WO2016075871A1 - アーク溶接の制御方法 - Google Patents
アーク溶接の制御方法 Download PDFInfo
- Publication number
- WO2016075871A1 WO2016075871A1 PCT/JP2015/005269 JP2015005269W WO2016075871A1 WO 2016075871 A1 WO2016075871 A1 WO 2016075871A1 JP 2015005269 W JP2015005269 W JP 2015005269W WO 2016075871 A1 WO2016075871 A1 WO 2016075871A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- short
- current
- circuit
- periods
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
- B23K9/091—Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
- B23K9/092—Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/06—Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
- B23K9/073—Stabilising the arc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/09—Arrangements or circuits for arc welding with pulsed current or voltage
- B23K9/091—Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
- B23K9/093—Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits the frequency of the pulses produced being modulatable
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/12—Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
- B23K9/124—Circuits or methods for feeding welding wire
- B23K9/125—Feeding of electrodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
Definitions
- the present invention relates to a consumable electrode type arc welding control method in which a pulse welding period and a short-circuit welding period are alternately repeated.
- Typical examples of consumable electrode arc welding methods include pulse welding and short-circuit welding, which are put to practical use.
- pulse welding and short circuit welding have the following problems.
- ⁇ Pulse welding has a low heat input compared to spray transfer with a constant current exceeding the critical current, but since a long arc length is necessary to maintain a stable pulse transfer, the heat input cannot be kept low. Therefore, in so-called posture welding such as upright or upward, a bead having a defective shape such as bead drooping tends to occur.
- the arc length is short, and during the short-circuit period, the heat input by the arc is small, so that welding defects such as poor fusion are likely to occur. In addition, there are many spatters due to short arc length and short circuit.
- FIG. 4 shows a welding current waveform in the conventional arc welding control disclosed in Patent Document 1.
- the welding current is controlled so that pulse welding and short-circuit welding are alternately performed for a set number of times.
- the welding wire is fed at a constant feeding speed so as to be an optimum value in each of pulse welding and short-circuit welding.
- Patent Document 1 describes that heat input control and bead shape control can be performed to suppress generation of defective defects such as welding defects such as poor fusion and bead sag in posture welding.
- the forward and reverse feeds of the welding wire are repeated at regular intervals during the short-circuit welding period.
- the welding wire starts to be fed in the forward feed direction when the current is smaller than the base current immediately before the end of the pulse welding period.
- FIG. 1A is a schematic configuration diagram of an arc welding apparatus according to Embodiment 1.
- FIG. 1B is a schematic enlarged cross-sectional view showing a welding part of arc welding in the first embodiment.
- FIG. 2 is a diagram showing a welding current, a welding voltage, and a welding wire feeding speed in arc welding in the first embodiment.
- FIG. 3 is a diagram showing a welding current, a welding voltage, and a welding wire feeding speed in arc welding in the second embodiment.
- FIG. 4 is a diagram showing a welding current in conventional arc welding.
- FIG. 1A is a schematic configuration diagram of an arc welding apparatus 50 according to the first embodiment.
- the arc welding apparatus 50 mainly feeds a welding power source 19 that supplies power between a welding wire 15 that is a welding electrode that is a consumable electrode and a welding object 18, a welding torch 16, and the welding wire 15. It is comprised from the feeding part 14 to do.
- the welding torch 16 is attached to, for example, a welding robot, and welding is performed using the welding torch 16 by the welding robot. Alternatively, the welding torch 16 is held by an operator, for example, and welding is performed by the operator using the welding torch 16.
- the feeding unit 14 can feed the welding wire 15 in a normal feeding direction D101 toward the welding target 18 and a reverse feeding direction D102 moving away from the welding target 18 opposite to the normal feeding direction D101.
- the welding power source 19 AC power input from the input power source 1 is rectified by the primary rectifier 2, converted to AC by the switching unit 3, stepped down by the transformer 4, and the secondary rectifier 5 and DCL (inductance). 6 is applied between the welding wire 15 and the welding object 18.
- a welding arc 17 is generated between the welding wire 15 and the welding object 18 by the applied electric power, and welding is performed.
- the welding power source 19 includes a welding voltage detection unit 7 that detects a welding voltage V that is a voltage of the welding wire 15, a welding current detection unit 8 that detects a welding current I flowing through the welding wire 15, and a pulse welding period. And a counter unit 9 that counts the elapsed time of the short-circuit welding period or the number of pulses output. Further, based on the number counted by the counter unit 9, a control switching unit 10 for switching the control of welding output, a setting unit 20 for setting welding conditions and the like, and a pulse welding time for controlling current in a pulse welding period A current control unit 12, a current control unit 11 at the time of short-circuit welding for controlling a current in a short-circuit welding period, and a drive unit 13 are provided.
- the counter unit 9 is the first welding that occurs after the start of welding is instructed by operating a torch switch provided in the welding torch 16 or by executing an operation program of a welding robot. The contact between the wire 15 and the welding object 18 is detected, and the time is counted or the number of pulses output is counted. Further, the setting unit 20 sets the welding current set for performing welding, the set welding voltage set for performing welding, the feeding speed of the welding wire 15, the type of shield gas, and the welding wire 15. This is for setting the material, the diameter of the welding wire 15, the period of pulse welding, the number of waveform outputs, the period of short-circuit welding, the number of waveform outputs, and the like. In addition, each component which comprises the welding power supply part 19 may each be comprised independently as needed, and you may make it comprise combining a some component.
- FIG. 1B is a schematic enlarged cross-sectional view showing a welding part of arc welding in the first embodiment.
- a shield gas is supplied from the gas supply port to shield the arc and the weld from the outside air, and current is supplied from the welding power source 19 between the welding wire 15 and the welding object 18.
- a welding arc 17 is generated on the welding wire 15 and the welding object 18, and the tip of the welding wire 15 and a part of the welding object 18 are melted by the heat of the arc 17.
- the melted welding wire 15 is dropped onto the welding object 18 to form a molten pool 15P together with a part of the welding object 18 melted by the heat of the welding arc 17.
- the welding object 18 is welded while forming.
- the welding conditions for the welding are set in advance by the setting unit 20, and the feeding speed of the welding wire 15 is similarly set in advance by the setting unit 20.
- the output of the welding power source unit 19 and the rotation of the motor of the feeding unit 14 are controlled so as to satisfy this setting condition.
