WO2017026125A1 - 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法 - Google Patents
高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法 Download PDFInfo
- Publication number
- WO2017026125A1 WO2017026125A1 PCT/JP2016/003702 JP2016003702W WO2017026125A1 WO 2017026125 A1 WO2017026125 A1 WO 2017026125A1 JP 2016003702 W JP2016003702 W JP 2016003702W WO 2017026125 A1 WO2017026125 A1 WO 2017026125A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- strength
- steel sheet
- hot
- steel
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 200
- 239000010959 steel Substances 0.000 title claims abstract description 200
- 239000000463 material Substances 0.000 title claims description 47
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 238000005098 hot rolling Methods 0.000 title claims description 21
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 104
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 54
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 238000005204 segregation Methods 0.000 claims abstract description 27
- 238000005266 casting Methods 0.000 claims abstract description 24
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 16
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims description 64
- 230000009466 transformation Effects 0.000 claims description 47
- 230000000717 retained effect Effects 0.000 claims description 39
- 238000005096 rolling process Methods 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 27
- 239000002344 surface layer Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000004804 winding Methods 0.000 claims description 13
- 238000009749 continuous casting Methods 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 238000005097 cold rolling Methods 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 8
- 229910001335 Galvanized steel Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 239000008397 galvanized steel Substances 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 6
- 239000002994 raw material Substances 0.000 claims description 3
- 238000009713 electroplating Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 claims description 2
- 238000004453 electron probe microanalysis Methods 0.000 claims 2
- 239000002893 slag Substances 0.000 abstract 1
- 238000000137 annealing Methods 0.000 description 33
- 230000000694 effects Effects 0.000 description 31
- 238000007747 plating Methods 0.000 description 20
- 229910000734 martensite Inorganic materials 0.000 description 19
- 238000005336 cracking Methods 0.000 description 18
- 238000011282 treatment Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 229910001563 bainite Inorganic materials 0.000 description 12
- 239000012467 final product Substances 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- 229910052719 titanium Inorganic materials 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 8
- 230000006872 improvement Effects 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 229910052718 tin Inorganic materials 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- 229910001567 cementite Inorganic materials 0.000 description 6
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000005246 galvanizing Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000012937 correction Methods 0.000 description 4
- 239000013067 intermediate product Substances 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- 229910052720 vanadium Inorganic materials 0.000 description 4
- 229910000794 TRIP steel Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000002730 additional effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000680 Aluminized steel Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229910000937 TWIP steel Inorganic materials 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001887 electron backscatter diffraction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- HQFCOGRKGVGYBB-UHFFFAOYSA-N ethanol;nitric acid Chemical compound CCO.O[N+]([O-])=O HQFCOGRKGVGYBB-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/001—Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/22—Controlling or regulating processes or operations for cooling cast stock or mould
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/012—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/041—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention provides a high-strength steel sheet excellent in surface quality, strength and ductility balance, which is used in applications requiring both high strength and high formability, such as automotive steel sheets or structural materials, construction machinery, and pipes,
- the present invention relates to an intermediate product suitable for manufacturing a high-strength steel sheet, and a method for manufacturing these intermediate products.
- Patent Document 1 discloses that a steel added with Al, Si, and Mn is kept in the bainite transformation temperature region in the cooling process after annealing, so that C is concentrated in the austenite in the ferrite matrix, and is quasi-atmospheric at room temperature.
- a steel called TRIP steel (or TRIP aided steel) in which a small amount of stable austenite (residual austenite) is formed is disclosed.
- Such steel exhibits relatively high formability with TS-El balance exceeding 20000MPa even in the range of TS: 590-980MPa, but in response to the demand for higher strength exceeding TS: 980MPa. Therefore, it is difficult to ensure sufficient formability without the improvement in elongation being followed.
- twin-induced plasticity improves the ductility by generating strain-induced twin transformation by stabilizing the austenite at room temperature by adding more than 10% of the austenite stabilizing element Mn.
- TWIP steel using the plasticity effect has been proposed.
- TS 700 MPa or more
- El 40-60%
- TS-El balance is 40,000 MPa% or more, and remarkably excellent moldability is exhibited.
- such steel has a high alloy cost and low hot ductility at the slab stage, and the surface quality of the final product deteriorates due to cracking of the slab surface layer during bending straightening and hot rolling of the continuous casting machine. Slab care is essential. Further, since a special casting facility is required, the manufacturing cost is remarkably increased.
- Patent Document 3 states that the austenite is stabilized by distributing Mn to austenite while improving the manufacturability by setting the Mn amount to about 5 to 10%, TS: 980-1180 MPa, El: 30-25% TRIP steel with a TS-El balance exceeding 30000 MPa% has been proposed.
- slab cracking in the bending correction part at the time of casting is a big problem, and it has not yet solved the increase in cost due to slab care and the decrease in yield due to the deterioration of the surface quality of the final product.
- Patent Document 4 discloses a method for producing a high-strength steel sheet that reduces slab cracking by optimizing the amount of Ti and N added to the steel components, but has a relatively low strength with an Mn of 3.0% or less. No suitable production method for high strength steel sheets with Mn exceeding 3.0% is disclosed.
- Patent Document 5 discloses a technique for suppressing cracks by refining the microstructure in the slab by utilizing the phase transformation when the steel is once cooled to the Ar 3 temperature or lower once before the bent portion and then reheated.
- the transformation is remarkably delayed or lowered in the high alloying steel with Mn: more than 3.0%, the casting speed and slab cracking are extremely slow to cause the phase transformation once before the bending straightening part of the continuous casting machine.
- This technique is not always effective because it requires excessively strong cooling to cause it.
- Patent Document 6 describes means for slowly cooling to avoid the embrittlement temperature region on the high temperature side.
- this method reduces the surface quality due to vertical cracks and subsurface cracks by slowing down the thickness of the solidified shell (shell) and reducing the degree of the bulging phenomenon where the shell expands outward due to the pressure of the molten steel.
- material deterioration such as ductility and stretch flangeability occurs.
- the present invention has been made in view of the background as described above, and its purpose is to have a tensile strength of 980 MPa or more and a TS-El balance of 30000 MPa% or more, and high strength excellent in surface quality and moldability.
- An object of the present invention is to provide a steel sheet and an intermediate product suitable for manufacturing the high-strength steel sheet, and a manufacturing method capable of further improving internal quality such as slab surface quality and segregation during casting.
- the inventors of the present invention have a method that enables the production of steel having both high strength and high ductility while suppressing slab cracking and rolling cracking due to high temperature embrittlement in steel having a component composition in which the Mn content exceeds 3.0% by mass.
- the high temperature embrittlement of high Mn steel is caused by the concentration of deformation strain at the grain boundary due to the coarsening of austenite grains during the cooling process after casting, and fine AlN, Nb (CN), MnS at the grain boundary. This is due to the combination of grain boundary embrittlement due to precipitate formation. In order to suppress them, it is very effective to appropriately control the addition amounts of Ti, N and Mn.
- Ti forms fine Ti-based carbonitrides and sulfides in the microstructure and significantly suppresses austenite grain growth, while embrittles austenite grain boundaries such as AlN, Nb (CN), or fine MnS. Suppresses the formation of precipitates.
- CN Nb
- MnS fine MnS.
- Ti addition has the additional effect of improving the strength of the final product without reducing ductility.
- securing strength by adding Ti instead of Mn greatly contributes to improvement of workability other than ductility such as improvement in weldability and plating property, stretch flangeability, and deep drawability. It is presumed that this is because the Ti carbonitride precipitated in the steel as described above suppresses the recrystallization and grain growth of the microstructure during the reheating of the steel sheet and refines the microstructure.
- the substitution effect of Ti and Mn is formulated, the following formula (Ti + Mn 1/2 /400)/(0.01+5N) is within a predetermined numerical range, which improves the hot ductility described above. Has been newly found to be suitable for achieving both high strength and high strength.
- ⁇ Mn ⁇ (Mn max, i ⁇ Mn min, i ) / i (2)
- Mn max, i and Mn min, i are the values of adjacent Mn in the EPMA line analysis (beam diameter 1 ⁇ m) between 10 mm in the width direction at the 1/4 depth position of the thickness t from the material surface. It is the density
- ⁇ Mn be the average value of the concentration differences of all i positive / negative segregation pairs between 10 mm.
- the component composition is further Cr: 1.0% or less by mass%, Ni: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Nb: 0.1% or less, V: 0.1% or less, B: 0.0050% or less, Ca: 1.0% or less, REM: 1.0% or less, 2.
- the specific water amount S is 0.5 L / kg steel or more and 2.5 L / kg until the solidified shell surface layer temperature reaches 900 ° C. in the secondary cooling zone.
- a material for high-strength steel sheets that is cooled below steel and passed through the bent part and straightened part at 600 ° C to 1150 ° C and then cooled at an average cooling rate from 400 ° C to 200 ° C of 1.0 ° C / s or less. Production method.
- ⁇ Mn ⁇ (Mn max, i ⁇ Mn min, i ) / i (2)
- Mn max, i and Mn min, i are adjacent in the EPMA line analysis (beam diameter 1 ⁇ m) between any 10 mm in the plate width direction at the 1/4 depth position of the plate thickness t from the hot rolled material surface. This is the concentration of the maximum value of the positive segregation part and the minimum value of the negative segregation part of Mn.
- ⁇ Mn be the average value of the concentration differences of all i positive / negative segregation pairs between 10 mm.
- the component composition is further Cr: 1.0% or less by mass%, Ni: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Nb: 0.1% or less, V: 0.1% or less, B: 0.0050% or less, Ca: 1.0% or less, REM: 1.0% or less, 5.
- the specific water amount S is 0.5 L / kg steel or more and 2.5 L / kg until the solidified shell surface layer temperature reaches 900 ° C. in the secondary cooling zone.
- the bent part and the straightened part are passed at 600 ° C to 1150 ° C, and then the average cooling rate from 400 ° C to 200 ° C is cooled to 1.0 ° C / s or less.
- the component composition is further Cr: 1.0% or less by mass%, Ni: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Nb: 0.1% or less, V: 0.1% or less, B: 0.0050% or less, Ca: 1.0% or less, REM: 1.0% or less, 8.
- the specific water amount S is 0.5 L / kg steel or more 2.5 L until the solidified shell surface layer temperature in the continuous casting reaches 900 ° C. / kg steel or less was applied, the bent part and the straightened part were passed at 600 ° C or higher and 1150 ° C or lower, and then the average cooling rate from 400 ° C to 200 ° C was 1.0 ° C / s or less.
- the component composition is further Cr: 1.0% or less by mass%, Ni: 1.0% or less, Mo: 1.0% or less, Cu: 1.0% or less, Nb: 0.1% or less, V: 0.1% or less, B: 0.0050% or less, Ca: 1.0% or less, REM: 1.0% or less, 11.
- the specific water amount S is 0.5 L / kg steel or more and 2.5 L / kg until the solidified shell surface layer temperature in the secondary cooling zone reaches 900 ° C.
- the bent part and the straightened part are passed at 600 ° C to 1150 ° C, and then the average cooling rate from 400 ° C to 200 ° C is cooled to 1.0 ° C / s or less.
- the specific water amount S is 0.5 L / kg steel or more and 2.5 L / kg until the solidified shell surface layer temperature reaches 900 ° C. in the secondary cooling zone.
- the bent part and the straightened part are passed at 600 ° C to 1150 ° C, and then the average cooling rate from 400 ° C to 200 ° C is cooled to 1.0 ° C / s or less.
- the steel strip obtained by hot rolling at a rolling finish temperature of 3 points or more at Ar, and then winding at a temperature range of [Ms point + 50 ° C] to 700 ° C and cooling to 200 ° C or less.
- this high-strength steel sheet has excellent workability and excellent surface quality with a tensile strength (TS) of 980 MPa or more and a TS-El balance of 30000 MPa% or more.
- a suitable intermediate product can be provided.
