improved luminous efficiency |
DE202011111091U1 (de) * | 2010-11-18 | 2019-08-07 | Seoul Viosys Co., Ltd. | Lichtemittierender Diodenchip mit Elektrodenfeld |
KR101769078B1 (ko) * | 2010-11-18 | 2017-08-18 | 서울바이오시스 주식회사 | 전극 패드를 갖는 발광 다이오드 칩 |
JP5727271B2 (ja) * | 2011-03-24 | 2015-06-03 | スタンレー電気株式会社 | 半導体発光素子 |
WO2013024921A1 (ko) * | 2011-08-17 | 2013-02-21 | 삼성전자주식회사 | 반도체 발광소자 |
JP5720601B2 (ja) * | 2012-02-14 | 2015-05-20 | 豊田合成株式会社 | 半導体発光素子 |
KR101552670B1 (ko) * | 2012-10-18 | 2015-09-11 | 일진엘이디(주) | 발광 영역 분리 트렌치를 갖는 전류 분산 효과가 우수한 고휘도 반도체 발광소자 |
KR101976459B1 (ko) * | 2012-11-02 | 2019-05-09 | 엘지이노텍 주식회사 | 발광소자, 발광소자 패키지 및 라이트 유닛 |
KR20160051394A (ko) * | 2014-11-03 | 2016-05-11 | 엘지이노텍 주식회사 | 발광소자 및 조명시스템 |
-
2016
- 2016-09-26 CN CN201680056091.8A patent/CN108140699B/zh active Active
- 2016-09-26 US US15/762,356 patent/US10497835B2/en active Active
- 2016-09-26 WO PCT/KR2016/010785 patent/WO2017052344A1/ko active Application Filing
- 2016-09-26 KR KR1020160123139A patent/KR102623615B1/ko active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009043934A (ja) * | 2007-08-08 | 2009-02-26 | Toyoda Gosei Co Ltd | フリップチップ型発光素子 |
JP2012089695A (ja) * | 2010-10-20 | 2012-05-10 | Sharp Corp | 窒化物半導体発光素子 |
KR20120064870A (ko) * | 2010-12-10 | 2012-06-20 | 엘지이노텍 주식회사 | 발광소자 및 발광소자 패키지 |
KR20120086876A (ko) * | 2011-01-27 | 2012-08-06 | 엘지이노텍 주식회사 | 발광 소자 |
KR20140062945A (ko) * | 2012-11-15 | 2014-05-27 | 엘지이노텍 주식회사 | 발광소자 |
Also Published As
Publication number | Publication date |
---|---|
US20180358513A1 (en) | 2018-12-13 |
CN108140699B (zh) | 2020-09-25 |
US10497835B2 (en) | 2019-12-03 |
CN108140699A (zh) | 2018-06-08 |
KR102623615B1 (ko) | 2024-01-11 |
KR20170037565A (ko) | 2017-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017052344A1 (ko) | 발광소자, 발광소자 패키지 및 발광장치 | |
US9847459B2 (en) | Light emitting device and lighting system | |
WO2016153213A1 (ko) | 발광 소자 패키지 및 조명 장치 | |
WO2016190664A1 (ko) | 발광소자 | |
EP2562827B1 (en) | Light emitting device | |
WO2017014512A1 (ko) | 발광 소자 | |
CN105826443A (zh) | 发光器件和照明系统 | |
WO2016190665A1 (ko) | 발광소자 | |
WO2016104958A1 (ko) | 적색 발광소자 및 조명장치 | |
KR20130069215A (ko) | 발광소자 | |
WO2015199388A1 (ko) | 발광소자 | |
KR20130019279A (ko) | 발광소자 | |
WO2016018010A1 (ko) | 발광소자 및 조명시스템 | |
WO2017119730A1 (ko) | 발광 소자 | |
WO2017034346A1 (ko) | 발광소자 및 이를 포함하는 발광소자 패키지 | |
WO2015190735A1 (ko) | 발광소자 및 이를 구비한 발광소자 패키지 | |
WO2014021651A1 (ko) | 발광 소자 | |
WO2014054891A1 (ko) | 발광소자 및 발광소자 패키지 | |
WO2016072661A1 (ko) | 자외선 발광소자 및 조명시스템 | |
WO2017018767A1 (ko) | 자외선 발광소자 및 발광소자 패키지 | |
WO2017135644A1 (ko) | 자외선 발광소자 및 조명시스템 | |
KR102315594B1 (ko) | 발광소자 및 조명시스템 | |
KR20130006846A (ko) | 발광소자 | |
WO2016159694A1 (ko) | 발광 소자 | |
WO2015156490A1 (ko) | 발광소자 및 조명시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16849069 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16849069 Country of ref document: EP Kind code of ref document: A1 |