WO2016103624A1 - 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング - Google Patents
深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング Download PDFInfo
- Publication number
- WO2016103624A1 WO2016103624A1 PCT/JP2015/006233 JP2015006233W WO2016103624A1 WO 2016103624 A1 WO2016103624 A1 WO 2016103624A1 JP 2015006233 W JP2015006233 W JP 2015006233W WO 2016103624 A1 WO2016103624 A1 WO 2016103624A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel pipe
- erw
- strength thick
- temperature
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 181
- 239000010959 steel Substances 0.000 title claims abstract description 181
- 239000004020 conductor Substances 0.000 title claims description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 79
- 238000005096 rolling process Methods 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 33
- 230000009467 reduction Effects 0.000 claims abstract description 33
- 238000003466 welding Methods 0.000 claims abstract description 28
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 23
- 238000001816 cooling Methods 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 38
- 238000000034 method Methods 0.000 claims description 25
- 239000002244 precipitate Substances 0.000 claims description 17
- 238000005098 hot rolling Methods 0.000 claims description 13
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 229910052750 molybdenum Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 238000004804 winding Methods 0.000 claims description 8
- 229910052758 niobium Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 3
- 238000002791 soaking Methods 0.000 claims description 3
- 235000013372 meat Nutrition 0.000 claims description 2
- 239000007858 starting material Substances 0.000 abstract 2
- 238000012360 testing method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 6
- 229910001562 pearlite Inorganic materials 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000009863 impact test Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 239000010953 base metal Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- -1 30 to 1.00% Substances 0.000 description 1
- TZNYAWKVRUVLTL-UHFFFAOYSA-N CO.C[N+](C)(C)C Chemical compound CO.C[N+](C)(C)C TZNYAWKVRUVLTL-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- GEYMMMXKROUBAI-UHFFFAOYSA-N chlorane Chemical compound Cl.Cl.Cl.Cl.Cl GEYMMMXKROUBAI-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- CEAJFNBWKBTRQE-UHFFFAOYSA-N methanamine;methanol Chemical compound NC.OC CEAJFNBWKBTRQE-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B19/00—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
- B21B19/02—Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
- B21B19/06—Rolling hollow basic material, e.g. Assel mills
- B21B19/10—Finishing, e.g. smoothing, sizing, reeling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the present invention relates to an electric resistance steel pipe suitable for a conductor casing used as a retaining ring for a well when excavating an oil well or a gas well, and particularly used for developing a deep sea oil field or a deep sea gas field existing at a depth of 3,000 m or more.
- the present invention relates to a high-strength thick-walled electric-welded steel pipe suitable for a conductor casing for a well (hereinafter also referred to as a deep well) and a method for manufacturing the same.
- Conductor casings are used as earth retainings for wells to protect oil well pipes from external pressure during the early stages of oil and gas well drilling.
- a conductor casing is manufactured by joining a UOE steel pipe and a connector (threaded forged member).
- the conductor casing may be subjected to a post-weld heat treatment in a temperature range of 600 ° C. or higher in order to remove residual stress at the joint between the steel pipe and the forged member or to prevent hydrogen cracking. Therefore, there is a demand for a steel pipe that is excellent in post-weld heat treatment resistance and can suppress a decrease in strength due to post-weld heat treatment and can maintain a desired strength even after post-weld heat treatment.
- Patent Document 1 describes a high-strength riser steel pipe excellent in high-temperature SR (Stress Relief) characteristics.
- the technique described in Patent Document 1 is, by weight, C: 0.02 to 0.18%, Si: 0.05 to 0.50%, Mn: 1.00 to 2.00%, Cr: 0
- a riser steel pipe with excellent high-temperature SR characteristics having a steel composition including 30 to 1.00%, Ti: 0.005 to 0.030%, Nb: 0.060% or less, and Al: 0.10% or less. is there.
- Patent Document 2 uses a pipe expansion device in which grooves are formed on the outer peripheral portions of all of a plurality of dies attached to the pipe expansion device, for each steel pipe to be expanded.
- a method of expanding a UOE steel pipe which is expanded by changing a die attached to a pipe expanding device, which is opposed to the inner peripheral side of the steel pipe weld.
- the die wear amount of the pipe expanding device is made uniform, and the roundness of the steel pipe can be improved.
- Patent Document 1 does not mention any measures for suppressing misunderstandings for improving roundness. In the technique described in Patent Document 1, no measures are taken to improve the roundness, and therefore the roundness of the steel pipe end portion is insufficient particularly for a conductor casing for a deep well. Become.
- Patent Document 2 has a problem that a sufficient roundness cannot be ensured particularly for a conductor casing for a deep well.
- the present invention provides a high-strength, thick-walled electric-welded steel pipe that is suitable for deep-well conductor casings and has high strength, high toughness, and excellent heat resistance after welding, and a method for producing the same.
- the purpose is to provide. It is another object of the present invention to provide a conductor casing that includes the electric resistance welded steel pipe.
- the “high-strength thick-walled electric-welded steel pipe” in the present invention is a thick-walled electric-welded steel pipe having a thickness of 15 mm or more, in which both the base material portion and the electric-welded welded portion have high strength of API X80 grade or higher.
- the base material portion has a high strength of yield strength YS: 555 MPa or more and a tensile strength TS: 625 MPa or more
- the electro-welded portion has a high strength of tensile strength TS: 625 MPa or more.
- “high toughness” means a case where Charpy impact test absorbed energy vE ⁇ 40 at a test temperature: ⁇ 40 ° C. is 27 J or more.
- the wall thickness is preferably 20 mm or more.
- excellent heat resistance after welding means that the strength of the base material is maintained at API X80 grade or higher even after post-weld heat treatment at 600 ° C. or higher. It shall be said.
- the present inventors diligently studied the properties of a steel pipe suitable for a conductor casing for deep wells. As a result, it has been found that it is necessary to use a steel pipe whose roundness is adjusted to 0.6% or less in order to prevent breakage due to bending deformation when laying the conductor casing. If the roundness of the steel pipe to be used is 0.6% or less, it is possible to repeatedly deform the threaded member and the joint (steel pipe end) in a curved manner without performing special additional processes such as cutting and straightening. It has been found that it can be reduced to such an extent that the breakage due to can be suppressed.
- an ERW steel pipe is more preferable than a UOE steel pipe as such a steel pipe.
- the ERW steel pipe is continuously formed into a cylindrical shape by a plurality of rolls, and has a higher roundness than a UOE steel pipe formed by press working and pipe expansion.
- the diameter reduction rolling by a sizer roll is finally performed after the electric resistance welding. It has been found that it is effective to perform the applied molding.
- an inner roll is disposed on the downstream side of the cage roll group.
- the present inventors have further studied diligently about the influence of the composition of the hot-rolled steel sheet as the steel pipe material and the hot-rolling conditions on the strength of the steel pipe after the heat treatment after welding.
- the strength of the ERW steel pipe can be maintained at API X80 grade or higher. It has been found that fine Nb precipitates (precipitation Nb) of less than 75% must be 75% or less of the Nb content in terms of Nb.
- the present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows. [1] By mass% C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.001 to 0.10%, N: 0.006% or less, Nb: 0.010 to 0.100%, Ti: 0.001 to 0.050% Including the balance Fe and unavoidable impurities, An average of the bainitic ferrite phase comprising a bainitic ferrite phase having a volume ratio of 90% or more as a main phase and the main phase and a second phase having a volume ratio of 10% or less (including 0%).
- Roundness (%) ⁇ (maximum outer diameter mm ⁇ of steel pipe) ⁇ (minimum outer diameter mm ⁇ of steel pipe) ⁇ / (nominal outer diameter mm ⁇ ) ⁇ 100 (1)
- V 0.1% or less
- Mo 0.5% or less
- Cr 0.5% or less
- Cu 0.5% or less
- Ni 1.
- the composition further includes, in mass%, one or two selected from Ca: 0.0050% or less and REM: 0.0050% or less [1] or The high-strength thick-walled electric-welded steel pipe for conductor casings for deep wells according to [2].
- the hot rolled steel sheet is continuously roll-formed by a roll forming machine to form an open pipe having a substantially circular cross section, the ends of the open pipe are butted against each other, and the butted portion is pressed with a squeeze roll While, ERW welded to make an ERW steel pipe, and then subjected to in-line heat treatment on the ERW welded portion of the ERW steel pipe, and then a method of manufacturing an ERW steel pipe that is reduced in diameter,
- the hot-rolled steel sheet in mass%, C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.001 to 0.10%, N: 0.006% or less, Nb: 0.010 to 0.100%, Ti: 0.001 to 0.050%
- Heating temperature After heating soaking for 60 min or more in a temperature range of 1150 to
- the thickness of the central portion of the plate Hot rolling produced by performing an accelerated cooling so that the average cooling rate in the temperature range of 750 ° C. to 650 ° C. is 8 to 70 ° C./s, and a winding temperature of 580 to 400 ° C.