- this high-strength steel sheet can improve vehicle strength and rigidity by molding parts with complex shapes, improving occupant safety and improving fuel efficiency by reducing vehicle weight. become.
- the material for high-strength steel sheet, hot-rolled material for high-strength steel sheet, hot-rolled annealed material for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip galvanized steel sheet and high-strength electroplated steel sheet according to the present invention will be described in detail below.
- the component composition of steel is common in the final product from a raw material to a high strength steel plate or a high strength plated steel plate.
- % in this component composition means “mass%” unless otherwise specified.
- [Ingredient composition] C 0.08% or more and 0.30% or less C not only increases the volume fraction of austenite and increases the strength, but also improves the stability and ductility of austenite. Element. This effect is not sufficiently exhibited when the C content is less than 0.08%, and the strength becomes insufficient, so the lower limit is made 0.08%. On the other hand, if the C content exceeds 0.30%, the hard phase increases excessively, which deteriorates ductility, bendability, hole expansibility or hydrogen embrittlement resistance. Therefore, the upper limit is 0.30%.
- Si 2.0% or less Si increases the solid solution C amount of austenite, and thus contributes to the improvement of the stability of austenite.
- Si promotes internal oxidation during the annealing process and contributes to improving the plating properties by reducing the surface concentration of Mn.
- Si is added excessively, a strong scale is formed during heating, which leads to surface quality deterioration due to surface cracks and scale marks.
- the upper limit of Si content is 2.0%. More preferably, it is 1.0% or less, and from the viewpoint of securing excellent surface quality, it is preferably 0.5% or less.
- Mn more than 3.0% and 10.0% or less Mn is an essential element in the present invention in order to form austenite which is thermally stable even at room temperature by being concentrated in the austenite phase. Mn contributes to forming a predetermined microstructure of the final product to be described later, and high strength and high ductility steel is obtained. Furthermore, in order to contribute to the suppression of the formation of film-like ferrite from the austenite grain boundaries and the refinement of the austenite grain size in continuous casting, the surface cracking of the slab is suppressed and the surface quality is improved. The above effect cannot be sufficiently obtained unless the Mn content is more than 3.0%, so the lower limit is made more than 3.0%. More preferably, it is 3.5% or more, and more preferably 4.0% or more.
- the Mn content is 10.0% or less. More preferably, it is 8.0% or less, and particularly preferably 6.0% or less.
- Ti 0.010% or more and 0.300% or less Ti forms fine carbonitrides and clusters in steel, and contributes to refinement of austenite during casting. Moreover, since it contributes to the improvement of hot ductility by reducing precipitates that cause austenite grain boundary embrittlement such as AlN, it is an essential element in the present invention. Furthermore, Ti refines the austenite grain size of the hot-rolled coil, thereby promoting the development of the rolling texture and contributing to the improvement of deep drawability of the annealed sheet.
- the content is preferably 0.030% or more.
- the upper limit of the Ti content is 0.300%. More preferably, it is 0.200% or less, More preferably, it is 0.150% or less.
- N 0.0020% or more and 0.0100% or less
- control of the amount of N is important.
- N combines with Ti to form fine TiN, thereby suppressing the grain growth of austenite grains in the slab during casting and contributing to the suppression of surface cracks in the slab and hot-rolled sheet.
- it is necessary to add 0.0020% or more of N.
- coarse TiN is formed and becomes the starting point of fracture, so that various properties such as hot ductility, toughness, fatigue fracture resistance, and hydrogen embrittlement resistance are deteriorated.
- the upper limit is set to 0.0100%. From the above viewpoint, it is more preferably 0.0080% or less.
- the Mn amount As described above, from the viewpoint of obtaining desired characteristics more stably, it is preferable to set the Mn amount to 3.5 to 8.0%. In this case, the lower limit of the above formula should be 1.2. This is particularly preferable for achieving both high hot ductility and strength. Thereby, any one or both of the increase in Ti and the decrease in N are promoted, and the suppression of cracking and the increase in strength due to Ti can be achieved more stably.
- P 0.05% or less
- P is a strong solid solution strengthening element, and therefore contributes to increasing the strength of steel.
- excessive addition increases solidification segregation and promotes slab cracking.
- the quality of the product is deteriorated, the welding strength is deteriorated, or the alloying of the plating is hindered, so that the surface quality is deteriorated.
- the upper limit of the P content is 0.05%.
- it is 0.020% or less, More preferably, it is 0.010% or less.
- the upper limit of the S content is 0.01%. Preferably it is 0.0030% or less, More preferably, it is 0.0020% or less.
- Al 1.5% or less Al contributes to improving the stability of austenite because it increases the amount of C dissolved in austenite.
- the variation in the second phase fraction during annealing is reduced, contributing to material stabilization.
- the upper limit of the Al content is 1.5%. More preferably, it is 1.0% or less, and it is preferably 0.5% or less from the viewpoint of securing an excellent surface quality. It is particularly preferably less than 0.3%.
- the balance of the above basic components is Fe and inevitable impurities.
- 1 type, or 2 or more types of the following component elements can be added as needed.
- Cr, Ni, Mo and Cu each 1.0% or less Since Cr, Ni, Mo and Cu have an effect of stabilizing austenite, they can be added preferably in an amount of 0.02% or more instead of Mn. However, since addition of a large amount leads to an increase in alloy cost, the addition amount of these elements should be 1.0% or less for each element.
- Cu when Cu is added alone, it segregates at the grain boundary of the base metal during heating and melts to form surface cracks. To suppress this, it is possible to add more than the same amount of Ni as Cu addition amount. preferable.
- Nb and V each 0.1% or less Nb and V form fine carbonitrides and contribute to increasing the strength of steel.
- these precipitates (carbonitrides) locally generated at the austenite grain boundaries during casting significantly deteriorate the hot ductility.
- the formation of Nb and V carbonitrides can be strongly suppressed by positively adding Ti, but if added in a large amount, the formation of carbonitrides may be caused, so these contents Is 0.1% or less for each element.
- it is 0.05%, More preferably, it is 0.02% or less.
- B 0.0050% or less B has an effect of improving the hardenability of steel even in a very small amount, and can be added when it is necessary to suppress the formation of ferrite and bainite. In order to obtain this effect, 0.0005% or more is preferably added. On the other hand, as the addition amount increases, the hot strength of austenite increases and hot rolling becomes difficult, so excessive addition is not preferable. Further, in the annealing process, it is concentrated on the surface to deteriorate the plating property. In order to suppress the above disadvantages, the upper limit of the addition amount of B is set to 0.0050%. More preferably, it is 0.0015% or less.
- Ca and REM 1.0% or less
- Each of Ca and REM may be contained in order to control the form of sulfide in steel and improve toughness. However, addition exceeding 1.0% increases the cost but saturates the effect. Therefore, the upper limit of the content is set to 1.0% for each element.
- each 0.20% or less Sn or Sb can be added for the purpose of improving the surface quality and stabilizing the material in order to suppress decarburization and nitridation on the steel sheet surface or generation of oxides.
- the hot-rolled annealing material for high-strength steel plates and the high-strength steel plates manufactured using the material for high-strength steel plates of the present invention have the following structures, respectively.
- tissue a retained austenite phase and a ferrite phase shall be included. That is, by making ferrite a main phase and having a structure having at least a retained austenite phase therein, the effect of improving the strength and ductility due to the TRIP effect described above can be obtained.
- the ratio ⁇ Mn / ⁇ Mn of the average Mn concentration ( ⁇ Mn) of the retained austenite phase to the average Mn concentration ( ⁇ Mn) of the ferrite phase is 1.5 or more for the hot-rolled annealing material for high-strength steel plates and 1.5 or more for the high-strength steel plates. It is important to be. That is, in order to obtain stable retained austenite, it is indispensable to distribute Mn in ferrite to austenite among Mn in all compositions. If the ratio ⁇ Mn / ⁇ Mn is less than 1.5 at the final cold-rolled sheet stage, the ferrite becomes hard and inferior in formability, and the residual austenite becomes unstable and the ductility deteriorates.
- the ratio ⁇ Mn / ⁇ Mn needs to be 1.5 or more. More preferably, it is 3 or more and 6 or more.
- the ratio ⁇ Mn / ⁇ Mn exceeds 20
- the above distribution is promoted, but the stability of retained austenite becomes too high and the effect of improving ductility is saturated, and conversely, the hardness difference between ferrite and austenite increases. Therefore, there is a possibility that voids are generated at the interface and workability is deteriorated.
- heat treatment for a considerably long time is also required. In order to surely avoid these problems, it is preferable to set the upper limit of the ratio ⁇ Mn / ⁇ Mn to 20 or less.
- the Mn concentration of each phase is within a specific region at a probe diameter of 1 ⁇ m using a Electron-Probe-Micro-Analyzer (EPMA) device for a sample whose mirror-polished section is parallel to the rolling direction (L direction) of the steel sheet.
- EPMA Electron-Probe-Micro-Analyzer
- Quantitative analysis of the Mn concentration distribution in the sample then identify the type and distribution of the phase by polishing corrosion method and / or electron backscatter diffraction (EBSD) in the same observation area, and combine both data Can be measured.
- the microstructure is composed of ferrite as the main phase and at least the retained austenite phase in the second phase, but the second phase may contain martensite and bainite.
- the preferred proportions of these phases are preferably ferrite: 30 to 80%, retained austenite: 10 to 60%, martensite: 5 to 40%, and bainite: 5% or less.
- the “%” in the organization means “volume%” unless otherwise specified.
- the presence of ferrite rich in deformation characteristics is indispensable. That is, if the ferrite content is less than 30%, the workability such as ductility and hole expansibility is significantly deteriorated. Therefore, the lower limit of the volume fraction of ferrite is preferably 30% or more. On the other hand, if the ferrite content exceeds 80%, it is difficult to obtain a desired strength. Accordingly, the ferrite content is preferably 80% or less. More preferably, it is 70% or less.
- the second phase fraction in the steel of the present invention is preferably 20 to 70%.
- the second phase refers to all phases other than ferrite, and since there is a range of suitable phase fractions that can be contained in each phase, this will be described below.
- Residual austenite is an indispensable phase in the present invention because it contributes to the improvement of ductility by the TRIP effect during processing. If the volume fraction is less than 10%, it may be difficult to secure a desired strength and exhibit excellent workability at the same strength. Accordingly, the lower limit of the volume fraction of retained austenite is preferably 10% or more. More preferably, it is 15% or more, and 20% or more is desirable from the viewpoint of particularly excellent ductility. On the other hand, if excessive retained austenite is present, the adjacent retained austenite imparts a large strain to the ferrite and promotes work hardening and void formation, resulting in a decrease in stretch flangeability and toughness. Therefore, the upper limit is preferably 60%. From the viewpoint of obtaining higher ductility at a desired strength level, 50% or less is desirable.
- Martensite 5-40% Martensite is a useful phase for accelerating work hardening of ferrite in a low strain region and uniformly hardening the steel sheet. For this reason, it is preferable that it exists 5% or more. However, if present in a large amount, the volume fraction of retained austenite is relatively reduced, and the work hardening of ferrite in the low strain region is excessively promoted, and the TRIP phenomenon of retained austenite is induced at a lower strain. Therefore, the ductility is lowered. For this reason, the upper limit of the volume fraction of martensite is preferably 40%. In particular, from the viewpoint of excellent ductility, the volume fraction is preferably equal to or less than the volume fraction of retained austenite, more preferably 2/3 or less, and still more preferably 1/2 or less.
- Bainite 5% or less Bainite is not preferable because the carbon concentrated in the austenite during the annealing process is precipitated as cementite, and the stability of retained austenite decreases. For this reason, it is preferable that the volume fraction of bainite be 5% or less. More preferably, it is 3% or less, More preferably, it is 1% or less.
- the retained austenite preferably has an average crystal grain size and an average aspect ratio in the following ranges.
