[go: up one dir, main page]

WO2016075871A1 - アーク溶接の制御方法 - Google Patents

アーク溶接の制御方法 Download PDF

Info

Publication number
WO2016075871A1
WO2016075871A1 PCT/JP2015/005269 JP2015005269W WO2016075871A1 WO 2016075871 A1 WO2016075871 A1 WO 2016075871A1 JP 2015005269 W JP2015005269 W JP 2015005269W WO 2016075871 A1 WO2016075871 A1 WO 2016075871A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
short
current
circuit
periods
Prior art date
Application number
PCT/JP2015/005269
Other languages
English (en)
French (fr)
Inventor
範幸 松岡
篤寛 川本
潤司 藤原
海斗 松井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580057731.2A priority Critical patent/CN107073623B/zh
Priority to JP2016558864A priority patent/JP6596669B2/ja
Priority to US15/518,320 priority patent/US10413987B2/en
Priority to EP15859785.6A priority patent/EP3219428B1/en
Publication of WO2016075871A1 publication Critical patent/WO2016075871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/06Arrangements or circuits for starting the arc, e.g. by generating ignition voltage, or for stabilising the arc
    • B23K9/073Stabilising the arc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/093Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits the frequency of the pulses produced being modulatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire
    • B23K9/125Feeding of electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the present invention relates to a consumable electrode type arc welding control method in which a pulse welding period and a short-circuit welding period are alternately repeated.
  • Typical examples of consumable electrode arc welding methods include pulse welding and short-circuit welding, which are put to practical use.
  • pulse welding and short circuit welding have the following problems.
  • ⁇ Pulse welding has a low heat input compared to spray transfer with a constant current exceeding the critical current, but since a long arc length is necessary to maintain a stable pulse transfer, the heat input cannot be kept low. Therefore, in so-called posture welding such as upright or upward, a bead having a defective shape such as bead drooping tends to occur.
  • the arc length is short, and during the short-circuit period, the heat input by the arc is small, so that welding defects such as poor fusion are likely to occur. In addition, there are many spatters due to short arc length and short circuit.
  • FIG. 4 shows a welding current waveform in the conventional arc welding control disclosed in Patent Document 1.
  • the welding current is controlled so that pulse welding and short-circuit welding are alternately performed for a set number of times.
  • the welding wire is fed at a constant feeding speed so as to be an optimum value in each of pulse welding and short-circuit welding.
  • Patent Document 1 describes that heat input control and bead shape control can be performed to suppress generation of defective defects such as welding defects such as poor fusion and bead sag in posture welding.
  • the forward and reverse feeds of the welding wire are repeated at regular intervals during the short-circuit welding period.
  • the welding wire starts to be fed in the forward feed direction when the current is smaller than the base current immediately before the end of the pulse welding period.
  • FIG. 1A is a schematic configuration diagram of an arc welding apparatus according to Embodiment 1.
  • FIG. 1B is a schematic enlarged cross-sectional view showing a welding part of arc welding in the first embodiment.
  • FIG. 2 is a diagram showing a welding current, a welding voltage, and a welding wire feeding speed in arc welding in the first embodiment.
  • FIG. 3 is a diagram showing a welding current, a welding voltage, and a welding wire feeding speed in arc welding in the second embodiment.
  • FIG. 4 is a diagram showing a welding current in conventional arc welding.
  • FIG. 1A is a schematic configuration diagram of an arc welding apparatus 50 according to the first embodiment.
  • the arc welding apparatus 50 mainly feeds a welding power source 19 that supplies power between a welding wire 15 that is a welding electrode that is a consumable electrode and a welding object 18, a welding torch 16, and the welding wire 15. It is comprised from the feeding part 14 to do.
  • the welding torch 16 is attached to, for example, a welding robot, and welding is performed using the welding torch 16 by the welding robot. Alternatively, the welding torch 16 is held by an operator, for example, and welding is performed by the operator using the welding torch 16.
  • the feeding unit 14 can feed the welding wire 15 in a normal feeding direction D101 toward the welding target 18 and a reverse feeding direction D102 moving away from the welding target 18 opposite to the normal feeding direction D101.
  • the welding power source 19 AC power input from the input power source 1 is rectified by the primary rectifier 2, converted to AC by the switching unit 3, stepped down by the transformer 4, and the secondary rectifier 5 and DCL (inductance). 6 is applied between the welding wire 15 and the welding object 18.
  • a welding arc 17 is generated between the welding wire 15 and the welding object 18 by the applied electric power, and welding is performed.
  • the welding power source 19 includes a welding voltage detection unit 7 that detects a welding voltage V that is a voltage of the welding wire 15, a welding current detection unit 8 that detects a welding current I flowing through the welding wire 15, and a pulse welding period. And a counter unit 9 that counts the elapsed time of the short-circuit welding period or the number of pulses output. Further, based on the number counted by the counter unit 9, a control switching unit 10 for switching the control of welding output, a setting unit 20 for setting welding conditions and the like, and a pulse welding time for controlling current in a pulse welding period A current control unit 12, a current control unit 11 at the time of short-circuit welding for controlling a current in a short-circuit welding period, and a drive unit 13 are provided.
  • the counter unit 9 is the first welding that occurs after the start of welding is instructed by operating a torch switch provided in the welding torch 16 or by executing an operation program of a welding robot. The contact between the wire 15 and the welding object 18 is detected, and the time is counted or the number of pulses output is counted. Further, the setting unit 20 sets the welding current set for performing welding, the set welding voltage set for performing welding, the feeding speed of the welding wire 15, the type of shield gas, and the welding wire 15. This is for setting the material, the diameter of the welding wire 15, the period of pulse welding, the number of waveform outputs, the period of short-circuit welding, the number of waveform outputs, and the like. In addition, each component which comprises the welding power supply part 19 may each be comprised independently as needed, and you may make it comprise combining a some component.
  • FIG. 1B is a schematic enlarged cross-sectional view showing a welding part of arc welding in the first embodiment.
  • a shield gas is supplied from the gas supply port to shield the arc and the weld from the outside air, and current is supplied from the welding power source 19 between the welding wire 15 and the welding object 18.
  • a welding arc 17 is generated on the welding wire 15 and the welding object 18, and the tip of the welding wire 15 and a part of the welding object 18 are melted by the heat of the arc 17.
  • the melted welding wire 15 is dropped onto the welding object 18 to form a molten pool 15P together with a part of the welding object 18 melted by the heat of the welding arc 17.
  • the welding object 18 is welded while forming.
  • the welding conditions for the welding are set in advance by the setting unit 20, and the feeding speed of the welding wire 15 is similarly set in advance by the setting unit 20.
  • the output of the welding power source unit 19 and the rotation of the motor of the feeding unit 14 are controlled so as to satisfy this setting condition.
  • the welding conditions are controlled by controlling the welding power source 19 so that the welding conditions become the set conditions while monitoring the welding power source 19, and the welding current I and the waveform of the welding current I are the basis of this control. Is obtained from the output of the welding current detector 8.
  • FIG. 2 shows the welding current I, the welding voltage V, and the feeding speed WF of the welding wire 15 of the arc welding apparatus 50 according to the first embodiment.
  • the vertical axis represents the welding current I, the welding voltage V, and the feeding speed WF
  • the horizontal axis represents time.
  • the feeding speed WF can take both positive and negative values. That is, the value of the feeding speed WF is positive when the welding wire 15 that is a welding electrode is fed in the forward feeding direction D101, and the feeding speed WF is fed when the welding wire 15 is fed in the backward feeding direction D102. The value is negative.
  • the welding current I flowing through the welding wire 15 forms a plurality of pulses Pp1 to Pp6 in which the peak current Ip values Ip1 to Ip6 and the base current Ib values Ib1 to Ib5 are alternately repeated. I is controlled.
  • the short-circuit welding period Ts one or more short-circuit periods Tss1 to Tss3 for short-circuiting the welding wire 15 and the welding object 18 and one or more that generate the arc 17 between the welding wire 15 and the welding object 18
  • the welding current I is controlled so as to shift alternately to the arc periods Tsa1 to Tsa2.
  • the pulse welding period Tp and the short-circuit welding period Ts are alternately repeated so that the pulse welding period Tp follows the short-circuit welding period Ts and the short-circuit welding period Ts follows the pulse welding period Tp.
  • the pulse welding period Tp is detected by the waveform of the welding current I detected by the welding current detector 8.
  • the pulse welding period Tp can be detected, for example, by detecting that the welding current I has changed from a value larger than a preset threshold Is to a smaller value. Therefore, by comparing the threshold value Is with the welding current I, the pulses Pp1 to Pp6 in the pulse welding period Tp can be detected.
  • the detection method of the pulses Pp1 to Pp6 is not limited to this example, and any method may be used as long as the pulses Pp1 to Pp6 can be detected.