- Manufacturing method of high-strength thick-walled ERW steel pipe for conductor casings for deep wells [5] The depth of the conductor casing for deep wells according to [4], wherein the roll forming machine is a roll forming machine including a cage roll group including a plurality of rolls and a fin pass forming roll group including a plurality of rolls. Manufacturing method of high strength thick ERW steel pipe.
- the in-line heat treatment of the ERW weld portion heats the ERW weld portion to a heating temperature of 830 to 1150 ° C., and then the average cooling rate in the temperature range of 800 to 550 ° C.
- the composition further contains, by mass%, one or two selected from Ca: 0.0050% or less and REM: 0.0050% or less [4] to [9]
- a high strength and high toughness suitable for a conductor casing for deep wells, and a desired high strength can be obtained even after a post-weld heat treatment that is heated to 600 ° C. or higher without any special additional treatment.
- a high-strength, thick-walled electric resistance welded steel pipe excellent in heat resistance after welding that can be maintained can be manufactured easily and inexpensively, and has a remarkable industrial effect.
- the present invention when the conductor casing is laid, the occurrence of breakage is suppressed, and there is an effect that the laying cost is reduced.
- the electric resistance welded steel pipe of the present invention also has an effect that it is useful for a line pipe for joining pipes to each other by circumferential welding.
- the high-strength thick-walled electric-welded steel pipe of the present invention is a high-strength thick-walled electric-welded steel pipe for a conductor casing for deep wells.
- the “high-strength thick-walled electric-welded steel pipe” here is a thick-walled electric-welded steel pipe having a thickness of 15 mm or more, in which both the base metal part and the electric-welded welded part have high strength of API X80 grade or higher.
- the base material portion has a high strength of yield strength YS: 555 MPa or more and a tensile strength TS: 625 MPa or more, and the electro-welded portion has a high strength of tensile strength TS: 625 MPa or more.
- the high-strength thick-walled electric-welded steel pipe of the present invention is, in mass%, C: 0.01 to 0.12%, Si: 0.05 to 0.50%, Mn: 1.0 to 2.2%, P: 0.03% or less, S: 0.005% or less, Al: 0.001 to 0.10%, N: 0.006% or less, Nb: 0.010 to 0.100%, Ti: 0.001 to 0.05% or less, or V: 0.1% or less, Mo: 0.5% or less, Cr: 0.5% or less, Cu: 0.5% or less, Ni: 1.0% or less, B: One or two or more selected from 0.0030% or less, and / or Ca: 0.0050% or less, REM: One or two selected from 0.0050% or less , Including the balance Fe and inevitable impurities.
- C 0.01 to 0.12% C is an important element that contributes to increasing the strength of the steel pipe, and needs to be contained in an amount of 0.01% or more in order to ensure the desired high strength.
- the content exceeds 0.12%, weldability decreases.
- a large amount of C exceeding 0.12% produces martensite when cooling is fast after cooling after hot rolling or in-line heat treatment of an ERW weld, and a large amount of pearlite when cooling is slow. Is easy to produce, and there is a risk of reducing toughness and strength. Therefore, C is limited to a range of 0.01 to 0.12%.
- the lower limit side becomes like this. Preferably it is 0.03% or more.
- the upper limit side is preferably 0.10% or less, more preferably 0.08% or less.
- Si 0.05 to 0.50%
- Si is an element that contributes to an increase in the strength of the steel pipe by solid solution strengthening. To obtain such an effect and ensure a desired high strength, it needs to be contained in an amount of 0.05% or more.
- Si has a stronger affinity with O (oxygen) than Fe, and forms a high-eutectic eutectic oxide together with Mn oxide during ERW welding. For this reason, when it contains more than 0.50% and excessively, the quality of an ERW weld will be deteriorated.
- Si is limited to the range of 0.05 to 0.50%.
- the content is 0.05 to 0.30%.
- Mn 1.0 to 2.2%
- Mn is an element that contributes to increasing the strength of the steel pipe, and it needs to be contained in an amount of 1.0% or more in order to ensure the desired high strength.
- Mn is limited to the range of 1.0 to 2.2%.
- the lower limit side becomes like this. Preferably it is 1.2% or more.
- the upper limit side is preferably 2.0% or less.
- P 0.03% or less
- P is an element that is present as an impurity in steel, easily segregates at grain boundaries, and has an adverse effect on steel pipe properties such as toughness, and is preferably reduced as much as possible.
- up to 0.03% is acceptable. Therefore, P is limited to 0.03% or less.
- Preferably it is 0.02% or less.
- it since an excessive reduction causes the refining cost to rise, it is preferable to make it 0.001% or more.
- S 0.005% or less S is present in the steel as coarse sulfide-based inclusions such as MnS and causes reduction in ductility and toughness. Therefore, it is desirable to reduce S as much as possible. In the present invention, up to 0.005% is acceptable. For this reason, S is limited to 0.005% or less. In addition, Preferably it is 0.004% or less. In addition, since an excessive reduction causes the refining cost to rise, it is preferable to make it 0.001% or more.
- Al 0.001 to 0.10%
- Al is an element usefully acting as a deoxidizer for steel, and in order to obtain such an effect, it is necessary to contain 0.001% or more.
- Al oxide will be produced
- the lower limit side becomes like this. Preferably it is 0.005% or more.
- the upper limit side is preferably 0.08% or less.
- N 0.006% or less N is present as an unavoidable impurity in steel and forms a solid solution or forms a nitride, leading to a reduction in the toughness of the base material portion or the ERW weld portion of the steel pipe. For this reason, it is desirable to reduce as much as possible. In the present invention, up to 0.006% is acceptable. For this reason, N is limited to 0.006% or less.
- Nb 0.010 to 0.100%
- Nb is an important element in the present invention. It is an element that exists as Nb carbonitride in steel during heating of a steel material (slab), suppresses coarsening of austenite grains, and contributes to refinement of the structure. Further, Nb is finely precipitated during post-weld heat treatment that is heated to 600 ° C. or higher, and contributes to suppression of strength reduction of the steel pipe base material after post-weld heat treatment. In order to obtain such an effect, a content of 0.010% or more is required. On the other hand, excessive content exceeding 0.100% adversely affects the toughness of the steel pipe, and there is a concern that desired toughness cannot be secured for a conductor casing. Therefore, Nb is limited to the range of 0.010 to 0.100%. In addition, about content, the lower limit side becomes like this. Preferably it is 0.020% or more. The upper limit side is preferably 0.080% or less.
- Ti 0.001 to 0.050% Ti combines with N to form Ti nitride, fixes N which adversely affects the steel pipe toughness, and has the effect of improving the steel pipe toughness. In order to acquire such an effect, 0.001% or more of content is required. On the other hand, when it contains exceeding 0.050%, the steel pipe toughness will fall remarkably. Therefore, Ti is limited to the range of 0.001 to 0.050%. In addition, about content, the lower limit side becomes like this. Preferably it is 0.005% or more. The upper limit side is preferably 0.030% or less.
- the above components are basic components.
- V 0.1% or less
- Mo 0.5% or less
- Cr 0.5% or less
- Cu 0.5% or less
- Ni 1.0%
- B one or more selected from 0.0030% or less
- / or Ca 0.0050% or less
- REM one selected from 0.0050% or less You may contain 2 types.
- V 0.1% or less
- Mo 0.5% or less
- Cr 0.5% or less
- Cu 0.5% or less
- Ni 1.0% or less
- B 0.0030% or less
- One or more selected V, Mo, Cr, Cu, Ni, and B are all elements that contribute to increasing the strength of the steel sheet through improving hardenability, and can be selected as necessary. Can be contained. The inclusion of these elements is particularly effective in preventing the formation of pearlite and polygonal ferrite and ensuring the desired strength and toughness when the plate thickness is 15 mm or more.
- Ca 0.0050% or less
- REM One or two types selected from 0.0050% or less Ca and REM are both sulfide-based inclusions such as expanded MnS sulfide inclusions. It is an element that contributes to the shape control of inclusions, and can be selected and contained as necessary. In order to obtain such an effect, it is desirable to contain 0.0005% or more of both Ca and REM. On the other hand, if both Ca and REM are contained in excess of 0.0050%, oxide inclusions may increase and the toughness may be reduced. For this reason, when it contains, it is preferable to limit to the range of Ca: 0.0050% or less and REM: 0.0050% or less.
- the balance other than the above components is composed of Fe and inevitable impurities.
- the high-strength thick-walled electric-welded steel pipe of the present invention has the above-described composition, and both the base metal portion and the electric-welded welded portion have a bainitic ferrite phase having a volume ratio of 90% or more as a main phase, And a second phase having a volume fraction of 10% or less (including 0%), the bainitic ferrite phase has an average particle size of 10 ⁇ m or less, and a particle size of less than 20 nm in the base material portion
- a thickness in which fine Nb precipitates have a structure in which 75% or less is dispersed in a ratio (%) to the total Nb amount in terms of Nb, and the roundness of the steel pipe end is 0.6% or less.
- This is a meat electric resistance steel pipe.
- both the base material and the ERW weld It has a structure whose main phase is a bainitic ferrite phase having a volume ratio of 90% or more. If the bainitic ferrite phase is less than 90%, that is, the second phase other than the main phase is 10% or more, and the desired toughness cannot be ensured.
- the second phase other than the main phase include hard phases such as pearlite, degenerate pearlite, bainite, and martensite. For this reason, the volume fraction of the bainitic ferrite phase that is the main phase is limited to 90% or more. In addition, Preferably it is 95% or more.
- the bainitic ferrite phase as the main phase has an average particle size of 10 ⁇ m or less.
- the average particle size of the bainitic ferrite phase as the main phase is limited to 10 ⁇ m or less.
- fine Nb precipitates having a particle size of less than 20 nm in the steel pipe base material portion are set to 75% or less in terms of the ratio (%) to the total Nb amount in terms of Nb.
- the amount of fine Nb precipitates having a particle size of less than 20 nm was limited to 75% or less in terms of Nb in terms of the ratio (%) to the total Nb amount.
- the “particle size: the amount of fine Nb precipitates of less than 20 nm” as used herein refers to the electrolytic extraction test piece collected from the base material portion of the ERW steel pipe by using an electrolytic solution (10 vol.% Acetylacetone-1 mass% tetrachloride chloride). The value obtained by filtering the electrolytic residue obtained by electrolysis in a methylammonium-methanol solution) through a filter having a pore size of 0.02 ⁇ m and analyzing the amount of Nb that has passed through the filter is used.
- the high-strength thick-walled electric-welded steel pipe of the present invention is an electric-welded steel pipe having the above-described composition and the above-described structure and having a roundness of the steel pipe end portion of 0.6% or less.
- Roundness 0.6% or less If the roundness of the end of the ERW steel pipe is 0.6% or less, cutting and straightening treatment is not performed before joining the connector to the pipe end by circumferential welding. In addition, the amount of misalignment of the joint is within an allowable range, and the occurrence of breakage due to repeated bending deformation can be suppressed. If the roundness of the ERW steel pipe exceeds 0.6%, the amount of misalignment at the joint with the connector (screw member) increases, and there is a concern that the joint will break at the joint due to the pipe's own weight or bending deformation when embedded. Rise. For this reason, the roundness of the ERW steel pipe is limited to 0.6% or less.
- roundness (%) ⁇ (maximum outer diameter mm ⁇ of the steel pipe) ⁇ (minimum outer diameter mm ⁇ of the steel pipe) ⁇ / (nominal outer diameter mm ⁇ ) ⁇ 100.
- the maximum outer diameter and the minimum outer diameter of a steel pipe are preferably measured continuously with a laser displacement meter. However, if it is unavoidable, it is determined from values measured at least 32 locations in the circumferential direction. It shall be.
- the above-described conductor casing for a deep well including the high-strength thick-walled electric-welded steel pipe according to the present invention has screw members attached to both ends of the high-strength thick-walled electric-welded steel pipe.
- the method for attaching the screw member is not particularly limited, and can be attached by, for example, MIG welding, TIG welding, or the like. Further, as the screw member, for example, carbon steel, stainless steel or the like can be used. Below, the manufacturing method of the high intensity
- the ERW steel pipe of the present invention is manufactured from a hot-rolled steel sheet.
- a hot-rolled steel sheet it is cold-rolled by a roll forming machine (preferably by a cage roll group consisting of a plurality of rolls and a fin pass forming roll group consisting of a plurality of rolls), After making an open pipe with a substantially circular cross section, the ends of the open pipe are butted together, and the butted portion is pressed by a squeeze roll to make an electric-welded steel pipe, and then the electric-welded steel pipe After the in-line heat treatment is performed on the electric-welded welded portion, it is manufactured through a step of reducing diameter rolling.
- a roll forming machine preferably by a cage roll group consisting of a plurality of rolls and a fin pass forming roll group consisting of a plurality of rolls
- the hot-rolled steel sheet used as the raw material is a thick-walled hot-rolled steel sheet having a thickness of 15 mm or more, preferably 51 mm or less, manufactured by the following steps on the steel material having the above composition.
- the molten steel having the above composition is melted by a conventional melting method such as a converter, and a normal casting method such as a continuous casting method is used. It is preferable to use a slab or other slab (steel material). In place of the continuous casting method, there is no problem even if a steel material (steel slab) is formed by using the ingot-bundling rolling method.
- the steel material having the above composition is heated to a temperature in the temperature range of 1150 to 1250 ° C., and then is subjected to hot rolling consisting of rough rolling and finish rolling, and finishing roll finishing temperature: 750 ° C. or higher. Apply.
- Heating temperature 1150 ⁇ 1250 °C
- the heating temperature of the steel material is set to a temperature range of 1150 to 1250 ° C.
- the soaking at the heating temperature is preferably 60 min or more from the viewpoint of uniform heating temperature of the steel material.
- the rough rolling is not particularly limited as long as it can be a sheet bar having a predetermined size and shape.
- the finish rolling finish temperature is adjusted to 750 ° C. or higher. This temperature is the surface temperature.
- Finish rolling end temperature 750 ° C. or more
- the finish rolling end temperature is less than 750 ° C.
- ferrite transformation starts and the produced ferrite is processed, resulting in a decrease in toughness.
- the finish rolling finish temperature was limited to 750 ° C. or higher.
- cooling is preferably started within 5 s (s means second), and the temperature in the central part thickness range is 750 ° C. to 650 ° C. Accelerated cooling with an average cooling rate of 8 to 70 ° C./s is performed, and the coil is wound in a coil shape at a winding temperature of 400 ° C. to 580 ° C. In addition, after winding up in a coil shape, it cools.
- Average cooling rate in the temperature range of 750 ° C. to 650 ° C. for accelerated cooling 8 to 70 ° C./s
- the average cooling rate in the temperature range of 750 ° C. to 650 ° C. is less than 8 ° C./s, the cooling rate is low, and the resulting structure becomes coarse polygonal ferrite phase with an average particle size of more than 10 ⁇ m and pearlite, which is used for casings. As a result, the required toughness and strength cannot be ensured.
- the average cooling rate exceeds 70 ° C./s, a martensite phase is generated and the toughness may be lowered. Therefore, the average cooling rate in the temperature range of 750 ° C. to 650 ° C.
- the above-mentioned temperatures are plate thickness center temperature. The temperature at the center of the plate thickness is obtained by calculating the temperature distribution in the cross section by heat transfer analysis and correcting the result by the actual outer surface and inner surface temperatures.
- the cooling stop temperature of the accelerated cooling is preferably a surface temperature of 400 to 630 ° C. If the cooling stop temperature of the accelerated cooling is out of the temperature range of 400 to 630 ° C, the desired coiling temperature: 400 ° C or higher and 580 ° C or lower may not be secured stably. *
- Winding temperature 400 ° C. or more and 580 ° C. or less
- the precipitation of Nb carbonitride (precipitate) is promoted, and the Nb precipitation ratio after passing the winding process exceeds 75%.
- the yield strength is reduced during post-weld heat treatment performed at a heating temperature of 600 ° C. or higher.
- the coiling temperature is less than 400 ° C., the amount of fine Nb carbonitride (precipitate) deposited is insufficient, and the desired high strength (API X80 grade or higher) cannot be ensured. Therefore, the coiling temperature is limited to a temperature in the range of 400 to 580 ° C.
- the temperature is preferably 460 to 550 ° C.
- the coiling temperature By adjusting the coiling temperature to the above-mentioned temperature range, it is possible to secure a structure in which fine Nb precipitates having a particle size of less than 20 nm are dispersed in a ratio (%) to 75% or less in terms of Nb in terms of the total Nb amount. , It is possible to prevent a decrease in yield strength in the post-weld heat treatment performed at 600 ° C. or higher.
- all the above-described temperatures are plate surface temperatures.
- the hot-rolled steel sheet obtained under the above-described production conditions has a bainitic ferrite phase having a volume ratio of 90% or more as the main phase and the balance being 10% or less (including 0%) in the volume ratio.
- a fine Nb precipitate having a main phase average particle size of 10 ⁇ m or less and a particle size of less than 20 nm is 75% in terms of the ratio (%) to the total Nb amount in terms of Nb.
- It has a structure that is dispersed below, and has a high strength of API X80 grade or higher, that is, a yield strength YS: high strength of 555 MPa or higher, and absorption energy vE- 40 of Charpy impact test at -40 ° C. It is a hot rolled steel sheet having high toughness of 27J or more.
- the roll forming machine 2 is preferably a roll forming machine including a cage roll group 2a including a plurality of rolls and a fin pass forming roll group 2b including a plurality of rolls.
- the inner roll to be disposed is preferably a roll having a shape as shown in FIG. 2 and capable of pressing two or more positions from the viewpoint of improving roundness and reducing equipment load.
- FIG. 2 shows an example in which the inner roll 2a1 is arranged in two stages ((2a1) 1 , (2a1) 2 ).
- the roll forming, the pressure welding with the squeeze roll, and the electric resistance welding are not particularly limited as long as an electric resistance steel pipe having a predetermined size can be manufactured, and any conventional method can be applied. *
- the obtained ERW steel pipe is subjected to heat treatment (seam annealing) of the ERW welded portion in-line.
- the in-line heat treatment of the ERW weld portion uses an induction heating device 9 and a cooling device 10 arranged on the exit side of the squeeze roll 4 so that the ERW weld portion can be heated as shown in FIG. Is preferable.
- the induction heating device 9 is preferably provided with one or a plurality of coils 9a so that one or more stages of heating can be performed. If a plurality of coils 9a are used, heating can be performed uniformly.
- Heat treatment of ERW welds is carried out so that the lowest temperature part in the thickness direction is 830 ° C or higher and the maximum heating temperature is 1150 ° C or lower in ERW welds. It is preferable that the water is cooled in the range of 10 ° C./s or more and 70 ° C./s or less at an average cooling rate at, and cooled to a cooling stop temperature (plate thickness central temperature): 550 ° C. or less. The cooling stop temperature may be lower. When the minimum temperature of the heating temperature in the ERW weld is less than 830 ° C., the heating temperature is too low, and a desired ERW weld structure may not be secured.
- the heating temperature in the heat treatment of the ERW weld is set to a temperature in the range of 830 ° C. to 1150 ° C.
- the cooling rate after heating is preferably an average cooling rate in the range of 10 to 70 ° C./s.
- the cooling stop temperature is preferably in the temperature range of 550 ° C. or lower. When the cooling stop temperature is higher than 550 ° C., the ferrite transformation is not completed, and a coarse pearlite structure is generated during the cooling after the cooling stop, and there is a concern that the toughness or the strength may be reduced.
- the structure of the ERW welded portion is the same as that of the base material portion, that is, the bainitic ferrite phase having a volume ratio of 90% or more as the main phase, It can be made into the structure
- the diameter-reduction rolling is preferably performed cold with a sizer 8 composed of two or three or more pairs of rolls.
- the diameter reduction ratio of the diameter reduction rolling is preferably in the range of 0.2 to 3.3%.
- the diameter reduction rate is less than 0.2%, there is a possibility that a desired roundness (0.6% or less) cannot be secured.
- the diameter reduction ratio of the diameter reduction rolling is preferably in the range of 0.2 to 3.3%.
- Molten steel having the composition shown in Table 1 (the balance is Fe and unavoidable impurities) was melted in a converter, and slab (slab: 250 mm thick) was obtained by a continuous casting method to obtain a steel material.
- the obtained steel material was reheated under the conditions shown in Table 2 (heating temperature (° C.) ⁇ holding time (min)), and then subjected to hot rolling consisting of rough rolling and finish rolling to obtain a hot rolled steel sheet. .
- the hot rolling was performed under the conditions shown in Table 2 with the rolling reduction (%) in the non-recrystallization temperature range and the finish rolling finishing temperature (° C.).
- Immediately after finishing rolling cooling was started, and accelerated cooling was performed at the sheet thickness center temperature under the conditions shown in Table 2 (average cooling rate in the temperature range of 750 to 650 ° C., cooling stop temperature).
- the coil was wound into a coil shape at the winding temperature shown in FIG.
- the roll is continuously roll-formed in the cold.
- An open tube having a substantially circular cross section was used. After that, the opposite ends of the open pipe were butted against each other, and the butted portions were electro-welded and welded to make an electric-welded steel pipe while being pressed by a squeeze roll.
- the inner roll disposed on the downstream side of the cage roll group was pressed at least two points in the width direction from the inner wall side of the semi-formed product.
- in-line heat treatment was performed on the ERW welded portion of the obtained ERW steel pipe under the conditions shown in Table 3.
- the in-line heat treatment was performed using an in-line heat treatment apparatus provided with an induction heating device and a water cooling device disposed on the exit side of the squeeze roll.
- the average cooling rate and the cooling stop temperature are temperatures at the center of the plate thickness.
- the average cooling rate is an average cooling rate in the temperature range of 800 to 550 ° C.
- the ERW steel pipe that has been subjected to in-line heat treatment is further subjected to reduction rolling at a reduction ratio shown in Table 3 in a cold reduction mill (sizer roll), and has the dimensions shown in Table 3.
- a steel pipe was obtained.
- the diameter reduction mill used was one having 2 to 8 rolls. In some ERW steel pipes, diameter reduction rolling was not performed.
- the roundness of the tube end was determined by the above equation (1).
- the outer diameter shown in Table 3 is a nominal outer diameter.
- Test pieces were collected from the obtained electric resistance welded steel pipe and subjected to a structure observation, a tensile test, an impact test, and a post-weld heat treatment test.
- the test method is as follows.
- (1) Microstructure observation A specimen for microstructural observation was collected from the base metal part (position at 90 ° in the circumferential direction from the ERW weld) and the ERW weld part of the obtained ERW steel pipe.
- the base metal part is polished so that the thickness center position of the cross section in the tube axis direction (L cross section) is the observation surface, and the ERW weld part is polished so that the cross section in the tube axis direction (C cross section) is the observation surface.
- Nital The base metal part is polished so that the thickness center position of the cross section in the tube axis direction
- the tissue was observed using a scanning electron microscope SEM (Scanning Electron Microscope) (magnification: 1000 times) and imaged in at least two fields of view. Using the obtained tissue photograph, image analysis was performed to determine the tissue identification and the fraction of each phase. In addition, the average value of the identified area fraction was handled as the value of the volume fraction.
- SEM Sccanning Electron Microscope
- a crystal grain boundary having an orientation difference of 15 ° or more was obtained by an SEM / EBSD (Electron Back Scattering Diffraction) method, and the arithmetic average of the equivalent circle diameters of the obtained grains was defined as the average grain size of the main phase.
- the software Orientation Imaging Microscope Data Analysis made from Ametex Co., Ltd. was used for calculation of the crystal grain size.
- a test piece for electrolytic extraction was collected from the base material portion (position at 90 ° in the circumferential direction from the ERW weld) of the obtained ERW steel pipe, and the electrolyte solution (10 vol.% Acetylacetone-1 mass% chloride) In a tetramethylammonium-methanol solution) at a current density of 20 mA / cm 2 .
- the obtained electrolytic residue was dissolved in a liquid, collected by an aluminum filter (pore size: 0.02 ⁇ m), and the liquid that passed through the aluminum filter was analyzed for Nb content by ICP emission spectroscopy, and a precipitate having a particle diameter of 20 nm or less The ratio (%) to the total Nb amount was calculated as the Nb amount.
- a plate-like tensile test piece was collected in accordance with ASTM A 370 so that the tensile direction would be a direction perpendicular to the tube axis direction (C direction), and tensile properties ( Yield strength YS, tensile strength TS) were determined.
- Yield strength YS, tensile strength TS tensile properties
- ⁇ YS in yield strength before and after heat treatment after welding was calculated. If the strength after heat treatment after welding is low, ⁇ YS is negative.
- a specimen for electrolytic extraction was collected from a test material after heat treatment after welding, and the amount ratio of precipitated Nb was determined in the same manner as (1).
- All of the examples of the present invention are API X80 grade suitable for conductor casings for deep wells, and have high strength with yield strength YS: 555 MPa or more, tensile strength TS: 625 MPa or more, and excellent low temperature toughness. In addition, there is little decrease in strength even after the heat treatment after welding, and the electric resistance welded steel pipe retains excellent post-weld heat treatment resistance. On the other hand, in comparative examples that are outside the scope of the present invention, the strength is insufficient, the low-temperature toughness is lowered, or the heat resistance after welding is lowered.
- Hot-rolled steel sheet hot-rolled steel strip
- Roll forming machine 3
- Welding machine 4
- Squeeze roll 5
- ERW steel pipe 6
- Bead cutting machine 7
- Leveler 8
- Sizer 9
- Online heat treatment equipment induction heating equipment
- Cooling device 11 Thermometer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Earth Drilling (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
Description
(1)敷設時に繰り返される湾曲変形で破断しないこと、
(2)自重に耐えるだけの強度を保持していること、
が要求される。コンダクターケーシングにおける湾曲変形時の破断を防止するために、とくに接続部における目違い等による応力集中を抑制することが要求される。目違い等の抑制には、使用する鋼管の真円度の向上が挙げられる。
[1]質量%で、
C:0.01~0.12%、 Si:0.05~0.50%、
Mn:1.0~2.2%、 P:0.03%以下、
S:0.005%以下、 Al:0.001~0.10%、
N:0.006%以下、 Nb:0.010~0.100%、
Ti:0.001~0.050%
を含み、残部Fe及び不可避的不純物からなる組成と、
体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ母材部において粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散してなる組織と、
を有し、かつ、
下記(1)式で定義される鋼管端部の真円度が、0.6%以下である深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
記
真円度(%)={(鋼管の最大外径mmφ)-(鋼管の最小外径mmφ)}/(公称外径mmφ)×100 ‥‥(1)
[2]前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とする[1]に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
[3]前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を含有する組成とする[1]または[2]に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
[4]熱延鋼板を、ロール成形機により連続的にロール成形して、略円形断面のオープン管としたのち、該オープン管の端部同士を突き合わせ、該突き合わせた部位を、スクイズロールで圧接しながら、電縫溶接して電縫鋼管とし、ついで該電縫鋼管の電縫溶接部にインライン熱処理を施した後、縮径圧延する電縫鋼管の製造方法であって、
前記熱延鋼板を、質量%で、
C:0.01~0.12%、 Si:0.05~0.50%、
Mn:1.0~2.2%、 P:0.03%以下、
S:0.005%以下、 Al:0.001~0.10%、
N:0.006%以下、 Nb:0.010~0.100%、
Ti:0.001~0.050%
を含み、残部Fe及び不可避的不純物からなる組成の鋼素材に、
加熱温度:1150~1250℃の温度域で60min以上均熱する加熱を施したのち、仕上圧延終了温度:750℃以上とする熱間圧延を施し、該熱間圧延終了後、板厚中央部温度で750℃~650℃の温度域での平均冷却速度が8~70℃/sとなるように加速冷却を施し、巻取温度:580~400℃で巻き取る工程を施して製造された熱延鋼板とする
深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
[5]前記ロール成形機が、複数のロールからなるケージロール群と、さらに複数のロールからなるフィンパス成形ロール群とからなるロール成形機である[4]に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
[6]前記ケージロール群における下流側にインナーロールを配設し、成形途中の前記熱延鋼板の内壁側から2点以上の位置を押圧する[5]に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
[7]前記電縫溶接部のインライン熱処理が、該電縫溶接部を加熱温度:830~1150℃に加熱したのち、板厚中央温度で800~550℃の温度域での平均冷却速度が10~70℃/sである冷却を行い、板厚中央温度で冷却停止温度:550℃以下の冷却停止温度まで冷却する処理である[4]ないし[6]のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
[8]前記縮径圧延が、縮径率:0.2~3.3%とする圧延である[4]ないし[7]のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
[9]前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とする[4]ないし[8]のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
[10]前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を含有する組成とする[4]ないし[9]のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
[11][1]ないし[3]のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の両管端に螺子部材を取り付けてなる深井戸向け高強度厚肉コンダクターケーシング。
Cは、鋼管の強度増加に寄与する重要な元素であり、所望の高強度を確保するためには0.01%以上の含有を必要とする。一方、0.12%を超えて多量に含有すると、溶接性が低下する。さらに、0.12%を超える多量のC含有は、熱間圧延後の冷却時あるいは電縫溶接部のインライン熱処理時に、冷却が速い場合にマルテンサイトの生成を、冷却が遅い場合に多量のパーライトの生成を、容易にし、靭性低下や強度低下を招く恐れがある。このため、Cは0.01~0.12%の範囲に限定した。なお、含有量について、下限側は好ましくは0.03%以上である。また、上限側は好ましくは0.10%以下、より好ましくは0.08%以下である。
Siは、固溶強化により、鋼管の強度増加に寄与する元素であり、このような効果を得て、所望の高強度を確保するためには0.05%以上の含有を必要とする。また、Siは、FeよりもO(酸素)との親和力が強く、電縫溶接時にMn酸化物とともに粘度の高い共晶酸化物を形成する。このため、0.50%を超えて過剰に含有すると、電縫溶接部の品質を劣化させる。このようなことから、Siは0.05~0.50%の範囲に限定した。なお、好ましくは0.05~0.30%である。
Mnは、鋼管の強度増加に寄与する元素であり、所望の高強度を確保するためには1.0%以上の含有を必要とする。一方、2.2%を超えて多量に含有すると、Cと同様に、マルテンサイトを生成しやすくし、溶接性を低下させる。このため、Mnは1.0~2.2%の範囲に限定した。なお、含有量について、下限側は好ましくは1.2%以上である。上限側は好ましくは2.0%以下である。
Pは、鋼中に不純物として存在し、しかも結晶粒界等に偏析し易く、靭性等の鋼管特性に悪影響を及ぼす元素であり、できるだけ低減することが好ましい。本発明では、0.03%までは許容できる。このようなことから、Pは0.03%以下に限定した。なお、好ましくは0.02%以下である。なお、過度の低減は、精錬コストの高騰を招くため、0.001%以上とすることが好ましい。
Sは、鋼中では、MnS等の粗大な硫化物系介在物として存在し、延性や靭性の低下を招くため、できるだけ低減することが望ましい。本発明では、0.005%までは許容できる。このようなことから、Sは0.005%以下に限定した。なお、好ましくは0.004%以下である。なお、過度の低減は、精錬コストの高騰を招くため、0.001%以上とすることが好ましい。
Alは、鋼の脱酸剤として有用に作用する元素であり、このような効果を得るためには、0.001%以上含有する必要がある。一方、0.10%を超えて多量に含有すると、Al酸化物を生成し、鋼の清浄度を低下させる。このため、Alは0.001~0.10%の範囲に限定した。なお、含有量について、下限側は好ましくは0.005%以上である。上限側は好ましくは0.08%以下である。
Nは、鋼中では不可避的不純物として存在し、固溶してあるいは窒化物を形成して、鋼管の母材部あるいは電縫溶接部の靭性低下を招く。このため、できるだけ低減することが望ましい。本発明では、0.006%までは許容できる。このようなことから、Nは0.006%以下に限定した。
Nbは、本発明では重要な元素である。鋼素材(スラブ)加熱時に、鋼中にNb炭窒化物として存在し、オーステナイト粒の粗大化を抑制し、組織微細化に寄与する元素である。また、Nbは、600℃以上に加熱する溶接後熱処理時に、微細析出して、溶接後熱処理後の鋼管母材部の強度低下抑制に寄与する。このような効果を得るためには、0.010%以上の含有を必要とする。一方、0.100%を超える過剰の含有は、鋼管の靭性に悪影響を及ぼし、コンダクターケーシング用として所望の靭性を確保できないという懸念がある。このため、Nbは0.010~0.100%の範囲に限定した。なお、含有量について、下限側は好ましくは0.020%以上である。上限側は好ましくは0.080%以下である。
Tiは、Nと結合しTi窒化物を形成し、鋼管靭性に悪影響を及ぼすNを固定し、鋼管靭性を向上させる作用を有する。このような効果を得るためには、0.001%以上の含有を必要とする。一方、0.050%を超えて含有すると、鋼管靭性の顕著な低下を招く。このため、Tiは0.001~0.050%の範囲に限定した。なお、含有量について、下限側は好ましくは0.005%以上である。上限側は好ましくは0.030%以下である。
V、Mo、Cr、Cu、Ni、Bはいずれも、焼入れ性向上を介して、鋼板の強度増加に寄与する元素であり、必要に応じて、選択して含有できる。これらの元素の含有は、とくに、板厚が15mm以上の厚肉の場合に、パーライト、ポリゴナルフェライトの生成を防止し、所望の強度、靭性を確保するうえで有効である。このような効果を得るためには、V:0.005%以上、Mo:0.05%以上、Cr:0.05%以上、Cu:0.05%以上、Ni:0.05%以上、B:0.0005%以上、含有することが望ましい。一方、V:0.1%、Mo:0.5%、Cr:0.5%、Cu:0.5%、Ni:1.0%、B:0.0030%、それぞれを超える含有は、溶接性および靱性の低下を招くとともに、材料コストの高騰を招くおそれがある。このため、含有する場合には、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下に、それぞれ限定することが好ましい。なお、より好ましくはV:0.08%以下、Mo:0.45%以下、Cr:0.30%以下、Cu:0.35%以下、Ni:0.35%以下、B:0.0025%以下である。
Ca、REMはいずれも、伸展したMnS等の硫化物系介在物を球状の硫化物系介在物とする介在物の形態制御に寄与する元素であり、必要に応じて選択して含有できる。このような効果を得るためには、Ca、REMともに0.0005%以上含有することが望ましい。一方、Ca、REMとも0.0050%を超えて含有すると、酸化物系介在物が増加し、靱性を低下させるおそれがある。このため、含有する場合には、Ca:0.0050%以下、REM:0.0050%以下の範囲に限定することが好ましい。
コンダクターケーシング用として所望の高強度、高靭性を兼備させるために、本発明の電縫鋼管では、母材部および電縫溶接部ともに、体積率で90%以上のベイニティックフェライト相を主相とする組織を有する。ベイニティックフェライト相が90%未満では、すなわち主相以外の第二相が10%以上となり、所望の靭性を確保できなくなる。主相以外の第二相としては、パーライト、縮退パーライト、ベイナイト、マルテンサイトなどの硬質相が例示できる。このようなことから、主相であるベイニティックフェライト相の体積率は90%以上に限定した。なお、好ましくは95%以上である。
コンダクターケーシング用として所望の高強度、高靭性を兼備させるために、本発明では、主相であるベイニティックフェライト相を平均粒径が10μm以下と微細な組織とする。平均粒径が10μmを超えて大きくなると、所望の高靭性を保持することができなくなる。このため、主相であるベイニティックフェライト相の平均粒径は10μm以下に限定した。
粒径:20nm未満の微細なNb析出物(主として炭窒化物)は、所望の高強度を確保するために有効に寄与することから、Nb換算で、全Nb量に対する比率(%)で、20%以上析出させることが好ましい。しかし、Nb換算で、全Nb量に対する比率(%)で、75%超えて析出させると、600℃以上の温度に加熱される溶接後熱処理を施された際に、析出物のオストワルド成長が生じて、溶接後熱処理後の降伏強さの低下を招く。このため、本発明では、鋼管母材部に、粒径:20nm未満の微細なNb析出物を、Nb換算で、全Nb量に対する比率(%)で、75%以下とすることにした。これにより、溶接後熱処理後においても、微細なNb析出物が残存し、降伏強さの低下を防止することができる。このようなことから、粒径:20nm未満の微細なNb析出物量はNb換算で、全Nb量に対する比率(%)で、75%以下に限定した。
電縫鋼管端部の真円度が0.6%以下であれば、管端部にコネクタを円周溶接により接合する前に、切削・矯正処理を行なわずに接合部の目違い量は許容範囲となり、繰返し湾曲変形による破断の発生を抑制できる。電縫鋼管の真円度が0.6%を超えると、コネクタ(ねじ部材)との接合部の目違い量が大きくなり、埋設する際のパイプ自重や湾曲変形により接合部で破断する懸念が高まる。このようなことから、電縫鋼管の真円度は0.6%以下に限定した。なお、鋼管の真円度は、次(1)式
真円度(%)={(鋼管の最大外径mmφ)-(鋼管の最小外径mmφ)}/(公称外径mmφ)×100 ‥‥(1)
で定義される。鋼管の最大外径、最小外径は、レーザ変位計で連続的に計測することが望ましいが、止むを得ず手動で計測する場合には、少なくとも円周方向の32箇所で測定した値から決定するものとする。
つぎに、本発明の高強度厚肉電縫鋼管の製造方法について説明する。
熱延鋼板の靱性向上のためには、結晶粒の微細化が期待できる低い加熱温度とすることが好ましいが、加熱温度が1150℃未満では、加熱温度が低すぎて、未溶解炭化物の固溶が進まず、API X80グレード以上の所望の高強度を確保できない場合がある。一方、加熱温度が1250℃を超える高温では、オーステナイト(γ)粒の粗大化が生じ、靭性が低下するうえ、スケール生成量の増加を招き、表面性状の悪化を招く恐れがあるとともに、エネルギーロスの増大を招き経済的に不利になる。このため、鋼素材の加熱温度は、1150~1250℃の温度域の温度とした。なお、当該加熱温度での均熱保持は、60min以上とすることが、鋼素材の加熱温度均一化の観点からも好ましい。
仕上圧延終了温度が、750℃未満では、フェライト変態が開始し、生成したフェライトが加工されるため、靭性の低下を招く。このため、仕上圧延終了温度は、750℃以上に限定した。なお、仕上圧延では、板厚中心温度で950℃以下の未再結晶温度域での圧下率を20%以上に調整することが好ましい。未再結晶温度域での圧下率が20%未満では、未再結晶温度域での圧下率が少なく、フェライトの核生成サイトが少なく、フェライト粒の微細化を達成できない恐れがある。そのため、未再結晶温度域での圧下率を20%以上に調整することが好ましい。なお、圧延機への負荷の観点から、熱間圧延での累積圧下率は95%以下とすることが好ましい。
750℃~650℃の温度域での平均冷却速度が8℃/s未満では、冷却速度が遅く、生成する組織が、平均粒径が10μm超の粗大なポリゴナルフェライト相とパーライトとなり、ケーシング用として要求される靭性、強度を確保できなくなる。一方、平均冷却速度が70℃/sを超えると、マルテンサイト相が生成し、靭性が低下する恐れがある。そのため、750℃~650℃の温度域での平均冷却速度を8~70℃/sの範囲に限定した。なお、該冷却速度について、下限側は好ましくは10℃/s以上である。上限側は好ましくは50℃/s以下である。上記した温度はいずれも、板厚中央部温度である。板厚中央部の温度は、伝熱解析により断面内の温度分布を計算し、その結果を実際の外面および内面の温度によって補正することにより求める。
巻取温度が580℃を超える高温では、Nb炭窒化物(析出物)の析出が促進され、巻取工程を経たのちのNb析出割合が75%を超え、600℃以上の加熱温度で実施される溶接後熱処理時に降伏強さの低下を招く。一方、巻取温度が400℃未満では、微細なNb炭窒化物(析出物)の析出量が不足し、所望の高強度(API X80グレード以上)を確保できなくなる。このため、巻取温度は400~580℃の範囲の温度に限定した。なお、好ましくは460~550℃である。巻取温度を上記した温度域に調整することにより、粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散した組織を確保でき、600℃以上で実施される溶接後熱処理における降伏強さの低下を防止できる。なお、上記した温度はいずれも、板表面温度である。
縮径率(%)={(縮径圧延前の管外周長さmm)-(縮径圧延後の管外周長さmm)}/(縮径圧延前の管外周長さmm)×100
を用いて算出するものとする。上記した縮径圧延を施すことにより、鋼管端部の真円度が、0.6%以下の高強度厚肉電縫鋼管とすることができる。
(1)組織観察
得られた電縫鋼管の母材部(電縫溶接部から円周方向に90°の位置)および電縫溶接部から、組織観察用試験片を採取した。母材部については管軸方向断面(L断面)の肉厚中央位置が、電縫溶接部については、管軸方向断面(C断面)が観察面となるように研磨し、腐食(腐食液:ナイタール)した。走査型電子顕微鏡SEM(Scanning Electron Microscope)(倍率:1000倍)を用いて組織を観察し、少なくとも2視野で撮像した。得られた組織写真を用いて、画像解析し、組織の同定と、各相の分率を求めた。なお、同定した面積分率の平均値は、体積分率の値として扱った。
(2)引張試験
得られた電縫鋼管の母材部(電縫溶接部から円周方向に180°の位置)および電縫溶接部から、引張方向が管軸方向と直交する方向(C方向)となるように、ASTM A 370の規定に準拠して、板状引張試験片を採取し、引張特性(降伏強さYS、引張強さTS)を求めた。
(3)衝撃試験
得られた電縫鋼管の母材部(電縫溶接部から円周方向に90°の位置)および電縫溶接部から、ASTM A 370の規定に準拠して、試験片長手方向が円周方向(C方向)となるように、Vノッチ試験片を採取し、試験温度:-40℃でシャルピー衝撃試験を各3本実施し、吸収エネルギーvE-40(J)を求め、3本の平均値を当該鋼管のvE-40とした。
(4)溶接後熱処理試験
得られた電縫鋼管の母材部から試験材を採取し、採取した試験材を、表5に示す溶接後熱処理を想定した加熱温度に保持した熱処理炉に装入し、試験材の温度が(加熱温度-10℃)に到達した時点から、表5に示す所定の保持時間経過した後、熱処理炉から取り出し、放冷した。得られた熱処理済みの試験材から、引張方向が管軸方向と直交する方向(C方向)となるように、ASTM A 370の規定に準拠して板状引張試験片を採取し、引張特性(降伏強さYS、引張強さTS)を求めた。なお、溶接後熱処理前後の降伏強さの差ΔYSを、算出した。溶接後熱処理後の強度が低い場合には、ΔYSは負となる。また、参考として、溶接後熱処理後の試験材から電解抽出用試片を採取し、(1)と同様に、析出Nb量比を求めた。
2 ロール成形機
3 溶接機
4 スクイズロール
5 電縫鋼管
6 ビード切削機
7 レベラ
8 サイザー
9 オンライン熱処理装置(誘導加熱装置)
10 冷却装置
11 温度計
Claims (11)
- 質量%で、
C:0.01~0.12%、 Si:0.05~0.50%、
Mn:1.0~2.2%、 P:0.03%以下、
S:0.005%以下、 Al:0.001~0.10%、
N:0.006%以下、 Nb:0.010~0.100%、
Ti:0.001~0.050%
を含み、残部Fe及び不可避的不純物からなる組成と、
体積率で90%以上のベイニティックフェライト相を主相とし、該主相と、体積率で10%以下(0%を含む)の第二相とからなり、前記ベイニティックフェライト相の平均粒径が10μm以下であり、かつ母材部において粒径:20nm未満の微細なNb析出物が、Nb換算で、全Nb量に対する比率(%)で、75%以下分散してなる組織と、
を有し、かつ、
下記(1)式で定義される鋼管端部の真円度が、0.6%以下である深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
記
真円度(%)={(鋼管の最大外径mmφ)-(鋼管の最小外径mmφ)}/(公称外径mmφ)×100 ‥‥(1) - 前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とする請求項1に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
- 前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を含有する組成とする請求項1または請求項2に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管。
- 熱延鋼板を、ロール成形機により連続的にロール成形して、略円形断面のオープン管としたのち、該オープン管の端部同士を突き合わせ、該突き合わせた部位を、スクイズロールで圧接しながら、電縫溶接して電縫鋼管とし、ついで該電縫鋼管の電縫溶接部にインライン熱処理を施した後、縮径圧延する電縫鋼管の製造方法であって、
前記熱延鋼板を、質量%で、
C:0.01~0.12%、 Si:0.05~0.50%、
Mn:1.0~2.2%、 P:0.03%以下、
S:0.005%以下、 Al:0.001~0.10%、
N:0.006%以下、 Nb:0.010~0.100%、
Ti:0.001~0.050%
を含み、残部Fe及び不可避的不純物からなる組成の鋼素材に、
加熱温度:1150~1250℃の温度域で60min以上均熱する加熱を施したのち、仕上圧延終了温度:750℃以上とする熱間圧延を施し、該熱間圧延終了後、板厚中央部温度で750℃~650℃の温度域での平均冷却速度が8~70℃/sとなるように加速冷却を施し、巻取温度:580~400℃で巻き取る工程を施して製造された熱延鋼板とする
深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。 - 前記ロール成形機が、複数のロールからなるケージロール群と、さらに複数のロールからなるフィンパス成形ロール群とからなるロール成形機である請求項4に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
- 前記ケージロール群における下流側にインナーロールを配設し、成形途中の前記熱延鋼板の内壁側から2点以上の位置を押圧する請求項5に記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
- 前記電縫溶接部のインライン熱処理が、該電縫溶接部を加熱温度:830~1150℃に加熱したのち、板厚中央温度で800~550℃の温度域での平均冷却速度が10~70℃/sである冷却を行い、板厚中央温度で冷却停止温度:550℃以下の冷却停止温度まで冷却する処理である請求項4ないし6のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
- 前記縮径圧延が、縮径率:0.2~3.3%とする圧延である請求項4ないし7のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
- 前記組成に加えてさらに、質量%で、V:0.1%以下、Mo:0.5%以下、Cr:0.5%以下、Cu:0.5%以下、Ni:1.0%以下、B:0.0030%以下のうちから選ばれた1種または2種以上を含有する組成とする請求項4ないし8のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
- 前記組成に加えてさらに、質量%で、Ca:0.0050%以下、REM:0.0050%以下のうちから選ばれた1種または2種を含有する組成とする請求項4ないし9のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の製造方法。
- 請求項1ないし3のいずれかに記載の深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管の両管端に螺子部材を取り付けてなる深井戸向け高強度厚肉コンダクターケーシング。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580070295.2A CN107109567B (zh) | 2014-12-25 | 2015-12-15 | 用于深井用导体套管的高强度厚壁电阻焊钢管及其制造方法和深井用高强度厚壁导体套管 |
CA2967906A CA2967906C (en) | 2014-12-25 | 2015-12-15 | High-strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells |
US15/539,421 US11041223B2 (en) | 2014-12-25 | 2015-12-15 | High strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high strength thick-walled conductor casing for deep wells |
JP2016517016A JP6015879B1 (ja) | 2014-12-25 | 2015-12-15 | 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング |
KR1020177015947A KR101967692B1 (ko) | 2014-12-25 | 2015-12-15 | 심정에 사용되는 컨덕터 케이싱용 고강도 후육 전봉 강관, 그의 제조 방법 및 심정에 사용되는 고강도 후육 컨덕터 케이싱 |
EP15872199.3A EP3239317B1 (en) | 2014-12-25 | 2015-12-15 | High-strength thick-walled electric resistance welded steel pipe for conductor casing for deep well, production method therefor, and high-strength thick-walled conductor casing for deep well |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-262105 | 2014-12-25 | ||
JP2014262105 | 2014-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016103624A1 true WO2016103624A1 (ja) | 2016-06-30 |
Family
ID=56149691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/006233 WO2016103624A1 (ja) | 2014-12-25 | 2015-12-15 | 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング |
Country Status (7)
Country | Link |
---|---|
US (1) | US11041223B2 (ja) |
EP (1) | EP3239317B1 (ja) |
JP (1) | JP6015879B1 (ja) |
KR (1) | KR101967692B1 (ja) |
CN (1) | CN107109567B (ja) |
CA (1) | CA2967906C (ja) |
WO (1) | WO2016103624A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106868425A (zh) * | 2017-03-16 | 2017-06-20 | 东北大学 | 一种改善690MPa级低C中Mn高强韧中厚板焊接接头低温冲击韧性的焊后热处理方法 |
JP2018127646A (ja) * | 2017-02-06 | 2018-08-16 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
JP2019031698A (ja) * | 2017-08-04 | 2019-02-28 | Jfeスチール株式会社 | 厚肉電縫鋼管およびその製造方法 |
JP2020143338A (ja) * | 2019-03-06 | 2020-09-10 | 日本製鉄株式会社 | 電縫鋼管 |
WO2021106577A1 (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11053564B2 (en) | 2014-12-25 | 2021-07-06 | Jfe Steel Corporation | High strength thick-walled electric-resistance-welded steel pipe for deep-well conductor casing, method for manufacturing the same, and high-strength thick-walled conductor casing for deep wells |
KR102452599B1 (ko) * | 2017-09-20 | 2022-10-07 | 바오스틸 잔장 아이론 앤드 스틸 컴퍼니 리미티드 | 인라인에서 Ti 미세합금화 열간압연 고강도강 석출 강화 효과를 향상시키는 생산방법 |
JP6587041B1 (ja) * | 2019-02-19 | 2019-10-09 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
JP6813141B1 (ja) * | 2019-02-20 | 2021-01-13 | Jfeスチール株式会社 | 角形鋼管およびその製造方法並びに建築構造物 |
KR102610377B1 (ko) * | 2019-02-20 | 2023-12-06 | 제이에프이 스틸 가부시키가이샤 | 각형 강관 및 그 제조 방법, 그리고 건축 구조물 |
CN113423846B (zh) * | 2019-02-21 | 2022-09-20 | 日本制铁株式会社 | 高强度电焊钢管和地基稳定化工程用高强度电焊钢管的使用方法 |
CN110592362A (zh) * | 2019-10-25 | 2019-12-20 | 无锡市华立石化工程有限公司 | 一种用于液氮储罐的304l焊接件的焊后热处理方法 |
CA3159223A1 (en) * | 2019-10-31 | 2021-05-06 | Jfe Steel Corporation | Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure |
US20240026999A1 (en) * | 2020-10-05 | 2024-01-25 | Jfe Steel Corporation | Electric resistance welded steel pipe and method for manufacturing the same |
CN115369312A (zh) * | 2021-05-17 | 2022-11-22 | 宝山钢铁股份有限公司 | 一种高强度高频电阻焊管及其制造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315957A (ja) * | 2003-03-27 | 2004-11-11 | Jfe Steel Kk | 低温靱性および溶接性に優れた高強度電縫管用熱延鋼帯およびその製造方法 |
JP2007138289A (ja) * | 2005-10-18 | 2007-06-07 | Jfe Steel Kk | 厚手高強度熱延鋼板およびその製造方法 |
JP2007138290A (ja) * | 2005-10-18 | 2007-06-07 | Jfe Steel Kk | 厚手高強度熱延鋼板およびその製造方法 |
JP2007254797A (ja) * | 2006-03-22 | 2007-10-04 | Jfe Steel Kk | 母材部および電縫溶接部の靱性に優れた厚肉電縫鋼管およびその製造方法 |
JP2008274405A (ja) * | 2007-03-30 | 2008-11-13 | Jfe Steel Kk | 耐sr特性および変形性能に優れた高強度鋼板およびその製造方法 |
JP2010174343A (ja) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | 低温靭性に優れた厚肉高張力熱延鋼板の製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4174495A (en) | 1978-06-30 | 1979-11-13 | Westinghouse Electric Corp. | Static current limiting switch with soft forced commutation |
JPS583721A (ja) | 1981-06-30 | 1983-01-10 | Nippon Hikinuki Kogyo Kk | 溶接ステンレス鋼管の製造方法および製造設備 |
SU1388236A1 (ru) * | 1986-10-28 | 1988-04-15 | Предприятие П/Я А-3881 | Способ изготовлени сварных соединений |