- Average grain size of retained austenite 2 ⁇ m or less If the average grain size of retained austenite is 2 ⁇ m or less, the effect of residual austenite is less likely to undergo martensitic transformation with respect to processing strain and strain accumulation from ferrite accompanying processing Combined with the relaxation effect, the retained austenite remains up to a higher strain range, and the TRIP phenomenon continues, so the ductility is remarkably improved. Therefore, the average crystal grain size of retained austenite is preferably 2 ⁇ m or less. Although there is no lower limit, a special treatment is required to make the thickness lower than 0.1 ⁇ m, so that the manufacturing method of the present invention allows 0.1 ⁇ m or more.
- Average aspect ratio of retained austenite 1.2-4.0
- the retained austenite grains are preferably stretched in the rolling direction from the viewpoint of improving ductility.
- the reason for this is not sufficiently clear, but the long axis direction of retained austenite is in line with the plate surface direction, which is the macro deformation direction of the steel plate in stamping, stretch forming, and deep drawing, so that residual This is thought to be due to the fact that strain accumulation at the interface between austenite and ferrite is reduced and residual austenite remains up to a higher strain range and generation of voids is suppressed.
- the average aspect ratio of retained austenite is preferably 1.2 or more.
- the average aspect ratio of austenite is preferably 4.0 or less. More preferably, it is 3.0 or less, More preferably, it is 2.0 or less.
- the ratio of the number of retained austenite particles and the number of ferrite particles is preferably in the following range. Ratio of retained austenite particles / ferrite particles: 0.3 to 1.5 If the ferrite grain size is coarse relative to the fine retained austenite, the Mn diffusion path becomes non-uniform, resulting in a low Mn concentration region in the retained austenite, leading to a reduction in ductility. Therefore, the ratio obtained by dividing the number of retained austenite particles by the number of ferrite particles is preferably 1.5 or less. On the other hand, if the ferrite grains become too fine and the ratio is less than 0.3, the TRIP effect due to retained austenite does not act evenly on all ferrite particles, and ductility may decrease. For this reason, the ratio is preferably set to 0.3 or more.
- the above-described ratio ⁇ Mn / ⁇ Mn is regulated within a predetermined range at each stage of the final product, so that a high-strength steel sheet having excellent formability can be obtained with certainty.
- the ratio ⁇ Mn / ⁇ Mn at each stage can be realized by following the manufacturing conditions shown below under the above-described component composition.
- the production conditions for high-strength steel sheet materials, hot-rolled steel sheets for high-strength steel sheets, hot-rolled annealed materials for high-strength steel sheets, high-strength steel sheets, high-strength hot-dip galvanized steel sheets, and high-strength electroplated steel sheets are shown below. .
- the specific water S is cooled to 0.5L / kg steel or more and 2.5L / kg steel or less until the solidified shell surface layer temperature in the secondary cooling zone reaches 900 ° C. It is important to pass at a temperature of 1150 ° C. or lower and then cool at an average cooling rate from 400 ° C. to 200 ° C. of 1.0 ° C./s or lower.
- the solidified shell surface layer portion means a region from the slab surface to a depth of 2 mm in a portion from the corner portion of the slab to 150 mm in the width direction.
- Q cooling water amount (L / min)
- W slab unit weight (kg steel / m)
- Vc casting speed (m / min).
- the passing temperature of the bending part and the correction part that is, the minimum temperature of the slab surface when passing through the bending part and the correction part shall be 600 ° C. or more and 1150 ° C. or less.
- setting the passing temperature of the bent portion and the straightening portion to 1150 ° C. or less is effective in suppressing the bulging of the slab described above, and at the same time, reduces the strain applied to the solidified shell, It is necessary to reduce the internal cracks and obtain a product with excellent surface quality, ductility and stretch flangeability. When the temperature exceeds 1150 ° C., this effect is reduced.
- the coarse precipitation of Ti coarsens the microstructure in the next process and degrades the TS-El balance of the final product. From the above viewpoint, 1050 ° C. or lower is more preferable, and further preferably 950 ° C. or lower.
- the passing temperature of the bending part and the straightening part is less than 600 ° C, the slab becomes hard and the deformation load of the bending straightening device increases, so the roll life of the straightening part is shortened and the roll opening at the end of solidification The central segregation deteriorates because the light reduction due to the narrowing of the film does not work sufficiently.
- the above temperature range has been avoided to reduce transverse cracking, or slab care has been given later, but the slab of the present invention satisfying the above steel composition and Ti, Mn relational expressions is good. A good surface quality.
- cooling is performed at an average cooling rate from 400 ° C. to 200 ° C. of 1.0 ° C./s or less.
- This average cooling rate is more preferably 0.1 ° C./s or less, and still more preferably 0.05 ° C./s or less, from the viewpoint of inhibiting cracking.
- the material for high-strength steel sheet (slab) obtained according to the above casting conditions has a structure mainly composed of martensite, but the ratio ⁇ Mn / ⁇ Mn in the hot-rolled annealed material for high-strength steel sheet and high-strength steel sheet is in the above-described range. Therefore, it is advantageous to set the segregation degree of Mn in the raw material for high-strength steel sheets as a starting material within a predetermined range. That is, ⁇ Mn, which is a change in Mn concentration according to the following equation (2), is set to 0.45% or more.
- ⁇ Mn ⁇ (Mn max, i ⁇ Mn min, i ) / i (2)
- Mn max, i and Mn min, i are the values of adjacent Mn in the EPMA line analysis (beam diameter 1 ⁇ m) between 10 mm in the width direction at the 1/4 depth position of the thickness t from the material surface.
- ⁇ Mn the average value of the concentration differences of all i positive / negative segregation pairs between 10 mm.
- the cooling rate at the slab 1 / 4t thickness is 10 ° C./s or less from the liquidus temperature to the solidus temperature. Can be achieved. This condition is sufficiently satisfied by the production conditions of the present invention in which the specific water amount of the secondary cooling spray is 0.5 L / kg steel to 2.5 L / kg steel. When rapid cooling with the cooling rate exceeding 10 ° C./s is performed, a sufficient Mn concentration deviation cannot be obtained, and the properties of the final product are deteriorated.
- the high-strength steel sheet material (slab) is hot-rolled at a rolling finish temperature of Ar 3 or higher, and then wound in a temperature range of [Ms point + 50 ° C] to 700 ° C to 200 ° C or lower. By cooling, a high-strength hot-rolled steel sheet is obtained.
- hot rolling is performed at a finish rolling temperature of Ar 3 transformation point or higher to obtain a hot rolled sheet.
- the finish rolling temperature is lower than the Ar 3 transformation point, it is very difficult to perform hot rolling due to an increase in hot deformation resistance.
- the finish rolling temperature exceeds 1000 ° C., a thick scale is generated on the surface and the surface quality may be deteriorated. In order to obtain better surface quality, it is preferable that the finish rolling temperature is 950 ° C. or lower.
- the austenite grain size is refined due to the presence of fine Ti precipitates, and the final microstructure is refined to improve the TS-El balance.
- An additional effect is obtained.
- these Ti-based precipitates need to be sufficiently dissolved before hot rolling, it is preferable to reheat the slab to 1100 ° C. or higher. More preferably, it is 1200 ° C. or higher.
- the upper limit is preferably set to 1300 ° C. because it causes an increase in scale loss and deterioration of surface quality due to non-uniform scale generation in the hot-rolled sheet.
- the hot rolled material obtained through the above hot rolling and winding has a Mn concentration fluctuation ⁇ Mn of 0.50% or more according to the above-described equation (2).
- the hot-rolled sheet for high-strength steel sheet is wound at a temperature range of [Ms point + 50 ° C.] to 700 ° C. and then cooled to 200 ° C. or lower, and then [Ac 1 transformation point ⁇ 200 ° C.] or higher.
- a hot-rolled annealed material for high-strength steel sheets having a ratio ⁇ Mn / ⁇ Mn of 1.5 or higher can be obtained.
- the hot rolled coil after winding is held in a temperature range of [Ac 1 transformation point ⁇ 200 ° C.] or more and [Ac 1 transformation point + 100 ° C.] or less for 30 minutes or more, so that a hard low temperature such as martensite or bainite is used.
- the transformation product phase is tempered to reduce the rolling load on the hot rolled sheet. Furthermore, since an austenite phase is formed from a portion having a high Mn concentration, concentration of Mn is further promoted from ferrite, tempered martensite, or bainite. These effects cannot be obtained when the temperature falls outside the above temperature range or when the holding time is short.
- the hot rolled coil held in the same temperature range is once cooled to 200 ° C. or lower.
- the ratio ⁇ Mn / ⁇ Mn in the hot-rolled material can be increased to 1.5 or more by performing an intermediate heat treatment after winding.
- the hot-rolled coil after the winding or the intermediate heat treatment is subjected to pickling according to a conventional method, and then cold-rolled or warm-rolled at a reduction rate of 15% or more to obtain a cold-rolled sheet.
- the rolling reduction is preferably 20% or more, more preferably 25% or more.
- the warm rolling is preferably performed by reheating the steel strip to 150 to 600 ° C.
- the stability of retained austenite is increased, and martensite transformation is less likely to occur due to rolling strain, so that increase in rolling deformation resistance can be suppressed.
- the effect is poor when the temperature of the warm rolling is less than 150 ° C.
- the temperature exceeds 600 ° C. it is not preferable because the surface quality may deteriorate due to the occurrence of scale defects on the surface of the steel sheet.
- the upper limit of the rolling reduction is not particularly limited, but if it exceeds 80%, the load on the equipment is too large, and therefore it is preferably 80% or less.
- the temperature is maintained for 30 seconds or more and 400 minutes or less in the temperature range from Ac 1 transformation point to [Ac 1 transformation point + (Ac 3 transformation point-Ac 1 transformation point) / 2].
- An austenite phase is formed to enrich C and Mn.
- the austenite generation amount increases, the C and Mn enrichment amount of each austenite decreases, and the stability of the austenite decreases, so the ductility deteriorates.
- various properties such as punchability, toughness, and bendability deteriorate.
- the holding time is longer than 400 minutes, ferrite and austenite crystal grains are coarsened to reduce strength and ductility, and Ti precipitates are coarsened to reduce tensile strength.
- the heating process leading to the holding in the temperature range described above is performed in a temperature range of [Ac 1 transformation point ⁇ 200 ° C.] or more and Ac 1 transformation point or less, preferably an average temperature rising rate of 1.5 ° C./s or more and 10 ° C./s. It is preferable to heat (raise the temperature) below.
- Ti carbide or Ti cluster suppresses the grain growth of ferrite and refines the microstructure so that ductility can be improved. If the average rate of temperature rise is less than 1.5 ° C./s, the grain growth of ferrite is promoted, and the grain size of ferrite or austenite becomes coarse, which may reduce strength and ductility.
- the cooling rate and cooling method after the soaking is not particularly specified. However, at an extremely slow cooling rate, cementite may be generated from austenite and stability may be lowered. Therefore, it is preferable to cool to 200 ° C. or lower at 0.01 ° C./s or higher. Further, at an extremely high cooling rate, the steel sheet shape is likely to be wavy, and therefore, it is preferably set to 100 ° C./s or less.
- the annealing process is performed in a continuous annealing line (CAL), a continuous hot dipping line (CGL), or a batch annealing furnace (BAF).
- the heat treatment may be performed a plurality of times by the same or different annealing methods with cooling in the middle. In such a case as well, it may be controlled so that the total time of the soaking time is not less than 30 seconds and not more than 400 minutes.
- the ratio ⁇ Mn / ⁇ Mn becomes 1.5 or more through the cold-rolling and annealing described above.
- the ratio ⁇ Mn / ⁇ Mn becomes 1.7 or more through the above-described cold-rolling and annealing.
- Metal plating treatment can be performed on the above-described cold-rolled steel sheet.
- Examples of the metal plating treatment include hot dip galvanizing (including alloying), electrolytic galvanizing, hot dip aluminum plating, and electrolytic aluminum plating. Hereinafter, it demonstrates in order from hot dip galvanization.
