[go: up one dir, main page]

WO2016092635A1 - 空気制御システム - Google Patents

空気制御システム Download PDF

Info

Publication number
WO2016092635A1
WO2016092635A1 PCT/JP2014/082585 JP2014082585W WO2016092635A1 WO 2016092635 A1 WO2016092635 A1 WO 2016092635A1 JP 2014082585 W JP2014082585 W JP 2014082585W WO 2016092635 A1 WO2016092635 A1 WO 2016092635A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
temperature
air
control device
dampers
Prior art date
Application number
PCT/JP2014/082585
Other languages
English (en)
French (fr)
Inventor
健太郎 橋本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016563327A priority Critical patent/JP6415596B2/ja
Priority to PCT/JP2014/082585 priority patent/WO2016092635A1/ja
Publication of WO2016092635A1 publication Critical patent/WO2016092635A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs

Definitions

  • the present invention relates to an air control system in which an air conditioner and each room are connected by a duct, and the air conditioner controls air conditioning in each room.
  • Patent Document 1 discloses a technique for providing a human sensor for each room and performing optimum air conditioning control for each room in the air control system.
  • the operation mode is switched for each room depending on the presence or absence of a person. Therefore, there is a problem that even if the room size and the number of people in the room are different, the same operation mode is set in each room, and there is a concern that control suitable for the state of each room is not performed.
  • the present invention has been made in view of the above, and in an arrangement in which an air conditioner supplies air to each room via a duct, an air control system capable of air conditioning control in accordance with the state of each room is obtained. With the goal.
  • an air control system includes a duct for blowing air exchanged by an air conditioner to each room, and a damper for controlling the amount of air between the rooms.
  • a controller that accepts input of information on the number of dampers connected by user operation in each room, a temperature sensor that measures the room temperature in each room, a human sensor that measures the number of people in each room, the room temperature and And a control device for controlling the opening and closing of the damper for each room using the information on the number of people in the room.
  • the air control system according to the present invention has an effect that air conditioning can be controlled according to the state of each room in a configuration in which the air conditioner supplies air to each room via a duct.
  • Density weight table showing the relationship between room size, number of people in the room and density weight
  • FIG. 1 is a diagram illustrating a configuration example when an air control system according to an embodiment of the present invention is applied to a house.
  • FIG. 2 is a block diagram illustrating a configuration example of the air control system.
  • the air heat-exchanged by the air conditioner 1 passes through the duct 2 and is supplied to the room 5 and the room 6.
  • a damper 3 is installed in each room, and the air supply can be shut off by closing the damper 3 in a room where the air supply from the air conditioner 1 is unnecessary.
  • one duct 2 is connected to the room 5 via the damper 3, and two ducts 2 are connected to the room 6 via the damper 3.
  • the room size indicating the number of rooms, ducts 2 and dampers 3, and the size of the room is an example, and the present invention is not limited to this.
  • the controller 4 installed in each room allows the user to set and change the room size, the number of dampers 3 equal to the number of ducts 2 connected to the room, and the set temperature for the air conditioner 1. Can do.
  • the controller 4 includes a temperature sensor 8 and a human sensor 9, and transmits information on the temperature sensor 8 and human sensor 9 to the control device 10 in addition to information on the room size, the number of dampers 3, and the set temperature. . If the controller 4 is a type installed on the wall of each room, it communicates with the control device 10 by wire or wirelessly, and if it is a movable remote control type, it communicates with the control device 10 wirelessly.
  • the temperature sensor 8 measures the room temperature of the room where the controller 4 is located.
  • the human sensor 9 measures the number of people in the room with the controller 4.
  • the human sensor 9 can grasp not only the presence / absence of the person 7 but also the number of persons.
  • the controller 4 is configured to include the temperature sensor 8 and the human sensor 9.
  • the controller 4 is an example, and the temperature sensor 8 and the human sensor 9 originally have a function independent of the controller 4.
  • the controller 4 may be independent of the configuration.
  • the temperature sensor 8 transmits information on the measured room temperature to the control device 10 by wire or wirelessly.
  • the human sensor 9 transmits information on the measured number of people in the room to the control device 10 in a wired or wireless manner.