- the welding conditions are controlled by controlling the welding power source 19 so that the welding conditions become the set conditions while monitoring the welding power source 19, and the welding current I and the waveform of the welding current I are the basis of this control. Is obtained from the output of the welding current detector 8.
- FIG. 2 shows the welding current I, the welding voltage V, and the feeding speed WF of the welding wire 15 of the arc welding apparatus 50 according to the first embodiment.
- the vertical axis represents the welding current I, the welding voltage V, and the feeding speed WF
- the horizontal axis represents time.
- the feeding speed WF can take both positive and negative values. That is, the value of the feeding speed WF is positive when the welding wire 15 that is a welding electrode is fed in the forward feeding direction D101, and the feeding speed WF is fed when the welding wire 15 is fed in the backward feeding direction D102. The value is negative.
- the welding current I flowing through the welding wire 15 forms a plurality of pulses Pp1 to Pp6 in which the peak current Ip values Ip1 to Ip6 and the base current Ib values Ib1 to Ib5 are alternately repeated. I is controlled.
- the short-circuit welding period Ts one or more short-circuit periods Tss1 to Tss3 for short-circuiting the welding wire 15 and the welding object 18 and one or more that generate the arc 17 between the welding wire 15 and the welding object 18
- the welding current I is controlled so as to shift alternately to the arc periods Tsa1 to Tsa2.
- the pulse welding period Tp and the short-circuit welding period Ts are alternately repeated so that the pulse welding period Tp follows the short-circuit welding period Ts and the short-circuit welding period Ts follows the pulse welding period Tp.
- the pulse welding period Tp is detected by the waveform of the welding current I detected by the welding current detector 8.
- the pulse welding period Tp can be detected, for example, by detecting that the welding current I has changed from a value larger than a preset threshold Is to a smaller value. Therefore, by comparing the threshold value Is with the welding current I, the pulses Pp1 to Pp6 in the pulse welding period Tp can be detected.
- the detection method of the pulses Pp1 to Pp6 is not limited to this example, and any method may be used as long as the pulses Pp1 to Pp6 can be detected.
- the short-circuit welding period Ts can be detected, for example, by detecting that the welding voltage V detected by the welding voltage detector 7 has changed from a value larger than a preset threshold value Vs to a smaller value. At this time, in order not to determine that the short circuit period Tss1 to Tss3 is a very short micro short circuit, it is determined that one short circuit occurs when a preset time elapses while the welding voltage V is continuously higher than the threshold value Vs. May be.
- the short circuit detection method is not limited to this example, and any method may be used as long as each short circuit can be detected.
- a value of the feeding speed WF of the welding wire 15 is set in advance in the setting unit 20 in combination with the pulse condition of the setting unit 20 so that the average value of the welding current I does not exceed the critical current.
- the number of pulses or the length of the pulse welding period Tp is also set in the setting unit 20 in advance.
- a value of the welding voltage V that can stably perform short-circuit welding at the feeding speed WF set by the setting unit 20 is set in advance.
- the number of shorts between the welding wire 15 and the welding object 18 in the short-circuit welding period Ts is also set in the setting unit 20 in advance. Therefore, in the arc welding apparatus 50, when pulse welding is performed based on the number or the length of time set by the setting unit 20, the control switching unit 10 switches to short-circuit welding, and the next is also set by the setting unit 20.
- the current control unit 12 for pulse welding and the current control unit 11 for short circuit welding are switched by the control switching unit 10 so as to perform short-circuit welding based on the above-mentioned number or length of time, and control output from the current control units 11 and 12 Put out.
- the drive part 13 which received the control output of the current control parts 11 and 12 gives a control output to the switching part 3 so that the waveform of the welding current I according to the control output can be obtained.
- the welding power source unit 19 outputs the welding current I shown in FIG. 2 and applies it to the welding wire 15 and the welding object 18.
- the control switching unit 10 gives a control output to the feeding unit 14 so that the feeding speed WF of the welding wire 15 becomes a preset feeding speed.
- the feeding unit 14 rotationally drives the motor of the feeding unit 14 so that the feeding speed WF of the welding wire 15 becomes a feeding speed corresponding to the pulse welding period Tp and the short-circuit welding period Ts.
- the welding wire 15 is fed at an optimum predetermined constant feeding speed WF3 set in advance by the setting unit 20.
- the control switching unit 10 changes the feeding speed WF of the welding wire 15 in the short-circuit welding period Ts according to a periodic waveform having an amplitude and a period determined in advance by the setting unit 20.
- the feeding speed WF shown in FIG. 2 changes according to a sine wave as a periodic waveform.
- the feeding speed WF may be changed according to another periodic waveform such as a trapezoidal wave.
- the setting unit 20 counts the number of short circuits set in advance, or opens the short circuit at the pulse start time tps when the time set in advance in the setting unit 20 has elapsed, and the control switching unit 10 sets the pulse welding period Tp. Starting, the first pulse Pp1 among the plurality of pulses Pp1 to Pp6 is generated.
- the predetermined speed of the welding wire 15 in the pulse welding period Tp preset by the setting unit 20 is maintained while the feed speed WF is changed according to the periodic waveform in the short-circuit welding period Ts.
- the feed speed WF3 changes toward the feed speed WF3 and the feed speed WF reaches a predetermined feed speed WF3 in the pulse welding period Tp
- the feed section 14 feeds the welding wire 15 at the predetermined feed speed WF3.
- the current control unit 12 determines the last pulse Pp6.
- the welding current I is changed to a current I3 different from the base current Ib values Ib1 to Ib5 in the pulses Pp1 to Pp6.
- the feed speed WF is set to a predetermined value in the pulse welding period Tp at the feed switching time tvs where the welding current I is the current I3. From the feed speed WF3, the welding wire 15 starts to be fed in the forward feed direction D101 and the reverse feed direction D102 according to the periodic waveform described above.
- the current I3 is smaller than the value Ib5 of the base current Ib immediately before the end of the pulse welding period Tp.
- the current I3 is smaller than at least one of the values Ib1 to Ib5 of the base current Ib.
- the current I3 may be smaller than the average value of the base current Ib values Ib1 to Ib5, or may be smaller than the base current Ib values Ib1 to Ib5.
- the time point when the welding current I changes to the current I3 is used as a trigger for shifting from the pulse welding period Tp to the short-circuit welding period Ts.
- an arbitrary point in time when the welding current I is reduced to a value smaller than the base current Ib in the pulses Pp1 to Pp6 before the end of the pulse welding period Tp is triggered, that is, the feeding switching point. It may be tvs.
- the feeding speed WF is periodically changed after determining the short-circuit or determining the arc (open of short-circuit).
- the above-described variation is likely to appear significantly.
- the short circuit and the arc operation are promoted according to the periodic waveform. Therefore, the short circuit periods Tss1 to Tss3 Variations in the length of the arc periods Tsa1 and Tsa2 hardly occur.
- the welding current I in the first embodiment is controlled to be a current I3 smaller than the base current Ib of the pulse Pp6 after the last pulse Pp6 when switching from pulse welding to short-circuit welding. Further, in the first short-circuit period Tss1 when switching from pulse welding to short-circuit welding, the welding current I after detecting a short-circuit between the welding wire 15 and the welding object 18 is greater than the base current Ib of the pulses Pp1 to Pp6. It is controlled to a small value. Further, the welding current I is sharply reduced at at least one time point when the short-circuit is detected in the short-circuit welding period Ts and when the neck 15A is detected.
- Switching from the pulse welding period Tp to the short-circuit welding period Ts is performed after the peak current Ip and the base current Ib determined in advance by the setting unit 20 are alternately repeated and the pulses Pp1 to Pp6 are output a predetermined number of times or for a predetermined time.
- the welding current I is changed to a current I3 different from the base current Ib. Specifically, the welding current I is reduced to a current I3 smaller than the base current Ib, and a short circuit at the start of the short circuit period Tss1, which is the start of the short circuit welding period Ts, is waited for.
- the welding voltage detection unit 7 detects a short circuit, in order to suppress a micro short circuit in which the short circuit is opened immediately after the short circuit at the short circuit detection time tsp when the short circuit period Tss1 starts, and to suppress the occurrence of spatter during the short circuit.
- the welding current I is sharply lowered to the current I4 and held at the current I4 for a predetermined period Tsp1. Thereafter, the welding current I is increased to promote the opening of the short circuit. Further, it is more preferable to perform neck control that sharply lowers the welding current I when the welding voltage detector 7 detects the neck 15A (see FIG. 1B) of the welding wire 15 immediately before the short circuit is opened.
- the current I when the short circuit is opened can be reduced, and the occurrence of sputtering can be suppressed.
- the current control unit 11 After opening the short circuit at the short circuit opening time point tap at which the arc period Tsa1 starts, the current control unit 11 increases the current I to the current I5 so as not to cause a micro short circuit in the arc period Tsa1, and holds it for a predetermined period Tsp2. Thereafter, the welding current I is reduced so as to promote the occurrence of the next short circuit, that is, so that the next short circuit period Tss2 starts.
- the pulse welding mode is entered simultaneously with the opening of the short circuit, and the pulse welding period Tp is started.
- the welding current I is controlled so as to form pulses Pp1 to Pp6 that alternately repeat the peak current Ip and the base current Ib.
- the short-circuit welding period Ts shifts to the pulse welding period Tp after the last short-circuit is opened, that is, after the last short-circuit period Tss3.
- the feeding speed WF of the welding wire 15 is a predetermined predetermined value in the pulse welding period Tp. It is even better to shift after reaching the feeding speed WF3.
- 15 is a welding current having a current I3 smaller than the base current Ib in the pulse welding period Tp immediately before the end of the pulse welding period Tp. Control with I.
- the next short circuit can be promoted, it is possible to perform a short circuit in a state in which the growth of the droplets is suppressed, and the generation of spatter during the short circuit can be suppressed.
- the welding wire 15 and the welding target object 18 can be short-circuited reliably, generation
- production can be suppressed.
- the current I at the time of short circuit and short circuit opening can be reduced. Accordingly, it is possible to suppress the occurrence of spatter at the time of short-circuiting and opening of the short-circuiting.
- the welding wire 15 is continuously fed to the periodic waveform in the short-circuit welding period Ts. Since the feeding speed WF does not change discontinuously, stable welding can be realized.
- the welding wire 15 which is a welding electrode
- a plurality of pulse welding periods Tp for performing pulse welding and a plurality of short-circuit welding periods for performing short-circuit welding.
- the process shifts alternately to Ts.
- the welding current I flowing through the welding wire 15 includes one or more values Ip1 to Ip6 of the peak current Ip and one or more values Ib1 to Ib5 of the base current Ib.
- the welding current I is controlled to be smaller (the current I3).
- Tss of the plurality of short-circuit welding periods Ts following each pulse welding period Tp one or more short-circuit periods Tss1 to Tss3 for short-circuiting the welding wire 15 and the welding object 18;
- the welding current I is controlled so as to alternately shift to one or more arc periods Tsa1 and Tsa2 in which the arc 17 is generated with the welding object 18.
- the arc welding apparatus 50 is controlled so that the welding wire 15 is fed in a forward feed direction D101 toward the welding object 18 and a reverse feed direction D102 opposite to the forward feed direction D101. Feeding of the welding wire 15, which is alternately repeated in the forward feed direction D101 and the reverse feed direction D102 at a constant cycle, is started at the feed switching time point tvs, and from the feed switching time point tvs to each short-circuit welding period Ts. Then, the arc welding apparatus 50 is controlled so that the welding wire 15 is fed alternately and repeatedly in the forward feed direction D101 and the reverse feed direction D102 in the above cycle.
- the arc welding apparatus 50 may be controlled so as to feed the welding wire 15 at a constant predetermined feed speed WF3 until the feed switching time tvs.
- the short circuit welding period Ts a short circuit between the welding object 18 and the welding wire 15 or the neck 15A of the welding wire 15 may be detected. In this case, when the short circuit or the neck 15A is detected, the welding current I may be reduced.
- the welding current I may be controlled so that the welding current I becomes smaller than the average value of one or more values Ib1 to Ib5 of the base current Ib at the feed switching time tvs.
- the welding current I may be controlled so that the welding current I becomes smaller than one or more values Ib1 to Ib6 of the base current Ib at the feed switching time tvs.
- pulse welding and short-circuit welding are alternately repeated at an arbitrary predetermined number of times.
- heat input can be easily controlled.
- shape of the bead 18A can be improved, and posture welding can be easily performed.
- FIG. 3 shows the welding current I, the welding voltage V, and the feeding speed WF of the welding wire 15 in the second embodiment.
- the welding current I, welding voltage V, and feed speed WF shown in FIG. 3 are obtained by the arc welding apparatus 50 shown in FIGS. 1A and 1B. 3, the same reference numerals are assigned to the same portions as those in the first embodiment shown in FIG.
- the arc welding in the second embodiment shown in FIG. 3 differs from the arc welding in the first embodiment shown in FIG. 2 in the following points.
- the welding current I is at the time tps when the feed speed WF of the welding wire 15 reaches the predetermined feed speed WF3 in the forward feed direction D101 in the pulse welding period Tp.
- the pulse welding period Tp is started by starting to form the first pulse Pp1. After the time point tps, the feeding speed WF is maintained at a predetermined feeding speed WF3. The peak current Ip is generated almost immediately after the time point tps.
- the feeding control of the welding wire 15 and the control of the welding current I are performed in synchronization.
- the reason for shifting from the short-circuit welding period Ts to the pulse welding period Tp when the feeding speed WF of the welding wire 15 reaches the predetermined feeding speed WF3 in the pulse welding period Tp will be described below.
- the value of the feeding speed WF is positive, and when the welding wire 15 is fed in the backward feeding direction D102, the feeding speed is increased.
- the value of the speed WF is negative.
- the welding wire 15 is fed at a low feeding speed WF, the welding wire 15 is fed at a small feeding speed in the forward feeding direction D101 or fed in the reverse feeding direction D102.
- the feeding speed WF of the welding wire 15 is low, and the feeding speed at which the welding wire 15 is fed. Since the peak current Ip of the pulse Pp1 is generated when the current is small or is fed in the reverse feed direction D102, the welding wire 15 burns up, arc breakage occurs, and stable welding cannot be continued. On the contrary, the base current Ib is output without generating the peak current Ip in the pulse Pp1 for a while from the time point tps when the feed speed WF of the welding wire 15 reaches the predetermined feed speed WF3 in the pulse welding period Tp. In this case, since the welding current I is small, the welding wire 15 may be short-circuited to the welding object 18 and stable pulse welding may not be performed.
- the welding current I is controlled to be the lowest current I1 when the welding wire feeding speed is the maximum feeding speed WF1 in the short-circuit welding period Ts. Then, the feeding current WF is decelerated and the welding current I is increased, and the welding current I is controlled to be the maximum current I2 when the feeding speed WF is the minimum feeding speed WF2. This cycle is repeated periodically.
- the maximum feeding speed WF1 is the maximum feeding speed in the forward feeding direction D101, and the minimum feeding speed WF2 is reversed. This is the maximum feeding speed in the feeding direction D102.
- the welding current I becomes the minimum current I1 when the feed speed WF is the maximum feed speed WF1 in the short-circuit welding period Ts, and therefore the welding wire 15 is hard to melt and moves toward the welding object 18.
- the welding wire 15 heads at a large maximum feed speed WF1, and therefore a short circuit between the welding wire 15 and the welding object 18 is promoted. Since the welding current I becomes the maximum current I2 when the feeding speed WF is the minimum feeding speed WF2, the welding current I becomes the maximum current I2 while the welding wire 15 is being fed in the reverse feeding direction D102.
- the welding wire 15 is melted and fed in the reverse feeding direction D102, opening of the short circuit is promoted.
- the welding current I in synchronization with the feeding speed WF, even if there is a disturbance such as a change in arc length due to a change in the distance between the welding wire 15 and the welding object 18, it is periodic and stable. Welding can be realized.
- the feeding speed WF of the welding wire 15 is changed from the minimum feeding speed WF2 to a predetermined predetermined feeding speed WF3 in the pulse welding period Tp preset by the setting unit 20. Transition is made according to the periodic waveform described above.
- the peak current Ip of pulse welding is output by using the time when the feeding speed WF reaches the predetermined feeding speed WF3 in the pulse welding period Tp as a trigger. That is, when the feed speed WF reaches the predetermined feed speed WF3, the welding current I starts to form the pulse Pp1, thereby starting the pulse welding period Tp. Then, when the pulses Pp1 to Pp6 are output at a predetermined number of times / time by the setting unit 20, the welding current I is reduced from the peak current Ip to the current I3 smaller than the base current Ib in the last pulse Pp6, It is held for a predetermined period Tsp3.
- the feed switching time tvs when the welding current I reaches the current I3 as a trigger the feed speed WF of the welding wire 15 is accelerated from a predetermined constant feed speed WF3 during the pulse welding period Tp, and the forward feed direction D101.
- the control which changes according to the periodic waveform which alternately repeats the reverse feed direction D102 are switched at the feed switching time point tvs.
- the time when the welding current I reaches the current I3 is set as the trigger, that is, the feeding switching time tvs.
- an arbitrary time point when the welding current I is smaller than the base current Ib may be set as the trigger, that is, the feeding switching time point tvs.
- the current I3 is made smaller than at least one of one or more values (Ib1 to Ib5) of the base current Ib.
- the current I3 may be smaller than the average value of one or more values (Ib1 to Ib5) of the base current Ib, and may be smaller than one or more values (Ib1 to Ib5) of the base current Ib.
- the welding current I may be sharply reduced at the time when the short circuit is detected or the neck 15A is detected as in the arc welding in the first embodiment.
- the welding current I may be a value equal to or less than the minimum current I1.
- the arc welding apparatus 50 is controlled so that the welding wire 15 is fed alternately and repeatedly in the forward feed direction D101 and the reverse feed direction D102 at a constant cycle.
- the arc welding apparatus 50 is controlled so that the welding wire 15 is fed in the normal feeding direction D101 at a predetermined feeding speed WF3.
- the welding wire 15 is sent after the transition from one arc period Tsa2 of one or more arc periods Tsa1 and Tsa2 to one short-circuit period Tss3 of one or more short-circuit periods Tss1 to Tss3.
- the arc welding apparatus 50 is controlled so that the welding current I starts to form the first pulse Pp1 among the plurality of pulses Pp1 to Pp6 when the feeding speed WF to be fed reaches a predetermined feeding speed WF3.
- the arc welding apparatus 50 may be controlled so that the feeding speed WF repeats the maximum feeding speed WF1 and the minimum feeding speed WF2 at a constant cycle.