  • the short-circuit welding period Ts can be detected, for example, by detecting that the welding voltage V detected by the welding voltage detector 7 has changed from a value larger than a preset threshold value Vs to a smaller value. At this time, in order not to determine that the short circuit period Tss1 to Tss3 is a very short micro short circuit, it is determined that one short circuit occurs when a preset time elapses while the welding voltage V is continuously higher than the threshold value Vs. May be.
  • the short circuit detection method is not limited to this example, and any method may be used as long as each short circuit can be detected.
  • a value of the feeding speed WF of the welding wire 15 is set in advance in the setting unit 20 in combination with the pulse condition of the setting unit 20 so that the average value of the welding current I does not exceed the critical current.
  • the number of pulses or the length of the pulse welding period Tp is also set in the setting unit 20 in advance.
  • a value of the welding voltage V that can stably perform short-circuit welding at the feeding speed WF set by the setting unit 20 is set in advance.
  • the number of shorts between the welding wire 15 and the welding object 18 in the short-circuit welding period Ts is also set in the setting unit 20 in advance. Therefore, in the arc welding apparatus 50, when pulse welding is performed based on the number or the length of time set by the setting unit 20, the control switching unit 10 switches to short-circuit welding, and the next is also set by the setting unit 20.
  • the current control unit 12 for pulse welding and the current control unit 11 for short circuit welding are switched by the control switching unit 10 so as to perform short-circuit welding based on the above-mentioned number or length of time, and control output from the current control units 11 and 12 Put out.
  • the drive part 13 which received the control output of the current control parts 11 and 12 gives a control output to the switching part 3 so that the waveform of the welding current I according to the control output can be obtained.
  • the welding power source unit 19 outputs the welding current I shown in FIG. 2 and applies it to the welding wire 15 and the welding object 18.
  • the control switching unit 10 gives a control output to the feeding unit 14 so that the feeding speed WF of the welding wire 15 becomes a preset feeding speed.
  • the feeding unit 14 rotationally drives the motor of the feeding unit 14 so that the feeding speed WF of the welding wire 15 becomes a feeding speed corresponding to the pulse welding period Tp and the short-circuit welding period Ts.
  • the welding wire 15 is fed at an optimum predetermined constant feeding speed WF3 set in advance by the setting unit 20.
  • the control switching unit 10 changes the feeding speed WF of the welding wire 15 in the short-circuit welding period Ts according to a periodic waveform having an amplitude and a period determined in advance by the setting unit 20.
  • the feeding speed WF shown in FIG. 2 changes according to a sine wave as a periodic waveform.
  • the feeding speed WF may be changed according to another periodic waveform such as a trapezoidal wave.
  • the setting unit 20 counts the number of short circuits set in advance, or opens the short circuit at the pulse start time tps when the time set in advance in the setting unit 20 has elapsed, and the control switching unit 10 sets the pulse welding period Tp. Starting, the first pulse Pp1 among the plurality of pulses Pp1 to Pp6 is generated.
  • the predetermined speed of the welding wire 15 in the pulse welding period Tp preset by the setting unit 20 is maintained while the feed speed WF is changed according to the periodic waveform in the short-circuit welding period Ts.
  • the feed speed WF3 changes toward the feed speed WF3 and the feed speed WF reaches a predetermined feed speed WF3 in the pulse welding period Tp
  • the feed section 14 feeds the welding wire 15 at the predetermined feed speed WF3.
  • the current control unit 12 determines the last pulse Pp6.
  • the welding current I is changed to a current I3 different from the base current Ib values Ib1 to Ib5 in the pulses Pp1 to Pp6.
  • the feed speed WF is set to a predetermined value in the pulse welding period Tp at the feed switching time tvs where the welding current I is the current I3. From the feed speed WF3, the welding wire 15 starts to be fed in the forward feed direction D101 and the reverse feed direction D102 according to the periodic waveform described above.
  • the current I3 is smaller than the value Ib5 of the base current Ib immediately before the end of the pulse welding period Tp.
  • the current I3 is smaller than at least one of the values Ib1 to Ib5 of the base current Ib.
  • the current I3 may be smaller than the average value of the base current Ib values Ib1 to Ib5, or may be smaller than the base current Ib values Ib1 to Ib5.
  • the time point when the welding current I changes to the current I3 is used as a trigger for shifting from the pulse welding period Tp to the short-circuit welding period Ts.
  • an arbitrary point in time when the welding current I is reduced to a value smaller than the base current Ib in the pulses Pp1 to Pp6 before the end of the pulse welding period Tp is triggered, that is, the feeding switching point. It may be tvs.
  • the feeding speed WF is periodically changed after determining the short-circuit or determining the arc (open of short-circuit).
  • the above-described variation is likely to appear significantly.
  • the short circuit and the arc operation are promoted according to the periodic waveform. Therefore, the short circuit periods Tss1 to Tss3 Variations in the length of the arc periods Tsa1 and Tsa2 hardly occur.
  • the welding current I in the first embodiment is controlled to be a current I3 smaller than the base current Ib of the pulse Pp6 after the last pulse Pp6 when switching from pulse welding to short-circuit welding. Further, in the first short-circuit period Tss1 when switching from pulse welding to short-circuit welding, the welding current I after detecting a short-circuit between the welding wire 15 and the welding object 18 is greater than the base current Ib of the pulses Pp1 to Pp6. It is controlled to a small value. Further, the welding current I is sharply reduced at at least one time point when the short-circuit is detected in the short-circuit welding period Ts and when the neck 15A is detected.
  • Switching from the pulse welding period Tp to the short-circuit welding period Ts is performed after the peak current Ip and the base current Ib determined in advance by the setting unit 20 are alternately repeated and the pulses Pp1 to Pp6 are output a predetermined number of times or for a predetermined time.
  • the welding current I is changed to a current I3 different from the base current Ib. Specifically, the welding current I is reduced to a current I3 smaller than the base current Ib, and a short circuit at the start of the short circuit period Tss1, which is the start of the short circuit welding period Ts, is waited for.
  • the welding voltage detection unit 7 detects a short circuit, in order to suppress a micro short circuit in which the short circuit is opened immediately after the short circuit at the short circuit detection time tsp when the short circuit period Tss1 starts, and to suppress the occurrence of spatter during the short circuit.
  • the welding current I is sharply lowered to the current I4 and held at the current I4 for a predetermined period Tsp1. Thereafter, the welding current I is increased to promote the opening of the short circuit. Further, it is more preferable to perform neck control that sharply lowers the welding current I when the welding voltage detector 7 detects the neck 15A (see FIG. 1B) of the welding wire 15 immediately before the short circuit is opened.
  • the current I when the short circuit is opened can be reduced, and the occurrence of sputtering can be suppressed.
  • the current control unit 11 After opening the short circuit at the short circuit opening time point tap at which the arc period Tsa1 starts, the current control unit 11 increases the current I to the current I5 so as not to cause a micro short circuit in the arc period Tsa1, and holds it for a predetermined period Tsp2. Thereafter, the welding current I is reduced so as to promote the occurrence of the next short circuit, that is, so that the next short circuit period Tss2 starts.
  • the pulse welding mode is entered simultaneously with the opening of the short circuit, and the pulse welding period Tp is started.
  • the welding current I is controlled so as to form pulses Pp1 to Pp6 that alternately repeat the peak current Ip and the base current Ib.
  • the short-circuit welding period Ts shifts to the pulse welding period Tp after the last short-circuit is opened, that is, after the last short-circuit period Tss3.
  • the feeding speed WF of the welding wire 15 is a predetermined predetermined value in the pulse welding period Tp. It is even better to shift after reaching the feeding speed WF3.
  • 15 is a welding current having a current I3 smaller than the base current Ib in the pulse welding period Tp immediately before the end of the pulse welding period Tp. Control with I.
  • the next short circuit can be promoted, it is possible to perform a short circuit in a state in which the growth of the droplets is suppressed, and the generation of spatter during the short circuit can be suppressed.
  • the welding wire 15 and the welding target object 18 can be short-circuited reliably, generation
  • production can be suppressed.
  • the current I at the time of short circuit and short circuit opening can be reduced. Accordingly, it is possible to suppress the occurrence of spatter at the time of short-circuiting and opening of the short-circuiting.
  • the welding wire 15 is continuously fed to the periodic waveform in the short-circuit welding period Ts. Since the feeding speed WF does not change discontinuously, stable welding can be realized.
  • the welding wire 15 which is a welding electrode
  • a plurality of pulse welding periods Tp for performing pulse welding and a plurality of short-circuit welding periods for performing short-circuit welding.
  • the process shifts alternately to Ts.
  • the welding current I flowing through the welding wire 15 includes one or more values Ip1 to Ip6 of the peak current Ip and one or more values Ib1 to Ib5 of the base current Ib.
  • the welding current I is controlled to be smaller (the current I3).
  • Tss of the plurality of short-circuit welding periods Ts following each pulse welding period Tp one or more short-circuit periods Tss1 to Tss3 for short-circuiting the welding wire 15 and the welding object 18;
  • the welding current I is controlled so as to alternately shift to one or more arc periods Tsa1 and Tsa2 in which the arc 17 is generated with the welding object 18.
  • the arc welding apparatus 50 is controlled so that the welding wire 15 is fed in a forward feed direction D101 toward the welding object 18 and a reverse feed direction D102 opposite to the forward feed direction D101. Feeding of the welding wire 15, which is alternately repeated in the forward feed direction D101 and the reverse feed direction D102 at a constant cycle, is started at the feed switching time point tvs, and from the feed switching time point tvs to each short-circuit welding period Ts. Then, the arc welding apparatus 50 is controlled so that the welding wire 15 is fed alternately and repeatedly in the forward feed direction D101 and the reverse feed direction D102 in the above cycle.
  • the arc welding apparatus 50 may be controlled so as to feed the welding wire 15 at a constant predetermined feed speed WF3 until the feed switching time tvs.
  • the short circuit welding period Ts a short circuit between the welding object 18 and the welding wire 15 or the neck 15A of the welding wire 15 may be detected. In this case, when the short circuit or the neck 15A is detected, the welding current I may be reduced.
  • the welding current I may be controlled so that the welding current I becomes smaller than the average value of one or more values Ib1 to Ib5 of the base current Ib at the feed switching time tvs.
  • the welding current I may be controlled so that the welding current I becomes smaller than one or more values Ib1 to Ib6 of the base current Ib at the feed switching time tvs.
  • pulse welding and short-circuit welding are alternately repeated at an arbitrary predetermined number of times.
  • heat input can be easily controlled.
  • shape of the bead 18A can be improved, and posture welding can be easily performed.
  • FIG. 3 shows the welding current I, the welding voltage V, and the feeding speed WF of the welding wire 15 in the second embodiment.
  • the welding current I, welding voltage V, and feed speed WF shown in FIG. 3 are obtained by the arc welding apparatus 50 shown in FIGS. 1A and 1B. 3, the same reference numerals are assigned to the same portions as those in the first embodiment shown in FIG.
  • the arc welding in the second embodiment shown in FIG. 3 differs from the arc welding in the first embodiment shown in FIG. 2 in the following points.
  • the welding current I is at the time tps when the feed speed WF of the welding wire 15 reaches the predetermined feed speed WF3 in the forward feed direction D101 in the pulse welding period Tp.
  • the pulse welding period Tp is started by starting to form the first pulse Pp1. After the time point tps, the feeding speed WF is maintained at a predetermined feeding speed WF3. The peak current Ip is generated almost immediately after the time point tps.
  • the feeding control of the welding wire 15 and the control of the welding current I are performed in synchronization.
  • the reason for shifting from the short-circuit welding period Ts to the pulse welding period Tp when the feeding speed WF of the welding wire 15 reaches the predetermined feeding speed WF3 in the pulse welding period Tp will be described below.
  • the value of the feeding speed WF is positive, and when the welding wire 15 is fed in the backward feeding direction D102, the feeding speed is increased.
  • the value of the speed WF is negative.
  • the welding wire 15 is fed at a low feeding speed WF, the welding wire 15 is fed at a small feeding speed in the forward feeding direction D101 or fed in the reverse feeding direction D102.
  • the feeding speed WF of the welding wire 15 is low, and the feeding speed at which the welding wire 15 is fed. Since the peak current Ip of the pulse Pp1 is generated when the current is small or is fed in the reverse feed direction D102, the welding wire 15 burns up, arc breakage occurs, and stable welding cannot be continued. On the contrary, the base current Ib is output without generating the peak current Ip in the pulse Pp1 for a while from the time point tps when the feed speed WF of the welding wire 15 reaches the predetermined feed speed WF3 in the pulse welding period Tp. In this case, since the welding current I is small, the welding wire 15 may be short-circuited to the welding object 18 and stable pulse welding may not be performed.
  • the welding current I is controlled to be the lowest current I1 when the welding wire feeding speed is the maximum feeding speed WF1 in the short-circuit welding period Ts. Then, the feeding current WF is decelerated and the welding current I is increased, and the welding current I is controlled to be the maximum current I2 when the feeding speed WF is the minimum feeding speed WF2. This cycle is repeated periodically.
  • the maximum feeding speed WF1 is the maximum feeding speed in the forward feeding direction D101, and the minimum feeding speed WF2 is reversed. This is the maximum feeding speed in the feeding direction D102.
  • the welding current I becomes the minimum current I1 when the feed speed WF is the maximum feed speed WF1 in the short-circuit welding period Ts, and therefore the welding wire 15 is hard to melt and moves toward the welding object 18.
  • the welding wire 15 heads at a large maximum feed speed WF1, and therefore a short circuit between the welding wire 15 and the welding object 18 is promoted. Since the welding current I becomes the maximum current I2 when the feeding speed WF is the minimum feeding speed WF2, the welding current I becomes the maximum current I2 while the welding wire 15 is being fed in the reverse feeding direction D102.
  • the welding wire 15 is melted and fed in the reverse feeding direction D102, opening of the short circuit is promoted.
  • the welding current I in synchronization with the feeding speed WF, even if there is a disturbance such as a change in arc length due to a change in the distance between the welding wire 15 and the welding object 18, it is periodic and stable. Welding can be realized.
  • the feeding speed WF of the welding wire 15 is changed from the minimum feeding speed WF2 to a predetermined predetermined feeding speed WF3 in the pulse welding period Tp preset by the setting unit 20. Transition is made according to the periodic waveform described above.
  • the peak current Ip of pulse welding is output by using the time when the feeding speed WF reaches the predetermined feeding speed WF3 in the pulse welding period Tp as a trigger. That is, when the feed speed WF reaches the predetermined feed speed WF3, the welding current I starts to form the pulse Pp1, thereby starting the pulse welding period Tp. Then, when the pulses Pp1 to Pp6 are output at a predetermined number of times / time by the setting unit 20, the welding current I is reduced from the peak current Ip to the current I3 smaller than the base current Ib in the last pulse Pp6, It is held for a predetermined period Tsp3.
  • the feed switching time tvs when the welding current I reaches the current I3 as a trigger the feed speed WF of the welding wire 15 is accelerated from a predetermined constant feed speed WF3 during the pulse welding period Tp, and the forward feed direction D101.
  • the control which changes according to the periodic waveform which alternately repeats the reverse feed direction D102 are switched at the feed switching time point tvs.
  • the time when the welding current I reaches the current I3 is set as the trigger, that is, the feeding switching time tvs.
  • an arbitrary time point when the welding current I is smaller than the base current Ib may be set as the trigger, that is, the feeding switching time point tvs.
  • the current I3 is made smaller than at least one of one or more values (Ib1 to Ib5) of the base current Ib.
  • the current I3 may be smaller than the average value of one or more values (Ib1 to Ib5) of the base current Ib, and may be smaller than one or more values (Ib1 to Ib5) of the base current Ib.
  • the welding current I may be sharply reduced at the time when the short circuit is detected or the neck 15A is detected as in the arc welding in the first embodiment.
  • the welding current I may be a value equal to or less than the minimum current I1.
  • the arc welding apparatus 50 is controlled so that the welding wire 15 is fed alternately and repeatedly in the forward feed direction D101 and the reverse feed direction D102 at a constant cycle.
  • the arc welding apparatus 50 is controlled so that the welding wire 15 is fed in the normal feeding direction D101 at a predetermined feeding speed WF3.
  • the welding wire 15 is sent after the transition from one arc period Tsa2 of one or more arc periods Tsa1 and Tsa2 to one short-circuit period Tss3 of one or more short-circuit periods Tss1 to Tss3.
  • the arc welding apparatus 50 is controlled so that the welding current I starts to form the first pulse Pp1 among the plurality of pulses Pp1 to Pp6 when the feeding speed WF to be fed reaches a predetermined feeding speed WF3.
  • the arc welding apparatus 50 may be controlled so that the feeding speed WF repeats the maximum feeding speed WF1 and the minimum feeding speed WF2 at a constant cycle.
  • the welding current I is set to the minimum current I1 when the feeding speed WF reaches the maximum feeding speed WF1 in the short-circuit welding period Ts.
  • the welding current I is set to the maximum current I2.
  • the welding wire 15 is fed in the forward feed direction D101 and the reverse feed direction in the short-circuit welding period Ts. Delivered to D102.
  • the welding wire 15 is fed according to the periodic waveform in the short-circuit welding period Ts, there is little variation in the short-circuit and arc cycles, and stable welding can be realized.
  • the short circuit and the short circuit are surely performed, and stable welding can be realized.
  • heat input control and shape control of the bead 18A are performed, thereby generating a weld defect such as poor fusion or a bead having a defective shape such as drooping of the bead 18A in posture welding. Can be suppressed.
  • Both the pulse welding period Tp and the short-circuit welding period Ts can realize welding with less spatter generation.
  • the control method of arc welding in the present invention can realize stable welding and is useful for arc welding for welding an object to be welded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