  • the control device 10 is measured by the transmission / reception unit 11 that communicates with the air conditioner 1, the controller 4, and the damper 3 by wired or wireless communication, the information set by the controller 4, the temperature sensor 8, and the human sensor 9. And a control unit 12 that controls the opening and closing of the damper 3 in each room, and a storage unit 13 that stores various tables to be described later.
  • the control unit 12 opens and closes the damper 3 in each room based on information acquired by the transmission / reception unit 11 and information set by the controller 4 and information measured by the temperature sensor 8 and the human sensor 9.
  • Control Specifically, the control unit 12 of the control device 10 calculates and weights each room based on the room size, the number of people in the room, the set temperature, and the room temperature, and weights each room.
  • the numerical aperture of 3 is determined and the opening and closing of the damper 3 is controlled.
  • the weight indicates the degree of priority for the air conditioning control, and the larger the value, the higher the priority.
  • the control unit 12 of the control device 10 performs temperature weighting and density weighting for each room, performs room weighting from the temperature and density weights, and determines the numerical aperture of the damper 3 based on the weight of each room.
  • the temperature weight is obtained from the state of the room temperature with respect to the set temperature, and is a value that changes according to a change in the room temperature.
  • the density weight is obtained from the density of the number of people in the room, and the priority for the density is changed during cooling and heating.
  • the room weight relatively indicates the priority of air conditioning control of each room, which is obtained from the temperature weight and the density weight.
  • FIG. 3 is a diagram showing parameters of the state of each room.
  • the number of ducts to be connected that is, the number of dampers is “1”
  • the room size is “40 m 3 ”
  • the number of people in the room is “1 person”
  • the temperature difference between the set temperature and the room temperature is “5 ° C.”
  • the room 6 indicates that the number of connected ducts, that is, the number of dampers is “2”, the room size is “80 m 3 ”, the number of people in the room is “2 people”, and the temperature difference is “1 ° C.”.
  • FIG. 4 is a flowchart showing the room weighting operation in the control device 10.
  • the control part 12 of the control apparatus 10 performs temperature weighting (step S11).
  • FIG. 5 is a flowchart showing the temperature weighting operation in the control unit 12.
  • the control unit 12 acquires the set temperature information set by the controller 4 and the room temperature information measured by the temperature sensor 8 from the controller 4 in each room via the transmission / reception unit 11 (step S21).
  • the controller 12 calculates a temperature difference between the set temperature and the room temperature for each room (step S22).
  • the control unit 12 determines a temperature weight for each room based on the calculated temperature difference (step S23).
  • FIG. 6 is a diagram showing a temperature weight table showing the relationship between the temperature difference and the temperature weight.
  • the control unit 12 refers to the temperature weight table shown in FIG. 6 and determines the temperature weight from the calculated temperature difference.
  • the temperature weight table is held in the storage unit 13 of the control device 10.
  • the value of the temperature weight table shown in FIG. 6 is an example, and is not limited to this. Since the priority of air conditioning control increases as the temperature difference increases, the temperature weight table other than that shown in FIG. 6 is used if the temperature weight increases as the temperature difference increases. Also good.
  • the temperature difference for the room 5 is 5 ° C., so the temperature weight is determined as “20” with reference to the temperature weight table in FIG. Since the temperature difference is 1 ° C., the temperature weight is determined as “2” with reference to the temperature weight table of FIG.
  • FIG. 7 is a flowchart showing the density weighting operation in the control device 10.
  • the control unit 12 obtains information on the room size of the room set by the controller 4 (step S31) and information on the number of people in the room measured by the motion sensor 9 (step S32) from the controller 4 of each room. Obtained via the transceiver 11.
  • the control unit 12 determines a density weight for each room based on information on the room size and the number of people in the room (step S33).
  • FIG. 8 is a diagram showing a density weight table showing the relationship between the room size, the number of people in the room, and the density weight.
  • the control unit 12 refers to the density weight table shown in FIG. 8 and determines the density weight from the room size and the number of people in the room.
  • the density weight table is held in the storage unit 13 of the control device 10.
  • the value of the density weight table shown in FIG. 8 is an example, and is not limited to this.
  • a density weight table (not shown) in which the density weight is smaller as the population density is higher is used.
  • the room size is 40 m 3 and the number of people in the room is 1 for the room 5, so the density weight “3” is determined with reference to the density weight table in FIG. Since the room size is 80 m 3 and the number of people in the room is two, the density weight “10” is determined with reference to the density weight table in FIG.
  • control device 10 calculates the room weight (step S13).
  • the control device 10 calculates the room weight by multiplying the temperature weight and the density weight for each room.
  • the control device 10 calculates the number of dampers 3 opened in each room according to the calculated room weight ratio of each room based on the following equation (1).
  • the total number of dampers is the total number of dampers 3 connected to each room.
  • the control device 10 rounds up after the decimal point, and if the calculated number of dampers 3 that are opened is larger than the number of dampers provided in the room, the number of dampers provided in the room is used. However, when the total number of room weights is 0, the number of dampers opened is fixed to 0.
  • control device 10 controls the opening / closing of the damper by determining the number of dampers opened for each room based on the information on the room size, the number of people in the room, the set temperature, and the room temperature.
  • the efficiency of air conditioning control can be improved by performing the above-mentioned control at regular intervals, when changing the number of people in the room, changing the room size, changing the set temperature, or changing the room temperature, Damper control considering comfort and energy saving is possible.
  • the air control system may be configured to set a time zone during which the above control is not performed from the controller 4.
  • the control device 10 can save energy by sending an operation stop command to the air conditioner 1 and stopping the air conditioning operation.
  • the control device 10 instructs the air conditioner 1 to resume operation when the number of people in the room changes.
  • the air conditioning operation can be resumed.
  • FIG. 9 is a diagram illustrating a hardware configuration of the control device 10.
  • the control unit 12 is realized by the processor 22 executing a program stored in the memory 23.
  • the storage unit 13 is realized by the memory 23.
  • the transmission / reception unit 11 is realized by the communication unit 21.
  • the communication unit 21, the processor 22, and the memory 23 are connected by a system bus 24.
  • a plurality of processors 22 and a plurality of memories 23 may cooperate to execute the functions of the components shown in the block diagram of FIG. 2.
  • the control device 10 can be realized by the hardware configuration shown in FIG. 9, but can be implemented by either software or hardware.
  • the controller 10 receives the set temperature, the room size, the number of dampers, and the room temperature measured by the temperature sensor 8 by the controller 4 in the controller 4.
  • the room weighting is performed using the information on the number of indoors measured by the human sensor 9, the number of dampers opened in each room is calculated from the room weight, and the opening / closing of the damper 3 is controlled.
  • the opening / closing of the damper 3 is controlled by obtaining the numerical aperture of the damper 3 in accordance with the state of each room, such as the temperature condition of each room, the number of people in the room, etc.
  • the air-conditioning control for comfort can be performed, and the control in consideration of comfort and energy saving can be performed.
  • the density weight is the number of people in the room.
  • the density weight is determined by “0” when the person is absent and only the size of the room when the person is present.
  • the density weight table shown in FIG. 8 for example, information on the density weight according to each room size when the number of people in the room is “0” and “1” is used.
  • the density weight is determined only by the size of the room.
  • the density weight table shown in FIG. 8 for example, information on the density weight according to each room size when the number of people in the room is “1” is used.
  • the density weight is “1”.
  • the temperature weight is “1”.
  • the room weight of the room 5 is density weight “1” ⁇ temperature weight “1”. It is assumed that the room weight of the room 6 is “2” with density weight “2” ⁇ temperature weight “1”.
  • control device 10 weights each room using only the information that can be acquired, that is, using at least one piece of information among the set temperature, the room size, the room temperature, and the number of people in the room.
  • the number of dampers opened in each room may be determined, and the opening / closing of the dampers 3 may be controlled.
  • the control device 10 may control the opening / closing of the damper 3 using only the room temperature measured by the temperature sensor 8 and the information on the number of people in the room measured by the human sensor 9.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 空気調和機1で熱交換された空気を各部屋に送風するダクト2と部屋間の空気量を制御するダンパ3と、各部屋においてユーザー操作により接続するダンパ数の情報の入力を受け付けるコントローラ4と、各部屋において室内温度を計測する温度センサー8と、各部屋において在室人数を計測する人感センサー9と、室内温度および在室人数の情報を用いて、各部屋についてダンパ3の開閉を制御する制御装置10と、を備える。

Description

空気制御システム
 本発明は、空気調和機と各部屋とをダクトで接続し、空気調和機が各部屋の空調を制御する空気制御システムに関する。
 従来、熱交換器を有する1つの空気調和機を用いて、住宅全体の空調を制御する空気制御システムがある。このような空気制御システムでは、空気調和機と各部屋とをダクトにより接続し、空気調和機で生成された空気をダクト経由で各部屋へ供給し、供給不要な部屋についてはダンパの閉口により遮断する。1つの空気調和機と各部屋とがダクトで繋がっている空気制御システムにおいても、部屋ごとの快適性を向上するための制御は不可欠である。このため、下記特許文献1では、空気制御システムにおいて、部屋ごとに人感センサーを設け、部屋ごとに最適な空調制御を行う技術が開示されている。
特開2010-139129号公報
 しかしながら、上記従来の技術によれば、各部屋について、人の在、不在により運転モードを切り替えている。そのため、部屋サイズ、在室人数が異なっていても各部屋で同じ運転モードになり、各部屋の状態に適した制御が行われないことが懸念される、という問題があった。
 本発明は、上記に鑑みてなされたものであって、空気調和機が各部屋にダクト経由で空気を供給する構成において、各部屋の状態にあわせて空調制御が可能な空気制御システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る空気制御システムは、空気調和機で熱交換された空気を各部屋に送風するダクトと部屋間の空気量を制御するダンパと、各部屋においてユーザー操作により接続するダンパ数の情報の入力を受け付けるコントローラと、各部屋において室内温度を計測する温度センサーと、各部屋において在室人数を計測する人感センサーと、前記室内温度および前記在室人数の情報を用いて、各部屋について前記ダンパの開閉を制御する制御装置と、を備えることを特徴とする。
 本発明に係る空気制御システムは、空気調和機が各部屋にダクト経由で空気を供給する構成において、各部屋の状態にあわせて空調制御ができる、という効果を奏する。
空気制御システムを住宅に適用した場合の構成例を示す図 空気制御システムの構成例を示すブロック図 各部屋の状態のパラメータを示す図 制御装置における部屋重み付け動作を示すフローチャート 制御装置における温度重み付け動作を示すフローチャート 温度差と温度重みの関係を表した温度重みテーブルを示す図 制御装置における密度重み付け動作を示すフローチャート 部屋サイズと在室人数と密度重みの関係を表した密度重みテーブル 制御装置のハードウェア構成を示す図
 以下に、本発明の実施の形態に係る空気制御システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態.
 図1は、本発明の実施の形態に係る空気制御システムを住宅に適用した場合の構成例を示す図である。また、図2は、空気制御システムの構成例を示すブロック図である。空気制御システムでは、図1に示すように、空気調和機1によって熱交換された空気はダクト2を通り、部屋5および部屋6に供給される。空気制御システムにおいて、各部屋にはダンパ3が設置されており、空気調和機1からの空気の供給が不要な部屋にはダンパ3を閉口することで空気の供給を遮断することができる。ここでは、部屋5には1つのダクト2がダンパ3経由で接続しており、部屋6には2つのダクト2が各々ダンパ3経由で接続している。なお、図1,2に示す空気制御システムにおいて、部屋、ダクト2、ダンパ3の数、部屋の大きさを表す部屋サイズは一例であって、これに限定するものではない。
 部屋ごとに設置されたコントローラ4によって、ユーザーは、空気調和機1に対して部屋サイズ、部屋に接続するダクト2の数と同数のダンパ3の数、および設定温度を設定し、また変更することができる。コントローラ4は、温度センサー8および人感センサー9を備えており、部屋サイズ、ダンパ3の数および設定温度の情報に加えて、温度センサー8および人感センサー9の情報を制御装置10へ送信する。コントローラ4は、各部屋の壁に設置されたタイプであれば制御装置10と有線または無線で通信を行い、移動可能なリモコンタイプであれば、制御装置10と無線で通信を行う。
 温度センサー8は、コントローラ4のある部屋の室内温度を計測する。人感センサー9は、コントローラ4のある部屋の在室人数を計測する。人感センサー9は、人7の在、不在だけではなく、人数を把握することができる。なお、ここでは、コントローラ4が温度センサー8および人感センサー9を備える構成であるが、一例であり、温度センサー8および人感センサー9は、本来コントローラ4とは独立した機能を有する構成のため、コントローラ4とは独立した構成にしてもよい。独立した構成の場合、温度センサー8は、計測した室内温度の情報を制御装置10へ有線または無線で送信する。また、人感センサー9は、計測した在室人数の情報を制御装置10へ有線または無線で送信する。
 制御装置10は、空気調和機1、コントローラ4、ダンパ3と有線または無線で接続して通信を行う送受信部11と、コントローラ4で設定された情報、温度センサー8および人感センサー9で計測された情報に基づいて、各部屋におけるダンパ3の開閉を制御する制御部12と、後述する各種テーブルを記憶する記憶部13と、を備える。
 制御装置10では、制御部12が、送受信部11において取得した、コントローラ4で設定された情報、温度センサー8および人感センサー9で計測された情報に基づいて、各部屋におけるダンパ3の開閉を制御する。具体的に、制御装置10の制御部12は、各部屋の部屋サイズ、在室人数、設定温度および室内温度に基づいて、各部屋についての重みを算出して重み付けを行って、各部屋についてダンパ3の開口数を決定してダンパ3の開閉を制御する。重みとは、空調制御に対する優先度合いを示し、大きな値ほど優先度が高いこととする。制御装置10の制御部12は、各部屋について温度重み付けおよび密度重み付けを行い、温度および密度の重みから部屋重み付けを行って、各部屋の重みによってダンパ3の開口数を決定する。
 温度重みとは、設定温度に対する室内温度の状態から求めるものであり、室内温度の変化によって変化する値である。密度重みとは、部屋に在室している人数の密度から求めるものであり、冷房時と暖房時で密度に対する優先度を変える。部屋重みとは、温度重みおよび密度重みから求められる、各部屋の空調制御の優先度を相対的に示すものである。
 つづいて、制御装置10において重み付けを行う動作について説明する。ここでは、一例として、部屋5および部屋6の状態が図3に示す場合を想定して説明する。図3は、各部屋の状態のパラメータを示す図である。部屋5は、接続するダクト数すなわちダンパ数が「1」、部屋サイズが「40m3」、在室人数が「1人」、設定温度と室内温度との温度差が「5℃」であり、部屋6は、接続するダクト数すなわちダンパ数が「2」、部屋サイズが「80m3」、在室人数が「2人」、温度差が「1℃」であることを示す。
 図4は、制御装置10における部屋重み付け動作を示すフローチャートである。まず、制御装置10の制御部12は、温度重み付けを行う(ステップS11)。図5は、制御部12における温度重み付け動作を示すフローチャートである。制御部12は、各部屋のコントローラ4から、コントローラ4で設定された設定温度の情報および温度センサー8で計測された室内温度の情報を送受信部11経由で取得する(ステップS21)。制御部12は、各部屋について、設定温度と室内温度との温度差を算出する(ステップS22)。制御部12は、各部屋について、算出した温度差に基づいて温度重みを決定する(ステップS23)。
 図6は、温度差と温度重みの関係を表した温度重みテーブルを示す図である。制御部12は、図6に示す温度重みテーブルを参照し、算出した温度差から温度重みを決定する。温度重みテーブルについては、制御装置10の記憶部13で保持している。なお、図6に示す温度重みテーブルの値は一例であり、これに限定するものではない。温度差が離れていれば離れているほど空調制御の優先度が高くなるため、温度差が離れているほど温度重みが大きな値となるものであれば、図6以外の温度重みテーブルを用いてもよい。
 制御部12では、図3に示すパラメータを用いると、部屋5について、温度差は5℃のため、図6の温度重みテーブルを参照して温度重みを「20」と決定し、部屋6について、温度差は1℃のため、図6の温度重みテーブルを参照して温度重みを「2」と決定する。
 図4に戻って、制御部12は、密度重み付けを行う(ステップS12)。図7は、制御装置10における密度重み付け動作を示すフローチャートである。制御部12は、各部屋のコントローラ4から、コントローラ4で設定された部屋の部屋サイズの情報(ステップS31)、および人感センサー9で計測された部屋の在室人数の情報(ステップS32)を送受信部11経由で取得する。制御部12は、各部屋について、部屋サイズおよび在室人数の情報に基づいて密度重みを決定する(ステップS33)。
 図8は、部屋サイズと在室人数と密度重みの関係を表した密度重みテーブルを示す図である。制御部12は、図8に示す密度重みテーブルを参照し、部屋サイズおよび在室人数から密度重みを決定する。密度重みテーブルについては、制御装置10の記憶部13で保持している。なお、図8に示す密度重みテーブルの値は一例であり、これに限定するものではない。冷房時は、人口密度が高ければ高いほど冷え辛くなるため、人口密度が高いほど密度重みが大きな値となるものであれば、図8以外の密度重みテーブルを用いてもよい。一方、暖房時は、人口密度が高ければ高いほど温まり易くなるため、図8とは異なり、人口密度が高いほど密度重みが小さな値となる図示しない密度重みテーブルを用いることとする。
 制御装置10では、図3に示すパラメータを用いると、部屋5について、部屋サイズは40m3で在室人数が1人のため、図8の密度重みテーブルを参照して密度重み「3」と決定し、部屋6について、部屋サイズは80m3で在室人数が2人のため、図8の密度重みテーブルを参照して密度重み「10」と決定する。
 図4に戻って、制御装置10は部屋重みを算出する(ステップS13)。制御装置10は、各部屋について、温度重みと密度重みを乗算して部屋重みを算出する。
 制御装置10では、図3に示すパラメータを用いると、部屋5の温度重みは「20」で密度重みは「3」のため、部屋5の部屋重みは「20×3=60」と算出し、部屋6の温度重みは「2」で密度重みは「10」のため、部屋6の部屋重みは「2×10=20」と算出する。この結果、部屋6に比べ、部屋5の空気制御の優先度が高いこととなる。
 制御装置10は、以下に示す式(1)に基づいて、算出した各部屋の部屋重みの比率に従って各部屋で開口するダンパ3の数を算出する。ダンパ総数とは、各部屋に接続されているダンパ3の数の合計である。ここでは、部屋5のダンパ数は「1」、部屋6のダンパ数は「2」のため、ダンパ総数は「3」となる。なお、制御装置10は、小数点以下は切り上げることとし、算出された開口するダンパ3の数が部屋に備わっているダンパ数よりも大きい場合は部屋に備わっているダンパ数とする。ただし、部屋重みの総数が0の場合は、開口するダンパ数は固定で0とする。
  各部屋で開口するダンパ数
  =(各部屋の部屋重み/部屋重みの総数)×ダンパ総数 …(1)
 図3に示すパラメータを用いた場合、部屋5の部屋重みは「60」、部屋6の部屋重みは「20」のため、部屋重みの総数は「60+20=80」となる。これにより、制御装置10は、部屋5で開口するダンパ数は「(60/80)×3=2.25」を切り上げるので3だが、部屋5に備わっているダンパ数は1であるので「1」とする。また、制御装置10は、部屋6で開口するダンパ数は「(20/80)×3=0.75」を切り上げるので「1」とする。
 このように、制御装置10では、各部屋の部屋サイズ、在室人数、設定温度および室内温度の情報に基づいて、各部屋について開口するダンパ数を決定してダンパの開閉を制御する。
 制御装置10では、上述の制御を一定時間ごと、在室人数の変更時、部屋サイズの変更時、設定温度の変更時、または室内温度の変化時に行うことで、空調制御の効率も向上でき、快適性及び省エネ性を考慮したダンパ制御ができる。
 ただし、夜中など、人の在、不在を検知できない時間帯も存在するため、空気制御システムでは、上述の制御を行わない時間帯をコントローラ4から設定できるようにしてもよい。
 制御装置10は、全てのダクト2のダンパ3が閉じた場合、空気調和機1に対して、運転停止の命令を送り、空調運転を止めることで、省エネを図ることができる。
 制御装置10は、在室人数が0になって全てのダクト2のダンパ3が閉じることで空気調和機1が停止した場合、在室人数の変化時に空気調和機1に対して運転再開の命令を送り、空調運転を再開することができる。
 ここで、図2に示す制御装置10のブロック図の各構成を実現するハードウェア構成について説明する。図9は、制御装置10のハードウェア構成を示す図である。制御部12は、プロセッサ22がメモリ23に記憶されたプログラムを実行することにより実現される。記憶部13は、メモリ23により実現される。送受信部11は、通信部21により実現される。通信部21、プロセッサ22およびメモリ23は、システムバス24により接続されている。制御装置10では、複数のプロセッサ22および複数のメモリ23が連携して図2のブロック図に示す各構成の機能を実行してもよい。制御装置10については、図9に示すハードウェア構成により実現することができるが、ソフトウェアまたはハードウェアのいずれでも実装可能である。
 以上説明したように、本実施の形態によれば、空気制御システムでは、制御装置10において、コントローラ4でユーザー操作により受け付けた設定温度、部屋サイズ、ダンパ数、温度センサー8で計測された室内温度、人感センサー9で計測された室内人数、の情報を用いて部屋の重み付けを行い、部屋重みから各部屋で開口するダンパ数を算出し、ダンパ3の開閉を制御することとした。これにより、空気制御システムでは、各部屋の温度の状況、在室人数など、各部屋の状態にあわせてダンパ3の開口数を求めてダンパ3の開閉を制御することで、より早く部屋の温度を快適にするための空調制御を行うことができ、快適性および省エネ性を考慮した制御が可能となる。
 なお、空気制御システムにおいて、コントローラ4に部屋サイズを入力できないシステムの場合、密度重みは在室人数とする。
 また、人感センサー9が在室人数ではなく、在、不在のみしか検出できない場合、密度重みは、不在時は「0」、在室時は部屋の大きさのみで決定する。この場合、図8に示す密度重みテーブルのうち、例えば、在室人数が「0」と「1」のときの各部屋サイズによる密度重みの情報を用いることとする。また、人感センサー9が存在しない場合、密度重みは部屋の大きさのみで決定する。この場合、図8に示す密度重みテーブルのうち、例えば、在室人数が「1」のときの各部屋サイズによる密度重みの情報を用いることとする。
 また、コントローラ4に部屋サイズを入力できず、かつ、人感センサー9が存在しないシステムの場合、密度重みは「1」とする。
 また、温度センサー8が存在しない場合、温度重みは「1」とする。
 例えば、図1に示す構成において、コントローラ4で部屋サイズを入力できず、温度センサー8が存在しない場合、制御装置10では、部屋5の部屋重みは密度重み「1」×温度重み「1」で「1」とし、部屋6の部屋重みは密度重み「2」×温度重み「1」で「2」とする。制御装置10は、上記式(1)により、部屋5の開口するダンパ数は「(1/3)×3=1」とする。また、制御装置10は、部屋6の開口するダンパ数は「(2/3)×3=2」とする。
 このように、制御装置10は、取得できる情報のみを用いて、すなわち、設定温度、部屋サイズ、室内温度、在室人数の情報のうち少なくとも1つ以上の情報を用いて各部屋の重み付けを行って、各部屋で開口するダンパ数を決定し、ダンパ3の開閉を制御してもよい。
 制御装置10では、温度センサー8で計測された室内温度、人感センサー9で計測された在室人数の情報のみを用いて、ダンパ3の開閉を制御してもよい。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 空気調和機、2 ダクト、3 ダンパ、4 コントローラ、5,6 部屋、7 人、8 温度センサー、9 人感センサー、10 制御装置、11 送受信部、12 制御部、13 記憶部、21 通信部、22 プロセッサ、23 メモリ、24 システムバス。

Claims (5)

  1.  空気調和機で熱交換された空気を各部屋に送風するダクトと部屋間の空気量を制御するダンパと、
     各部屋においてユーザー操作により接続するダンパ数の情報の入力を受け付けるコントローラと、
     各部屋において室内温度を計測する温度センサーと、
     各部屋において在室人数を計測する人感センサーと、
     前記室内温度および前記在室人数の情報を用いて、各部屋について前記ダンパの開閉を制御する制御装置と、
     を備えることを特徴とする空気制御システム。
  2.  前記コントローラは、ユーザー操作により設定温度および部屋サイズの情報の入力を受け付け、
     前記制御装置は、各部屋のコントローラで受け付けられた設定温度および部屋サイズ、各部屋の温度センサーで計測された室内温度、各部屋の人感センサーで計測された在室人数の情報に基づいて各部屋の重み付けを行って各部屋で開口するダンパ数を決定し、前記ダンパの開閉を制御する、
     ことを特徴とする請求項1に記載の空気制御システム。
  3.  前記コントローラは、前記温度センサーおよび前記人感センサーを備え、ユーザー操作により入力を受け付けた情報、前記温度センサーおよび前記人感センサーで計測された情報を前記制御装置へ送信する、
     ことを特徴とする請求項2に記載の空気制御システム。
  4.  空気調和機で熱交換された空気を各部屋に送風するダクトと部屋間の空気量を制御するダンパと、
     各部屋においてユーザー操作により受け付けられた設定温度および部屋サイズの情報、各部屋において計測された室内温度の情報、各部屋において計測された在室人数の情報、のうち1つ以上の情報を用いて、各部屋について前記ダンパの開閉を制御する制御装置と、
     を備えることを特徴とする空気制御システム。
  5.  前記制御装置は、前記設定温度、前記部屋サイズ、前記室内温度、前記在室人数の情報、のうち1つ以上の情報に基づいて各部屋の重み付けを行って各部屋で開口するダンパ数を決定し、前記ダンパの開閉を制御する、
     ことを特徴とする請求項4に記載の空気制御システム。
PCT/JP2014/082585 2014-12-09 2014-12-09 空気制御システム WO2016092635A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016563327A JP6415596B2 (ja) 2014-12-09 2014-12-09 空気制御システム
PCT/JP2014/082585 WO2016092635A1 (ja) 2014-12-09 2014-12-09 空気制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082585 WO2016092635A1 (ja) 2014-12-09 2014-12-09 空気制御システム

Publications (1)

Publication Number Publication Date
WO2016092635A1 true WO2016092635A1 (ja) 2016-06-16

Family

ID=56106887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082585 WO2016092635A1 (ja) 2014-12-09 2014-12-09 空気制御システム

Country Status (2)

Country Link
JP (1) JP6415596B2 (ja)
WO (1) WO2016092635A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631420A (zh) * 2017-10-27 2018-01-26 深圳达实智能股份有限公司 基于iBeacon 技术的医院空调末端变风量系统节能方法及装置
JP2019529857A (ja) * 2016-09-23 2019-10-17 ダイキン工業株式会社 空調給湯システム
WO2020095406A1 (ja) * 2018-11-08 2020-05-14 三菱電機株式会社 空気調和機
JP2020106195A (ja) * 2018-12-27 2020-07-09 三菱電機株式会社 制御装置、空調機、空調システム、空調機制御方法及びプログラム
CN114322271A (zh) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 用于空调的控制方法及装置、空调、存储介质
WO2024154930A1 (ko) * 2023-01-19 2024-07-25 삼성전자주식회사 공기조화기 및 공기조화기의 제어 방법

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110410958A (zh) * 2019-07-15 2019-11-05 广东美的制冷设备有限公司 空气调节设备的开机控制方法、装置和空气调节设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141962A (ja) * 1997-11-07 1999-05-28 Osaka Gas Co Ltd セントラル空調システム
JP2005221209A (ja) * 2004-02-09 2005-08-18 Yamatake Corp 空調制御システム
JP2005265280A (ja) * 2004-03-18 2005-09-29 Takasago Thermal Eng Co Ltd 床吹き出し式の空調方法
JP2012052769A (ja) * 2010-09-03 2012-03-15 Denso Wave Inc 全館空調システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215393A (ja) * 1991-03-18 1993-08-24 Daikin Ind Ltd 空気調和装置のファン風量制御装置
JP3423197B2 (ja) * 1997-09-02 2003-07-07 三洋電機株式会社 空気調和機
JP2000249383A (ja) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd 空気調和機及びその運転方法
JP4607549B2 (ja) * 2004-11-09 2011-01-05 株式会社山武 空調制御システム
JP5375750B2 (ja) * 2010-06-09 2013-12-25 株式会社デンソーウェーブ セントラル空調システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11141962A (ja) * 1997-11-07 1999-05-28 Osaka Gas Co Ltd セントラル空調システム
JP2005221209A (ja) * 2004-02-09 2005-08-18 Yamatake Corp 空調制御システム
JP2005265280A (ja) * 2004-03-18 2005-09-29 Takasago Thermal Eng Co Ltd 床吹き出し式の空調方法
JP2012052769A (ja) * 2010-09-03 2012-03-15 Denso Wave Inc 全館空調システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529857A (ja) * 2016-09-23 2019-10-17 ダイキン工業株式会社 空調給湯システム
US11867414B2 (en) 2016-09-23 2024-01-09 Daikin Industries, Ltd. System for air-conditioning and hot-water supply
CN107631420A (zh) * 2017-10-27 2018-01-26 深圳达实智能股份有限公司 基于iBeacon 技术的医院空调末端变风量系统节能方法及装置
US11473808B2 (en) 2018-11-08 2022-10-18 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2020095406A1 (ja) * 2018-11-08 2020-05-14 三菱電機株式会社 空気調和機
JPWO2020095406A1 (ja) * 2018-11-08 2021-06-03 三菱電機株式会社 空気調和機
GB2593080A (en) * 2018-11-08 2021-09-15 Mitsubishi Electric Corp Air conditioner
JP7086216B2 (ja) 2018-11-08 2022-06-17 三菱電機株式会社 空気調和機
GB2593080B (en) * 2018-11-08 2022-08-31 Mitsubishi Electric Corp Air-conditioning apparatus
JP2020106195A (ja) * 2018-12-27 2020-07-09 三菱電機株式会社 制御装置、空調機、空調システム、空調機制御方法及びプログラム
JP7253915B2 (ja) 2018-12-27 2023-04-07 三菱電機株式会社 制御装置、空調機、空調システム、空調機制御方法及びプログラム
CN114322271A (zh) * 2021-12-06 2022-04-12 青岛海尔空调器有限总公司 用于空调的控制方法及装置、空调、存储介质
WO2024154930A1 (ko) * 2023-01-19 2024-07-25 삼성전자주식회사 공기조화기 및 공기조화기의 제어 방법

Also Published As

Publication number Publication date
JPWO2016092635A1 (ja) 2017-04-27
JP6415596B2 (ja) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6415596B2 (ja) 空気制御システム
US11353233B2 (en) Air-conditioning system and air-conditioning system controller
JP4703692B2 (ja) 空調制御システムおよびこれに利用する給気切替コントローラ、空調制御方法
JP5175643B2 (ja) 空調制御システムおよび空調制御装置
JP5159814B2 (ja) 空調制御システム
US7854389B2 (en) Application of microsystems for comfort control
JP6334299B2 (ja) 空調制御装置、空調制御方法、及びプログラム
JP6125039B2 (ja) 空調制御装置
JP2012184868A (ja) 空調システム
CN106679079A (zh) 空调系统的控制方法及空调系统
JP6429779B2 (ja) 空調制御システム
JPWO2015079548A1 (ja) 空調システム
JP2017101859A (ja) 空調制御システム、空調制御方法及び制御プログラム
JP2018004096A (ja) 空気調和機
JP2015152192A (ja) 空気調和システム
JP6280456B2 (ja) 空調システムおよび空調制御方法
US11940166B2 (en) Air conditioning system for transferring air in an air-conditioned room
JP2018109461A (ja) 空調システム
JP6958314B2 (ja) 全館空調システム
JP2017089996A (ja) 空調制御システム、空調制御方法及び制御プログラム
JP2010190480A (ja) 空調制御システムおよびこれに利用する給気切替コントローラ、空調制御方法
JP2011226739A (ja) 室内空調装置および室内空調方法
JP5537456B2 (ja) 空調制御システム、最適空調制御装置、および最適空調制御方法
JP7386388B2 (ja) 換気システム
KR102155558B1 (ko) 공기조화기 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563327

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907834

Country of ref document: EP

Kind code of ref document: A1