- the welding current I is set to the minimum current I1 when the feeding speed WF reaches the maximum feeding speed WF1 in the short-circuit welding period Ts.
- the welding current I is set to the maximum current I2.
- the welding wire 15 is fed in the forward feed direction D101 and the reverse feed direction in the short-circuit welding period Ts. Delivered to D102.
- the welding wire 15 is fed according to the periodic waveform in the short-circuit welding period Ts, there is little variation in the short-circuit and arc cycles, and stable welding can be realized.
- the short circuit and the short circuit are surely performed, and stable welding can be realized.
- heat input control and shape control of the bead 18A are performed, thereby generating a weld defect such as poor fusion or a bead having a defective shape such as drooping of the bead 18A in posture welding. Can be suppressed.
- Both the pulse welding period Tp and the short-circuit welding period Ts can realize welding with less spatter generation.
- the control method of arc welding in the present invention can realize stable welding and is useful for arc welding for welding an object to be welded.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding Control (AREA)
Abstract
Description
図1Aは実施の形態1におけるアーク溶接装置50の概略構成図である。アーク溶接装置50は主に、消耗性電極である溶接電極である溶接ワイヤ15と溶接対象物18との間に電力を供給する溶接電源部19と、溶接トーチ16と、溶接ワイヤ15を送給する送給部14から構成される。なお、溶接トーチ16は、例えば溶接ロボットに取り付けられ、溶接ロボットにより溶接トーチ16を用いて溶接が行われる。あるいは、溶接トーチ16は、例えば作業者に保持され、作業者により溶接トーチ16を用いて溶接が行われる。送給部14は、溶接対象物18に向かう正送方向D101と、正送方向D101の反対の溶接対象物18から遠ざかる逆送方向D102とに溶接ワイヤ15を送給することができる。溶接電源部19において、入力電源1から入力した交流電力は、1次整流部2で整流され、スイッチング部3により交流に変換され、トランス4により降圧され、2次整流部5及びDCL(インダクタンス)6により整流され、溶接ワイヤ15と溶接対象物18との間に印加される。印加された電力により溶接ワイヤ15と溶接対象物18との間で溶接アーク17が発生して溶接が行われる。また、溶接電源部19は、溶接ワイヤ15の電圧である溶接電圧Vを検出する溶接電圧検出部7と、溶接ワイヤ15を流れる溶接電流Iを検出する溶接電流検出部8と、パルス溶接期間と短絡溶接期間の経過時間またはパルスの出力回数をカウントするカウンタ部9とを備えている。また、カウンタ部9がカウントした数に基づいて、溶接出力の制御を切り替える制御切替部10と、溶接条件等を設定するための設定部20と、パルス溶接期間における電流を制御するパルス溶接時の電流制御部12と、短絡溶接期間における電流を制御する短絡溶接時の電流制御部11と、駆動部13と、を備えている。なお、カウンタ部9は、溶接トーチ16に設けられたトーチスイッチが操作されることにより、あるいは、溶接ロボットの動作プログラムが実行されることにより、溶接の開始が指示された後に、最初に生じる溶接ワイヤ15と溶接対象物18との接触を検出して時間のカウントやパルスの出力回数のカウントを行う。また、設定部20は、溶接を行うために設定する設定溶接電流や、溶接を行うために設定する設定溶接電圧や、溶接ワイヤ15の送給速度や、シールドガスの種類や、溶接ワイヤ15の材質や、溶接ワイヤ15の径や、パルス溶接の期間や波形出力回数、短絡溶接の期間や波形出力回数等を設定するためのものである。なお、溶接電源部19を構成する各構成部は、必要に応じて各々単独に構成してもよいし、複数の構成部を複合して構成するようにしてもよい。
図3は実施の形態2における溶接電流Iと溶接電圧Vと溶接ワイヤ15の送給速度WFを示す。図3に示す溶接電流Iと溶接電圧Vと送給速度WFは図1Aと図1Bに示すアーク溶接装置50で得られる。図3において、図2に示す実施の形態1と同じ部分には同じ参照番号を付す。図3に示す実施の形態2におけるアーク溶接では、図2に示す実施の形態1におけるアーク溶接と以下の点で異なる。短絡溶接期間Tsからパルス溶接期間Tpへ移行する際に、溶接ワイヤ15の送給速度WFがパルス溶接期間Tpにおける正送方向D101の所定の送給速度WF3に到達した時点tpsに溶接電流Iが最初のパルスPp1を形成し始めてパルス溶接期間Tpが開始される。時点tps以後は送給速度WFは所定の送給速度WF3に維持される。時点tpsのほぼ直後にピーク電流Ipを発生させる。短絡溶接期間Tsにおいて溶接ワイヤ15の送給制御と溶接電流Iの制御を同期して行っている。
2 1次整流部
3 スイッチング部
4 トランス
5 2次整流部
6 DCL(インダクタンス)
7 溶接電圧検出部
8 溶接電流検出部
9 カウンタ部
10 制御切替部
11 電流制御部
12 電流制御部
13 駆動部
14 送給部
15 溶接ワイヤ(溶接電極)
15A ネック
16 溶接トーチ
17 溶接アーク
18 溶接対象物
19 溶接電源部
20 設定部
50 アーク溶接装置
D101 正送方向
D102 逆送方向
I1 最大電流
I2 最小電流
Ib ベース電流
Ip ピーク電流
Pp1~Pp6 パルス
Tp パルス溶接期間
Ts 短絡溶接期間
Tss1~Tss3 短絡期間
Tsa1~Tsa3 アーク期間
tvs 送給切替時点
Claims (9)
- パルス溶接を行う複数のパルス溶接期間と短絡溶接を行う複数の短絡溶接期間とに交互にそれぞれに移行する、溶接電極を備えたアーク溶接装置を用いた消耗電極式のアーク溶接の制御方法であって、
前記複数のパルス溶接期間のそれぞれのパルス溶接期間において、前記溶接電極を流れる溶接電流がピーク電流の1つ以上の値とベース電流の1つ以上の値とを交互に繰り返す複数のパルスを形成し、前記複数のパルスを形成した後の送給切替時点において前記ベース電流の前記1つ以上の値の少なくとも1つより小さくなるように前記溶接電流を制御するステップと、
前記それぞれのパルス溶接期間に続く前記複数の短絡溶接期間のそれぞれの短絡溶接期間において、前記溶接電極と溶接対象物とを短絡させる1つ以上の短絡期間と、前記溶接電極と前記溶接対象物との間でアークを発生する1つ以上のアーク期間とに交互にそれぞれに移行するように前記溶接電流を制御するステップと、
前記溶接対象物に向かう正送方向と、前記正送方向の反対の逆送方向とに前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
を含み、
前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、一定の周期で前記正送方向と前記逆送方向とに交互に繰り返して行う前記溶接電極の送給を前記送給切替時点に開始し、前記送給切替時点から前記それぞれの短絡溶接期間に亘って前記一定の周期で前記正送方向と前記逆送方向とに交互に繰り返して前記溶接電極を送給するように前記アーク溶接装置を制御するステップを含む、アーク溶接の制御方法。 - 前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、前記それぞれの短絡溶接期間において前記溶接電極を送給する送給速度が最高送給速度と最低送給速度とを前記一定の周期で繰り返すように前記アーク溶接装置を制御するステップを含み、
前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、
前記それぞれの短絡溶接期間において前記送給速度が前記最高送給速度に到達した時点で前記溶接電流を最小電流とするステップと、
前記それぞれの短絡溶接期間において前記送給速度が前記最低送給速度に到達した時点で前記溶接電流を最大電流とするステップと、
を含む、請求項1に記載のアーク溶接の制御方法。 - 前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、前記それぞれのパルス溶接期間において前記送給切替時点まで一定の所定の送給速度で前記溶接電極を送給するように前記アーク溶接装置を制御するステップをさらに含む、請求項1または2に記載のアーク溶接の制御方法。
- 前記それぞれの短絡溶接期間において、前記溶接対象物と前記溶接電極との短絡または前記溶接電極のネックを検出するステップをさらに含み、
前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、前記短絡または前記ネックを検出すると前記溶接電流を低減するステップを含む、請求項1から3のいずれか1項に記載のアーク溶接の制御方法。 - 前記それぞれのパルス溶接期間において前記溶接電流を制御するステップは、前記それぞれのパルス溶接期間において、前記溶接電流が前記送給切替時点において前記ベース電流の前記1つ以上の値の平均値より小さくなるように前記溶接電流を制御するステップを含む、請求項1から4のいずれか1項に記載のアーク溶接の制御方法。
- 前記それぞれのパルス溶接期間において前記溶接電流を制御するステップは、前記それぞれのパルス溶接期間において、前記溶接電流が前記送給切替時点において前記ベース電流の前記1つ以上の値より小さくなるように前記溶接電流を制御するステップを含む、請求項1から4のいずれか1項に記載のアーク溶接の制御方法。
- パルス溶接を行う複数のパルス溶接期間と短絡溶接を行う複数の短絡溶接期間とに交互にそれぞれに移行する、溶接電極を備えたアーク溶接装置を用いた消耗電極式のアーク溶接の制御方法であって、
前記複数の短絡溶接期間のそれぞれの短絡溶接期間において、前記溶接電極と溶接対象物とを短絡させる1つ以上の短絡期間と、前記溶接電極と前記溶接対象物との間でアークを発生する1つ以上のアーク期間とに交互にそれぞれに移行するように前記溶接電流を制御するステップと、
前記それぞれの短絡溶接期間に続く前記複数のパルス溶接期間のそれぞれのパルス溶接期間において、前記溶接電極を流れる溶接電流がピーク電流とベース電流とを交互に繰り返す複数のパルスを形成するように前記溶接電流を制御するステップと、
前記溶接対象物に向かう正送方向と、前記正送方向の反対の逆送方向とに前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
を含み、
前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、
前記それぞれの短絡溶接期間において、一定の周期で前記正送方向と前記逆送方向とに交互に繰り返して前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
前記それぞれのパルス溶接期間において、所定の送給速度で前記正送方向に前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
を含み、
前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、
前記それぞれの短絡溶接期間において前記1つ以上のアーク期間のうちの1つのアーク期間から前記1つ以上の短絡期間のうちの1つの短絡期間に移行した後で前記溶接電極を送給する送給速度が前記所定の送給速度に到達した時点に前記それぞれのパルス溶接期間に移行して、
前記それぞれのパルス溶接期間において前記溶接電流が前記複数のパルスのうちの最初のパルスを形成し始めるように前記アーク溶接装置を制御するステップと、
を含む、アーク溶接の制御方法。 - 前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、前記それぞれの短絡溶接期間において、前記送給速度が最高送給速度と最低送給速度とを前記一定の周期で繰り返すように前記アーク溶接装置を制御するステップを含み、
前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、
前記それぞれの短絡溶接期間において前記送給速度が前記最高送給速度に到達した時点で前記溶接電流を最小電流とするステップと、
前記それぞれの短絡溶接期間において前記送給速度が前記最低送給速度に到達した時点で前記溶接電流を最大電流とするステップと、
を含む、請求項7に記載のアーク溶接の制御方法。 - 前記それぞれの短絡溶接期間において、前記溶接対象物と前記溶接電極との短絡または前記溶接電極のネックを検出するステップをさらに含み、
前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、前記短絡または前記ネックを検出すると前記溶接電流を低減するステップを含む、請求項6から8のいずれか1項に記載のアーク溶接の制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580057731.2A CN107073623B (zh) | 2014-11-11 | 2015-10-20 | 电弧焊接的控制方法 |
JP2016558864A JP6596669B2 (ja) | 2014-11-11 | 2015-10-20 | アーク溶接の制御方法 |
US15/518,320 US10413987B2 (en) | 2014-11-11 | 2015-10-20 | Arc welding control method |
EP15859785.6A EP3219428B1 (en) | 2014-11-11 | 2015-10-20 | Arc welding control method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014228834 | 2014-11-11 | ||
JP2014-228834 | 2014-11-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016075871A1 true WO2016075871A1 (ja) | 2016-05-19 |
Family
ID=55953977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/005269 WO2016075871A1 (ja) | 2014-11-11 | 2015-10-20 | アーク溶接の制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10413987B2 (ja) |
EP (1) | EP3219428B1 (ja) |
JP (1) | JP6596669B2 (ja) |
CN (1) | CN107073623B (ja) |
WO (1) | WO2016075871A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018131345A1 (ja) * | 2017-01-16 | 2018-07-19 | 株式会社ダイヘン | 正逆送給アーク溶接のアークスタート制御方法 |
EP3431214B1 (de) | 2017-06-21 | 2019-11-20 | Carl Cloos Schweißtechnik Gesellschaft mit beschränkter Haftung | Lichtbogenschweissverfahren und -anlage mit einer impulslichtbogen-betriebsphase und einer kurzlichtbogen-betriebsphase in alternierender abfolge |
CN111558760A (zh) * | 2019-02-13 | 2020-08-21 | 株式会社达谊恒 | 电弧焊接方法 |
JP2021023968A (ja) * | 2019-08-06 | 2021-02-22 | 株式会社ダイヘン | アーク溶接方法 |
JP2021530357A (ja) * | 2018-07-27 | 2021-11-11 | フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFronius International Gmbh | 消耗溶接ワイヤを含むアーク溶接方法 |
WO2023095623A1 (ja) * | 2021-11-29 | 2023-06-01 | パナソニックIpマネジメント株式会社 | アーク溶接方法及びアーク溶接装置 |
WO2023095562A1 (ja) * | 2021-11-29 | 2023-06-01 | パナソニックIpマネジメント株式会社 | アーク溶接方法及びアーク溶接装置 |
JP7482581B2 (ja) | 2020-06-10 | 2024-05-14 | 株式会社ダイヘン | アーク溶接方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7149467B2 (ja) * | 2018-01-24 | 2022-10-07 | パナソニックIpマネジメント株式会社 | アーク溶接の制御方法 |
JP7039413B2 (ja) * | 2018-07-26 | 2022-03-22 | 株式会社ダイヘン | アーク溶接制御方法 |
CN111315520B (zh) * | 2018-10-12 | 2021-11-12 | 松下知识产权经营株式会社 | 电弧焊接控制方法 |
EP3674027A1 (de) * | 2018-12-27 | 2020-07-01 | FRONIUS INTERNATIONAL GmbH | Verfahren zum steuern eines schweissprozesses mit einer abschmelzenden elektrode, und eine schweissvorrichtung mit einer solchen steuerung |
EP3771515A1 (de) * | 2019-08-01 | 2021-02-03 | FRONIUS INTERNATIONAL GmbH | Prozessenergiequelle und verfahren zur bereitstellung zumindest eines sich mit einer periode periodisch ändernden prozessparameters |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011088209A (ja) * | 2009-08-19 | 2011-05-06 | Daihen Corp | 炭酸ガスパルスアーク溶接方法 |
JP2011516270A (ja) * | 2008-06-27 | 2011-05-26 | リンカーン グローバル,インコーポレイテッド | 短絡アーク溶接プロセスの間に溶接入熱を増加する方法及びシステム |
JP5170315B2 (ja) * | 2009-07-29 | 2013-03-27 | パナソニック株式会社 | アーク溶接方法およびアーク溶接装置 |
JP2013154381A (ja) * | 2012-01-31 | 2013-08-15 | Panasonic Corp | アーク溶接装置 |
EP2669037A1 (de) * | 2012-05-30 | 2013-12-04 | EWM Hightec Welding GmbH | Schweißrauchreduzierung |
WO2013190746A1 (ja) * | 2012-06-18 | 2013-12-27 | パナソニック株式会社 | アーク溶接方法およびアーク溶接装置 |
JP2014140869A (ja) * | 2013-01-24 | 2014-08-07 | Panasonic Corp | アーク溶接制御方法およびアーク溶接装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4811463B1 (ja) | 1970-03-07 | 1973-04-13 | ||
JPS60255276A (ja) | 1984-05-31 | 1985-12-16 | Mitsubishi Heavy Ind Ltd | 消耗電極式ア−ク溶接法 |
JPH09150267A (ja) | 1995-11-27 | 1997-06-10 | Kobe Steel Ltd | 炭酸ガスシールドアーク溶接方法 |
JP4875311B2 (ja) | 2005-03-11 | 2012-02-15 | 株式会社ダイヘン | 消耗電極アーク溶接のくびれ検出時電流制御方法 |
JP4211793B2 (ja) * | 2006-02-17 | 2009-01-21 | パナソニック株式会社 | アーク溶接制御方法およびアーク溶接装置 |
CN102149502A (zh) * | 2008-09-30 | 2011-08-10 | 大阳日酸株式会社 | 钢板的气体保护电弧钎焊方法 |
EP2292362B1 (en) * | 2009-04-08 | 2016-08-10 | Panasonic Intellectual Property Management Co., Ltd. | Arc welding method and arc welding device |
AT508494B1 (de) * | 2009-06-18 | 2015-05-15 | Fronius Int Gmbh | Verfahren zum wechseln eines schweissprozesses während eines schweissverfahrens und zur wärmeeinbringung vor einem schweissverfahren |
WO2010146844A1 (ja) * | 2009-06-19 | 2010-12-23 | パナソニック株式会社 | 消耗電極式アーク溶接方法および消耗電極式アーク溶接装置 |
CN102264500B (zh) * | 2009-07-10 | 2013-07-10 | 松下电器产业株式会社 | 电弧焊接控制方法以及电弧焊接装置 |
WO2012032703A1 (ja) | 2010-09-10 | 2012-03-15 | パナソニック株式会社 | アーク溶接制御方法 |
US9403231B2 (en) * | 2011-11-09 | 2016-08-02 | Illinois Tool Works Inc. | Hybrid pulsed-short circuit welding regime |
CN103024959B (zh) * | 2012-12-03 | 2014-09-17 | 北京金自天正智能控制股份有限公司 | 一种电极智能调节器及电极智能控制方法 |
EP3208024B1 (en) * | 2014-10-17 | 2020-01-29 | Panasonic Intellectual Property Management Co., Ltd. | Arc welding control method |
-
2015
- 2015-10-20 EP EP15859785.6A patent/EP3219428B1/en active Active
- 2015-10-20 US US15/518,320 patent/US10413987B2/en active Active
- 2015-10-20 JP JP2016558864A patent/JP6596669B2/ja active Active
- 2015-10-20 WO PCT/JP2015/005269 patent/WO2016075871A1/ja active Application Filing
- 2015-10-20 CN CN201580057731.2A patent/CN107073623B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011516270A (ja) * | 2008-06-27 | 2011-05-26 | リンカーン グローバル,インコーポレイテッド | 短絡アーク溶接プロセスの間に溶接入熱を増加する方法及びシステム |
JP5170315B2 (ja) * | 2009-07-29 | 2013-03-27 | パナソニック株式会社 | アーク溶接方法およびアーク溶接装置 |
JP2011088209A (ja) * | 2009-08-19 | 2011-05-06 | Daihen Corp | 炭酸ガスパルスアーク溶接方法 |
JP2013154381A (ja) * | 2012-01-31 | 2013-08-15 | Panasonic Corp | アーク溶接装置 |
EP2669037A1 (de) * | 2012-05-30 | 2013-12-04 | EWM Hightec Welding GmbH | Schweißrauchreduzierung |
WO2013190746A1 (ja) * | 2012-06-18 | 2013-12-27 | パナソニック株式会社 | アーク溶接方法およびアーク溶接装置 |
JP2014140869A (ja) * | 2013-01-24 | 2014-08-07 | Panasonic Corp | アーク溶接制御方法およびアーク溶接装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3219428A4 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7017291B2 (ja) | 2017-01-16 | 2022-02-08 | 株式会社ダイヘン | 正逆送給アーク溶接のアークスタート制御方法 |
JPWO2018131345A1 (ja) * | 2017-01-16 | 2019-11-07 | 株式会社ダイヘン | 正逆送給アーク溶接のアークスタート制御方法 |
US11364561B2 (en) | 2017-01-16 | 2022-06-21 | Daihen Corporation | Arc start control method for forward and reverse feed arc welding |
WO2018131345A1 (ja) * | 2017-01-16 | 2018-07-19 | 株式会社ダイヘン | 正逆送給アーク溶接のアークスタート制御方法 |
EP3569340A4 (en) * | 2017-01-16 | 2021-03-31 | Daihen Corporation | ARC START CONTROL PROCESS FOR FRONT AND REAR FEED ARC WELDING |
EP3431214B1 (de) | 2017-06-21 | 2019-11-20 | Carl Cloos Schweißtechnik Gesellschaft mit beschränkter Haftung | Lichtbogenschweissverfahren und -anlage mit einer impulslichtbogen-betriebsphase und einer kurzlichtbogen-betriebsphase in alternierender abfolge |
JP7048816B2 (ja) | 2018-07-27 | 2022-04-05 | フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | 消耗溶接ワイヤを含むアーク溶接方法 |
JP2021530357A (ja) * | 2018-07-27 | 2021-11-11 | フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFronius International Gmbh | 消耗溶接ワイヤを含むアーク溶接方法 |
JP2020131199A (ja) * | 2019-02-13 | 2020-08-31 | 株式会社ダイヘン | アーク溶接方法 |
CN111558760A (zh) * | 2019-02-13 | 2020-08-21 | 株式会社达谊恒 | 电弧焊接方法 |
JP7188858B2 (ja) | 2019-02-13 | 2022-12-13 | 株式会社ダイヘン | アーク溶接方法 |
CN111558760B (zh) * | 2019-02-13 | 2023-11-28 | 株式会社达谊恒 | 电弧焊接方法 |
JP2021023968A (ja) * | 2019-08-06 | 2021-02-22 | 株式会社ダイヘン | アーク溶接方法 |
JP7265307B2 (ja) | 2019-08-06 | 2023-04-26 | 株式会社ダイヘン | アーク溶接方法 |
JP7482581B2 (ja) | 2020-06-10 | 2024-05-14 | 株式会社ダイヘン | アーク溶接方法 |
WO2023095623A1 (ja) * | 2021-11-29 | 2023-06-01 | パナソニックIpマネジメント株式会社 | アーク溶接方法及びアーク溶接装置 |
WO2023095562A1 (ja) * | 2021-11-29 | 2023-06-01 | パナソニックIpマネジメント株式会社 | アーク溶接方法及びアーク溶接装置 |
Also Published As
Publication number | Publication date |
---|---|
CN107073623A (zh) | 2017-08-18 |
US20170355034A1 (en) | 2017-12-14 |
JPWO2016075871A1 (ja) | 2017-09-14 |
CN107073623B (zh) | 2019-01-08 |
EP3219428A4 (en) | 2017-12-06 |
JP6596669B2 (ja) | 2019-10-30 |
EP3219428B1 (en) | 2021-06-23 |
US10413987B2 (en) | 2019-09-17 |
EP3219428A1 (en) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6596669B2 (ja) | アーク溶接の制御方法 | |
JP6695030B2 (ja) | アーク溶接の制御方法 | |
JP5293884B2 (ja) | アーク溶接制御方法 | |
JP6221076B2 (ja) | アーク溶接制御方法およびアーク溶接装置 | |
CN103260807B (zh) | 电弧焊接控制方法及电弧焊接装置 | |
US20210331264A1 (en) | Pulsed arc welding control method and pulsed arc welding device | |
WO2017125989A1 (ja) | パルスアーク溶接制御方法およびパルスアーク溶接装置 | |
JP2014140869A (ja) | アーク溶接制御方法およびアーク溶接装置 | |
JPWO2005120758A1 (ja) | ロボット溶接制御装置及び制御方法 | |
JP5879503B2 (ja) | アーク溶接制御方法およびアーク溶接装置 | |
CN112004631B (zh) | 电弧焊接的控制方法 | |
JP6948528B2 (ja) | アーク溶接方法およびアーク溶接装置 | |
JP5805952B2 (ja) | プラズマミグ溶接のアークスタート制御方法 | |
EP4180163A1 (en) | Welding or additive manufacturing system with discontinuous electrode feeding | |
JP7576764B2 (ja) | 直流アーク溶接制御方法 | |
CN114340827B (zh) | 用于实施多重焊接方法的方法和焊接设备 | |
JP2017205794A (ja) | アーク溶接制御方法 | |
JP5773478B2 (ja) | プラズマミグ溶接のアークスタート制御方法 | |
JP2013107092A (ja) | パルスアーク溶接の終了制御方法 | |
JP2010017738A (ja) | マグパルス溶接の溶接条件設定方法 | |
JP2012143800A (ja) | プラズマミグ溶接のアークスタート制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15859785 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015859785 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015859785 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2016558864 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15518320 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |