WO2016021973A1 - 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 - Google Patents
캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 Download PDFInfo
- Publication number
- WO2016021973A1 WO2016021973A1 PCT/KR2015/008269 KR2015008269W WO2016021973A1 WO 2016021973 A1 WO2016021973 A1 WO 2016021973A1 KR 2015008269 W KR2015008269 W KR 2015008269W WO 2016021973 A1 WO2016021973 A1 WO 2016021973A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- guide rna
- cas protein
- seq
- target dna
- Prior art date
Links
- 108091033409 CRISPR Proteins 0.000 title claims abstract description 78
- 241000589875 Campylobacter jejuni Species 0.000 title claims abstract description 61
- 238000010362 genome editing Methods 0.000 title description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 149
- 102000004169 proteins and genes Human genes 0.000 claims description 148
- 235000018102 proteins Nutrition 0.000 claims description 147
- 108020004414 DNA Proteins 0.000 claims description 143
- 108020005004 Guide RNA Proteins 0.000 claims description 132
- 238000000034 method Methods 0.000 claims description 97
- 150000007523 nucleic acids Chemical class 0.000 claims description 54
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 53
- 108020004707 nucleic acids Proteins 0.000 claims description 52
- 102000039446 nucleic acids Human genes 0.000 claims description 52
- 230000000295 complement effect Effects 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 32
- 239000002773 nucleotide Substances 0.000 claims description 27
- 125000003729 nucleotide group Chemical group 0.000 claims description 27
- 230000000694 effects Effects 0.000 claims description 19
- 239000013598 vector Substances 0.000 claims description 18
- 108091028113 Trans-activating crRNA Proteins 0.000 claims description 17
- 230000014509 gene expression Effects 0.000 claims description 17
- 241000702421 Dependoparvovirus Species 0.000 claims description 15
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical group O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 claims description 15
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims description 14
- 101710163270 Nuclease Proteins 0.000 claims description 13
- 230000001404 mediated effect Effects 0.000 claims description 12
- 150000001413 amino acids Chemical class 0.000 claims description 11
- 108010077850 Nuclear Localization Signals Proteins 0.000 claims description 10
- 239000012636 effector Substances 0.000 claims description 10
- 230000008685 targeting Effects 0.000 claims description 9
- 239000013603 viral vector Substances 0.000 claims description 9
- 235000001014 amino acid Nutrition 0.000 claims description 8
- 238000013518 transcription Methods 0.000 claims description 8
- 230000035897 transcription Effects 0.000 claims description 8
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 claims description 7
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 6
- 241000589876 Campylobacter Species 0.000 claims description 5
- 230000003197 catalytic effect Effects 0.000 claims description 5
- 230000009977 dual effect Effects 0.000 claims description 5
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 claims description 5
- 108091079001 CRISPR RNA Proteins 0.000 claims description 4
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 4
- 235000004279 alanine Nutrition 0.000 claims description 4
- 235000003704 aspartic acid Nutrition 0.000 claims description 4
- 230000006718 epigenetic regulation Effects 0.000 claims description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 3
- 108091000080 Phosphotransferase Proteins 0.000 claims description 3
- 150000001510 aspartic acids Chemical class 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 102000020233 phosphotransferase Human genes 0.000 claims description 3
- 241000589158 Agrobacterium Species 0.000 claims description 2
- 239000013600 plasmid vector Substances 0.000 claims description 2
- 244000005700 microbiome Species 0.000 claims 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 238000010354 CRISPR gene editing Methods 0.000 abstract description 23
- 210000004027 cell Anatomy 0.000 description 48
- 230000035772 mutation Effects 0.000 description 23
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 15
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 15
- 108091027544 Subgenomic mRNA Proteins 0.000 description 14
- 125000006850 spacer group Chemical group 0.000 description 11
- 101001000998 Homo sapiens Protein phosphatase 1 regulatory subunit 12C Proteins 0.000 description 9
- 102100035620 Protein phosphatase 1 regulatory subunit 12C Human genes 0.000 description 9
- 238000000926 separation method Methods 0.000 description 9
- 238000012937 correction Methods 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 239000011324 bead Substances 0.000 description 7
- 238000003776 cleavage reaction Methods 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 230000007017 scission Effects 0.000 description 7
- 238000003556 assay Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229940024606 amino acid Drugs 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical compound N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 4
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 4
- 108091005461 Nucleic proteins Proteins 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000013607 AAV vector Substances 0.000 description 3
- 206010061765 Chromosomal mutation Diseases 0.000 description 3
- 102000004533 Endonucleases Human genes 0.000 description 3
- 108010042407 Endonucleases Proteins 0.000 description 3
- 108091092584 GDNA Proteins 0.000 description 3
- 102000005720 Glutathione transferase Human genes 0.000 description 3
- 108010070675 Glutathione transferase Proteins 0.000 description 3
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- 241000193996 Streptococcus pyogenes Species 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 238000012350 deep sequencing Methods 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000006780 non-homologous end joining Effects 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 101710201279 Biotin carboxyl carrier protein Proteins 0.000 description 2
- 108010051109 Cell-Penetrating Peptides Proteins 0.000 description 2
- 102000020313 Cell-Penetrating Peptides Human genes 0.000 description 2
- 108091092236 Chimeric RNA Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 230000007018 DNA scission Effects 0.000 description 2
- 230000004568 DNA-binding Effects 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 2
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 2
- 241000588650 Neisseria meningitidis Species 0.000 description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 2
- 241000194020 Streptococcus thermophilus Species 0.000 description 2
- 238000010459 TALEN Methods 0.000 description 2
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 102000021178 chitin binding proteins Human genes 0.000 description 2
- 108091011157 chitin binding proteins Proteins 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- RWSXRVCMGQZWBV-WDSKDSINSA-N glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 2
- 239000005090 green fluorescent protein Substances 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 230000000869 mutational effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- 108010011170 Ala-Trp-Arg-His-Pro-Gln-Phe-Gly-Gly Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 102100035875 C-C chemokine receptor type 5 Human genes 0.000 description 1
- 101710149870 C-C chemokine receptor type 5 Proteins 0.000 description 1
- 102000000584 Calmodulin Human genes 0.000 description 1
- 108010041952 Calmodulin Proteins 0.000 description 1
- 101100007328 Cocos nucifera COS-1 gene Proteins 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101001109765 Homo sapiens Pro-neuregulin-3, membrane-bound isoform Proteins 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000048238 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 102100026450 POU domain, class 3, transcription factor 4 Human genes 0.000 description 1
- 101710133389 POU domain, class 3, transcription factor 4 Proteins 0.000 description 1
- 102000014160 PTEN Phosphohydrolase Human genes 0.000 description 1
- 108010011536 PTEN Phosphohydrolase Proteins 0.000 description 1
- 108020002230 Pancreatic Ribonuclease Proteins 0.000 description 1
- 102000005891 Pancreatic ribonuclease Human genes 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108010020346 Polyglutamic Acid Proteins 0.000 description 1
- 102100022659 Pro-neuregulin-3, membrane-bound isoform Human genes 0.000 description 1
- 101710149951 Protein Tat Proteins 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 102000006382 Ribonucleases Human genes 0.000 description 1
- 108010083644 Ribonucleases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000194017 Streptococcus Species 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 210000005006 adaptive immune system Anatomy 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 229920000370 gamma-poly(glutamate) polymer Polymers 0.000 description 1
- 238000012239 gene modification Methods 0.000 description 1
- 238000010457 gene scissor Methods 0.000 description 1
- 230000005017 genetic modification Effects 0.000 description 1
- 235000013617 genetically modified food Nutrition 0.000 description 1
- 229960003180 glutathione Drugs 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036438 mutation frequency Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000001814 protein method Methods 0.000 description 1
- 230000007398 protein translocation Effects 0.000 description 1
- 108700015182 recombinant rCAS Proteins 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases [RNase]; Deoxyribonucleases [DNase]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/09—Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/21—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Definitions
- Engineered nucleases that can induce targeted cleavage at specific genomic locations can manipulate genomes very efficiently in living cells and individuals (Nat Rev Genet, 2014. 15 (5): p. 321-34 .). Genetic shears based on DNA binding and nuclease regions of custom designed type 2 restriction enzymes have demonstrated the potential for a wide range of applications of genome engineering techniques in various aspects of the biomedical field and industry. More recently, however, RGEN (RNA-guided engineered nuclease) derived from the bacterial CRISPR / CAS9 adaptive immune system system, a more powerful platform with gene shears, has been developed.
- RGEN RNA-guided engineered nuclease
- RGENs targeted by RGEN are restricted to PAM sequences, which are small motifs recognized by CAS9 proteins that could not be reprogrammed previously.
- RGEN is an RGEN derived from Streptococcus pyogenes , which contains a CAS9 protein with NGG as the PAM sequence, and therefore a GG motif is always required for the RGEN to recognize DNA.
- PAM Streptococcus thermophilus
- PAM Neisseria meningitidis
- the present inventors have made efforts to develop RGENs derived from other species in addition to Streptococcus pyogenes, which are useful, and thus, a Cas protein derived from Campylobacter jejuni (C. jejuni ) recognizes a PAM sequence of NNNNRYAC. It was confirmed that this can be used for targeting the target DNA having the PAM sequence.
- the present invention has been completed by optimizing the structure of the guide RNA, and confirming that they can be used for target DNA targeting, which can lead to genome correction, transcriptional regulation, and target DNA separation.
- One object of the present invention is a target having a PAM sequence of SEQ ID NO: 1 comprising introducing into a cell a Cas protein that recognizes a PAM (proto-spacer-adjacent Motif) sequence of SEQ ID NO: 1 or a nucleic acid encoding the same It provides a method for targeting DNA sequences.
- Another object of the present invention is to provide an isolated guide RNA comprising a sequence capable of forming a base pair with a complementary strand of a target DNA sequence, adjacent to the PAM sequence of SEQ ID NO: 1, or a composition comprising the same.
- Another object of the invention is (i) a guide RNA or DNA encoding said guide RNA, comprising a sequence capable of base pairing with a sequence in a target DNA, adjacent to a PAM sequence that is NNNNRYAC (SEQ ID NO: 1), And (ii) a nucleic acid encoding a Cas protein recognizing a NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein, the CRISPR-CAS system.
- Another object of the invention is (i) an expression cassette for a guide RNA comprising a sequence capable of base pairing with a sequence in a target DNA, adjacent to a PAM sequence that is NNNNRYAC (SEQ ID NO: 1), and (ii) To provide a recombinant viral vector comprising an expression cassette for a Cas protein recognizing the NNNNRYAC (SEQ ID NO: 1) sequence.
- Another object of the invention is a first site capable of forming base pairs with complementary chains of a target DNA sequence; And a second region having a stem-loop structure, characterized in that the stem structure has a length of 13 to 18 bp, to provide an isolated guide RNA or a composition comprising the same.
- Another object of the invention is a first site capable of forming base pairs with complementary chains of a target DNA sequence; And a second region having a stem-loop structure, characterized in that the loop structure has a length of 5 to 10 bp, to provide an isolated guide RNA or a composition comprising the same.
- Still another object of the present invention is to provide a method for correcting a genome in a cell, comprising introducing the isolated guide RNA or DNA encoding the same, and the Cas protein or nucleic acid encoding the same into the cell.
- Still another object of the present invention is to provide a method for cleaving target DNA from a cell, comprising introducing the isolated guide RNA, or DNA encoding the same, and the Cas protein or nucleic acid encoding the same into the cell.
- Another object of the present invention is to identify (i) the presence of a PAM sequence of NNNNRYAC (SEQ ID NO: 1) in a given sequence; And (ii) if the PAM sequence of NNNNRYAC (SEQ ID NO: 1) is present in step (i), determining a sequence located upstream thereof as a sequence recognized by the guide RNA. It provides a method for producing a DNA recognition sequence.
- Still another object of the present invention is to introduce an isolated guide RNA, or DNA encoding the same, and an inactivated Cas protein or nucleic acid encoding the same into a cell, so that the target DNA and guide RNA and inactivation including the target DNA sequence are inactivated.
- the synthesized Cas proteins form a complex with each other; And (ii) to provide a method for separating the desired DNA, comprising the step of separating the complex from the sample.
- Another object of the present invention is to introduce into the cell an isolated guide RNA that specifically recognizes the target DNA, or DNA encoding the same, and an inactivated Cas protein or nucleic acid encoding the transcriptional effector domain bound thereto.
- an isolated guide RNA that specifically recognizes the target DNA, or DNA encoding the same, and an inactivated Cas protein or nucleic acid encoding the transcriptional effector domain bound thereto.
- the CRISPR / Cas system of the present invention can be usefully used for target DNA targeting that can lead to genome correction, transcriptional regulation and target DNA separation.
- FIG. 1 shows a schematic diagram of the C. jejuni Cas9 protein expression vector.
- Humanized Cas9 protein was expressed under the CMV promoter and the nuclear position signal (NLS) and HA tag were constructed at the C-terminus.
- NLS nuclear position signal
- FIG. 2A and 2B show experiments for C. jejuni RGEN induced mutations at intrinsic human AAVS1 target positions.
- FIG. 2A RGEN-mediated chromosomal mutations were detected using T7E1 assay. Asterisk (*) indicates the DNA band expected to be cleaved by T7E1.
- HEK293 wt gDNA was used as negative control (-).
- the previously validated RGEN was used as a positive control (+).
- FIG. 2B DNA sequence of hAAVS1 mutant clone is shown. Target sequence sites complementary to chimeric RNA are shown in bold.
- the underlined portions represent the PAM sequences recognized by CAS9.
- the sequence represented by the WT sequence shown in FIG. 2B as (-2, x1) in SEQ ID NO: 4 is shown in SEQ ID NO: 5
- the sequence represented by (-1, x1) is shown in SEQ ID NO: 6.
- FIG. 3A and 3B show experiments for C. jejuni RGEN induced mutations at the intrinsic mouse ROSA26 (mROSA) target location.
- FIG. 3A RGEN-mediated chromosomal mutations were detected using the T7E1 assay. Asterisk (*) indicates the DNA band expected to be cleaved by T7E1. GDNA of NIH3T3 wt cells was used as negative control (-). The previously validated RGEN was used as a positive control (+).
- FIG. 3B DNA sequence of mROSA mutant clone is shown. Target sequence sites complementary to chimeric RNA are shown in bold. The underlined parts show the PAM sequences recognized by C. jejuni CAS9. In the WT sequence disclosed in FIG. 3, the sequence represented by SEQ ID NO: 7 (-1, x1) is shown in SEQ ID NO: 8, and the sequence represented by (+1, x1) is shown in SEQ ID NO: 9.
- T7E1 assay was used to detect GEN-driven chromosomal mutations.
- Asterisk (*) indicates the DNA band expected to be cleaved by T7E1.
- HEK293 wt gDNA was used as negative control (-).
- the previously validated RGEN was used as a positive control (+).
- 5A-5C relate to the optimization of the spacer length of sgRNAs.
- FIG. 5a shows various sgRNA structures.
- the underlined portions in FIG. 5A represent additional nucleotides present 5 'in front of the spacer of the sgRNA, and the lowercase letters represent nucleotides that do not match the target sequence. Boxed parts represent PAM sequences.
- the target sequence is SEQ ID NO: 10
- GX19 is SEQ ID NO: 11
- GX20 is SEQ ID NO: 12
- GX21 is SEQ ID NO: 13
- GX22 is SEQ ID NO: 14
- GX23 is SEQ ID NO:
- GGX20 is SEQ ID NO: 16
- GGGX20 is shown in SEQ ID NO: 17.
- 5B shows the target location of the sgRNA, and the sequences for hAAVS-CJ1, hAAVS-NRG1, hAAVS-NRG3, and hAAVS-NRG5, respectively, are shown in SEQ ID NOs: 18, 19, 20, and 21. 5c confirmed the RGEN-mediated mutation induction efficiency using the prepared sgRNA.
- each sgRNA shown in FIG. 5A was constructed for four target positions of the human AAVS1 locus (indicated in FIG. 5B) and delivered to 293 cells, which are human culture cells.
- mutation introduction by NHEJ was confirmed in the cells. Confirmation of mutation introduction was performed by PCR amplification of the target position, followed by deep sequencing using miSEQ (illumine).
- the activity when the sequence of PAM position was ACAC was set to 100, and the activity when the other nucleotide was introduce
- the first position showed activity in the case of G in addition to A, and the second position showed activity in T as well as C. But in the 3rd and 4th position, it showed activity only in A and C, respectively.
- N refers to Any nucleotide according to the IUPAC notation, and examples thereof include A, C, G, and T.
- Figure 7 shows the consensus logo of the potential off target sequence of hAAVS1-CJ1 sgRNA discovered through Digenome-Seq analysis.
- hAAVS1-RYN1-7 ratio of mutations in sgRNA / Cas9 treated cells for each site
- WT1 ⁇ 7 mutation rate at each position in genomic DNA of mock-treated cells
- FIG. 9 shows a schematic diagram of C. jejuni CRISPR / Cas9 expressing AAV vector structure.
- FIG. 10 shows genome editing by C. jejuni CRISPR / Cas9 AAV (adeno-associated virus) for Rosa26 locus. Specifically, recombinant AAV encoding Rosa26-sgRNA and C.jejuni Cas9 in one vector were infected with different multiplicity of infectivity (MOI) in C2C12 cells. Genomic DNA was isolated at 3, 5, 7, 10 and 14 days post infection and mutation rates were analyzed by deep sequencing.
- MOI multiplicity of infectivity
- One aspect of the invention is a method of targeting a target DNA sequence, comprising introducing a Cas protein or nucleic acid encoding the same into a cell.
- one embodiment of the present invention comprises introducing into a cell a Cas protein that recognizes a proto-spacer-adjacent Motif (PAM) sequence, which is NNNNRYAC (SEQ ID NO: 1), or a nucleic acid encoding the same, into SEQ ID NO: 1 It provides a method of targeting a target DNA sequence having a PAM sequence of.
- PAM proto-spacer-adjacent Motif
- N refers to Any nucleotide according to the IUPAC notation, and examples thereof include A, C, G, and T.
- R stands for Purine (A / G) and Y stands for pyrimidine (C / T).
- the step comprises a sequence capable of forming a complementary chain and base pair of a target DNA sequence adjacent to the PAM sequence of SEQ ID NO: 1 sequentially or simultaneously with a Cas protein that recognizes the PAM sequence of SEQ ID NO: 1 or a nucleic acid encoding the same. It may further comprise introducing a guide RNA comprising.
- the targeting is a concept that includes all that the Cas protein is bound without cleavage or cleavage of the target DNA sequence.
- the Cas protein may form a complex with crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) to show its activity.
- the Cas protein may exhibit active endonuclease or nickase activity.
- Cas protein or genetic information can be obtained from known databases such as GenBank of the National Center for Biotechnology Information (NCBI).
- the Cas protein may be a Cas9 protein.
- the Cas protein may be a Cas protein from Campylobacter genus ( Camylobacter ) genus, more specifically, a Campylobacter jejuni , more specifically Cas9 protein. More specifically, it may be an amino acid sequence set forth in SEQ ID NO: 22, or a protein having homology with activity of the protein of the sequence.
- the protein is at least 50%, 60%, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, It may have sequence identity of 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, but is not limited to the examples described above.
- the Cas protein is used in the present invention as a concept including all of the variants that can act as an endonuclease or nickase activated in cooperation with the guide RNA in addition to the native protein.
- target DNA cleavage can be achieved, which can be used to bring genome correction.
- inactivated variants it can be used to bring about transcriptional regulation or isolation of the desired DNA.
- the variant of Cas9 protein may be a mutant form of Cas9 in which a catalytic aspartate residue or histidine residue is changed to any other amino acid.
- the other amino acid may be alanine, but is not limited thereto.
- the Cas protein specifically, the Cas9 protein derived from C. jejuni, may be one in which 8 catalytic aspartic acid (D) or 559 histidine residue (histidine, H) is substituted with another amino acid.
- the other amino acid may be alanine, but is not limited thereto. That is, the Cas9 nuclease protein made by introducing mutations into only one active site of the Cas9 nuclease protein may act as a nickase when bound to the guide RNA. Such nickases are included in the RGEN category because they can cut both strands of DNA and cause double strand breakage (DSB).
- the term "inactivated Cas protein” refers to a Cas nuclease protein in which all or part of the function of the nuclease is inactivated.
- the inactivated Cas is also named dCas.
- the Cas may be a Cas9 protein. It may also be of the genus Campylobacter, more specifically from C. jejuni.
- Preparation of the inactivated Cas9 nuclease protein includes without limitation how the nuclease activity is inactivated.
- the dCAS9 protein produced by introducing mutations into two active sites of the Cas9 nuclease described above may act as a DNA binding complex that does not cleave DNA when bound to the guide DNA.
- eight catalytic aspartic acids (D), and histidine residue (H) 559 may be substituted with other amino acids, specifically, alanine, but are not limited thereto.
- cutting includes the breakage of the covalent backbone of a nucleotide molecule.
- the Cas protein may be a recombinant protein.
- recombinant when used to refer to a cell, nucleic acid, protein or vector, etc., for example, introduces a heterologous nucleic acid or protein or alters a native nucleic acid or protein, or is derived from a modified cell.
- Cell, nucleic acid, protein, or vector modified by the cell can be made by reconstructing a sequence encoding the Cas protein using a human codon table.
- the Cas protein or nucleic acid encoding the same may be in a form that allows the Cas protein to function in the nucleus.
- the isolated Cas protein may also be in a form that is easy to introduce into the cell.
- the Cas protein may be linked to a cell penetrating peptide or a protein transduction domain.
- the protein transfer domain may be, but is not limited to, poly-arginine or HIV derived TAT protein.
- Cell penetrating peptides or protein delivery domains are known in the art in addition to the examples described above, so those skilled in the art are not limited to these examples, and various examples can be applied to the present invention.
- the Cas protein or nucleic acid encoding the Cas protein may further include a nuclear localization signal (NLS) for locating the Cas protein in the nucleus.
- the nucleic acid encoding the Cas protein may additionally include a nuclear localization signal (NLS) sequence. Therefore, the expression cassette including the nucleic acid encoding the Cas protein may include an NLS sequence in addition to a regulatory sequence such as a promoter sequence for expressing the Cas protein. However, this is not limitative.
- Cas proteins may be linked with tags that are advantageous for separation and / or purification.
- tags that are advantageous for separation and / or purification.
- a small peptide tag such as a His tag, a Flag tag, an S tag, or a GST (Glutathione S- transferase) tag, a MBP (Maltose binding protein) tag, or the like may be connected depending on the purpose, but is not limited thereto.
- the Cas protein may be named RGEN (RNA-Guided Engineered Nuclease) along with target DNA specific guide RNA.
- RGEN refers to a nuclease comprising a target DNA specific guide RNA and Cas protein as a component.
- the RGEN is a target DNA specific guide RNA or DNA encoding the guide RNA; And it can be applied to the cell in the form of an isolated Cas protein or a nucleic acid encoding the Cas protein, but is not limited thereto.
- the guide RNA or DNA encoding the same and the Cas protein or nucleic acid encoding the same may be applied to the cells simultaneously or sequentially.
- the RGEN in the present invention can be applied to cells in the form of 1) target DNA specific guide RNA and isolated Cas protein, 2) DNA encoding the guide RNA and nucleic acid encoding Cas protein. Delivery to the cells in the form of 1), also referred to as RNP delivery, but is not limited thereto.
- the guide RNA When applied in the form of an isolated guide RNA, the guide RNA may be transcribed in vitro, but is not limited thereto.
- DNA encoding the guide RNA and the nucleic acid encoding the Cas protein may be used as the separated nucleic acid itself, but may be present in the form of a vector containing the expression cassette for expressing the guide RNA, and / or Cas protein.
- the present invention is not limited thereto.
- the vector may be a viral vector, a plasmid vector, or an Agrobacterium vector.
- examples of the viral vector may include Adeno-associated virus (AAV), but are not limited thereto.
- AAV Adeno-associated virus
- the DNA encoding the guide RNA and the nucleic acid encoding the Cas protein may be present in individual vectors or in one vector, but are not limited thereto.
- guide RNA means a target DNA specific RNA, and may bind to a Cas protein to lead the Cas protein to the target DNA.
- guide RNAs can be made to be specific to any target to be cleaved.
- the guide RNA includes two RNAs, namely dual RNA (crRNA) comprising a crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) as a component; Or a form comprising a first site comprising a sequence capable of forming base pairs with a complementary strand of a target DNA and a second site comprising a sequence interacting with a Cas protein, more specifically crRNA and
- the major part of the tracrRNA may be a single-chain guide RNA (sgRNA) in fused form.
- the length of the sequence capable of forming a base pair with the complementary chain of the target DNA sequence of the guide RNA is 17 to 23 bp, 18 to 23 bp, 19 to 23 bp, more specifically 20 to 23 bp, even more specifically 21 to 23 bp It may be, but is not limited thereto. This applies to both double RNA and sgRNA, and more specifically to sgRNA.
- the guide RNA may have one to three additional nucleotides, more specifically two or three nucleotides, in front of the 5 'region of the sequence capable of forming base pairs with complementary chains of the target DNA sequence.
- the nucleotides include A, T, G, and C.
- the guide RNA may have more specifically one to three guanine (G), even more specifically two or three G. This applies to both double RNA and sgRNA, and more specifically to sgRNA. However, it is not limited to the examples described above.
- the sgRNA may include a portion having a sequence complementary to a sequence in the target DNA (also referred to as a spacer region, a target DNA recognition sequence, a base pairing region, etc.) and a hairpin structure for Cas protein binding.
- it may include a portion having a sequence complementary to the sequence in the target DNA, a hairpin structure and a Terminator sequence for Cas protein binding.
- the structure described above may be present in sequence from 5 'to 3'. However, it is not limited thereto.
- guide RNA Any form of guide RNA may be used in the present invention, provided that the guide RNA comprises a major portion of crRNA and tracrRNA and complementary portions of the target DNA.
- the crRNA may be hybridized with the target DNA.
- RGEN may consist of Cas protein and dual RNA, or may consist of Cas protein and sgRNA.
- the RGEN is a nucleic acid encoding a Cas protein and a nucleic acid encoding a dual RNA;
- the nucleic acid encoding the Cas protein and the nucleic acid encoding the sgRNA may be used as components, but are not limited thereto.
- the guide RNA may comprise a sequence complementary to the sequence in the target DNA, and may comprise one or more additional nucleotides upstream of the crRNA or sgRNA, specifically at the 5 'end of the crRNA of the sgRNA or dualRNA.
- the additional nucleotide may be guanine (G), but is not limited thereto. In addition, all of the above description is applied to this.
- the guide RNA comprises a sequence capable of forming a base pair with a complementary strand of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). can do.
- PAM proto-spacer-adjacent Motif
- the guide RNA may comprise a first site capable of forming a base pair with a complementary strand of a target DNA sequence; And a second region having a stem-loop structure, which is a stem structure having a length of 13 to 18 bp.
- the stem structure may include a nucleotide sequence of SEQ ID NO: 2 (5′-GUUUUAGUCCCUUGUG-3 ′) and a sequence complementary thereto.
- the guide RNA may comprise a first site capable of forming a base pair with a complementary strand of a target DNA sequence; And a second region having a stem-loop structure, which is a loop structure having a length of 5 to 10 bp.
- the loop structure may have a sequence of the nucleotide sequence of SEQ ID NO: 3 (5'-AUAUUCAA-3 ').
- Cas proteins and guide RNAs in particular sgRNAs, described or described below, may be unnaturally generated and engineered.
- all of the elements described above may be applied in combination.
- the introduction into cells may be (1) a method of producing and delivering a purified Cas9 protein and a single guided RNA (sgRNA) that recognizes a specific HLA target sequence after overexpression in bacteria by in vitro transcription. (2) Alternatively, a method of transferring plasmid DNAs expressing these Cas9 proteins and sgRNAs into cells and expressing them in cells may be used, but is not necessarily limited thereto.
- sgRNA single guided RNA
- the method for intracellular delivery of protein, RNA, or plasmid DNA required for the present invention includes electroporation, liposomes, viral vectors, nanoparticles, as well as PTD (Protein translocation domain) fusion protein methods.
- PTD Protein translocation domain
- the method of the present invention can be used to cleave a target DNA having the PAM sequence of SEQ ID NO: 1, more specifically to correct the genome.
- the Cas protein may be an active form having nuclease or kinase activity.
- the Cas protein in the method of the present invention may be in an inactivated form.
- the method may be characterized in that the Cas protein is bound thereto without cutting the target DNA sequence including the PAM sequence of SEQ ID NO: 1.
- the Cas protein more specifically inactivated Cas protein may further include a transcription effector domain (transcription effector domain).
- a transcription effector domain transcription effector domain
- an activator, a repressor, or the like may be conjugated, but is not limited thereto.
- the method can be used for Cas mediated gene expression regulation, including transcriptional or epigenetic regulation.
- Another aspect of the invention includes a sequence capable of forming base pairs with complementary strand of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). Is an isolated guide RNA. This may occur unnaturally or be manipulated.
- PAM proto-spacer-adjacent Motif
- the guide RNA may be a single-chain guide RNA, the length of the sequence complementary to the sequence in the target DNA of the guide RNA is 17 to 23bp, 18 to 23bp, 19 to 23bp, more specifically 20 to 23bp , More specifically, it may be 21 to 23 bp, but is not limited thereto.
- the guide RNA may have one to three guanines (guanine, G) in front of the 5 'region of the sequence complementary to the sequence in the target DNA, but is not limited thereto.
- guanine guanine
- G guanine
- Another aspect of the invention includes a sequence capable of forming base pairs with complementary strand of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). It is a composition containing a guide RNA or DNA encoding the guide RNA.
- PAM proto-spacer-adjacent Motif
- composition may further comprise a nucleic acid encoding the Cas protein recognizing the NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein.
- composition may be for calibrating the dielectric.
- the composition also includes (i) a sequence capable of forming base pairs with complementary strands of the target DNA sequence adjacent to the proto-spacer-adjacent Motif (PAM) sequence, NNNNRYAC (SEQ ID NO: 1). Guide RNA or DNA encoding the guide RNA; And (ii) an inactivated Cas protein (dCas) or a nucleic acid encoding the same.
- PAM proto-spacer-adjacent Motif
- the inactivated Cas protein may further include a transcription effector domain.
- the composition may be for separating the desired DNA including the target DNA sequence.
- the inactivated Cas protein may be a conjugated tag for separation and purification, but is not limited thereto.
- the tag the above-described contents may be taken as an example.
- composition may be for regulating Cas mediated gene expression, including transcriptional or epigenetic regulation.
- the target DNA may be present in isolated cells, such as eukaryotic cells.
- the eukaryotic cells can be yeast, fungi, protozoa, plants, higher plants and insects, or cells of amphibians, or cells of mammals such as CHO, HeLa, HEK293, and COS-1, for example Cultured cells (in vitro), transplanted cells and primary cell cultures (in vitro and ex vivo), and in vivo cells, also commonly used in the art, as well It may be a mammalian cell including a human, but is not limited thereto.
- a guide RNA comprising (i) a sequence capable of forming a base pair with a sequence in a target DNA adjacent to a proto-spacer-adjacent Motif (PAM) sequence that is NNNNRYAC (SEQ ID NO: 1). Or a DNA encoding the guide RNA, and (ii) a nucleic acid encoding the Cas protein recognizing the NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein, the CRISPR-CAS system.
- PAM proto-spacer-adjacent Motif
- a guide RNA comprising (i) a sequence capable of forming a base pair with a sequence in a target DNA adjacent to a proto-spacer-adjacent Motif (PAM) sequence that is NNNNRYAC (SEQ ID NO: 1). And an expression cassette for a Cas protein that recognizes the NNNNRYAC (SEQ ID NO: 1) sequence.
- PAM proto-spacer-adjacent Motif
- the viral vector may be Adeno-associated virus (AAV).
- AAV Adeno-associated virus
- Another aspect of the invention is an isolated guide RNA comprising a 21-23 bp long sequence capable of forming base pairs with the complementary strand of the target DNA sequence.
- Another aspect of the invention is a composition comprising the guide RNA or DNA encoding the guide RNA.
- the composition may comprise a Cas protein that recognizes a PAM sequence that is NNNNRYAC (SEQ ID NO: 1) or a nucleic acid encoding the same.
- composition may comprise a nucleic acid encoding the inactivated Cas protein that recognizes the NNNNRYAC (SEQ ID NO: 1) sequence or the Cas protein.
- the inactivated Cas protein may further comprise a transcriptional effector domain.
- kits comprising: a first site capable of forming base pairs with a complementary strand of a target DNA sequence; And a second site having a stem-loop structure, characterized in that the stem structure is 13-18 bp in length.
- the stem structure may include the nucleotide sequence of SEQ ID NO: 2 (5′-GUUUUAGUCCCUUGUG-3 ′) and a sequence complementary thereto.
- kits comprising: a first site capable of forming base pairs with a complementary strand of a target DNA sequence; And a second site having a stem-loop structure, characterized in that the loop structure is 5-10 bp in length.
- the loop structure may have a sequence of the nucleotide sequence of SEQ ID NO: 3 (5′-AUAUUCAA-3 ′).
- compositions comprising a guide RNA and a Cas protein or nucleic acid sequence encoding the same.
- Another aspect of the invention is a method for correcting a genome in a cell, comprising introducing into the cell the isolated guide RNA or DNA encoding the above described, and the Cas protein or nucleic acid encoding the same.
- Each is as described above. Each component may be unnaturally generated or manipulated.
- Another aspect of the invention is a method for cleaving a target DNA in a cell, comprising introducing into the cell the isolated guide RNA, or DNA encoding the above, and a Cas protein or nucleic acid encoding the same, as described above.
- Each is as described above. Each component may be unnaturally generated or manipulated.
- Introduction of the guide RNA or DNA encoding the same and the Cas protein or nucleic acid encoding the guide RNA may be performed simultaneously or sequentially.
- Another aspect of the present invention provides a method for preparing a PAM sequence comprising (i) identifying the presence of a PAM sequence that is NNNNRYAC (SEQ ID NO: 1) in a given sequence; And (ii) if the PAM sequence of NNNNRYAC (SEQ ID NO: 1) is present in step (i), determining a sequence located upstream thereof as a sequence recognized by the guide RNA. It is a method of preparing a DNA recognition sequence.
- the sequence located upstream may be 17 to 23 bp in length, 18 to 23 bp, 19 to 23 bp, more specifically 20 to 23 bp, even more specifically, 21 to 23 bp, but is not limited thereto.
- Another aspect of the present invention provides a method comprising the steps of (i) introducing the isolated guide RNAs described above, or DNAs encoding the same, and inactivated Cas proteins or nucleic acids encoding the same into a cell, thereby comprising a target DNA sequence. DNA and guide RNA and inactivated Cas protein complex with each other; And (ii) separating the complex from the sample.
- the inactivated Cas protein may be one that recognizes a proto-spacer-adjacent Motif (PAM) sequence that is NNNNRYAC (SEQ ID NO: 1).
- PAM proto-spacer-adjacent Motif
- the method of isolating the DNA of interest is a guide RNA (gRNA) and specifically inactivated Cas protein (dCas) that binds to the target DNA complexes of the target DNA and dCas-gRNA-targeting DNA Forming; And separating the complex from the sample, which may be performed by a method of separating DNA of interest.
- gRNA guide RNA
- dCas specifically inactivated Cas protein
- the target DNA can be confirmed by amplification by PCR or by a known method.
- the separation method may be applied to cell-free DNA in vitro and is performed without formation of a cross-link covalent bone between the DNA and the gRNA and dCas proteins. It may be.
- the separation method may further comprise the step of separating the desired DNA from the complex.
- the inactivated Cas protein may comprise an affinity tag for separation, for example the affinity tag may be His tag, Flag tag, S tag, GST (Glutathione).
- MBP Mealtose binding protein
- CBP chitin binding protein
- the inactivated Cas protein may lack DNA cleavage activity of the Cas protein.
- the method may be to separate the DNA of interest using an affinity column or magnetic beads (magnetic bead) that binds to the tag.
- the affinity tag for the separation may be a His tag, which is to separate the desired DNA using a metal affinity column or magnetic beads that bind to the His tag, the magnetic beads May be, for example, but not limited to, Ni-NTA magnetic beads.
- Separation of the desired DNA from the complex may be performed using RNase and proteolytic enzyme.
- the target DNA may be separated using guide RNAs specific for each of the two or more desired DNAs.
- the guide RNA may be a single-chain guide RNA (sgRNA) and may be a dualRNA including crRNA and tracrRNA.
- the guide RNA may be in the form of an isolated RNA, or in the form encoded in the plasmid.
- the method comprises the steps of: a guide RNA (gRNA) and an inactivated Cas protein (dCas) that specifically bind to the desired DNA to form a complex of the desired DNA and dCas-gRNA-targeting DNA; And separating the complex from the sample.
- gRNA guide RNA
- dCas inactivated Cas protein
- Another aspect of the present invention provides a method for introducing a cell into which the isolated guide RNA, or DNA encoding the target DNA, which specifically recognizes a target DNA, and an inactivated Cas protein or a nucleic acid encoding the same are linked to a transcriptional effector domain.
- C. jejuni CRISPR / CAS9-derived RGEN To characterize the C. jejuni CRISPR / CAS9-derived RGEN for genome manipulation, we first synthesized the C. jejuni CAS9 gene optimized for human codons (Table 1), and inserted the gene into a mammalian expression vector under the CMV promoter. A C. jejuni CAS9 protein expression cassette was tagged with HA epitope tagged with NLS (FIG. 1).
- the native guide RNA of the C. jejuni CRISPR / CAS9 system consists of tracrRNA and target specific-crRNA. Since the guide RNA may be used as two RNA molecules in a natural state, or as a single chain guide RNA (sgRNA) which is a fused form of crRNA and tracrRNA, the inventors of C. jejuni Expression plasmids for sgRNAs were designed and constructed (Table 2).
- sgRNAs sgRNA order SEQ ID NO: C.jejuni_sgRNA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 23
- sgRNAs Target sequence SEQ ID NO: Human AAVS1_C.Jejuni ATATAAGGTGGTCCCAGCTC GGGGACA 24 Mouse Rosa26_C.Jejuni ATTCCCCTGCAGGACAACGC CCACACA 25
- C. jejuni RGEN can be used for target destruction of endogenous genes in mammalian cells. It is possible to specifically recognize and cleave heteroduplexes formed by hybridization of wild-type and variant DNA sequences.
- Genomic DNA isolated from the transformed cells was analyzed using a mismatch sensitive endonuclease T7 endonuclease I (T7E1). At this time, the primer sequences used were as follows (Table 4).
- the C. jejuni crRNA and tracrRNA complexes are expected to have a shorter loop structure than the crRNA: tracrRNA complexes derived from other bacterial species, and the structure of the C. jejuni RGEN sgRNA prepared in Example 1 may be stabilized.
- the stem or loop structure was modified so that it was designed (Table 5).
- sgRNAs sgRNA order SEQ ID NO: C.jejuni_sgRNA NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNGTTT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT 23 C.jejuni_sgRNA_stem modified NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT TGTGGAAATATA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTTTTTTTTTTTT 30 C.jejuni_sgRNA_loop modified NNNNNNNNNNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT ATATTCAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTTTTTT 31
- the length of the spacer sequence in the crRNA of C. jejuni that recognized the target sequence as reported in the literature was 20 bp.
- a genome editing test was performed (FIGS. 5A-C). This experiment was conducted by Genome Res. The method described in 2014 Jan; 24 (1): 132-41 was used.
- Target location sgRNA Sequence (20bp-SPACERnnnnACA) SEQ ID NO: Human AAVS1-CJ1 ATATAAGGTGGTCCCAGCTCggggACA 32 Human AAVS1-NRG1 GTAGAGGCGGCCACGACCTGgtgaACA 33 Human AAVS1-NRG3 TCACAAAGGGAGTTTTCCACacggACA 34 Human AAVS1-NRG5 TAGGCAGATTCCTTATCTGGtgacACA 35
- genomic DNA was isolated and mutation introduction efficiency was analyzed by deep sequencing method, and the results are shown in FIG. 5C. As shown here, high efficiencies were observed in the 21-23 bp spacer. In addition, improved genome editing efficiency was observed even when 2 to 3 additional Gs were attached to 5 'of the sgRNA of the 20 bp spacer.
- F * represents a forward primer and R ** represents a reverse primer.
- sgRNA name Active (T7E1 assay) order SEQ ID NO: Human AAVS1 hAAVS1 -CJ1 O ATATAAGGTGGTCCCAGCTCGGGGACA C 42 hAAVS1-CJ2 X TGGCCCCACTGTGGGGTGGAGGGGACAG 43 hAAVS1-CJ3 X CACCCCACAGTGGGGCCACTAGGGACAG 44 CCR5 CCR5-CJ1 X CTAGCAGCAAACCTTCCCTTCACTACAA 45 CCR5-CJ2 X CTCCATGAATGCAAACTGTTTTATACAT 46 CCR5-CJ3 X TGCATTCATGGAGGGCAACTAAATACAT 47 CCR5-CJ4 X ATCAAGTGTCAAGTCCAATCTATGACAT 48 CCR5-CJ5 X CCAATCTATGACATCAATTATTATACAT 49 CCR5-CJ6 X GCAAAAGGCTGAAGAGCATGACTGACAT 50 CCR5-CJ7 X GCA
- the PAM sequence was inferred as "NNNNACAC” and C. jejuni was changed to A / T / G / C for each of the four ACAC positions.
- C. jejuni RGEN Surrogate reporter assay was used for this purpose.
- the PAM sequence of C. jejuni is “NNNNRYAC (SEQ ID NO: 1)” (FIG. 6, R refers to purine (A or G) Y refers to pyrimidine (C / T)).
- This experiment is Nat Methods. It was performed using the Surrogate reporter assay method described in 2011 Oct 9; 8 (11): 941-3.
- Digenome-Seq was used to identify 41 locations where cleavage was seen to occur by AAVS1-CJ1 CRISPR / Cas9 (Genomic location in Table 9).
- the consensus sequence was obtained by aligning the cleavage site sequence at 41 positions, as shown in FIG. 8, PAM was confirmed to be consistent with that identified in Example 4.
- consensus sequence was able to be constructed when the sequences of 41 positions showing cleavage were shown in vitro, and the PAM position was observed as NNNNRYAC (SEQ ID NO: 1).
- Example 6 The first two positions of the PAM Congratulation for degeneracy
- Example 5 the PAM sequence of C. jejuni was observed to have degeneracy in the first two positions, not only "NNNNACAC” but also "NNNNRYAC".
- sgRNAs were prepared for seven positions where the first two nucleotides of PAM were G or T, respectively, using the target sequence of C.jejuni at the human AAVS1 position (Table 10). Confirmed.
- sgRNA Direction PAM Target sequence SEQ ID NO: hAAVS1-RYN1 + NNNNRYAC gCCACGACCTGGTGAACACCTAGGACGCAC 76 hAAVS1-RYN2 + gGCCTTATCTCACAGGTAAAACTGACGCAC 77 hAAVS1-RYN3 + cTCTTGGGAAGTGTAAGGAAGCTGCAGCAC 78 hAAVS1-RYN4 + aGCTGCAGCACCAGGATCAGTGAAACGCAC 79 hAAVS1-RYN5 + cTGTGGGGTGGAGGGGACAGATAAAAGTAC 80 hAAVS1-RYN6 - gCCGGTTAATGTGGCTCTGGTTCTGGGTAC 81 hAAVS1-RYN7 + gCCATGACAGGGGGCTGGAAGAGCTAGCAC 82
- Example 7 AAV Used C. jejuni CRISPR Of CAS9 Dielectric correction through transfer
- C. jejuni RGEN has the smallest CAS9 protein and sgRNA among the RGENs developed to date.
- Adeno-associated virus (AAV) which is currently used as one of the most important gene therapy vectors, is strictly used in R.
- an AAV vector was prepared in a form including both a C. jejuni Cas9 expression cassette and an sgRNA expression cassette (FIG. 9), and AAV from Produced and infected with mouse cultured cells C2C12.
- FOG. 9 a C. jejuni Cas9 expression cassette and an sgRNA expression cassette
- mutation of a target position in C2C12 cells could be induced depending on AAV concentration and time.
- mutations were induced at 90% or more efficiency at the target site (FIG. 10).
- C. jejuni RGEN can efficiently perform genome correction in cultured cells.
- PAM sequence of the C. jejuni CRISPR / Cas9 system which was proposed in the previous study, was incomplete, and the actual PAM sequence of C. jejuni was confirmed.
- C. jejuni RGEN confirmed that each component is small and can be loaded into a single virus, and that genetic modifications can be performed very efficiently.
- dCAS9 gRNA Enrichment of Target DNA Using Complex
- the present inventors are derived from Streptococcus pyogens, and can use the inactivated RGEN (dCas9: gRNA complex) composed of inactivated Cas9 protein and guide RNA to bring the isolation and concentration of target DNA. It was confirmed.
- RGEN dCas9: gRNA complex
- the dCas9 protein has a histidine tag (His tag) for purification, so that only dCas9 protein can be selectively purified using Ni-NTA magnetic beads that selectively bind to His tags.
- His tag histidine tag
- only the desired target DNA can be selectively purified using the properties of the dCas9-protein-sgRNA complex without nuclease activity that can specifically bind to the DNA sequence.
- the inventors first distinguished the plasmid (Plasmid, pUC19) by size to determine whether only the desired target DNA can be separated through inactivated RGEN (dCas9: gRNA complex) consisting of guide RNA and inactivated Cas9 nuclease protein. This was cut with restriction enzymes (SpeI, XmaI, XhoI) to prepare plasmid DNA fragments of 4134 bp, 2570 bp, and 1263 bp, respectively.
- RGEN deactivated Cas9: gRNA complex
- sgRNA Target sequence PAM sequence 4134 bp_sg # 1 GAGAACCAGACCACCCAGAA (SEQ ID NO: 83) GGG 4134 bp_sg # 2 GGCAGCCCCGCCATCAAGAA (SEQ ID NO: 84) GGG 2570bp_sg # 1 GTAAGATGCTTTTCTGTGAC (SEQ ID NO: 85) TGG 2570bp_sg # 2 GATCCTTTGATCTTTTCTAC (SEQ ID NO: 86) GGG 1270bp_sg # 1 GCCTCCAAAAAAGAAGAGAA (SEQ ID NO: 87) AGG 1270bp_sg # 2 TGACATCAATTATTATACAT (SEQ ID NO: 88) CGG
- sgRNA sequence is the same as the target sequence, except that T is U.
- the solution is then mixed with 50 ⁇ l of Ni-NTA magnetic beads that can specifically bind to histidine tags, washed twice with 200 ⁇ l wash buffer and then using 200 ⁇ l elution buffer (Bioneer, K-7200).
- dCas9-sgRNA-target DNA complex was purified.
- RNase A (Amresco, E866) was added at a concentration of 0.2 mg / ml and reacted at 37 ° C for 2 hours, and the decomposition protein hydrolase K (Bioneer, 1304G) was added at a concentration of 0.2 mg / ml at 55 ° C.
- the target DNA was purified through ethanol purification.
- the technique can also be applied to Cas proteins that recognize the proto-spacer-adjacent Motif (PAM) sequence, which is the NNNNRYAC (SEQ ID NO: 1) of the present invention.
- PAM proto-spacer-adjacent Motif
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Immunology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
아미노산 서열 | 사이즈 | 서열번호 |
MARILAFDIGISSIGWAFSENDELKDCGVRIFTKVENPKTGESLALPRRLARSARKRLARRKARLNHLKHLIANEFKLNYEDYQSFDESLAKAYKGSLISPYELRFRALNELLSKQDFARVILHIAKRRGYDDIKNSDDKEKGAILKAIKQNEEKLANYQSVGEYLYKEYFQKFKENSKEFTNVRNKKESYERCIAQSFLKDELKLIFKKQREFGFSFSKKFEEEVLSVAFYKRALKDFSHLVGNCSFFTDEKRAPKNSPLAFMFVALTRIINLLNNLKNTEGILYTKDDLNALLNEVLKNGTLTYKQTKKLLGLSDDYEFKGEKGTYFIEFKKYKEFIKALGEHNLSQDDLNEIAKDITLIKDEIKLKKALAKYDLNQNQIDSLSKLEFKDHLNISFKALKLVTPLMLEGKKYDEACNELNLKVAINEDKKDFLPAFNETYYKDEVTNPVVLRAIKEYRKVLNALLKKYGKVHKINIELAREVGKNHSQRAKIEKEQNENYKAKKDAELECEKLGLKINSKNILKLRLFKEQKEFCAYSGEKIKISDLQDEKMLEIDHIYPYSRSFDDSYMNKVLVFTKQNQEKLNQTPFEAFGNDSAKWQKIEVLAKNLPTKKQKRILDKNYKDKEQKNFKDRNLNDTRYIARLVLNYTKDYLDFLPLSDDENTKLNDTQKGSKVHVEAKSGMLTSALRHTWGFSAKDRNNHLHHAIDAVIIAYANNSIVKAFSDFKKEQESNSAELYAKKISELDYKNKRKFFEPFSGFRQKVLDKIDEIFVSKPERKKPSGALHEETFRKEEEFYQSYGGKEGVLKALELGKIRKVNGKIVKNGDMFRVDIFKHKKTNKFYAVPIYTMDFALKVLPNKAVARSKKGEIKDWILMDENYEFCFSLYKDSLILIQTKDMQEPEFVYYNAFTSSTVSLIVSKHDNKFETLSKNQKILFKNANEKEVIAKSIGIQNLKVFEKYIVSALGEVTKAEFRQREDFKKSGPPKKKRKVYPYDVPDYA- | 1003a.a | 22 |
sgRNAs | sgRNA 서열 | 서열번호 |
C.jejuni_sgRNA | NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT | 23 |
sgRNAs | 표적 서열 | 서열번호 |
Human AAVS1_C.Jejuni | ATATAAGGTGGTCCCAGCTCGGGGACA | 24 |
Mouse Rosa26_C.Jejuni | ATTCCCCTGCAGGACAACGCCCACACA | 25 |
프라이머 | 서열 | 서열번호 |
Human AAVS1-F | TGCTTCTCCTCTTGGGAAGT | 26 |
Human AAVS1-R | CCCCGTTCTCCTGTGGATTC | 27 |
Mouse Rosa26-F | ACGTTTCCGACTTGAGTTGC | 28 |
Mouse Rosa26-R | CCCAGCTACAGCCTCGATTT | 29 |
sgRNAs | sgRNA 서열 | 서열번호 |
C.jejuni_sgRNA | NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT GAAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT | 23 |
C.jejuni_sgRNA_stem modified | NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT TGTGGAAATATA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT | 30 |
C.jejuni_sgRNA_loop modified | NNNNNNNNNNNNNNNNNNNN GTTTTAGTCCCT ATATTCAA AGGGACTAAAAT AAAGAGTTTGCGGGACTCTGCGGGGTTACAATCCCCTAAAACCGCTTTTTTT | 31 |
sgRNA | Sequence (20bp-SPACERnnnnACA) | 서열번호 |
Human AAVS1-CJ1 | ATATAAGGTGGTCCCAGCTCggggACA | 32 |
Human AAVS1-NRG1 | GTAGAGGCGGCCACGACCTGgtgaACA | 33 |
Human AAVS1-NRG3 | TCACAAAGGGAGTTTTCCACacggACA | 34 |
Human AAVS1-NRG5 | TAGGCAGATTCCTTATCTGGtgacACA | 35 |
NGS-primer-F* | Sequences | NGS-primer-R** | Sequences | Target sgRNA | |
Human AAVS1 | AS-AV-F1 | ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGGAGGAGGCCTAAGGATGG(서열번호 36) | AS-AV-R1 | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTCATGGCATCTTCCAGGG(서열번호 39) | CJ1 |
AS-AV-F2 | ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTCTGGGCGGAGGAATATG(서열번호 37) | AS-AV-R2 | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTCCGTGCGTCAGTTTTACCT(서열번호 40) | NRG1,NRG3 | |
AS-AV-F4 | ACACTCTTTCCCTACACGACGCTCTTCCGATCTATCCTCTCTGGCTCCATCGT(서열번호 38) | AS-AV-R4 | GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCCGGTTAATGTGGCTCTGGT(서열번호 41) | NRG5 |
sgRNA 이름 | 활성 (T7E1 assay) | 서열 | 서열번호 | |
Human | ||||
AAVS1 | hAAVS1 -CJ1 | O | ATATAAGGTGGTCCCAGCTCGGGGACA C | 42 |
hAAVS1-CJ2 | X | TGGCCCCACTGTGGGGTGGAGGGGACAG | 43 | |
hAAVS1-CJ3 | X | CACCCCACAGTGGGGCCACTAGGGACAG | 44 | |
CCR5 | CCR5-CJ1 | X | CTAGCAGCAAACCTTCCCTTCACTACAA | 45 |
CCR5-CJ2 | X | CTCCATGAATGCAAACTGTTTTATACAT | 46 | |
CCR5-CJ3 | X | TGCATTCATGGAGGGCAACTAAATACAT | 47 | |
CCR5-CJ4 | X | ATCAAGTGTCAAGTCCAATCTATGACAT | 48 | |
CCR5-CJ5 | X | CCAATCTATGACATCAATTATTATACAT | 49 | |
CCR5-CJ6 | X | GCAAAAGGCTGAAGAGCATGACTGACAT | 50 | |
CCR5-CJ7 | X | GCAGCATAGTGAGCCCAGAAGGGGACAG | 51 | |
CCR5-CJ8 | X | GCCGCCCAGTGGGACTTTGGAAATACAA | 52 | |
Mouse | ||||
Rosa26 | ROSA26-CJ1 | X | TCCACTGCAGCTCCCTTACTGATAACAA | 53 |
ROSA26 -CJ2* | O | ATTCCCCTGCAGGACAACGCCCACACA C | 54 | |
ROSA26-CJ3 | X | ACACCTGTTCAATTCCCCTGCAGGACAA | 55 | |
ROSA26-CJ4 | X | TTGAACAGGTGTAAAATTGGAGGGACAA | 56 | |
ROSA26-CJ5 | X | TTGCCCCTATTAAAAAACTTCCCGACAA | 57 | |
ROSA26-CJ6 | X | AGATCCTTACTACAGTATGAAATTACAG | 58 | |
ROSA26-CJ7 | X | AGCCTTATCAAAAGGTATTTTAGAACAC | 59 | |
TP53 | TP53-CJ1 | X | CGGGGCCCACTCACCGTGCACATAACAG | 60 |
TP53-CJ2 | X | GCCGTGTCCGCGCCATGGCCATCTACAA | 61 | |
TP53-CJ3 | X | TGGCCATCTACAAGAAGTCACAGCACAT | 62 | |
TP53-CJ4 | X | CCGAGTGTCAGGAGCTCCTGCAGCACAG | 63 | |
TP53-CJ5 | X | CTCCCCGGGGCCCACTCACCGTGCACAT | 64 | |
TP53-CJ6 | X | CCTGTGCAGTTGTGGGTCAGCGCCACAC | 65 | |
TP53-CJ7 | X | GGTGTGGCGCTGACCCACAACTGCACAG | 66 | |
TP53-CJ8 | O | TTCTTGTAGATGGCCATGGCGCGGACA C | 67 | |
TP53-CJ9 | X | CGCCATGGCCATCTACAAGAAGTCACAG | 68 | |
PTEN | mPTEN-CJ1 | X | ACATCATCAATATTGTTCCTGTATACAC | 69 |
mPTEN-CJ2 | X | TGAATCCAAAAACCTTAAAACAAAACAA | 70 | |
mPTEN-CJ3 | X | TGCTTTGAATCCAAAAACCTTAAAACAA | 71 | |
mPTEN-CJ4 | X | AGCATAAAAACCATTACAAGATATACAA | 72 | |
mPTEN-CJ5 | X | GTAGATGTGCTGAGAGACATTATGACAC | 73 | |
mPTEN-CJ6 | X | GGCGGTGTCATAATGTCTCTCAGCACAT | 74 | |
mPTEN-CJ7 | X | ATTTAACTGCAGAGGTATGTATAAACAT | 75 |
Genomic Location | Indel 빈도 | |||
Mock | C. Jejuni CRISPR | |||
On-target | chr19 | 55627221 | 0.02 | 5.123 |
CJ_AAVS1_1 | chr1 | 24521012 | 0.019 | 0.034 |
CJ_AAVS1_2 | chr1 | 29848565 | 0.157 | 0.136 |
CJ_AAVS1_3 | chr1 | 30381084 | 0.041 | 0.035 |
CJ_AAVS1_4 | chr1 | 37283269 | 0.016 | 0.016 |
CJ_AAVS1_5 | chr2 | 55333369 | 0.079 | 0.091 |
CJ_AAVS1_6 | chr4 | 153532801 | 0.003 | 0.003 |
CJ_AAVS1_7 | chr4 | 153926891 | 0 | 0 |
CJ_AAVS1_8 | chr4 | 183304101 | 0.033 | 0.046 |
CJ_AAVS1_9 | chr6 | 51746466 | 0.41 | 0.43 |
CJ_AAVS1_10 | chr7 | 11346020 | 0.02 | 0.038 |
CJ_AAVS1_11 | chr7 | 128481430 | 0.024 | 0.036 |
CJ_AAVS1_12 | chr7 | 142878579 | 0.024 | 0.028 |
CJ_AAVS1_13 | chr8 | 25979587 | 0.138 | 0.155 |
CJ_AAVS1_14 | chr8 | 80240626 | 0.043 | 0.049 |
CJ_AAVS1_15 | chr8 | 141347249 | 0.028 | 0.024 |
CJ_AAVS1_16 | chr8 | 141688584 | 0.088 | 0.092 |
CJ_AAVS1_17 | chr8 | 143120119 | 0.016 | 0.013 |
CJ_AAVS1_18 | chr9 | 83960768 | 0.032 | 0.037 |
CJ_AAVS1_19 | chr9 | 102650644 | 0.029 | 0.034 |
CJ_AAVS1_20 | chr9 | 129141695 | 0.014 | 0.009 |
CJ_AAVS1_21 | chr10 | 103862556 | 0.053 | 0.073 |
CJ_AAVS1_22 | chr12 | 9085293 | 0.21 | 0.277 |
CJ_AAVS1_23 | chr14 | 70581187 | 0.013 | 0.025 |
CJ_AAVS1_24 | chr14 | 95327446 | 0.046 | 0.041 |
CJ_AAVS1_25 | chr14 | 102331176 | 0.015 | 0.028 |
CJ_AAVS1_26 | chr14 | 104753692 | 0.035 | 0.041 |
CJ_AAVS1_27 | chr15 | 67686972 | 0.061 | 0.096 |
CJ_AAVS1_28 | chr16 | 85565862 | 0.028 | 0.028 |
CJ_AAVS1_29 | chr17 | 17270109 | 0.003 | 0 |
CJ_AAVS1_30 | chr17 | 79782954 | 0.03 | 0.043 |
CJ_AAVS1_31 | chr18 | 42305670 | 0.035 | 0.043 |
CJ_AAVS1_32 | chr19 | 12826405 | 0.024 | 0.039 |
CJ_AAVS1_33 | chr19 | 32268337 | 0.043 | 0.042 |
CJ_AAVS1_35 | chr20 | 40758976 | 0 | 0 |
CJ_AAVS1_36 | chr21 | 41295936 | 0.011 | 0.007 |
CJ_AAVS1_37 | chr22 | 20990738 | 0.004 | 0.004 |
CJ_AAVS1_38 | chr22 | 46402289 | 0.006 | 0.011 |
CJ_AAVS1_39 | chr22 | 46426607 | 0.003 | 0 |
CJ_AAVS1_40 | chrX | 27472673 | 0.279 | 0.318 |
sgRNA | Direction | PAM | 표적 서열 | 서열번호 |
hAAVS1-RYN1 | + | NNNNRYAC | gCCACGACCTGGTGAACACCTAGGACGCAC | 76 |
hAAVS1-RYN2 | + | gGCCTTATCTCACAGGTAAAACTGACGCAC | 77 | |
hAAVS1-RYN3 | + | cTCTTGGGAAGTGTAAGGAAGCTGCAGCAC | 78 | |
hAAVS1-RYN4 | + | aGCTGCAGCACCAGGATCAGTGAAACGCAC | 79 | |
hAAVS1-RYN5 | + | cTGTGGGGTGGAGGGGACAGATAAAAGTAC | 80 | |
hAAVS1-RYN6 | - | gCCGGTTAATGTGGCTCTGGTTCTGGGTAC | 81 | |
hAAVS1-RYN7 | + | gCCATGACAGGGGGCTGGAAGAGCTAGCAC | 82 |
sgRNA | 표적 염기서열 | PAM 염기서열 |
4134bp_sg#1 | GAGAACCAGACCACCCAGAA(서열번호 83) | GGG |
4134bp_sg#2 | GGCAGCCCCGCCATCAAGAA(서열번호 84) | GGG |
2570bp_sg#1 | GTAAGATGCTTTTCTGTGAC(서열번호 85) | TGG |
2570bp_sg#2 | GATCCTTTGATCTTTTCTAC(서열번호 86) | GGG |
1270bp_sg#1 | GCCTCCAAAAAAGAAGAGAA(서열번호 87) | AGG |
1270bp_sg#2 | TGACATCAATTATTATACAT(서열번호 88) | CGG |
Claims (73)
- NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산을 세포 내에 도입하는 단계를 포함하는,서열번호 1의 PAM 서열을 가지는 표적 DNA 서열을 타겟팅하는 방법.
- 제1항에 있어서,상기 Cas 단백질 또는 이를 암호화하는 핵산은 Cas 단백질을 핵 내에 위치시키기 위한 핵 위치 신호 (nuclear localization signal, NLS)를 더 포함하는, 방법.
- 제1항에 있어서,상기 Cas 단백질은 캄필로박터 속 (genus Campylobacter) 미생물 유래인, 방법.
- 제3항에 있어서,상기 캄필로박터 속 미생물은 캄필로박터 제주니 (Campylobacter jejuni) 인, 방법.
- 제1 내지 제4항 중 어느 한 항에 있어서,상기 Cas 단백질은 Cas9 단백질인, 방법.
- 제1항에 있어서,상기 단계는 서열번호 1의 PAM 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산과, 순차적으로 또는 동시에 서열번호 1의 PAM 서열에 인접한 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는 가이드 RNA 또는 이를 코딩하는 DNA를 도입하는 것을 추가로 포함하는, 방법.
- 제6항에 있어서,상기 가이드 RNA는 crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA) 를 포함하는 이중 RNA (dual RNA) 인, 방법.
- 제6항에 있어서,상기 가이드 RNA는 단일-사슬 가이드 RNA (sgRNA)인, 방법.
- 제8항에 있어서, 상기 단일-사슬 가이드 RNA 는 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는 제1 부위 및 Cas 단백질과 상호작용하는 서열을 포함하는 제2 부위를 함유하는, 방법.
- 제8항에 있어서,상기 단일-사슬 가이드 RNA는, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는 crRNA 및 Cas 단백질과 상호작용하는 서열을 포함하는 tracrRNA의 부분을 포함하는, 방법.
- 제6항 내지 제10항 중 어느 한 항에 있어서,상기 가이드 RNA의 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 길이는 17 내지 23bp 인, 방법.
- 제6항 내지 제11항 중 어느 한 항에 있어서,상기 가이드 RNA는 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 5' 부위 앞에 1 내지 3 개의 추가적인 뉴클레오타이드를 포함하는, 방법.
- 제12항에 있어서, 상기 추가적인 뉴클레오타이드는 구아닌 (guanine, G)인, 방법.
- 제1항 또는 제6항에 있어서, 상기 Cas 단백질은 뉴클레아제 활성 또는 니카아제 활성을 가지는 형태인, 방법.
- 제14항에 있어서, 상기 니카아제 활성을 가지는 Cas 단백질은 8번의 촉매 아스파라긴산(aspartic acid, D), 또는 559번의 히스티딘 잔기(histidine, H)가 다른 아미노산으로 치환된 것인, 방법.
- 제14항에 있어서, 상기 방법은 서열번호 1의 PAM 서열을 가지는 표적 DNA를 절단하기 위한 것인, 방법.
- 제14항에 있어서, 상기 방법은 서열번호 1의 PAM 서열을 가지는 표적 DNA를 포함하는 유전체를 교정하기 위한 것인, 방법.
- 제1항 또는 제6항에 있어서, 상기 Cas 단백질은 불활성화된 형태인, 방법.
- 제18항에 있어서, 상기 불활성화된 Cas 단백질은 8번의 촉매 아스파라긴산(aspartic acid, D), 및 559번의 히스티딘 잔기(histidine, H) 가 다른 아미노산으로 치환된 것인, 방법.
- 제15항 또는 제19항에 있어서, 상기 다른 아미노산은 알라닌인, 방법.
- 제18항에 있어서, 상기 방법은 서열번호 1의 PAM 서열을 포함하는 표적 DNA 서열을 절단하지 않고 이에 Cas 단백질이 결합된 것을 특징으로 하는, 방법.
- 제18항에 있어서, 상기 Cas 단백질은 전사 효과기 도메인 (transcription effector domain)을 더 포함하는 것, 방법.
- 제22항에 있어서, 상기 방법은 전사 조절 또는 후성학적 조절을 포함하는, Cas 매개 유전자 발현 조절을 위한 것인, 방법.
- NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 분리된 가이드 RNA.
- 제24항에 있어서,상기 분리된 가이드 RNA는 단일-사슬 가이드 RNA인,분리된 가이드 RNA.
- 제24항 또는 제25항에 있어서,상기 가이드 RNA의 표적 DNA 내 서열과 상보적인 서열의 길이는 17 내지 23bp 인,분리된 가이드 RNA.
- 제24항 내지 제26항 중 어느 한 항에 있어서,상기 가이드 RNA는 표적 DNA 내 서열과 상보적인 서열의 5' 부위 앞에 1 내지 3 개의 추가적인 뉴클레오타이드를, 분리된 가이드 RNA.
- 제27항에 있어서, 상기 뉴클레오타이드는 구아닌 (guanine, G)인, 분리된 가이드 RNA.
- NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA를 포함하는 조성물.
- 제29항에 있어서,상기 조성물은 NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 추가로 포함하는, 조성물.
- 제30항에 있어서,상기 조성물은 유전체를 교정하기 위한 조성물.
- 제29항에 있어서, 상기 조성물은(i) NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 코딩하는 DNA; 및(ii) 불활성화된 Cas 단백질 (dCas) 또는 이를 코딩하는 핵산을 포함하는, 조성물.
- 제32항에 있어서,상기 불활성화된 Cas 단백질은 전사 효과기 도메인 (transcription effector domain)을 더 포함하는 것인, 조성물.
- 제32항에 있어서,상기 조성물은 표적 DNA 서열을 포함하는 목적하는 DNA를 분리하기 위한 것인, 조성물.
- 제33항에 있어서,전사 조절 또는 후성학적 조절을 포함하는, Cas 매개 유전자 발현 조절을 위한 것인, 조성물.
- 제29항에 있어서,상기 가이드 RNA는 crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA) 를 포함하는 이중 RNA (dual RNA) 인, 조성물.
- 제29항에 있어서,상기 가이드 RNA는 단일-사슬 가이드 RNA (sgRNA)인, 조성물.
- 제37항에 있어서, 상기 단일-사슬 가이드 RNA는 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열을 포함하는 제1 부위 및 Cas 단백질과 상호작용하는 서열을 포함하는 제2 부위를 함유하는, 조성물.
- 제37항에 있어서,상기 단일-사슬 가이드 RNA는, 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 crRNA 및 Cas 단백질과 상호작용하는 서열을 포함하는 tracrRNA의 부분을 포함하는, 조성물.
- 제36항 내지 제39항 중 어느 한 항에 있어서,상기 가이드 RNA의 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 길이는 17 내지 23bp 인, 조성물.
- 제36항 내지 제40항 중 어느 한 항에 있어서,상기 가이드 RNA는 표적 DNA 서열의 상보적 사슬과 염기 쌍을 형성할 수 있는 서열의 5' 부위 앞에 1개 내지 3 개의 추가적인 뉴클레오타이드를 가지는, 조성물.
- 제41항에 있어서, 상기 뉴클레오타이드는 구아닌 (guanine, G)인, 조성물.
- 제30항 또는 제32항에 있어서,상기 Cas 단백질은 캄필로박터 속 (genus Campylobacter) 미생물 유래인, 조성물.
- 제30항 또는 제32항에 있어서,상기 Cas 단백질은 Cas9 단백질인, 조성물.
- 제29항에 있어서,상기 표적 DNA는 세포에 존재하는, 조성물.
- 제29항에 있어서,상기 가이드 RNA를 암호화하는 DNA는 벡터에 암호화되어 있는, 조성물.
- 제30항 또는 제32항에 있어서,상기 Cas 단백질을 암호화하는 핵산은 벡터에 존재하는, 조성물.
- 제30항 또는 제32항에 있어서,상기 가이드 RNA를 암호화하는 DNA 및 Cas 단백질을 암호화하는 핵산은 개별적인 벡터에 각각 존재하거나, 하나의 벡터에 존재하는 것인, 조성물.
- 제46항 내지 제48항 중 어느 한 항에 있어서,상기 벡터는 바이러스 벡터, 플라스미드 벡터, 또는 아그로박테리움 벡터인, 조성물.
- 제49항에 있어서,상기 바이러스 벡터는 AAV (Adeno-associated virus)인, 조성물.
- 제29항에 있어서,상기 조성물은 비자연적으로 발생된 (non-naturally occurring) 것인, 조성물.
- 제30항 또는 제32항에 있어서,상기 Cas 단백질 또는 이를 코딩하는 DNA는 Cas 단백질을 핵 내에 위치시키기 위한 핵 위치 신호 (nuclear localization signal) 서열을 더 포함하는, 조성물.
- (i) NNNNRYAC (서열번호 1) 인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA, 및(ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 포함하는,CRISPR-CAS 시스템.
- (i) NNNNRYAC (서열번호 1) 인 PAM (proto-spacer-adjacent Motif) 서열에 인접한, 표적 DNA 내 서열과 염기 쌍을 형성할 수 있는 서열을 포함하는, 가이드 RNA에 대한 발현 카세트, 및(ii) NNNNRYAC (서열번호 1) 서열을 인식하는 Cas 단백질에 대한 발현 카세트를 포함하는, 재조합 바이러스 벡터.
- 제54항에 있어서,상기 바이러스 벡터는 AAV (Adeno-associated virus)인, 재조합 바이러스 벡터.
- 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 21 내지 23bp 길이의 서열을 포함하는, 분리된 가이드 RNA.
- 제56항의 가이드 RNA 또는 상기 가이드 RNA를 암호화하는 DNA를 포함하는, 조성물.
- 제57항에 있어서, 상기 조성물은 NNNNRYAC (서열번호 1)인 PAM 서열을 인식하는 Cas 단백질 또는 이를 암호화하는 핵산을 포함하는, 조성물.
- 제57항에 있어서, 상기 조성물은 NNNNRYAC (서열번호 1) 서열을 인식하는 불활성화된 Cas 단백질을 암호화하는 핵산 또는 상기 Cas 단백질을 포함하는, 조성물.
- 제59항에 있어서,상기 불활성화된 Cas 단백질은 전사 효과기 도메인을 더 포함하는, 조성물.
- 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 13 내지 18bp 의 길이의 줄기 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA.
- 제61항에 있어서, 상기 줄기 구조는 서열번호 2의 염기 서열 (5'-GUUUUAGUCCCUUGUG-3') 및 이와 상보적인 서열을 포함하는, 분리된 가이드 RNA.
- 표적 DNA 서열의 상보적 사슬 (complementary strand)과 염기 쌍을 형성할 수 있는 제1 부위; 및 5 내지 10bp 의 길이의 루프 구조인 것을 특징으로 하는, 줄기-루프 구조를 가지는 제2 부위를 포함하는, 분리된 가이드 RNA.
- 제63항에 있어서, 상기 루프 구조는 서열번호 3의 염기 서열 (5'-AUAUUCAA-3')의 서열을 가지는, 분리된 가이드 RNA.
- 제61항 내지 제64항 중 어느 한 항의 가이드 RNA 및 Cas 단백질 또는 이를 코딩하는 핵산 서열을 포함하는, 조성물.
- 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 유전체를 교정하는 방법.
- 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는, 세포에서 표적 DNA를 절단하는 방법.
- 제66항 또는 제67항에 있어서, 상기 가이드 RNA 또는 이를 코딩하는 DNA와 Cas 단백질 또는 이를 코딩하는 핵산의 도입은 동시 또는 순차적으로 수행되는 것인, 방법.
- (i) 주어진 서열에서 NNNNRYAC (서열번호 1)인 PAM 서열의 존재를 확인하는 단계; 및(ii) 상기 (i) 단계에서 NNNNRYAC (서열번호 1)인 PAM 서열이 존재하면 이의 업스트림 (upstream)에 위치한 서열을 가이드 RNA에 의해 인식되는 서열로 결정하는 단계를 포함하는,가이드 RNA 의 표적 DNA 인식 서열의 제조 방법.
- 제69항에서, 상기 업스트림에 위치한 서열은 17 내지 23bp 길이인, 가이드 RNA 의 표적 DNA 인식 서열의 제조 방법.
- (i) 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하여, 표적 DNA 서열을 포함하는 목적하는 DNA 와 가이드 RNA 및 불활성화된 Cas 단백질이 서로 복합체를 형성하는 단계; 및(ii) 상기 복합체를 시료로부터 분리하는 단계를 포함하는,목적하는 DNA를 분리하는 방법.
- 제71항에 있어서, 상기 불활성화된 Cas 단백질은 NNNNRYAC (서열번호 1)인 PAM (proto-spacer-adjacent Motif) 서열을 인식하는 것인, 목적하는 DNA를 분리하는 방법.
- 표적 DNA를 특이적으로 인식하는 제24항 내지 제28항, 제56항, 및 제61항 내지 제64항 중 어느 한 항의 분리된 가이드 RNA, 또는 이를 코딩하는 DNA, 및 전사 효과기 도메인이 결합된 불활성화된 Cas 단백질 또는 이를 코딩하는 핵산을 세포에 도입하는 단계를 포함하는,표적 DNA 서열을 포함하는 목적하는 DNA에서 Cas 매개 유전자 발현을 조절하는 방법.
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177003312A KR101817482B1 (ko) | 2014-08-06 | 2015-08-06 | 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 |
CN202111062266.5A CN113789317B (zh) | 2014-08-06 | 2015-08-06 | 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑 |
AU2015299850A AU2015299850B2 (en) | 2014-08-06 | 2015-08-06 | Genome editing using Campylobacter jejuni CRISPR/CAS system-derived RGEN |
KR1020187000347A KR20180015731A (ko) | 2014-08-06 | 2015-08-06 | 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 |
EP15830444.4A EP3178935B1 (en) | 2014-08-06 | 2015-08-06 | Genome editing using campylobacter jejuni crispr/cas system-derived rgen |
CN201580052262.5A CN106922154B (zh) | 2014-08-06 | 2015-08-06 | 使用空肠弯曲杆菌crispr/cas系统衍生的rna引导的工程化核酸酶的基因编辑 |
JP2017527527A JP6715419B2 (ja) | 2014-08-06 | 2015-08-06 | カンピロバクター・ジェジュニcrispr/casシステムに由来するrgenを使用したゲノム編集 |
EP22208378.4A EP4194557A1 (en) | 2014-08-06 | 2015-08-06 | Genome editing using campylobacter jejuni crispr/cas system-derived rgen |
CA2957441A CA2957441A1 (en) | 2014-08-06 | 2015-08-06 | Genome editing using campylobacter jejuni crispr/cas system-derived rgen |
US15/420,936 US10519454B2 (en) | 2014-08-06 | 2017-01-31 | Genome editing using Campylobacter jejuni CRISPR/CAS system-derived RGEN |
US16/700,942 US20200172912A1 (en) | 2014-08-06 | 2019-12-02 | Genome editing using campylobacter jejuni crispr/cas system-derived rgen |
AU2020267249A AU2020267249B2 (en) | 2014-08-06 | 2020-11-12 | Genome editing using campylobacter jejuni crispr/cas system-derived rgen |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462033852P | 2014-08-06 | 2014-08-06 | |
US62/033,852 | 2014-08-06 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/420,936 Continuation US10519454B2 (en) | 2014-08-06 | 2017-01-31 | Genome editing using Campylobacter jejuni CRISPR/CAS system-derived RGEN |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021973A1 true WO2016021973A1 (ko) | 2016-02-11 |
Family
ID=55264165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/008269 WO2016021973A1 (ko) | 2014-08-06 | 2015-08-06 | 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 |
Country Status (8)
Country | Link |
---|---|
US (2) | US10519454B2 (ko) |
EP (2) | EP4194557A1 (ko) |
JP (1) | JP6715419B2 (ko) |
KR (2) | KR101817482B1 (ko) |
CN (2) | CN106922154B (ko) |
AU (2) | AU2015299850B2 (ko) |
CA (1) | CA2957441A1 (ko) |
WO (1) | WO2016021973A1 (ko) |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016184989A1 (en) | 2015-05-19 | 2016-11-24 | Kws Saat Se | Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
WO2017207589A1 (en) | 2016-06-01 | 2017-12-07 | Kws Saat Se | Hybrid nucleic acid sequences for genome engineering |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
WO2018138385A1 (en) | 2017-01-30 | 2018-08-02 | Kws Saat Se | Repair template linkage to endonucleases for genome engineering |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
WO2018225807A1 (ja) * | 2017-06-07 | 2018-12-13 | 国立大学法人東京大学 | 顆粒状角膜変性症に対する遺伝子治療薬 |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
WO2019026976A1 (ja) * | 2017-08-01 | 2019-02-07 | 国立大学法人 東京大学 | 改変されたCas9タンパク質及びその用途 |
WO2019043082A1 (en) | 2017-08-29 | 2019-03-07 | Kws Saat Se | BLUE ALEURONE ENHANCED AND OTHER SEGREGATION SYSTEMS |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
WO2019086460A1 (en) | 2017-10-30 | 2019-05-09 | Kws Saat Se | New strategies for precision genome editing |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
EP3501268A1 (en) | 2017-12-22 | 2019-06-26 | Kws Saat Se | Regeneration of plants in the presence of histone deacetylase inhibitors |
WO2019122394A2 (en) | 2017-12-22 | 2019-06-27 | Kws Saat Se | Cpf1 based transcription regulation systems in plants |
WO2019122381A2 (en) | 2017-12-22 | 2019-06-27 | Kws Saat Se | Targeted transcriptional regulation using synthetic transcription factors |
EP3508581A1 (en) | 2018-01-03 | 2019-07-10 | Kws Saat Se | Regeneration of genetically modified plants |
WO2019138083A1 (en) | 2018-01-12 | 2019-07-18 | Basf Se | Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a |
WO2019138052A1 (en) | 2018-01-11 | 2019-07-18 | Kws Saat Se | Optimized plant crispr/cpf1 systems |
EP3546582A1 (en) | 2018-03-26 | 2019-10-02 | KWS SAAT SE & Co. KGaA | Promoter activating elements |
EP3545756A1 (en) | 2018-03-28 | 2019-10-02 | KWS SAAT SE & Co. KGaA | Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2 |
EP3567111A1 (en) | 2018-05-09 | 2019-11-13 | KWS SAAT SE & Co. KGaA | Gene for resistance to a pathogen of the genus heterodera |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
WO2019238909A1 (en) | 2018-06-15 | 2019-12-19 | KWS SAAT SE & Co. KGaA | Methods for improving genome engineering and regeneration in plant |
WO2019238908A1 (en) | 2018-06-15 | 2019-12-19 | KWS SAAT SE & Co. KGaA | Methods for enhancing genome engineering efficiency |
WO2019238911A1 (en) | 2018-06-15 | 2019-12-19 | KWS SAAT SE & Co. KGaA | Methods for improving genome engineering and regeneration in plant ii |
EP3623379A1 (en) | 2018-09-11 | 2020-03-18 | KWS SAAT SE & Co. KGaA | Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
EP3502261A4 (en) * | 2016-08-19 | 2020-07-15 | Toolgen Incorporated | ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM |
WO2020157573A1 (en) | 2019-01-29 | 2020-08-06 | The University Of Warwick | Methods for enhancing genome engineering efficiency |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
EP3708651A1 (en) | 2019-03-12 | 2020-09-16 | KWS SAAT SE & Co. KGaA | Improving plant regeneration |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
WO2020260682A1 (en) | 2019-06-28 | 2020-12-30 | KWS SAAT SE & Co. KGaA | Enhanced plant regeneration and transformation by using grf1 booster gene |
WO2021064402A1 (en) | 2019-10-01 | 2021-04-08 | University Of Leeds | Plants having a modified lazy protein |
WO2021093943A1 (en) | 2019-11-12 | 2021-05-20 | KWS SAAT SE & Co. KGaA | Gene for resistance to a pathogen of the genus heterodera |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
RU2768043C2 (ru) * | 2016-11-14 | 2022-03-23 | Тулджен Инкорпорейтед | Искусственно созданная система управления функцией шк |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
EP4019638A1 (en) | 2020-12-22 | 2022-06-29 | KWS SAAT SE & Co. KGaA | Promoting regeneration and transformation in beta vulgaris |
EP4019639A1 (en) | 2020-12-22 | 2022-06-29 | KWS SAAT SE & Co. KGaA | Promoting regeneration and transformation in beta vulgaris |
US11421241B2 (en) | 2015-01-27 | 2022-08-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for conducting site-specific modification on entire plant via gene transient expression |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11767536B2 (en) | 2015-08-14 | 2023-09-26 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2023227912A1 (en) | 2022-05-26 | 2023-11-30 | Cambridge Enterprise Limited | Glucan binding protein for improving nitrogen fixation in plants |
US11834670B2 (en) | 2017-04-19 | 2023-12-05 | Global Life Sciences Solutions Usa Llc | Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2024069186A1 (en) | 2022-09-30 | 2024-04-04 | Ivy Farm Technologies Limited | Genetically modified cells |
WO2024141754A1 (en) | 2022-12-29 | 2024-07-04 | Ivy Farm Technologies Limited | Genetically manipulated cells |
US12043835B2 (en) | 2015-03-16 | 2024-07-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for making site-directed modification to plant genomes by using non-inheritable materials |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US12171813B2 (en) | 2021-02-05 | 2024-12-24 | Christiana Care Gene Editing Institute, Inc. | Methods of and compositions for reducing gene expression and/or activity |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2015217208B2 (en) | 2014-02-11 | 2018-08-30 | The Regents Of The University Of Colorado, A Body Corporate | CRISPR enabled multiplexed genome engineering |
ES2915562T3 (es) | 2016-06-24 | 2022-06-23 | Univ Colorado Regents | Métodos para generar bibliotecas combinatorias con código de barras |
US9982279B1 (en) | 2017-06-23 | 2018-05-29 | Inscripta, Inc. | Nucleic acid-guided nucleases |
US10011849B1 (en) | 2017-06-23 | 2018-07-03 | Inscripta, Inc. | Nucleic acid-guided nucleases |
KR102194833B1 (ko) * | 2017-07-04 | 2020-12-23 | 고려대학교 산학협력단 | 우울증 또는 뇌전증 동물 모델과 그 제조방법 및 이를 이용한 우울증 또는 뇌전증 치료용 후보약물의 스크리닝 방법 |
WO2019014118A1 (en) * | 2017-07-09 | 2019-01-17 | Igc Bio, Inc. | PROSS OPTIMIZED ENZYMES |
CN107488649A (zh) * | 2017-08-25 | 2017-12-19 | 南方医科大学 | 一种Cpf1和p300核心结构域的融合蛋白、相应的DNA靶向激活系统和应用 |
US11845951B2 (en) * | 2017-09-29 | 2023-12-19 | Toolgen Incorporated | Gene manipulation for treatment of retinal dysfunction disorder |
JP7075170B2 (ja) * | 2018-01-23 | 2022-05-25 | インスティチュート フォー ベーシック サイエンス | 延長された単一ガイドrna及びその用途 |
WO2019173248A1 (en) * | 2018-03-07 | 2019-09-12 | Caribou Biosciences, Inc. | Engineered nucleic acid-targeting nucleic acids |
KR20210045360A (ko) | 2018-05-16 | 2021-04-26 | 신테고 코포레이션 | 가이드 rna 설계 및 사용을 위한 방법 및 시스템 |
US20210198642A1 (en) * | 2018-09-07 | 2021-07-01 | Astrazeneca Ab | Compositions and methods for improved nucleases |
KR102421129B1 (ko) * | 2019-10-14 | 2022-07-15 | 연세대학교 산학협력단 | 신규 프로토스페이서 인접 모티프 서열 및 이를 이용한 세포의 유전체에서 표적 핵산을 변형시키는 방법 |
WO2021201653A1 (ko) * | 2020-04-02 | 2021-10-07 | 중앙대학교 산학협력단 | Crispr/cas9 시스템을 기반으로 한 유전체 편집 방법 및 이의 용도 |
JP2022037603A (ja) * | 2020-08-25 | 2022-03-09 | 国立大学法人 東京大学 | エンジニアリングされたCjCas9タンパク質 |
JP2024540350A (ja) | 2021-11-01 | 2024-10-31 | トーム バイオサエンシーズ, インコーポレイテッド | 遺伝子編集機構及び核酸カーゴを同時に送達するための単一構築物プラットフォーム |
IL313765A (en) | 2021-12-22 | 2024-08-01 | Tome Biosciences Inc | Joint provision of a gene editor structure and a donor template |
CN114262707B (zh) * | 2021-12-30 | 2023-04-28 | 四川大学 | 用于检测空肠弯曲杆菌基因的sgRNA、CRISPR/Cas12a体系、试剂盒、检测方法和应用 |
WO2023205744A1 (en) | 2022-04-20 | 2023-10-26 | Tome Biosciences, Inc. | Programmable gene insertion compositions |
WO2023215831A1 (en) | 2022-05-04 | 2023-11-09 | Tome Biosciences, Inc. | Guide rna compositions for programmable gene insertion |
WO2023225670A2 (en) | 2022-05-20 | 2023-11-23 | Tome Biosciences, Inc. | Ex vivo programmable gene insertion |
WO2024020587A2 (en) | 2022-07-22 | 2024-01-25 | Tome Biosciences, Inc. | Pleiopluripotent stem cell programmable gene insertion |
WO2024138194A1 (en) | 2022-12-22 | 2024-06-27 | Tome Biosciences, Inc. | Platforms, compositions, and methods for in vivo programmable gene insertion |
WO2024234006A1 (en) | 2023-05-11 | 2024-11-14 | Tome Biosciences, Inc. | Systems, compositions, and methods for targeting liver sinusodial endothelial cells (lsecs) |
WO2025050069A1 (en) | 2023-09-01 | 2025-03-06 | Tome Biosciences, Inc. | Programmable gene insertion using engineered integration enzymes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013142578A1 (en) * | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
WO2014065596A1 (en) * | 2012-10-23 | 2014-05-01 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
US20140186843A1 (en) * | 2012-12-12 | 2014-07-03 | Massachusetts Institute Of Technology | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9567573B2 (en) * | 2010-04-26 | 2017-02-14 | Sangamo Biosciences, Inc. | Genome editing of a Rosa locus using nucleases |
LT4289948T (lt) | 2012-05-25 | 2025-05-12 | The Regents Of The University Of California | Į rnr nukreipto tikslinio dnr modifikavimo ir į rnr nukreipto transkripcijos moduliavimo metodai ir kompozicijos |
KR102479178B1 (ko) * | 2012-12-06 | 2022-12-19 | 시그마-알드리치 컴퍼니., 엘엘씨 | Crispr-기초된 유전체 변형과 조절 |
EP2931899A1 (en) * | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
SG10201912327SA (en) * | 2012-12-12 | 2020-02-27 | Broad Inst Inc | Engineering and Optimization of Improved Systems, Methods and Enzyme Compositions for Sequence Manipulation |
PT2931898E (pt) | 2012-12-12 | 2016-06-16 | Harvard College | Manipulação e otimização de sistemas, métodos e composições para manipulação de sequências com domínios funcionais |
JP2016507244A (ja) * | 2013-02-27 | 2016-03-10 | ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) | Cas9ヌクレアーゼによる卵母細胞における遺伝子編集 |
EP3778899A1 (en) * | 2013-05-22 | 2021-02-17 | Northwestern University | Rna-directed dna cleavage and gene editing by cas9 enzyme from neisseria meningitidis |
US9267135B2 (en) * | 2013-06-04 | 2016-02-23 | President And Fellows Of Harvard College | RNA-guided transcriptional regulation |
AU2014350051A1 (en) * | 2013-11-18 | 2016-07-07 | Crispr Therapeutics Ag | CRISPR-Cas system materials and methods |
US9840699B2 (en) * | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
CN104450785A (zh) * | 2014-12-08 | 2015-03-25 | 复旦大学 | 使用编码靶向核酸内切酶附着体载体的基因组编辑方法及试剂盒 |
-
2015
- 2015-08-06 CN CN201580052262.5A patent/CN106922154B/zh active Active
- 2015-08-06 KR KR1020177003312A patent/KR101817482B1/ko active Active
- 2015-08-06 EP EP22208378.4A patent/EP4194557A1/en active Pending
- 2015-08-06 CA CA2957441A patent/CA2957441A1/en active Pending
- 2015-08-06 JP JP2017527527A patent/JP6715419B2/ja active Active
- 2015-08-06 CN CN202111062266.5A patent/CN113789317B/zh active Active
- 2015-08-06 WO PCT/KR2015/008269 patent/WO2016021973A1/ko active Application Filing
- 2015-08-06 EP EP15830444.4A patent/EP3178935B1/en active Active
- 2015-08-06 KR KR1020187000347A patent/KR20180015731A/ko not_active Withdrawn
- 2015-08-06 AU AU2015299850A patent/AU2015299850B2/en active Active
-
2017
- 2017-01-31 US US15/420,936 patent/US10519454B2/en active Active
-
2019
- 2019-12-02 US US16/700,942 patent/US20200172912A1/en not_active Abandoned
-
2020
- 2020-11-12 AU AU2020267249A patent/AU2020267249B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013142578A1 (en) * | 2012-03-20 | 2013-09-26 | Vilnius University | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX |
WO2014065596A1 (en) * | 2012-10-23 | 2014-05-01 | Toolgen Incorporated | Composition for cleaving a target dna comprising a guide rna specific for the target dna and cas protein-encoding nucleic acid or cas protein, and use thereof |
US20140186843A1 (en) * | 2012-12-12 | 2014-07-03 | Massachusetts Institute Of Technology | Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
Non-Patent Citations (2)
Title |
---|
HOU, Z. ET AL.: "Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis", PROC. NATL. ACAD. SCI. USA, vol. 110, no. 39, 24 September 2013 (2013-09-24), pages 15644 - 15649, XP055118866, DOI: doi:10.1073/pnas.1313587110 * |
SAPRANAUSKAS, R. ET AL.: "The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli", NUCLEIC ACIDS RESEARCH, vol. 39, no. 21, November 2011 (2011-11-01), pages 9275 - 9282, XP055265024, DOI: doi:10.1093/nar/gkr606 * |
Cited By (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10227581B2 (en) | 2013-08-22 | 2019-03-12 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9999671B2 (en) | 2013-09-06 | 2018-06-19 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9737604B2 (en) | 2013-09-06 | 2017-08-22 | President And Fellows Of Harvard College | Use of cationic lipids to deliver CAS9 |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US9840699B2 (en) | 2013-12-12 | 2017-12-12 | President And Fellows Of Harvard College | Methods for nucleic acid editing |
US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10077453B2 (en) | 2014-07-30 | 2018-09-18 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11421241B2 (en) | 2015-01-27 | 2022-08-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for conducting site-specific modification on entire plant via gene transient expression |
US12043835B2 (en) | 2015-03-16 | 2024-07-23 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for making site-directed modification to plant genomes by using non-inheritable materials |
US11492630B2 (en) | 2015-05-19 | 2022-11-08 | KWS SAAT SE & Co. KGaA | Methods and hybrids for targeted nucleic acid editing in plants using CRISPR/Cas systems |
WO2016184989A1 (en) | 2015-05-19 | 2016-11-24 | Kws Saat Se | Methods for the in planta transformation of plants and manufacturing processes and products based and obtainable therefrom |
US11767536B2 (en) | 2015-08-14 | 2023-09-26 | Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences | Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution |
US12344869B2 (en) | 2015-10-23 | 2025-07-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US10167457B2 (en) | 2015-10-23 | 2019-01-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
WO2017207589A1 (en) | 2016-06-01 | 2017-12-07 | Kws Saat Se | Hybrid nucleic acid sequences for genome engineering |
US12084668B2 (en) | 2016-06-01 | 2024-09-10 | KWS SAAT SE & co., KGaA | Hybrid nucleic acid sequences for genome engineering |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
JP2022058425A (ja) * | 2016-08-19 | 2022-04-12 | ツールゲン インコーポレイテッド | 人工的に操作された血管新生調節系 |
EP3502261A4 (en) * | 2016-08-19 | 2020-07-15 | Toolgen Incorporated | ARTIFICIALLY MODIFIED ANGIOGENESIS REGULATION SYSTEM |
JP7276422B2 (ja) | 2016-08-19 | 2023-05-18 | ツールゲン インコーポレイテッド | 人工的に操作された血管新生調節系 |
EP4012032A1 (en) * | 2016-08-19 | 2022-06-15 | Toolgen Incorporated | Artificially engineered angiogenesis regulatory system |
US11999952B2 (en) | 2016-08-19 | 2024-06-04 | Toolgen Incorporated | Artificially-manipulated neovascularization regulatory system |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
WO2018054911A1 (en) | 2016-09-23 | 2018-03-29 | Bayer Cropscience Nv | Targeted genome optimization in plants |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US12331086B2 (en) | 2016-11-14 | 2025-06-17 | Toolgen Incorporated | Artificially engineered SC function control system |
RU2768043C2 (ru) * | 2016-11-14 | 2022-03-23 | Тулджен Инкорпорейтед | Искусственно созданная система управления функцией шк |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
WO2018138385A1 (en) | 2017-01-30 | 2018-08-02 | Kws Saat Se | Repair template linkage to endonucleases for genome engineering |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11834670B2 (en) | 2017-04-19 | 2023-12-05 | Global Life Sciences Solutions Usa Llc | Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
JPWO2018225807A1 (ja) * | 2017-06-07 | 2020-04-09 | 国立大学法人 東京大学 | 顆粒状角膜変性症に対する遺伝子治療薬 |
WO2018225807A1 (ja) * | 2017-06-07 | 2018-12-13 | 国立大学法人東京大学 | 顆粒状角膜変性症に対する遺伝子治療薬 |
JP7161730B2 (ja) | 2017-06-07 | 2022-10-27 | 国立大学法人 東京大学 | 顆粒状角膜変性症に対する遺伝子治療薬 |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US12359218B2 (en) | 2017-07-28 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
WO2019026976A1 (ja) * | 2017-08-01 | 2019-02-07 | 国立大学法人 東京大学 | 改変されたCas9タンパク質及びその用途 |
US11697822B2 (en) | 2017-08-29 | 2023-07-11 | KWS SAAT SE & Co. KGaA | Blue aleurone and other segregation systems |
WO2019043082A1 (en) | 2017-08-29 | 2019-03-07 | Kws Saat Se | BLUE ALEURONE ENHANCED AND OTHER SEGREGATION SYSTEMS |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
WO2019086460A1 (en) | 2017-10-30 | 2019-05-09 | Kws Saat Se | New strategies for precision genome editing |
WO2019122360A1 (en) | 2017-12-22 | 2019-06-27 | Kws Saat Se | Regeneration of plants in the presence of histone deacetylase inhibitors |
EP3501268A1 (en) | 2017-12-22 | 2019-06-26 | Kws Saat Se | Regeneration of plants in the presence of histone deacetylase inhibitors |
WO2019122394A2 (en) | 2017-12-22 | 2019-06-27 | Kws Saat Se | Cpf1 based transcription regulation systems in plants |
WO2019122381A2 (en) | 2017-12-22 | 2019-06-27 | Kws Saat Se | Targeted transcriptional regulation using synthetic transcription factors |
US12116581B2 (en) | 2017-12-22 | 2024-10-15 | KWS SAAT SE & Co. KGaA | Targeted transcriptional regulation using synthetic transcription factors |
US11700805B2 (en) | 2017-12-22 | 2023-07-18 | KWS SAAT SE & Co. KGaA | Regeneration of plants in the presence of histone deacetylase inhibitors |
WO2019134884A1 (en) | 2018-01-03 | 2019-07-11 | Kws Saat Se | Regeneration of genetically modified plants |
EP3508581A1 (en) | 2018-01-03 | 2019-07-10 | Kws Saat Se | Regeneration of genetically modified plants |
EP4234701A2 (en) | 2018-01-03 | 2023-08-30 | Basf Se | Regeneration of genetically modified plants |
WO2019138052A1 (en) | 2018-01-11 | 2019-07-18 | Kws Saat Se | Optimized plant crispr/cpf1 systems |
US12098374B2 (en) | 2018-01-11 | 2024-09-24 | KWS SAAT SE & Co. KGaA | Optimized plant CRISPR/CPF1 systems |
WO2019138083A1 (en) | 2018-01-12 | 2019-07-18 | Basf Se | Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a |
EP3546582A1 (en) | 2018-03-26 | 2019-10-02 | KWS SAAT SE & Co. KGaA | Promoter activating elements |
WO2019185609A1 (en) | 2018-03-26 | 2019-10-03 | KWS SAAT SE & Co. KGaA | Method for increasing the expression level of a nucleic acid molecule of interest in a cell |
WO2019185849A1 (en) | 2018-03-28 | 2019-10-03 | KWS SAAT SE & Co. KGaA | Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2 |
EP3545756A1 (en) | 2018-03-28 | 2019-10-02 | KWS SAAT SE & Co. KGaA | Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2 |
EP3567111A1 (en) | 2018-05-09 | 2019-11-13 | KWS SAAT SE & Co. KGaA | Gene for resistance to a pathogen of the genus heterodera |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
WO2019238908A1 (en) | 2018-06-15 | 2019-12-19 | KWS SAAT SE & Co. KGaA | Methods for enhancing genome engineering efficiency |
WO2019238909A1 (en) | 2018-06-15 | 2019-12-19 | KWS SAAT SE & Co. KGaA | Methods for improving genome engineering and regeneration in plant |
US12146142B2 (en) | 2018-06-15 | 2024-11-19 | KWS SAAT SE & Co. KGaA | Methods for improving genome engineering and regeneration in plant II |
US12043837B2 (en) | 2018-06-15 | 2024-07-23 | KWS SAAT SE & Co. KGaA | Methods for improving genome engineering and regeneration in plant |
WO2019238911A1 (en) | 2018-06-15 | 2019-12-19 | KWS SAAT SE & Co. KGaA | Methods for improving genome engineering and regeneration in plant ii |
EP3623379A1 (en) | 2018-09-11 | 2020-03-18 | KWS SAAT SE & Co. KGaA | Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene |
WO2020053313A1 (en) | 2018-09-11 | 2020-03-19 | KWS SAAT SE & Co. KGaA | Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
WO2020157573A1 (en) | 2019-01-29 | 2020-08-06 | The University Of Warwick | Methods for enhancing genome engineering efficiency |
WO2020182971A1 (en) | 2019-03-12 | 2020-09-17 | KWS SAAT SE & Co. KGaA | Improving plant regeneration |
EP3708651A1 (en) | 2019-03-12 | 2020-09-16 | KWS SAAT SE & Co. KGaA | Improving plant regeneration |
US12139717B2 (en) | 2019-03-12 | 2024-11-12 | KWS SAAT SE & Co. KGaA | Improving plant regeneration |
US12281303B2 (en) | 2019-03-19 | 2025-04-22 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
WO2020260682A1 (en) | 2019-06-28 | 2020-12-30 | KWS SAAT SE & Co. KGaA | Enhanced plant regeneration and transformation by using grf1 booster gene |
EP3757219A1 (en) | 2019-06-28 | 2020-12-30 | KWS SAAT SE & Co. KGaA | Enhanced plant regeneration and transformation by using grf1 booster gene |
WO2021064402A1 (en) | 2019-10-01 | 2021-04-08 | University Of Leeds | Plants having a modified lazy protein |
WO2021093943A1 (en) | 2019-11-12 | 2021-05-20 | KWS SAAT SE & Co. KGaA | Gene for resistance to a pathogen of the genus heterodera |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
WO2022136557A1 (en) | 2020-12-22 | 2022-06-30 | KWS SAAT SE & Co. KGaA | Promoting regeneration and transformation in plants |
EP4019638A1 (en) | 2020-12-22 | 2022-06-29 | KWS SAAT SE & Co. KGaA | Promoting regeneration and transformation in beta vulgaris |
EP4019639A1 (en) | 2020-12-22 | 2022-06-29 | KWS SAAT SE & Co. KGaA | Promoting regeneration and transformation in beta vulgaris |
WO2022136535A1 (en) | 2020-12-22 | 2022-06-30 | KWS SAAT SE & Co. KGaA | Promoting regeneration and transformation in beta vulgaris |
US12171813B2 (en) | 2021-02-05 | 2024-12-24 | Christiana Care Gene Editing Institute, Inc. | Methods of and compositions for reducing gene expression and/or activity |
WO2023227912A1 (en) | 2022-05-26 | 2023-11-30 | Cambridge Enterprise Limited | Glucan binding protein for improving nitrogen fixation in plants |
WO2024069186A1 (en) | 2022-09-30 | 2024-04-04 | Ivy Farm Technologies Limited | Genetically modified cells |
WO2024141754A1 (en) | 2022-12-29 | 2024-07-04 | Ivy Farm Technologies Limited | Genetically manipulated cells |
Also Published As
Publication number | Publication date |
---|---|
US20200172912A1 (en) | 2020-06-04 |
AU2020267249A1 (en) | 2020-12-10 |
CN106922154A (zh) | 2017-07-04 |
CN113789317B (zh) | 2024-02-23 |
CN106922154B (zh) | 2022-01-07 |
KR101817482B1 (ko) | 2018-02-22 |
JP2017526387A (ja) | 2017-09-14 |
EP3178935B1 (en) | 2022-12-21 |
EP3178935A4 (en) | 2018-01-31 |
CN113789317A (zh) | 2021-12-14 |
JP6715419B2 (ja) | 2020-07-01 |
EP3178935A1 (en) | 2017-06-14 |
EP4194557A1 (en) | 2023-06-14 |
CA2957441A1 (en) | 2016-02-11 |
US10519454B2 (en) | 2019-12-31 |
AU2015299850A1 (en) | 2017-02-23 |
US20170145425A1 (en) | 2017-05-25 |
AU2015299850B2 (en) | 2020-08-13 |
KR20180015731A (ko) | 2018-02-13 |
AU2020267249B2 (en) | 2023-02-02 |
KR20170020535A (ko) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016021973A1 (ko) | 캄필로박터 제주니 crispr/cas 시스템 유래 rgen을 이용한 유전체 교정 | |
WO2016076672A1 (ko) | 유전체에서 유전자 가위의 비표적 위치를 검출하는 방법 | |
WO2019009682A2 (ko) | 표적 특이적 crispr 변이체 | |
AU2013335451C1 (en) | Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof | |
WO2019103442A2 (ko) | CRISPR/Cpf1 시스템을 이용한 유전체 편집용 조성물 및 이의 용도 | |
WO2015183025A1 (ko) | 표적 특이적 뉴클레아제를 이용한 표적 dna의 민감한 검출 방법 | |
WO2015163733A1 (en) | A method of selecting a nuclease target sequence for gene knockout based on microhomology | |
WO2016021972A1 (en) | Immune-compatible cells created by nuclease-mediated editing of genes encoding hla | |
EP2370569A1 (en) | A novel zinc finger nuclease and uses thereof | |
WO2018231018A2 (ko) | 간에서 목적하는 단백질 발현하기 위한 플랫폼 | |
WO2022075816A1 (ko) | Crispr/cas12f1(cas14a1) 시스템 효율화를 위한 엔지니어링 된 가이드 rna 및 이의 용도 | |
WO2018088694A2 (ko) | 인위적으로 조작된 sc 기능 조절 시스템 | |
WO2020235974A2 (ko) | 단일염기 치환 단백질 및 이를 포함하는 조성물 | |
WO2020218657A1 (ko) | 표적 특이적 crispr 변이체 | |
WO2022158898A1 (ko) | Francisella novicida cas9 모듈 기반의 역전사 효소를 사용한 유전체 치환 및 삽입 기술 | |
WO2022098191A1 (ko) | 하이드로겔화 핵산을 이용한 고분자량 단백질 생산용 원형 핵산 템플릿의 제조방법 및 고분자량 단백질 생산 시스템 | |
WO2021020884A2 (ko) | 사이토신 염기교정용 조성물 및 이의 용도 | |
WO2023008887A1 (ko) | 염기 편집기 및 이의 용도 | |
WO2023059115A1 (ko) | 유전자 편집을 위한 target 시스템 및 이의 용도 | |
WO2019031804A9 (ko) | 목적 유전자 발현 조절을 위한 대장균 및 코리네박테리움 글루타미쿰 셔틀 벡터 | |
WO2023153845A2 (ko) | 상동지정복구를 위한 target 시스템 및 이를 이용한 유전자 편집 방법 | |
WO2023191570A1 (ko) | 어셔 증후군 치료를 위한 유전자 편집 시스템 | |
WO2022124839A1 (ko) | 온-타겟 활성이 유지되고 오프-타겟 활성이 감소된 가이드 rna 및 이의 용도 | |
WO2021145700A1 (ko) | 저산소 환경 하에서 높은 적응력을 가지는 세포 및 이의 용도 | |
WO2023182858A1 (ko) | 식물세포 소기관 dna의 아데닌을 구아닌으로 염기 교정하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15830444 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017527527 Country of ref document: JP Kind code of ref document: A Ref document number: 2957441 Country of ref document: CA Ref document number: 20177003312 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2015299850 Country of ref document: AU Date of ref document: 20150806 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015830444 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015830444 Country of ref document: EP |