[go: up one dir, main page]

WO2016098410A1 - 電力変換装置及びこれを用いた電動パワーステアリング装置 - Google Patents

電力変換装置及びこれを用いた電動パワーステアリング装置 Download PDF

Info

Publication number
WO2016098410A1
WO2016098410A1 PCT/JP2015/076258 JP2015076258W WO2016098410A1 WO 2016098410 A1 WO2016098410 A1 WO 2016098410A1 JP 2015076258 W JP2015076258 W JP 2015076258W WO 2016098410 A1 WO2016098410 A1 WO 2016098410A1
Authority
WO
WIPO (PCT)
Prior art keywords
power conversion
correction
period
smoothing capacitor
output voltage
Prior art date
Application number
PCT/JP2015/076258
Other languages
English (en)
French (fr)
Inventor
拓朗 金澤
公久 古川
滋久 青柳
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to KR1020177015993A priority Critical patent/KR101947934B1/ko
Priority to JP2016564707A priority patent/JP6330057B2/ja
Priority to CN201580068241.2A priority patent/CN107112941B/zh
Priority to DE112015005178.3T priority patent/DE112015005178T5/de
Priority to US15/526,359 priority patent/US10348218B2/en
Publication of WO2016098410A1 publication Critical patent/WO2016098410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from DC input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
    • H02M5/42Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
    • H02M5/44Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
    • H02M5/453Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/02Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using supply voltage with constant frequency and variable amplitude
    • H02P27/026Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using supply voltage with constant frequency and variable amplitude whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using DC to AC converters or inverters with pulse width modulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times

Definitions

  • the present invention relates to a power converter, and more particularly to a power converter used in an electric power steering apparatus.
  • PWM control is well known as a method of controlling a three-phase motor using a DC power supply and a power conversion unit.
  • a motor torque and a motor torque are detected by detecting a current value flowing in the motor and a motor rotational speed, and calculating a voltage command value to the power conversion unit based on a command value given from the higher rank and the detection result.
  • the motor rotational speed is controlled to a desired value.
  • Patent Document 2 As another detection method of the electric current which flows into each phase of a motor, there exists a thing of patent document 2, for example.
  • the technique described in Patent Document 2 is a method of obtaining the current value flowing in each phase of the motor with only one current detector by synchronizing the PWM switching period of each phase and the current detection timing of the current detector.
  • the average value of the voltage vectors Vs' and Vs' ' is the voltage vector Vs.
  • a control technique for realizing detection by equalizing the average value of the voltage vectors Vs' and Vs' 'and the voltage vector Vs is referred to as "harmonic superposition method".
  • the present invention calculates the voltage command value from the current value flowing to the motor, and controls the motor to achieve a desired operation.
  • motor noise is detected.
  • An object of the present invention is to suppress an increase in effective current flowing to a smoothing capacitor while suppressing the current.
  • a power conversion device is a power conversion device that converts a DC voltage input from a DC power supply into an AC voltage to control a motor, and converts power with a smoothing capacitor that smoothes the DC voltage.
  • Power conversion unit having a bridge circuit for power conversion, a second power conversion unit connected in parallel with the first power conversion unit, and a bridge circuit for converting power, and an output voltage vector
  • a controller configured to generate a PWM pulse based on a PWM carrier, the controller configured to control a first PWM for controlling an output of the first power converter based on a first output voltage vector.
  • the control unit generating a predetermined output voltage vector
  • a correction unit for correcting two or more different output voltage vector values such that an average value in one cycle of the PWM carrier becomes the predetermined output voltage vector value, the correction unit further comprising: The correction of the first output voltage vector value is performed in a first period which is one period of a plurality of periods of a PWM carrier, and the first output voltage vector value is one period of a plurality of periods of the PWM carrier, In the second period different from the one period, the correction of the second output voltage vector value is performed.
  • motor noise can be interrupted by intermittently performing a period in which harmonics of each power conversion section are superimposed. While suppressing the increase of the effective current of the smoothing capacitor between the power supply and the current detector.
  • FIG. 1 is a circuit diagram of a power conversion device in a first embodiment.
  • 7 is a current waveform of the smoothing capacitor 210 of the first power conversion unit in the first embodiment.
  • FIG. 16 is a current waveform of the smoothing capacitor 310 of the second power conversion unit in Embodiment 1.
  • FIG. 7 is a motor current waveform in Example 1;
  • FIG. 7 is a circuit diagram of a power conversion device in a second embodiment. 7 is a table showing application of a harmonic wave superimposing method in a second embodiment.
  • FIG. 10 is a circuit diagram of a power conversion device in a third embodiment. It is an analysis result of the smoothing capacitor ripple current effective value which made motor rotation speed a parameter.
  • 15 is a chart showing application of a harmonic wave superimposing method in Example 3.
  • FIG. 16 is a circuit diagram of a power conversion device in a fifth embodiment. It is a figure explaining embodiment about an electric-power-steering apparatus. It is a figure which shows the circuit structure of the power converter device in a prior art example. It is a current waveform of the smoothing capacitor in the case where the harmonic wave superposition method in the prior art is not applied. It is a current waveform of the smoothing capacitor at the time of applying the harmonics superimposition system in a prior art example. It is a motor current waveform at the time of applying the harmonic superimposition system in a prior art example.
  • FIG. 14 shows a method of obtaining the current value flowing in each phase of the motor with only one current detector by synchronizing the PWM switching period of each phase and the current detection timing of the current detector.
  • FIG. 14 shows PWM triangular waves at certain operation timings of the power converter, voltage command values Vu *, Vv *, Vw * to the three-phase bridge circuits of the power converter, three-phase bridge circuits and DC power supplies The current waveform Ic of the smoothing capacitor in between is shown.
  • a period A in FIG. 14 represents a period from when the waveform of the PWM triangular wave exceeds the voltage command value Vv * to when it exceeds the voltage command value Vw *.
  • Period A is a period in which the current value flowing to the U phase of the motor is detected by synchronizing the PWM switching period with the current detection timing.
  • FIG. 15 further executes correction control so that the average value of the voltage vectors Vs ′ and Vs ′ ′ becomes equal to the voltage vector Vs, thereby securing time for current detection and setting the current value flowing in each phase of the motor It is a method to obtain.
  • a control technique for realizing current detection by equalizing the average value of the voltage vectors Vs' and Vs' 'and the voltage vector Vs is referred to as "harmonic superposition method".
  • the width of period A is widened by changing voltage command value Vu ** of U phase in the first half and the second half of triangular wave, and current detection of U phase is possible with the current detector.
  • the average value of Vu ** is equal to Vu * in FIG.
  • many methods other than those shown in FIG. 15 have been proposed, and the same effect can be obtained even if the method other than the above is applied.
  • the harmonic superposition method By using this, it is possible to detect the current flowing in each phase of the motor with only one current detector in the DC bus wiring.
  • the conduction time of a certain period in one carrier period is extended (period A in FIG. 15), and a period in which current in the reverse direction passes is changed to equalize the average value of voltage command values. Need to be set up (period B). Therefore, as apparent from comparison of the waveforms of the smoothing capacitor current Ic shown in FIG. 14 and FIG. 15, when the harmonic wave superposition method is applied, the effective current value flowing to the smoothing capacitor is increased. As a result, there is a problem that the heat generation of the smoothing capacitor is increased. As a smoothing capacitor, an electrolytic capacitor with a large capacity is often used, but since the electrolytic capacitor is a thermal life component, the harmonic superposition method ultimately reduces the reliability of the power converter.
  • a method may be considered in which the harmonic superimposing method is not performed every cycle of PWM but synchronized with only the current detection timing of the power conversion device.
  • a ripple waveform synchronized with the current detection period is generated at the motor output wiring end of the power conversion unit.
  • the harmonic superposition is not performed in the cycle T1
  • the harmonic superposition is performed in the cycle T2 to detect the current.
  • the ripple waveform appearing in the motor current contains frequency components equal to or less than the PWM carrier period, the problem is that abnormal noise in the audible region or less is generated from the motor as the sound generation source.
  • in-vehicle parts such as the above-described electric power steering system are strongly required to be quiet.
  • FIG. 1 is a circuit diagram showing an entire configuration of a power conversion device 100 according to a first embodiment.
  • the power conversion device 100 that converts the power of the DC power supply 20 from direct current to alternating current is connected to a motor 400 that converts electrical energy into mechanical energy and drives it.
  • the drive device 10 is configured by the power conversion device 100 and the motor 400.
  • the motor 400 is configured of, for example, a three-phase motor.
  • the power conversion device 100 includes two power conversion units, a power conversion unit 200 and a power conversion unit 300.
  • the power conversion unit 200 is provided with six semiconductor elements constituting a three-phase bridge circuit 220 for converting power from direct current to three-phase alternating current.
  • the semiconductor elements include power semiconductor elements such as MOSFETs (metal-oxide-semiconductor field-effect transistors) and IGBTs (insulated gate bipolar transistors).
  • One or more smoothing capacitors 210 for voltage smoothing are provided between positive and negative electrode wirings on the DC power supply 20 side of the three-phase bridge circuit 220.
  • the smoothing capacitor 210 is, for example, an electrolytic capacitor or a conductive polymer hybrid electrolytic capacitor having a sufficient capacity.
  • the negative electrode wiring between the three-phase bridge circuit 220 and the smoothing capacitor 210 is provided with a current detector 230 for detecting a phase current of the motor.
  • a current detector 230 for detecting a phase current of the motor.
  • a resistor with a small resistance value is often used as the current detector 230, another current detector such as a current transformer may be used.
  • a normal mode choke coil 281, a capacitor 282, and the like are disposed as noise reduction components on the DC power supply 20 side of the smoothing capacitor 210.
  • relays include semiconductor elements such as MOSFETs and mechanical electromagnetic relays.
  • a relay may be provided on the DC power supply 20 side of the normal mode choke coil 281 or on the power conversion unit 200 and the power conversion unit 300 side.
  • relays include bidirectional relays and mechanical electromagnetic relays in which two MOSFETs are connected in series with the source electrode at the same potential.
  • the configuration of power conversion unit 300 is the same as that of power conversion unit 200, and detailed description will be omitted.
  • the power conversion device 100 includes a control unit 250.
  • the control unit 250 includes a voltage command calculation unit 252, and a current command value for controlling the motor to a desired value is given from the drive device 10. Further, control unit 250 includes current detection unit 253 and current detection unit 353 for amplifying the voltage value obtained from current detector 230 and current detector 330, and supplies a current detection value to voltage command calculation unit 252. .
  • Voltage command operation unit 252 applies voltage commands Vu1 *, Vv1 *, Vw1 * and Vu2 *, Vv2 * to be applied to each phase of three-phase bridge circuit 220 and three-phase bridge circuit 320 based on the current command value and the current detection value. , Vw2 * are generated.
  • voltage command values to power conversion unit 200 are collectively referred to as V1 *
  • voltage command values to power conversion unit 300 are collectively referred to as V2 *.
  • the generated voltage commands V1 * and V2 * are output to the PWM generation unit 251, and the PWM generation unit 251 outputs gate voltage commands to the respective semiconductor elements of the three-phase bridge circuit 220 and the three-phase bridge circuit 320.
  • the PWM generation unit 251 is common to each power conversion unit in FIG. 1, the PWM generation unit 251 may be provided for each of the power conversion unit 200 and the power conversion unit 300.
  • the voltage command calculation unit 252 also has a voltage command correction unit 255.
  • Voltage command correction unit 255 performs one PWM cycle when the switching timing of each phase of the power conversion unit is close or synchronized as shown in FIG. 14 and the time for current detection using a current detector is not sufficient. The voltage command is corrected so that the average value of the voltage commands in the above becomes equal. As a result, time for performing current detection can be secured, and current detection using the current detector 230 and the current detector 330 provided on the DC bus can be performed.
  • the semiconductor elements of the three-phase bridge circuit 220 and the three-phase bridge circuit 320 are turned on or off based on the gate voltage command given from the control unit 250. By converting the DC power supplied from the DC power supply 20 into three-phase AC power, the motor 400 is controlled to a desired output.
  • the voltage command values of the respective phases are not close to each other under an operating condition at a certain timing of power conversion device 100, and a sufficient time for current detection can be secured.
  • the current command value sent from the drive device 10 is equally distributed, for example, from the voltage command calculation unit 252 to the power conversion unit 200 and the power conversion unit 300, and the PWM generation unit 251 determines three phases based on the voltage command value.
  • the gate voltage command is output to the bridge circuit 220 and the three-phase bridge circuit 330.
  • power conversion unit 200 and power conversion unit 300 output substantially the same voltage and current to motor 400.
  • each power conversion unit applies the harmonic wave superimposing method as shown in FIG. 15 to detect the U-phase current.
  • power conversion unit 200 performs current detection in period T2 of periods T1 and T2 of the current detection period (that is, 2 periods of PWM carriers), and a voltage due to harmonic superposition.
  • the correction of the command value is also performed only in the period T2.
  • power conversion unit 300 shifts the timing of implementing the harmonic superposition method with power conversion unit 200 as a reference, so that correction of the voltage command value by current detection and harmonic superposition in period T1 is performed. carry out.
  • the number of times of harmonic superposition of power conversion unit 200 and power conversion unit 300 is one in the current detection cycle (that is, two PWM carrier cycles), and the timings thereof do not match in each power conversion unit.
  • FIG. 4 shows several cycles of the motor wiring current waveform according to the current detection method described above.
  • the current waveform of the motor wiring is a value obtained by adding the outputs of the power conversion unit 200 and the power conversion unit 300.
  • period T1 in the power conversion unit 300, in period T2, in the power conversion unit 200, a ripple waveform resulting from the superposition of harmonics appears.
  • a frequency component equal to or less than the PWM carrier cycle does not newly occur in the ripple waveform appearing on the motor wiring.
  • the harmonic superposition method is intermittent, noise in the audible range as shown in FIG. 16 does not newly occur.
  • the ripple waveform appearing at the motor output wiring end of the power conversion device is the addition of the outputs of the two power conversion units, it is equivalent to that of the conventional power conversion device in which one power conversion unit is formed. That is, even if the number of times of harmonic superposition is reduced, the frequency component of the noise generated from the motor which is the sound generation source does not become equal to or lower than the PWM carrier frequency, and the generation of audible noise is suppressed.
  • the smoothing capacitor 210 and the smoothing capacitor 310 are separately provided in each power conversion unit, they are disposed between the power conversion units 200 and 300 and the DC power supply 20 and are commonly provided. I don't care.
  • the current detector 230 is provided on the negative electrode side of the DC bus
  • the positive side wiring connecting the power conversion unit 200 and the smoothing capacitor 210 and the positive side wiring connecting the power conversion unit 300 and the smoothing capacitor 310 may be provided.
  • the current detection cycle is assumed to be twice the PWM cycle, but it may be twice or more, and the correction motor for the voltage command value by harmonics may be adjusted according to the current detection cycle.
  • a long intermittent period may be used as long as the noise of is not a problem.
  • the intermittent periods of the respective power conversion units do not have to be the same, and for example, the periods of harmonics superposition may coincide with each other at the timing of common multiple of the respective intermittent periods.
  • the power converter 100 according to the second embodiment will be described with reference to FIGS. 5 and 6. Description of the configuration common to the first embodiment will be omitted.
  • the control unit 250 in the present embodiment includes a temperature detection unit 256 that detects the temperature of the smoothing capacitor 210 and a temperature detection unit 356 that detects the temperature of the smoothing capacitor 310.
  • a temperature measurement method a method of reading directly by connecting a thermocouple or the like, a method of estimating from a thermistor or the like mounted on the same substrate, or a calorific value equivalent to a calorific value derived from the magnitude of a current
  • a temperature upper limit Tmax is defined in the smoothing capacitor 210 and the smoothing capacitor 310.
  • the control unit 250 monitors the temperature of each smoothing capacitor while the power conversion device 100 is operating.
  • the control method in the state where the smoothing capacitor temperature is equal to or less than Tmax will be described in two cases using FIG.
  • Case 1 A case where the harmonics superimposing method of the power conversion unit 200 and the power conversion unit 300 is not intermittent when the smoothing capacitor temperature Tc is smaller than Tmax is defined as Case 1.
  • Case 1 when the smoothing capacitor temperature Tc ⁇ Tmax, the period Ti0 of the harmonic superposition scheme is equal to the PWM carrier period.
  • the intermittent control of the harmonic wave superposition method as shown in the first embodiment is applied.
  • the period Ti1 of the intermittent control to be applied is a period such that Ti1> Ti0.
  • Case 2 is defined as Case 2 in which the harmonics superimposing method of power conversion unit 200 and power conversion unit 300 is intermittent when smoothing capacitor temperature Tc is smaller than Tmax.
  • the period of the harmonic wave superimposing method at this time is Ti2 larger than the PWM carrier period.
  • the control is applied such that the intermittence period of the harmonic wave superimposing method becomes larger compared to when Tc ⁇ Tmax. That is, the period Ti3 of intermittent control at Tc> Tmax is Ti3> Ti2.
  • the current detection period can be equal to or close to the carrier period of PWM in a period in which the smoothing capacitor temperature is below the tolerance, the system that requires high-precision motor control by shortening the current detection period is also possible.
  • the proposed method can be applied.
  • a power converter 100 according to a third embodiment will be described using FIGS. 7 to 9. Description of the configuration common to the first or second embodiment will be omitted.
  • FIG. 7 is a circuit diagram showing an entire configuration of a power conversion device 100 according to the present embodiment.
  • the power conversion device 100 according to the present embodiment further includes a position detection device 257 that detects the number of rotations of the motor 400 as compared to the power conversion device according to the first embodiment.
  • a position detection device 257 As the position detection device 257, a resolver, a GMR (Giant Magneto Resistance) sensor, or the like can be used.
  • the motor rotational speed Rm detected by the position detection device 257 is input to the control unit 250.
  • lower limit value Rmin of the motor rotational speed is set.
  • the control unit 250 compares the motor rotation number Rm detected by the position detection device 257 with the lower limit value Rmin of the motor rotation number.
  • FIG. 8 shows analysis results of the effective value of the ripple current of the smoothing capacitor in the case where the harmonic superposition method is not applied and in the case where the harmonic superposition method is applied.
  • the case where the harmonic wave superimposing method is not applied is a case where the motor current value is directly detected from a plurality of motor wires when the motor current is constant.
  • the case where the harmonic superposition method is applied means the case where the motor current value is determined using a current detector provided on the DC bus when the motor current is constant, and the motor rotational speed Rm is determined.
  • a harmonics superposition method is applied to every period of a PWM carrier.
  • the ripple current effective value of the smoothing capacitor increases due to the influence of the harmonic superposition method when the motor rotation speed decreases. This is because, in the system to which the harmonic wave superimposing method is applied, when the motor rotational speed decreases, the voltage command values of the respective phases approach each other, and the period during which current detection is difficult increases.
  • the control unit 250 compares the motor rotation number Rm with a predetermined lower limit value Rmin to switch control.
  • Rmin a predetermined lower limit value
  • ⁇ Case 1> A case where the harmonics superimposing method of the power conversion unit 200 and the power conversion unit 300 is not intermittent when the motor rotation number Rm is larger than Rmin is defined as Case 1.
  • Case 1 when the motor rotational speed Rm> Rmin, the period Ti0 of the harmonic superposition scheme is equal to the PWM carrier period.
  • the period Ti1 of the intermittent control to be applied is a period such that Ti1> Ti0.
  • the control method according to the present embodiment described above may be applied simultaneously with the control according to the second embodiment. For example, even if the motor rotational speed Rm is equal to or less than Rmin under the conditions of Case 1, application of the harmonic superposition method in the PWM carrier cycle is started when the smoothing capacitor temperature Tc is equal to or less than the upper limit Tmax. You may do so. Alternatively, even if the motor rotational speed Rm is equal to or less than Rmin under the conditions of Case 2, if the smoothing capacitor temperature Tc is equal to or less than the upper limit Tmax, control to increase the application period of the harmonic superposition method is not performed. It is also good.
  • the motor rotational speed is a value that is generally detected, and additional detection components can be eliminated.
  • FIG. 8 which is the third embodiment, the ripple current effective value of the smoothing capacitor is estimated using the motor rotational speed as a parameter, but in the present embodiment, the modulation factor of PWM is used as a parameter.
  • FIG. 10 is a graph showing the current detection rate of the power conversion device with the PWM modulation rate as a parameter.
  • the results in FIG. 10 were calculated using, as a parameter, the modulation ratio of PWM as a ratio at which current detection can be performed without applying the harmonic superposition method when one current detector provided in the DC bus is used. It is a thing. As apparent from FIG. 10, it can be seen that the current detection rate largely changes with reference to a certain modulation rate.
  • the voltage command calculation unit 252 provides a reference value of the modulation factor, and compares the reference value with the magnitude of the PWM modulation factor calculated from the current command value or the like.
  • the voltage command calculation unit 252 changes the start or stop of the intermittent period of the harmonic superposition scheme or the magnitude of the period according to the comparison result.
  • the control parameter of the temperature rise suppression control of the smoothing capacitor is increased, and the controllability is improved.
  • the reference of the reference value of the motor current may be set in the voltage command calculation unit, and the intermittent control period may be changed by the magnitude of the motor current.
  • FIG. 11 is a circuit diagram of a power conversion device 100 according to the fifth embodiment.
  • the present embodiment shows a power conversion device 100 including one power conversion unit 200 and a control unit 250 and a drive device 10 having one motor 400.
  • the symbol of a power converter is the same as that of the power converter 200 of the previous Example, Moreover, description is abbreviate
  • the power conversion device 100 includes a temperature detection unit 256 that detects the temperature of the smoothing capacitor 210.
  • voltage command calculation unit 252 includes temperature upper limit Tmax of smoothing capacitor 210.
  • the power conversion apparatus 100 applies the harmonic superposition method for each carrier period of PWM for noise reduction.
  • the temperature of the smoothing capacitor 210 becomes equal to or higher than the upper limit Tmax, control is performed to make the harmonic superposition method intermittent as described in the above embodiments. Further, as in Case 2 in the second embodiment, when the temperature of the smoothing capacitor 210 becomes equal to or higher than the upper limit Tmax, control is performed to increase the period of the harmonic wave superimposing method.
  • the smoothing capacitor temperature reaches the upper limit, the reliability of the power conversion device is improved by performing control in which the harmonic superposition method is intermittent.
  • the motor rotation speed, the motor current, and the modulation rate are parameters that change the magnitude of the cycle of starting or stopping the application of the control in which the harmonic superposition method is intermittent or intermittent. The same effect can be obtained even if the intermittent control timing of the harmonic wave superposition method is changed by selecting the etc. and setting the reference value to each parameter.
  • FIG. 12 shows a sixth embodiment in which the power conversion device according to the above-described embodiment is applied to an electric power steering device.
  • the drive device 10 generates a torque via the gear 4 attached to the rotation shaft of the steering 1 of the vehicle, and assists the steering by the steering 1.
  • the drive device 10 is an application of the control technology described above.
  • the electric power steering apparatus according to the present embodiment can be applied to a car having a small mounting space by providing a miniaturized power conversion apparatus, and enables various vehicle types to be developed.
  • the electric power steering apparatus according to the present embodiment includes the power conversion apparatus which has been made silent, thereby providing the drive apparatus in the vicinity of the driver.
  • the electric power steering apparatus according to the present embodiment can realize a highly reliable system by suppressing the temperature rise of the smoothing capacitor in the power conversion device.
  • the present invention has the same effect in a system in which motor windings of three or more phases are configured in the same motor housing. Can be demonstrated.
  • the power conversion device has two power conversion units, even when a plurality of power conversion units are provided, intermittent control of another power conversion unit is performed based on a certain power conversion unit, The same effects as those of the embodiments described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 本発明の目的は、電力変換装置の小型化・生産性の改善、平滑コンデンサの温度上昇抑制およびモータ騒音の低減を、同時に解決することにある。 本発明の電力変換装置(100)は、平滑コンデンサ(210、310)と、並列に接続される第1の電力変換部(200)及び第2の電力変換部(300)と、出力電圧ベクトル及びPWMキャリアに基づいてPWMパルスを生成する制御部(250)と、を備える。制御部は、所定の出力電圧ベクトル値をPWMキャリアの1周期内での平均値が当該所定の出力電圧ベクトル値となるような異なる2つ以上の出力電圧ベクトル値に補正をする補正部(255)を有する。補正部は、第1の期間において第1の出力電圧ベクトル値の補正を行うとともに、第1の期間とは異なる第2の期間において第2の出力電圧ベクトル値の補正を行う。

Description

電力変換装置及びこれを用いた電動パワーステアリング装置
 本発明は、電力変換装置に関し、特に電動パワーステアリング装置に用いられる電力変換装置に関する。
 近年、1つのモータ筐体に合計3相以上のモータ巻き線を、電力変換装置の筐体に合計2つの電力変換部を備え、それぞれの筐体を結合した機電一体構造の電動パワーステアリング装置が提案されてきている。機電一体構造のシステムとしては、例えば特許文献1に記載のものがある。また、直流電源と電力変換部を用いて3相モータをコントロールする手法としては、PWM制御が良く知られている。PWM制御では、モータに流れている電流値やモータ回転数を検出し、上位から与えられる指令値と前記検出結果に基づいて、電力変換部への電圧指令値を演算することで、モータトルクおよびモータ回転数を所望の値に制御する。
 ここで、モータの各相に流れている電流の検出方法としては、電力変換部とモータを電気的に接続する配線部で検出する方法が一つ挙げられるが、2つの電力変換部のそれぞれに3個の電流検出器と検出用配線を備え、さらに制御部には検出器から得た値を増幅するためのオペアンプ等を備えなければならなく、電力変換装置の大型化および接続工程の増加が課題である。
 モータの各相に流れている電流の別の検出方法としては、例えば特許文献2に記載のものがある。特許文献2に記載の技術は、各相のPWMスイッチング期間と電流検出器の電流検出タイミングを同期させることで、1つの電流検出器のみでモータ各相に流れる電流値を求める方式である。また、電力変換部の各相のスイッチングタイミングが非常に近接し、電流検出器で電流検出をするための時間を十分に確保できない時には、電圧ベクトルVs’とVs’’の平均値が電圧ベクトルVsと等しくなるよう補正制御を実施することで、電流検出のための時間を確保し、モータ各相に流れる電流値を求める方式である。この電圧ベクトルVs’及びVs’’の平均値と、電圧ベクトルVsを等しくすることで検出を実現する制御技術を、「高調波重畳方式」と呼ぶこととする。
特開2011-250489号公報 特開平11-4594号公報
 本発明は、モータに流れている電流値から電圧指令値を演算し、所望の動作となるようモータを制御する電力変換装置において、高調波重畳方式を用いた電流検出の際に、モータ騒音を抑制しつつ、平滑コンデンサに流れる実効電流の増加を抑制することを目的とする。
 本発明に係る電力変換装置は、直流電源から入力される直流電圧を交流電圧に変換してモータを制御する電力変換装置であって、前記直流電圧を平滑化する平滑コンデンサと、電力を変換するためのブリッジ回路を有する第1の電力変換部と、電力を変換するためのブリッジ回路を有し、前記第1の電力変換部と並列に接続される第2の電力変換部と、出力電圧ベクトル及びPWMキャリアに基づいてPWMパルスを生成する制御部と、を備え、前記制御部は、第1の出力電圧ベクトルに基づいて前記第1の電力変換部の出力を制御するための第1のPWMパルスを生成するとともに、第2の出力電圧ベクトルに基づいて前記第2の電力変換部の出力を制御するための第2のPWMパルスを生成し、前記制御部は、所定の出力電圧ベクトル値を、前記PWMキャリアの1周期内での平均値が当該所定の出力電圧ベクトル値となるような異なる2つ以上の出力電圧ベクトル値に補正をする補正部を有し、前記補正部は、前記PWMキャリアの複数周期の中の1周期である第1の期間において、前記第1の出力電圧ベクトル値の前記補正を行い、かつ、前記PWMキャリアの複数周期の中の1周期であって前記第1の期間とは異なる第2の期間において、前記第2の出力電圧ベクトル値の前記補正を行うことを特徴とする。
 本発明によれば、直流母線に1つの電流検出器を有する2つの電力変換部から成る電力変換装置において、それぞれの電力変換部の高調波重畳を実施する期間を間欠にすることで、モータ騒音を抑制しつつ、電源と電流検出器の間にある平滑コンデンサの実効電流の増加を抑制することができる。本発明により得られるその他の効果は、本発明を実施するための形態の説明の中で明らかにする。
実施例1における電力変換装置の回路図である。 実施例1における第1の電力変換部の平滑コンデンサ210の電流波形である。 実施例1における第2の電力変換部の平滑コンデンサ310の電流波形である。 実施例1におけるモータ電流波形である。 実施例2における電力変換装置の回路図である。 実施例2における高調波重畳方式の適用を示す図表である。 実施例3における電力変換装置の回路図である。 モータ回転数をパラメータとした平滑コンデンサリップル電流実効値の解析結果である。 実施例3における高調波重畳方式の適用を示す図表である。 変調率をパラメータとした電流検出率の試算結果である。 実施例5における電力変換装置の回路図である。 電動パワーステアリング装置についての実施形態を説明する図である。 従来例における電力変換装置の回路構成を示す図である。 従来例における高調波重畳方式を適用しない場合の平滑コンデンサの電流波形である。 従来例における高調波重畳方式を適用した場合の平滑コンデンサの電流波形である。 従来例における高調波重畳方式を適用した場合のモータ電流波形である。
 以下、図面を参照して、本発明に係る電力変換装置の実施の形態について説明する。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。また、従来技術として、図13~図15を用いて、高調波重畳方式について説明する。
 図14は、各相のPWMスイッチング期間と電流検出器の電流検出タイミングを同期させることで、1つの電流検出器のみでモータ各相に流れる電流値を求める方式である。図14には、電力変換装置のある動作タイミングにおけるPWM三角波と、電力変換部の3相ブリッジ回路各相への電圧指令値Vu*、Vv*、Vw*と、3相ブリッジ回路と直流電源の間にある平滑コンデンサの電流波形Icが示されている。図14の期間Aは、PWM三角波の波形が電圧指令値Vv*を超えてから電圧指令値Vw*を超えるまでの期間を表している。期間Aは、PWMスイッチング期間と電流検出タイミングを同期させることで、モータのU相に流れる電流値を検出する期間である。
 電力変換装置のある動作タイミングにおけるPWM三角波と電圧指令値が図14に示すような関係であったとき、平滑コンデンサには同図に示されるような波形の電流が流れる。しかし、U相の電圧指令値Vu*とV相の電圧指令値Vv*が近接しているため、期間の幅が狭く、電流検出器で電流を検出することが困難となってしまう。
 図15は、さらに電圧ベクトルVs’とVs’’の平均値が電圧ベクトルVsと等しくなるよう補正制御を実施することで、電流検出のための時間を確保し、モータ各相に流れる電流値を求める方式である。この電圧ベクトルVs’及びVs’’の平均値と、電圧ベクトルVsを等しくすることで電流検出を実現する制御技術を、「高調波重畳方式」ということとする。図15に示す高調波重畳方式では、U相の電圧指令値Vu**を、三角波の前半後半で変化させることで期間Aの幅を広くし、電流検出器でU相の電流検出を可能とする。なお、Vu**の平均値は、図14のVu*と等しい。また、高調波重畳方式においては、図15に示す以外にも多くの手法が提案されており、上記以外の手法を適用しても、同様の効果を得ることができる。
 このように、各相の電圧指令値が近接することで、電流検出をするための十分な時間を確保できず、モータ電流の検出を正常に実施できない期間が発生する場合でも、高調波重畳方式を用いると、直流母線配線にある1個の電流検出器のみで、モータ各相に流れる電流を検出することを実現する。
 しかし、高調波重畳方式では、1キャリア周期内のある期間の通電時間を延長し(図15における期間A)、さらに電圧指令値の平均値を等しくするために逆方向の電流が通じる期間を新たに設ける必要がある(期間B)。そのため、図14および図15に示す平滑コンデンサ電流Icの波形を比較すると明らかなように、高調波重畳方式を適用すると平滑コンデンサに流れる実効電流値が増加してしまう。その結果、平滑コンデンサの発熱が増加するという課題がある。平滑コンデンサとしては、容量の大きな電解コンデンサがよく用いられるが、電解コンデンサは熱寿命部品であるため、高調波重畳方式は最終的に電力変換装置の信頼性を低下させてしまう。
 一方、平滑コンデンサの実効電流値の増加を抑制するため、高調波重畳方式をPWMの毎周期実施するのではなく、電力変換装置の電流検出タイミングのみに同期させて実施する手法が考えられる。しかし、このようにすると、電力変換部のモータ出力配線端には、電流検出周期に同期したリップル波形が発生する。例えば、図16に示すモータ電流波形は、周期T1で高調波重畳を実施せず、周期T2で高調波重畳を実施し電流を検出している。その結果、モータ電流に現れるリップル波形には、PWMキャリア周期以下の周波数成分が含まれてしまうため、音の発生源であるモータからPWMキャリア周期以下の、即ち可聴域の異音が発生する課題がある。特に、前述した電動パワーステアリングシステムのような車載部品では静音が強く求められている。
 以上のように、電力変換装置の小型化・生産性の改善、平滑コンデンサの温度上昇抑制およびモータ騒音の低減を、同時に解決することは大きな課題となっている。
 図1から図4を用いて、第1の実施形態に係る電力変換装置100について説明する。図1は、第1の実施例に係る電力変換装置100の全体構成を示す回路図である。
 直流電源20の電力を直流から交流へ変換する電力変換装置100は、電気エネルギーを機械エネルギーへ変換し駆動するモータ400に接続される。ここでは、電力変換装置100とモータ400とで、駆動装置10を構成している。モータ400は、例えば三相モータで構成される。
 電力変換装置100は、電力変換部200と電力変換部300の2つの電力変換部を有している。電力変換部200には、電力を直流から3相交流へ変換するための3相ブリッジ回路220を構成する半導体素子が6個備えられている。半導体素子としては、MOSFET(metal-oxide-semiconductor field-effect transistor)やIGBT(Insulated Gate Bipolar Transistor)などのパワー半導体素子がある。
 3相ブリッジ回路220より直流電源20側の正負極配線の間には、電圧平滑化のための平滑コンデンサ210が一つ以上備えられている。平滑コンデンサ210は、十分な容量を有している電解コンデンサや導電性高分子ハイブリッド電解コンデンサなどが用いられる。
 3相ブリッジ回路220と平滑コンデンサ210の間の負極配線には、モータの相電流を検出するための電流検出器230が設けられる。電流検出器230としては、抵抗値の小さな抵抗器がよく用いられているが、カレントトランスなど他の電流検出器を用いても構わない。平滑コンデンサ210より直流電源20側には、ノイズ対策部品としてノーマルモードチョークコイル281やコンデンサ282などが配置されている。
 なお、図示していないが、電力変換部200および電力変換部300とモータ400を電気的に接続する配線すべてに、異常時に回路をオン/オフするためのリレーが一つずつ備えられていても良い。リレーとしては、例えばMOSFETなどの半導体素子や機械式の電磁リレーがある。また、ノーマルモードチョークコイル281より直流電源20側、または電力変換部200および電力変換部300側にリレーが備えられていても良い。リレーとしては、例えば2個のMOSFETがソース電極を同電位とする形で直列に接続された、双方向リレーや機械式の電磁リレーがある。なお、電力変換部300の構成は電力変換部200と同じであり、詳細な説明は省略する。
 次に、電力変換装置の制御部に関し説明する。電力変換装置100は、制御部250を有している。制御部250は電圧指令演算部252を有しており、駆動装置10からモータを所望の値に制御するための電流指令値が与えられる。また、制御部250は、電流検出器230および電流検出器330から得た電圧値を増幅する電流検出部253および電流検出部353を有しており、電圧指令演算部252に電流検出値を与える。
 電圧指令演算部252は、電流指令値と電流検出値を基に、3相ブリッジ回路220および3相ブリッジ回路320の各相へ与える電圧指令Vu1*、Vv1*、Vw1*およびVu2*、Vv2*、Vw2*を生成する。ここで、電力変換部200への電圧指令値をまとめてV1*と、電力変換部300への電圧指令値をまとめてV2*と呼ぶこととする。
 生成された電圧指令V1*およびV2*は、PWM生成部251へ出力され、PWM生成部251は3相ブリッジ回路220および3相ブリッジ回路320のそれぞれの半導体素子へ、ゲート電圧指令を出力する。なお、PWM生成部251は、図1ではそれぞれの電力変換部に共通となっているが、電力変換部200および電力変換部300用にそれぞれ備えられていても良い。
 電圧指令演算部252は、電圧指令補正部255も有している。電圧指令補正部255は、図14に示すような、電力変換部の各相のスイッチングタイミングが近接または同期し、電流検出器を用いて電流検出をするための時間が十分でない場合に、PWM1周期の電圧指令の平均値が等しくなるよう電圧指令を補正する。その結果、電流検出を実施するための時間を確保でき、直流母線に備えられた電流検出器230および電流検出器330を用いた電流検出を可能としている。
 3相ブリッジ回路220と3相ブリッジ回路320の半導体素子は、制御部250から与えられたゲート電圧指令に基づき、オン又はオフする。直流電源20から与えられる直流電力を3相交流電力へ変換することで、モータ400を所望の出力に制御する。
 次に、電力変換部200および電力変換部300の、特に高調波重畳方式の動作に関し説明する。なお、以下の説明では、各電力変換部の電流検出周期が、PWMキャリアの2周期に1回であると仮定する。
 電力変換装置100のあるタイミングにおける動作条件にて、各相の電圧指令値が近接しておらず、電流検出のための時間が十分に確保できる状態を考える。この場合、駆動装置10から送られた電流指令値は、電圧指令演算部252から電力変換部200と電力変換部300に例えば均等に分配され、PWM生成部251は電圧指令値に基づき、3相ブリッジ回路220と3相ブリッジ回路330へゲート電圧指令を出力する。その結果、電力変換部200と電力変換部300は、ほぼ等しい電圧・電流をモータ400へ出力する。
 次に、電力変換部の各相の電圧指令値が近接し、電流検出のための時間が十分に確保できないタイミングを考える。図14に示したように、電圧指令値が近接しているため、電力変換部200と電力変換部300では、U相の電流を検出することが困難となる。そのため、それぞれの電力変換部は図15に示すような高調波重畳方式を適用し、U相電流を検出する。
 ここで電力変換部200は、図2に示すように、電流検出周期(すなわちPWMキャリア2周期)である期間T1およびT2のうち、期間T2で電流検出を実施することとし、高調波重畳による電圧指令値の補正も期間T2のみで実施する。一方、電力変換部300は、図3に示すように、電力変換部200を基準として高調波重畳方式を実施するタイミングをずらすため、期間T1で電流検出および高調波重畳による電圧指令値の補正を実施する。このように、電力変換部200と電力変換部300の高調波重畳の回数は、電流検出周期(すなわちPWMキャリア2周期)に1回とし、そのタイミングはそれぞれの電力変換部で一致しない。
 図4に、前述した電流検出方式によるモータ配線電流の波形を数周期分示す。モータ配線の電流波形は、電力変換部200と電力変換部300の出力が加算された値となる。期間T1では電力変換部300で、期間T2では電力変換部200で、高調波重畳に起因するリップル波形が現れる。しかし、電力変換部200と電力変換部300の電流検出タイミングを1キャリア周期ずらすことで、モータ配線に現れるリップル波形には、PWMキャリア周期以下の周波数成分が新たに発生することがない。その結果、高調波重畳方式を間欠としても、図16のような可聴域の騒音が新たに発生することがない。
 以上の構成とすることで、高調波重畳方式による平滑コンデンサの実効電流値の増加を抑制でき、結果平滑コンデンサの温度上昇を抑制することができる。平滑コンデンサの温度上昇抑制は、信頼性の向上だけでなく、平滑コンデンサ容量の低減、さらには個数の削減も可能となる。
 また、電力変換装置のモータ出力配線端に現れるリップル波形は、2つの電力変換部の出力の加算となるため、電力変換部を1つで構成する従来の電力変換装置の場合と同等となる。即ち、高調波重畳の回数を削減したとしても、音の発生源であるモータから生じる騒音の周波数成分がPWMキャリア周波数以下となることがなく、可聴域の音が発生することを抑制する。
 さらに、電力変換部に備える電流検出器の数を1個とすることで、電力変換装置の小型化および生産性向上も実現する。
 なお、本実施例では、平滑コンデンサ210と平滑コンデンサ310は、各電力変換部で個別に備える構成としたが、電力変換部200および300と直流電源20の間に配置し、共通で備える構成としても構わない。
 また、電流検出器230は直流母線の負極側に備えられているが、電力変換部200と平滑コンデンサ210を接続する正極側配線、電力変換部300と平滑コンデンサ310を接続する正極側配線に、それぞれ備えられていても良い。
 さらに本実施例では、電流検出周期をPWM周期の2倍と仮定しているが、2倍以上であっても構わなく、電流検出周期に合わせる形で、高調波重畳による電圧指令値の補正モータの騒音が問題とならない範囲で長い間欠期間としても構わない。またこの時、それぞれの電力変換部の間欠期間は同一でなくてもよく、例えばそれぞれの間欠期間の公倍数のタイミングでは、高調波重畳の期間が一致しても構わない。
 図5及び図6を用いて、第2の実施形態に係る電力変換装置100について説明する。なお、第1の実施形態と共通する構成に関しては、説明を省略する。
 本実施形態における制御部250には、平滑コンデンサ210の温度を検出する温度検出部256と、平滑コンデンサ310の温度を検出する温度検出部356を有する。ここで、温度測定手法としては、熱電対などを接続することで直接読み取る方法や、同一基板上に実装されたサーミスタなどから推定する方法、または通電電流の大きさから導出する発熱量と等価熱回路網などで表現した熱時定数を用いて内部温度を算出する方法などが挙げられる。
 また、平滑コンデンサ210と平滑コンデンサ310には温度上限Tmaxが規定されている。制御部250は、電力変換装置100が動作している間、それぞれの平滑コンデンサの温度をモニタリングしている。以下では、平滑コンデンサ温度がTmax以下の状態における制御方式を、2つのケースに分けて図6を用いて説明する。
 <ケース1>
 平滑コンデンサ温度TcがTmaxより小さいときに、電力変換部200と電力変換部300の高調波重畳方式を間欠としない場合をケース1と定義する。ケース1では、平滑コンデンサ温度Tc<Tmaxのときに、高調波重畳方式の周期Ti0は、PWMキャリア周期に等しい。
 その後、電力変換装置100が動作継続し、平滑コンデンサ210と平滑コンデンサ310のいずれか一方または双方の温度がTmax以上となったときに、電力変換部200と電力変換部300の一方または双方は、実施例1で示したような高調波重畳方式の間欠制御を適用する。適用される間欠制御の周期Ti1は、Ti1>Ti0となるような周期である。
 <ケース2>
 一方、平滑コンデンサ温度TcがTmaxより小さいときに、電力変換部200と電力変換部300の高調波重畳方式を間欠としている場合をケース2と定義する。このときの高調波重畳方式の周期は、PWMキャリア周期よりも大きいTi2である。
 その後、電力変換装置100が動作継続し、平滑コンデンサ210と平滑コンデンサ310のいずれか一方または双方の温度がTmax以上となったときに、電力変換部200と電力変換部300の一方または双方は、高調波重畳方式の間欠期間がTc<Tmaxのときと比較して大きくなるように、制御を適用する。すなわち、Tc>Tmaxにおける間欠制御の周期Ti3は、Ti3>Ti2となる。
 以上のような制御を実施することで、平滑コンデンサの温度をモニタリングし、平滑コンデンサ温度が許容値以上となった場合に高調波重畳方式を間欠とすることで、平滑コンデンサを保護することが可能となる。
 また、平滑コンデンサ温度が許容以下の期間では、電流検出周期をPWMのキャリア周期と等しく、または近づけることができるため、電流検出周期を短くすることで高精度なモータ制御を必要とするシステムにも、本提案手法を適用することができる。
 図7から図9を用いて、第3の実施形態に係る電力変換装置100について説明する。なお、第1又は第2の実施形態と共通する構成に関しては、説明を省略する。
 図7は、本実施形態に係る電力変換装置100の全体構成を示す回路図である。本実施形態に係る電力変換装置100は、第1の実施形態に係る電力変換装置と比較して、さらにモータ400の回転数を検出する位置検出装置257を備えている。位置検出装置257としては、レゾルバや、GMR(Giant Magneto Resistance)センサなどを用いることができる。
 位置検出装置257が検出したモータ回転数Rmは、制御部250に入力される。制御部250には、モータ回転数の下限値Rminが設定される。制御部250は、位置検出装置257が検出したモータ回転数Rmと、モータ回転数の下限値Rminとを比較する。
 図8は、高調波重畳方式を適用しない場合と、高調波重畳方式を適用する場合における平滑コンデンサのリップル電流の実効値の解析結果を示している。図8において、高調波重畳方式を適用しない場合とは、モータ電流を一定としたときに、当該モータ電流値を複数のモータ配線から直接検出する場合である。また、高調波重畳方式を適用する場合とは、モータ電流を一定としたときに、当該モータ電流値を直流母線に備えられた電流検出器を用いて求めた場合であり、モータ回転数Rmをパラメータとして、PWMキャリアの毎周期に高調波重畳方式を適用した場合である。
 図8から明らかなように、PWMキャリアの毎周期に高調波重畳方式を適用した場合、モータ回転数が小さくなると高調波重畳方式の影響で平滑コンデンサのリップル電流実効値が増加している。これは、高調波重畳方式を適用するシステムにおいては、モータ回転数が小さくなると、各相の電圧指令値が近接し、電流検出が困難な期間が増加しているためである。
 そこで本実施形態に係る電力変換装置100では、制御部250がモータ回転数Rmを所定の下限値Rminと比較し、制御を切り替える。図9では、モータ回転数RmがRminより大きい場合の制御方式として2つのケースを説明している。
 <ケース1>
 モータ回転数RmがRminより大きいときに、電力変換部200と電力変換部300の高調波重畳方式を間欠としない場合をケース1と定義する。ケース1では、モータ回転数Rm>Rminのときに、高調波重畳方式の周期Ti0は、PWMキャリア周期に等しい。
 その後、電力変換装置100が動作継続し、モータ回転数RmがRminより小さくなったときに、電力変換部200と電力変換部300の一方又は双方は、実施例1で示したような高調波重畳方式の間欠制御を適用する。適用される間欠制御の周期Ti1は、Ti1>Ti0となるような周期である。
 <ケース2>
 一方、モータ回転数RmがRminより大きいときに、電力変換部200と電力変換部300の高調波重畳方式を間欠としている場合をケース2と定義する。このときの高調波重畳方式の周期は、PWMキャリア周期よりも大きいTi2である。
 その後、電力変換装置100が動作継続し、モータ回転数RmがRminより小さくなったときに、電力変換部200と電力変換部300の一方又は双方は、高調波重畳方式の間欠期間がRm>Rminのときと比較して大きくなるように、制御を適用する。すなわち、Rm<Rminにおける間欠制御の周期Ti3は、Ti3>Ti2となる。
 また、上述した本実施形態に係る制御方式は、第2の実施形態に係る制御と同時に適用しても良い。例えば、ケース1の条件にて、モータ回転数RmがRmin以下となった場合でも、平滑コンデンサ温度Tcが上限Tmax以下である場合には、PWMキャリア周期での高調波重畳方式の適用を開始するようにしてもよい。または、ケース2の条件にモータ回転数RmがRmin以下となった場合でも、平滑コンデンサ温度Tcが上限Tmax以下である場合には、高調波重畳方式の適用周期を大きくする制御を実施しないこととしてもよい。
 以上のような制御を実施することで、平滑コンデンサ温度上昇の抑制を、平滑コンデンサ自身の温度以外の制御因子で実施することができる。モータ制御において、モータ回転数は一般的に検出している値であり、追加の検出部品を不要とすることができる。
 また、モータ回転数が大きい場合に、電流の変化が速いため短い電流検出周期で電流を検出しモータを高精度に制御する必要があるシステムであっても、モータ回転数が低い場合には電流変化が遅いため、電流検出周期を短くしても良い場面がある。そのようなシステムでは、平滑コンデンサの温度上昇に影響を与える、モータ回転数Rmが下限Rminより小さい期間で間欠制御を実施しても、モータ制御性能の維持と平滑コンデンサの温度上昇抑制を実現することができる。
 さらに、平滑コンデンサの温度検出値の判定結果と本実施例の方式を両方適用することで、2つのパラメータで平滑コンデンサ温度を制御することを実現し、電力変換装置の信頼性改善と、高精度なモータ制御の動作範囲をさらに広げることができる。
 続いて、第4の実施形態に係る電力変換装置100について説明をする。第3の実施形態である図8においては、モータ回転数をパラメータとして、平滑コンデンサのリップル電流実効値を試算しているが、本実施形態では、PWMの変調率をパラメータとしている。
 図10は、PWM変調率をパラメータとして、電力変換装置の電流検出率をグラフに示したものである。図10の結果は、直流母線に備えた1つの電流検出器を用いた場合に、高調波重畳方式を適用しなくても電流検出が可能となる割合を、PWMの変調率をパラメータとして試算したものである。図10から明らかなように、電流検出率は、ある変調率を基準に大きく変化することが分かる。
 そこで、本実施形態に係る電圧指令演算部252は、変調率の基準値を設け、当該基準値と、電流指令値等から演算したPWM変調率の大小を比較する。電圧指令演算部252は、比較の結果によって、高調波重畳方式の間欠期間の開始若しくは停止、又は期間の大小を変化させる。
 このような制御を実施することで、平滑コンデンサの温度上昇抑制制御の制御パラメータが増え、制御性が向上する。なお、変調率と等価になるが、電圧指令演算部にモータ電流の基準値の基準を設定し、モータ電流の大小で間欠制御期間の変更を実施してもよい。
 図11は、第5の実施形態に係る電力変換装置100の回路図である。本実施形態は、1つの電力変換部200と制御部250からなる電力変換装置100と、1つのモータ400を有する駆動装置10を示している。なお、電力変換装置の記号は、これまでの実施例の電力変換部200と同様であり、また、これまでの実施形態と構成が同じものに関しては、説明を省略する。
 電力変換装置100は、平滑コンデンサ210の温度を検出する温度検出部256を有している。また、電圧指令演算部252は、平滑コンデンサ210の温度上限Tmaxを備えている。
 電力変換装置100は、平滑コンデンサ210の温度が上限Tmaxより小さいとき、騒音対策のため、高調波重畳方式をPWMの毎キャリア周期適用している。平滑コンデンサ210の温度が上限Tmax以上となった場合には、高調波重畳方式をこれまでの実施例で説明してきたような、間欠とする制御を実施する。また、第2の実施形態におけるケース2のように、平滑コンデンサ210の温度が上限Tmax以上となった場合には、高調波重畳方式の期間を大きくする制御を実施する。
 以上のような構成とすることで、キャリア周波数が小さなシステムにおいても、正常時には騒音の問題が発生しない。また、平滑コンデンサ温度が上限に達した時には、高調波重畳方式を間欠とする制御を実施することで、電力変換装置の信頼性を向上させる。
 さらに、第4の実施形態に示すように、高調波重畳方式を間欠とする制御の適用の開始若しくは停止、または間欠とする周期の大小を変化させるパラメータとして、モータ回転数・モータ電流・変調率などを選択し、各パラメータに基準値を設けることで、高調波重畳方式の間欠制御タイミングを変化させても、同様な効果を得ることができる。
 図12は、上述の実施形態に係る電力変換装置を電動パワーステアリング装置に適用した、第6の実施形態である。図12に示すように、駆動装置10は、車両のステアリング1の回転軸に取り付けられたギア4を介してトルクを発生させ、ステアリング1による操舵をアシストする。ここで、駆動装置10はこれまでに説明した制御技術を適用したものである。
 以上のように、本実施形態の電動パワーステアリング装置は、小型化された電力変換装置を備えることで、搭載スペースの少ない車にも適用でき、様々な車種展開を可能とする。また、本実施形態の電動パワーステアリング装置は、静音化された電力変換装置を備えることで、運転者近傍に駆動装置を備えることを実現する。また、本実施形態の電動パワーステアリング装置は、電力変換装置内にある平滑コンデンサの温度上昇を抑制されることで、信頼性の高いシステムを実現できる。
 なお、以上の実施例において、モータは3相で構成されるものとしてきたが、同一モータ筐体の中に、3相以上のモータ巻き線が構成されるシステムにおいても、本発明は同様な効果を発揮することができる。
 さらに、電力変換装置は2つの電力変換部を有していたが、複数の電力変換部を有する場合においても、ある電力変換部を基準として他の電力変換部の間欠制御を実施することで、これまでに説明してきた実施例と同等の効果を得ることができる。
  20:直流電源,100:電力変換装置,200:電力変換部,210:平滑コンデンサ,220:3相ブリッジ回路,230:電流検出器,250:制御部,252:電圧指令演算部,253:電流検出部,255:補正部,256:温度検出部,257:位置検出装置,300:電力変換部,310:平滑コンデンサ,320:3相ブリッジ回路,330:電流検出器,353:電流検出部,356:温度検出部,400:モータ

Claims (11)

  1.  直流電源から入力される直流電圧を交流電圧に変換してモータを制御する電力変換装置であって、
     前記直流電圧を平滑化する平滑コンデンサと、
     電力を変換するためのブリッジ回路を有する第1の電力変換部と、
     電力を変換するためのブリッジ回路を有し、前記第1の電力変換部と並列に接続される第2の電力変換部と、
     出力電圧ベクトル及びPWMキャリアに基づいてPWMパルスを生成する制御部と、を備え、
     前記制御部は、第1の出力電圧ベクトルに基づいて前記第1の電力変換部の出力を制御するための第1のPWMパルスを生成するとともに、第2の出力電圧ベクトルに基づいて前記第2の電力変換部の出力を制御するための第2のPWMパルスを生成し、
     前記制御部は、所定の出力電圧ベクトル値を、前記PWMキャリアの1周期内での平均値が当該所定の出力電圧ベクトル値となるような異なる2つ以上の出力電圧ベクトル値に補正をする補正部を有し、
     前記補正部は、前記PWMキャリアの複数周期の中の1周期である第1の期間において、前記第1の出力電圧ベクトル値の前記補正を行い、かつ、前記PWMキャリアの複数周期の中の1周期であって前記第1の期間とは異なる第2の期間において、前記第2の出力電圧ベクトル値の前記補正を行う電力変換装置。
  2.  請求項1に記載の電力変換装置であって、
     前記第1の電力変換部及び前記第2の電力変換部のそれぞれは、前記ブリッジ回路に流れる直流電流を検出して検出電流値を前記制御部に出力する電流検出器と、を有し、
     前記第1の電力変換部の前記電流検出器は、前記第1の期間において前記直流電流を検出し、
     前記第2の電力変換部の前記電流検出器は、前記第2の期間において前記直流電流を検出する電力変換装置。
  3.  請求項1又は2のいずれかに記載の電力変換装置であって、
     前記平滑コンデンサの温度を検出する温度検出部を備え、
     前記補正部は、前記平滑コンデンサの温度が所定の温度以上である場合に、前記第1の期間において前記第1の出力電圧ベクトル値の前記補正を行うとともに、前記第2の期間において前記第2の出力電圧ベクトル値の前記補正を行う電力変換装置。
  4.  請求項3に記載の電力変換装置であって、
     前記補正部は、前記平滑コンデンサの温度が前記所定の温度より小さいときは、前記PWMキャリアの毎周期において、前記補正を行う電力変換装置。
  5.  請求項3に記載の電力変換装置であって、
     N1を2以上の自然数とし、かつN2をN1より大きい自然数としたとき、
     前記補正部は、前記平滑コンデンサの温度が前記所定の温度より小さいときは、前記PWMキャリアのN1周期に1回の周期で前記補正を行い、
     さらに前記補正部は、前記平滑コンデンサの温度が前記所定の温度以上であるときは、前記PWMキャリアのN2周期に1回の周期で前記補正を行う電力変換装置。
  6.  請求項1ないし5のいずれか1項に記載の電力変換装置であって、
     前記モータに備えられたロータの回転数を検出する回転数検出部を備え、
     前記補正部は、前記ロータの回転数が所定の回転数以下であるときに、前記第1の期間において前記第1の出力電圧ベクトル値の前記補正を行うとともに、前記第2の期間において前記第2の出力電圧ベクトル値の前記補正を行う電力変換装置。
  7.  請求項6に記載の電力変換装置であって、
     前記補正部は、前記ロータの回転数が前記所定の回転数より大きいときは、前記PWMキャリアの毎周期において、前記補正を行う電力変換装置。
  8.  請求項6に記載の電力変換装置であって、
     N3を2以上の自然数とし、かつN4をN3より大きい自然数としたとき、
     前記補正部は、前記ロータの回転数が前記所定の回転数より大きいときは、前記PWMキャリアのN3周期に1回の周期で前記補正を行い、
     さらに前記補正部は、前記ロータの回転数が前記所定の回転数以下であるときは、前記PWMキャリアのN4周期に1回の周期で前記補正を行う電力変換装置。
  9.  請求項1ないし8のいずれか1項に記載の電力変換装置であって、
     前記補正部は、前記第1又は第2のPWMパルスの変調率が所定の変調率以下であるときに、前記第1の期間において前記第1の出力電圧ベクトル値の前記補正を行うと共に、前記第2の期間において前記第2の出力電圧ベクトル値の前記補正を行う電力変換装置。
  10.  請求項1ないし9のいずれか1項に記載の電力変換装置であって、
     前記平滑コンデンサは、前記第1の電力変換部に含まれる第1の平滑コンデンサと、前記第2の電力変換部に含まれる第2の平滑コンデンサと、を有し、
     前記第1の電力変換部は、前記第1の平滑コンデンサの温度を検出する第1の温度検出部を有し、
     前記第2の電力変換部は、前記第2の平滑コンデンサの温度を検出する第2の温度検出部を有し、
     前記補正部は、前記第1の平滑コンデンサの温度が所定の温度以上である場合に、前記第1の期間において前記第1の出力電圧ベクトル値の前記補正を行う電力変換装置。
  11.  請求項1ないし10のいずれか1項に記載の電力変換装置と、
     前記電力変換装置によって制御される前記モータと、を備えた電動パワーステアリング装置。
PCT/JP2015/076258 2014-12-15 2015-09-16 電力変換装置及びこれを用いた電動パワーステアリング装置 WO2016098410A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177015993A KR101947934B1 (ko) 2014-12-15 2015-09-16 전력 변환 장치 및 이것을 사용한 전동 파워 스티어링 장치
JP2016564707A JP6330057B2 (ja) 2014-12-15 2015-09-16 電力変換装置及びこれを用いた電動パワーステアリング装置
CN201580068241.2A CN107112941B (zh) 2014-12-15 2015-09-16 电力转换装置以及使用该电力转换装置的电力转向装置
DE112015005178.3T DE112015005178T5 (de) 2014-12-15 2015-09-16 Leistungsumsetzungsvorrichtung und elektrische Servolenkungsvorrichtung unter Verwendung derselben
US15/526,359 US10348218B2 (en) 2014-12-15 2015-09-16 Power conversion device and electric power steering device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014252589 2014-12-15
JP2014-252589 2014-12-15

Publications (1)

Publication Number Publication Date
WO2016098410A1 true WO2016098410A1 (ja) 2016-06-23

Family

ID=56126312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076258 WO2016098410A1 (ja) 2014-12-15 2015-09-16 電力変換装置及びこれを用いた電動パワーステアリング装置

Country Status (6)

Country Link
US (1) US10348218B2 (ja)
JP (1) JP6330057B2 (ja)
KR (1) KR101947934B1 (ja)
CN (1) CN107112941B (ja)
DE (1) DE112015005178T5 (ja)
WO (1) WO2016098410A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3421327A1 (en) * 2017-06-29 2019-01-02 TRW Limited Monitoring system for electric power assisted steering
WO2019187678A1 (ja) * 2018-03-28 2019-10-03 日立オートモティブシステムズ株式会社 モータ制御装置、電動車両
JP2019176566A (ja) * 2018-03-27 2019-10-10 東芝三菱電機産業システム株式会社 電力変換装置
EP3675352A4 (en) * 2017-08-21 2020-09-23 Mitsubishi Electric Corporation POWER CONVERSION DEVICE AND ELECTRIC ASSISTED STEERING DEVICE
JP2022044290A (ja) * 2020-09-07 2022-03-17 ミネベアミツミ株式会社 モータ制御装置、モータシステム及びモータ制御方法
WO2022085351A1 (ja) * 2020-10-21 2022-04-28 日立Astemo株式会社 モータ制御装置、機電一体ユニット、ハイブリッドシステム、および電動パワーステアリングシステム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776951B2 (ja) * 2017-03-06 2020-10-28 株式会社デンソー 回転電機制御装置、および、これを用いた電動パワーステアリング装置
JP6887353B2 (ja) * 2017-09-14 2021-06-16 株式会社日立製作所 電力変換装置、並びに電力変換装置の調整方法
JP7243735B2 (ja) * 2018-11-01 2023-03-22 株式会社安川電機 電力変換装置、電力変換システム及び電力変換方法
CN111409470B (zh) * 2020-04-08 2022-02-01 北京罗克维尔斯科技有限公司 Igbt载波频率的控制方法、装置及电动汽车
JP7130024B2 (ja) * 2020-11-12 2022-09-02 三菱電機株式会社 電力変換装置
US11539283B1 (en) * 2021-06-04 2022-12-27 Rockwell Automation Technologies, Inc. System and method for reducing delay in the modulation of a multi-phase output voltage from an inverter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327173A (ja) * 2000-05-17 2001-11-22 Nissan Motor Co Ltd モータ制御用pwmインバータ
JP2005269769A (ja) * 2004-03-18 2005-09-29 Fuji Electric Fa Components & Systems Co Ltd 三相インバータ装置
JP2012178927A (ja) * 2011-02-25 2012-09-13 Sanyo Electric Co Ltd インバータ制御装置
JP2013162536A (ja) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp 電力変換装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2746982B1 (fr) 1996-03-28 1998-05-07 Schneider Electric Sa Convertisseur de frequence pour moteur alternatif
JP5440120B2 (ja) * 2009-05-27 2014-03-12 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
JP5012953B2 (ja) 2010-05-21 2012-08-29 株式会社デンソー 駆動装置
JP5492826B2 (ja) * 2011-06-16 2014-05-14 日立アプライアンス株式会社 交流モータの制御装置、および、これを用いた冷凍空調装置
JP5920300B2 (ja) * 2013-09-18 2016-05-18 株式会社デンソー 電力変換装置、および、これを用いた電動パワーステアリング装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001327173A (ja) * 2000-05-17 2001-11-22 Nissan Motor Co Ltd モータ制御用pwmインバータ
JP2005269769A (ja) * 2004-03-18 2005-09-29 Fuji Electric Fa Components & Systems Co Ltd 三相インバータ装置
JP2012178927A (ja) * 2011-02-25 2012-09-13 Sanyo Electric Co Ltd インバータ制御装置
JP2013162536A (ja) * 2012-02-01 2013-08-19 Mitsubishi Electric Corp 電力変換装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109204445A (zh) * 2017-06-29 2019-01-15 Trw有限公司 用于电动助力转向的监测系统
CN109204445B (zh) * 2017-06-29 2022-05-24 Trw有限公司 用于电动助力转向的监测系统
EP3421327A1 (en) * 2017-06-29 2019-01-02 TRW Limited Monitoring system for electric power assisted steering
US10569800B2 (en) 2017-06-29 2020-02-25 Trw Limited Monitoring system for electric power assisted steering
EP3675352A4 (en) * 2017-08-21 2020-09-23 Mitsubishi Electric Corporation POWER CONVERSION DEVICE AND ELECTRIC ASSISTED STEERING DEVICE
JP2019176566A (ja) * 2018-03-27 2019-10-10 東芝三菱電機産業システム株式会社 電力変換装置
JP2019176609A (ja) * 2018-03-28 2019-10-10 日立オートモティブシステムズ株式会社 モータ制御装置、電動車両
JP7053335B2 (ja) 2018-03-28 2022-04-12 日立Astemo株式会社 モータ制御装置、電動車両
WO2019187678A1 (ja) * 2018-03-28 2019-10-03 日立オートモティブシステムズ株式会社 モータ制御装置、電動車両
US11502632B2 (en) 2018-03-28 2022-11-15 Hitachi Astemo, Ltd. Motor control device and electric vehicle
JP2022044290A (ja) * 2020-09-07 2022-03-17 ミネベアミツミ株式会社 モータ制御装置、モータシステム及びモータ制御方法
WO2022085351A1 (ja) * 2020-10-21 2022-04-28 日立Astemo株式会社 モータ制御装置、機電一体ユニット、ハイブリッドシステム、および電動パワーステアリングシステム
JPWO2022085351A1 (ja) * 2020-10-21 2022-04-28
JP7431346B2 (ja) 2020-10-21 2024-02-14 日立Astemo株式会社 モータ制御装置、機電一体ユニット、ハイブリッドシステム、および電動パワーステアリングシステム
US12301148B2 (en) 2020-10-21 2025-05-13 Hitachi Astemo, Ltd. Motor control device, electro-mechanical integrated unit, hybrid system, and electric power steering system

Also Published As

Publication number Publication date
US10348218B2 (en) 2019-07-09
JP6330057B2 (ja) 2018-05-23
KR20170084227A (ko) 2017-07-19
CN107112941B (zh) 2019-07-23
DE112015005178T5 (de) 2017-08-24
CN107112941A (zh) 2017-08-29
JPWO2016098410A1 (ja) 2017-05-18
KR101947934B1 (ko) 2019-02-13
US20170331395A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
WO2016098410A1 (ja) 電力変換装置及びこれを用いた電動パワーステアリング装置
CN108352802B (zh) 电力变换装置以及电动动力转向装置
US10404201B2 (en) Rotary electric machine controller and electric power steering device using the same
CN103661575B (zh) 电动动力转向装置和电动动力转向装置的控制装置
US11218107B2 (en) Control device for power converter
JP2015208143A (ja) 電動機駆動装置
JP6398821B2 (ja) 回転電機の制御装置
JP4650518B2 (ja) モータ制御装置
JP6399239B2 (ja) 電力変換装置
WO2014024460A1 (ja) モータ制御装置
WO2018029888A1 (ja) モータ制御装置
JP6822205B2 (ja) 制御装置およびこれを用いた電動パワーステアリング装置
JP2012222847A (ja) 電力変換システム
JP6802126B2 (ja) インバータ制御装置
JP2009232604A (ja) 回転電機制御システム
WO2017010274A1 (ja) 電力変換装置およびそれを搭載した電動パワーステアリング装置
JP4842179B2 (ja) 電力変換装置及びその制御方法
JP5473071B2 (ja) 負荷制御装置
CN111987974B (zh) 旋转电机控制装置
JP2017103840A (ja) インバータ装置
WO2019155844A1 (ja) モータ制御装置
JP5389686B2 (ja) 電源装置
JP6729250B2 (ja) 電力変換器の制御装置
JP6477397B2 (ja) 電力制御方法、及び、電力制御装置
WO2024225067A1 (ja) モータ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869618

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564707

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15526359

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005178

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20177015993

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15869618

Country of ref document: EP

Kind code of ref document: A1