パルス溶接と短絡溶接とを交互に繰り返して行う消耗電極式のアーク溶接の制御において、短絡溶接期間(Ts)に周期的に溶接電極の正送と逆送を繰り返し、溶接電流がパルス期間の終了直前のベース電流より小さい時点で溶接電極の正送を開始することで、スパッタの発生を抑制し、安定した溶接が実現できる。

Description

アーク溶接の制御方法
 本発明は、パルス溶接期間と短絡溶接期間とを交互に繰り返す消耗電極式のアーク溶接の制御方法に関する。
 消耗電極式のアーク溶接方法において、代表的なものに、パルス溶接と短絡溶接があり、実用に供されている。ただし、パルス溶接と短絡溶接には、次のような問題がある。
 パルス溶接は臨界電流を超える一定電流によるスプレー移行に比較すると低入熱であるが、安定なパルス移行を維持するにはある程度長いアーク長が必要なので、入熱を低く抑えることは出来ない。従って、立て向き、上向きなどのいわゆる姿勢溶接においては、ビードの垂れ下がりなどの不良形状ビードが発生し易い。
 短絡溶接は、アーク長が短く、かつ、短絡期間は、アークによる入熱が小さいことから、融合不良などの溶接欠陥が生じやすい。また、短アーク長および短絡によるスパッタの発生が多い。
 以上のような問題を抑制する手段として、パルス溶接と短絡溶接とを任意の回数ずつ交互に繰り返すように制御するアーク溶接方法が提案されている(特許文献1参照)。図4は、特許文献1に開示されている従来のアーク溶接制御における溶接電流波形を示す。溶接電流を設定回数ずつ交互にパルス溶接、短絡溶接を行うように制御している。また、溶接ワイヤを、パルス溶接、短絡溶接のそれぞれにおいて、最適値となるような一定の送給速度で送給している。これにより、入熱制御およびビード形状制御を行い融合不良などの溶接欠陥や姿勢溶接におけるビードの垂れ下がりなどの不良形状ビード発生を抑制できる、と特許文献1は記載している。
 また、短絡溶接において、スパッタ発生の抑制と、短絡移行を確実に行うための方法として、アークの発生と短絡とを検出してアークの発生によって溶接ワイヤを送給(正送)し、短絡の発生によってワイヤを引き上げる(逆送する)溶接方法が示されている(特許文献2参照)。
特開昭60-255276号公報 特公昭48-11463号公報
 パルス溶接期間と短絡溶接期間とを交互に繰り返して行う消耗電極式のアーク溶接において、短絡溶接期間に溶接ワイヤの正送と逆送を一定の周期で繰り返えす。パルス溶接期間から短絡溶接期間へ移る際において、パルス溶接期間の終了直前のベース電流より小さい電流の時に溶接ワイヤを正送方向へ送給し始める。
図1Aは実施の形態1におけるアーク溶接装置の概略構成図である。 図1Bは実施の形態1におけるアーク溶接の溶接部位を示す模式拡大断面図である。 図2は実施の形態1におけるアーク溶接での溶接電流と溶接電圧と溶接ワイヤの送給速度とを示す図である。 図3は実施の形態2におけるアーク溶接での溶接電流と溶接電圧と溶接ワイヤの送給速度とを示す図である。 図4は従来のアーク溶接における溶接電流を示す図である。
 (実施の形態1)
 図1Aは実施の形態1におけるアーク溶接装置50の概略構成図である。アーク溶接装置50は主に、消耗性電極である溶接電極である溶接ワイヤ15と溶接対象物18との間に電力を供給する溶接電源部19と、溶接トーチ16と、溶接ワイヤ15を送給する送給部14から構成される。なお、溶接トーチ16は、例えば溶接ロボットに取り付けられ、溶接ロボットにより溶接トーチ16を用いて溶接が行われる。あるいは、溶接トーチ16は、例えば作業者に保持され、作業者により溶接トーチ16を用いて溶接が行われる。送給部14は、溶接対象物18に向かう正送方向D101と、正送方向D101の反対の溶接対象物18から遠ざかる逆送方向D102とに溶接ワイヤ15を送給することができる。溶接電源部19において、入力電源1から入力した交流電力は、1次整流部2で整流され、スイッチング部3により交流に変換され、トランス4により降圧され、2次整流部5及びDCL(インダクタンス)6により整流され、溶接ワイヤ15と溶接対象物18との間に印加される。印加された電力により溶接ワイヤ15と溶接対象物18との間で溶接アーク17が発生して溶接が行われる。また、溶接電源部19は、溶接ワイヤ15の電圧である溶接電圧Vを検出する溶接電圧検出部7と、溶接ワイヤ15を流れる溶接電流Iを検出する溶接電流検出部8と、パルス溶接期間と短絡溶接期間の経過時間またはパルスの出力回数をカウントするカウンタ部9とを備えている。また、カウンタ部9がカウントした数に基づいて、溶接出力の制御を切り替える制御切替部10と、溶接条件等を設定するための設定部20と、パルス溶接期間における電流を制御するパルス溶接時の電流制御部12と、短絡溶接期間における電流を制御する短絡溶接時の電流制御部11と、駆動部13と、を備えている。なお、カウンタ部9は、溶接トーチ16に設けられたトーチスイッチが操作されることにより、あるいは、溶接ロボットの動作プログラムが実行されることにより、溶接の開始が指示された後に、最初に生じる溶接ワイヤ15と溶接対象物18との接触を検出して時間のカウントやパルスの出力回数のカウントを行う。また、設定部20は、溶接を行うために設定する設定溶接電流や、溶接を行うために設定する設定溶接電圧や、溶接ワイヤ15の送給速度や、シールドガスの種類や、溶接ワイヤ15の材質や、溶接ワイヤ15の径や、パルス溶接の期間や波形出力回数、短絡溶接の期間や波形出力回数等を設定するためのものである。なお、溶接電源部19を構成する各構成部は、必要に応じて各々単独に構成してもよいし、複数の構成部を複合して構成するようにしてもよい。
 次に、アーク溶接装置50の動作について説明する。図1Bは実施の形態1におけるアーク溶接の溶接部位を示す模式拡大断面図である。
 アーク溶接装置50において、ガス供給口よりシールドガスを供給してアーク及び溶接部を外気からシールドしつつ、溶接電源部19より溶接ワイヤ15と溶接対象物18の間に電流を供給する。これにより溶接ワイヤ15と溶接対象物18に溶接アーク17を発生させて、アーク17の熱で溶接ワイヤ15の先端と溶接対象物18の一部を溶かす。溶けた溶接ワイヤ15は溶接対象物18上に滴下して、溶接アーク17の熱により溶けた溶接対象物18の一部と共に溶融池15Pを形成する。溶接トーチ16の溶接対象物18に対しての相対的な溶接方向D15への移動により、溶融池15Pが形成されながら溶接対象物18に対して溶接方向D15に相対的に移動してビード18Aを形成しつつ溶接対象物18を溶着する。
 その溶接の溶接条件は設定部20で予め設定され、また溶接ワイヤ15の送給速度も同様に設定部20で予め設定される。この設定条件になるように溶接電源部19の出力及び送給部14のモータの回転が制御される。溶接条件の制御は溶接電源部19を監視しながら溶接条件が設定条件になるように溶接電源部19の制御をすることによって行うが、この制御の元となる溶接電流I及び溶接電流Iの波形は溶接電流検出部8の出力により得る。
 図2は実施の形態1におけるアーク溶接装置50の溶接電流Iと溶接電圧Vと溶接ワイヤ15の送給速度WFとを示す。図2において縦軸は溶接電流Iと溶接電圧Vと送給速度WFとを示し、横軸は時間を示す。送給速度WFは正負両方の値を取り得る。すなわち、溶接電極である溶接ワイヤ15を正送方向D101に送給する場合に送給速度WFの値は正であり、溶接ワイヤ15を逆送方向D102に送給する場合に送給速度WFの値は負である。
 パルス溶接期間Tpにおいて、溶接ワイヤ15を流れる溶接電流Iがピーク電流Ipの値Ip1~Ip6とベース電流Ibの値Ib1~Ib5とを交互に繰り返す複数のパルスPp1~Pp6を形成するように溶接電流Iが制御される。短絡溶接期間Tsにおいて、溶接ワイヤ15と溶接対象物18とを短絡させる1つ以上の短絡期間Tss1~Tss3と、溶接ワイヤ15と溶接対象物18との間でアーク17を発生する1つ以上のアーク期間Tsa1~Tsa2とに交互にそれぞれに移行するように溶接電流Iが制御される。パルス溶接期間Tpが短絡溶接期間Tsに続き、短絡溶接期間Tsがパルス溶接期間Tpに続くように、パルス溶接期間Tpと短絡溶接期間Tsが交互に繰り返される。
 溶接電流検出部8で検出された溶接電流Iの波形によってパルス溶接期間Tpが検出される。パルス溶接期間Tpは、例えば、溶接電流Iが、予め設定した閾値Isより大きい値から小さい値に変化したことを検出することで検出できる。したがって、閾値Isと溶接電流Iとの比較を行うことにより、パルス溶接期間TpのパルスPp1~Pp6を検出できる。パルスPp1~Pp6の検出方法は、この例に限らずパルスPp1~Pp6を検出できれば、どのような方法でもよい。
 短絡溶接期間Tsは、例えば、溶接電圧検出部7で検出された溶接電圧Vが予め設定した閾値Vsより大きい値から小さい値に変化したことを検出することで検出できる。この際、短絡期間Tss1~Tss3を非常に短い微小短絡と判定しないようにするため、溶接電圧Vが継続して閾値Vsより高い間に予め設定した時間を経過した場合を1回の短絡と判定してもよい。短絡の検出方法は、この例に限らず各々の短絡を検出できれば、どのような方法でもよい。
 パルス溶接期間Tpにおいて、設定部20のパルス条件と組み合わせ、溶接電流Iの平均値が臨界電流を超えないような溶接ワイヤ15の送給速度WFの値が設定部20に予め設定されている。また、そのパルスの数またはパルス溶接期間Tpの長さも設定部20に予め設定されている。一方、短絡溶接期間Tsにおいては、設定部20により設定された送給速度WFでの短絡溶接を安定に行わせることのできる溶接電圧Vの値が予め設定されている。また、短絡溶接期間Tsにおける溶接ワイヤ15と溶接対象物18との短絡の回数すなわち短絡期間Tss1~Tss3の数または短絡溶接期間Tsの長さも設定部20に予め設定されている。したがって、アーク溶接装置50では、設定部20で設定された上記の数また時間の長さに基づきパルス溶接を行うと制御切替部10によって短絡溶接に切替えられ、次は同じく設定部20で設定された上記の数または時間の長さに基づき短絡溶接を行うように、パルス溶接の電流制御部12および短絡溶接の電流制御部11を制御切替部10によって切替えて電流制御部11、12から制御出力を出す。そして、電流制御部11、12の制御出力を受けた駆動部13は制御出力に応じた溶接電流Iの波形が得られるよう、制御出力をスイッチング部3に与える。これにより、溶接電源部19は図2に示す溶接電流Iを出力して溶接ワイヤ15と溶接対象物18に与える。
 同様に、パルス溶接期間Tpと短絡溶接期間Tsにおいて、溶接ワイヤ15の送給速度WFが予め設定した送給速度となるように制御切替部10は送給部14に制御出力を与える。これにより、送給部14は、溶接ワイヤ15の送給速度WFがパルス溶接期間Tpと短絡溶接期間Tsに対応する送給速度となるように送給部14のモータを回転駆動する。この際、パルス溶接期間Tpでは、予め設定部20で設定された最適な所定の一定の送給速度WF3で溶接ワイヤ15が送給される。一方、制御切替部10は、短絡溶接期間Tsにおける溶接ワイヤ15の送給速度WFを、設定部20によって予め決められた振幅および周期を有する周期的波形にしたがって変化させる。図2に示す送給速度WFは周期的波形として正弦波にしたがって変化する。送給速度WFは台形波など他の周期的波形にしたがって変化させてもよい。設定部20で予め設定された回数の短絡がカウントされる、または設定部20で予め設定された時間が経過したパルス開始時点tpsで短絡を開放して、制御切替部10はパルス溶接期間Tpを開始して複数のパルスPp1~Pp6のうちの最初のパルスPp1を発生させる。パルス開始時点tps後も継続して短絡溶接期間Tsでの上記周期的波形にしたがって送給速度WFは変化したまま、設定部20で予め設定されたパルス溶接期間Tpでの溶接ワイヤ15の所定の送給速度WF3へ向かって変化し、送給速度WFがパルス溶接期間Tpにおいて所定の送給速度WF3に達すると、送給部14は溶接ワイヤ15を所定の送給速度WF3で送給する。その後、パルス溶接期間Tpで、設定部20で予め設定された回数のパルスPp1~Pp6がカウントされる、または設定部20で予め設定された時間が経過すると、電流制御部12は最後のパルスPp6を形成した後で溶接電流IをパルスPp1~Pp6におけるベース電流Ibの値Ib1~Ib5とは異なる電流I3に変化させる。最後のパルスPp6を形成した後で溶接電流Iが電流I3に変化した時点をトリガとして、溶接電流Iが電流I3である送給切替時点tvsで送給速度WFをパルス溶接期間Tpでの所定の送給速度WF3から上記の周期的波形にしたがって溶接ワイヤ15を正送方向D101と逆送方向D102とに送給し始める。実施の形態1では、電流I3はパルス溶接期間Tpの終了直前のベース電流Ibの値Ib5より小さい。このよに、実施の形態1では、電流I3はベース電流Ibの値Ib1~Ib5の少なくとも1つより小さい。電流I3はベース電流Ibの値Ib1~Ib5の平均値より小さくてもよく、ベース電流Ibの値Ib1~Ib5より小さくてもよい。
 なお、図2では溶接電流Iが電流I3に変化した時点をパルス溶接期間Tpから短絡溶接期間Tsへ移るトリガとしている。実施の形態1におけるアーク溶接では、パルス溶接期間Tpの終了前で、溶接電流IがパルスPp1~Pp6におけるベース電流Ibより小さい値に低減している時期の任意の時点をトリガすなわち送給切替時点tvsとしてもよい。このようにすることで、パルス溶接期間Tpと短絡溶接期間Tsとを設定条件で交互に繰り返しながら、かつ、その時の各モードでの最適な送給速度WFで溶接ワイヤ15を送給しつつ溶接を行って行く。図2に示すように短絡期間Tss1~Tss3とアーク期間Tsa1、Tsa2に多少のばらつきがある場合には、短絡を判定した後またはアーク(短絡の開放)を判定した後に送給速度WFを周期的波形にしたがって正送方向D101と逆送方向D102に溶接ワイヤ15を送給する制御では、上記のばらつきが顕著に表れやすい。実施の形態1におけるアーク溶接では、一定周期を有する周期的波形にしたがって送給速度WFを変化させることで、周期的波形にしたがって短絡とアークの動作が促進されるので、短絡期間Tss1~Tss3とアーク期間Tsa1、Tsa2の長さのばらつきが生じ難い。
 次に、実施の形態1における溶接電流Iについて説明する。実施の形態1における溶接電流Iは、パルス溶接から短絡溶接へ切替わる際の最後のパルスPp6の後でパルスPp6のベース電流Ibよりも小さい電流I3となるように制御されている。また、パルス溶接から短絡溶接へ切替わる際の最初の短絡期間Tss1において、溶接ワイヤ15と溶接対象物18との短絡を検出した後の溶接電流Iは、パルスPp1~Pp6のベース電流Ibよりも小さい値に制御されている。また、短絡溶接期間Tsにおいて短絡を検出した時点およびネック15Aを検出した時点の少なくとも一つの時点で溶接電流Iを急峻に低減する。パルス溶接期間Tpから短絡溶接期間Tsへの切替えは、設定部20で予め定められたピーク電流Ipおよびベース電流Ibを交互に繰り返して所定の回数または所定の時間だけパルスPp1~Pp6を出力した後に、溶接電流Iをベース電流Ibとは異なる電流I3に変化させて行う。具体的には溶接電流Iをベース電流Ibより小さい電流I3に低減して、短絡溶接期間Tsの開始である短絡期間Tss1の開始の短絡を待つ。その後、溶接電圧検出部7が短絡を検出すると、短絡期間Tss1が始まる短絡検出時点tspにおいて短絡後すぐに短絡が開放される微小短絡を抑制するため、かつ短絡時のスパッタ発生を抑制するために溶接電流Iを急峻に電流I4に下げて所定の期間Tsp1だけ電流I4に保持する。その後、溶接電流Iを増加して短絡の開放を促進する。また、溶接電圧検出部7によって短絡が開放する直前に溶接ワイヤ15のネック15A(図1B参照)を検出したときに溶接電流Iを急峻に下げるネック制御を行うとなおよい。これによって、短絡開放時の電流Iを低減でき、スパッタの発生が抑制できる。電流制御部11は、アーク期間Tsa1が始まる短絡開放時点tapで短絡を開放した後は、アーク期間Tsa1において微小短絡が発生しないように電流Iを電流I5に上げて所定の期間Tsp2だけ保持し、その後は次の短絡の発生を促進するようにすなわち次の短絡期間Tss2が始まるように溶接電流Iを低減する。そして、この動作を繰り返して、設定部20で予め設定された回数または時間、短絡が行われた後に、短絡の開放と同時にパルス溶接のモードに入りパルス溶接期間Tpを開始し、溶接電流Iがピーク電流Ipとベース電流Ibを交互に繰り返すパルスPp1~Pp6を形成するように溶接電流Iが制御される。なお、実施の形態1におけるアーク溶接では短絡溶接期間Tsからパルス溶接期間Tpへは、最後の短絡が開放された後すなわち最後の短絡期間Tss3の後に移行する。短絡溶接期間Tsからパルス溶接期間Tpへは、最後の短絡が開放された後すなわち最後の短絡期間Tss3の後で、かつ溶接ワイヤ15の送給速度WFがパルス溶接期間Tpでの一定の所定の送給速度WF3に到達した後に移行するとなお良い。
 パルス溶接期間と短絡溶接期間とを交互に繰り返す消耗電極式アーク溶接において、消耗電極である溶接ワイヤをパルス溶接期間と短絡溶接期間で各々一定送給するアーク溶接方法では、短絡溶接期間において短絡の開放時にスパッタが生じ易い。
 実施の形態1におけるアーク溶接では、パルス溶接期間Tpから短絡溶接期間Tsへ移行する際の最後のパルスPp6の後において、言い換えると、パルス溶接期間Tpから短絡溶接期間Tsへ移る際において、溶接ワイヤ15を一定の所定の周期を有する周期的波形にしたがって正送方向D101に送給し始める時点を、パルス溶接期間Tpの終了直前のパルス溶接期間Tpにおけるベース電流Ibよりも小さい電流I3の溶接電流Iにて制御する。それにより、次の短絡を促進することができ、溶滴の成長を抑制した状態で短絡することが可能となり、短絡時のスパッタ発生が抑制できる。またベース電流Ibよりも小さい電流I3に所定の期間だけ溶接電流Iを保持することで、パルス溶接期間Tpのピーク電流Ipから短絡溶接期間Tsの短絡期間Tss1の初期電流に向かう際のアンダーシュートを抑制でき、安定した溶接が実現できる。パルス溶接期間Tpから短絡溶接期間Tsへ切替える際の最初の短絡期間Tss1において、短絡の検出後の電流Iをパルス溶接期間Tpのベース電流Ibよりも小さい電流I3にするよう制御する。これにより、溶接ワイヤ15と溶接対象物18とを確実に短絡することができ、短絡直後に短絡が開放する微小短絡の発生を抑制でき、スパッタ発生を抑制することができる。短絡溶接期間Tsにおいて短絡を検出した時点とネック15Aを検出した時点の少なくとも一つの時点で溶接電流Iを急峻に下げることにより、短絡時および短絡開放時の電流Iを低減することができ、それに応じて短絡時および短絡開放時のスパッタ発生を抑制できる。
 以上のように溶接電流Iを制御することで、高入熱のパルス溶接と、低入熱の短絡溶接とを短時間で交互に繰りかえしても、各溶接期間Tp、Tsの切替わり時期にスパッタ発生等の現象が生じ難いので、両溶接法の長所を兼ね備えた溶接法を実現できる。また、パルスPp1~Pp6の数または時間と短絡期間Tss1~Tss3の回数または時間とを適宜に組み合わせることにより、入熱を容易に制御できる。また、短絡溶接期間Tsにおいて溶接ワイヤ15を周期的に送給するので、短絡とアークの周期が一定で安定した溶接が実現できる。短絡溶接期間Tsからパルス溶接期間Tpへの切替わり、また逆にパルス溶接期間Tpから短絡溶接期間Tsへの切替わりにおいても短絡溶接期間Tsにおける周期的波形に継続的にしたがって溶接ワイヤ15が送給されるので、送給速度WFが不連続に変化することがなく、安定した溶接が実現できる。
 上述のように、溶接電極である溶接ワイヤ15を備えたアーク溶接装置50を用いた消耗電極式のアーク溶接では、パルス溶接を行う複数のパルス溶接期間Tpと短絡溶接を行う複数の短絡溶接期間Tsとに交互にそれぞれに移行する。複数のパルス溶接期間Tpのそれぞれのパルス溶接期間Tpにおいて、溶接ワイヤ15を流れる溶接電流Iがピーク電流Ipの1つ以上の値Ip1~Ip6とベース電流Ibの1つ以上の値Ib1~Ib5とに交互にそれぞれに移行する複数のパルスPp1~Pp6を形成し、複数のパルスPp1~Pp6を形成した後の送給切替時点tvsにおいてベース電流Ibの1つ以上の値Ib1~Ib5の少なくとも1つより小さくなる(電流I3である)ように溶接電流Iを制御する。それぞれのパルス溶接期間Tpに続く複数の短絡溶接期間Tsのそれぞれの短絡溶接期間Tsにおいて、溶接ワイヤ15と溶接対象物18とを短絡させる1つ以上の短絡期間Tss1~Tss3と、溶接ワイヤ15と溶接対象物18との間でアーク17を発生する1つ以上のアーク期間Tsa1、Tsa2とに交互にそれぞれに移行するように溶接電流Iを制御する。溶接対象物18に向かう正送方向D101と、正送方向D101の反対の逆送方向D102とに溶接ワイヤ15を送給するようにアーク溶接装置50を制御する。一定の周期で正送方向D101と逆送方向D102とに交互に繰り返して行う溶接ワイヤ15の送給を送給切替時点tvsに開始し、送給切替時点tvsからそれぞれの短絡溶接期間Tsに亘って上記の周期で正送方向D101と逆送方向D102とに交互に繰り返して溶接ワイヤ15を送給するようにアーク溶接装置50を制御する。
 パルス溶接期間Tpにおいて送給切替時点tvsまで一定の所定の送給速度WF3で溶接ワイヤ15を送給するようにアーク溶接装置50を制御してもよい。
 短絡溶接期間Tsにおいて、溶接対象物18と溶接ワイヤ15との短絡または溶接ワイヤ15のネック15Aを検出してもよい。この場合には、短絡またはネック15Aを検出すると溶接電流Iを低減してもよい。
 パルス溶接期間Tpにおいて、溶接電流Iが送給切替時点tvsにおいてベース電流Ibの1つ以上の値Ib1~Ib5の平均値より小さくなるように溶接電流Iを制御してもよい。
 また、パルス溶接期間Tpにおいて、溶接電流Iが送給切替時点tvsにおいてベース電流Ibの1つ以上の値Ib1~Ib6より小さくなるように溶接電流Iを制御してもよい。
 以上詳述したように実施の形態1におけるアーク溶接では入熱の制御およびビード18Aの形状制御のため、パルス溶接と短絡溶接とを任意の所定の回数ずつ交互に繰り返すことで、両溶接法の長所を兼ね備えた溶接法を実現できる。また、短絡溶接の回数とパルス溶接の回数を適宜に組み合わせることにより、入熱の制御が容易に行えるようになる他、これによりビード18Aの形状を改善することができ、姿勢溶接が容易に行なえる。
 (実施の形態2)
 図3は実施の形態2における溶接電流Iと溶接電圧Vと溶接ワイヤ15の送給速度WFを示す。図3に示す溶接電流Iと溶接電圧Vと送給速度WFは図1Aと図1Bに示すアーク溶接装置50で得られる。図3において、図2に示す実施の形態1と同じ部分には同じ参照番号を付す。図3に示す実施の形態2におけるアーク溶接では、図2に示す実施の形態1におけるアーク溶接と以下の点で異なる。短絡溶接期間Tsからパルス溶接期間Tpへ移行する際に、溶接ワイヤ15の送給速度WFがパルス溶接期間Tpにおける正送方向D101の所定の送給速度WF3に到達した時点tpsに溶接電流Iが最初のパルスPp1を形成し始めてパルス溶接期間Tpが開始される。時点tps以後は送給速度WFは所定の送給速度WF3に維持される。時点tpsのほぼ直後にピーク電流Ipを発生させる。短絡溶接期間Tsにおいて溶接ワイヤ15の送給制御と溶接電流Iの制御を同期して行っている。
 短絡溶接期間Tsからパルス溶接期間Tpに、溶接ワイヤ15の送給速度WFがパルス溶接期間Tpにおける所定の送給速度WF3に到達した時に移行する理由を以下に述べる。前述のように、溶接電極である溶接ワイヤ15を正送方向D101に送給する場合に送給速度WFの値は正であり、溶接ワイヤ15を逆送方向D102に送給する場合に送給速度WFの値は負である。溶接ワイヤ15が低い送給速度WFで送給される場合には、溶接ワイヤ15が正送方向D101に小さい送給速度で送給されるかまたは逆送方向D102に送給される。送給速度WFが所定の送給速度WF3に到達する前に、パルスPp1のピーク電流Ipを発生させると、溶接ワイヤ15の送給速度WFが低く、溶接ワイヤ15が送給される送給速度が小さい、あるいは逆送方向D102に送給されている時に、パルスPp1のピーク電流Ipを発生させることになるので、溶接ワイヤ15が燃え上がり、アーク切れ等が起こり安定した溶接を継続できない。逆に、溶接ワイヤ15の送給速度WFがパルス溶接期間Tpにおける所定の送給速度WF3に到達した時点tpsからしばらくの間、パルスPp1におけるピーク電流Ipを発生させずにベース電流Ibを出力した場合は、溶接電流Iが小さいので溶接ワイヤ15が溶接対象物18と短絡してしまい、安定したパルス溶接ができない場合がある。
 次に、短絡溶接期間Tsにおいて、溶接ワイヤ15の送給制御と溶接電流Iの制御を同期させる制御について説明する。例えば、図3において、短絡溶接期間Tsにおける、溶接ワイヤの送給速度が最高送給速度WF1のときに溶接電流Iが最低電流I1となるように制御する。そして、送給速度WFが減速されるとともに溶接電流Iは増加させ、送給速度WFが最低送給速度WF2のときに溶接電流Iは最大電流I2となるように制御する。そしてこのサイクルを周期的に繰りかえす。正負の値を取りえる送給速度WFの絶対値である送給速さに基づくと、最高送給速度WF1は正送方向D101の最大の送給速さであり、最低送給速度WF2は逆送方向D102の最大の送給速さである。
 次に、短絡溶接期間Tsにおいて、溶接ワイヤ15の送給制御と溶接電流Iの制御を同期して行う理由について説明する。上記の制御により、短絡溶接期間Tsにおいて送給速度WFが最高送給速度WF1のときに溶接電流Iは最小電流I1となるので、溶接ワイヤ15が溶融し難い状態で溶接対象物18に向かって溶接ワイヤ15が大きな最高送給速度WF1で向かっていき、したがって溶接ワイヤ15と溶接対象物18の短絡が促進される。送給速度WFが最低送給速度WF2のときに溶接電流Iが最大電流I2となるので、溶接ワイヤ15が逆送方向D102に送給されている状態で溶接電流Iは最大電流I2となる。したがって溶接ワイヤ15が溶融し且つ逆送方向D102に送給されるので、短絡の開放が促進される。送給速度WFに溶接電流Iを同期させて制御することで、溶接ワイヤ15と溶接対象物18間の距離の変化等に起因するアーク長の変動等の外乱があっても、周期的で安定した溶接が実現できる。そして、所定の回数で短絡が実施されると、溶接ワイヤ15の送給速度WFは最低送給速度WF2から設定部20によって予め設定されたパルス溶接期間Tpにおける一定の所定の送給速度WF3に前述の周期的波形に従って移行する。そして、送給速度WFがパルス溶接期間Tpに所定の送給速度WF3に到達した時点をトリガとしてパルス溶接のピーク電流Ipを出力する。すなわち、送給速度WFが所定の送給速度WF3に到達した時点に溶接電流IはパルスPp1を形成し始めることでパルス溶接期間Tpが開始する。そして、設定部20によって予め決められた回数/時間にパルスPp1~Pp6が出力されると、最後のパルスPp6においてピーク電流Ipからベース電流Ibよりも小さい電流I3へと溶接電流Iが低減され、所定の期間Tsp3だけ保持される。そして、溶接電流Iが電流I3へ到達した送給切替時点tvsをトリガとして、溶接ワイヤ15の送給速度WFはパルス溶接期間Tpの所定の一定の送給速度WF3から加速され、正送方向D101と逆送方向D102を交互に繰り返す周期的波形にしたがって変化する制御に送給切替時点tvsにて切り替えられる。なお、図3に示すアーク溶接では溶接電流Iが電流I3へ到達した時点をトリガすなわち送給切替時点tvsとしている。実施の形態2におけるアーク溶接では、溶接電流Iがベース電流Ibより小さい時期の任意の時点をトリガすなわち送給切替時点tvsとしてもよい。このように、実施の形態2におけるアーク溶接では、短絡溶接期間Tsからパルス溶接期間Tpへの切替わりとパルス溶接期間Tpから短絡溶接期間Tsへの切替わりの双方においても周期的波形にしたがって溶接ワイヤ15の送給を維持できるので、安定した溶接が実現できる。なお、電流I3はベース電流Ibの1つ以上の値(Ib1~Ib5)の少なくとも1つより小さくする。電流I3は、ベース電流Ibの1つ以上の値(Ib1~Ib5)の平均値より小さくしてもよく、ベース電流Ibの1つ以上の値(Ib1~Ib5)より小さくしてもよい。
 また、実施の形態2におけるアーク溶接において、実施の形態1におけるアーク溶接と同様に、短絡を検出した時点またはネック15Aを検出した時点に溶接電流Iを急峻に低減してもよい。その場合、溶接電流Iは最小電流I1以下の値となっても良い。短絡を検出した時点またはネック15Aを検出した時点に急峻に溶接電流Iを低減することで、スパッタの発生をさらに抑制できる。実施の形態2においては、短絡溶接期間Tsにおいて溶接ワイヤ15の送給と溶接電流Iを同期して制御しているので、アーク長の変動等による外乱があっても周期的で安定した溶接が実現できる。
 上述のように、短絡溶接期間Tsにおいて、一定の周期で正送方向D101と逆送方向D102とに交互に繰り返して溶接ワイヤ15を送給するようにアーク溶接装置50を制御する。パルス溶接期間Tpにおいて、所定の送給速度WF3で正送方向D101に溶接ワイヤ15を送給するようにアーク溶接装置50を制御する。短絡溶接期間Tsにおいて1つ以上のアーク期間Tsa1、Tsa2のうちの1つのアーク期間Tsa2から1つ以上の短絡期間Tss1~Tss3のうちの1つの短絡期間Tss3に移行した後で溶接ワイヤ15を送給する送給速度WFが所定の送給速度WF3に到達した時点に溶接電流Iが複数のパルスPp1~Pp6のうちの最初のパルスPp1を形成し始めるようにアーク溶接装置50を制御する。
 短絡溶接期間Tsにおいて、送給速度WFが最高送給速度WF1と最低送給速度WF2とを一定の周期で繰り返すようにアーク溶接装置50を制御してもよい。この場合には、短絡溶接期間Tsにおいて送給速度WFが最高送給速度WF1に到達した時点で溶接電流Iを最小電流I1とする。短絡溶接期間Tsにおいて送給速度WFが最低送給速度WF2に到達した時点で溶接電流Iを最大電流I2とする。
 パルス溶接期間と短絡溶接期間とを交互に繰り返すアーク溶接方法において、短絡溶接期間に特許文献2に開示されている方法を用いると、短絡の検出に応じて溶接ワイヤを逆送することで、短絡を機械的に開放することが可能となり、短絡開放時の電流を低減でき、スパッタの発生を低減できる。しかし、送給速度の正送と逆送の周期はアークの発生に応じて制御される。したがって、短絡の時間が長くなれば溶接ワイヤの逆送量が大きくなり、アークの時間が長くなれば溶接ワイヤの正送方向の送給速度が大きくなる。このため、アークが変化すると、溶接ワイヤの送給速度における平均送給速度や、短絡の周期、短絡の回数が変化するので、溶接を安定させることが困難となる。また、パルス溶接期間と短絡溶接期間の切替わり時に溶接ワイヤの送給制御と溶接電流の電流制御の不連続が生じるので、溶接が不安定になる、スパッタが生じる場合がある。
 実施の形態1、2におけるパルス溶接期間Tpと短絡溶接期間Tsとを交互に繰り返して行う消耗電極式のアーク溶接の制御では、短絡溶接期間Tsに溶接ワイヤ15を正送方向D101と逆送方向D102に送給する。これにより、機械的に短絡を開放でき、かつ短絡の開放時の溶接電流Iを低減できるので、短絡溶接期間Tsにおけるスパッタの発生を低減できる。短絡溶接期間Tsにおいて溶接ワイヤ15を周期的波形にしたがって送給するので、短絡とアークの周期のばらつきが少なく、安定した溶接が実現できる。さらに、溶接ワイヤ15の送給と溶接電流Iを同期して制御することで、多少の外乱があっても確実に短絡と短絡の開放が行われ、安定した溶接が実現できる。短絡溶接とパルス溶接とを交互に繰り返すことで、入熱制御およびビード18Aの形状制御を行い、これにより、融合不良などの溶接欠陥や姿勢溶接におけるビード18Aの垂れ下がりなどの不良形状のビードの発生を抑制できる。パルス溶接期間Tpと短絡溶接期間Tsともにスパッタの発生量が少ない溶接が実現できる。パルス溶接と短絡溶接との切替わりにおいても溶接ワイヤ15の送給の制御と溶接電流Iの制御の不連続が生じないので、低スパッタで安定した溶接が実現できる。したがって、スパッタ除去等の後工程を減少させることが可能となる。
 本発明におけるアーク溶接の制御方法は安定した溶接が実現でき、溶接対象物を溶接するアーク溶接に有用である。
1  入力電源
2  1次整流部
3  スイッチング部
4  トランス
5  2次整流部
6  DCL(インダクタンス)
7  溶接電圧検出部
8  溶接電流検出部
9  カウンタ部
10  制御切替部
11  電流制御部
12  電流制御部
13  駆動部
14  送給部
15  溶接ワイヤ(溶接電極)
15A  ネック
16  溶接トーチ
17  溶接アーク
18  溶接対象物
19  溶接電源部
20  設定部
50  アーク溶接装置
D101  正送方向
D102  逆送方向
I1  最大電流
I2  最小電流
Ib  ベース電流
Ip  ピーク電流
Pp1~Pp6  パルス
Tp  パルス溶接期間
Ts  短絡溶接期間
Tss1~Tss3  短絡期間
Tsa1~Tsa3  アーク期間
tvs  送給切替時点

Claims (9)

  1. パルス溶接を行う複数のパルス溶接期間と短絡溶接を行う複数の短絡溶接期間とに交互にそれぞれに移行する、溶接電極を備えたアーク溶接装置を用いた消耗電極式のアーク溶接の制御方法であって、
       前記複数のパルス溶接期間のそれぞれのパルス溶接期間において、前記溶接電極を流れる溶接電流がピーク電流の1つ以上の値とベース電流の1つ以上の値とを交互に繰り返す複数のパルスを形成し、前記複数のパルスを形成した後の送給切替時点において前記ベース電流の前記1つ以上の値の少なくとも1つより小さくなるように前記溶接電流を制御するステップと、
       前記それぞれのパルス溶接期間に続く前記複数の短絡溶接期間のそれぞれの短絡溶接期間において、前記溶接電極と溶接対象物とを短絡させる1つ以上の短絡期間と、前記溶接電極と前記溶接対象物との間でアークを発生する1つ以上のアーク期間とに交互にそれぞれに移行するように前記溶接電流を制御するステップと、
       前記溶接対象物に向かう正送方向と、前記正送方向の反対の逆送方向とに前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
    を含み、
    前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、一定の周期で前記正送方向と前記逆送方向とに交互に繰り返して行う前記溶接電極の送給を前記送給切替時点に開始し、前記送給切替時点から前記それぞれの短絡溶接期間に亘って前記一定の周期で前記正送方向と前記逆送方向とに交互に繰り返して前記溶接電極を送給するように前記アーク溶接装置を制御するステップを含む、アーク溶接の制御方法。
  2. 前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、前記それぞれの短絡溶接期間において前記溶接電極を送給する送給速度が最高送給速度と最低送給速度とを前記一定の周期で繰り返すように前記アーク溶接装置を制御するステップを含み、
    前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、
       前記それぞれの短絡溶接期間において前記送給速度が前記最高送給速度に到達した時点で前記溶接電流を最小電流とするステップと、
       前記それぞれの短絡溶接期間において前記送給速度が前記最低送給速度に到達した時点で前記溶接電流を最大電流とするステップと、
    を含む、請求項1に記載のアーク溶接の制御方法。
  3. 前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、前記それぞれのパルス溶接期間において前記送給切替時点まで一定の所定の送給速度で前記溶接電極を送給するように前記アーク溶接装置を制御するステップをさらに含む、請求項1または2に記載のアーク溶接の制御方法。
  4. 前記それぞれの短絡溶接期間において、前記溶接対象物と前記溶接電極との短絡または前記溶接電極のネックを検出するステップをさらに含み、
    前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、前記短絡または前記ネックを検出すると前記溶接電流を低減するステップを含む、請求項1から3のいずれか1項に記載のアーク溶接の制御方法。
  5. 前記それぞれのパルス溶接期間において前記溶接電流を制御するステップは、前記それぞれのパルス溶接期間において、前記溶接電流が前記送給切替時点において前記ベース電流の前記1つ以上の値の平均値より小さくなるように前記溶接電流を制御するステップを含む、請求項1から4のいずれか1項に記載のアーク溶接の制御方法。
  6. 前記それぞれのパルス溶接期間において前記溶接電流を制御するステップは、前記それぞれのパルス溶接期間において、前記溶接電流が前記送給切替時点において前記ベース電流の前記1つ以上の値より小さくなるように前記溶接電流を制御するステップを含む、請求項1から4のいずれか1項に記載のアーク溶接の制御方法。
  7. パルス溶接を行う複数のパルス溶接期間と短絡溶接を行う複数の短絡溶接期間とに交互にそれぞれに移行する、溶接電極を備えたアーク溶接装置を用いた消耗電極式のアーク溶接の制御方法であって、
       前記複数の短絡溶接期間のそれぞれの短絡溶接期間において、前記溶接電極と溶接対象物とを短絡させる1つ以上の短絡期間と、前記溶接電極と前記溶接対象物との間でアークを発生する1つ以上のアーク期間とに交互にそれぞれに移行するように前記溶接電流を制御するステップと、
       前記それぞれの短絡溶接期間に続く前記複数のパルス溶接期間のそれぞれのパルス溶接期間において、前記溶接電極を流れる溶接電流がピーク電流とベース電流とを交互に繰り返す複数のパルスを形成するように前記溶接電流を制御するステップと、
       前記溶接対象物に向かう正送方向と、前記正送方向の反対の逆送方向とに前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
    を含み、
    前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、
       前記それぞれの短絡溶接期間において、一定の周期で前記正送方向と前記逆送方向とに交互に繰り返して前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
       前記それぞれのパルス溶接期間において、所定の送給速度で前記正送方向に前記溶接電極を送給するように前記アーク溶接装置を制御するステップと、
    を含み、
    前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、
       前記それぞれの短絡溶接期間において前記1つ以上のアーク期間のうちの1つのアーク期間から前記1つ以上の短絡期間のうちの1つの短絡期間に移行した後で前記溶接電極を送給する送給速度が前記所定の送給速度に到達した時点に前記それぞれのパルス溶接期間に移行して、
       前記それぞれのパルス溶接期間において前記溶接電流が前記複数のパルスのうちの最初のパルスを形成し始めるように前記アーク溶接装置を制御するステップと、
    を含む、アーク溶接の制御方法。
  8. 前記溶接電極を送給するように前記アーク溶接装置を制御するステップは、前記それぞれの短絡溶接期間において、前記送給速度が最高送給速度と最低送給速度とを前記一定の周期で繰り返すように前記アーク溶接装置を制御するステップを含み、
    前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、
       前記それぞれの短絡溶接期間において前記送給速度が前記最高送給速度に到達した時点で前記溶接電流を最小電流とするステップと、
       前記それぞれの短絡溶接期間において前記送給速度が前記最低送給速度に到達した時点で前記溶接電流を最大電流とするステップと、
    を含む、請求項7に記載のアーク溶接の制御方法。
  9. 前記それぞれの短絡溶接期間において、前記溶接対象物と前記溶接電極との短絡または前記溶接電極のネックを検出するステップをさらに含み、
    前記それぞれの短絡溶接期間において前記溶接電流を制御するステップは、前記短絡または前記ネックを検出すると前記溶接電流を低減するステップを含む、請求項6から8のいずれか1項に記載のアーク溶接の制御方法。
PCT/JP2015/005269 2014-11-11 2015-10-20 アーク溶接の制御方法 WO2016075871A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580057731.2A CN107073623B (zh) 2014-11-11 2015-10-20 电弧焊接的控制方法
JP2016558864A JP6596669B2 (ja) 2014-11-11 2015-10-20 アーク溶接の制御方法
US15/518,320 US10413987B2 (en) 2014-11-11 2015-10-20 Arc welding control method
EP15859785.6A EP3219428B1 (en) 2014-11-11 2015-10-20 Arc welding control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014228834 2014-11-11
JP2014-228834 2014-11-11

Publications (1)

Publication Number Publication Date
WO2016075871A1 true WO2016075871A1 (ja) 2016-05-19

Family

ID=55953977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005269 WO2016075871A1 (ja) 2014-11-11 2015-10-20 アーク溶接の制御方法

Country Status (5)

Country Link
US (1) US10413987B2 (ja)
EP (1) EP3219428B1 (ja)
JP (1) JP6596669B2 (ja)
CN (1) CN107073623B (ja)
WO (1) WO2016075871A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131345A1 (ja) * 2017-01-16 2018-07-19 株式会社ダイヘン 正逆送給アーク溶接のアークスタート制御方法
EP3431214B1 (de) 2017-06-21 2019-11-20 Carl Cloos Schweißtechnik Gesellschaft mit beschränkter Haftung Lichtbogenschweissverfahren und -anlage mit einer impulslichtbogen-betriebsphase und einer kurzlichtbogen-betriebsphase in alternierender abfolge
CN111558760A (zh) * 2019-02-13 2020-08-21 株式会社达谊恒 电弧焊接方法
JP2021023968A (ja) * 2019-08-06 2021-02-22 株式会社ダイヘン アーク溶接方法
JP2021530357A (ja) * 2018-07-27 2021-11-11 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFronius International Gmbh 消耗溶接ワイヤを含むアーク溶接方法
WO2023095623A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 アーク溶接方法及びアーク溶接装置
WO2023095562A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 アーク溶接方法及びアーク溶接装置
JP7482581B2 (ja) 2020-06-10 2024-05-14 株式会社ダイヘン アーク溶接方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149467B2 (ja) * 2018-01-24 2022-10-07 パナソニックIpマネジメント株式会社 アーク溶接の制御方法
JP7039413B2 (ja) * 2018-07-26 2022-03-22 株式会社ダイヘン アーク溶接制御方法
CN111315520B (zh) * 2018-10-12 2021-11-12 松下知识产权经营株式会社 电弧焊接控制方法
EP3674027A1 (de) * 2018-12-27 2020-07-01 FRONIUS INTERNATIONAL GmbH Verfahren zum steuern eines schweissprozesses mit einer abschmelzenden elektrode, und eine schweissvorrichtung mit einer solchen steuerung
EP3771515A1 (de) * 2019-08-01 2021-02-03 FRONIUS INTERNATIONAL GmbH Prozessenergiequelle und verfahren zur bereitstellung zumindest eines sich mit einer periode periodisch ändernden prozessparameters

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088209A (ja) * 2009-08-19 2011-05-06 Daihen Corp 炭酸ガスパルスアーク溶接方法
JP2011516270A (ja) * 2008-06-27 2011-05-26 リンカーン グローバル,インコーポレイテッド 短絡アーク溶接プロセスの間に溶接入熱を増加する方法及びシステム
JP5170315B2 (ja) * 2009-07-29 2013-03-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP2013154381A (ja) * 2012-01-31 2013-08-15 Panasonic Corp アーク溶接装置
EP2669037A1 (de) * 2012-05-30 2013-12-04 EWM Hightec Welding GmbH Schweißrauchreduzierung
WO2013190746A1 (ja) * 2012-06-18 2013-12-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP2014140869A (ja) * 2013-01-24 2014-08-07 Panasonic Corp アーク溶接制御方法およびアーク溶接装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4811463B1 (ja) 1970-03-07 1973-04-13
JPS60255276A (ja) 1984-05-31 1985-12-16 Mitsubishi Heavy Ind Ltd 消耗電極式ア−ク溶接法
JPH09150267A (ja) 1995-11-27 1997-06-10 Kobe Steel Ltd 炭酸ガスシールドアーク溶接方法
JP4875311B2 (ja) 2005-03-11 2012-02-15 株式会社ダイヘン 消耗電極アーク溶接のくびれ検出時電流制御方法
JP4211793B2 (ja) * 2006-02-17 2009-01-21 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置
CN102149502A (zh) * 2008-09-30 2011-08-10 大阳日酸株式会社 钢板的气体保护电弧钎焊方法
EP2292362B1 (en) * 2009-04-08 2016-08-10 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding device
AT508494B1 (de) * 2009-06-18 2015-05-15 Fronius Int Gmbh Verfahren zum wechseln eines schweissprozesses während eines schweissverfahrens und zur wärmeeinbringung vor einem schweissverfahren
WO2010146844A1 (ja) * 2009-06-19 2010-12-23 パナソニック株式会社 消耗電極式アーク溶接方法および消耗電極式アーク溶接装置
CN102264500B (zh) * 2009-07-10 2013-07-10 松下电器产业株式会社 电弧焊接控制方法以及电弧焊接装置
WO2012032703A1 (ja) 2010-09-10 2012-03-15 パナソニック株式会社 アーク溶接制御方法
US9403231B2 (en) * 2011-11-09 2016-08-02 Illinois Tool Works Inc. Hybrid pulsed-short circuit welding regime
CN103024959B (zh) * 2012-12-03 2014-09-17 北京金自天正智能控制股份有限公司 一种电极智能调节器及电极智能控制方法
EP3208024B1 (en) * 2014-10-17 2020-01-29 Panasonic Intellectual Property Management Co., Ltd. Arc welding control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011516270A (ja) * 2008-06-27 2011-05-26 リンカーン グローバル,インコーポレイテッド 短絡アーク溶接プロセスの間に溶接入熱を増加する方法及びシステム
JP5170315B2 (ja) * 2009-07-29 2013-03-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP2011088209A (ja) * 2009-08-19 2011-05-06 Daihen Corp 炭酸ガスパルスアーク溶接方法
JP2013154381A (ja) * 2012-01-31 2013-08-15 Panasonic Corp アーク溶接装置
EP2669037A1 (de) * 2012-05-30 2013-12-04 EWM Hightec Welding GmbH Schweißrauchreduzierung
WO2013190746A1 (ja) * 2012-06-18 2013-12-27 パナソニック株式会社 アーク溶接方法およびアーク溶接装置
JP2014140869A (ja) * 2013-01-24 2014-08-07 Panasonic Corp アーク溶接制御方法およびアーク溶接装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3219428A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017291B2 (ja) 2017-01-16 2022-02-08 株式会社ダイヘン 正逆送給アーク溶接のアークスタート制御方法
JPWO2018131345A1 (ja) * 2017-01-16 2019-11-07 株式会社ダイヘン 正逆送給アーク溶接のアークスタート制御方法
US11364561B2 (en) 2017-01-16 2022-06-21 Daihen Corporation Arc start control method for forward and reverse feed arc welding
WO2018131345A1 (ja) * 2017-01-16 2018-07-19 株式会社ダイヘン 正逆送給アーク溶接のアークスタート制御方法
EP3569340A4 (en) * 2017-01-16 2021-03-31 Daihen Corporation ARC START CONTROL PROCESS FOR FRONT AND REAR FEED ARC WELDING
EP3431214B1 (de) 2017-06-21 2019-11-20 Carl Cloos Schweißtechnik Gesellschaft mit beschränkter Haftung Lichtbogenschweissverfahren und -anlage mit einer impulslichtbogen-betriebsphase und einer kurzlichtbogen-betriebsphase in alternierender abfolge
JP7048816B2 (ja) 2018-07-27 2022-04-05 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 消耗溶接ワイヤを含むアーク溶接方法
JP2021530357A (ja) * 2018-07-27 2021-11-11 フロニウス・インテルナツィオナール・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングFronius International Gmbh 消耗溶接ワイヤを含むアーク溶接方法
JP2020131199A (ja) * 2019-02-13 2020-08-31 株式会社ダイヘン アーク溶接方法
CN111558760A (zh) * 2019-02-13 2020-08-21 株式会社达谊恒 电弧焊接方法
JP7188858B2 (ja) 2019-02-13 2022-12-13 株式会社ダイヘン アーク溶接方法
CN111558760B (zh) * 2019-02-13 2023-11-28 株式会社达谊恒 电弧焊接方法
JP2021023968A (ja) * 2019-08-06 2021-02-22 株式会社ダイヘン アーク溶接方法
JP7265307B2 (ja) 2019-08-06 2023-04-26 株式会社ダイヘン アーク溶接方法
JP7482581B2 (ja) 2020-06-10 2024-05-14 株式会社ダイヘン アーク溶接方法
WO2023095623A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 アーク溶接方法及びアーク溶接装置
WO2023095562A1 (ja) * 2021-11-29 2023-06-01 パナソニックIpマネジメント株式会社 アーク溶接方法及びアーク溶接装置

Also Published As

Publication number Publication date
CN107073623A (zh) 2017-08-18
US20170355034A1 (en) 2017-12-14
JPWO2016075871A1 (ja) 2017-09-14
CN107073623B (zh) 2019-01-08
EP3219428A4 (en) 2017-12-06
JP6596669B2 (ja) 2019-10-30
EP3219428B1 (en) 2021-06-23
US10413987B2 (en) 2019-09-17
EP3219428A1 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP6596669B2 (ja) アーク溶接の制御方法
JP6695030B2 (ja) アーク溶接の制御方法
JP5293884B2 (ja) アーク溶接制御方法
JP6221076B2 (ja) アーク溶接制御方法およびアーク溶接装置
CN103260807B (zh) 电弧焊接控制方法及电弧焊接装置
US20210331264A1 (en) Pulsed arc welding control method and pulsed arc welding device
WO2017125989A1 (ja) パルスアーク溶接制御方法およびパルスアーク溶接装置
JP2014140869A (ja) アーク溶接制御方法およびアーク溶接装置
JPWO2005120758A1 (ja) ロボット溶接制御装置及び制御方法
JP5879503B2 (ja) アーク溶接制御方法およびアーク溶接装置
CN112004631B (zh) 电弧焊接的控制方法
JP6948528B2 (ja) アーク溶接方法およびアーク溶接装置
JP5805952B2 (ja) プラズマミグ溶接のアークスタート制御方法
EP4180163A1 (en) Welding or additive manufacturing system with discontinuous electrode feeding
JP7576764B2 (ja) 直流アーク溶接制御方法
CN114340827B (zh) 用于实施多重焊接方法的方法和焊接设备
JP2017205794A (ja) アーク溶接制御方法
JP5773478B2 (ja) プラズマミグ溶接のアークスタート制御方法
JP2013107092A (ja) パルスアーク溶接の終了制御方法
JP2010017738A (ja) マグパルス溶接の溶接条件設定方法
JP2012143800A (ja) プラズマミグ溶接のアークスタート制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15859785

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015859785

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015859785

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016558864

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15518320

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE