[go: up one dir, main page]

WO2016021973A1 - 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 - Google Patents

캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 Download PDF

Info

Publication number
WO2016021973A1
WO2016021973A1 PCT/KR2015/008269 KR2015008269W WO2016021973A1 WO 2016021973 A1 WO2016021973 A1 WO 2016021973A1 KR 2015008269 W KR2015008269 W KR 2015008269W WO 2016021973 A1 WO2016021973 A1 WO 2016021973A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
guide rna
cas protein
seq
target dna
Prior art date
Application number
PCT/KR2015/008269
Other languages
English (en)
French (fr)
Inventor
김은지
김석중
Original Assignee
주식회사 툴젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201580052262.5A priority Critical patent/CN106922154B/zh
Priority to JP2017527527A priority patent/JP6715419B2/ja
Priority to CN202111062266.5A priority patent/CN113789317B/zh
Priority to AU2015299850A priority patent/AU2015299850B2/en
Priority to KR1020187000347A priority patent/KR20180015731A/ko
Priority to EP15830444.4A priority patent/EP3178935B1/en
Priority to EP22208378.4A priority patent/EP4194557A1/en
Priority to KR1020177003312A priority patent/KR101817482B1/ko
Priority to CA2957441A priority patent/CA2957441A1/en
Application filed by 주식회사 툴젠 filed Critical 주식회사 툴젠
Publication of WO2016021973A1 publication Critical patent/WO2016021973A1/ko
Priority to US15/420,936 priority patent/US10519454B2/en
Priority to US16/700,942 priority patent/US20200172912A1/en
Priority to AU2020267249A priority patent/AU2020267249B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases [RNase]; Deoxyribonucleases [DNase]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/09Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/20Fusion polypeptide containing a tag with affinity for a non-protein ligand
    • C07K2319/21Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Definitions

  • Engineered nucleases that can induce targeted cleavage at specific genomic locations can manipulate genomes very efficiently in living cells and individuals (Nat Rev Genet, 2014. 15 (5): p. 321-34 .). Genetic shears based on DNA binding and nuclease regions of custom designed type 2 restriction enzymes have demonstrated the potential for a wide range of applications of genome engineering techniques in various aspects of the biomedical field and industry. More recently, however, RGEN (RNA-guided engineered nuclease) derived from the bacterial CRISPR / CAS9 adaptive immune system system, a more powerful platform with gene shears, has been developed.
  • RGEN RNA-guided engineered nuclease
  • RGENs targeted by RGEN are restricted to PAM sequences, which are small motifs recognized by CAS9 proteins that could not be reprogrammed previously.
  • RGEN is an RGEN derived from Streptococcus pyogenes , which contains a CAS9 protein with NGG as the PAM sequence, and therefore a GG motif is always required for the RGEN to recognize DNA.
  • PAM Streptococcus thermophilus
  • PAM Neisseria meningitidis
  • the present inventors have made efforts to develop RGENs derived from other species in addition to Streptococcus pyogenes, which are useful, and thus, a Cas protein derived from Campylobacter jejuni (C. jejuni ) recognizes a PAM sequence of NNNNRYAC. It was confirmed that this can be used for targeting the target DNA having the PAM sequence.
  • the present invention has been completed by optimizing the structure of the guide RNA, and confirming that they can be used for target DNA targeting, which can lead to genome correction, transcriptional regulation, and target DNA separation.
  • One object of the present invention is a target having a PAM sequence of SEQ ID NO: 1 comprising introducing into a cell a Cas protein that recognizes a PAM (proto-spacer-adjacent Motif) sequence of SEQ ID NO: 1 or a nucleic acid encoding the same It provides a method for targeting DNA sequences.
  • Another object of the present invention is to provide an isolated guide RNA comprising a sequence capable of forming a base pair with a complementary strand of a target DNA sequence, adjacent to the PAM sequence of SEQ ID NO: 1, or a composition comprising the same.
  • Another object of the invention is (i) a guide RNA or DNA encoding said guide RNA, comprising a sequence capable of base pairing with a sequence in a target DNA, adjacent to a PAM sequence that is NNNNRYAC (SEQ ID NO: 1), And (ii) a nucleic acid encoding a Cas protein recognizing a NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein, the CRISPR-CAS system.
  • Another object of the invention is (i) an expression cassette for a guide RNA comprising a sequence capable of base pairing with a sequence in a target DNA, adjacent to a PAM sequence that is NNNNRYAC (SEQ ID NO: 1), and (ii) To provide a recombinant viral vector comprising an expression cassette for a Cas protein recognizing the NNNNRYAC (SEQ ID NO: 1) sequence.
  • Another object of the invention is a first site capable of forming base pairs with complementary chains of a target DNA sequence; And a second region having a stem-loop structure, characterized in that the stem structure has a length of 13 to 18 bp, to provide an isolated guide RNA or a composition comprising the same.
  • Another object of the invention is a first site capable of forming base pairs with complementary chains of a target DNA sequence; And a second region having a stem-loop structure, characterized in that the loop structure has a length of 5 to 10 bp, to provide an isolated guide RNA or a composition comprising the same.
  • Still another object of the present invention is to provide a method for correcting a genome in a cell, comprising introducing the isolated guide RNA or DNA encoding the same, and the Cas protein or nucleic acid encoding the same into the cell.
  • Still another object of the present invention is to provide a method for cleaving target DNA from a cell, comprising introducing the isolated guide RNA, or DNA encoding the same, and the Cas protein or nucleic acid encoding the same into the cell.
  • Another object of the present invention is to identify (i) the presence of a PAM sequence of NNNNRYAC (SEQ ID NO: 1) in a given sequence; And (ii) if the PAM sequence of NNNNRYAC (SEQ ID NO: 1) is present in step (i), determining a sequence located upstream thereof as a sequence recognized by the guide RNA. It provides a method for producing a DNA recognition sequence.
  • Still another object of the present invention is to introduce an isolated guide RNA, or DNA encoding the same, and an inactivated Cas protein or nucleic acid encoding the same into a cell, so that the target DNA and guide RNA and inactivation including the target DNA sequence are inactivated.
  • the synthesized Cas proteins form a complex with each other; And (ii) to provide a method for separating the desired DNA, comprising the step of separating the complex from the sample.
  • Another object of the present invention is to introduce into the cell an isolated guide RNA that specifically recognizes the target DNA, or DNA encoding the same, and an inactivated Cas protein or nucleic acid encoding the transcriptional effector domain bound thereto.
  • an isolated guide RNA that specifically recognizes the target DNA, or DNA encoding the same, and an inactivated Cas protein or nucleic acid encoding the transcriptional effector domain bound thereto.
  • the CRISPR / Cas system of the present invention can be usefully used for target DNA targeting that can lead to genome correction, transcriptional regulation and target DNA separation.
  • FIG. 1 shows a schematic diagram of the C. jejuni Cas9 protein expression vector.
  • Humanized Cas9 protein was expressed under the CMV promoter and the nuclear position signal (NLS) and HA tag were constructed at the C-terminus.
  • NLS nuclear position signal
  • FIG. 2A and 2B show experiments for C. jejuni RGEN induced mutations at intrinsic human AAVS1 target positions.
  • FIG. 2A RGEN-mediated chromosomal mutations were detected using T7E1 assay. Asterisk (*) indicates the DNA band expected to be cleaved by T7E1.
  • HEK293 wt gDNA was used as negative control (-).
  • the previously validated RGEN was used as a positive control (+).
  • FIG. 2B DNA sequence of hAAVS1 mutant clone is shown. Target sequence sites complementary to chimeric RNA are shown in bold.
  • the underlined portions represent the PAM sequences recognized by CAS9.
  • the sequence represented by the WT sequence shown in FIG. 2B as (-2, x1) in SEQ ID NO: 4 is shown in SEQ ID NO: 5
  • the sequence represented by (-1, x1) is shown in SEQ ID NO: 6.
  • FIG. 3A and 3B show experiments for C. jejuni RGEN induced mutations at the intrinsic mouse ROSA26 (mROSA) target location.
  • FIG. 3A RGEN-mediated chromosomal mutations were detected using the T7E1 assay. Asterisk (*) indicates the DNA band expected to be cleaved by T7E1. GDNA of NIH3T3 wt cells was used as negative control (-). The previously validated RGEN was used as a positive control (+).
  • FIG. 3B DNA sequence of mROSA mutant clone is shown. Target sequence sites complementary to chimeric RNA are shown in bold. The underlined parts show the PAM sequences recognized by C. jejuni CAS9. In the WT sequence disclosed in FIG. 3, the sequence represented by SEQ ID NO: 7 (-1, x1) is shown in SEQ ID NO: 8, and the sequence represented by (+1, x1) is shown in SEQ ID NO: 9.
  • T7E1 assay was used to detect GEN-driven chromosomal mutations.
  • Asterisk (*) indicates the DNA band expected to be cleaved by T7E1.
  • HEK293 wt gDNA was used as negative control (-).
  • the previously validated RGEN was used as a positive control (+).
  • 5A-5C relate to the optimization of the spacer length of sgRNAs.
  • FIG. 5a shows various sgRNA structures.
  • the underlined portions in FIG. 5A represent additional nucleotides present 5 'in front of the spacer of the sgRNA, and the lowercase letters represent nucleotides that do not match the target sequence. Boxed parts represent PAM sequences.
  • the target sequence is SEQ ID NO: 10
  • GX19 is SEQ ID NO: 11
  • GX20 is SEQ ID NO: 12
  • GX21 is SEQ ID NO: 13
  • GX22 is SEQ ID NO: 14
  • GX23 is SEQ ID NO:
  • GGX20 is SEQ ID NO: 16
  • GGGX20 is shown in SEQ ID NO: 17.
  • 5B shows the target location of the sgRNA, and the sequences for hAAVS-CJ1, hAAVS-NRG1, hAAVS-NRG3, and hAAVS-NRG5, respectively, are shown in SEQ ID NOs: 18, 19, 20, and 21. 5c confirmed the RGEN-mediated mutation induction efficiency using the prepared sgRNA.
  • each sgRNA shown in FIG. 5A was constructed for four target positions of the human AAVS1 locus (indicated in FIG. 5B) and delivered to 293 cells, which are human culture cells.
  • mutation introduction by NHEJ was confirmed in the cells. Confirmation of mutation introduction was performed by PCR amplification of the target position, followed by deep sequencing using miSEQ (illumine).
  • the activity when the sequence of PAM position was ACAC was set to 100, and the activity when the other nucleotide was introduce
  • the first position showed activity in the case of G in addition to A, and the second position showed activity in T as well as C. But in the 3rd and 4th position, it showed activity only in A and C, respectively.
  • N refers to Any nucleotide according to the IUPAC notation, and examples thereof include A, C, G, and T.
  • Figure 7 shows the consensus logo of the potential off target sequence of hAAVS1-CJ1 sgRNA discovered through Digenome-Seq analysis.
  • hAAVS1-RYN1-7 ratio of mutations in sgRNA / Cas9 treated cells for each site
  • WT1 ⁇ 7 mutation rate at each position in genomic DNA of mock-treated cells
  • FIG. 9 shows a schematic diagram of C. jejuni CRISPR / Cas9 expressing AAV vector structure.
  • FIG. 10 shows genome editing by C. jejuni CRISPR / Cas9 AAV (adeno-associated virus) for Rosa26 locus. Specifically, recombinant AAV encoding Rosa26-sgRNA and C.jejuni Cas9 in one vector were infected with different multiplicity of infectivity (MOI) in C2C12 cells. Genomic DNA was isolated at 3, 5, 7, 10 and 14 days post infection and mutation rates were analyzed by deep sequencing.
  • MOI multiplicity of infectivity
  • One aspect of the invention is a method of targeting a target DNA sequence, comprising introducing a Cas protein or nucleic acid encoding the same into a cell.
  • one embodiment of the present invention comprises introducing into a cell a Cas protein that recognizes a proto-spacer-adjacent Motif (PAM) sequence, which is NNNNRYAC (SEQ ID NO: 1), or a nucleic acid encoding the same, into SEQ ID NO: 1 It provides a method of targeting a target DNA sequence having a PAM sequence of.
  • PAM proto-spacer-adjacent Motif
  • N refers to Any nucleotide according to the IUPAC notation, and examples thereof include A, C, G, and T.
  • R stands for Purine (A / G) and Y stands for pyrimidine (C / T).
  • the step comprises a sequence capable of forming a complementary chain and base pair of a target DNA sequence adjacent to the PAM sequence of SEQ ID NO: 1 sequentially or simultaneously with a Cas protein that recognizes the PAM sequence of SEQ ID NO: 1 or a nucleic acid encoding the same. It may further comprise introducing a guide RNA comprising.
  • the targeting is a concept that includes all that the Cas protein is bound without cleavage or cleavage of the target DNA sequence.
  • the Cas protein may form a complex with crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) to show its activity.
  • the Cas protein may exhibit active endonuclease or nickase activity.
  • Cas protein or genetic information can be obtained from known databases such as GenBank of the National Center for Biotechnology Information (NCBI).
  • the Cas protein may be a Cas9 protein.
  • the Cas protein may be a Cas protein from Campylobacter genus ( Camylobacter ) genus, more specifically, a Campylobacter jejuni , more specifically Cas9 protein. More specifically, it may be an amino acid sequence set forth in SEQ ID NO: 22, or a protein having homology with activity of the protein of the sequence.
  • the protein is at least 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, It may have sequence identity of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, but is not limited to the examples described above.
  • the Cas protein is used in the present invention as a concept including all of the variants that can act as an endonuclease or nickase activated in cooperation with the guide RNA in addition to the native protein.
  • target DNA cleavage can be achieved, which can be used to bring genome correction.
  • inactivated variants it can be used to bring about transcriptional regulation or isolation of the desired DNA.
  • the variant of Cas9 protein may be a mutant form of Cas9 in which a catalytic aspartate residue or histidine residue is changed to any other amino acid.
  • the other amino acid may be alanine, but is not limited thereto.
  • the Cas protein specifically, the Cas9 protein derived from C. jejuni, may be one in which 8 catalytic aspartic acid (D) or 559 histidine residue (histidine, H) is substituted with another amino acid.
  • the other amino acid may be alanine, but is not limited thereto. That is, the Cas9 nuclease protein made by introducing mutations into only one active site of the Cas9 nuclease protein may act as a nickase when bound to the guide RNA. Such nickases are included in the RGEN category because they can cut both strands of DNA and cause double strand breakage (DSB).
  • the term "inactivated Cas protein” refers to a Cas nuclease protein in which all or part of the function of the nuclease is inactivated.
  • the inactivated Cas is also named dCas.
  • the Cas may be a Cas9 protein. It may also be of the genus Campylobacter, more specifically from C. jejuni.
  • Preparation of the inactivated Cas9 nuclease protein includes without limitation how the nuclease activity is inactivated.
  • the dCAS9 protein produced by introducing mutations into two active sites of the Cas9 nuclease described above may act as a DNA binding complex that does not cleave DNA when bound to the guide DNA.
  • eight catalytic aspartic acids (D), and histidine residue (H) 559 may be substituted with other amino acids, specifically, alanine, but are not limited thereto.
  • cutting includes the breakage of the covalent backbone of a nucleotide molecule.
  • the Cas protein may be a recombinant protein.
  • recombinant when used to refer to a cell, nucleic acid, protein or vector, etc., for example, introduces a heterologous nucleic acid or protein or alters a native nucleic acid or protein, or is derived from a modified cell.
  • Cell, nucleic acid, protein, or vector modified by the cell can be made by reconstructing a sequence encoding the Cas protein using a human codon table.
  • the Cas protein or nucleic acid encoding the same may be in a form that allows the Cas protein to function in the nucleus.
  • the isolated Cas protein may also be in a form that is easy to introduce into the cell.
  • the Cas protein may be linked to a cell penetrating peptide or a protein transduction domain.
  • the protein transfer domain may be, but is not limited to, poly-arginine or HIV derived TAT protein.
  • Cell penetrating peptides or protein delivery domains are known in the art in addition to the examples described above, so those skilled in the art are not limited to these examples, and various examples can be applied to the present invention.
  • the Cas protein or nucleic acid encoding the Cas protein may further include a nuclear localization signal (NLS) for locating the Cas protein in the nucleus.
  • the nucleic acid encoding the Cas protein may additionally include a nuclear localization signal (NLS) sequence. Therefore, the expression cassette including the nucleic acid encoding the Cas protein may include an NLS sequence in addition to a regulatory sequence such as a promoter sequence for expressing the Cas protein. However, this is not limitative.
  • Cas proteins may be linked with tags that are advantageous for separation and / or purification.
  • tags that are advantageous for separation and / or purification.
  • a small peptide tag such as a His tag, a Flag tag, an S tag, or a GST (Glutathione S- transferase) tag, a MBP (Maltose binding protein) tag, or the like may be connected depending on the purpose, but is not limited thereto.
  • the Cas protein may be named RGEN (RNA-Guided Engineered Nuclease) along with target DNA specific guide RNA.
  • RGEN refers to a nuclease comprising a target DNA specific guide RNA and Cas protein as a component.
  • the RGEN is a target DNA specific guide RNA or DNA encoding the guide RNA; And it can be applied to the cell in the form of an isolated Cas protein or a nucleic acid encoding the Cas protein, but is not limited thereto.
  • the guide RNA or DNA encoding the same and the Cas protein or nucleic acid encoding the same may be applied to the cells simultaneously or sequentially.
  • the RGEN in the present invention can be applied to cells in the form of 1) target DNA specific guide RNA and isolated Cas protein, 2) DNA encoding the guide RNA and nucleic acid encoding Cas protein. Delivery to the cells in the form of 1), also referred to as RNP delivery, but is not limited thereto.
  • the guide RNA When applied in the form of an isolated guide RNA, the guide RNA may be transcribed in vitro, but is not limited thereto.
  • DNA encoding the guide RNA and the nucleic acid encoding the Cas protein may be used as the separated nucleic acid itself, but may be present in the form of a vector containing the expression cassette for expressing the guide RNA, and / or Cas protein.
  • the present invention is not limited thereto.
  • the vector may be a viral vector, a plasmid vector, or an Agrobacterium vector.
  • examples of the viral vector may include Adeno-associated virus (AAV), but are not limited thereto.
  • AAV Adeno-associated virus
  • the DNA encoding the guide RNA and the nucleic acid encoding the Cas protein may be present in individual vectors or in one vector, but are not limited thereto.
  • guide RNA means a target DNA specific RNA, and may bind to a Cas protein to lead the Cas protein to the target DNA.
  • guide RNAs can be made to be specific to any target to be cleaved.
  • the guide RNA includes two RNAs, namely dual RNA (crRNA) comprising a crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) as a component; Or a form comprising a first site comprising a sequence capable of forming base pairs with a complementary strand of a target DNA and a second site comprising a sequence interacting with a Cas protein, more specifically crRNA and
  • the major part of the tracrRNA may be a single-chain guide RNA (sgRNA) in fused form.
  • the length of the sequence capable of forming a base pair with the complementary chain of the target DNA sequence of the guide RNA is 17 to 23 bp, 18 to 23 bp, 19 to 23 bp, more specifically 20 to 23 bp, even more specifically 21 to 23 bp It may be, but is not limited thereto. This applies to both double RNA and sgRNA, and more specifically to sgRNA.
  • the guide RNA may have one to three additional nucleotides, more specifically two or three nucleotides, in front of the 5 'region of the sequence capable of forming base pairs with complementary chains of the target DNA sequence.
  • the nucleotides include A, T, G, and C.
  • the guide RNA may have more specifically one to three guanine (G), even more specifically two or three G. This applies to both double RNA and sgRNA, and more specifically to sgRNA. However, it is not limited to the examples described above.
  • the sgRNA may include a portion having a sequence complementary to a sequence in the target DNA (also referred to as a spacer region, a target DNA recognition sequence, a base pairing region, etc.) and a hairpin structure for Cas protein binding.
  • it may include a portion having a sequence complementary to the sequence in the target DNA, a hairpin structure and a Terminator sequence for Cas protein binding.
  • the structure described above may be present in sequence from 5 'to 3'. However, it is not limited thereto.
  • guide RNA Any form of guide RNA may be used in the present invention, provided that the guide RNA comprises a major portion of crRNA and tracrRNA and complementary portions of the target DNA.
  • the crRNA may be hybridized with the target DNA.
  • RGEN may consist of Cas protein and dual RNA, or may consist of Cas protein and sgRNA.
  • the RGEN is a nucleic acid encoding a Cas protein and a nucleic acid encoding a dual RNA;
  • the nucleic acid encoding the Cas protein and the nucleic acid encoding the sgRNA may be used as components, but are not limited thereto.
  • the guide RNA may comprise a sequence complementary to the sequence in the target DNA, and may comprise one or more additional nucleotides upstream of the crRNA or sgRNA, specifically at the 5 'end of the crRNA of the sgRNA or dualRNA.
  • the additional nucleotide may be guanine (G), but is not limited thereto. In addition, all of the above description is applied to this.
  • the guide RNA comprises a sequence capable of forming a base pair with a complementary strand of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). can do.
  • PAM proto-spacer-adjacent Motif
  • the guide RNA may comprise a first site capable of forming a base pair with a complementary strand of a target DNA sequence; And a second region having a stem-loop structure, which is a stem structure having a length of 13 to 18 bp.
  • the stem structure may include a nucleotide sequence of SEQ ID NO: 2 (5′-GUUUUAGUCCCUUGUG-3 ′) and a sequence complementary thereto.
  • the guide RNA may comprise a first site capable of forming a base pair with a complementary strand of a target DNA sequence; And a second region having a stem-loop structure, which is a loop structure having a length of 5 to 10 bp.
  • the loop structure may have a sequence of the nucleotide sequence of SEQ ID NO: 3 (5'-AUAUUCAA-3 ').
  • Cas proteins and guide RNAs in particular sgRNAs, described or described below, may be unnaturally generated and engineered.
  • all of the elements described above may be applied in combination.
  • the introduction into cells may be (1) a method of producing and delivering a purified Cas9 protein and a single guided RNA (sgRNA) that recognizes a specific HLA target sequence after overexpression in bacteria by in vitro transcription. (2) Alternatively, a method of transferring plasmid DNAs expressing these Cas9 proteins and sgRNAs into cells and expressing them in cells may be used, but is not necessarily limited thereto.
  • sgRNA single guided RNA
  • the method for intracellular delivery of protein, RNA, or plasmid DNA required for the present invention includes electroporation, liposomes, viral vectors, nanoparticles, as well as PTD (Protein translocation domain) fusion protein methods.
  • PTD Protein translocation domain
  • the method of the present invention can be used to cleave a target DNA having the PAM sequence of SEQ ID NO: 1, more specifically to correct the genome.
  • the Cas protein may be an active form having nuclease or kinase activity.
  • the Cas protein in the method of the present invention may be in an inactivated form.
  • the method may be characterized in that the Cas protein is bound thereto without cutting the target DNA sequence including the PAM sequence of SEQ ID NO: 1.
  • the Cas protein more specifically inactivated Cas protein may further include a transcription effector domain (transcription effector domain).
  • a transcription effector domain transcription effector domain
  • an activator, a repressor, or the like may be conjugated, but is not limited thereto.
  • the method can be used for Cas mediated gene expression regulation, including transcriptional or epigenetic regulation.
  • Another aspect of the invention includes a sequence capable of forming base pairs with complementary strand of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). Is an isolated guide RNA. This may occur unnaturally or be manipulated.
  • PAM proto-spacer-adjacent Motif
  • the guide RNA may be a single-chain guide RNA, the length of the sequence complementary to the sequence in the target DNA of the guide RNA is 17 to 23bp, 18 to 23bp, 19 to 23bp, more specifically 20 to 23bp , More specifically, it may be 21 to 23 bp, but is not limited thereto.
  • the guide RNA may have one to three guanines (guanine, G) in front of the 5 'region of the sequence complementary to the sequence in the target DNA, but is not limited thereto.
  • guanine guanine
  • G guanine
  • Another aspect of the invention includes a sequence capable of forming base pairs with complementary strand of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). It is a composition containing a guide RNA or DNA encoding the guide RNA.
  • PAM proto-spacer-adjacent Motif
  • composition may further comprise a nucleic acid encoding the Cas protein recognizing the NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein.
  • composition may be for calibrating the dielectric.
  • the composition also includes (i) a sequence capable of forming base pairs with complementary strands of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). Guide RNA or DNA encoding the guide RNA; And (ii) an inactivated Cas protein (dCas) or a nucleic acid encoding the same.
  • PAM proto-spacer-adjacent Motif
  • the inactivated Cas protein may further include a transcription effector domain.
  • the composition may be for separating the desired DNA including the target DNA sequence.
  • the inactivated Cas protein may be a conjugated tag for separation and purification, but is not limited thereto.
  • the tag the above-described contents may be taken as an example.
  • composition may be for regulating Cas mediated gene expression, including transcriptional or epigenetic regulation.
  • the target DNA may be present in isolated cells, such as eukaryotic cells.
  • the eukaryotic cells can be yeast, fungi, protozoa, plants, higher plants and insects, or cells of amphibians, or cells of mammals such as CHO, HeLa, HEK293, and COS-1, for example Cultured cells (in vitro), transplanted cells and primary cell cultures (in vitro and ex vivo), and in vivo cells, also commonly used in the art, as well It may be a mammalian cell including a human, but is not limited thereto.
  • a guide RNA comprising (i) a sequence capable of forming a base pair with a sequence in a target DNA adjacent to a proto-spacer-adjacent Motif (PAM) sequence that is NNNNRYAC (SEQ ID NO: 1). Or a DNA encoding the guide RNA, and (ii) a nucleic acid encoding the Cas protein recognizing the NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein, the CRISPR-CAS system.
  • PAM proto-spacer-adjacent Motif
  • a guide RNA comprising (i) a sequence capable of forming a base pair with a sequence in a target DNA adjacent to a proto-spacer-adjacent Motif (PAM) sequence that is NNNNRYAC (SEQ ID NO: 1). And an expression cassette for a Cas protein that recognizes the NNNNRYAC (SEQ ID NO: 1) sequence.
  • PAM proto-spacer-adjacent Motif
  • the viral vector may be Adeno-associated virus (AAV).
  • AAV Adeno-associated virus
  • Another aspect of the invention is an isolated guide RNA comprising a 21-23 bp long sequence capable of forming base pairs with the complementary strand of the target DNA sequence.
  • Another aspect of the invention is a composition comprising the guide RNA or DNA encoding the guide RNA.
  • the composition may comprise a Cas protein that recognizes a PAM sequence that is NNNNRYAC (SEQ ID NO: 1) or a nucleic acid encoding the same.
  • composition may comprise a nucleic acid encoding the inactivated Cas protein that recognizes the NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein.
  • the inactivated Cas protein may further comprise a transcriptional effector domain.
  • kits comprising: a first site capable of forming base pairs with a complementary strand of a target DNA sequence; And a second site having a stem-loop structure, characterized in that the stem structure is 13-18 bp in length.
  • the stem structure may include the nucleotide sequence of SEQ ID NO: 2 (5′-GUUUUAGUCCCUUGUG-3 ′) and a sequence complementary thereto.
  • kits comprising: a first site capable of forming base pairs with a complementary strand of a target DNA sequence; And a second site having a stem-loop structure, characterized in that the loop structure is 5-10 bp in length.
  • the loop structure may have a sequence of the nucleotide sequence of SEQ ID NO: 3 (5′-AUAUUCAA-3 ′).
  • compositions comprising a guide RNA and a Cas protein or nucleic acid sequence encoding the same.
  • Another aspect of the invention is a method for correcting a genome in a cell, comprising introducing into the cell the isolated guide RNA or DNA encoding the above described, and the Cas protein or nucleic acid encoding the same.
  • Each is as described above. Each component may be unnaturally generated or manipulated.
  • Another aspect of the invention is a method for cleaving a target DNA in a cell, comprising introducing into the cell the isolated guide RNA, or DNA encoding the above, and a Cas protein or nucleic acid encoding the same, as described above.
  • Each is as described above. Each component may be unnaturally generated or manipulated.
  • Introduction of the guide RNA or DNA encoding the same and the Cas protein or nucleic acid encoding the guide RNA may be performed simultaneously or sequentially.
  • Another aspect of the present invention provides a method for preparing a PAM sequence comprising (i) identifying the presence of a PAM sequence that is NNNNRYAC (SEQ ID NO: 1) in a given sequence; And (ii) if the PAM sequence of NNNNRYAC (SEQ ID NO: 1) is present in step (i), determining a sequence located upstream thereof as a sequence recognized by the guide RNA. It is a method of preparing a DNA recognition sequence.
  • the sequence located upstream may be 17 to 23 bp in length, 18 to 23 bp, 19 to 23 bp, more specifically 20 to 23 bp, even more specifically, 21 to 23 bp, but is not limited thereto.
  • Another aspect of the present invention provides a method comprising the steps of (i) introducing the isolated guide RNAs described above, or DNAs encoding the same, and inactivated Cas proteins or nucleic acids encoding the same into a cell, thereby comprising a target DNA sequence. DNA and guide RNA and inactivated Cas protein complex with each other; And (ii) separating the complex from the sample.
  • the inactivated Cas protein may be one that recognizes a proto-spacer-adjacent Motif (PAM) sequence that is NNNNRYAC (SEQ ID NO: 1).
  • PAM proto-spacer-adjacent Motif
  • the method of isolating the DNA of interest is a guide RNA (gRNA) and specifically inactivated Cas protein (dCas) that binds to the target DNA complexes of the target DNA and dCas-gRNA-targeting DNA Forming; And separating the complex from the sample, which may be performed by a method of separating DNA of interest.
  • gRNA guide RNA
  • dCas specifically inactivated Cas protein
  • the target DNA can be confirmed by amplification by PCR or by a known method.
  • the separation method may be applied to cell-free DNA in vitro and is performed without formation of a cross-link covalent bone between the DNA and the gRNA and dCas proteins. It may be.
  • the separation method may further comprise the step of separating the desired DNA from the complex.
  • the inactivated Cas protein may comprise an affinity tag for separation, for example the affinity tag may be His tag, Flag tag, S tag, GST (Glutathione).
  • MBP Mealtose binding protein
  • CBP chitin binding protein
  • the inactivated Cas protein may lack DNA cleavage activity of the Cas protein.
  • the method may be to separate the DNA of interest using an affinity column or magnetic beads (magnetic bead) that binds to the tag.
  • the affinity tag for the separation may be a His tag, which is to separate the desired DNA using a metal affinity column or magnetic beads that bind to the His tag, the magnetic beads May be, for example, but not limited to, Ni-NTA magnetic beads.
  • Separation of the desired DNA from the complex may be performed using RNase and proteolytic enzyme.
  • the target DNA may be separated using guide RNAs specific for each of the two or more desired DNAs.
  • the guide RNA may be a single-chain guide RNA (sgRNA) and may be a dualRNA including crRNA and tracrRNA.
  • the guide RNA may be in the form of an isolated RNA, or in the form encoded in the plasmid.
  • the method comprises the steps of: a guide RNA (gRNA) and an inactivated Cas protein (dCas) that specifically bind to the desired DNA to form a complex of the desired DNA and dCas-gRNA-targeting DNA; And separating the complex from the sample.
  • gRNA guide RNA
  • dCas inactivated Cas protein
  • Another aspect of the present invention provides a method for introducing a cell into which the isolated guide RNA, or DNA encoding the target DNA, which specifically recognizes a target DNA, and an inactivated Cas protein or a nucleic acid encoding the same are linked to a transcriptional effector domain.
  • C. jejuni CRISPR / CAS9-derived RGEN To characterize the C. jejuni CRISPR / CAS9-derived RGEN for genome manipulation, we first synthesized the C. jejuni CAS9 gene optimized for human codons (Table 1), and inserted the gene into a mammalian expression vector under the CMV promoter. A C. jejuni CAS9 protein expression cassette was tagged with HA epitope tagged with NLS (FIG. 1).
  • the native guide RNA of the C. jejuni CRISPR / CAS9 system consists of tracrRNA and target specific-crRNA. Since the guide RNA may be used as two RNA molecules in a natural state, or as a single chain guide RNA (sgRNA) which is a fused form of crRNA and tracrRNA, the inventors of C. jejuni Expression plasmids for sgRNAs were designed and constructed (Table 2).
  • sgRNAs sgRNA order SEQ ID NO: C.jejuni_sgRNA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 23
  • sgRNAs Target sequence SEQ ID NO: Human AAVS1_C.Jejuni ATATAAGGTGGTCCCAGCTC GGGGACA 24 Mouse Rosa26_C.Jejuni ATTCCCCTGCAGGACAACGC CCACACA 25
  • C. jejuni RGEN can be used for target destruction of endogenous genes in mammalian cells. It is possible to specifically recognize and cleave heteroduplexes formed by hybridization of wild-type and variant DNA sequences.
  • Genomic DNA isolated from the transformed cells was analyzed using a mismatch sensitive endonuclease T7 endonuclease I (T7E1). At this time, the primer sequences used were as follows (Table 4).
  • the C. jejuni crRNA and tracrRNA complexes are expected to have a shorter loop structure than the crRNA: tracrRNA complexes derived from other bacterial species, and the structure of the C. jejuni RGEN sgRNA prepared in Example 1 may be stabilized.
  • the stem or loop structure was modified so that it was designed (Table 5).
  • sgRNAs sgRNA order SEQ ID NO: C.jejuni_sgRNA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTTT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 23 C.jejuni_sgRNA_stem modified NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT TGTGGAAATATA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTTTTTTTTTTTT 30 C.jejuni_sgRNA_loop modified NNNNNNNNNNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT ATATTCAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTTTTTT 31
  • the length of the spacer sequence in the crRNA of C. jejuni that recognized the target sequence as reported in the literature was 20 bp.
  • a genome editing test was performed (FIGS. 5A-C). This experiment was conducted by Genome Res. The method described in 2014 Jan; 24 (1): 132-41 was used.
  • Target location sgRNA Sequence (20bp-SPACERnnnnACA) SEQ ID NO: Human AAVS1-CJ1 ATATAAGGTGGTCCCAGCTCggggACA 32 Human AAVS1-NRG1 GTAGAGGCGGCCACGACCTGgtgaACA 33 Human AAVS1-NRG3 TCACAAAGGGAGTTTTCCACacggACA 34 Human AAVS1-NRG5 TAGGCAGATTCCTTATCTGGtgacACA 35
  • genomic DNA was isolated and mutation introduction efficiency was analyzed by deep sequencing method, and the results are shown in FIG. 5C. As shown here, high efficiencies were observed in the 21-23 bp spacer. In addition, improved genome editing efficiency was observed even when 2 to 3 additional Gs were attached to 5 'of the sgRNA of the 20 bp spacer.
  • F * represents a forward primer and R ** represents a reverse primer.
  • sgRNA name Active (T7E1 assay) order SEQ ID NO: Human AAVS1 hAAVS1 -CJ1 O ATATAAGGTGGTCCCAGCTCGGGGACA C 42 hAAVS1-CJ2 X TGGCCCCACTGTGGGGTGGAGGGGACAG 43 hAAVS1-CJ3 X CACCCCACAGTGGGGCCACTAGGGACAG 44 CCR5 CCR5-CJ1 X CTAGCAGCAAACCTTCCCTTCACTACAA 45 CCR5-CJ2 X CTCCATGAATGCAAACTGTTTTATACAT 46 CCR5-CJ3 X TGCATTCATGGAGGGCAACTAAATACAT 47 CCR5-CJ4 X ATCAAGTGTCAAGTCCAATCTATGACAT 48 CCR5-CJ5 X CCAATCTATGACATCAATTATTATACAT 49 CCR5-CJ6 X GCAAAAGGCTGAAGAGCATGACTGACAT 50 CCR5-CJ7 X GCA
  • the PAM sequence was inferred as "NNNNACAC” and C. jejuni was changed to A / T / G / C for each of the four ACAC positions.
  • C. jejuni RGEN Surrogate reporter assay was used for this purpose.
  • the PAM sequence of C. jejuni is “NNNNRYAC (SEQ ID NO: 1)” (FIG. 6, R refers to purine (A or G) Y refers to pyrimidine (C / T)).
  • This experiment is Nat Methods. It was performed using the Surrogate reporter assay method described in 2011 Oct 9; 8 (11): 941-3.
  • Digenome-Seq was used to identify 41 locations where cleavage was seen to occur by AAVS1-CJ1 CRISPR / Cas9 (Genomic location in Table 9).
  • the consensus sequence was obtained by aligning the cleavage site sequence at 41 positions, as shown in FIG. 8, PAM was confirmed to be consistent with that identified in Example 4.
  • consensus sequence was able to be constructed when the sequences of 41 positions showing cleavage were shown in vitro, and the PAM position was observed as NNNNRYAC (SEQ ID NO: 1).
  • Example 6 The first two positions of the PAM Congratulation for degeneracy
  • Example 5 the PAM sequence of C. jejuni was observed to have degeneracy in the first two positions, not only "NNNNACAC” but also "NNNNRYAC".
  • sgRNAs were prepared for seven positions where the first two nucleotides of PAM were G or T, respectively, using the target sequence of C.jejuni at the human AAVS1 position (Table 10). Confirmed.
  • sgRNA Direction PAM Target sequence SEQ ID NO: hAAVS1-RYN1 + NNNNRYAC gCCACGACCTGGTGAACACCTAGGACGCAC 76 hAAVS1-RYN2 + gGCCTTATCTCACAGGTAAAACTGACGCAC 77 hAAVS1-RYN3 + cTCTTGGGAAGTGTAAGGAAGCTGCAGCAC 78 hAAVS1-RYN4 + aGCTGCAGCACCAGGATCAGTGAAACGCAC 79 hAAVS1-RYN5 + cTGTGGGGTGGAGGGGACAGATAAAAGTAC 80 hAAVS1-RYN6 - gCCGGTTAATGTGGCTCTGGTTCTGGGTAC 81 hAAVS1-RYN7 + gCCATGACAGGGGGCTGGAAGAGCTAGCAC 82
  • Example 7 AAV Used C. jejuni CRISPR Of CAS9 Dielectric correction through transfer
  • C. jejuni RGEN has the smallest CAS9 protein and sgRNA among the RGENs developed to date.
  • Adeno-associated virus (AAV) which is currently used as one of the most important gene therapy vectors, is strictly used in R.
  • an AAV vector was prepared in a form including both a C. jejuni Cas9 expression cassette and an sgRNA expression cassette (FIG. 9), and AAV from Produced and infected with mouse cultured cells C2C12.
  • FOG. 9 a C. jejuni Cas9 expression cassette and an sgRNA expression cassette
  • mutation of a target position in C2C12 cells could be induced depending on AAV concentration and time.
  • mutations were induced at 90% or more efficiency at the target site (FIG. 10).
  • C. jejuni RGEN can efficiently perform genome correction in cultured cells.
  • PAM sequence of the C. jejuni CRISPR / Cas9 system which was proposed in the previous study, was incomplete, and the actual PAM sequence of C. jejuni was confirmed.
  • C. jejuni RGEN confirmed that each component is small and can be loaded into a single virus, and that genetic modifications can be performed very efficiently.
  • dCAS9 gRNA Enrichment of Target DNA Using Complex
  • the present inventors are derived from Streptococcus pyogens, and can use the inactivated RGEN (dCas9: gRNA complex) composed of inactivated Cas9 protein and guide RNA to bring the isolation and concentration of target DNA. It was confirmed.
  • RGEN dCas9: gRNA complex
  • the dCas9 protein has a histidine tag (His tag) for purification, so that only dCas9 protein can be selectively purified using Ni-NTA magnetic beads that selectively bind to His tags.
  • His tag histidine tag
  • only the desired target DNA can be selectively purified using the properties of the dCas9-protein-sgRNA complex without nuclease activity that can specifically bind to the DNA sequence.
  • the inventors first distinguished the plasmid (Plasmid, pUC19) by size to determine whether only the desired target DNA can be separated through inactivated RGEN (dCas9: gRNA complex) consisting of guide RNA and inactivated Cas9 nuclease protein. This was cut with restriction enzymes (SpeI, XmaI, XhoI) to prepare plasmid DNA fragments of 4134 bp, 2570 bp, and 1263 bp, respectively.
  • RGEN deactivated Cas9: gRNA complex
  • sgRNA Target sequence PAM sequence 4134 bp_sg # 1 GAGAACCAGACCACCCAGAA (SEQ ID NO: 83) GGG 4134 bp_sg # 2 GGCAGCCCCGCCATCAAGAA (SEQ ID NO: 84) GGG 2570bp_sg # 1 GTAAGATGCTTTTCTGTGAC (SEQ ID NO: 85) TGG 2570bp_sg # 2 GATCCTTTGATCTTTTCTAC (SEQ ID NO: 86) GGG 1270bp_sg # 1 GCCTCCAAAAAAGAAGAGAA (SEQ ID NO: 87) AGG 1270bp_sg # 2 TGACATCAATTATTATACAT (SEQ ID NO: 88) CGG
  • sgRNA sequence is the same as the target sequence, except that T is U.
  • the solution is then mixed with 50 ⁇ l of Ni-NTA magnetic beads that can specifically bind to histidine tags, washed twice with 200 ⁇ l wash buffer and then using 200 ⁇ l elution buffer (Bioneer, K-7200).
  • dCas9-sgRNA-target DNA complex was purified.
  • RNase A (Amresco, E866) was added at a concentration of 0.2 mg / ml and reacted at 37 ° C for 2 hours, and the decomposition protein hydrolase K (Bioneer, 1304G) was added at a concentration of 0.2 mg / ml at 55 ° C.
  • the target DNA was purified through ethanol purification.
  • the technique can also be applied to Cas proteins that recognize the proto-spacer-adjacent Motif (PAM) sequence, which is the NNNNRYAC (SEQ ID NO: 1) of the present invention.
  • PAM proto-spacer-adjacent Motif

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

캄필로박터 제주니 CRISPR/CAS 시스템 유래 RGEN 및 이의 이용에 관한 것이다.

Description

캄필로박터 제주니 CRISPR/CAS 시스템 유래 RGEN을 이용한 유전체 교정
캄필로박터 제주니 CRISPR/CAS 시스템 유래 RGEN 및 이의 이용에 관한 것이다.
특정한 유전체 위치에 표적화된 절단을 유도할 수 있는 유전자 가위 (engineered nuclease)는 살아있는 세포 및 개체에서 매우 효율적으로 유전체를 조작할 수 있다 (Nat Rev Genet, 2014. 15(5): p. 321-34.). 맞춤 설계된 2 형 제한 효소의 DNA 결합 영역 및 뉴클레아제 영역을 기반으로 하는 유전자 가위는 바이오 의학분야 및 산업의 다양한 측면에서 유전체 조작 기술의 다양한 범위의 적용이 가능함을 보여줬다. 그러나, 더욱 최근에는, 유전자 가위로 더욱 강력한 플랫폼인 박테리아 CRISPR/CAS9 적응 면역계 시스템 유래 RGEN (RNA-guided engineered nuclease)이 개발되었다.
RGEN에 의해 표적화되는 서열은, 이전에는 리프로그래밍 될 수 없었던 CAS9 단백질에 의해 인식되는 작은 모티브 (motif)인 PAM 서열에 제한된다. 현재 널리 사용되는 RGEN은 PAM 서열로 NGG를 가지는 CAS9 단백질을 포함하는 스트렙토코커스 피요게네스 (Streptococcus pyogenes) 유래 RGEN이며, 따라서 상기 RGEN이 DNA를 인식하기 위해서는 항상 GG 모티브가 필요하다. RGEN에 의해 표적화될 수 있는 서열을 확장하기 위해, PAM 서열의 다양성을 가지는 다른 박테리아 종 유래 RGEN을 분리하고 확인해볼 수 있다. 실제로, 스트렙토코커스 써모필러스 (Streptococcus thermophilus, PAM: NNAGAAW) 및 네이세리아 메닝기디티스 (Neisseria meningitidis, PAM: NNNNGATT) 유래 RGEN이 개발되어 RGEN 표적 위치를 선정하는데 선택의 폭이 더욱 넓어진바 있다.
이에, 본 발명자들은 유용성을 지니는 스트렙토코커스 피요게네스 외에 다른 종 유래의 RGEN을 개발하고자 예의 노력한 결과, 캄필로박터 제주니 (Campylobacter jejuni, C. jejuni) 유래의 Cas 단백질이 NNNNRYAC 인 PAM 서열을 인식하는 것을 규명하여, 이를 상기 PAM 서열을 가진 표적 DNA의 타겟팅에 이용할 수 있음을 확인하였다. 또한, 가이드 RNA의 구조를 최적화하여, 이들을 유전체 교정, 전사 조절 및 목적 DNA 분리 등을 가져올 수 있는 표적 DNA 타겟팅에 이용할 수 있음을 확인하고 본 발명을 완성하였다.
본 발명의 하나의 목적은 서열번호 1인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산을 세포 내에 도입하는 단계를 포함하는, 서열번호 1의 PAM 서열을 가지는 표적 DNA 서열을 타겟팅하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 서열번호 1의 PAM 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 분리된 가이드 RNA, 또는 이를 포함하는 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 (i) NNNNRYAC (서열번호 1) 인 PAM 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA, 및 (ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 포함하는, CRISPR-CAS 시스템을 제공하는 것이다.
본 발명의 또 다른 목적은 (i) NNNNRYAC (서열번호 1) 인 PAM 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA에 대한 발현 카세트, 및 (ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질에 대한 발현 카세트를 포함하는, 재조합 바이러스 벡터를 제공하는 것이다.
본 발명의 또 다른 목적은 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 21 내지 23bp 길이의 서열을 포함하는, 분리된 가이드 RNA, 또는 이를 포함하는 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 표적 DNA 서열의 상보적 사슬 과 염기 쌍을 형성할 수 있는 제1 부위; 및 13 내지 18bp 의 길이의 줄기 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA 또는 이를 포함하는 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 제1 부위; 및 5 내지 10bp 의 길이의 루프 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA 또는 이를 포함하는 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 분리된 가이드 RNA 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 유전체를 교정하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 표적 DNA를 절단하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 (i) 주어진 서열에서 NNNNRYAC (서열번호 1)인 PAM 서열의 존재를 확인하는 단계; 및 (ii) 상기 (i) 단계에서 NNNNRYAC (서열번호 1)인 PAM 서열이 존재하면 이의 업스트림 (upstream)에 위치한 서열을 가이드 RNA에 의해 인식되는 서열로 결정하는 단계를 포함하는, 가이드 RNA 의 표적 DNA 인식 서열의 제조 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하여, 표적 DNA 서열을 포함하는 목적하는 DNA 와 가이드 RNA 및 불활성화된 Cas 단백질이 서로 복합체를 형성하는 단계; 및 (ii) 상기 복합체를 시료로부터 분리하는 단계를 포함하는, 목적하는 DNA를 분리하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 표적 DNA를 특이적으로 인식하는 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 전사 효과기 도메인이 결합된 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 표적 DNA 서열을 포함하는 목적하는 DNA에서 Cas 매개 유전자 발현을 조절하는 방법을 제공하는 것이다.
본 발명의 CRISPR/Cas 시스템은 유전체 교정, 전사 조절 및 목적 DNA 분리 등을 가져올 수 있는 표적 DNA 타겟팅에 유용하게 이용할 수 있다.
도 1은 C. jejuni Cas9 단백질 발현 벡터의 모식도를 나타낸 것이다. 인간화된 Cas9 단백질이 CMV 프로모터 하에 발현되고, 핵 위치 신호 (NLS) 및 HA 태그가 C-말단에 존재하도록 구축하였다.
도 2a 및 2b는 내재적 인간 AAVS1 표적 위치에서 C. jejuni RGEN 유도 돌연변이에 대한 실험을 나타낸 것이다. (도 2a) T7E1 어세이를 사용하여 RGEN-매개 염색체 돌연변이 (GEN-driven chromosomal mutation)를 검출하였다. 별표 (*)는 T7E1에 의해 절단될 것으로 예상되는 DNA 밴드를 나타낸다. HEK293 wt gDNA를 음성 대조군 (-)으로 사용하였다. 기 검증된 RGEN을 양성 대조군 (+)으로 사용하였다. (도 2b) hAAVS1 돌연변이 클론의 DNA 서열을 나타내었다. 키메릭 RNA에 상보적인 표적 서열 부위를 볼드체로 나타내었다. 밑줄로 그어진 부분은 CAS9에 의해 인식되는 PAM 서열을 나타낸다. 도 2b에 개시된 WT 서열을 서열번호 4에 (-2, x1)으로 표시한 서열을 서열번호 5에, (-1, x1)으로 표시한 서열을 서열번호 6에 나타내었다.
도 3a 및 3b는 내재적 마우스 ROSA26 (mROSA) 표적 위치에서 C. jejuni RGEN 유도 돌연변이에 대한 실험을 나타낸 것이다. (도 3a) T7E1 어세이를 사용하여 RGEN-매개 염색체 돌연변이 (GEN-driven chromosomal mutation)를 검출하였다. 별표 (*)는 T7E1에 의해 절단될 것으로 예상되는 DNA 밴드를 나타낸다. NIH3T3 wt 세포의 gDNA를 음성 대조군 (-)으로 사용하였다. 기 검증된 RGEN을 양성 대조군 (+)으로 사용하였다. (도 3b) mROSA 돌연변이 클론의 DNA 서열을 나타내었다. 키메릭 RNA에 상보적인 표적 서열 부위를 볼드체로 나타내었다. 밑줄로 그어진 부분은 C. jejuni CAS9에 의해 인식되는 PAM 서열을 나타낸다. 도 3에 개시된 WT 서열은 서열번호 7 (-1, x1)으로 표시한 서열을 서열번호 8에, (+1, x1)으로 표시한 서열을 서열번호 9에 나타내었다.
도 4는 변형된 C. jejuni sgRNA 구조에 의해 유도된, 내재적 AAVS1 표적 위치에서의 돌연변이를 나타낸다. T7E1 어세이를 사용하여 RGEN-매개 염색체 돌연변이 (GEN-driven chromosomal mutation)를 검출하였다. 별표 (*)는 T7E1에 의해 절단될 것으로 예상되는 DNA 밴드를 나타낸다. HEK293 wt gDNA를 음성 대조군 (-)으로 사용하였다. 기 검증된 RGEN을 양성 대조군 (+)으로 사용하였다.
도 5a 내지 도 5c는 sgRNA의 스페이서 길이의 최적화에 관한 것이다.
도 5a 에는 여러가지 sgRNA구조를 나타내었다. 도 5a에서 밑줄로 표시된 부분은 sgRNA의 스페이서의 5' 앞에 존재하는 추가적인 뉴클레오타이드를 나타내고, 소문자는 표적 서열과 매치되지 않는 뉴클레오타이드를 나타낸다. 박스로 표시한 부분은 PAM 서열을 나타낸다. 도 5a에서 표적 서열은 서열번호 10에, GX19는 서열번호 11에, GX20은 서열번호 12에, GX21은 서열번호 13에, GX22은 서열번호 14에, GX23은 서열번호 15에, GGX20은 서열번호 16에, GGGX20은 서열번호 17에 나타내었다. 도 5b에는 sgRNA의 표적 위치를 나타내었고, hAAVS-CJ1, hAAVS-NRG1, hAAVS-NRG3, 및 hAAVS-NRG5 에 대한 서열 각각을 서열번호 18, 19, 20, 및 21에 나타내었다. 도 5c는 제작한 sgRNA를 이용하여 RGEN 매개 돌연변이 유도 효율을 확인하였다.
구체적으로 표적 DNA를 인식하는데 사용되는 스페이서의 길이 (19~23bp)와 그 앞에 붙이는 추가적인 G (guanine)의 개수를 다양하게 제작하여 테스트하였다. 도 5a에 나타낸 각각의 sgRNA를 인간 AAVS1 locus의 4군데의 표적 위치 (도 5b에 표시)에 대한 것으로 제작하여, 이를 인간 배양 세포인 293 세포에 전달하였다. 그 다음, 상기 세포에서 NHEJ에 의한 돌연변이 도입을 확인하였다. 돌연변이 도입의 확인은, 표적 위치를 PCR 증폭한 다음, miSEQ (illumine)을 이용한 딥 시퀀싱 (deep sequencing)을 이용하였다. 전체적인 패턴으로 보면 기존 다른 종이나 C.jejuni에서 사용되는 GX19또는 GX20의 모양에 비해 인식 서열이 21 내지 23bp인 경우; 또는 인식 서열 앞에 추가적인 G를 2개 또는 3개를 붙이는 경우에 유전체 교정 (돌연변이 도입) 빈도가 향상됨을 확인하였다.
도 6은 AAVS1-CJ1 위치를 surrogate reporter에 삽입하고 C.jejuni CRISPR/Cas9의 활성을 분석한 결과이다. PAM 위치의 서열이 ACAC인 경우의 활성을 100으로 두고 각 위치에 다른 뉴클레오타이드를 도입했을 때의 활성을 비교적으로 계산하였다. 이때 첫 번째 위치에서는 A 이외에도 G의 경우에 활성을 보이며 두 번째 위치에서는 C만이 아니라 T에서도 활성을 보였다. 하지만 3번째와 4번째 위치에서는 각각 A, C에서만 활성을 보였다. 따라서 최적화된 PAM 서열 (optimal PAM sequence) NNNN-A/G-C/T-C-A (또는 NNNNRYAC, 서열번호 1, 여기서 A/G = R, C/T = Y) 로 유추하였다. 상기 N은 IUPAC 표기법에 따라 Any nucleotide를 말하며, 그 예로 A, C, G, 및 T를 포함한다.
도 7은 Digenome-Seq 분석을 통해 발굴된 hAAVS1-CJ1 sgRNA의 잠재적 오프 타겟 서열의 consensus logo 를 나타낸 것이다.
도 8은 C.jejuni Cas9 의 PAM 에 대한 테스트 결과이다. NNNNRYAC (서열번호 1)를 갖는 7개 표적 위치에 대한 돌연변이 도입 효율을 분석하였다.
hAAVS1-RYN1~7: 각 사이트에 대한 sgRNA/Cas9 처리된 세포에서의 돌연변이 비율,
WT1~7: mock-treated 세포의 genomic DNA에서 각 위치에서의 돌연변이 비율
도 9는 C. jejuni CRISPR/Cas9 발현 AAV 벡터 구조 모식도를 나타낸 것이다.
도 10은 Rosa26 locus에 대한 C.jejuni CRISPR/Cas9 AAV (adeno-associated virus)에 의한 유전체 교정 (genome editing)을 나타낸 것이다. 구체적으로, 하나의 벡터에 Rosa26-sgRNA 및 C.jejuni Cas9을 인코딩하는 재조합 AAV를 C2C12 세포에 각각 다른 MOI (multiplicity of infectivity)로 감염하였다. 게노믹 DNA를 감염 후 3일, 5일, 7일, 10일, 및 14일에 분리하였고, 돌연변이 비율을 deep sequencing으로 분석하였다.
본 발명의 하나의 양태는 Cas 단백질 또는 이를 암호화하는 핵산을 세포 내에 도입하는 단계를 포함하는, 표적 DNA 서열을 타겟팅하는 방법이다.
보다 구체적으로 본 발명의 하나의 양태는 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산을 세포 내에 도입하는 단계를 포함하는, 서열번호 1의 PAM 서열을 가지는 표적 DNA 서열을 타겟팅하는 방법을 제공한다.
상기 N은 IUPAC 표기법에 따라 Any nucleotide를 말하며, 그 예로 A, C, G, 및 T를 포함한다. R은 Purine (A/G)을, Y는 피리미딘 (C/T)를 말한다.
상기 단계는 서열번호 1의 PAM 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산과, 순차적으로 또는 동시에 서열번호 1의 PAM 서열에 인접한 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열을 포함하는 가이드 RNA를 도입하는 것을 추가로 포함할 수 있다.
한편, 상기 타겟팅은 표적 DNA 서열의 절단 또는 절단 없이 Cas 단백질이 결합된 것을 모두 포함하는 개념이다.
하기에서 기술될 용어 설명은 본 발명에 기술된 모든 다른 양태에도 적용되고, 조합된다.
상기 Cas 단백질은 crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA)와 복합체를 형성하여 이의 활성을 나타낼 수 있다. 상기 Cas 단백질은 활성 엔도뉴클레아제 또는 니카아제 (nickase) 활성을 나타낼 수 있다.
Cas 단백질 또는 유전자 정보는 NCBI (National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있다. 구체적으로, 상기 Cas 단백질은 Cas9 단백질일 수 있다. 또한, 상기 Cas 단백질은 캄필로박터 속 (Campylobacter) 속, 보다 구체적으로 캄필로박터 제주니 (Campylobacter jejuni) 유래의 Cas 단백질, 보다 구체적으로 Cas9 단백질일 수 있다. 보다 구체적인 예로 서열번호 22에 기재된 아미노산 서열, 또는 상기 서열의 단백질의 활성을 가지면서도 상동성을 가지는 단백질일 수 있다. 또한, 상기 단백질은 상기 서열번호 22와 적어도 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 또는 99%의 서열 동일성을 가질 수 있다 그러나, 상기 기술된 예에 제한되지 않는다.
또한, 상기 Cas 단백질은 천연형 단백질 외에도 가이드 RNA와 협동하여 활성화된 엔도뉴클레아제 또는 nickase로 작용할 수 있는 변이체를 모두 포함하는 개념으로 본 발명에서 사용된다. 활성화된 엔도뉴클레아제 또는 니카아제인 경우, 표적 DNA 절단을 가져올 수 있고, 이를 이용하여 유전체 교정을 가지고 올 수 있다. 또한, 불활성화된 변이체인 경우, 이를 이용하여 전사 조절 혹은 목적하는 DNA의 분리를 가져올 수 있다.
상기 Cas9 단백질의 변이체는 촉매적 아스파라긴산 잔기 (catalytic aspartate residue) 또는 히스티딘 잔기가 임의의 다른 아미노산으로 변경된 Cas9의 돌연변이 형태일 수 있다. 구체적으로, 다른 아미노산은 알라닌 (alanine)일 수 있지만, 이에 제한되지 않는다.
보다 구체적으로 상기 Cas 단백질, 구체적으로 C. 제주니 유래의 Cas9 단백질은 8번의 촉매 아스파라긴산(aspartic acid, D), 또는 559번의 히스티딘 잔기(histidine, H)가 다른 아미노산으로 치환된 것일 수 있다. 구체적으로, 다른 아미노산은 알라닌 (alanine)일 수 있지만, 이에 제한되지 않는다. 즉 Cas9 뉴클레아제 단백질 중 하나의 활성 부위 (active site)에만 변이를 도입해 만든 Cas9 뉴클레아제 단백질은 가이드 RNA와 결합하였을 때, 니카아제 (nickase)로 작용할 수 있다. 이와 같은 nickase는 두 개를 사용할 경우 양쪽 DNA 가닥을 둘 다 잘라 DSB (double strand breakage)를 일으킬 수 있으므로 RGEN의 범주에 포함된다.
본 발명에서 용어, "불활성화된 Cas 단백질"은 뉴클레아제의 기능이 전부 또는 일부 불활성화된 Cas 뉴클레아제 단백질을 의미한다. 상기 불활성화된 Cas는 dCas로도 명명된다. 상기 Cas는 Cas9 단백질일 수 있다. 또한, 캄필로박터 속, 보다 구체적으로 C. 제주니 유래일 수 있다. 불활성화된 Cas9 뉴클레아제 단백질의 제조는 뉴클레아제의 활성이 불활성화되는 방법은 제한 없이 포함된다. 그 예로, 앞서 기술된 Cas9 뉴클레아제의 두 활성부위에 돌연변이를 도입해 만든 dCAS9 단백질은 가이드 DNA와 결합하였을 때 DNA를 절단하지 않는 DNA 결합 복합체로 작용할 수 있다. 구체적으로, 8번의 촉매 아스파라긴산(aspartic acid, D), 및 559번의 히스티딘 잔기(histidine, H)가 다른 아미노산, 구체적으로 알라닌으로 치환된 것일 수 있으나, 이에 제한되지 않는다.
본원에 사용된, 용어 "절단"은 뉴클레오타이드 분자의 공유 결합 백본(covalent backbone)의 파손 (breakage)을 포함한다.
본 발명에서 상기 Cas 단백질은 재조합 단백질일 수 있다.
상기 용어 "재조합"은, 예컨대 세포, 핵산, 단백질 또는 벡터 등을 언급하며 사용될 때, 이종 (heterologous) 핵산 또는 단백질의 도입 또는 천연형 (native) 핵산 또는 단백질의 변경, 또는 변형된 세포로부터 유래한 세포에 의해 변형된 세포, 핵산, 단백질, 또는 벡터를 나타낸다. 따라서, 예컨대, 재조합 Cas 단백질은 인간 코돈 표 (human codon table)를 이용하여 Cas 단백질을 암호화하는 서열을 재구성함으로써 만들 수 있다.
상기 Cas 단백질 또는 이를 코딩하는 핵산은 Cas 단백질이 핵 내에서 작용할 수 있게 하는 형태일 수 있다.
상기 분리된 Cas 단백질은 또한 세포 내로 도입되기에 용이한 형태일 수 있다. 그 예로 Cas 단백질은 세포 침투 펩타이드 또는 단백질 전달 도메인 (protein transduction domain)과 연결될 수 있다. 상기 단백질 전달 도메인은 폴리-아르기닌 또는 HIV 유래의 TAT 단백질일 수 있으나, 이에 제한되지 않는다. 세포 침투 펩타이드 또는 단백질 전달 도메인은 상기 기술된 예 외에도 다양한 종류가 당업계에 공지되어 있으므로, 당업자는 상기 예에 제한되지 않고 다양한 예를 본 발명에 적용할 수 있다.
상기 Cas 단백질 또는 이를 암호화하는 핵산은 Cas 단백질을 핵 내에 위치시키기 위한 핵 위치 신호 (nuclear localization signal, NLS)를 더 포함할 수 있다. 또한, 상기 Cas 단백질을 코딩하는 핵산은 추가적으로 핵 위치 신호 (nuclear localization signal, NLS) 서열을 포함할 수 있다. 따라서, 상기 Cas 단백질을 코딩하는 핵산을 포함하는 발현 카세트는 상기 Cas 단백질을 발현시키기 위한 프로모터 서열 등 조절 서열 외에도 NLS 서열을 포함할 수 있다. 그러나, 이에 제한되지 않는다.
Cas 단백질은 분리 및/또는 정제에 유리한 태그와 연결될 수 있다. 그 예로, His 태그, Flag 태그, S 태그 등과 같은 작은 펩타이드 태그, 또는 GST (Glutathione S-transferase) 태그, MBP (Maltose binding protein) 태그 등을 목적에 따라 연결할 수 있으나, 이에 제한되지 않는다.
상기 Cas 단백질은 표적 DNA 특이적 가이드 RNA와 함께 RGEN (RNA-Guided Engineered Nuclease)으로 명명될 수 있다.
본 발명에서 용어, "RGEN"은 표적 DNA 특이적 가이드 RNA 및 Cas 단백질을 구성요소로 포함하는 뉴클레아제를 의미한다.
본 발명에서 상기 RGEN은 표적 DNA 특이적 가이드 RNA 또는 상기 가이드 RNA를 코딩하는 DNA; 및 분리된 Cas 단백질 또는 상기 Cas 단백질을 코딩하는 핵산의 형태로 세포에 적용될 수 있으나, 이에 제한되지 않는다. 이때 상기 가이드 RNA 또는 이를 코딩하는 DNA와 Cas 단백질 또는 이를 코딩하는 핵산은 동시에 또는 순차적으로 세포에 적용될 수 있다.
보다 구체적인 양태로서, 본 발명에서 상기 RGEN은 1) 표적 DNA 특이적 가이드 RNA 및 분리된 Cas 단백질, 2) 상기 가이드 RNA를 코딩하는 DNA 및 Cas 단백질을 코딩하는 핵산의 형태로 세포에 적용될 수 있다. 상기 1)의 형태로 세포에 전달하는 것을, RNP delivery로도 명명하나, 이에 제한되지 않는다.
분리된 가이드 RNA 형태로 적용할 경우, 상기 가이드 RNA는 생체 외 (in vitro) 전사된(transcribed) 것일 수 있으나, 이에 제한되지 않는다.
또한, 상기 가이드 RNA를 코딩하는 DNA 및 Cas 단백질을 코딩하는 핵산은 분리된 핵산 자체로 이용될 수도 있지만, 상기 가이드 RNA, 또는/및 Cas 단백질을 발현하기 위한 발현 카세트를 포함하는 벡터 형태로 존재할 수 있으나, 이에 제한되지 않는다.
상기 벡터는 바이러스 벡터, 플라스미드 벡터, 또는 아그로박테리움 벡터일 수 있으며, 상기 바이러스 벡터의 종류로는 AAV (Adeno-associated virus)를 들 수 있으나, 이에 제한되지 않는다.
상기 가이드 RNA를 암호화하는 DNA 및 Cas 단백질을 암호화하는 핵산은 개별적인 벡터에 각각 존재하거나, 하나의 벡터에 존재할 수 있으나, 이에 제한되지 않는다.
상기에서 기술된 각 적용 양태는 명세서에 기술된 보다 구체적인 양태에 대해서도 모두 적용될 수 있다. 또한, 하기에서 기술될 적용 양태들도 각 다른 구성요소에 조합되어 적용될 수 있다.
본 발명에서 용어, "가이드 RNA (guide RNA)"는 표적 DNA 특이적인 RNA를 의미하며, Cas 단백질과 결합하여 Cas 단백질을 표적 DNA로 인도할 수 있다.
또한. 본 발명에서, 가이드 RNA는 절단하고자 하는 어떠한 표적에 특이적이 되도록 제조될 수 있다.
본 발명에서 가이드 RNA는 두 개의 RNA, 즉, crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA)를 구성요소로 포함하는 이중 RNA (dual RNA); 또는 표적 DNA의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는 제1 부위 및 Cas 단백질과 상호작용하는 서열을 포함하는 제2 부위를 포함하는 형태, 보다 구체적으로 crRNA 및 tracrRNA의 주요 부분이 융합된 형태인 sgRNA (single-chain guide RNA)일 수 있다.
상기 가이드 RNA의 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 길이는 17 내지 23bp, 18 내지 23bp, 19 내지 23bp, 보다 구체적으로 20 내지 23bp, 보다 더 구체적으로, 21 내지 23bp 일 수 있으나, 이에 제한되지 않는다. 이는 이중 RNA 및 sgRNA에 모두 적용되며, 보다 구체적으로는 sgRNA에 적용될 수 있다.
또한, 상기 가이드 RNA는 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 5' 부위 앞에 1 내지 3 개의 추가적인 뉴클레오타이드, 보다 구체적으로 2개 또는 3개의 뉴클레오타이드를 가질 수 있다. 상기 뉴클레오타이드의 예로, A, T, G, C를 들 수 있다. 상기 가이드 RNA는 보다 구체적으로 1 개 내지 3개의 구아닌 (guanine, G), 보다 더 구체적으로 2개 또는 3개의 G를 가질 수 있다. 이는 이중 RNA 및 sgRNA에 모두 적용되며, 보다 구체적으로는 sgRNA에 적용될 수 있다. 그러나, 상기 기술된 예들에 제한되는 것은 아니다.
상기 sgRNA는 표적 DNA 내 서열과 상보적인 서열을 가지는 부분 (이를 Spacer region, Target DNA recognition sequence, base pairing region 등으로도 명명함) 및 Cas 단백질 결합을 위한 hairpin 구조를 포함할 수 있다.
보다 구체적으로, 표적 DNA 내 서열과 상보적인 서열을 가지는 부분, Cas 단백질 결합을 위한 hairpin 구조 및 Terminator 서열을 포함할 수 있다. 상기 기술된 구조는 5' 에서 3' 순으로 순차적으로 존재하는 것일 수 있다. 그러나, 이에 제한되는 것은 아니다.
상기 가이드 RNA가 crRNA 및 tracrRNA의 주요 부분 및 표적 DNA의 상보적인 부분을 포함하는 경우라면 어떠한 형태의 가이드 RNA도 본 발명에서 사용될 수 있다.
상기 crRNA는 표적 DNA와 혼성화된 것일 수 있다.
RGEN은 Cas 단백질 및 dual RNA로 구성되거나, Cas 단백질 및 sgRNA로 구성될 수 있다. 또한, 상기 RGEN은 Cas 단백질을 코딩하는 핵산 및 dual RNA를 코딩하는 핵산; 또는 Cas 단백질을 코딩하는 핵산 및 sgRNA를 코딩하는 핵산을 구성요소로 할 수 있으나, 이에 제한되지 않는다.
상기 가이드 RNA, 구체적으로 crRNA 또는 sgRNA는 표적 DNA 내 서열과 상보적인 서열을 포함하며, crRNA 또는 sgRNA의 업스트림 부위, 구체적으로 sgRNA 또는 dualRNA의 crRNA의 5' 말단에 하나 이상의 추가의 뉴클레오티드를 포함할 수 있다. 상기 추가의 뉴클레오티드는 구아닌 (guanine, G)일 수 있으나, 이에 제한되는 것은 아니다. 또한, 이에 대해서는 앞서 설명한 내용이 모두 적용된다.
보다 구체적으로, 상기 가이드 RNA는 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함할 수 있다.
보다 구체적으로, 상기 가이드 RNA는 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 13 내지 18bp 의 길이의 줄기 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함할 수 있다. 여기서, 상기 줄기 구조는 서열번호 2의 염기 서열 (5'-GUUUUAGUCCCUUGUG-3') 및 이와 상보적인 서열을 포함할 수 있다.
보다 구체적으로, 상기 가이드 RNA는 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 5 내지 10bp 의 길이의 루프 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함할 수 있다. 여기서, 상기 루프 구조는 서열번호 3의 염기 서열 (5'-AUAUUCAA-3')의 서열을 가질 수 있다.
상기 기술되거나 후술될 Cas 단백질과 가이드 RNA, 특히 sgRNA는 비자연적으로 발생되고, 조작된 (engineered) 것일 수 있다. 또한, 상기 각각에 기재된 요소들은 모두 조합되어 적용될 수 있다.
구체적으로, 상기 세포 내 도입은 (1) 박테리아에서 과발현시킨 후 정제한 Cas9 단백질과 특정 HLA 타겟 시퀀스를 인지하는 sgRNA (single guided RNA)를 in vitro 전사에 의해 제조하여 전달해주는 방법일 수도 있다. (2) 혹은 이들 Cas9 단백질과 sgRNA를 발현시키는 플라스미드 DNA들을 세포 안에 전달하여 세포 내에서 발현하도록 하는 방법을 사용할 수 있으나, 반드시 이에 국한되는 것은 아니다.
또한, 본 발명에 필요한 단백질, RNA, 혹은 플라스미드 DNA들의 세포 내 전달방법은 전기천공법 (electroporation), 리포좀, 바이러스벡터, 나노파티클 (nanoparticles) 뿐만 아니라 PTD (Protein translocation domain) 융합 단백질 방법 등 당업계에 공지된 다양한 방법들을 사용할 수 있으며, 상기 예에 제한되는 것은 아니다.
본 발명의 방법은 서열번호 1의 PAM 서열을 가지는 표적 DNA를 절단하기 위해, 보다 구체적으로는 유전체를 교정하기 위해 사용될 수 있다. 이 경우, Cas 단백질은 뉴클레아제 또는 니카아제 활성을 가지는 활성형일 수 있다.
또한, 본 발명의 방법에서 상기 Cas 단백질은 불활성화된 형태일 수 있다. 이 경우, 상기 방법은 서열번호 1의 PAM 서열을 포함하는 표적 DNA 서열을 절단하지 않고 이에 Cas 단백질이 결합된 것을 특징으로 할 수 있다.
또한, 상기 Cas 단백질, 보다 구체적으로 불활성화된 Cas 단백질은 전사 효과기 도메인 (transcription effector domain)을 더 포함하는 것일 수 있다. 구체적으로 activator, repressor 등이 접합된 것일 수 있으나, 이에 제한되지 않는다.
이 경우, 상기 방법은 전사 조절 또는 후성학적 조절을 포함하는, Cas 매개 유전자 발현 조절을 위해 사용될 수 있다.
본 발명의 또 하나의 양태는 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 분리된 가이드 RNA이다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
각각에 대해서는 앞서 설명한 바와 같다.
보다 구체적으로, 상기 가이드 RNA는 단일-사슬 가이드 RNA일 수 있으며, 상기 가이드 RNA의 표적 DNA 내 서열과 상보적인 서열의 길이는 17 내지 23bp, 18 내지 23bp, 19 내지 23bp, 보다 구체적으로 20 내지 23bp, 보다 더 구체적으로, 21 내지 23bp 일 수 있으나, 이에 제한되지 않는다.
또한, 상기 가이드 RNA는 표적 DNA 내 서열과 상보적인 서열의 5' 부위 앞에 1 내지 3 개의 구아닌 (guanine, G)를 가지는 것일 수 있으나, 이에 제한되지 않는다. 또한, 앞서 추가적인 뉴클레오타이드에 대한 설명이 본 양태에도 적용된다.
본 발명의 또 하나의 양태는 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA를 포함하는 조성물이다.
각각에 대해서는 앞서 설명한 바와 같다.
상기 조성물은 NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 추가로 포함할 수 있다.
또한, 상기 조성물은 유전체를 교정하기 위한 것일 수 있다.
또한, 상기 조성물은 (i) NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 코딩하는 DNA; 및 (ii) 불활성화된 Cas 단백질 (dCas) 또는 이를 코딩하는 핵산을 포함하는 것일 수 있다.
여기서, 상기 불활성화된 Cas 단백질은 전사 효과기 도메인 (transcription effector domain)을 더 포함하는 것일 수 있다.
또한, 상기 조성물은 표적 DNA 서열을 포함하는 목적하는 DNA를 분리하기 위한 것일 수 있다. 이 때, 상기 불활성화된 Cas 단백질은 분리 정제를 위한 태그가 접합된 것일 수 있으나, 이에 제한되지 않는다. 상기 태그에 대해서는 앞서 기술한 내용을 예로서 들 수 있다.
또한, 상기 조성물은 전사 조절 또는 후성학적 조절을 포함하는, Cas 매개 유전자 발현 조절을 위한 것일 수 있다.
상기 표적 DNA는 분리된 세포, 예컨대 진핵 세포에 존재하는 것일 수 있다. 상기 진핵 세포는 효모, 곰팡이, 원생동물 (protozoa), 식물, 고등 식물 및 곤충, 또는 양서류의 세포, 또는 CHO, HeLa, HEK293, 및 COS-1과 같은 포유 동물의 세포일 수 있고, 예를 들어, 당업계에서 일반적으로 사용되는, 배양된 세포 (인 비트로), 이식된 세포 (graft cell) 및 일차세포 배양 (인 비트로 및 엑스 비보(ex vivo)), 및 인 비보(in vivo) 세포, 또한 인간을 포함하는 포유동물의 세포 (mammalian cell)일 수 있으나, 이에 제한되지 않는다.
본 발명의 또 하나의 양태는 (i) NNNNRYAC (서열번호 1) 인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA, 및 (ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 포함하는, CRISPR-CAS 시스템이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
본 발명의 또 하나의 양태는 (i) NNNNRYAC (서열번호 1) 인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA에 대한 발현 카세트, 및 (ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질에 대한 발현 카세트를 포함하는, 재조합 바이러스 벡터이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
상기 바이러스 벡터는 AAV (Adeno-associated virus)일 수 있다.
본 발명의 또 하나의 양태는 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 21 내지 23bp 길이의 서열을 포함하는, 분리된 가이드 RNA이다.
이에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
본 발명의 또 하나의 양태는 상기 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA를 포함하는, 조성물이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
상기 조성물은 NNNNRYAC (서열번호 1)인 PAM 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산을 포함할 수 있다.
또한, 상기 조성물은 NNNNRYAC (서열번호 1) 서열을 인식하는 불활성화된 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 포함할 수 있다.
상기 불활성화된 Cas 단백질은 전사 효과기 도메인을 더 포함할 수 있다.
본 발명의 또 하나의 양태는 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 13 내지 18bp 의 길이의 줄기 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
상기 줄기 구조는 서열번호 2의 염기 서열 (5'-GUUUUAGUCCCUUGUG-3') 및 이와 상보적인 서열을 포함할 수 있다.
본 발명의 또 하나의 양태는 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 5 내지 10bp 의 길이의 루프 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
상기 루프 구조는 서열번호 3의 염기 서열 (5'-AUAUUCAA-3')의 서열을 가질 수 있다.
본 발명의 또 하나의 양태는 가이드 RNA 및 Cas 단백질 또는 이를 코딩하는 핵산 서열을 포함하는, 조성물이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
본 발명의 또 하나의 양태는 상기 기술된 분리된 가이드 RNA 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 유전체를 교정하는 방법이다.
각각에 대해서는 앞서 설명한 바와 같다. 각 구성요소는 비자연적으로 발생되거나, 조작된 것일 수 있다.
본 발명의 또 하나의 양태는 상기 기술된 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 표적 DNA를 절단하는 방법이다.
각각에 대해서는 앞서 설명한 바와 같다. 각 구성요소는 비자연적으로 발생되거나, 조작된 것일 수 있다.
상기 가이드 RNA 또는 이를 코딩하는 DNA와 Cas 단백질 또는 이를 코딩하는 핵산의 도입은 동시 또는 순차적으로 수행되는 것일 수 있다.
본 발명의 또 하나의 양태는 (i) 주어진 서열에서 NNNNRYAC (서열번호 1)인 PAM 서열의 존재를 확인하는 단계; 및 (ii) 상기 (i) 단계에서 NNNNRYAC (서열번호 1)인 PAM 서열이 존재하면 이의 업스트림 (upstream)에 위치한 서열을 가이드 RNA에 의해 인식되는 서열로 결정하는 단계를 포함하는, 가이드 RNA 의 표적 DNA 인식 서열의 제조 방법이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
상기 업스트림에 위치한 서열은 17 내지 23bp 길이, 18 내지 23bp, 19 내지 23bp, 보다 구체적으로 20 내지 23bp, 보다 더 구체적으로, 21 내지 23bp 일 수 있으나, 이에 제한되지 않는다.
본 발명의 또 하나의 양태는 (i) 상기 기술된 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하여, 표적 DNA 서열을 포함하는 목적하는 DNA 와 가이드 RNA 및 불활성화된 Cas 단백질이 서로 복합체를 형성하는 단계; 및 (ii) 상기 복합체를 시료로부터 분리하는 단계를 포함하는, 목적하는 DNA를 분리하는 방법이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
상기 불활성화된 Cas 단백질은 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 것일 수 있다.
구체적으로, 상기 목적하는 DNA를 분리하는 방법은 목적하는 DNA에 특이적으로 결합하는 가이드 RNA (gRNA) 및 불활성화된 Cas 단백질 (dCas)이 목적하는 DNA와 dCas-gRNA-목적하는 DNA의 복합체를 형성하는 단계; 및 상기 복합체를 상기 시료로부터 분리하는 단계를 포함하는, 목적하는 DNA를 분리하는 방법에 의해 수행될 수 있다.
상기 목적하는 DNA는 PCR에 의한 증폭, 또는 공지의 방법으로 검출하는 방법에 의해 확인할 수 있다.
상기 분리 방법은 인 비트로 (in vitro)에서 세포-유리 DNA (cell-free DNA)에 적용되는 것일 수 있고, DNA와 gRNA 및 dCas 단백질 간의 가교 공유결합 (cross-link covalent bone)의 형성 없이 수행되는 것일 수 있다.
상기 분리 방법은 상기 복합체로부터 목적하는 DNA를 분리하는 단계를 추가로 포함할 수 있다.
목적하는 DNA를 분리하기 위해, 상기 불활성화된 Cas 단백질은 분리를 위한 친화성 태그 (tag)를 포함할 수 있으며, 예를 들어 상기 친화성 태그는 His 태그, Flag 태그, S 태그, GST (Glutathione S-transferase) 태그, MBP (Maltose binding protein) 태그, CBP (chitin binding protein) 태그, Avi 태그, 칼모듈린 (calmodulin) 태그, 폴리글루타메이트 (polyglutamate) 태그, E 태그, HA 태그, myc 태그, SBP 태그, 소프태그 1 (softag 1), 소프태그 3 (softag 3), 스트렙 (strep) 태그, TC 태그, Xpress 태그, BCCP (biotin carboxyl carrier protein) 태그, 또는 GFP (green fluorescent protein) 태그일 수 있으나, 이에 제한되는 것은 아니다.
상기 불활성화된 Cas 단백질은 Cas 단백질의 DNA 절단 활성이 결여된 것일 수 있다.
상기 방법은 상기 태그에 결합하는 친화성 컬럼 또는 자성 비드 (magnetic bead)를 이용하여 목적하는 DNA를 분리하는 것일 수 있다. 예를 들어, 상기 분리를 위한 친화성 태그는 His 태그로서, 상기 His 태그에 결합하는 금속 친화성 컬럼 (metal affinity column) 또는 자성 비드를 이용하여 목적하는 DNA를 분리하는 것일 수 있고, 상기 자성 비드는 예를 들어, Ni-NTA 자성 비드일 수 있으나, 이에 제한되는 것은 아니다.
상기 복합체로부터 목적하는 DNA의 분리는 RNase 및 단백질 가수분해효소를 이용하여 수행되는 것일 수 있다.
상기 목적하는 DNA를 분리하는 방법을 이용하여, 두 종류 이상의 유전자형 DNA가 혼합된 분리된 시료에서 특정 유전자형 DNA를 분리할 수 있으며, 두 가지 이상의 목적하는 DNA를 분리할 수도 있다. 두 가지 이상의 목적하는 DNA를 분리하는 경우, 두 가지 이상의 목적하는 DNA 각각에 특이적인 가이드 RNA를 이용하여 목적하는 DNA를 분리할 수 있다.
상기 가이드 RNA는 단일-사슬 가이드 RNA (sgRNA)일 수 있고, crRNA 및 tracrRNA를 포함하는 이중RNA (dualRNA)일 수 있다. 또한, 상기 가이드 RNA는 분리된 RNA 형태이거나, 플라스미드에 코딩되어 있는 형태일 수 있다.
상기 방법은 목적하는 DNA에 특이적으로 결합하는 가이드 RNA (gRNA) 및 불활성화된 Cas 단백질 (dCas)이 목적하는 DNA와 dCas-gRNA-목적하는 DNA의 복합체를 형성하는 단계; 및 상기 복합체를 상기 시료로부터 분리하는 단계를 포함하여 수행되는 것일 수 있다.
본 발명의 또 하나의 양태는 표적 DNA를 특이적으로 인식하는 상기 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 전사 효과기 도메인이 결합된 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 표적 DNA 서열을 포함하는 목적하는 DNA에서 Cas 매개 유전자 발현을 조절하는 방법이다.
각각에 대해서는 앞서 설명한 바와 같다. 이는 비자연적으로 발생되거나, 조작된 것일 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
C. jejuni CRISPR / Cas9 시스템
실시예 1. C. jejuni CRISPR / Cas9을 이용한 유전체 교정
본 발명자들은 C. jejuni로부터 RGEN을 성공적으로 분리하였다. C. jejuni CRISPR/CAS9 시스템의 활성이 생체 외에서 재구성될 수 있다는 것이 보고된바 있으나, 현재까지 상기 시스템을 이용하여 세포 내에서 유전체 조작을 한 사례는 없었다.
유전체 조작에 대한 C. jejuni CRISPR/CAS9 유래 RGEN의 특성을 확인하기 위해, 먼저 인간 코돈에 최적화된 C. jejuni CAS9 유전자를 합성하였고 (표 1), 상기 유전자를 포유류 발현 벡터에 삽입하여 CMV 프로모터 하에 HA 에피토프가 태깅되고 NLS가 부착된 C. jejuni CAS9 단백질 발현 카세트를 제조하였다 (도 1).
C. jejuni Cas9 단백질의 아미노산 서열
아미노산 서열 사이즈 서열번호
MARILAFDIGISSIGWAFSENDELKDCGVRIFTKVENPKTGESLALPRRLARSARKRLARRKARLNHLKHLIANEFKLNYEDYQSFDESLAKAYKGSLISPYELRFRALNELLSKQDFARVILHIAKRRGYDDIKNSDDKEKGAILKAIKQNEEKLANYQSVGEYLYKEYFQKFKENSKEFTNVRNKKESYERCIAQSFLKDELKLIFKKQREFGFSFSKKFEEEVLSVAFYKRALKDFSHLVGNCSFFTDEKRAPKNSPLAFMFVALTRIINLLNNLKNTEGILYTKDDLNALLNEVLKNGTLTYKQTKKLLGLSDDYEFKGEKGTYFIEFKKYKEFIKALGEHNLSQDDLNEIAKDITLIKDEIKLKKALAKYDLNQNQIDSLSKLEFKDHLNISFKALKLVTPLMLEGKKYDEACNELNLKVAINEDKKDFLPAFNETYYKDEVTNPVVLRAIKEYRKVLNALLKKYGKVHKINIELAREVGKNHSQRAKIEKEQNENYKAKKDAELECEKLGLKINSKNILKLRLFKEQKEFCAYSGEKIKISDLQDEKMLEIDHIYPYSRSFDDSYMNKVLVFTKQNQEKLNQTPFEAFGNDSAKWQKIEVLAKNLPTKKQKRILDKNYKDKEQKNFKDRNLNDTRYIARLVLNYTKDYLDFLPLSDDENTKLNDTQKGSKVHVEAKSGMLTSALRHTWGFSAKDRNNHLHHAIDAVIIAYANNSIVKAFSDFKKEQESNSAELYAKKISELDYKNKRKFFEPFSGFRQKVLDKIDEIFVSKPERKKPSGALHEETFRKEEEFYQSYGGKEGVLKALELGKIRKVNGKIVKNGDMFRVDIFKHKKTNKFYAVPIYTMDFALKVLPNKAVARSKKGEIKDWILMDENYEFCFSLYKDSLILIQTKDMQEPEFVYYNAFTSSTVSLIVSKHDNKFETLSKNQKILFKNANEKEVIAKSIGIQNLKVFEKYIVSALGEVTKAEFRQREDFKKSGPPKKKRKVYPYDVPDYA- 1003a.a 22
C. jejuni CRISPR/CAS9 시스템의 천연 가이드 RNA는 tracrRNA 및 표적 특이적-crRNA로 구성된다. 가이드 RNA는 천연 상태로 두 RNA 분자로 이용될 수도 있고, crRNA 및 tracrRNA의 융합된 형태인 단일 사슬 가이드 RNA (sgRNA)로 이용될 수 있음이 보고되었으므로, 본 발명자들은 C. jejuni sgRNA에 대한 발현 플라스미드를 설계하고 제작하였다 (표 2).
sgRNAs sgRNA 서열 서열번호
C.jejuni_sgRNA NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 23
그 다음, C. jejuni CRISPR/CAS9 시스템의 PAM 서열 (NNNACA)을 기반으로, 인간 AAVS1 위치 및 마우스 Rosa-26 위치의 잠재적 표적 위치를 선발하였다 (표 3).
sgRNAs 표적 서열 서열번호
Human AAVS1_C.Jejuni ATATAAGGTGGTCCCAGCTCGGGGACA 24
Mouse Rosa26_C.Jejuni ATTCCCCTGCAGGACAACGCCCACACA 25
그 다음, C. jejuni RGEN이 포유류 세포에서 내재적 유전자의 표적 파괴에 이용될 수 있는지 확인하기 위해, 야생형 및 변이 DNA 서열의 혼성화에 의해 형성되는 헤테로듀플렉스 (heteroduplexes)를 특이적으로 인식하고 절단할 수 있는 미스매치 (mismatch) 민감성 엔도뉴클레아제인 T7 엔도뉴클레아제 I (T7E1)을 이용하여 형질전환된 세포에서 분리한 유전체 DNA를 분석하였다. 이때, 사용된 프라이머 서열은 하기와 같았다 (표 4).
프라이머 서열 서열번호
Human AAVS1-F TGCTTCTCCTCTTGGGAAGT 26
Human AAVS1-R CCCCGTTCTCCTGTGGATTC 27
Mouse Rosa26-F ACGTTTCCGACTTGAGTTGC 28
Mouse Rosa26-R CCCAGCTACAGCCTCGATTT 29
그 결과 CAS9 단백질 및 가이드 RNA를 함께 세포에 도입한 경우에만 변이가 유도되는 것을 확인하였다. 관련 DNA 밴드의 강도로 확인되는 변이 빈도는 RNA 농도 의존적으로 확인되었다 (도 2a). 또한, PCR 산물의 DNA 서열분석 결과로 내재적 유전자 위치에 RGEN-매개 변이가 유도된 것을 확인하였다. 오류발생이 쉬운 (error-prone) 비상동 말단 결합 (non homologous end joining, NHEJ)의 특성인, 인델 (Indel) 및 미세상동성 (microhomology)이 표적 위치에서 관찰되었다 (도 2b). 직접 시퀀싱을 통해 측정된 변이 빈도는 16.7 %였다 (= 2 변이 클론 / 12 클론).
이와 유사하게, 마우스 NIH3T3 세포에 마우스 Rosa26 C. jejuni RGEN를 도입하였을 때, 마우스 Rosa26 위치에 효과적으로 변이가 유도된 것을 T7E1 분석을 이용하여 확인하였다 (도 3a). 또한, PCR 산물의 DNA 서열 분석으로 내재적 유전자 위치에 C. jejuni RGEN 매개 변이가 유도된 것을 확인하였다 (도 3b). 직접 시퀀싱을 통해 측정된 변이 빈도는 22.2 %였다 (2 변이 클론 / 9 클론).
실시예 2. sgRNA 구조의 변형
C. jejuni crRNA 및 tracrRNA의 복합체가 다른 박테리아 종 유래의 crRNA:tracrRNA 복합체에 비해 짧은 루프 (loop) 구조를 가지는 것으로 예측하고, 상기 실시예 1에서 제조된 C. jejuni RGEN sgRNA의 구조가 안정될 수 있도록 변형된 줄기 (stem) 또는 루프 구조를 설계하였다 (표 5).
sgRNAs sgRNA 서열 서열번호
C.jejuni_sgRNA NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 23
C.jejuni_sgRNA_stem modified NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT TGTGGAAATATA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 30
C.jejuni_sgRNA_loop modified NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT ATATTCAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 31
상기 표에서 볼드체 및 밑줄로 표시한 부분이 기존의 줄기 (stem) 부분에 해당한다.
기존의 sgRNA 구조를 통해 성공적으로 변이가 유도된 인간 AAVS1 C. jejuni RGEN 표적 위치를 표적으로 하여 상기 변형된 sgRNA를 도입하였을 때, 유사한 변이 빈도를 확인하였다 (도 4). 이때, 사용된 프라이머 서열은 상기 표 4에 나타낸 바와 같았다.
실시예 3. sgRNA의 스페이서 (spacer) 길이의 최적화
문헌 상에서 보고 된 바 있는 표적 서열을 인식하는 C. jejuni의 crRNA 내 스페이서 서열의 길이는 20 bp 였다. 이에 본 발명자들은 최적화된 spacer 길이를 테스트하기 위해 표 6에 나타낸 인간 AAVS1 locus상 Cj Cas9의 target site 4개 위치에 대해 다양한 길이의 스페이서 및 5'에 추가된 뉴클레오타이드를 갖는 sgRNA 변이체 구조를 이용하여 유전체 교정 테스트 (genome editing test)를 하였다 (도 5a 내지 c). 본 실험은 Genome Res. 2014 Jan;24(1):132-41 에 기술된 방법을 이용하였다.
표적 위치
sgRNA Sequence (20bp-SPACERnnnnACA) 서열번호
Human AAVS1-CJ1 ATATAAGGTGGTCCCAGCTCggggACA 32
Human AAVS1-NRG1 GTAGAGGCGGCCACGACCTGgtgaACA 33
Human AAVS1-NRG3 TCACAAAGGGAGTTTTCCACacggACA 34
Human AAVS1-NRG5 TAGGCAGATTCCTTATCTGGtgacACA 35
293 세포에 각 sgRNA구조를 발현시키는 sgRNA 발현 벡터를 전달하고 3일 후 genomic DNA를 분리하고 딥 시퀀싱 방법으로 돌연변이 도입 효율을 분석하였고, 그 결과를 도 5c에 나타내었다. 여기에 나타낸 바와 같이, 21 내지 23bp 스페이서에서 높은 효율이 관찰되었다. 또한 20bp의 스페이서의 sgRNA의 5'에 2~3개의 additional G를 붙였을 때에도 향상된 유전체 교정 효율이 관찰되었다.
  NGS-primer-F* Sequences NGS-primer-R** Sequences Target sgRNA
Human AAVS1 AS-AV-F1 ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGAGGAGGCCTAAGGATGG(서열번호 36) AS-AV-R1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTCATGGCATCTTCCAGGG(서열번호 39) CJ1
AS-AV-F2 ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTCTGGGCGGAGGAATATG(서열번호 37) AS-AV-R2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCCGTGCGTCAGTTTTACCT(서열번호 40) NRG1,NRG3
AS-AV-F4 ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCCTCTCTGGCTCCATCGT(서열번호 38) AS-AV-R4 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGGTTAATGTGGCTCTGGT(서열번호 41) NRG5
여기서, F*는 정방향 프라이머, R**은 역방향 프라이머를 나타낸다.
실시예 4. C. jejuni Cas9 PAM 서열 분석
본 발명에서는, 기존 논문에 의해 보고된 결과로부터 C. jejuni Cas9의 PAM 서열이 "NNNNACA"인 것으로 유추하고 실험을 수행하였다. 5 가지 유전체 위치에 대한 34개의 C. jejuni CRISPR/Cas9을 제작하여 확인한 결과 3개의 CRISPR/Cas9 만이 활성을 보였다. 특히, 활성을 보인 위치의 서열을 추가 분석해 본 결과 상기 3개 모두의 위치에서 PAM 서열 (NNNNACA) 바로 뒤의 뉴클레오티드가 "C"임을 확인하였다 (표 8).
sgRNA 이름 활성 (T7E1 assay) 서열 서열번호
Human
AAVS1 hAAVS1 -CJ1 O ATATAAGGTGGTCCCAGCTCGGGGACA C 42
hAAVS1-CJ2 X TGGCCCCACTGTGGGGTGGAGGGGACAG 43
hAAVS1-CJ3 X CACCCCACAGTGGGGCCACTAGGGACAG 44
CCR5 CCR5-CJ1 X CTAGCAGCAAACCTTCCCTTCACTACAA 45
CCR5-CJ2 X CTCCATGAATGCAAACTGTTTTATACAT 46
CCR5-CJ3 X TGCATTCATGGAGGGCAACTAAATACAT 47
CCR5-CJ4 X ATCAAGTGTCAAGTCCAATCTATGACAT 48
CCR5-CJ5 X CCAATCTATGACATCAATTATTATACAT 49
CCR5-CJ6 X GCAAAAGGCTGAAGAGCATGACTGACAT 50
CCR5-CJ7 X GCAGCATAGTGAGCCCAGAAGGGGACAG 51
CCR5-CJ8 X GCCGCCCAGTGGGACTTTGGAAATACAA 52
Mouse
Rosa26 ROSA26-CJ1 X TCCACTGCAGCTCCCTTACTGATAACAA 53
ROSA26 -CJ2* O ATTCCCCTGCAGGACAACGCCCACACA C 54
ROSA26-CJ3 X ACACCTGTTCAATTCCCCTGCAGGACAA 55
ROSA26-CJ4 X TTGAACAGGTGTAAAATTGGAGGGACAA 56
ROSA26-CJ5 X TTGCCCCTATTAAAAAACTTCCCGACAA 57
ROSA26-CJ6 X AGATCCTTACTACAGTATGAAATTACAG 58
ROSA26-CJ7 X AGCCTTATCAAAAGGTATTTTAGAACAC 59
TP53 TP53-CJ1 X CGGGGCCCACTCACCGTGCACATAACAG 60
TP53-CJ2 X GCCGTGTCCGCGCCATGGCCATCTACAA 61
TP53-CJ3 X TGGCCATCTACAAGAAGTCACAGCACAT 62
TP53-CJ4 X CCGAGTGTCAGGAGCTCCTGCAGCACAG 63
TP53-CJ5 X CTCCCCGGGGCCCACTCACCGTGCACAT 64
TP53-CJ6 X CCTGTGCAGTTGTGGGTCAGCGCCACAC 65
TP53-CJ7 X GGTGTGGCGCTGACCCACAACTGCACAG 66
TP53-CJ8 O TTCTTGTAGATGGCCATGGCGCGGACA C 67
TP53-CJ9 X CGCCATGGCCATCTACAAGAAGTCACAG 68
PTEN mPTEN-CJ1 X ACATCATCAATATTGTTCCTGTATACAC 69
mPTEN-CJ2 X TGAATCCAAAAACCTTAAAACAAAACAA 70
mPTEN-CJ3 X TGCTTTGAATCCAAAAACCTTAAAACAA 71
mPTEN-CJ4 X AGCATAAAAACCATTACAAGATATACAA 72
mPTEN-CJ5 X GTAGATGTGCTGAGAGACATTATGACAC 73
mPTEN-CJ6 X GGCGGTGTCATAATGTCTCTCAGCACAT 74
mPTEN-CJ7 X ATTTAACTGCAGAGGTATGTATAAACAT 75
이를 바탕으로 PAM 서열을 "NNNNACAC"로 유추하고 ACAC 4 가지 위치에 대해 각각 A/T/G/C로 변화시키면서 C. jejuni Cas9의 활성을 분석하여, C. jejuni RGEN의 PAM 서열을 확인하고자 하였다. 이를 위해 대리 리포터 분석 (Surrogate reporter assay)을 이용하였다. 그 결과 C. jejuni의 PAM 서열은 "NNNNRYAC (서열번호 1)"인 것을 확인하였다 (도 6, R은 퓨린(A또는 G) Y는 피리미딘(C/T)를 지칭함). 본 실험은 Nat Methods. 2011 Oct 9;8(11):941-3.에 기술된 Surrogate reporter assay 방법을 이용하여 수행되었다.
실시예 5. C. jejuni CRISPR / Cas9의 특이성 분석 및 PAM 서열 분석
논문/특허로 출원한 CRISPR/Cas9의 off-target 분석방법인 Digenome-seq을 통해 AAVS1-CJ1위치에 대한 C.jejuni CRISPR/CAS9의 절단 위치를 유전체 수준으로 분석하였다. 본 실험은 Nat Methods. 2015 Mar;12(3):237-43에 기술된 방법을 이용하여 수행하였다.
Digenome-Seq을 이용하여 AAVS1-CJ1 CRISPR/Cas9에 의해 절단이 일어나는 것으로 보여진 41 개 위치를 발굴하였다 (표 9의 Genomic location). 41개 위치의 cleavage site sequence를 align하여 consensus sequence를 구했을 때 도 8에 나타난 것과 같이, 실시예 4에서 확인한 것과 합치하는 PAM을 확인하였다.
또한 Digenome-Seq을 통해 확보한 잠재 off-target에 실제 off-target mutation이 도입 되는지 알아보기 위해 AAVS1-CJ1 CRISPR 유전자가위가 전달된 293세포의 genomic DNA에서 40개 잠재 off-target site의 서열을 딥 시퀀싱을 통해 분석하였으며 그 결과는 하기 표 9에서와 같이 유의미한 돌연변이가 관찰되지 않았다.
      Genomic Location Indel 빈도
Mock C. Jejuni CRISPR
On-target chr19 55627221 0.02 5.123
CJ_AAVS1_1 chr1 24521012 0.019 0.034
CJ_AAVS1_2 chr1 29848565 0.157 0.136
CJ_AAVS1_3 chr1 30381084 0.041 0.035
CJ_AAVS1_4 chr1 37283269 0.016 0.016
CJ_AAVS1_5 chr2 55333369 0.079 0.091
CJ_AAVS1_6 chr4 153532801 0.003 0.003
CJ_AAVS1_7 chr4 153926891 0 0
CJ_AAVS1_8 chr4 183304101 0.033 0.046
CJ_AAVS1_9 chr6 51746466 0.41 0.43
CJ_AAVS1_10 chr7 11346020 0.02 0.038
CJ_AAVS1_11 chr7 128481430 0.024 0.036
CJ_AAVS1_12 chr7 142878579 0.024 0.028
CJ_AAVS1_13 chr8 25979587 0.138 0.155
CJ_AAVS1_14 chr8 80240626 0.043 0.049
CJ_AAVS1_15 chr8 141347249 0.028 0.024
CJ_AAVS1_16 chr8 141688584 0.088 0.092
CJ_AAVS1_17 chr8 143120119 0.016 0.013
CJ_AAVS1_18 chr9 83960768 0.032 0.037
CJ_AAVS1_19 chr9 102650644 0.029 0.034
CJ_AAVS1_20 chr9 129141695 0.014 0.009
CJ_AAVS1_21 chr10 103862556 0.053 0.073
CJ_AAVS1_22 chr12 9085293 0.21 0.277
CJ_AAVS1_23 chr14 70581187 0.013 0.025
CJ_AAVS1_24 chr14 95327446 0.046 0.041
CJ_AAVS1_25 chr14 102331176 0.015 0.028
CJ_AAVS1_26 chr14 104753692 0.035 0.041
CJ_AAVS1_27 chr15 67686972 0.061 0.096
CJ_AAVS1_28 chr16 85565862 0.028 0.028
CJ_AAVS1_29 chr17 17270109 0.003 0
CJ_AAVS1_30 chr17 79782954 0.03 0.043
CJ_AAVS1_31 chr18 42305670 0.035 0.043
CJ_AAVS1_32 chr19 12826405 0.024 0.039
CJ_AAVS1_33 chr19 32268337 0.043 0.042
CJ_AAVS1_35 chr20 40758976 0 0
CJ_AAVS1_36 chr21 41295936 0.011 0.007
CJ_AAVS1_37 chr22 20990738 0.004 0.004
CJ_AAVS1_38 chr22 46402289 0.006 0.011
CJ_AAVS1_39 chr22 46426607 0.003 0
CJ_AAVS1_40 chrX 27472673 0.279 0.318
또한 in vitro에서 cleavage를 보인 41개 위치의 서열을 전체적으로 alignment하였을 때 consensus sequence를 구성할 수 있었으며 실제로 PAM위치가 NNNNRYAC (서열번호 1)로 관찰되어 앞선 결과와 같은 경향성을 보였다.
실시예 6. PAM의 첫 두 위치의 축중 (degeneracy)에 대한 확인
상기 실시예 5를 통해 C. jejuni의 PAM 서열이 "NNNNACAC"뿐만이 아니라 "NNNNRYAC"로 첫 두 위치에 축중 (degeneracy)이 있는 것으로 관찰되었다. 이를 확인하기 위해 인간 AAVS1 위치에서 C.jejuni의 표적서열로 PAM의 첫 두 뉴클레오티드가 각각 G 또는 T인 7 개 위치에 대해 sgRNA를 제작하고 (표 10), 인간 배양세포 HEK293에서의 돌연변이 도입 효율을 확인하였다.
sgRNA Direction PAM 표적 서열 서열번호
hAAVS1-RYN1 + NNNNRYAC gCCACGACCTGGTGAACACCTAGGACGCAC 76
hAAVS1-RYN2 + gGCCTTATCTCACAGGTAAAACTGACGCAC 77
hAAVS1-RYN3 + cTCTTGGGAAGTGTAAGGAAGCTGCAGCAC 78
hAAVS1-RYN4 + aGCTGCAGCACCAGGATCAGTGAAACGCAC 79
hAAVS1-RYN5 + cTGTGGGGTGGAGGGGACAGATAAAAGTAC 80
hAAVS1-RYN6 - gCCGGTTAATGTGGCTCTGGTTCTGGGTAC 81
hAAVS1-RYN7 + gCCATGACAGGGGGCTGGAAGAGCTAGCAC 82
그 결과, 7 개 중 6 개에서 돌연변이 도입이 확인되어 실제로 PAM 서열의 첫 두 위치에 축중(degeneracy)이 있음을 확인하였다 (도 8). 이러한 축중 (degeneracy)은 PAM 서열의 빈도를 높여 C. jejuni에 의한 유전체 교정의 정교성을 향상시킬 수 있음을 시사한다.
실시예 7. AAV를 이용한 C. jejuni CRISPR / CAS9 전달을 통한 유전체 교정
유전체 조작을 적용할 수 있는 가장 중요한 분야 중 하나는 유전자 치료 및 유전체 교정 세포 치료이다. 유전체 교정을 실제 치료에 적용하는 것은 생체 외 또는 생체 내에서 표적 세포에 유전자 가위 (engineered nuclease) 및 공여 DNA를 전달하기 위한 효율적이고 임상적으로 적용 가능한 유전자 전달 벡터를 필요로 한다. 현재 가장 널리 사용되는 두 종류의 유전자 가위 플랫폼인 TALENs 및 RGEN는 이들의 큰 크기 때문에 확립된 유전자 치료용 벡터에 적용하는데 한계를 가지고 있다. 반면, C. jejuni RGEN은 현재까지 개발된 RGEN 중에서 가장 작은 CAS9 단백질 및 sgRNA를 가지고 있다. C. jejuni RGEN의 크기가 작기 때문에 유전체 조작에 사용될 수 있는 유전자 치료용 벡터의 범위를 확장시킬 수 있다. 예를 들어, 현재 가장 중요한 유전자 치료용 벡터 중 하나로 사용되고 있는 AAV (Adeno-associated virus)는 전달할 수 있는 DNA의 크기가 엄격히 제한되기 때문에 S. pyogenes , S. thermophilusN. meningitidis 유래 RGEN 또는 현재 사용되고 있는 다른 유전자 가위 플랫폼인 TALEN에 적용하기 어려웠다. 그러나, C . jejuni RGEN은 AAV 벡터에 적용 가능하다.
본 발명에서는 실제 AAV전달을 통해 C.jejuni Cas9이 작동할 수 있음을 보이기 위해 AAV 벡터를 C. jejuni Cas9 발현 카세트와 sgRNA 발현 카세트를 모두 포함하는 형태로 제작하고 (도 9), 이로부터 AAV를 생산하여 쥐 배양세포 C2C12에 감염시켰다. 이때 AAV 농도 및 시간 의존적으로 C2C12 세포에서 표적 위치에 대한 돌연변이를 유도할 수 있음을 확인하였다. 특히 높은 MOI (100)에서 14일이 지났을 때는 표적 위치에 90 % 이상의 효율로 돌연변이가 유도되었다 (도 10).
결론적으로, 본 발명자들은 C. jejuni RGEN이 배양된 세포에서 효율적으로 유전체 교정을 할 수 있음을 확인하였다. 또한, 종래 연구에서 제안되었던 C. jejuni CRISPR/Cas9 시스템의 PAM 서열이 불완전한 것을 확인하고 실질적인 C. jejuni의 PAM 서열을 확인하였다. 마지막으로, C. jejuni RGEN은 각 구성 요소의 크기가 작아 단일 바이러스에 탑재될 수 있으며 아주 효율적으로 유전제 교정을 할 수 있음을 확인하였다.
dCAS9:gRNA 복합체를 이용한 표적 DNA의 농축
또한, 본 발명자들은 스트렙토코커스 피요젠스 (streptococcus pyogens) 유래이며, 불활성화된 Cas9 단백질 및 가이드 RNA로 이루어진 불활성화된 RGEN (dCas9:gRNA 복합체)를 이용하여 표적 DNA의 분리 및 농축을 가지고 올 수 있음을 확인하였다.
상기 dCas9 단백질에는 정제를 위한 히스티딘 태그 (His tag)가 달려 있어, His tag과 선택적으로 결합하는 Ni-NTA 자석 비드를 이용하여 dCas9 단백질만을 선택적으로 정제할 수 있다. 또한, DNA의 염기서열에 특이적으로 결합할 수 있는 뉴클레아제 활성이 없는 dCas9-단백질-sgRNA 복합체의 성질을 이용하여 원하는 표적 DNA만을 선택적으로 정제할 수 있다.
본 발명자들은 가이드 RNA 및 불활성화된 Cas9 뉴클레아제 단백질로 이루어진 불활성화된 RGEN (dCas9:gRNA 복합체)을 통해서 원하는 표적 DNA만 분리 가능한지를 확인하기 위하여, 먼저 플라스미드 (Plasmid, pUC19)를 크기로 구분이 가능하도록 제한효소 (SpeI, XmaI, XhoI)로 잘라, 각각 4134 bp, 2570 bp, 및 1263 bp 크기의 플라스미드 DNA 단편을 제조하였다.
그 다음, 상기 과정에서 제한효소로 잘린 각각의 플라스미드 DNA 단편에 대한 sgRNA를 2 개씩 제작하고 (4134bp_sg#1, 4134bp_sg#2, 2570bp_sg#1, 2570bp_sg#2, 1263bp_sg#1, 및 1263bp_sg#2), 각 표적 DNA에 대응하는 각각의 sgRNA 또는 이들의 조합 (4134bp_sg#1+2, 2570bp_sg#1+2, 및 1263bp_sg#1+2)을 이용하여 정제 과정을 수행하였다. 각각의 sgRNA 염기 서열은 하기 표 11과 같다.
sgRNA 표적 염기서열 PAM 염기서열
4134bp_sg#1 GAGAACCAGACCACCCAGAA(서열번호 83) GGG
4134bp_sg#2 GGCAGCCCCGCCATCAAGAA(서열번호 84) GGG
2570bp_sg#1 GTAAGATGCTTTTCTGTGAC(서열번호 85) TGG
2570bp_sg#2 GATCCTTTGATCTTTTCTAC(서열번호 86) GGG
1270bp_sg#1 GCCTCCAAAAAAGAAGAGAA(서열번호 87) AGG
1270bp_sg#2 TGACATCAATTATTATACAT(서열번호 88) CGG
* sgRNA 서열은 표적 염기서열과 동일하며, 다만, T는 U임.
그 다음, DNA : dCas9 단백질 : sgRNA = 1 : 20 : 100의 몰 농도 비율로 총 200 ㎕의 혼합 용액을 제조하고 섞어준 뒤, 37℃ 에서 1 시간 30 분 동안 반응시켰다. 그 다음 상기 용액을 히스티딘 태그와 특이적으로 결합할 수 있는 Ni-NTA 자석 비드 50 ㎕와 섞어주고, 200 ㎕ 세척 완충액으로 2 회 세척한 뒤 200 ㎕ 용출 완충액 (Bioneer, K-7200)을 이용하여 dCas9-sgRNA-표적 DNA 복합체를 정제하였다.
그 다음, RNase A (Amresco, E866)를 0.2 mg/㎖ 농도로 첨가하여 37℃ 에서 2 시간 동안 반응시키고, 분해단백질 가수 분해효소 K (Bioneer, 1304G)를 0.2 mg/㎖ 농도로 첨가하여 55℃ 에서 45 분 동안 반응시켜 sgRNA 및 dCas9 단백질을 제거한 후, 에탄올 정제를 통해 표적 DNA만을 정제하였다.
그 결과, sgRNA 각각 또는 표적 단백질에 대한 sgRNA 2 종류를 혼합하여 사용한 경우 모두에서, 3 개의 DNA 단편으로부터, 각 크기별로 원하는 표적 DNA 단편만 분리되어 나오는 것을 확인할 수 있었다. 또한, 2 종류의 표적 DNA에 대하여 sgRNA를 각각 2 개씩 사용, 총 4 개의 sgRNA를 이용하여 한 번에 여러 표적 DNA를 정제하였을 때, 사용된 sgRNA에 대한 표적 DNA들이 혼합되어 정제되는 것을 확인하였다. 이를 통해 각각의 표적 DNA가 95 % 이상 순수한 상태로 정제되는 것을 확인할 수 있었다.
상기 기술은 또한, 본 발명의 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 Cas 단백질에도 적용될 수 있다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (73)

  1. NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산을 세포 내에 도입하는 단계를 포함하는,
    서열번호 1의 PAM 서열을 가지는 표적 DNA 서열을 타겟팅하는 방법.
  2. 제1항에 있어서,
    상기 Cas 단백질 또는 이를 암호화하는 핵산은 Cas 단백질을 핵 내에 위치시키기 위한 핵 위치 신호 (nuclear localization signal, NLS)를 더 포함하는, 방법.
  3. 제1항에 있어서,
    상기 Cas 단백질은 캄필로박터 속 (genus Campylobacter) 미생물 유래인, 방법.
  4. 제3항에 있어서,
    상기 캄필로박터 속 미생물은 캄필로박터 제주니 (Campylobacter jejuni) 인, 방법.
  5. 제1 내지 제4항 중 어느 한 항에 있어서,
    상기 Cas 단백질은 Cas9 단백질인, 방법.
  6. 제1항에 있어서,
    상기 단계는 서열번호 1의 PAM 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산과, 순차적으로 또는 동시에 서열번호 1의 PAM 서열에 인접한 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는 가이드 RNA 또는 이를 코딩하는 DNA를 도입하는 것을 추가로 포함하는, 방법.
  7. 제6항에 있어서,
    상기 가이드 RNA는 crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA) 를 포함하는 이중 RNA (dual RNA) 인, 방법.
  8. 제6항에 있어서,
    상기 가이드 RNA는 단일-사슬 가이드 RNA (sgRNA)인, 방법.
  9. 제8항에 있어서, 상기 단일-사슬 가이드 RNA 는 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는 제1 부위 및 Cas 단백질과 상호작용하는 서열을 포함하는 제2 부위를 함유하는, 방법.
  10. 제8항에 있어서,
    상기 단일-사슬 가이드 RNA는, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는 crRNA 및 Cas 단백질과 상호작용하는 서열을 포함하는 tracrRNA의 부분을 포함하는, 방법.
  11. 제6항 내지 제10항 중 어느 한 항에 있어서,
    상기 가이드 RNA의 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 길이는 17 내지 23bp 인, 방법.
  12. 제6항 내지 제11항 중 어느 한 항에 있어서,
    상기 가이드 RNA는 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 5' 부위 앞에 1 내지 3 개의 추가적인 뉴클레오타이드를 포함하는, 방법.
  13. 제12항에 있어서, 상기 추가적인 뉴클레오타이드는 구아닌 (guanine, G)인, 방법.
  14. 제1항 또는 제6항에 있어서, 상기 Cas 단백질은 뉴클레아제 활성 또는 니카아제 활성을 가지는 형태인, 방법.
  15. 제14항에 있어서, 상기 니카아제 활성을 가지는 Cas 단백질은 8번의 촉매 아스파라긴산(aspartic acid, D), 또는 559번의 히스티딘 잔기(histidine, H)가 다른 아미노산으로 치환된 것인, 방법.
  16. 제14항에 있어서, 상기 방법은 서열번호 1의 PAM 서열을 가지는 표적 DNA를 절단하기 위한 것인, 방법.
  17. 제14항에 있어서, 상기 방법은 서열번호 1의 PAM 서열을 가지는 표적 DNA를 포함하는 유전체를 교정하기 위한 것인, 방법.
  18. 제1항 또는 제6항에 있어서, 상기 Cas 단백질은 불활성화된 형태인, 방법.
  19. 제18항에 있어서, 상기 불활성화된 Cas 단백질은 8번의 촉매 아스파라긴산(aspartic acid, D), 및 559번의 히스티딘 잔기(histidine, H) 가 다른 아미노산으로 치환된 것인, 방법.
  20. 제15항 또는 제19항에 있어서, 상기 다른 아미노산은 알라닌인, 방법.
  21. 제18항에 있어서, 상기 방법은 서열번호 1의 PAM 서열을 포함하는 표적 DNA 서열을 절단하지 않고 이에 Cas 단백질이 결합된 것을 특징으로 하는, 방법.
  22. 제18항에 있어서, 상기 Cas 단백질은 전사 효과기 도메인 (transcription effector domain)을 더 포함하는 것, 방법.
  23. 제22항에 있어서, 상기 방법은 전사 조절 또는 후성학적 조절을 포함하는, Cas 매개 유전자 발현 조절을 위한 것인, 방법.
  24. NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 분리된 가이드 RNA.
  25. 제24항에 있어서,
    상기 분리된 가이드 RNA는 단일-사슬 가이드 RNA인,
    분리된 가이드 RNA.
  26. 제24항 또는 제25항에 있어서,
    상기 가이드 RNA의 표적 DNA 내 서열과 상보적인 서열의 길이는 17 내지 23bp 인,
    분리된 가이드 RNA.
  27. 제24항 내지 제26항 중 어느 한 항에 있어서,
    상기 가이드 RNA는 표적 DNA 내 서열과 상보적인 서열의 5' 부위 앞에 1 내지 3 개의 추가적인 뉴클레오타이드를, 분리된 가이드 RNA.
  28. 제27항에 있어서, 상기 뉴클레오타이드는 구아닌 (guanine, G)인, 분리된 가이드 RNA.
  29. NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA를 포함하는 조성물.
  30. 제29항에 있어서,
    상기 조성물은 NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 추가로 포함하는, 조성물.
  31. 제30항에 있어서,
    상기 조성물은 유전체를 교정하기 위한 조성물.
  32. 제29항에 있어서, 상기 조성물은
    (i) NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 코딩하는 DNA; 및
    (ii) 불활성화된 Cas 단백질 (dCas) 또는 이를 코딩하는 핵산을 포함하는, 조성물.
  33. 제32항에 있어서,
    상기 불활성화된 Cas 단백질은 전사 효과기 도메인 (transcription effector domain)을 더 포함하는 것인, 조성물.
  34. 제32항에 있어서,
    상기 조성물은 표적 DNA 서열을 포함하는 목적하는 DNA를 분리하기 위한 것인, 조성물.
  35. 제33항에 있어서,
    전사 조절 또는 후성학적 조절을 포함하는, Cas 매개 유전자 발현 조절을 위한 것인, 조성물.
  36. 제29항에 있어서,
    상기 가이드 RNA는 crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA) 를 포함하는 이중 RNA (dual RNA) 인, 조성물.
  37. 제29항에 있어서,
    상기 가이드 RNA는 단일-사슬 가이드 RNA (sgRNA)인, 조성물.
  38. 제37항에 있어서, 상기 단일-사슬 가이드 RNA는 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열을 포함하는 제1 부위 및 Cas 단백질과 상호작용하는 서열을 포함하는 제2 부위를 함유하는, 조성물.
  39. 제37항에 있어서,
    상기 단일-사슬 가이드 RNA는, 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 crRNA 및 Cas 단백질과 상호작용하는 서열을 포함하는 tracrRNA의 부분을 포함하는, 조성물.
  40. 제36항 내지 제39항 중 어느 한 항에 있어서,
    상기 가이드 RNA의 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 길이는 17 내지 23bp 인, 조성물.
  41. 제36항 내지 제40항 중 어느 한 항에 있어서,
    상기 가이드 RNA는 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 5' 부위 앞에 1개 내지 3 개의 추가적인 뉴클레오타이드를 가지는, 조성물.
  42. 제41항에 있어서, 상기 뉴클레오타이드는 구아닌 (guanine, G)인, 조성물.
  43. 제30항 또는 제32항에 있어서,
    상기 Cas 단백질은 캄필로박터 속 (genus Campylobacter) 미생물 유래인, 조성물.
  44. 제30항 또는 제32항에 있어서,
    상기 Cas 단백질은 Cas9 단백질인, 조성물.
  45. 제29항에 있어서,
    상기 표적 DNA는 세포에 존재하는, 조성물.
  46. 제29항에 있어서,
    상기 가이드 RNA를 암호화하는 DNA는 벡터에 암호화되어 있는, 조성물.
  47. 제30항 또는 제32항에 있어서,
    상기 Cas 단백질을 암호화하는 핵산은 벡터에 존재하는, 조성물.
  48. 제30항 또는 제32항에 있어서,
    상기 가이드 RNA를 암호화하는 DNA 및 Cas 단백질을 암호화하는 핵산은 개별적인 벡터에 각각 존재하거나, 하나의 벡터에 존재하는 것인, 조성물.
  49. 제46항 내지 제48항 중 어느 한 항에 있어서,
    상기 벡터는 바이러스 벡터, 플라스미드 벡터, 또는 아그로박테리움 벡터인, 조성물.
  50. 제49항에 있어서,
    상기 바이러스 벡터는 AAV (Adeno-associated virus)인, 조성물.
  51. 제29항에 있어서,
    상기 조성물은 비자연적으로 발생된 (non-naturally occurring) 것인, 조성물.
  52. 제30항 또는 제32항에 있어서,
    상기 Cas 단백질 또는 이를 코딩하는 DNA는 Cas 단백질을 핵 내에 위치시키기 위한 핵 위치 신호 (nuclear localization signal) 서열을 더 포함하는, 조성물.
  53. (i) NNNNRYAC (서열번호 1) 인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA, 및
    (ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 포함하는,
    CRISPR-CAS 시스템.
  54. (i) NNNNRYAC (서열번호 1) 인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA에 대한 발현 카세트, 및
    (ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질에 대한 발현 카세트를 포함하는, 재조합 바이러스 벡터.
  55. 제54항에 있어서,
    상기 바이러스 벡터는 AAV (Adeno-associated virus)인, 재조합 바이러스 벡터.
  56. 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 21 내지 23bp 길이의 서열을 포함하는, 분리된 가이드 RNA.
  57. 제56항의 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA를 포함하는, 조성물.
  58. 제57항에 있어서, 상기 조성물은 NNNNRYAC (서열번호 1)인 PAM 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산을 포함하는, 조성물.
  59. 제57항에 있어서, 상기 조성물은 NNNNRYAC (서열번호 1) 서열을 인식하는 불활성화된 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 포함하는, 조성물.
  60. 제59항에 있어서,
    상기 불활성화된 Cas 단백질은 전사 효과기 도메인을 더 포함하는, 조성물.
  61. 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 13 내지 18bp 의 길이의 줄기 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA.
  62. 제61항에 있어서, 상기 줄기 구조는 서열번호 2의 염기 서열 (5'-GUUUUAGUCCCUUGUG-3') 및 이와 상보적인 서열을 포함하는, 분리된 가이드 RNA.
  63. 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 5 내지 10bp 의 길이의 루프 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA.
  64. 제63항에 있어서, 상기 루프 구조는 서열번호 3의 염기 서열 (5'-AUAUUCAA-3')의 서열을 가지는, 분리된 가이드 RNA.
  65. 제61항 내지 제64항 중 어느 한 항의 가이드 RNA 및 Cas 단백질 또는 이를 코딩하는 핵산 서열을 포함하는, 조성물.
  66. 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 유전체를 교정하는 방법.
  67. 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 표적 DNA를 절단하는 방법.
  68. 제66항 또는 제67항에 있어서, 상기 가이드 RNA 또는 이를 코딩하는 DNA와 Cas 단백질 또는 이를 코딩하는 핵산의 도입은 동시 또는 순차적으로 수행되는 것인, 방법.
  69. (i) 주어진 서열에서 NNNNRYAC (서열번호 1)인 PAM 서열의 존재를 확인하는 단계; 및
    (ii) 상기 (i) 단계에서 NNNNRYAC (서열번호 1)인 PAM 서열이 존재하면 이의 업스트림 (upstream)에 위치한 서열을 가이드 RNA에 의해 인식되는 서열로 결정하는 단계를 포함하는,
    가이드 RNA 의 표적 DNA 인식 서열의 제조 방법.
  70. 제69항에서, 상기 업스트림에 위치한 서열은 17 내지 23bp 길이인, 가이드 RNA 의 표적 DNA 인식 서열의 제조 방법.
  71. (i) 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하여, 표적 DNA 서열을 포함하는 목적하는 DNA 와 가이드 RNA 및 불활성화된 Cas 단백질이 서로 복합체를 형성하는 단계; 및
    (ii) 상기 복합체를 시료로부터 분리하는 단계를 포함하는,
    목적하는 DNA를 분리하는 방법.
  72. 제71항에 있어서, 상기 불활성화된 Cas 단백질은 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 것인, 목적하는 DNA를 분리하는 방법.
  73. 표적 DNA를 특이적으로 인식하는 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 전사 효과기 도메인이 결합된 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는,
    표적 DNA 서열을 포함하는 목적하는 DNA에서 Cas 매개 유전자 발현을 조절하는 방법.
PCT/KR2015/008269 2014-08-06 2015-08-06 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 WO2016021973A1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020177003312A KR101817482B1 (ko) 2014-08-06 2015-08-06 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정
CN202111062266.5A CN113789317B (zh) 2014-08-06 2015-08-06 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑
AU2015299850A AU2015299850B2 (en) 2014-08-06 2015-08-06 Genome editing using Campylobacter jejuni CRISPR/CAS system-derived RGEN
KR1020187000347A KR20180015731A (ko) 2014-08-06 2015-08-06 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정
EP15830444.4A EP3178935B1 (en) 2014-08-06 2015-08-06 Genome editing using campylobacter jejuni crispr/cas system-derived rgen
CN201580052262.5A CN106922154B (zh) 2014-08-06 2015-08-06 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑
JP2017527527A JP6715419B2 (ja) 2014-08-06 2015-08-06 カンピロバクター・ジェジュニcrispr/casシステムに由来するrgenを使用したゲノム編集
EP22208378.4A EP4194557A1 (en) 2014-08-06 2015-08-06 Genome editing using campylobacter jejuni crispr/cas system-derived rgen
CA2957441A CA2957441A1 (en) 2014-08-06 2015-08-06 Genome editing using campylobacter jejuni crispr/cas system-derived rgen
US15/420,936 US10519454B2 (en) 2014-08-06 2017-01-31 Genome editing using Campylobacter jejuni CRISPR/CAS system-derived RGEN
US16/700,942 US20200172912A1 (en) 2014-08-06 2019-12-02 Genome editing using campylobacter jejuni crispr/cas system-derived rgen
AU2020267249A AU2020267249B2 (en) 2014-08-06 2020-11-12 Genome editing using campylobacter jejuni crispr/cas system-derived rgen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462033852P 2014-08-06 2014-08-06
US62/033,852 2014-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/420,936 Continuation US10519454B2 (en) 2014-08-06 2017-01-31 Genome editing using Campylobacter jejuni CRISPR/CAS system-derived RGEN

Publications (1)

Publication Number Publication Date
WO2016021973A1 true WO2016021973A1 (ko) 2016-02-11

Family

ID=55264165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008269 WO2016021973A1 (ko) 2014-08-06 2015-08-06 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정

Country Status (8)

Country Link
US (2) US10519454B2 (ko)
EP (2) EP4194557A1 (ko)
JP (1) JP6715419B2 (ko)
KR (2) KR101817482B1 (ko)
CN (2) CN106922154B (ko)
AU (2) AU2015299850B2 (ko)
CA (1) CA2957441A1 (ko)
WO (1) WO2016021973A1 (ko)

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016184989A1 (en) 2015-05-19 2016-11-24 Kws Saat Se Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
WO2017207589A1 (en) 2016-06-01 2017-12-07 Kws Saat Se Hybrid nucleic acid sequences for genome engineering
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
WO2018138385A1 (en) 2017-01-30 2018-08-02 Kws Saat Se Repair template linkage to endonucleases for genome engineering
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
WO2018225807A1 (ja) * 2017-06-07 2018-12-13 国立大学法人東京大学 顆粒状角膜変性症に対する遺伝子治療薬
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
WO2019026976A1 (ja) * 2017-08-01 2019-02-07 国立大学法人 東京大学 改変されたCas9タンパク質及びその用途
WO2019043082A1 (en) 2017-08-29 2019-03-07 Kws Saat Se BLUE ALEURONE ENHANCED AND OTHER SEGREGATION SYSTEMS
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
WO2019086460A1 (en) 2017-10-30 2019-05-09 Kws Saat Se New strategies for precision genome editing
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
EP3501268A1 (en) 2017-12-22 2019-06-26 Kws Saat Se Regeneration of plants in the presence of histone deacetylase inhibitors
WO2019122394A2 (en) 2017-12-22 2019-06-27 Kws Saat Se Cpf1 based transcription regulation systems in plants
WO2019122381A2 (en) 2017-12-22 2019-06-27 Kws Saat Se Targeted transcriptional regulation using synthetic transcription factors
EP3508581A1 (en) 2018-01-03 2019-07-10 Kws Saat Se Regeneration of genetically modified plants
WO2019138083A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
WO2019138052A1 (en) 2018-01-11 2019-07-18 Kws Saat Se Optimized plant crispr/cpf1 systems
EP3546582A1 (en) 2018-03-26 2019-10-02 KWS SAAT SE & Co. KGaA Promoter activating elements
EP3545756A1 (en) 2018-03-28 2019-10-02 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2
EP3567111A1 (en) 2018-05-09 2019-11-13 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
WO2019238909A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant
WO2019238908A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for enhancing genome engineering efficiency
WO2019238911A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant ii
EP3623379A1 (en) 2018-09-11 2020-03-18 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
EP3502261A4 (en) * 2016-08-19 2020-07-15 Toolgen Incorporated ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM
WO2020157573A1 (en) 2019-01-29 2020-08-06 The University Of Warwick Methods for enhancing genome engineering efficiency
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
EP3708651A1 (en) 2019-03-12 2020-09-16 KWS SAAT SE & Co. KGaA Improving plant regeneration
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
WO2020260682A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
WO2021064402A1 (en) 2019-10-01 2021-04-08 University Of Leeds Plants having a modified lazy protein
WO2021093943A1 (en) 2019-11-12 2021-05-20 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
RU2768043C2 (ru) * 2016-11-14 2022-03-23 Тулджен Инкорпорейтед Искусственно созданная система управления функцией шк
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
EP4019638A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
EP4019639A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
US11421241B2 (en) 2015-01-27 2022-08-23 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for conducting site-specific modification on entire plant via gene transient expression
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11767536B2 (en) 2015-08-14 2023-09-26 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2023227912A1 (en) 2022-05-26 2023-11-30 Cambridge Enterprise Limited Glucan binding protein for improving nitrogen fixation in plants
US11834670B2 (en) 2017-04-19 2023-12-05 Global Life Sciences Solutions Usa Llc Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2024069186A1 (en) 2022-09-30 2024-04-04 Ivy Farm Technologies Limited Genetically modified cells
WO2024141754A1 (en) 2022-12-29 2024-07-04 Ivy Farm Technologies Limited Genetically manipulated cells
US12043835B2 (en) 2015-03-16 2024-07-23 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for making site-directed modification to plant genomes by using non-inheritable materials
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
US12171813B2 (en) 2021-02-05 2024-12-24 Christiana Care Gene Editing Institute, Inc. Methods of and compositions for reducing gene expression and/or activity
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015217208B2 (en) 2014-02-11 2018-08-30 The Regents Of The University Of Colorado, A Body Corporate CRISPR enabled multiplexed genome engineering
ES2915562T3 (es) 2016-06-24 2022-06-23 Univ Colorado Regents Métodos para generar bibliotecas combinatorias con código de barras
US9982279B1 (en) 2017-06-23 2018-05-29 Inscripta, Inc. Nucleic acid-guided nucleases
US10011849B1 (en) 2017-06-23 2018-07-03 Inscripta, Inc. Nucleic acid-guided nucleases
KR102194833B1 (ko) * 2017-07-04 2020-12-23 고려대학교 산학협력단 우울증 또는 뇌전증 동물 모델과 그 제조방법 및 이를 이용한 우울증 또는 뇌전증 치료용 후보약물의 스크리닝 방법
WO2019014118A1 (en) * 2017-07-09 2019-01-17 Igc Bio, Inc. PROSS OPTIMIZED ENZYMES
CN107488649A (zh) * 2017-08-25 2017-12-19 南方医科大学 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用
US11845951B2 (en) * 2017-09-29 2023-12-19 Toolgen Incorporated Gene manipulation for treatment of retinal dysfunction disorder
JP7075170B2 (ja) * 2018-01-23 2022-05-25 インスティチュート フォー ベーシック サイエンス 延長された単一ガイドrna及びその用途
WO2019173248A1 (en) * 2018-03-07 2019-09-12 Caribou Biosciences, Inc. Engineered nucleic acid-targeting nucleic acids
KR20210045360A (ko) 2018-05-16 2021-04-26 신테고 코포레이션 가이드 rna 설계 및 사용을 위한 방법 및 시스템
US20210198642A1 (en) * 2018-09-07 2021-07-01 Astrazeneca Ab Compositions and methods for improved nucleases
KR102421129B1 (ko) * 2019-10-14 2022-07-15 연세대학교 산학협력단 신규 프로토스페이서 인접 모티프 서열 및 이를 이용한 세포의 유전체에서 표적 핵산을 변형시키는 방법
WO2021201653A1 (ko) * 2020-04-02 2021-10-07 중앙대학교 산학협력단 Crispr/cas9 시스템을 기반으로 한 유전체 편집 방법 및 이의 용도
JP2022037603A (ja) * 2020-08-25 2022-03-09 国立大学法人 東京大学 エンジニアリングされたCjCas9タンパク質
JP2024540350A (ja) 2021-11-01 2024-10-31 トーム バイオサエンシーズ, インコーポレイテッド 遺伝子編集機構及び核酸カーゴを同時に送達するための単一構築物プラットフォーム
IL313765A (en) 2021-12-22 2024-08-01 Tome Biosciences Inc Joint provision of a gene editor structure and a donor template
CN114262707B (zh) * 2021-12-30 2023-04-28 四川大学 用于检测空肠弯曲杆菌基因的sgRNA、CRISPR/Cas12a体系、试剂盒、检测方法和应用
WO2023205744A1 (en) 2022-04-20 2023-10-26 Tome Biosciences, Inc. Programmable gene insertion compositions
WO2023215831A1 (en) 2022-05-04 2023-11-09 Tome Biosciences, Inc. Guide rna compositions for programmable gene insertion
WO2023225670A2 (en) 2022-05-20 2023-11-23 Tome Biosciences, Inc. Ex vivo programmable gene insertion
WO2024020587A2 (en) 2022-07-22 2024-01-25 Tome Biosciences, Inc. Pleiopluripotent stem cell programmable gene insertion
WO2024138194A1 (en) 2022-12-22 2024-06-27 Tome Biosciences, Inc. Platforms, compositions, and methods for in vivo programmable gene insertion
WO2024234006A1 (en) 2023-05-11 2024-11-14 Tome Biosciences, Inc. Systems, compositions, and methods for targeting liver sinusodial endothelial cells (lsecs)
WO2025050069A1 (en) 2023-09-01 2025-03-06 Tome Biosciences, Inc. Programmable gene insertion using engineered integration enzymes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142578A1 (en) * 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
WO2014065596A1 (en) * 2012-10-23 2014-05-01 Toolgen Incorporated Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof
US20140186843A1 (en) * 2012-12-12 2014-07-03 Massachusetts Institute Of Technology Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9567573B2 (en) * 2010-04-26 2017-02-14 Sangamo Biosciences, Inc. Genome editing of a Rosa locus using nucleases
LT4289948T (lt) 2012-05-25 2025-05-12 The Regents Of The University Of California Į rnr nukreipto tikslinio dnr modifikavimo ir į rnr nukreipto transkripcijos moduliavimo metodai ir kompozicijos
KR102479178B1 (ko) * 2012-12-06 2022-12-19 시그마-알드리치 컴퍼니., 엘엘씨 Crispr-기초된 유전체 변형과 조절
EP2931899A1 (en) * 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
SG10201912327SA (en) * 2012-12-12 2020-02-27 Broad Inst Inc Engineering and Optimization of Improved Systems, Methods and Enzyme Compositions for Sequence Manipulation
PT2931898E (pt) 2012-12-12 2016-06-16 Harvard College Manipulação e otimização de sistemas, métodos e composições para manipulação de sequências com domínios funcionais
JP2016507244A (ja) * 2013-02-27 2016-03-10 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) Cas9ヌクレアーゼによる卵母細胞における遺伝子編集
EP3778899A1 (en) * 2013-05-22 2021-02-17 Northwestern University Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis
US9267135B2 (en) * 2013-06-04 2016-02-23 President And Fellows Of Harvard College RNA-guided transcriptional regulation
AU2014350051A1 (en) * 2013-11-18 2016-07-07 Crispr Therapeutics Ag CRISPR-Cas system materials and methods
US9840699B2 (en) * 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
CN104450785A (zh) * 2014-12-08 2015-03-25 复旦大学 使用编码靶向核酸内切酶附着体载体的基因组编辑方法及试剂盒

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013142578A1 (en) * 2012-03-20 2013-09-26 Vilnius University RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX
WO2014065596A1 (en) * 2012-10-23 2014-05-01 Toolgen Incorporated Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof
US20140186843A1 (en) * 2012-12-12 2014-07-03 Massachusetts Institute Of Technology Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOU, Z. ET AL.: "Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis", PROC. NATL. ACAD. SCI. USA, vol. 110, no. 39, 24 September 2013 (2013-09-24), pages 15644 - 15649, XP055118866, DOI: doi:10.1073/pnas.1313587110 *
SAPRANAUSKAS, R. ET AL.: "The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli", NUCLEIC ACIDS RESEARCH, vol. 39, no. 21, November 2011 (2011-11-01), pages 9275 - 9282, XP055265024, DOI: doi:10.1093/nar/gkr606 *

Cited By (119)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10227581B2 (en) 2013-08-22 2019-03-12 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US9526784B2 (en) 2013-09-06 2016-12-27 President And Fellows Of Harvard College Delivery system for functional nucleases
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US9840699B2 (en) 2013-12-12 2017-12-12 President And Fellows Of Harvard College Methods for nucleic acid editing
US12215365B2 (en) 2013-12-12 2025-02-04 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11421241B2 (en) 2015-01-27 2022-08-23 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for conducting site-specific modification on entire plant via gene transient expression
US12043835B2 (en) 2015-03-16 2024-07-23 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for making site-directed modification to plant genomes by using non-inheritable materials
US11492630B2 (en) 2015-05-19 2022-11-08 KWS SAAT SE & Co. KGaA Methods and hybrids for targeted nucleic acid editing in plants using CRISPR/Cas systems
WO2016184989A1 (en) 2015-05-19 2016-11-24 Kws Saat Se Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom
US11767536B2 (en) 2015-08-14 2023-09-26 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
US12344869B2 (en) 2015-10-23 2025-07-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
WO2017207589A1 (en) 2016-06-01 2017-12-07 Kws Saat Se Hybrid nucleic acid sequences for genome engineering
US12084668B2 (en) 2016-06-01 2024-09-10 KWS SAAT SE & co., KGaA Hybrid nucleic acid sequences for genome engineering
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
JP2022058425A (ja) * 2016-08-19 2022-04-12 ツールゲン インコーポレイテッド 人工的に操作された血管新生調節系
EP3502261A4 (en) * 2016-08-19 2020-07-15 Toolgen Incorporated ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM
JP7276422B2 (ja) 2016-08-19 2023-05-18 ツールゲン インコーポレイテッド 人工的に操作された血管新生調節系
EP4012032A1 (en) * 2016-08-19 2022-06-15 Toolgen Incorporated Artificially engineered angiogenesis regulatory system
US11999952B2 (en) 2016-08-19 2024-06-04 Toolgen Incorporated Artificially-manipulated neovascularization regulatory system
US12084663B2 (en) 2016-08-24 2024-09-10 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US12331086B2 (en) 2016-11-14 2025-06-17 Toolgen Incorporated Artificially engineered SC function control system
RU2768043C2 (ru) * 2016-11-14 2022-03-23 Тулджен Инкорпорейтед Искусственно созданная система управления функцией шк
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
WO2018138385A1 (en) 2017-01-30 2018-08-02 Kws Saat Se Repair template linkage to endonucleases for genome engineering
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11834670B2 (en) 2017-04-19 2023-12-05 Global Life Sciences Solutions Usa Llc Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
JPWO2018225807A1 (ja) * 2017-06-07 2020-04-09 国立大学法人 東京大学 顆粒状角膜変性症に対する遺伝子治療薬
WO2018225807A1 (ja) * 2017-06-07 2018-12-13 国立大学法人東京大学 顆粒状角膜変性症に対する遺伝子治療薬
JP7161730B2 (ja) 2017-06-07 2022-10-27 国立大学法人 東京大学 顆粒状角膜変性症に対する遺伝子治療薬
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US12359218B2 (en) 2017-07-28 2025-07-15 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
WO2019026976A1 (ja) * 2017-08-01 2019-02-07 国立大学法人 東京大学 改変されたCas9タンパク質及びその用途
US11697822B2 (en) 2017-08-29 2023-07-11 KWS SAAT SE & Co. KGaA Blue aleurone and other segregation systems
WO2019043082A1 (en) 2017-08-29 2019-03-07 Kws Saat Se BLUE ALEURONE ENHANCED AND OTHER SEGREGATION SYSTEMS
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2019086460A1 (en) 2017-10-30 2019-05-09 Kws Saat Se New strategies for precision genome editing
WO2019122360A1 (en) 2017-12-22 2019-06-27 Kws Saat Se Regeneration of plants in the presence of histone deacetylase inhibitors
EP3501268A1 (en) 2017-12-22 2019-06-26 Kws Saat Se Regeneration of plants in the presence of histone deacetylase inhibitors
WO2019122394A2 (en) 2017-12-22 2019-06-27 Kws Saat Se Cpf1 based transcription regulation systems in plants
WO2019122381A2 (en) 2017-12-22 2019-06-27 Kws Saat Se Targeted transcriptional regulation using synthetic transcription factors
US12116581B2 (en) 2017-12-22 2024-10-15 KWS SAAT SE & Co. KGaA Targeted transcriptional regulation using synthetic transcription factors
US11700805B2 (en) 2017-12-22 2023-07-18 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of histone deacetylase inhibitors
WO2019134884A1 (en) 2018-01-03 2019-07-11 Kws Saat Se Regeneration of genetically modified plants
EP3508581A1 (en) 2018-01-03 2019-07-10 Kws Saat Se Regeneration of genetically modified plants
EP4234701A2 (en) 2018-01-03 2023-08-30 Basf Se Regeneration of genetically modified plants
WO2019138052A1 (en) 2018-01-11 2019-07-18 Kws Saat Se Optimized plant crispr/cpf1 systems
US12098374B2 (en) 2018-01-11 2024-09-24 KWS SAAT SE & Co. KGaA Optimized plant CRISPR/CPF1 systems
WO2019138083A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
EP3546582A1 (en) 2018-03-26 2019-10-02 KWS SAAT SE & Co. KGaA Promoter activating elements
WO2019185609A1 (en) 2018-03-26 2019-10-03 KWS SAAT SE & Co. KGaA Method for increasing the expression level of a nucleic acid molecule of interest in a cell
WO2019185849A1 (en) 2018-03-28 2019-10-03 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2
EP3545756A1 (en) 2018-03-28 2019-10-02 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2
EP3567111A1 (en) 2018-05-09 2019-11-13 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
US12157760B2 (en) 2018-05-23 2024-12-03 The Broad Institute, Inc. Base editors and uses thereof
WO2019238908A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for enhancing genome engineering efficiency
WO2019238909A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant
US12146142B2 (en) 2018-06-15 2024-11-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant II
US12043837B2 (en) 2018-06-15 2024-07-23 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant
WO2019238911A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant ii
EP3623379A1 (en) 2018-09-11 2020-03-18 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
WO2020053313A1 (en) 2018-09-11 2020-03-19 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
US12281338B2 (en) 2018-10-29 2025-04-22 The Broad Institute, Inc. Nucleobase editors comprising GeoCas9 and uses thereof
US12351837B2 (en) 2019-01-23 2025-07-08 The Broad Institute, Inc. Supernegatively charged proteins and uses thereof
WO2020157573A1 (en) 2019-01-29 2020-08-06 The University Of Warwick Methods for enhancing genome engineering efficiency
WO2020182971A1 (en) 2019-03-12 2020-09-17 KWS SAAT SE & Co. KGaA Improving plant regeneration
EP3708651A1 (en) 2019-03-12 2020-09-16 KWS SAAT SE & Co. KGaA Improving plant regeneration
US12139717B2 (en) 2019-03-12 2024-11-12 KWS SAAT SE & Co. KGaA Improving plant regeneration
US12281303B2 (en) 2019-03-19 2025-04-22 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
WO2020260682A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
EP3757219A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
WO2021064402A1 (en) 2019-10-01 2021-04-08 University Of Leeds Plants having a modified lazy protein
WO2021093943A1 (en) 2019-11-12 2021-05-20 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
WO2022136557A1 (en) 2020-12-22 2022-06-30 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in plants
EP4019638A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
EP4019639A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
WO2022136535A1 (en) 2020-12-22 2022-06-30 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
US12171813B2 (en) 2021-02-05 2024-12-24 Christiana Care Gene Editing Institute, Inc. Methods of and compositions for reducing gene expression and/or activity
WO2023227912A1 (en) 2022-05-26 2023-11-30 Cambridge Enterprise Limited Glucan binding protein for improving nitrogen fixation in plants
WO2024069186A1 (en) 2022-09-30 2024-04-04 Ivy Farm Technologies Limited Genetically modified cells
WO2024141754A1 (en) 2022-12-29 2024-07-04 Ivy Farm Technologies Limited Genetically manipulated cells

Also Published As

Publication number Publication date
US20200172912A1 (en) 2020-06-04
AU2020267249A1 (en) 2020-12-10
CN106922154A (zh) 2017-07-04
CN113789317B (zh) 2024-02-23
CN106922154B (zh) 2022-01-07
KR101817482B1 (ko) 2018-02-22
JP2017526387A (ja) 2017-09-14
EP3178935B1 (en) 2022-12-21
EP3178935A4 (en) 2018-01-31
CN113789317A (zh) 2021-12-14
JP6715419B2 (ja) 2020-07-01
EP3178935A1 (en) 2017-06-14
EP4194557A1 (en) 2023-06-14
CA2957441A1 (en) 2016-02-11
US10519454B2 (en) 2019-12-31
AU2015299850A1 (en) 2017-02-23
US20170145425A1 (en) 2017-05-25
AU2015299850B2 (en) 2020-08-13
KR20180015731A (ko) 2018-02-13
AU2020267249B2 (en) 2023-02-02
KR20170020535A (ko) 2017-02-22

Similar Documents

Publication Publication Date Title
WO2016021973A1 (ko) 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정
WO2016076672A1 (ko) 유전체에서 유전자 가위의 비표적 위치를 검출하는 방법
WO2019009682A2 (ko) 표적 특이적 crispr 변이체
AU2013335451C1 (en) Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof
WO2019103442A2 (ko) CRISPR/Cpf1 시스템을 이용한 유전체 편집용 조성물 및 이의 용도
WO2015183025A1 (ko) 표적 특이적 뉴클레아제를 이용한 표적 dna의 민감한 검출 방법
WO2015163733A1 (en) A method of selecting a nuclease target sequence for gene knockout based on microhomology
WO2016021972A1 (en) Immune-compatible cells created by nuclease-mediated editing of genes encoding hla
EP2370569A1 (en) A novel zinc finger nuclease and uses thereof
WO2018231018A2 (ko) 간에서 목적하는 단백질 발현하기 위한 플랫폼
WO2022075816A1 (ko) Crispr/cas12f1(cas14a1) 시스템 효율화를 위한 엔지니어링 된 가이드 rna 및 이의 용도
WO2018088694A2 (ko) 인위적으로 조작된 sc 기능 조절 시스템
WO2020235974A2 (ko) 단일염기 치환 단백질 및 이를 포함하는 조성물
WO2020218657A1 (ko) 표적 특이적 crispr 변이체
WO2022158898A1 (ko) Francisella novicida cas9 모듈 기반의 역전사 효소를 사용한 유전체 치환 및 삽입 기술
WO2022098191A1 (ko) 하이드로겔화 핵산을 이용한 고분자량 단백질 생산용 원형 핵산 템플릿의 제조방법 및 고분자량 단백질 생산 시스템
WO2021020884A2 (ko) 사이토신 염기교정용 조성물 및 이의 용도
WO2023008887A1 (ko) 염기 편집기 및 이의 용도
WO2023059115A1 (ko) 유전자 편집을 위한 target 시스템 및 이의 용도
WO2019031804A9 (ko) 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터
WO2023153845A2 (ko) 상동지정복구를 위한 target 시스템 및 이를 이용한 유전자 편집 방법
WO2023191570A1 (ko) 어셔 증후군 치료를 위한 유전자 편집 시스템
WO2022124839A1 (ko) 온-타겟 활성이 유지되고 오프-타겟 활성이 감소된 가이드 rna 및 이의 용도
WO2021145700A1 (ko) 저산소 환경 하에서 높은 적응력을 가지는 세포 및 이의 용도
WO2023182858A1 (ko) 식물세포 소기관 dna의 아데닌을 구아닌으로 염기 교정하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527527

Country of ref document: JP

Kind code of ref document: A

Ref document number: 2957441

Country of ref document: CA

Ref document number: 20177003312

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015299850

Country of ref document: AU

Date of ref document: 20150806

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015830444

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015830444

Country of ref document: EP