TW404856B (en) | 1997-03-28 | 2000-09-11 | Kawasaki Steel Co | Smoothing device on steel pipe seams and its manufacturing method |
JP3558198B2 (ja) | 1997-08-05 | 2004-08-25 | 住友金属工業株式会社 | 高温sr特性に優れた高強度ライザー鋼管 |
US6419768B1 (en) * | 2001-01-29 | 2002-07-16 | Crucible Materials Corp. | Method for producing welded tubing having a uniform microstructure |
EP1325967A4 (en) | 2001-07-13 | 2005-02-23 | Jfe Steel Corp | STEEL TUBE WITH HIGH RESISTANCE, HIGHER THAN THAT OF API X6 STANDARD |
JP3846246B2 (ja) | 2001-09-21 | 2006-11-15 | 住友金属工業株式会社 | 鋼管の製造方法 |
JP4305216B2 (ja) * | 2004-02-24 | 2009-07-29 | Jfeスチール株式会社 | 溶接部の靭性に優れる耐サワー高強度電縫鋼管用熱延鋼板およびその製造方法 |
JP2006289439A (ja) | 2005-04-11 | 2006-10-26 | Sumitomo Metal Ind Ltd | Uoe鋼管の拡管方法および装置 |
EP2116625B1 (en) * | 2007-02-28 | 2015-10-14 | JFE Steel Corporation | Electric resistance welded steel pipe for line pipe excelling in weld part toughness |
JP4254909B2 (ja) * | 2007-03-30 | 2009-04-15 | 住友金属工業株式会社 | 坑井内で拡管される拡管用油井管及びその製造方法 |
CA2731908C (en) * | 2008-07-31 | 2013-09-24 | Jfe Steel Corporation | Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method for producing same |
JP5776398B2 (ja) | 2011-02-24 | 2015-09-09 | Jfeスチール株式会社 | 低温靭性に優れた低降伏比高強度熱延鋼板およびその製造方法 |
WO2012144248A1 (ja) * | 2011-04-19 | 2012-10-26 | 新日本製鐵株式会社 | 油井用電縫鋼管及び油井用電縫鋼管の製造方法 |
TWI432585B (zh) * | 2011-09-27 | 2014-04-01 | Nippon Steel & Sumitomo Metal Corp | Pipeline heat coil and its manufacturing method |
JP5516680B2 (ja) | 2012-09-24 | 2014-06-11 | Jfeスチール株式会社 | 電縫溶接部の耐hic性および低温靭性に優れた電縫鋼管およびその製造方法 |
-
2015
- 2015-12-15 KR KR1020177015947A patent/KR101967692B1/ko active Active
- 2015-12-15 US US15/539,421 patent/US11041223B2/en active Active
- 2015-12-15 WO PCT/JP2015/006233 patent/WO2016103624A1/ja active Application Filing
- 2015-12-15 CN CN201580070295.2A patent/CN107109567B/zh active Active
- 2015-12-15 EP EP15872199.3A patent/EP3239317B1/en active Active
- 2015-12-15 CA CA2967906A patent/CA2967906C/en active Active
- 2015-12-15 JP JP2016517016A patent/JP6015879B1/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004315957A (ja) * | 2003-03-27 | 2004-11-11 | Jfe Steel Kk | 低温靱性および溶接性に優れた高強度電縫管用熱延鋼帯およびその製造方法 |
JP2007138289A (ja) * | 2005-10-18 | 2007-06-07 | Jfe Steel Kk | 厚手高強度熱延鋼板およびその製造方法 |
JP2007138290A (ja) * | 2005-10-18 | 2007-06-07 | Jfe Steel Kk | 厚手高強度熱延鋼板およびその製造方法 |
JP2007254797A (ja) * | 2006-03-22 | 2007-10-04 | Jfe Steel Kk | 母材部および電縫溶接部の靱性に優れた厚肉電縫鋼管およびその製造方法 |
JP2008274405A (ja) * | 2007-03-30 | 2008-11-13 | Jfe Steel Kk | 耐sr特性および変形性能に優れた高強度鋼板およびその製造方法 |
JP2010174343A (ja) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | 低温靭性に優れた厚肉高張力熱延鋼板の製造方法 |
Non-Patent Citations (1)
Title |
---|
HIROSHI NAKATA ET AL.: "API X80 Grade Electric Resistance Welded Pipe with Excellent Low Temperature Toughness", JFE GIHO, vol. 29, February 2012 (2012-02-01), pages 11 - 16 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018127646A (ja) * | 2017-02-06 | 2018-08-16 | Jfeスチール株式会社 | 高強度熱延鋼板およびその製造方法 |
CN106868425A (zh) * | 2017-03-16 | 2017-06-20 | 东北大学 | 一种改善690MPa级低C中Mn高强韧中厚板焊接接头低温冲击韧性的焊后热处理方法 |
JP2019031698A (ja) * | 2017-08-04 | 2019-02-28 | Jfeスチール株式会社 | 厚肉電縫鋼管およびその製造方法 |
JP2020143338A (ja) * | 2019-03-06 | 2020-09-10 | 日本製鉄株式会社 | 電縫鋼管 |
JP7211168B2 (ja) | 2019-03-06 | 2023-01-24 | 日本製鉄株式会社 | 電縫鋼管 |
WO2021106577A1 (ja) * | 2019-11-29 | 2021-06-03 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法 |
JP6947332B1 (ja) * | 2019-11-29 | 2021-10-13 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2967906C (en) | 2020-12-29 |
JPWO2016103624A1 (ja) | 2017-04-27 |
CN107109567B (zh) | 2019-02-12 |
CA2967906A1 (en) | 2016-06-30 |
EP3239317B1 (en) | 2019-11-27 |
EP3239317A1 (en) | 2017-11-01 |
EP3239317A4 (en) | 2018-06-06 |
US11041223B2 (en) | 2021-06-22 |
JP6015879B1 (ja) | 2016-10-26 |
KR101967692B1 (ko) | 2019-04-10 |
KR20170084223A (ko) | 2017-07-19 |
US20170369962A1 (en) | 2017-12-28 |
CN107109567A (zh) | 2017-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6015879B1 (ja) | 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング | |
JP5999284B1 (ja) | 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法ならびに深井戸向け高強度厚肉コンダクターケーシング | |
KR101993542B1 (ko) | 고강도 전봉 강관 및 그 제조 방법 | |
CN105378131B (zh) | 管线用厚壁电焊钢管及其制造方法 | |
TWI763404B (zh) | 電焊鋼管及其製造方法 | |
JP6947333B2 (ja) | 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物 | |
TW202219292A (zh) | 電焊鋼管及其製造方法 | |
JP2015189984A (ja) | 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管 | |
CN114729426B (zh) | 电阻焊钢管用热轧钢板及其制造方法、电阻焊钢管及其制造方法、管线管、建筑结构物 | |
JP6319129B2 (ja) | 深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管及びその製造方法 | |
JP6369347B2 (ja) | 深井戸向けコンダクターケーシング用高強度厚肉スパイラル鋼管及びその製造方法 | |
CN111655872B (zh) | 管线管用钢材及其制造方法以及管线管的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2016517016 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15872199 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2967906 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 20177015947 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015872199 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15539421 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |