WO2016194050A1 - 電力変換装置 - Google Patents
電力変換装置 Download PDFInfo
- Publication number
- WO2016194050A1 WO2016194050A1 PCT/JP2015/065587 JP2015065587W WO2016194050A1 WO 2016194050 A1 WO2016194050 A1 WO 2016194050A1 JP 2015065587 W JP2015065587 W JP 2015065587W WO 2016194050 A1 WO2016194050 A1 WO 2016194050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- supply bus
- conductive member
- power
- conductive
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/14—Arrangements for reducing ripples from DC input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/003—Constructional details, e.g. physical layout, assembly, wiring or busbar connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/14—Mounting supporting structure in casing or on frame or rack
- H05K7/1422—Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
- H05K7/1427—Housings
- H05K7/1432—Housings specially adapted for power drive units or power converters
- H05K7/14329—Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/209—Heat transfer by conduction from internal heat source to heat radiating structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/147—Emission reduction of noise electro magnetic [EMI]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from AC input or output
- H02M1/123—Suppression of common mode voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2089—Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
- H05K7/20927—Liquid coolant without phase change
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a power converter that converts direct current power of a battery into alternating current power or a voltage of direct current power.
- a power electronics system for automobiles used in electric vehicles and hybrid cars is mainly composed of a battery for supplying direct current power, an inverter for converting direct current to alternating current, and a motor that obtains driving force by electrical output from the inverter. Is done.
- the inverter in this case becomes a power converter.
- the power conversion device has a built-in switch made of a power semiconductor element, and in the case of an inverter, DC power is converted into AC power by opening and closing the switch. In the case of a converter, the voltage is converted by opening and closing a switch.
- common mode noise that has escaped to the ground potential may leak into the casing of the power converter.
- the path of common mode noise that leaks into the housing serves as an antenna, and unnecessary electromagnetic waves (radiated noise) are radiated, which causes a problem that other devices such as an in-vehicle radio may malfunction.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a power conversion device that reduces common mode noise leaking to the housing.
- a power conversion device includes a first power supply bus, a second power supply bus, a switching element, a first capacitor, a second capacitor, a ground member, and a conductive member.
- the first power supply bus is provided from the positive side of the power supply
- the second power supply bus is provided from the negative side of the power supply
- the switching element is provided between the first power supply bus and the second power supply bus.
- One end of the first capacitor is connected to the first power supply bus
- one end of the second capacitor is connected to the second power supply bus.
- the ground member is connected between the other end of the first capacitor and the other end of the second capacitor.
- the conductive member is routed along at least one of the first power supply bus and the second power supply bus, and the conductive member is connected between the ground member and the ground potential.
- FIG. 9A shows the dimensions of two plate-like conductors
- FIG. 9B is a graph showing the tendency of the change in mutual inductance M with respect to the dimensions. It is a figure which shows the structural example of the power converter device 5 of 4th Embodiment. It is a figure which shows the other structural example of the power converter device 5 of 4th Embodiment. 3 is a cross-sectional view showing an example of a wiring relationship among the conductive member 14, the first power supply bus 10, and the second power supply bus 11.
- FIG. 12 is a graph showing a relationship between a balance CL BAL of electrical characteristics of each conductive line (10, 11, 14) in FIG. 11 and noise intensity of common mode noise. It is a figure which shows the structural example of the power converter device 6 of 5th Embodiment.
- FIG. 3 is a cross-sectional view showing an example of a wiring relationship among conductive members 14a, 14b, a first power supply bus 10, and a second power supply bus 11.
- FIG. FIG. 6 is a cross-sectional view showing another example of the wiring relationship of the conductive members 14a, 14b, the first power supply bus 10, and the second power supply bus 11. It is a figure which shows the structural example of the power converter device 7 of 6th Embodiment. It is a figure explaining the effect which made the length of the electroconductive member 14 the length of (lambda) / 4 of wavelength (lambda) of the high frequency signal of a common mode voltage (electric current).
- FIG. 1 the structural example of the power converter device 1 of 1st Embodiment is shown.
- the power converter device 1 of this embodiment is shown by the example of the inverter which converts the direct current power of a battery into alternating current power, for example in the power electronics system for motor vehicles.
- the power conversion device 1 includes a first power supply bus 10, a second power supply bus 11, a power module 12 (switching element), a ground potential member 13, and a housing 15.
- the first power supply bus 10 supplies the power conversion device 1 with a positive power source (positive electrode side) of a power source 16 (battery) that supplies DC power.
- the second power supply bus 11 supplies the negative power source (negative electrode side) of the power source 16 to the power conversion device 1.
- the first power supply bus 10 and the second power supply bus 11 can be disposed from anywhere in the power supply system.
- the power module 12 is provided between the first power supply bus 10 and the second power supply bus 11, and DC power is supplied from the power supply 16.
- the power module 12 is an inverter that converts DC power into AC power, for example, by repeatedly opening and closing an internal switch according to a control signal (not shown).
- the ground potential member 13 connects the first power supply bus 10 and the second power supply bus 11 to the housing 15 connected to the ground potential.
- the connection here means an AC connection through reactance. Details will be described later.
- the conductive member 14 is routed along at least one of the first power supply bus 10 and the second power supply bus 11 and connects between the ground potential member 13 and the casing 15 in the vicinity of the power module 12.
- the first power supply bus 10 and the second power supply bus 11 are connected to the ground potential by the ground potential member 13 and the conductive member 14.
- the “routing along” means that the conductive member 14 is extended over a certain range without leaving a distance along at least one side of the first power supply bus 10 and the second power supply bus 11 extended in a linear shape. Means that. Specific examples will be described later.
- Common mode noise is defined as noise that propagates in common in a certain device, noise that propagates on a ground potential surface (ground surface), or the like.
- the common mode noise is generated when the switching element in the power module 12 is connected and disconnected, and is a noise that flows in the same direction in the first power supply bus 10 and the second power supply bus 11.
- a common mode current for charging and discharging the stray capacitance between the output node of the power module 12 and the ground potential which is omitted in FIG. 1 flows.
- the common mode current flows through the first power supply bus 10 and the second power supply bus 11 at the same time, and passes through the first loop R 1 (one-dot chain line) that passes through the conductive member 14 and the second current that passes through the housing 15. It flows in two paths with the loop R 2 (broken line).
- the common mode current increases as the stray capacitance between the output node and the ground potential increases.
- the common mode current is a high frequency, and the path of the common mode current flowing through the second loop R 2 becomes a loop antenna, and unnecessary electromagnetic waves (common mode noise) may be radiated from the housing 15.
- the conductive member 14 of the present embodiment is routed along at least one of the first power supply bus 10 and the second power supply bus 11. Therefore, the inductance of the conductive member 14 can be reduced by the action of the mutual inductance M therebetween. As a result, the impedance of the conductive member 14 decreases, the common mode current that causes the generation of common mode noise flows preferentially through the conductive member 14, and leaks to the housing 15 and the like, and the common mode current of the second loop R2 leaks out. Decrease. Details of the mutual inductance M will be described later.
- the power conversion device 1 reduces the common mode current leaking to the casing 15, it suppresses the emission of unnecessary electromagnetic waves due to the common mode noise generated by the propagation path.
- the housing 15 that houses the power module 12 and the like may be omitted.
- the first power supply bus 10 and the second power supply bus 11 may be grounded using a conductive wire or a conductive plate instead of the housing 15.
- Fig. 2 shows a diagram representing Fig. 1 with circuit symbols.
- the power module 12 shown in FIG. 2 is an example of an inverter that includes, for example, a switching element 12a that connects a collector electrode to a positive power source and a switching element 12b that connects an emitter electrode to a negative power source.
- the emitter electrode of switching element 12a and the collector electrode of switching element 12b are connected to form output node 12c.
- Diodes D1 and D2 are connected to switching elements 12a and 12b in antiparallel orientation, respectively.
- the ground potential member 13 includes a first capacitor 13a, a second capacitor 13b, and a ground member 13c. One end of the first capacitor 13 a is connected to the first power supply bus 10. One end of the second capacitor 13 b is connected to the second power supply bus 11.
- the other ends of the first capacitor 13a and the second capacitor 13b are connected to a grounded ground member 13c.
- the grounding member 13c is represented by a rectangle, the shape may be anything.
- the conductive member 14 connects the ground member 13 c and the inside of the bottom surface of the housing 15 near the output node 12 c of the power module 12.
- the conductive member 14 is routed along at least one of the first power supply bus 10 and the second power supply bus 11.
- being close to the output node 12c means being close to a semiconductor chip described later on which the switching elements 12a and 12b are formed.
- a stray capacitance C pm2 is formed between the output node 12c and the casing 15 to which the conductive member 14 is connected.
- Switching elements 12a, the common mode current through the stray capacitance C pm2 when opening and closing the 12b flows to the first loop R 1 shown by the one-dot chain line, and a second loop R 2 shown by the broken line.
- the common mode current also flows through the second power supply bus 11.
- the common mode current flowing through the second power supply bus 11 is not shown because the figure is difficult to see.
- the stray capacitance C pm2 formed between the power module 12 and the housing 15 will be described with reference to FIG.
- FIG. 3 shows a cross-sectional structure of the power module 12.
- the power module 12 includes, for example, a semiconductor chip 120 on which an IGBT (Insulated Gate Bipolar Transistor) or the like is formed, a copper pattern 121 on which the semiconductor chip 120 is mounted, a ceramic substrate 122 for wiring the copper pattern 121, and a ceramic substrate. And a copper base 123 for fixing 122.
- IGBT Insulated Gate Bipolar Transistor
- the capacitance of the stray capacitance Cpm2 between the output node 12c of the power module 12 and the ground potential is calculated between the copper pattern 121 and the copper base 123 by the following equation.
- S is an area where the copper pattern 121 and the copper base 123 face each other
- d is a distance between the copper pattern 121 and the copper base 123
- ⁇ r is a relative dielectric constant of the ceramic substrate 122.
- the first loop R 1 is a path that passes through the first power supply bus 10, the second power supply bus 11, the first capacitor 13 a, the second capacitor 13 b, and the conductive member 14.
- Loop R 2 of the second has a first supply bus 10 and the second power feeder buses 11, and the first capacitor 13a and a second capacitor 13b, a grounding member 13c, capacitance floating in portions of the ground member 13c or the ground potential member 13 is a route that passes through the housing 15 via 13.
- Impedance Z 1 includes a reactance due to the capacitance of the floating ground member 13c, and the reactance due to the inductance of the ground potential member 13. Also, the impedance of the conductive member 14 and Z 2. Also, the impedance of the housing 15 and Z 3.
- the power conversion device 1 routes the conductive member 14 along at least one of the first power supply bus 10 and the second power supply bus 11 to change the relationship between the impedances to the relationship expressed by the following equation and leaks to the housing 15. Reduces the common mode current that exits.
- FIG. 4 shows an example in which common mode noise is compared with the case where the present embodiment is not applied.
- FIG. 4 shows an example of common mode noise that leaks into the housing 15.
- the horizontal axis represents time
- the vertical axis represents noise level.
- the waveform ⁇ (broken line) shown in FIG. 4 indicates the noise level leaking to the casing of the power conversion device of the comparative example.
- the noise level leaked into the casing 15 of the power conversion device 1 of the present embodiment is indicated by a waveform ⁇ (solid line).
- the power conversion device 1 according to the present embodiment reduces the noise level by reducing the common mode current leaking to the housing 15.
- FIG. 5 shows an example in which the present embodiment is modified to a boost converter.
- FIG. 5 shows a configuration example of the power conversion device 2 that converts (boosts) the voltage of the power supply 16 to a higher voltage.
- FIG. 5 shows that the first power supply bus 10 is connected to the output node 12c to which the emitter electrode of the switching element 12a and the collector electrode of the switching element 12b are connected. Is different. In this case, the collector electrode of the switching element 12a becomes a boosted output.
- the power converter 2 makes the impedance Z 2 of the first loop R 1 through which the common mode current flows smaller than the impedance (Z 1 + Z 3 ) of the second loop R 2 including the housing 15. The common mode current leaking into the casing 15 is reduced.
- FIG. 6 the structural example of the power converter device 3 of 2nd Embodiment is shown.
- the power conversion device 3 of the present embodiment is different from the power conversion device 1 (FIG. 1) in that it includes a cooling member 30.
- the power conversion device 3 may be cooled by the cooling member 30 because the power module 12 generates heat.
- the cooling member 30 is insulated from the power module 12 and is disposed in the vicinity thereof.
- the cooling member 30 is disposed between, for example, the copper base 123 and the housing 15 in FIG.
- the surface of the cooling member 30 is grounded and has a portion 30a to which the conductive member 14 is connected.
- the part 30 a is provided on the surface of the cooling member 30 that is closer to the power module 12 than the housing 15.
- the part 30 a is located at a position raised from the bottom surface of the housing 15 close to the power module 12. Therefore, the length of the conductive member 14 connecting the part 30a and one end of the grounding member 13c can be made shorter than the shortest length from the ground potential member 13 to the part 30a via the housing 15. This means that Z 3 that is the impedance of the housing 15 is relatively increased.
- FIG. 7 shows a diagram representing FIG. 6 with circuit symbols. 6 differs from FIG. 2 only in that a cooling member 30 is provided. Since the cooling member 30 is inserted and disposed between the power module 12 and the housing 15, the length thereof can be made shorter than that of the conductive member 14 of FIG. That is, the relationship of Z 3 > Z 2 is strengthened.
- the power conversion device 3 further strengthens the relationship of the above-described formula (1), the common mode current leaking to the housing 15 is further reduced. Further, since the conductive member 14 is connected to the portion 30a of the cooling member 30, a member for securing a ground potential dedicated to the conductive member is not necessary. Therefore, the power converter 3 has an effect of reducing the number of members and easily securing the ground potential of the conductive member 14.
- FIG. 8 the structural example of the power converter device 4 of 3rd Embodiment is shown.
- the configuration of the power conversion device 4 of the present embodiment is the same as that of the power conversion device 1 (FIG. 2).
- the power conversion device 4 has a configuration in which the relationship between the inductances can be expressed by Expression (3) when the impedances of the ground potential member 13, the conductive member 14, and the housing 15 are inductances L1, L2, and L3. In this respect, it differs from the power conversion device 1.
- the inductance L2 of the conductive member 14 By making the inductance L2 of the conductive member 14 smaller than the total inductance (L1 + L3) of the ground potential member 13 and the casing 15, the common mode current leaking to the casing 15 is reduced.
- Inductances L1, L2, and L3 are not lumped constants.
- Equation (4) shows the inductance obtained when the cross-sectional shapes of the ground potential member 13 and the conductive member 14 are, for example, plate-like.
- l is the length of the plate-like conductor
- h is the thickness of the plate-like conductor
- w is the width of the plate-like conductor
- ⁇ 0 is the magnetic permeability.
- FIG. 9 (a) shows the dimensions when two plate-like conductors are routed with a distance d therebetween.
- One conductor has a width w, a thickness h, and a length l.
- the other conductor has the same width and thickness, and is arranged facing the one conductor with a distance d.
- FIG. 9B shows the tendency of the change in mutual inductance M between the two conductors.
- the horizontal axis represents the ratio (l / w) of the length l to the width w of the conductor
- the vertical axis represents the mutual inductance M.
- the parameter (0.25, 0.5, 1.0, 2.5, 5, 10) is a ratio (d / w) between the distance d and the width w.
- the ratio (h / w) of the thickness h to the width w of the conductor is constant at 0.25.
- the mutual inductance M increases as the length l of the conductor increases (l / w ⁇ large).
- the width w of the conductor is large and the distance d between the conductors is short (d / w ⁇ small)
- the conductor becomes large.
- the power conversion device 4 suppresses radiation of unnecessary electromagnetic waves due to common mode noise.
- the conductive member 14 is preferably connected to the central portion of the grounding member 13c.
- the conductive member 14 is not necessarily limited thereto, and may be routed along at least one of the first power supply bus 10 and the second power supply bus 11. For example, you may make it connect to parts other than the center part of the grounding member 13c.
- the conductive member 14 is routed along at least one of the first power supply bus 10 and the second power supply bus 11 so that the inductance of the conductive member 14 is reduced regardless of the connection portion of the conductive member 14. It can be made smaller than the inductance of 13c. As a result, a common mode current that is a source of common mode noise can be preferentially passed through the conductive member 14.
- FIG. 10 the structural example of the power converter device 5 of 4th Embodiment is shown.
- the above equation (3) is expressed by the following equation.
- the power conversion device 5 can reduce leakage of the common mode current to the housing 15 in a specific frequency band by satisfying the following expression.
- the stray capacitance C b in FIG. 10 there is shown to be connected in series with the inductance L1 of the ground potential member 13, not necessarily limited to it, as shown in FIG. 11, to be connected in parallel with the inductance L1
- the stray capacitance Cb may be described.
- the power conversion device 5 includes the first power supply so that the distance between the conductive member 14 and the first power supply bus 10 and the distance between the conductive member 14 and the second power supply bus 11 are equal.
- the conductive member 14 is routed along the bus 10 and the second power supply bus 11.
- FIG. 12 is a cross-sectional view (corresponding to the AA cross section in FIG. 10) in a direction orthogonal to the extending direction of each conductive wire (10, 11, 14).
- FIG. 12 shows an example in which the shape of each conductive wire (10, 11, 14) is a flat plate shape, and one surface of the first power supply bus 10 and the second power supply bus 11 is arranged facing one surface of the conductive member 14. It is.
- the balance CL BAL is 0 if the sizes of C11 and C22 or L11 and L22 are the same. If the balance between the sizes of C11 and C22 or L11 and L22 is poor, the value of the balance CL BAL increases.
- FIG. 13 shows the relationship between the balance CL BAL and the noise intensity of common mode noise.
- the horizontal axis represents the balance CL BAL value
- the vertical axis represents the noise intensity.
- the noise intensity increases linearly when the value of the balance CL BAL exceeds 1, and shows a characteristic that saturates at 2.5 or more.
- the noise intensity can be reduced by setting the value of the balance CL BAL to CL BAL ⁇ 2. That is, the power converter 5 can further reduce common mode noise by reducing the value of the balance CL BAL .
- FIG. 14 the structural example of the power converter device 6 of 5th Embodiment is shown.
- the power converter 6 of this embodiment is different from the power converter 3 (FIG. 7) in that the conductive member 14 includes two conductive members 14a and 14b.
- the conductive members 14a and 14b are, for example, flat conductive wires. By using the two conductive members 14a and 14b, the line capacitance (C11) between the first power supply bus 10 and the conductive member 14a, and the line capacitance (C22) between the second power supply bus 11 and the conductive member 14b, To make it even.
- FIG. 15 is a cross-sectional view (corresponding to the BB cross section in FIG. 14) in a direction orthogonal to the extending direction of each conductive wire (10, 11, 14a, 14b). As shown in FIG. 15, the cross-sectional shapes of the conductive members 14a, 14b, the first power supply bus 10, and the second power supply bus 11 are the same.
- the conductive member 14a, the first power supply bus 10, the second power supply bus 11, and the conductive member 14b are arranged horizontally at intervals so as to form one plane in that order.
- the distance between the conductive member 14a and the first power supply bus 10 and the distance between the conductive member 14b and the second power supply bus 11 are routed to be equal.
- the capacitive coupling between the first power supply bus 10 and the conductive member 14a and the second power supply bus 11 and the conductive member 14b can be reduced. Further, the inductance of the conductive members 14a and 14b can be reduced by the action of the mutual inductance M of each set.
- the power converter 6 further reduces the noise intensity.
- the conductive members 14a, 14b, the first power supply bus 10, and the second power supply bus 11 may be routed.
- the power converter 6 uses the action of the mutual inductance M more effectively.
- the first power supply bus 10 and the second power supply bus 11 shown in FIG. 16 are flat conductive wires.
- One surface of the first power supply bus 10 faces the conductive member 14 a and also faces the second power feed bus 11.
- One surface of the second power supply bus 11 faces the first power feed bus 10 and also faces the conductive member 14b.
- the first power supply bus 10 and the conductive member 14 a are opposed to each other, and the second power supply bus 11 and the conductive member 14 b are opposed to each other, thereby increasing the mutual inductance M between the two (formula (5) )).
- the power converter 6 reduces the inductance of the conductive members 14a and 14b by the action of the mutual inductance M, and suppresses the emission of unnecessary electromagnetic waves due to common mode noise.
- each conductive wire (10, 11, 14a, 14b) is a housing 15. It is better to route them so that the distances from them are equal. That is, the distance of each conductive wire (10, 11, 14a, 14b) from the upper wall inside the housing 15 is y1, and the distance from the lower wall inside the housing 15 is y2, and the inside of the housing 15 of the conductive member 14a. The distance from one side wall is x1, and the distance from the other side wall inside the housing 15 of the conductive member 14b is x2.
- each conductive wire (10, 11, 14a, 14b) is arranged in the central portion inside the housing 15.
- Each conductive wire (10, 11, 14a, 14b) is arranged between the respective conductive wires (10, 11, 14a, 14b) and the housing 15 by being arranged in the central portion inside the housing 15.
- the parasitic impedance can be balanced. As a result, the effect of reducing the value of the balance CL BAL (FIG. 13) can be used more effectively.
- each conductive wire (10, 11, 14a, 14b) is routed as shown in FIG.
- the distances of the conductive members 14a and 14b from the inner surface of the housing 15 are y1 and x1
- the distances of the first power supply bus 10 and the second power supply bus 11 from the inner surface of the housing 15 are y1 and x2.
- the difference between x1 and x2 is set to a sufficiently small distance with respect to x1 (x2).
- each conductive wire (10, 11, 14a, 14b) is arranged in the central portion inside the housing 15 by sufficiently reducing the proportion of the difference.
- the value of the balance CL BAL can be reduced to reduce the noise intensity of common mode noise.
- FIG. 17 the structural example of the power converter device 7 of 6th Embodiment is shown.
- the length of the conductive member 14 of the power converter 3 (FIG. 6) is set to a quarter of the wavelength ⁇ of the high-frequency signal of the common mode voltage (current) generated by opening and closing the switching elements 12a and 12b. It is different in the one point.
- the power converter 7 reduces the noise intensity of the common mode noise by setting the length of the conductive member 14 to a quarter of the wavelength ⁇ of the high frequency signal of the common mode voltage.
- FIG. 18A is a diagram schematically illustrating a propagation route through which the common mode voltage Vn reaches the cooling member 30 through the conductive member 14.
- FIG. 18B is a diagram conceptually showing attenuation of the common mode voltage Vn.
- a standing wave indicated by a waveform ⁇ (solid line) corresponding to the size (dimension) of the cooling member is generated.
- the standing wave propagates to the conductive member 14 and is reflected inside the conductive member 14. Therefore, by forming a branch path having a length of 1 ⁇ 4 of the wavelength ⁇ of the standing wave, a reflected wave having a reverse phase is generated in the conductive member 14, and the standing wave and the reflected wave cancel each other, thereby standing wave. Can be suppressed.
- the reflected waves cancel each other as shown by the waveform ⁇ (broken line) and the standing wave Can be suppressed.
- the length of the conductive member 14 may be set to 1 ⁇ 4 of the wavelength ⁇ of the resonance frequency due to the inductance component and the capacitance component of the first loop R 1 and the second loop R 2 .
- the high-frequency signal of the common mode voltage that propagates through the first power supply bus 10 and the second power supply bus 11 is reflected inside the conductive member 14. Therefore, common mode noise can be suppressed by setting the length of the conductive member 14 to ⁇ / 4 of the wavelength ⁇ of the high frequency signal of the common mode voltage, as in the case of the standing wave.
- the length of the conductive member 14 is 1 ⁇ 4 of the wavelength ⁇ of the resonance frequency due to the inductance component and the capacitance component of the first loop R 1 and the second loop R 2 , or the surface of the cooling member 30. It may be any one-fourth of the wavelength ⁇ of the frequency of the standing wave generated in step (b). In short, the wavelength ⁇ may be a wavelength corresponding to the frequency of common mode noise generated by opening and closing the switching element. When the wavelength is ⁇ and the odd number is n, the same effect can be obtained by setting the length of the conductive member 14 to n ⁇ / 4.
- the conductive member 14 Since the conductive member 14 is routed along at least one of the first power supply bus 10 and the second power supply bus 11, mutual connection between the conductive member 14 and the first power supply bus 10 or the second power supply bus 11 is performed.
- the inductance of the conductive member 14 can be reduced by the action of the inductance M. For this reason, the impedance of the conductive member 14 is reduced, and the common mode current flows preferentially through the conductive member 14, so that the common mode current leaking to the housing 15 is reduced.
- the power conversion device 1 suppresses the emission of unnecessary electromagnetic waves due to common mode noise, and thus does not adversely affect the operation of surrounding electronic devices.
- the power conversion device 3 including the cooling member 30 connects the conductive member 14 to the grounded portion 30a of the cooling member 30, a member only for securing the ground potential of the conductive member 14 is unnecessary. That is, the power conversion device 3 also has an effect of facilitating securing of the ground potential in addition to the effect of reducing the common mode current.
- the power conversion device 3 including the cooling member 30 can shorten the length of the conductive member 14 by the thickness of the cooling member 30. That is, the length of the conductive member 14 can be made shorter than the length from the ground member 13 c and the housing 15 to the part 30 a. Therefore, the impedance of the conductive member 14 is reduced, the common mode current can be preferentially passed through the conductive member 14, and the common mode current leaking to the housing 15 is reduced.
- the power conversion device 4 sets the inductances of the ground member 13c, the conductive member 14, and the housing 15 to L1, L2, and L3.
- the power conversion device 4 reduces the common mode current leaking to the housing 15 by making the inductance L2 of the conductive member 14 smaller than the total value (L1 + L3) of the inductance of the grounding member 13c and the housing 15.
- the power converter 5 with the capacitance C b of floating by satisfying the above expression (6), the common mode current at a particular frequency band Leakage to the housing 15 is reduced.
- the power converter 5 having a configuration in which the shape of each conductive wire is a flat plate, and one surface of the first power supply bus 10 and the second power supply bus 11 is arranged to face one surface of the conductive member 14,
- CL BAL of electrical characteristics that can be calculated by the impedance of each conductive line can be reduced.
- the power converter 5 can reduce the noise intensity of the common mode noise (FIG. 12).
- the power converter 6 reduces the inductance of the conductive members 14a and 14b by the action of the mutual inductance M.
- the noise intensity of the common mode noise due to the cancellation of the reflected waves can be reduced.
- an embodiment in which the action of the mutual inductance M is effectively used by using the two conductive members 14a and 14b may be applied to any of the power conversion devices 1 to 5 described above.
- the embodiment in which the length of the conductive member 14 is set to n ⁇ / 4 of the wavelength ⁇ of the high-frequency signal of the common mode voltage (current) may be applied to any of the power conversion devices 1 to 6.
- inventions of the present invention described above can be applied to inverters and converters, and can be widely used for power converters for applications that need to suppress the emission of unnecessary electromagnetic waves.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
- Dc-Dc Converters (AREA)
Abstract
Description
図1に、第1実施形態の電力変換装置1の構成例を示す。本実施形態の電力変換装置1を、例えば自動車用パワーエレクトロニクスシステムにおいて、バッテリの直流電力を交流電力に変換するインバータの例で示す。
図5に、本実施形態を昇圧コンバータに変形した例を示す。図5は、電源16の電圧を、より高い電圧に変換(昇圧)する電力変換装置2の構成例を示す。
図6に、第2実施形態の電力変換装置3の構成例を示す。本実施形態の電力変換装置3は、冷却部材30を具備する点で電力変換装置1(図1)と異なる。
図8に、第3実施形態の電力変換装置4の構成例を示す。本実施形態の電力変換装置4の構成は、電力変換装置1(図2)と同じである。
図10に、第4実施形態の電力変換装置5の構成例を示す。本実施形態の電力変換装置5において、電力変換装置4(図8)の接地部材13cと筐体15との間に浮遊している容量を、Cbで表している。
図14に、第5実施形態の電力変換装置6の構成例を示す。本実施形態の電力変換装置6は、電力変換装置3(図7)に対して、導電部材14が、2個の導電部材14a,14bで構成される点で異なる。
図17に、第6実施形態の電力変換装置7の構成例を示す。電力変換装置7は、電力変換装置3(図6)の導電部材14の長さを、スイッチング素子12a,12bを開閉することで発生するコモンモード電圧(電流)の高周波信号の波長λの四分の一にした点で異なる。
10 第一給電母線
11 第二給電母線
12 パワーモジュール
12a,12b スイッチング素子
13a 第一コンデンサ
13b 第二コンデンサ
13c 接地部材
14 導電部材
15 筐体
16 電源
30 冷却部材
30a 部位
Claims (7)
- 電源の正極側から配設された第一給電母線と、
前記電源の負極側から配設された第二給電母線と、
前記第一給電母線と前記第二給電母線との間に設けられるスイッチング素子と、
一端を前記第一給電母線と接続する第一コンデンサと、
一端を前記第二給電母線と接続する第二コンデンサと、
前記第一コンデンサの他端と前記第二コンデンサの他端との間に接続される接地部材と、
前記第一給電母線と前記第二給電母線との少なくとも一方に沿って配索され、前記接地部材と前記接地電位との間を接続する導電部材と
を具備することを特徴とする電力変換装置。 - 前記スイッチング素子を冷却する冷却部材を備え、
前記冷却部材は、表面が接地され、当該表面に前記導電部材が接続される部位を有することを特徴とする請求項1に記載した電力変換装置。 - 前記冷却部材を固定する筐体と、
前記接地部材と前記筐体とを接続する接地電位部材と、を備え、
前記導電部材の長さは、前記接地部材から前記筐体を介して前記部位に至るまでの最短長よりも短いことを特徴とする請求項2に記載した電力変換装置。 - 前記導電部材は、
前記第一給電母線と当該導電部材との線間容量と、前記第二給電母線と当該導電部材との線間容量とが、均等になるように配索されることを特徴とする請求項1乃至3の何れかに記載した電力変換装置。 - 前記導電部材は、
前記第一給電母線と当該導電部材との距離と、前記第二給電母線と当該導電部材との距離とが、等しくなるように配索されることを特徴とする請求項1乃至4の何れかに記載した電力変換装置。 - 前記導電部材は、
2個の平板状の導線であって、
前記第一給電母線は、平板状の導線であって、前記導電部材の一方の導線と対向すると共に、前記導電部材と対向している面と同じ面で前記第二給電母線と対向し、
前記第二給電母線は、平板状の導線であって、前記第一給電母線と対向している面と同じ面で前記導電部材の他方の導線と対向する
ことを特徴とする請求項1乃至5の何れかに記載した電力変換装置。 - 前記導電部材の長さは、
前記スイッチング素子を開閉することで発生するコモンモードノイズの波長をλ、且つ、奇数nとした場合にnλ/4であることを特徴とする請求項1乃至6の何れかに記載した電力変換装置。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112017025667-3A BR112017025667B1 (pt) | 2015-05-29 | 2015-05-29 | Dispositivo de conversão de energia |
US15/577,538 US10734890B2 (en) | 2015-05-29 | 2015-05-29 | Power conversion device |
MX2017015169A MX367334B (es) | 2015-05-29 | 2015-05-29 | Dispositivo de conversión de energía. |
JP2017521321A JP6394802B2 (ja) | 2015-05-29 | 2015-05-29 | 電力変換装置 |
PCT/JP2015/065587 WO2016194050A1 (ja) | 2015-05-29 | 2015-05-29 | 電力変換装置 |
KR1020177035731A KR101889249B1 (ko) | 2015-05-29 | 2015-05-29 | 전력 변환 장치 |
CA2987368A CA2987368C (en) | 2015-05-29 | 2015-05-29 | Power conversion device |
EP15894085.8A EP3306799B1 (en) | 2015-05-29 | 2015-05-29 | Power conversion device |
MYPI2017704427A MY169889A (en) | 2015-05-29 | 2015-05-29 | Power conversion device |
RU2017146406A RU2667075C1 (ru) | 2015-05-29 | 2015-05-29 | Устройство преобразования мощности |
CN201580080300.8A CN107710582B (zh) | 2015-05-29 | 2015-05-29 | 电力转换装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/065587 WO2016194050A1 (ja) | 2015-05-29 | 2015-05-29 | 電力変換装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016194050A1 true WO2016194050A1 (ja) | 2016-12-08 |
Family
ID=57442349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/065587 WO2016194050A1 (ja) | 2015-05-29 | 2015-05-29 | 電力変換装置 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10734890B2 (ja) |
EP (1) | EP3306799B1 (ja) |
JP (1) | JP6394802B2 (ja) |
KR (1) | KR101889249B1 (ja) |
CN (1) | CN107710582B (ja) |
BR (1) | BR112017025667B1 (ja) |
CA (1) | CA2987368C (ja) |
MX (1) | MX367334B (ja) |
RU (1) | RU2667075C1 (ja) |
WO (1) | WO2016194050A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3376658A1 (en) * | 2017-03-13 | 2018-09-19 | Omron Corporation | Power conversion device and power supply apparatus |
RU2699823C1 (ru) * | 2018-02-06 | 2019-09-11 | Тойота Дзидося Кабусики Кайся | Преобразователь мощности |
WO2022185533A1 (ja) * | 2021-03-05 | 2022-09-09 | 三菱電機株式会社 | インバータ装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114846732A (zh) * | 2019-12-17 | 2022-08-02 | 株式会社村田制作所 | 电子电路 |
CN116390444B (zh) * | 2023-04-18 | 2023-09-01 | 金华托菲电器有限公司 | 智能离子体电源及电源系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031405A1 (ja) * | 2011-08-30 | 2013-03-07 | 日産自動車株式会社 | 電力変換装置 |
WO2013047172A1 (ja) * | 2011-09-28 | 2013-04-04 | 日産自動車株式会社 | 電力変換装置 |
WO2013080698A1 (ja) * | 2011-11-28 | 2013-06-06 | 日産自動車株式会社 | 電力変換装置 |
JP2014050260A (ja) * | 2012-08-31 | 2014-03-17 | Fuji Electric Co Ltd | 電力変換装置 |
JP2014087107A (ja) * | 2012-10-19 | 2014-05-12 | Nissan Motor Co Ltd | 電力変換装置 |
JP2014117047A (ja) * | 2012-12-07 | 2014-06-26 | Nissan Motor Co Ltd | 電力変換装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3432505B1 (ja) * | 2002-02-26 | 2003-08-04 | 学校法人慶應義塾 | 電力変換器を用いたシステム |
JP4009901B2 (ja) | 2002-05-31 | 2007-11-21 | 富士電機デバイステクノロジー株式会社 | 電力変換回路 |
JP2004187484A (ja) * | 2002-10-11 | 2004-07-02 | Fuji Electric Device Technology Co Ltd | 電力変換器スタック構造 |
JP2006311697A (ja) * | 2005-04-28 | 2006-11-09 | Hitachi Ltd | ブラシレスモータシステム |
US8345453B2 (en) * | 2007-09-21 | 2013-01-01 | Mitsubishi Electric Corporation | Power conversion apparatus for electric vehicle |
JP5002568B2 (ja) * | 2008-10-29 | 2012-08-15 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
JP2010193546A (ja) * | 2009-02-16 | 2010-09-02 | Toyota Motor Corp | アクチュエータ駆動回路 |
US8064198B2 (en) * | 2009-06-29 | 2011-11-22 | Honda Motor Co., Ltd. | Cooling device for semiconductor element module and magnetic part |
US8937822B2 (en) * | 2011-05-08 | 2015-01-20 | Paul Wilkinson Dent | Solar energy conversion and utilization system |
JP2013115904A (ja) * | 2011-11-28 | 2013-06-10 | Hitachi Automotive Systems Ltd | 機電一体型の電動駆動装置 |
JP2013219919A (ja) * | 2012-04-09 | 2013-10-24 | Mitsubishi Electric Corp | ノイズ低減フィルタおよびそれを用いた電力変換装置 |
CN102751863A (zh) * | 2012-07-25 | 2012-10-24 | 大连西赛德门控有限公司 | 直流电机电磁兼容抗干扰系统 |
CN104756380B (zh) * | 2012-10-25 | 2017-12-01 | 三菱电机株式会社 | 共模噪声降低装置 |
JP2014187812A (ja) * | 2013-03-22 | 2014-10-02 | Toshiba Lighting & Technology Corp | 電源回路及び照明装置 |
EP3002866B1 (de) * | 2014-09-30 | 2021-09-08 | Siemens Aktiengesellschaft | Spannungszwischenkreis-Stromrichter in Fünfpunkttopologie |
-
2015
- 2015-05-29 CN CN201580080300.8A patent/CN107710582B/zh active Active
- 2015-05-29 CA CA2987368A patent/CA2987368C/en active Active
- 2015-05-29 RU RU2017146406A patent/RU2667075C1/ru active
- 2015-05-29 KR KR1020177035731A patent/KR101889249B1/ko active Active
- 2015-05-29 WO PCT/JP2015/065587 patent/WO2016194050A1/ja active Application Filing
- 2015-05-29 US US15/577,538 patent/US10734890B2/en active Active
- 2015-05-29 EP EP15894085.8A patent/EP3306799B1/en active Active
- 2015-05-29 BR BR112017025667-3A patent/BR112017025667B1/pt active IP Right Grant
- 2015-05-29 MX MX2017015169A patent/MX367334B/es active IP Right Grant
- 2015-05-29 JP JP2017521321A patent/JP6394802B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031405A1 (ja) * | 2011-08-30 | 2013-03-07 | 日産自動車株式会社 | 電力変換装置 |
WO2013047172A1 (ja) * | 2011-09-28 | 2013-04-04 | 日産自動車株式会社 | 電力変換装置 |
WO2013080698A1 (ja) * | 2011-11-28 | 2013-06-06 | 日産自動車株式会社 | 電力変換装置 |
JP2014050260A (ja) * | 2012-08-31 | 2014-03-17 | Fuji Electric Co Ltd | 電力変換装置 |
JP2014087107A (ja) * | 2012-10-19 | 2014-05-12 | Nissan Motor Co Ltd | 電力変換装置 |
JP2014117047A (ja) * | 2012-12-07 | 2014-06-26 | Nissan Motor Co Ltd | 電力変換装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3306799A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3376658A1 (en) * | 2017-03-13 | 2018-09-19 | Omron Corporation | Power conversion device and power supply apparatus |
RU2699823C1 (ru) * | 2018-02-06 | 2019-09-11 | Тойота Дзидося Кабусики Кайся | Преобразователь мощности |
WO2022185533A1 (ja) * | 2021-03-05 | 2022-09-09 | 三菱電機株式会社 | インバータ装置 |
JP7471504B2 (ja) | 2021-03-05 | 2024-04-19 | 三菱電機株式会社 | インバータ装置 |
Also Published As
Publication number | Publication date |
---|---|
CA2987368A1 (en) | 2016-12-08 |
US10734890B2 (en) | 2020-08-04 |
EP3306799B1 (en) | 2021-02-17 |
MX367334B (es) | 2019-08-15 |
EP3306799A1 (en) | 2018-04-11 |
CN107710582A (zh) | 2018-02-16 |
RU2667075C1 (ru) | 2018-09-14 |
EP3306799A4 (en) | 2018-09-12 |
KR101889249B1 (ko) | 2018-08-16 |
JPWO2016194050A1 (ja) | 2018-03-22 |
CA2987368C (en) | 2018-07-03 |
JP6394802B2 (ja) | 2018-09-26 |
KR20180006428A (ko) | 2018-01-17 |
BR112017025667A2 (ja) | 2018-08-07 |
MX2017015169A (es) | 2018-04-13 |
CN107710582B (zh) | 2019-07-16 |
BR112017025667B1 (pt) | 2022-06-21 |
US20180152098A1 (en) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6394802B2 (ja) | 電力変換装置 | |
CN103891116B (zh) | 电子装置 | |
US11257616B2 (en) | Power conversion device and high-voltage noise filter | |
CN104471832A (zh) | 无线电力传输装置、无线电力送电装置以及受电装置 | |
CN105210464B (zh) | 用于将直流电压转换为交变电压的设备和电气组件 | |
CN102668355B (zh) | 电力变换装置 | |
US10673349B2 (en) | Power conversion device with efficient cooling structure | |
JP5733421B2 (ja) | 電力変換装置 | |
US10770954B2 (en) | Interference suppression apparatus, electronic subassembly, and use of an interference suppression apparatus | |
JP5991137B2 (ja) | 電力変換装置 | |
JP7331946B2 (ja) | 電子回路 | |
JP6464580B2 (ja) | 電力変換装置 | |
WO2013046458A1 (ja) | 電力変換装置 | |
US10855172B2 (en) | Shield, electronic circuit, and DC-DC converter | |
JP2022138225A (ja) | コンデンサモジュールおよびそれを備えた電力変換装置 | |
JP2012178937A (ja) | 電力変換装置 | |
CN117411384A (zh) | 开绕组电机的驱动电路和电器设备 | |
US10658940B2 (en) | Power converter | |
EP3705897A1 (en) | Current detection device | |
JP2024168986A (ja) | モータ制御装置 | |
JP2014087106A (ja) | 電力変換装置 | |
WO2015079882A1 (ja) | スイッチング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15894085 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017521321 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2987368 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/015169 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15577538 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177035731 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017146406 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015894085 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017025667 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112017025667 Country of ref document: BR Kind code of ref document: A2 Effective date: 20171129 |