- [High-strength hot-dip galvanized steel sheet] When performing hot dip galvanization, it is preferable to carry out the following treatment in the cooling process after the annealing treatment. In addition, when annealing multiple times, it implements in the last annealing process. That is, the steel sheet after soaking annealed under the above conditions is cooled to 500 ° C. or less at an average cooling rate of 0.01 ° C./s or more and 100 ° C./s or less, and immediately after being immersed in a hot dip galvanizing bath, 0.0 to 100 ° C. or less. It is preferable to cool at a cooling rate of 1 ° C./s or more and 100 ° C./s or less.
- the alloy in the temperature range of 450 ° C or higher and 650 ° C or lower for 10 seconds or longer, and then subject it to alloying of plating, then 0.01 ° C / s or higher to 100 ° C or lower. It is preferable to cool at a cooling rate of s or less. When the above average cooling rate is less than 0.01 ° C./s, cementite and bainite are generated, and ductility may be deteriorated. On the other hand, if it exceeds 100 ° C / s, the steel sheet may be wrinkled, wavy or cracked.
- High-strength hot-dip aluminized steel sheet It is also possible to apply hot-dip aluminum plating.
- the following treatment is performed in the cooling process after the annealing treatment.
- it implements in the last annealing process. That is, the annealed steel sheet is cooled to 700 ° C. or lower at a cooling rate of 0.01 ° C./s or higher and 100 ° C./s or less, and immediately after being immersed in a molten aluminum plating bath, 0.01 ° C./s or higher to 100 ° C. or lower. It is preferable to cool at a cooling rate of ° C / s or less.
- the alloy in the temperature range of 700 ° C or higher and 800 ° C or lower for 10 seconds or longer to accelerate the alloying treatment of the plating, and then decrease it to 100 ° C or lower from 0.01 ° C / s to 100 ° C / It is preferable to cool at a cooling rate of s or less.
- the treatment conditions for electrogalvanizing may be a conventional method in which a steel plate is placed in a plating tank and zinc is plated via electricity.
- Tempeering treatment For the purpose of improving ductility and punchability by tempering the martensite with respect to the steel sheet on which martensite is formed, obtained by performing the annealing treatment or any of the plating treatments and cooling to 300 ° C. or less. A tempering treatment in which the temperature is maintained for 30 seconds or more in a temperature range of 100 ° C. or more and the Ac 1 transformation point or less may be added.
- Temper rolling may be performed for the purpose of disappearance of yield point elongation of the cold-rolled steel sheet or plated steel sheet thus obtained, adjustment of the plating surface roughness, or shape correction of the steel sheet.
- the elongation rate is preferably 2% or less.
- a slab having a thickness of 250 mm was manufactured by continuous casting according to the conditions shown in Table 2 after melting a steel having the composition shown in Table 1 and the balance being Fe and inevitable impurities in a converter. Subsequently, the obtained slab was hot-rolled under the conditions described in Table 3 to produce a hot-rolled sheet having a thickness of 3.2 mm. Further, this hot-rolled sheet was subjected to an intermediate heat treatment under the conditions shown in Table 4. Furthermore, it cold-rolled with the rolling reduction shown in Table 5, and it was set as the 1.6 mm thickness cold rolled sheet. This cold-rolled sheet was subjected to annealing treatment once or twice under the conditions shown in Table 5.
- the hot dip galvanized steel sheet was prepared by forming galvanizing with a surface of 45 ⁇ 3 g / m 2 on one side and an Fe concentration of 10 ⁇ 1 mass% on the both sides and alloying at 500 ° C.
- the Ms point, A C1 point and A C3 point of each component steel were determined from the following equations.
- the A r3 point is the same as the Ms point.
- ⁇ Mn in the above-described material (slab) or hot-rolled sheet (hot-rolled sheet) is the EPMA between any 10 mm in the sheet width direction at a 1/4 depth position of the sheet thickness t from the slab surface or hot-rolled sheet surface.
- the following samples were appropriately collected from hot-rolled sheets and cold-rolled sheets to evaluate the microstructure, mechanical properties, and surface quality.
- hot-rolled sheet and cold-rolled sheet steel strip
- a steel piece having an L cross-section (a plane parallel to the rolling direction and perpendicular to the width direction) was collected and mirror-polished.
- the microstructure was later revealed by etching with a 3% nitric acid ethanol solution. This was photographed with a scanning electron microscope at 10 positions at a thickness of 1/4 at a thickness of 1/4 at random.
- the black contrast area is ferrite
- the gray contrast area is residual austenite and martensite
- the fine (0.1 ⁇ m or less) white spot is cementite
- the cementite is a line of dots (straight).
- the area that forms the layered morphology with ferrite is bainite, and the mixed structure of fine cementite and fine ferrite that does not form a point sequence is tempered martensite, and the ratio of the area area of each phase to the total area of the field of view is determined. And the volume fraction of each phase.
- the volume fraction of retained austenite is about the above-mentioned sample (steel piece) on the surface where a depth portion of 1/4 thickness of the plate thickness is exposed from the surface of the steel piece by grinding and chemical polishing.
- an X-ray diffractometer (apparatus: RINT2200 manufactured by Rigaku Co.) used the ferrite ferrite phase ⁇ 200 ⁇ , ⁇ 211 ⁇ , ⁇ 220 ⁇ , and austenite
- the integrated intensity of X-ray diffraction lines with the ⁇ 200 ⁇ plane, ⁇ 220 ⁇ plane, and ⁇ 311 ⁇ plane was measured, and these measured values were obtained from the literature (Rigaku Corporation: X-ray diffraction handbook (2000), No.
- the volume fraction of retained austenite was calculated using the calculation formula described in 62-64).
- the volume fraction of martensite was obtained by subtracting the volume fraction of retained austenite measured by the X-ray diffraction method from the total volume fraction of martensite and retained austenite measured from the above-described structure photograph.
- TS tensile strength
- El total elongation
- Stretch flangeability was evaluated by a hole expansion test in accordance with the rules of JFST1001 (2008).
- a 100 mm x 100 mm square specimen was taken from the annealed sheet after cold rolling, a punched hole was made using a punching tool with a clearance of 12.5%, and then a punched hole using a conical punch with a vertex angle of 60 degrees
- the hot ductility was evaluated by taking a round bar tensile test piece with a parallel part length of 15mm, shoulder R5mm, parallel part diameter 6mm ⁇ from the slab, and the parallel part was 1300 ° C x 300s using the Cermec Master (manufactured by Fuji Electric Koki).
- the entire slab is inspected for a total of 100m or more, 1 if there is no crack at all, 2 if there is a very slight crack that disappears at the scale-off of the heating furnace, 2
- the case where there was a slab crack was 3, the case where it was difficult to remove the slab and it was necessary to cut and discard the slab, and 4 was determined.
- the evaluation results are also shown in Table 2.
- the total length of hot-rolled sheets is inspected by 200 m or more on both the front and back surfaces, and the linear pattern of scale or ground iron overlap caused by slab cracking during casting and hot rolling is 1 m. The case where it exists more than it was set as "bad", and the case where it was less than it was set as "good”.
- the entire length of the cold-rolled sheet (steel strip) is inspected at least 1000 m on both the front and back surfaces, and the linear pattern of overlapping scales or iron bars due to slab cracking during casting and hot rolling is 1 m.
- the high strength steel sheets of the inventive examples satisfying the component range and production condition range of the present invention have high strength of TS of 980 MPa or higher, high ductility of TS-El balance of 30000 MPa% or higher, and ⁇ of 30% or higher. Along with high stretch flangeability, deterioration of surface quality due to slab cracking and embrittlement cracking during hot ductility is completely suppressed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Continuous Casting (AREA)
Abstract
Description
これまで、このような用途に応える材料として、ミクロ組織の一部または全部を準安定オーステナイトと為して、これを歪誘起マルテンサイト変態させることで均一伸びを向上させる変態誘起塑性(TRIP:Transformation Induced Plasticity)効果を活用した、TRIP鋼が提案されている。
すなわち、高Mn鋼の高温脆化の原因は、鋳造後の冷却過程におけるオーステナイト結晶粒の粗大化に伴う粒界への変形歪の集中と、粒界へ微細なAlN、Nb(CN)、MnS などの析出物生成による粒界脆化とが複合することにある。それらを抑制するには、Ti、NおよびMnの添加量を適切に制御することが非常に有効である。
この鋼は、連鋳機の矯正帯を通過するスラブ温度を低下しても脆化による割れが発生しないため、表面品質に優れるスラブが得られる。また、凝固シェル厚みが増加してバルジングを抑制できるため、縦割れや表層下割れによる表面品質低下も低減でき、さらに内部割れや中心偏析を低減して成形性の向上にも有効である。
(Ti+Mn1/2/400)/(0.01+5N)が所定の数値範囲にあることが、上記の熱間延性の向上と高強度化とを両立するために適当であることを新規に知見した。
1.質量%で
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成を有し、下記式(2)に従うΔMnが0.45%以上である高強度鋼板用素材。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%)
ΔMn=Σ(Mnmax,i -Mnmin,i)/i …(2)
但し、Mnmax,iおよびMnmin,iは、素材表面から厚さtの1/4深さ位置における幅方向への任意の10mm間のEPMA線分析(ビーム径1μm)において、隣接するMnの正偏析部の最大値および負偏析部の最小値の濃度である。それら10mm間にある全i個の正・負偏析の組の濃度差の平均値をΔMnとする。
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する前記1に記載の高強度鋼板用素材。
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成を有し、下記式(2)に従うΔMnが0.50%以上である高強度鋼板用熱延材。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%)
ΔMn=Σ(Mnmax,i -Mnmin,i)/i …(2)
但し、Mnmax,iおよびMnmin,iは、熱延材表面から板厚tの1/4深さ位置における板幅方向への任意の10mm間のEPMA線分析(ビーム径1μm)において、隣接するMnの正偏析部の最大値および負偏析部の最小値の濃度である。それら10mm間にある全i個の正・負偏析の組の濃度差の平均値をΔMnとする。
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する前記4に記載の高強度鋼板用熱延材。
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成と、残留オーステナイト相およびフェライト相を含む組織とを有し、前記フェライト相の平均Mn濃度(αMn)に対する残留オーステナイト相の平均Mn濃度(γMn)の比γMn/αMnが1.5以上である高強度鋼板用熱延焼鈍材。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%)
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する前記7に記載の高強度鋼板用熱延焼鈍材。
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成と、残留オーステナイト相およびフェライト相を含む組織とを有し、前記フェライト相の平均Mn濃度(αMn)に対する残留オーステナイト相の平均Mn濃度(γMn)の比γMn/αMnが1.5以上である高強度鋼板。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%)
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する前記10に記載の高強度鋼板。
C:0.08%以上0.30%以下
Cは、オーステナイトの体積分率を増加させて高強度化するだけでなく、オーステナイトの安定性を向上し延性も高めるため、TS-Elバランスの向上に寄与する重要な元素である。この効果は、C含有量が0.08%未満では十分に発揮されず、強度が不十分となるため下限を0.08%とする。一方、C含有量が0.30%を超えると硬質相が増えすぎて延性や曲げ性、穴拡げ性あるいは耐水素脆性を劣化させる。従って、上限は0.30%とする。
Siは、オーステナイトの固溶C量を増大するため、オーステナイトの安定性向上に寄与する。また、焼鈍時の二相域温度幅を拡大することで、焼鈍時の第二相分率の変動を低減し材質安定化にも寄与する。さらに、Siは焼鈍過程における内部酸化を促進し、Mnの表面濃化を低減することでめっき性の向上に寄与する。これらの効果を得るには少なくとも0.1%以上添加することが好ましい。しかし、過剰にSiを添加すると加熱時に強固なスケールを形成するため、表面割れやスケール痕による表面品質の劣化を招く。また、焼鈍時にも鋼板表面に酸化物を形成してめっき性や化成処理性を阻害する。これらを防止するため、Si含有量の上限は2.0%とする。より好ましくは、1.0%以下であり、さらに優れた表面品質を確保する観点からは、0.5%以下とすることが好ましい。
Mnは、オーステナイト相に濃化させることで室温でも熱的に安定なオーステナイトを形成させるために本発明で必須の元素である。Mnは、後述する最終製品の所定のミクロ組織を形成することに寄与し、高強度かつ高延性な鋼が得られる。さらに、連続鋳造におけるオーステナイト粒界からのフィルム状フェライトの生成の抑制やオーステナイト粒径の微細化にも寄与するため、スラブの表面割れを抑制し表面品質の向上にも寄与する。
上記の効果は、Mn含有量が3.0%超でないと十分に得られないため、下限は3.0%超とする。より好ましくは3.5%以上であり、より好ましくは4.0%以上である。一方、10.0%を超えて含有すると、合金コストが増大するだけでなく、脆化相の生成に伴って熱間延性の著しい劣化を招き、連続鋳造や熱間圧延の際に表面割れを生じて歩留まりが著しく損なわれる。さらに、めっき性や化成処理性、溶接性が損なわれる。このため、Mn含有量は10.0%以下とする。より好ましくは、8.0%以下であり、特に好ましくは6.0%以下である。
Tiは、鋼中で微細な炭窒化物やクラスターを形成するため、鋳造時においてはオーステナイトの微細化に寄与する。また、AlNなどオーステナイト粒界脆化をもたらす析出物を低減して熱間延性の向上に寄与するため、本発明で必須の元素である。さらに、Tiは熱延コイルのオーステナイト粒径を微細化するため圧延集合組織の発達を促し、焼鈍板の深絞り性向上に寄与する。それに加えて、熱延焼鈍板中の組織形成にも不可欠であり、後述するフェライトとオーステナイトの微細化やアスペクト比の付与にも寄与するため、最終製品の高強度化と高成形性化が達成される。
これらの効果を得るためには、少なくとも0.010%のTiが必須になる。より高い効果を得るには0.030%以上とすることが好ましい。一方、0.300%を超えて含有すると、粗大なTiNや多量のTiCを形成して熱間延性や靭性、耐疲労破壊性、あるいは均一伸びといった特性を著しく劣化させる。このため、Ti含有量の上限は0.300%とする。より好ましくは0.200%以下であり、さらに好ましくは0.150%以下である。
本発明において、N量の制御は重要である。NはTiと結合し微細なTiNを形成することで鋳造時のスラブ中のオーステナイト粒の粒成長を抑制し、スラブや熱延板の表面割れの抑制に寄与する。この効果を得るためには、Nを0.0020%以上添加する必要がある。しかし、0.0100%を超えて過剰に添加すると、粗大なTiNを形成して破壊の起点となるため、熱間延性や靭性、耐疲労破壊性、あるいは耐水素脆性などの諸特性を劣化させる。また、過剰のNは固溶状態でも、最終製品の時効を顕著に促進し、材質変化に伴い延性が著しく損なわれる場合がある。このため、上限は0.0100%とする。上記の観点で、より好ましくは0.0080%以下である。
1.1≦(Ti+Mn1/2/400)/(0.01+5N)≦6.0
NはTiやMnに対して過剰に存在すると、鋳造時のスラブ表層におけるオーステナイト粒径の粗大化や、AlN析出などの析出に伴う粒界脆化を招く。さらに、粗大TiNでTiが固定されてしまうと、焼鈍板の微細化に寄与する微細Ti析出物が減少し加工性が低下する。このため、Ti含有量およびMn含有量はN含有量と適切にバランスさせる必要があり、この点を鋭意検討した結果、(Ti+Mn1/2/400)/(0.01+5N)が1.1以上であれば、スラブ表面割れを抑制しつつ、最終製品の高強度-高加工性も両立し得る鋼を製造可能であることが新たに判明した。従って、上式の下限を1.1とした。
一方で、6.0を超えるまでTiおよびMnを過剰に添加すると、上記の効果は飽和し、前記したTi やMnの硬質相・脆化相による熱間延性の低下や、Mnによるめっき性の低下が特に顕著になることから、上限を6.0とした。より好ましくは4.0以下、さらに好ましくは2.5以下である。
Pは、強力な固溶強化元素であるため、鋼の高強度化に寄与する。しかし、過剰に添加すると、凝固偏析が増大し、スラブ割れを助長する。さらに、製品の材質劣化や溶接強度の劣化、あるいはめっきの合金化を阻害するため表面品質の劣化を招く。このため、P含有量の上限は0.05%とする。好ましくは0.020%以下、より好ましくは0.010%以下である。
Sは、過剰に添加すると、凝固偏析を助長して溶接強度を劣化するとともに、MnSを形成し鋼板の加工性を劣化する。さらに、赤熱脆化を招いて熱間延性が低下する。このため、S含有量の上限は0.01%とする。好ましくは0.0030%以下、より好ましくは0.0020%以下である。
Alはオーステナイトの固溶C量を増大するため、オーステナイトの安定性向上に寄与する。また、焼鈍時の二相域温度幅を拡大することで、焼鈍時の第二相分率の変動を低減し材質安定化にも寄与する。これらの効果を得るには少なくとも0.1%は添加することが好ましい。しかし、過剰に添加すると焼鈍時に鋼板表面に酸化物を形成してめっき性や化成処理性を阻害する。これらを防止するため、Al含有量の上限は1.5%とする。より好ましくは、1.0%以下であり、さらに優れた表面品質を確保する観点では0.5%以下とすることが好ましい。特に好ましくは0.3%未満とすることである。
また、上記基本成分に加えて、必要に応じて、以下の成分元素の1種または2種以上を添加することができる。
Cr、Ni、MoおよびCu:各1.0%以下
Cr、Ni、MoおよびCuはオーステナイトを安定化する効果があるため、Mnの代わりにそれぞれ、好ましくは0.02%以上で添加することができる。ただし、多量の添加は合金コストの増大を招くため、これらの添加量は各元素で1.0%以下とする。
なお、Cuは単独で添加すると、加熱時に地鉄の結晶粒界に偏析して溶融し表面割れを形成するため、これを抑制するためにCu添加量と同量以上のNiを添加することが好ましい。
NbおよびVは、微細な炭窒化物を形成し、鋼の高強度化に寄与する。そのためには、各々0.005%以上で添加することが好ましい。しかしながら、鋳造時にはオーステナイト粒界に局所的に生成したこれらの析出物(炭窒化物)が熱間延性を著しく劣化する。本発明鋼においてはTiを積極添加することで、NbおよびVの炭窒化物の形成を強く抑制できるものの、多量に添加すれば炭窒化物の形成をまねく、おそれがあるため、これらの含有量は各元素で0.1%以下とする。好ましくは0.05%であり、より好ましくは、0.02%以下である。特にスラブ割れの抑制の観点では、Ti量の半分以下とすることが好ましい。
Bは、極微量でも鋼の焼入れ性を向上する効果があり、フェライトやベイナイトの生成を抑制する必要がある場合に添加することができる。この効果を得るには、0.0005%以上添加することが好ましい。
一方、添加量が増加するほどオーステナイトの熱間強度を増大し、熱間圧延が困難になるため過剰な添加は好ましくない。また、焼鈍工程においては表面に濃化しめっき性を劣化させる。以上のデメリットを抑制するため、Bの添加量の上限は0.0050%とする。より好ましくは0.0015%以下である。
CaまたはREMは、鋼中の硫化物の形態を制御し靭性などを向上するために含有させてもよい。ただし、1.0%を超えて添加すると、コストが増大するが効果は飽和する。そこで、含有量の上限を各元素で1.0%とする。
SnまたはSbは、鋼板表面における脱炭や窒化、あるいは酸化物の生成を抑制するため、表面品質の向上や材質の安定化の目的で添加することができる。この効果を得るには、特に各元素で0.006%以上の添加が好ましい。より好ましくは0.010%以上である。しかし、過剰に添加しても効果は飽和し、むしろ延性の低下を招くので、添加量の上限は各元素で0.20%とする。
[組織]
組織としては、残留オーステナイト相およびフェライト相を含むものとする。すなわち、フェライトを主相とし、これに少なくとも残留オーステナイト相を有する組織とすることで、前述したTRIP効果による強度および延性の向上効果を得ることができる。
すなわち、安定な残留オーステナイトを得るには、全組成中のMnのうちフェライト中のMnをオーステナイトへと分配することが不可欠である。最終の冷延板の段階にて、比γMn/αMnが1.5未満では、フェライトが硬質になって成形性に劣るものとなる上、残留オーステナイトは不安定になって延性が劣化することになる。このため、比γMn/αMnは1.5以上とする必要がある。より好ましくは、3以上、そして6以上である。一方、比γMn/αMnが20を超えると、上記分配は促進されるが、残留オーステナイトの安定性が高くなりすぎて延性の向上効果が飽和し、逆にフェライトとオーステナイトとの硬度差が大きくなりすぎるため、界面でボイドが生成し加工性が劣化する可能性がある。また、比γMn/αMnを20超とするには、著しく長時間の熱処理が必要でもある。これらの問題を確実に回避するには、比γMn/αMnの上限を20以下とすることが好ましい。
本発明において優れた延性を得るには、変形特性に富んだフェライトの存在が欠かせない。すなわち、フェライトが30%未満では延性や穴広げ性といった加工性の劣化が著しいため、フェライトの体積分率の下限は30%以上とすることが好ましい。一方で、フェライトが80%超では、所望の強度を得ることが難しくなる。従って、フェライトは80%以下とすることが好ましい。より好ましくは70%以下である。
残留オーステナイトは、加工時のTRIP効果によって延性の向上に寄与するため、本発明で欠かせない相である。その体積分率が10%未満では、所望の強度の確保と、同強度における優れた加工性の発揮が困難になる、おそれがある。従って、残留オーステナイトの体積分率の下限は10%以上とすることが好ましい。より好ましくは15%以上であり、特に優れた延性の観点からは20%以上が望ましい。
一方で、残留オーステナイトが過剰に存在すると、近接した残留オーステナイトがフェライトに多大な歪を付与して、加工硬化やボイドの生成を促進する結果、伸びフランジ性や靭性が低下する。従って、上限は60%とすることが好ましい。所望の強度レベルでより高い延性を得る観点からは、50%以下が望ましい。
マルテンサイトは、低歪域でのフェライトの加工硬化を促進し、鋼板を均一に加工硬化させる上で有用な相である。このため、5%以上存在することが好ましい。しかし、多量に存在すると、相対的に残留オーステナイトの体積分率が減少することや、低歪域でのフェライトの加工硬化が過剰に促進されて、より低い歪で残留オーステナイトのTRIP現象が誘発されるために延性が低下する。このため、マルテンサイトの体積分率の上限は40%とすることが好ましい。特に、優れた延性の観点からは、その体積分率を残留オーステナイトの体積分率と同等以下とすることが好ましく、より好ましくは2/3以下、更に好ましくは1/2以下である。
ベイナイトは、焼鈍過程でオーステナイト中に濃化させた炭素をセメンタイトとして析出させてしまうため、残留オーステナイトの安定性が低下するので好ましくない。このため、ベイナイトの体積分率は5%以下とすることが好ましい。より好ましくは3%以下であり、更に好ましくは1%以下である。
残留オーステナイトの平均結晶粒径:2μm以下
残留オーステナイトの平均結晶粒径が2μm以下であれば、加工歪に対して残留オーステナイトがマルテンサイト変態しにくくなる効果と、加工に伴うフェライトからの歪蓄積が緩和される効果が相俟って、より高歪域まで残留オーステナイトが残存しTRIP現象が継続することで延性が著しく向上する。このため、残留オーステナイトの平均結晶粒径は2μm以下とすることが好ましい。なお、下限はあえて設けないが、0.1μm未満にするには特殊な処理が必要なため、本発明の製造方法においては0.1μm以上が許容される。
残留オーステナイト粒は、圧延方向に伸張した形態である方が、延性向上の観点から好ましい。この理由は、十分に明確ではないが、打ち抜き加工や張出成形、および深絞り成形における鋼板のマクロな変形方向である板面方向に対して、残留オーステナイトの長軸方向が沿うことにより、残留オーステナイトとフェライトとの界面への歪蓄積を軽減し、より高歪域まで残留オーステナイトが残存することやボイドの生成が抑制されることによる、と考えられる。この効果を得るには、残留オーステナイトの平均アスペクト比を1.2以上にすることが好ましい。一方で、アスペクト比が4.0を超える場合、個々のオーステナイト粒が近接して連結した形態を呈し、ボイドを形成しやすくなって加工性が劣化する。このため、オーステナイトの平均アスペクト比は4.0以下とすることが好ましい。より好ましくは3.0以下で、さらに好ましくは2.0以下である。
残留オーステナイトの粒子数/フェライトの粒子数の比:0.3~1.5
微細な残留オーステナイトに対して、フェライト粒径が粗大な場合、Mnの拡散経路が不均一になって残留オーステナイト中にMn濃度の低い領域が生じて、延性の低下を招く。このため、残留オーステナイトの粒子数をフェライトの粒子数で除した比率は1.5以下とすることが好ましい。一方で、フェライト粒が微細になりすぎて同比が0.3未満になると、残留オーステナイトによるTRIP効果が全フェライト粒子に均等に作用せず、延性が低下する、おそれがある。このため、同比は0.3以上とすることが好ましい。
以下に、高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融亜鉛めっき鋼板および高強度電気めっき鋼板について、それぞれの製造条件を示す。
上記成分を有する溶鋼を溶製した後、成分のマクロ偏析を抑制する観点および製造能率の観点から、連続鋳造法(薄スラブ法を含む)を用いて高強度鋼板用素材、具体的には鋼スラブ(鋼帯を含む)を作製する。この連続鋳造において、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量Sが0.5L/kg鋼以上2.5L/kg鋼以下の冷却を施して曲げ部および矯正部を600℃以上1150℃以下で通過させ、その後400℃から200℃までの平均冷却速度が1.0℃/s以下の冷却を施すことが肝要である。
ここで、凝固シェル表層部とは、スラブのコーナー部から幅方向へ150mmまでの部分における、スラブ表面から2mm深さまでの領域を意味する。また、比水量S(L/kg鋼)は以下の式で求められる。
S=Q/(W×Vc)
ここで、Q:冷却水量(L/min)、W:スラブ単重(kg鋼/m)、Vc:鋳造速度(m/min)である。
すなわち、凝固シェル表層部温度が900℃となるまでの比水量を0.5L/kg鋼以上とすることで、凝固殻のバルジングを抑制し、縦割れや表層下割れによる表面品質の低下を抑制すると同時に、内部割れや中心偏析を抑制し最終製品の延性や伸びフランジ性を向上することができる。
一方で、比水量が2.5L/kg鋼を超えると、鋳片のコーナー部が極端に過冷されて、周辺の高温部との熱膨張量の差に起因した引張応力が過大に作用して横割れが増大するため、上限は2.5L/kg鋼とする。
従来、高Mn鋼では、横割れ低減のため上記の温度域は回避されるか、後々スラブ手入を施していたが、上述した鋼成分とTi,Mn関係式を満足する本発明スラブは良好な表面品質を維持できる。
記
ΔMn=Σ(Mnmax,i -Mnmin,i)/i …(2)
但し、Mnmax,iおよびMnmin,iは、素材表面から厚さtの1/4深さ位置における幅方向への任意の10mm間のEPMA線分析(ビーム径1μm)において、隣接するMnの正偏析部(デンドライト樹間部)の最大値および負偏析部(デンドライト幹部)の最小値の濃度である。それら10mm間にある全i個の正・負偏析の組の濃度差の平均値をΔMnとする。
前記高強度鋼板用素材(スラブ)に、Ar3点以上の圧延仕上げ温度にて熱間圧延を施したのち、[Ms点+50℃]以上700℃以下の温度域で巻き取って200℃以下に冷却することによって、高強度鋼板用熱延材が得られる。
まず、仕上げ圧延温度をAr3変態点以上で熱間圧延を施して熱延板とする。仕上げ圧延温度がAr3変態点未満では熱間変形抵抗の増大により、熱間圧延を行うことが非常に難しくなる。一方、仕上げ圧延温度が1000℃を超えると、表面に厚いスケールが生成し表面品質が劣化する、おそれがあるため、1000℃以下とすることが好ましい。より優れた表面品質を得るためには、仕上げ圧延温度を950℃以下とすることが好ましい。
前記高強度鋼板用熱延材は、前記[Ms点+50℃]以上700℃以下の温度域で巻き取ったのち、200℃以下に冷却した後に、[Ac1変態点-200℃]以上[Ac1変態点+100℃]以下の温度域に30分以上保持する、中間熱処理を施すことによって、比γMn/αMnが1.5以上の高強度鋼板用熱延焼鈍材を得ることができる。
前記巻き取り後の熱延コイルを、[Ac1変態点-200℃]以上[Ac1変態点+100℃]以下の温度域に30分以上保持することにより、マルテンサイトやベイナイトなどの硬質な低温変態生成相は焼き戻されて、熱延板の圧延負荷が軽減する。さらに、Mn濃度の高い部位からオーステナイト相が形成するため、フェライト、焼戻しマルテンサイトまたはベイナイトからさらにMnの濃化が促進される。前記の温度域から外れた場合や保持時間が短時間だった場合には、これらの効果は得られない。一方、750分を超えて保持しても効果は飽和し、製造コストの増大を招くため、750分以下にすることが好ましい。同温度域に保持された熱延コイルは、一度200℃以下まで冷却される。
前記巻き取り後または前記中間熱処理後の熱延コイルは、定法に従って酸洗を施した後、好ましくは圧下率15%以上で冷間圧延または温間圧延を施して冷延板にする。ここで、圧下率が15%未満では、その後の焼鈍過程におけるフェライトの再結晶が不十分になり、加工組織が残存し加工性が低下する。圧下率は、好ましくは20%以上、より好ましくは25%以上である。なお、温間圧延は、鋼帯を150~600℃に再加熱して行うことが好ましい。これにより、残留オーステナイトの安定性が増加して、圧延歪によってマルテンサイト変態しにくくなるため圧延の変形抵抗の増加を抑制できる。温間圧延の温度が150℃未満ではその効果が乏しい。一方、600℃を超える場合は、鋼板表面にスケール性の欠陥が生じて表面品質が劣化する場合があり好ましくない。なお、圧下率の上限については、特に制限する必要はないが、80%を超えると設備への負荷が大きすぎることから、80%以下とすることが好ましい。
なお、焼鈍工程は、連続焼鈍ライン(CAL)あるいは連続溶融めっきライン(CGL)、バッチ焼鈍炉(BAF)にて実施される。一回の熱処理で実施することが好ましいが、途中に冷却を挟んで同一あるいは異なる焼鈍手法で複数回焼鈍処理しても構わない。その場合にも、均熱時間の合計時間が30秒以上400分以下となるように制御すれば良い。
溶融亜鉛めっきを施す場合には、前記の焼鈍処理後の冷却過程で以下の処理を実施することが好ましい。なお、複数回焼鈍処理する場合は、最終の焼鈍工程において実施する。即ち、上記の条件で均熱焼鈍後の鋼板を0.01℃/s以上100℃/s以下の平均冷却速度で500℃以下まで冷却し、溶融亜鉛めっき浴に浸漬した直後に100℃以下まで0.01℃/s以上100℃/s以下の冷却速度で冷却することが好ましい。または、溶融亜鉛めっき浴に浸漬直後に、450℃以上650℃以下の温度域に10秒以上保持してめっきの合金化処理を施してから、100℃以下まで0.01℃/s以上100℃/s以下の冷却速度で冷却することが好ましい。上記の平均冷却速度が0.01℃/s未満では、セメンタイトやベイナイトが生成し、延性を劣化する場合がある。一方、100℃/s超では鋼板にシワや波打ち、割れを生じる場合がある。
溶融アルミニウムめっきを施すことも可能である。前記の焼鈍処理後の冷却過程で以下の処理を実施する。なお、複数回焼鈍処理する場合は、最終の焼鈍工程において実施する。即ち、前記焼鈍後の鋼板を0.01℃/s以上100℃/s以下の冷却速度で700℃以下まで冷却し、溶融アルミニウムめっき浴に浸漬した直後に100℃以下まで0.01℃/s以上100℃/s以下の冷却速度で冷却することが好ましい。または、溶融アルミニウムめっき浴に浸漬直後に700℃以上800℃以下の温度域に10秒以上保持してめっきの合金化処理を促進してから、100℃以下まで0.01℃/s以上100℃/s以下の冷却速度で冷却することが好ましい。
前記の焼鈍処理によって得られた冷延鋼板、前記溶融亜鉛めっき鋼板または溶融アルミニウムめっき鋼板を冷却後に、電気亜鉛めっきを施すことができる。電気亜鉛めっきの処理条件としては、常法により、めっき槽に鋼板を配置し、電気を介して亜鉛をめっきする方法によればよい。
[焼戻し処理]
前記焼鈍処理または前記いずれかのめっき処理を実施して300℃以下に冷却して得た、マルテンサイトが形成された鋼板に対して、該マルテンサイトの焼戻しによる延性や打ち抜き性の向上を目的として、100℃以上Ac1変態点以下の温度域に30秒以上保持する、焼戻し処理を追加してもよい。
このようにして得られた冷延鋼板あるいはめっき鋼板の降伏点伸びの消失やめっき表面粗さの調整、あるいは鋼板の形状矯正を目的として、調質圧延を施しても良い。ただし、伸長率が大きすぎると延性が劣化するため、伸長率は2%以下とすることが好ましい。
各成分鋼のMs点、AC1点およびAC3点は、以下の式から求めた。Ar3点はMs点と同じである。
Ms点=561-474C-33Mn-17Cr-17Ni-21Mo
AC1点=751-16C+11Si-28Mn-5.5Cu-16Ni+13Cr+3.4Mo
AC3点=910-203(C)1/2+45Si-30Mn-20Cu-15Ni+11Cr+32Mo+104V+400Ti+200Al
まず、ミクロ組織は、スラブ、熱延板および冷延板(鋼帯)の各段階にて、L断面(圧延方向に平行で幅方向に垂直な面)の鋼片を採取し、鏡面研磨の後に3%硝酸エタノール溶液でミクロ組織をエッチングして現出した。これを、走査型電子顕微鏡にて、板厚1/4位置をランダムに5000倍で10視野撮影した。
この組織写真において、黒いコントラストの領域をフェライト、灰色のコントラストの領域を残留オーステナイトおよびマルテンサイト、微細(0.1μm以下)白点をセメンタイトとし、セメンタイトが点列状になって直線状(針状)のフェライトと層状形態を為す領域をベイナイト、点列状を為さない微細セメンタイトと微細フェライトとの混在組織を焼戻しマルテンサイトと判断して、撮影視野の全面積に対する各相の領域面積の比を、各相の体積分率とした。
冷延板の表面品質については、冷延板(鋼帯)全長を表裏面とも1000m以上検査し、鋳造時および熱間圧延時のスラブ割れに起因するスケールまたは地鉄重なりの線状模様が1m以上存在した場合を「不良」、それ未満の場合を「良」とした。また、めっき鋼板については、不めっきのある場合にも「不良」とした。
この評価結果を表5に併記する。
Claims (15)
- 質量%で
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成を有し、下記式(2)に従うΔMnが0.45%以上である高強度鋼板用素材。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%)
ΔMn=Σ(Mnmax,i -Mnmin,i)/i …(2)
但し、Mnmax,iおよびMnmin,iは、素材表面から厚さtの1/4深さ位置における幅方向への任意の10mm間のEPMA線分析(ビーム径1μm)において、隣接するMnの正偏析部の最大値および負偏析部の最小値の濃度である。それら10mm間にある全i個の正・負偏析の組の濃度差の平均値をΔMnとする。 - 前記成分組成は、さらに、質量%で
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する請求項1に記載の高強度鋼板用素材。 - 請求項1または2に記載の成分組成を有する溶鋼からスラブを連続鋳造するに際し、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量Sが0.5L/kg鋼以上2.5L/kg鋼以下の冷却を施して曲げ部および矯正部を600℃以上1150℃以下で通過させ、その後400℃から200℃までの平均冷却速度が1.0℃/s以下の冷却を施す高強度鋼板用素材の製造方法。
- 質量%で
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成を有し、下記式(2)に従うΔMnが0.50%以上である高強度鋼板用熱延材。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%)
ΔMn=Σ(Mnmax,i -Mnmin,i)/i …(2)
但し、Mnmax,iおよびMnmin,iは、熱延材表面から板厚tの1/4深さ位置における板幅方向への任意の10mm間のEPMA線分析(ビーム径1μm)において、隣接するMnの正偏析部の最大値および負偏析部の最小値の濃度である。それら10mm間にある全i個の正・負偏析の組の濃度差の平均値をΔMnとする。 - 前記成分組成は、さらに、質量%で
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する請求項4に記載の高強度鋼板用熱延材。 - 請求項4または5に記載の成分組成を有する溶鋼からスラブを連続鋳造するに際し、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量Sが0.5L/kg鋼以上2.5L/kg鋼以下の冷却を施して曲げ部および矯正部を600℃以上1150℃以下で通過させ、その後400℃から200℃までの平均冷却速度が1.0℃/s以下の冷却を施し、得られたスラブに、Ar3点以上の圧延仕上げ温度にて熱間圧延を施したのち、[Ms点+50℃]以上700℃以下の温度域で巻き取って200℃以下に冷却する高強度鋼板用熱延材の製造方法。
- 質量%で
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成と、残留オーステナイト相およびフェライト相を含む組織とを有し、前記フェライト相の平均Mn濃度(αMn)に対する残留オーステナイト相の平均Mn濃度(γMn)の比γMn/αMnが1.5以上である高強度鋼板用熱延焼鈍材。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%) - 前記成分組成は、さらに、質量%で
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する請求項7に記載の高強度鋼板用熱延焼鈍材。 - 請求項7または8に記載の成分組成を有する溶鋼を連続鋳造してスラブとする際に、前記連続鋳造における凝固シェル表層部温度が900℃となるまで比水量Sが0.5L/kg鋼以上2.5L/kg鋼以下の冷却を施して曲げ部および矯正部を600℃以上1150℃以下で通過させ、その後400℃から200℃までの平均冷却速度が1.0℃/s以下の冷却を施し、得られたスラブに、Ar3点以上の圧延仕上げ温度にて熱間圧延を施したのち、[Ms点+50℃]以上700℃以下の温度域で巻き取って200℃以下に冷却することで得られた鋼帯に、更に[Ac1変態点-200℃]以上[Ac1変態点+100℃]以下の温度域に30分以上保持し、次いで200℃以下に冷却する高強度鋼板用熱延焼鈍材の製造方法。
- 質量%で
C:0.08%以上0.30%以下、
Si:2.0%以下、
Mn:3.0%超10.0%以下、
P:0.05%以下、
S:0.01%以下、
Al:1.5%以下、
Ti:0.010%以上0.300%以下および
N:0.0020%以上0.0100%以下
を、下記式(1)を満足する範囲にて含有し、残部がFeと不可避的不純物の成分組成と、残留オーステナイト相およびフェライト相を含む組織とを有し、前記フェライト相の平均Mn濃度(αMn)に対する残留オーステナイト相の平均Mn濃度(γMn)の比γMn/αMnが1.5以上である高強度鋼板。
記
1.1≦([Ti]+[Mn]1/2/400)/(0.01+5[N])≦6.0 …(1)
但し、[ ]は該括弧内元素の含有量(質量%) - 前記成分組成は、さらに、質量%で
Cr:1.0%以下、
Ni:1.0%以下、
Mo:1.0%以下、
Cu:1.0%以下、
Nb:0.1%以下、
V:0.1%以下、
B:0.0050%以下、
Ca:1.0%以下、
REM:1.0%以下、
Sn:0.20%以下および
Sb:0.2%以下
から選択される1種または2種以上を含有する請求項10に記載の高強度鋼板。 - 請求項10または11に記載の成分組成を有する溶鋼からスラブを連続鋳造するに際し、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量Sが0.5L/kg鋼以上2.5L/kg鋼以下の冷却を施して曲げ部および矯正部を600℃以上1150℃以下で通過させ、その後400℃から200℃までの平均冷却速度が1.0℃/s以下の冷却を施し、得られたスラブに、Ar3点以上の圧延仕上げ温度にて熱間圧延を施したのち、[Ms点+50℃]以上700℃以下の温度域で巻き取って200℃以下に冷却し、その後、熱延鋼板に、15%以上の圧下率で冷間圧延または温間圧延を施し、次いでAc1温度以上からAc1変態点+(Ac3変態点-Ac1変態点)/2以下の温度域に30秒以上400分以下で保持する高強度鋼板の製造方法。
- 請求項10または11に記載の成分組成を有する溶鋼からスラブを連続鋳造するに際し、2次冷却帯における凝固シェル表層部温度が900℃となるまで比水量Sが0.5L/kg鋼以上2.5L/kg鋼以下の冷却を施して曲げ部および矯正部を600℃以上1150℃以下で通過させ、その後400℃から200℃までの平均冷却速度が1.0℃/s以下の冷却を施し、得られたスラブに、Ar3点以上の圧延仕上げ温度にて熱間圧延を施したのち、[Ms点+50℃]以上700℃以下の温度域で巻き取って200℃以下に冷却することで得られた鋼帯に、更に[Ac1変態点-200℃]以上[Ac1変態点+100℃]以下の温度域に30分以上保持し、次いで200℃以下に冷却し、その後、熱延鋼板に、15%以上の圧下率で冷間圧延または温間圧延を施し、次いでAc1温度以上からAc1変態点+(Ac3変態点-Ac1変態点)/2以下の温度域に30秒以上400分以下で保持する高強度鋼板の製造方法。
- 請求項10または11に記載の高強度鋼板の表面に、溶融亜鉛めっき被膜または溶融アルミニウムめっき被膜を有する高強度溶融めっき鋼板。
- 請求項14に記載の高強度溶融めっき鋼板の表面に、電気めっき層を有する高強度電気めっき鋼板。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016571439A JP6245386B2 (ja) | 2015-08-11 | 2016-08-10 | 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法 |
EP16834824.1A EP3336212B1 (en) | 2015-08-11 | 2016-08-10 | Material for high-strength steel sheet, hot rolled material for high-strength steel sheet, material annealed after hot rolling and for high-strength steel sheet, high-strength steel sheet, high-strength hot-dip plated steel sheet, high-strength electroplated steel sheet, and manufacturing method for same |
KR1020187002569A KR102002737B1 (ko) | 2015-08-11 | 2016-08-10 | 고강도 강판용 소재, 고강도 강판용 열연재, 고강도 강판용 열연 소둔재, 고강도 강판, 고강도 용융 도금 강판 및 고강도 전기 도금 강판과, 이들의 제조 방법 |
MX2018001635A MX2018001635A (es) | 2015-08-11 | 2016-08-10 | Material para laminas de acero de alta resistencia, material para laminas de acero de alta resistencia laminado en caliente, material para laminas de acero de alta resistencia recocido y laminado en caliente, lamina de acero de alta resistencia, lamina de acero recubierta por inmersion en caliente de alta resistencia, lamina de acero electrolitica de alta resistencia, y metodo para fabricar los mismos. |
CN201680046400.3A CN108138277B (zh) | 2015-08-11 | 2016-08-10 | 高强度钢板用原材料、高强度钢板及其制造方法 |
US15/735,678 US10858717B2 (en) | 2015-08-11 | 2016-08-10 | Material for high strength steel sheets, hot rolled material for high strength steel sheets, hot-rolled and annealed material for high strength steel sheets, high strength steel sheet, high strength hot-dip-coated steel sheet, high strength electroplated steel sheet, and method of manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015159068 | 2015-08-11 | ||
JP2015-159068 | 2015-08-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017026125A1 true WO2017026125A1 (ja) | 2017-02-16 |
Family
ID=57984519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/003702 WO2017026125A1 (ja) | 2015-08-11 | 2016-08-10 | 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10858717B2 (ja) |
EP (1) | EP3336212B1 (ja) |
JP (1) | JP6245386B2 (ja) |
KR (1) | KR102002737B1 (ja) |
CN (1) | CN108138277B (ja) |
MX (1) | MX2018001635A (ja) |
WO (1) | WO2017026125A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018145525A (ja) * | 2017-03-07 | 2018-09-20 | Jfeスチール株式会社 | 熱延鋼板及びその製造方法、冷延鋼板及びその製造方法、冷延焼鈍鋼板の製造方法、並びに溶融亜鉛めっき鋼板の製造方法 |
JP2018162477A (ja) * | 2017-03-24 | 2018-10-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、抵抗スポット溶接継手、ならびに自動車用部材 |
CN110016604A (zh) * | 2019-05-07 | 2019-07-16 | 南京钢铁股份有限公司 | 一种改善钢板表面质量的冶炼方法 |
WO2020045219A1 (ja) * | 2018-08-31 | 2020-03-05 | Jfeスチール株式会社 | 高強度鋼板及びその製造方法 |
WO2020045220A1 (ja) * | 2018-08-31 | 2020-03-05 | Jfeスチール株式会社 | 高強度鋼板及びその製造方法 |
WO2020079926A1 (ja) * | 2018-10-18 | 2020-04-23 | Jfeスチール株式会社 | 高延性高強度電気亜鉛系めっき鋼板およびその製造方法 |
JP2021505765A (ja) * | 2017-12-05 | 2021-02-18 | アルセロールミタル | 冷間圧延焼鈍鋼板及びその製造方法 |
JP2021505764A (ja) * | 2017-12-05 | 2021-02-18 | アルセロールミタル | 冷間圧延焼鈍鋼板及びその製造方法 |
JP2022531250A (ja) * | 2019-09-30 | 2022-07-06 | ヒュンダイ スチール カンパニー | 高強度および高成形性を有する鋼板およびその製造方法 |
JP2023530911A (ja) * | 2020-06-25 | 2023-07-20 | 宝山鋼鉄股▲分▼有限公司 | フェライト相により鋳造スラブの表面亀裂を軽減する為の方法 |
JP2023534385A (ja) * | 2020-07-24 | 2023-08-09 | アルセロールミタル | 熱間圧延熱処理鋼板及びその製造方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109072380B (zh) * | 2016-04-19 | 2020-08-14 | 杰富意钢铁株式会社 | 钢板、镀覆钢板和它们的制造方法 |
EP3517643A4 (en) * | 2016-09-21 | 2020-03-04 | Nippon Steel Corporation | GALVANISED STEEL |
CN107090571B (zh) * | 2017-06-18 | 2018-05-25 | 荆门宁杰机电技术服务有限公司 | 一种焊管的外镀锌装置 |
KR102031499B1 (ko) | 2018-08-07 | 2019-10-11 | 주식회사 포스코 | 표면품질 및 충격인성이 우수한 압력용기용 강재 및 이의 제조방법 |
MX2021002282A (es) * | 2018-08-28 | 2021-05-27 | Jfe Steel Corp | Chapa de acero laminada en caliente y metodo de produccion de la misma, chapa de acero laminada en frio y metodo de produccion de la misma, metodo de produccion para chapa de acero recocido laminada en frio, y metodo de produccion para chapa de acero galvanizada por inmersion en caliente. |
KR102109265B1 (ko) * | 2018-09-04 | 2020-05-11 | 주식회사 포스코 | 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법 |
JP6744003B1 (ja) * | 2018-12-27 | 2020-08-19 | 日本製鉄株式会社 | 鋼板 |
KR102178677B1 (ko) * | 2019-05-20 | 2020-11-13 | 주식회사 포스코 | 구멍확장성이 우수한 고강도 강판 및 이의 제조방법 |
KR102275916B1 (ko) * | 2019-12-09 | 2021-07-13 | 현대제철 주식회사 | 초고강도 및 고성형성을 갖는 합금화 용융아연도금강판 및 이의 제조방법 |
JP7502607B2 (ja) | 2020-03-31 | 2024-06-19 | 日本製鉄株式会社 | めっき鋼板 |
WO2022018502A1 (en) * | 2020-07-24 | 2022-01-27 | Arcelormittal | Cold rolled and annealed steel sheet |
WO2022018503A1 (en) * | 2020-07-24 | 2022-01-27 | Arcelormittal | Cold rolled and annealed steel sheet |
CN113549829B (zh) * | 2021-07-13 | 2022-12-20 | 山西滨腾机械有限公司 | 一种干熄焦罐衬板及其制备方法和应用 |
KR102722677B1 (ko) * | 2021-11-29 | 2024-10-30 | 주식회사 포스코 | 연신율이 우수한 초고강도 냉연강판 및 이의 제조방법 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013076162A (ja) * | 2011-09-16 | 2013-04-25 | Jfe Steel Corp | 加工性に優れた高強度鋼板およびその製造方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5440672A (en) | 1977-09-05 | 1979-03-30 | Matsushita Electric Ind Co Ltd | Ultrasonic rinsing capacity meter |
JPS6045686B2 (ja) | 1982-07-02 | 1985-10-11 | 日本鋼管株式会社 | 加熱炉の伝熱促進装置 |
JPS622687A (ja) | 1985-06-28 | 1987-01-08 | 住友電気工業株式会社 | 補強板付き可撓性印刷配線板の使用方法 |
JP3596316B2 (ja) | 1997-12-17 | 2004-12-02 | 住友金属工業株式会社 | 高張力高延性亜鉛めっき鋼板の製造方法 |
JP3636033B2 (ja) * | 2000-05-23 | 2005-04-06 | 住友金属工業株式会社 | 合金化溶融亜鉛めっき鋼板およびその製造方法 |
JP3622687B2 (ja) * | 2001-04-09 | 2005-02-23 | 住友金属工業株式会社 | 鋼の連続鋳造方法 |
JP4374196B2 (ja) | 2002-02-19 | 2009-12-02 | 新日本製鐵株式会社 | 加工性、めっき性および靱性に優れた微細組織を有する高強度鋼板及びその製造方法 |
ATE526424T1 (de) | 2003-08-29 | 2011-10-15 | Kobe Steel Ltd | Hohes stahlblech der dehnfestigkeit ausgezeichnet für die verarbeitung und proze für die produktion desselben |
JP2008519160A (ja) | 2004-11-03 | 2008-06-05 | ティッセンクルップ スチール アクチェンゲゼルシャフト | Twip特性をもつ高強度の鋼ストリップ又はシートの製造方法、コンポーネント及び高強度鋼ストリップ又はシートの製造方法 |
WO2008108363A1 (ja) * | 2007-03-05 | 2008-09-12 | Sumitomo Metal Industries, Ltd. | 冷間圧延鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法 |
JP4949124B2 (ja) | 2007-05-22 | 2012-06-06 | 新日鐵住金ステンレス株式会社 | 形状凍結性に優れた高強度複相ステンレス鋼板及びその製造方法 |
JP5369663B2 (ja) | 2008-01-31 | 2013-12-18 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5604946B2 (ja) * | 2010-04-09 | 2014-10-15 | 新日鐵住金株式会社 | 鋼の連続鋳造方法 |
JP4962594B2 (ja) | 2010-04-22 | 2012-06-27 | Jfeスチール株式会社 | 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
JP5825119B2 (ja) * | 2011-04-25 | 2015-12-02 | Jfeスチール株式会社 | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
CN103857819B (zh) | 2011-10-04 | 2016-01-13 | 杰富意钢铁株式会社 | 高强度钢板及其制造方法 |
US9617614B2 (en) * | 2011-10-24 | 2017-04-11 | Jfe Steel Corporation | Method for manufacturing high strength steel sheet having excellent formability |
JP5316634B2 (ja) | 2011-12-19 | 2013-10-16 | Jfeスチール株式会社 | 加工性に優れた高強度鋼板およびその製造方法 |
CA2923585A1 (en) | 2013-09-10 | 2015-03-19 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article |
JP6179675B2 (ja) * | 2014-10-30 | 2017-08-16 | Jfeスチール株式会社 | 高強度鋼板、高強度溶融亜鉛めっき鋼板、高強度溶融アルミニウムめっき鋼板および高強度電気亜鉛めっき鋼板、ならびに、それらの製造方法 |
-
2016
- 2016-08-10 MX MX2018001635A patent/MX2018001635A/es unknown
- 2016-08-10 JP JP2016571439A patent/JP6245386B2/ja active Active
- 2016-08-10 KR KR1020187002569A patent/KR102002737B1/ko active Active
- 2016-08-10 EP EP16834824.1A patent/EP3336212B1/en active Active
- 2016-08-10 US US15/735,678 patent/US10858717B2/en active Active
- 2016-08-10 WO PCT/JP2016/003702 patent/WO2017026125A1/ja active Application Filing
- 2016-08-10 CN CN201680046400.3A patent/CN108138277B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013076162A (ja) * | 2011-09-16 | 2013-04-25 | Jfe Steel Corp | 加工性に優れた高強度鋼板およびその製造方法 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018145525A (ja) * | 2017-03-07 | 2018-09-20 | Jfeスチール株式会社 | 熱延鋼板及びその製造方法、冷延鋼板及びその製造方法、冷延焼鈍鋼板の製造方法、並びに溶融亜鉛めっき鋼板の製造方法 |
JP2018162477A (ja) * | 2017-03-24 | 2018-10-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法、抵抗スポット溶接継手、ならびに自動車用部材 |
JP2021505765A (ja) * | 2017-12-05 | 2021-02-18 | アルセロールミタル | 冷間圧延焼鈍鋼板及びその製造方法 |
JP7220715B2 (ja) | 2017-12-05 | 2023-02-10 | アルセロールミタル | 冷間圧延焼鈍鋼板及びその製造方法 |
JP7220714B2 (ja) | 2017-12-05 | 2023-02-10 | アルセロールミタル | 冷間圧延焼鈍鋼板及びその製造方法 |
JP2021505764A (ja) * | 2017-12-05 | 2021-02-18 | アルセロールミタル | 冷間圧延焼鈍鋼板及びその製造方法 |
JP6680421B1 (ja) * | 2018-08-31 | 2020-04-15 | Jfeスチール株式会社 | 高強度鋼板及びその製造方法 |
US11946112B2 (en) | 2018-08-31 | 2024-04-02 | Jfe Steel Corporation | High-strength steel sheet and method for producing same |
JP6680420B1 (ja) * | 2018-08-31 | 2020-04-15 | Jfeスチール株式会社 | 高強度鋼板及びその製造方法 |
WO2020045220A1 (ja) * | 2018-08-31 | 2020-03-05 | Jfeスチール株式会社 | 高強度鋼板及びその製造方法 |
WO2020045219A1 (ja) * | 2018-08-31 | 2020-03-05 | Jfeスチール株式会社 | 高強度鋼板及びその製造方法 |
JP6760521B1 (ja) * | 2018-10-18 | 2020-09-23 | Jfeスチール株式会社 | 高延性高強度電気亜鉛系めっき鋼板およびその製造方法 |
US12043884B2 (en) | 2018-10-18 | 2024-07-23 | Jfe Steel Corporation | High-ductility, high-strength electrolytic zinc-based coated steel sheet and method for producing the same |
WO2020079926A1 (ja) * | 2018-10-18 | 2020-04-23 | Jfeスチール株式会社 | 高延性高強度電気亜鉛系めっき鋼板およびその製造方法 |
CN110016604A (zh) * | 2019-05-07 | 2019-07-16 | 南京钢铁股份有限公司 | 一种改善钢板表面质量的冶炼方法 |
JP7419401B2 (ja) | 2019-09-30 | 2024-01-22 | ヒュンダイ スチール カンパニー | 高強度および高成形性を有する鋼板およびその製造方法 |
JP2022531250A (ja) * | 2019-09-30 | 2022-07-06 | ヒュンダイ スチール カンパニー | 高強度および高成形性を有する鋼板およびその製造方法 |
JP2023530911A (ja) * | 2020-06-25 | 2023-07-20 | 宝山鋼鉄股▲分▼有限公司 | フェライト相により鋳造スラブの表面亀裂を軽減する為の方法 |
JP7671311B2 (ja) | 2020-06-25 | 2025-05-01 | 宝山鋼鉄股▲分▼有限公司 | フェライト相により鋳造スラブの表面亀裂を軽減する為の方法 |
JP2023534385A (ja) * | 2020-07-24 | 2023-08-09 | アルセロールミタル | 熱間圧延熱処理鋼板及びその製造方法 |
JP7541125B2 (ja) | 2020-07-24 | 2024-08-27 | アルセロールミタル | 熱間圧延熱処理鋼板及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
MX2018001635A (es) | 2018-05-28 |
JPWO2017026125A1 (ja) | 2017-08-10 |
EP3336212A4 (en) | 2018-07-04 |
CN108138277A (zh) | 2018-06-08 |
EP3336212B1 (en) | 2020-07-29 |
KR102002737B1 (ko) | 2019-07-22 |
EP3336212A1 (en) | 2018-06-20 |
KR20180021161A (ko) | 2018-02-28 |
JP6245386B2 (ja) | 2017-12-13 |
CN108138277B (zh) | 2020-02-14 |
US20180363088A1 (en) | 2018-12-20 |
US10858717B2 (en) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6245386B2 (ja) | 高強度鋼板用素材、高強度鋼板用熱延材、高強度鋼板用熱延焼鈍材、高強度鋼板、高強度溶融めっき鋼板および高強度電気めっき鋼板と、これらの製造方法 | |
JP6252713B1 (ja) | 高強度鋼板およびその製造方法 | |
JP5141811B2 (ja) | 均一伸びとめっき性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 | |
JP5967319B2 (ja) | 高強度鋼板およびその製造方法 | |
JP6237962B1 (ja) | 高強度鋼板及びその製造方法 | |
JP5967320B2 (ja) | 高強度鋼板およびその製造方法 | |
WO2016067626A1 (ja) | 高強度鋼板およびその製造方法 | |
WO2016067625A1 (ja) | 高強度鋼板およびその製造方法 | |
US11332804B2 (en) | High-strength cold-rolled steel sheet, high-strength coated steel sheet, and method for producing the same | |
TW201323625A (zh) | 加工性優異之高強度鋼板及其製造方法 | |
JP6274360B2 (ja) | 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法 | |
WO2012105126A1 (ja) | 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法 | |
JP6750771B1 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
WO2017168957A1 (ja) | 薄鋼板およびめっき鋼板、並びに、熱延鋼板の製造方法、冷延フルハード鋼板の製造方法、薄鋼板の製造方法およびめっき鋼板の製造方法 | |
JPWO2021079753A1 (ja) | 高強度鋼板およびその製造方法 | |
JP7020594B2 (ja) | 鋼板、部材及びそれらの製造方法 | |
JP7006848B1 (ja) | 鋼板、部材及びそれらの製造方法 | |
JP7006849B1 (ja) | 鋼板、部材及びそれらの製造方法 | |
JP6930682B1 (ja) | 高強度鋼板およびその製造方法 | |
JP5870825B2 (ja) | 合金化溶融亜鉛めっき熱延鋼板およびその製造方法 | |
JP6724320B2 (ja) | 伸びと穴広げ性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016571439 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16834824 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20187002569 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2018/001635 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016834824 Country of ref document: EP |