[go: up one dir, main page]

WO2016006157A1 - 光媒体再生装置および光媒体再生方法 - Google Patents

光媒体再生装置および光媒体再生方法 Download PDF

Info

Publication number
WO2016006157A1
WO2016006157A1 PCT/JP2015/002839 JP2015002839W WO2016006157A1 WO 2016006157 A1 WO2016006157 A1 WO 2016006157A1 JP 2015002839 W JP2015002839 W JP 2015002839W WO 2016006157 A1 WO2016006157 A1 WO 2016006157A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
signal
optical medium
margin
shows
Prior art date
Application number
PCT/JP2015/002839
Other languages
English (en)
French (fr)
Inventor
紀彰 西
詩織 田代
安藤 伸彦
豊 天宅
淳也 白石
公博 齊藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/322,618 priority Critical patent/US9847100B2/en
Priority to JP2016532411A priority patent/JP6489126B2/ja
Priority to CN201580036552.0A priority patent/CN106575512B/zh
Publication of WO2016006157A1 publication Critical patent/WO2016006157A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/007Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
    • G11B7/00718Groove and land recording, i.e. user data recorded both in the grooves and on the lands
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/13Optical detectors therefor
    • G11B7/133Shape of individual detector elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1395Beam splitters or combiners

Definitions

  • the present disclosure relates to an optical medium reproducing apparatus and an optical medium reproducing method for reproducing an optical medium such as an optical disk.
  • Patent Document 1 describes that crosstalk is canceled by supplying reproduction signals of a reproduction target track and tracks on both sides thereof to an adaptive equalizer unit and controlling the tap coefficient of the adaptive equalizer unit. Has been.
  • Patent Document 1 requires three beams in order to simultaneously read the track to be reproduced and the tracks on both sides. It was necessary to match the phase of the reproduction signal read by the three beams. It is also possible for one beam to sequentially reproduce three tracks and to synchronize the reproduction signals. A memory for synchronization is required. Therefore, the device described in Patent Document 1 has a problem in that the configuration of the optical pickup is complicated, the phase alignment is complicated, and the circuit scale is increased. Furthermore, the thing of patent document 1 is not mentioned about achieving high density in a linear density direction.
  • an object of the present disclosure is to provide an optical medium reproducing apparatus and an optical medium reproducing method capable of reducing crosstalk using a reproduction signal of one track and increasing the density in the linear density direction. It is to provide.
  • the present disclosure is an optical medium reproducing apparatus that optically reproduces an optical medium on which a plurality of tracks are formed, Dividing the cross section of the beam returning from the optical medium into a plurality of regions, at least one channel corresponding to a region outside in the radial direction, at least one channel corresponding to a region having a different position in the tangential direction, and the others
  • the detection signal of each channel is formed and the detection signal of the channel is formed, the detection signal of at least one channel is divided into a predetermined region of the plurality of regions.
  • a detection unit formed by weighted addition of the signals of A multi-input equalizer unit that has a plurality of equalizer units to which detection signals of a plurality of channels are supplied, and forms an equalized signal based on the detection signals of the plurality of channels;
  • An optical medium reproducing apparatus including a binarization unit that performs binarization processing on an equalized signal to obtain binary data.
  • the present disclosure is an optical medium reproducing apparatus that optically reproduces an optical medium on which a plurality of tracks are formed, An optical filter which returns from the optical medium and which is incident with a beam and spatially optically forms a plurality of signals having different bands in the linear density direction and the track density direction; A plurality of electric filters to which a plurality of signals formed by optical filters are respectively supplied; An optical medium reproducing apparatus that obtains a reproduction signal by combining outputs of a plurality of electric filters.
  • the present disclosure it is possible to reduce crosstalk using only the read output of the track to be played. Therefore, it is not necessary to use three beams for reading, and it is not necessary to reproduce three tracks continuously with one beam and to synchronize them with a memory. Therefore, there is an advantage that the configuration of the optical pickup is not complicated, phase alignment is unnecessary, and the memory is not increased. As a result, it is possible to increase the density of the optical disc with a simpler configuration. Furthermore, the present disclosure can increase the density in the radial direction and the linear density direction. Note that the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • FIG. 1 is a block diagram illustrating a configuration of an optical disc device according to an embodiment of the present disclosure.
  • FIG. It is a basic diagram which shows the structure of the optical pick-up in one embodiment of this indication.
  • It is a block diagram of an example of a data detection processing unit in one embodiment.
  • It is a block diagram of an example of the multi-input adaptive equalizer in a data detection process part.
  • It is a block diagram of an example of a multi-input adaptive equalizer.
  • It is a block diagram of an example of an equalization error calculator.
  • It is an approximate line figure for explaining a plurality of examples of a pattern of area division.
  • It is a graph showing the frequency amplitude characteristic regarding pattern R2.
  • It is a graph showing the tap coefficient and frequency phase characteristic regarding pattern R2.
  • MTF amplitude transfer function
  • e-MLSE in each detrack amount. It is a graph for demonstrating an example of the change of the value of Kd with respect to the amount of detracks. It is a basic diagram which shows the further another example of an area
  • an optical disc apparatus to which the present disclosure is applied includes an optical pickup 101 that records and reproduces information on an optical disc 100 as an optical recording medium, and a spindle motor 102 that rotates the optical disc 100.
  • a thread (feed motor) 103 is provided in order to move the optical pickup 101 in the radial direction of the optical disc 100.
  • a high-density optical disk such as BD (Blu-ray® (registered trademark) Disc) can be used.
  • a BD is a high-density optical disc having a recording capacity of about 25 Gbytes on a single layer on one side and about 50 Gbytes on two layers on one side.
  • the light source wavelength is set to 405 nm and the numerical aperture NA (Numerical Aperture) of the objective lens is increased to 0.85.
  • the light source wavelength is 780 nm, NA: 0.45
  • the spot diameter is 2.11 ⁇ m.
  • the light source wavelength is 650 nm, NA: 0.6
  • the spot diameter is 1.32 ⁇ m.
  • the spot diameter can be reduced to 0.58 ⁇ m.
  • the channel bit length that is, the mark length
  • the density is increased in the linear density direction for BD (Blu-ray® (registered trademark) Disc), and the capacity is increased to 100 GB for 3 layers and 128 GB for 4 layers BDXL (registered trademark) that has been realized has been put into practical use.
  • BD Blu-ray® (registered trademark) Disc
  • an optical disc that employs a method of recording data on both the groove track and the land track (referred to as a land / groove recording method as appropriate) is desirable.
  • a groove is called a groove, and a track formed by the groove is called a groove track.
  • a groove is defined as a portion irradiated with laser light when an optical disk is manufactured.
  • An area sandwiched between adjacent grooves is referred to as a land, and a track formed by the land is referred to as a land track.
  • a recording capacity can be further increased with a multilayer optical disc in which a plurality of information recording layers are laminated.
  • the spindle motor 102 rotates at a constant linear velocity (CLV) or a constant angular velocity (CAV) during recording / reproduction.
  • CLV constant linear velocity
  • CAV constant angular velocity
  • the mark information recorded on the track on the optical disc 100 is read by the optical pickup (optical head) 101.
  • data is recorded on the optical disc 100
  • user data is recorded as a phase change mark or a dye change mark on a track on the optical disc 100 by the optical pickup 101.
  • a recording mark by a phase change mark is recorded on a track formed by a wobbling groove.
  • the phase change mark is an RLL (1, 7) PP modulation method (RLL; Run Length Limited, PP : Parity preserve / Prohibit rmtr (repeated minimum transition runlength)), etc.
  • RLL Run Length Limited
  • PP Parity preserve / Prohibit rmtr (repeated minimum transition runlength)
  • the inner peripheral area of the optical disc 100 for example, physical information of the disc is recorded as embossed pits or wobbling grooves as reproduction-only management information. Reading of such information is also performed by the optical pickup 101. Further, ADIP information embedded as wobbling of the groove track on the optical disc 100 is also read by the optical pickup 101.
  • a laser diode serving as a laser light source, a photodetector for detecting reflected light, an objective lens serving as an output end of the laser light, and a disk recording surface is irradiated with laser light via the objective lens.
  • An optical system or the like for guiding the reflected light to the photodetector is configured.
  • the objective lens is held in the optical pickup 101 so as to be movable in the tracking direction and the focus direction by a biaxial mechanism.
  • the entire optical pickup 101 can be moved in the disk radial direction by a thread mechanism 103.
  • a drive current from the laser driver 113 is supplied to the laser diode of the optical pickup 101, and the laser diode generates a laser.
  • the matrix circuit 104 includes a current-voltage conversion circuit, a matrix calculation / amplification circuit, and the like corresponding to output currents from a plurality of light receiving elements serving as photodetectors, and generates necessary signals by matrix calculation processing.
  • a current-voltage conversion circuit may be formed in the photodetector element. For example, a reproduction information signal (RF signal) corresponding to reproduction data, a focus error signal for servo control, a tracking error signal, and the like are generated. Further, a push-pull signal is generated as a signal related to groove wobbling, that is, a signal for detecting wobbling.
  • the reproduction information signal output from the matrix circuit 104 is supplied to the data detection processing unit 105, the focus error signal and the tracking error signal are supplied to the optical block servo circuit 111, and the push-pull signal is supplied to the wobble signal processing circuit 106. .
  • the data detection processing unit 105 performs binarization processing of the reproduction information signal. For example, the data detection processing unit 105 performs RF signal A / D conversion processing, PLL reproduction clock generation processing, PR (Partial-Response) equalization processing, Viterbi decoding (maximum likelihood decoding), etc., and partial response maximum likelihood decoding processing A binary data string is obtained by (PRML detection method: Partial Response Maximum Likelihood detection method). The data detection processing unit 105 supplies a binary data string as information read from the optical disc 100 to the subsequent encoding / decoding unit 107.
  • PRML detection method Partial Response Maximum Likelihood detection method
  • the encoding / decoding unit 107 performs demodulation processing of reproduction data during reproduction and modulation processing of recording data during recording. That is, data demodulation, deinterleaving, ECC decoding, address decoding, etc. are performed during reproduction, and ECC encoding, interleaving, data modulation, etc. are performed during recording.
  • the binary data sequence decoded by the data detection processing unit 105 is supplied to the encoding / decoding unit 107.
  • the encoding / decoding unit 107 performs demodulation processing on the binary data string to obtain reproduction data from the optical disc 100. That is, for example, the optical disc 100 is subjected to demodulation processing for data recorded on the optical disc 100 subjected to run-length limited code modulation such as RLL (1, 7) PP modulation and ECC decoding processing for error correction. Get the playback data from.
  • the data decoded to the reproduction data by the encoding / decoding unit 107 is transferred to the host interface 108 and transferred to the host device 200 based on an instruction from the system controller 110.
  • the host device 200 is, for example, a computer device or an AV (Audio-Visual) system device.
  • ADIP information is performed. That is, the push-pull signal output from the matrix circuit 104 as a signal related to groove wobbling is converted into wobble data digitized by the wobble signal processing circuit 106. A clock synchronized with the push-pull signal is generated by the PLL processing.
  • the wobble data is demodulated into a data stream constituting an ADIP address by the ADIP demodulation processing unit 116 and supplied to the address decoder 109.
  • the address decoder 109 decodes the supplied data, obtains an address value, and supplies it to the system controller 110.
  • recording data is transferred from the host device 200, and the recording data is supplied to the encoding / decoding unit 107 via the host interface 108.
  • the encoding / decoding unit 107 performs error correction code addition (ECC encoding), interleaving, sub-code addition, and the like as recording data encoding processing.
  • ECC encoding error correction code addition
  • the data subjected to these processes is subjected to run-length limited code modulation such as the RLL (1-7) PP method.
  • the recording data processed by the encoding / decoding unit 107 is supplied to the write strategy unit 114.
  • the write strategy unit 114 performs laser drive pulse waveform adjustment with respect to the characteristics of the recording layer, the spot shape of the laser beam, the recording linear velocity, and the like as the recording compensation process. Then, the laser drive pulse is output to the laser driver 113.
  • the laser driver 113 supplies a current to the laser diode in the optical pickup 101 based on the laser driving pulse subjected to the recording compensation process, and performs laser emission. As a result, a mark corresponding to the recording data is formed on the optical disc 100.
  • the optical block servo circuit 111 generates various servo drive signals for focus, tracking, and sled from the focus error signal and tracking error signal from the matrix circuit 104 and executes the servo operation. That is, a focus drive signal and a tracking drive signal are generated according to the focus error signal and tracking error signal, and the driver 118 drives the focus coil and tracking coil of the biaxial mechanism in the optical pickup 101.
  • a focus drive signal and a tracking drive signal are generated according to the focus error signal and tracking error signal
  • the driver 118 drives the focus coil and tracking coil of the biaxial mechanism in the optical pickup 101.
  • an optical pickup 101, a matrix circuit 104, an optical block servo circuit 111, a driver 118, a tracking servo loop and a focus servo loop by a biaxial mechanism are formed.
  • the optical block servo circuit 111 turns off the tracking servo loop and outputs a jump drive signal in accordance with a track jump command from the system controller 110, thereby executing a track jump operation. Further, the optical block servo circuit 111 generates a thread drive signal based on a thread error signal obtained as a low frequency component of the tracking error signal, an access execution control from the system controller 110, and the like, and a thread mechanism 103 is operated by the thread driver 115. Drive.
  • the spindle servo circuit 112 controls the spindle motor 102 to perform CLV rotation or CAV rotation.
  • the spindle servo circuit 112 generates a spindle error signal by obtaining the clock generated by the PLL for the wobble signal as the current rotational speed information of the spindle motor 102 and comparing it with predetermined reference speed information. Further, at the time of data reproduction, the reproduction clock generated by the PLL in the data detection processing unit 105 becomes the current rotation speed information of the spindle motor 102. Therefore, by comparing this with predetermined reference speed information, the spindle An error signal is generated.
  • the spindle servo circuit 112 outputs a spindle drive signal generated according to the spindle error signal, and causes the spindle driver 117 to execute CLV rotation or CAV rotation of the spindle motor 102.
  • the spindle servo circuit 112 generates a spindle drive signal in response to a spindle kick / brake control signal from the system controller 110, and executes operations such as starting, stopping, acceleration, and deceleration of the spindle motor 102.
  • a system controller 110 formed by a microcomputer.
  • the system controller 110 executes various processes in accordance with commands from the host device 200 given through the host interface 108. For example, when a write command (write command) is issued from the host device 200, the system controller 110 first moves the optical pickup 101 to an address to be written. Then, the encoding / decoding unit 107 causes the encoding process to be performed on the data (for example, video data, audio data, etc.) transferred from the host device 200 as described above. Then, the laser driver 113 drives the laser emission according to the encoded data, and recording is executed.
  • a write command write command
  • the system controller 110 first moves the optical pickup 101 to an address to be written.
  • the encoding / decoding unit 107 causes the encoding process to be performed on the data (for example, video data, audio data, etc.) transferred from the host device 200 as described above.
  • the laser driver 113 drives the laser emission according to the encoded data, and recording is executed.
  • the system controller 110 when a read command for requesting transfer of certain data recorded on the optical disc 100 is supplied from the host device 200, the system controller 110 first performs seek operation control for the instructed address. That is, a command is issued to the optical block servo circuit 111, and the access operation of the optical pickup 101 targeting the address specified by the seek command is executed. Thereafter, operation control necessary for transferring the data in the designated data section to the host device 200 is performed. That is, data is read from the optical disc 100, the reproduction processing in the data detection processing unit 105 and the encoding / decoding unit 107 is executed, and the requested data is transferred.
  • FIG. 1 has been described as the optical disk device connected to the host device 200, but the optical disk device may not be connected to other devices.
  • an operation unit and a display unit are provided, and the configuration of the interface part for data input / output is different from that in FIG. That is, it is only necessary that recording and reproduction are performed in accordance with a user operation and a terminal unit for inputting / outputting various data is formed.
  • various other examples of the configuration of the optical disc apparatus are conceivable.
  • the optical pickup 101 records information on the optical disc 100 using, for example, laser light (beam) having a wavelength ⁇ of 405 nm, and reproduces information from the optical disc 100.
  • Laser light is emitted from a semiconductor laser (LD: Laser Diode) 1.
  • Laser light passes through a collimator lens 2, a polarizing beam splitter (PBS: PolarizingSBeamSplitter) 3, and an objective lens 4 and is irradiated onto the optical disc 100.
  • the polarization beam splitter 3 has, for example, a separation surface that transmits approximately 100% of P-polarized light and reflects approximately 100% of S-polarized light. Reflected light from the recording layer of the optical disc 100 returns along the same optical path and enters the polarization beam splitter 3. By interposing a ⁇ / 4 element (not shown), the incident laser light is reflected by the polarization beam splitter 3 by approximately 100%.
  • the laser beam reflected by the polarization beam splitter 3 is condensed on the light receiving surface of the photodetector 6 through the lens 5.
  • the photodetector 6 has a light receiving cell that photoelectrically converts incident light on the light receiving surface.
  • the light receiving cell is divided into a plurality of regions by dividing lines extending in the radial direction (disc radial direction) and / or the tangential direction (track direction) of the optical disc 100.
  • the photodetector 6 outputs electrical signals of a plurality of channels according to the amount of light received in each region of the light receiving cell. A method for dividing the area will be described later.
  • the configuration of the optical pickup 101 in FIG. 2 shows the minimum components for explaining the present disclosure.
  • the focus error signal and tracking error output to the optical block servo circuit 111 via the matrix circuit 104 are shown.
  • a signal, a signal for generating a push-pull signal output to the wobble signal processing circuit 106 via the matrix circuit 104, and the like are omitted.
  • various configurations other than the configuration shown in FIG. 2 are possible.
  • the cross section of the light beam of the return beam from the optical disc 100 is divided into a plurality of regions, and a reproduction information signal of a plurality of channels corresponding to each region is obtained.
  • a method for obtaining a reproduction information signal for each region a method other than the method of dividing the photodetector 6 can be used.
  • an optical path conversion element for separating a plurality of regions is arranged in an optical path passing through the objective lens 4 and reaching the photodetector 6, and a plurality of beams separated by the optical path conversion element are supplied to different photodetectors. May be used.
  • the optical path conversion element a diffraction element such as a holographic optical element, a refractive element such as a microlens array or a microprism, or the like can be used.
  • the optical pickup 101 reproduces the signal from the optical disc 100, and the detection signal corresponding to each area is supplied to the matrix circuit 104 to obtain a reproduction information signal of a plurality of channels corresponding to each area.
  • the data detection processing unit 105 includes an A / D converter 11 to which a reproduction information signal supplied from the matrix circuit 104 is supplied.
  • 3 and 4 are examples in which the cross section of the light beam of the return beam from the optical disc 100 is divided into three regions, for example, and a three-channel reproduction information signal is obtained from the matrix circuit 104.
  • a clock for the A / D converter 11 is formed by the PLL 12.
  • the reproduction information signal supplied from the matrix circuit 104 is converted into digital data by the A / D converter 11.
  • the digitized three-channel reproduction information signals in the areas A to C are denoted as Sa to Sc.
  • a signal obtained by adding the reproduction information signals Sa to Sc by the addition circuit 17 is supplied to the PLL 12.
  • the data detection processing unit 105 includes a multi-input adaptive equalizer unit 13, a binarization detector 14, a PR convolution unit 15, and an equalization error calculator 16.
  • the multi-input adaptive equalizer unit 13 performs PR adaptive equalization processing based on the reproduction information signals Sa to Sc. That is, the reproduction information signals Sa to Sc are output through the adaptive equalizer unit and equalized so that the added equalized signal y0 approximates a target PR waveform.
  • the output of the multi-input adaptive equalizer unit may be used as a signal input to the PLL 12. In this case, the initial coefficient of the multi-input adaptive equalizer is set to a predetermined value.
  • the binarization detector 14 is a Viterbi decoder, for example, and performs maximum likelihood decoding on the PR equalized signal y0 to obtain binarized data DT.
  • the binarized data DT is supplied to the encoding / decoding unit 107 shown in FIG. 1 and reproduction data demodulation processing is performed.
  • Viterbi decoding uses a Viterbi detector composed of a plurality of states configured in units of consecutive bits of a predetermined length and branches represented by transitions between them, and all possible bit sequences are used. A desired bit sequence is efficiently detected from the inside.
  • the flow of the bit sequence leading to that state called the path memory register, the register that stores the partial response sequence and the signal path metric up to that state, called the path metric register, for each state
  • the path metric register Two registers of the register for storing are prepared. Further, for each branch, there is prepared an arithmetic unit called a branch metric unit for calculating a partial response sequence and a signal path metric at the bit.
  • various bit sequences can be associated in a one-to-one relationship by one of the paths passing through the state.
  • the path metric between the partial response sequence that passes through these paths and the actual signal (reproduced signal) is the transition between the states that constitute the above path, that is, the branch metrics described above in the branch sequentially. It is obtained by adding.
  • the PR convolution unit 15 performs a convolution process on the binarization result to generate a target signal Zk as shown in the following equation.
  • This target signal Zk is an ideal signal without noise since it is a convolution of the binary detection result.
  • PR (1, 2, 2, 2, 1) the value P for each channel clock is (1, 2, 2, 2, 1).
  • the restraint length is 5.
  • PR (1, 2, 3, 3, 3, 2, 1) the value P for each channel clock is (1, 2, 3, 3, 3, 2, 1).
  • the restraint length is 7.
  • d represents binarized data.
  • the equalization error calculator 16 obtains an equalization error ek from the equalization signal y0 from the multi-input adaptive equalizer unit 13 and the target signal Zk, and controls the tap error control of the equalization error ek to the multi-input adaptive equalizer unit 13. Supply for. As shown in FIG. 6, the equalization error calculator 16 includes a subtracter 25 and a coefficient multiplier 26. The subtracter 25 subtracts the target signal Zk from the equalized signal y0. An equalization error ek is generated by multiplying the subtraction result by a predetermined coefficient a by the coefficient multiplier 26.
  • the multi-input adaptive equalizer unit 13 includes adaptive equalizer units 21, 22, 23 and an adder 24 as shown in FIG.
  • the reproduction information signal Sa described above is input to the adaptive equalizer unit 22, the reproduction information signal Sa is input to the adaptive equalizer unit 21, and the reproduction information signal Sc is input to the adaptive equalizer unit 23.
  • the configuration of the multi-input adaptive equalizer unit 13 when the number of area divisions is 3 is shown.
  • An adaptive equalizer unit is provided corresponding to the number of area divisions.
  • Each of the adaptive equalizer units 21, 22, and 23 has parameters of FIR (Finite Impulse Response) number of filter taps, its calculation accuracy (bit resolution), and update gain of adaptive computation, and optimum values are set for each. .
  • Each of the adaptive equalizer units 21, 22, 23 is supplied with an equalization error ek as a coefficient control value for adaptive control.
  • the outputs y1, y2, and y3 of the adaptive equalizer units 21, 22, and 23 are added by the adder 24 and output as an equalized signal y0 of the multi-input adaptive equalizer unit 13.
  • the output target of the multi-input adaptive equalizer unit 13 is an ideal PR waveform in which the binary detection result is convolved with PR (partial response).
  • the adaptive equalizer unit 21 is composed of, for example, an FIR filter as shown in FIG.
  • the adaptive equalizer unit 21 is a filter having n + 1 stages of taps including delay elements 30-1 to 30-n, coefficient multipliers 31-0 to 31-n, and an adder 34.
  • the coefficient multipliers 31-0 to 31-n multiply the input x at each time point by tap coefficients C0 to Cn, respectively.
  • the outputs of the coefficient multipliers 31-0 to 31-n are added by an adder 34 and taken out as an output y.
  • the tap coefficients C0 to Cn are controlled to perform adaptive equalization processing.
  • computing units 32-0 to 32-n that perform an operation by inputting an equalization error ek and each tap input.
  • integrators 33-0 to 33-n for integrating the outputs of the respective arithmetic units 32-0 to 32-n are provided.
  • computation of ⁇ 1 ⁇ ek ⁇ x is performed.
  • the outputs of the arithmetic units 32-0 to 32-n are integrated by the integrators 33-0 to 33-n, and the tap coefficients C0 to Cn of the coefficient multipliers 31-0 to 31-n are changed and controlled according to the integration result.
  • the reason why the integrators 33-0 to 33-n are integrated is to adjust the response of the adaptive coefficient control.
  • binarized data is decoded after unnecessary signals such as crosstalk are reduced.
  • the adaptive equalizer units 22 and 23 have the same configuration as the adaptive equalizer unit 21.
  • a common equalization error ek is supplied to the adaptive equalizer units 21, 22, and 23 to perform adaptive equalization. That is, the adaptive equalizer units 21, 22, and 23 optimize the error and phase distortion of the input signal frequency components of the reproduction information signals Sa, Sb, and Sc, that is, perform adaptive PR equalization. That is, the tap coefficients C0 to Cn are adjusted according to the calculation result of ⁇ 1 ⁇ ek ⁇ x in the calculators 32-0 to 32-n. This means that the tap coefficients C0 to Cn are adjusted in the direction of eliminating the equalization error.
  • the tap coefficients C0 to Cn are adaptively controlled using the equalization error ek in the direction of the target frequency characteristics.
  • the equalized signal y0 of the multi-input adaptive equalizer unit 13 obtained by adding the outputs y1, y2, and y3 of the adaptive equalizer units 21, 22, and 23 by the adder 24 is a signal with reduced crosstalk and the like.
  • FIG. 7 there are a plurality of patterns for dividing the cross-sectional area of the beam returning from the optical disc 100. Each pattern will be described.
  • the circle in a figure has shown the outer periphery of the cross section of the beam beam.
  • the square represents, for example, the area of the light receiving cell of the photo detector for detection.
  • the vertical direction corresponds to the tangential direction of the returning light beam
  • the horizontal direction corresponds to the radial direction.
  • the area division pattern shown in FIG. 7 is an example, and patterns other than those shown in FIG. 7 are possible.
  • the dividing line is not limited to a straight line but may be a curved line such as an arc.
  • the electric signals corresponding to the light reception signals in the areas B1 and B2 are added to form a one-channel signal. That is, the example of FIG. 3 is an example of two channels, an inner channel (region A) and an outer channel (region B1 + B2).
  • Such region division is referred to as a pattern R2.
  • ⁇ Pattern R3 In the pattern R2, the two outer areas are treated as areas of channels different from B and C. Such a region division pattern is referred to as R3. Three-channel signals corresponding to the three areas are obtained.
  • Pattern H4C In the pattern H4C, the upper and lower regions C1 and C2 of the pattern H3A are further divided into two in the tangential direction to form regions D1 and D2.
  • Pattern T3A is a pattern obtained by extending the upper and lower regions C1 and C2 of the pattern H3A so as to cover the regions B1 and B2, respectively.
  • Pattern Hi3A In the pattern H3A, the dividing line in the tangential direction is one in the upper and lower regions C1 and C2, and the region C2 is not provided. As a result, the center position of the central region A is shifted downward in the tangential direction with respect to the center position of the beam cross section, and a three-channel signal including two channels having different center positions in the tangential direction is obtained.
  • ⁇ Pattern Hi3B The same area division as that of the pattern Hi3A is performed. However, the width of the upper region C1 is wider than the pattern Hi3A.
  • ⁇ Pattern HT4A The area C2 of the pattern H3A is the area D of the fourth channel. This is a pattern that divides the beam cross section into four regions, region A, region (B1 + B2), region C, and region D. A 4-channel signal including three channels corresponding to the four regions and having different center positions in the tangential direction is obtained. ⁇ HTR5A A signal of 5 channels is obtained by using the two regions B1 and B2 on the outer side in the radial direction in the pattern HT4A as regions of different channels. ⁇ Pattern T4A This is a pattern in which upper and lower regions C and D of pattern HT4A are extended so as to cover regions B1 and B2, respectively.
  • This pattern is divided into four areas: area A, area (B1 + B2), area C, and area D.
  • a 4-channel signal including three channels corresponding to the four regions and having different center positions in the tangential direction is obtained.
  • Pattern Hi4A In the pattern HT4A, a region D is provided adjacent to the lower side of the region C. As a result, the center position of the central region A is shifted downward in the tangential direction with respect to the center position of the beam cross section.
  • a 4-channel signal including 3 channels with different center positions in the tangential direction is obtained.
  • ⁇ Pattern L6A Adjacent regions E and F are provided below the upper and lower regions C and D of the pattern HT4A, respectively. From each of the regions A to F, a 6-channel signal including 5 channels having different center positions in the tangential direction is obtained.
  • ⁇ Pattern LR7A In pattern L6A, region B1 is region B and region B2 is region G. Seven-channel signals are obtained from each of the regions A to G.
  • Adaptive filter characteristics in pattern R2 As a comparative example for the present disclosure, an adaptive filter characteristic in the case of the low linear density of the pattern R2 will be described.
  • the region division position in the radial direction was set to ⁇ 0.55 when the pupil radius was 1.0.
  • reproduction information signals of a plurality of channels are processed in the multi-input adaptive equalizer unit 13.
  • the multi-input adaptive equalizer unit 13 has an adaptive equalizer unit equal to the number of channels.
  • the adaptive equalizer unit is configured as an FIR filter, and each tap coefficient is adaptively controlled.
  • FIG. 8 shows the frequency-amplitude characteristics of the simulation results for the pattern R2.
  • the characteristic L1 is the frequency amplitude characteristic of the channel corresponding to the outer area B
  • the characteristic L2 is the frequency amplitude characteristic of the channel corresponding to the inner area A.
  • the characteristic is an example of the characteristic at the perturbation origin.
  • the perturbation origin here means a state in which defocus, disk skew, etc. are all at the origin, and basically the best results can be obtained when adaptive control is performed.
  • the horizontal axis is n / (256T) (n: value on the horizontal axis).
  • n 64
  • (64 / 256T) (1 / 4T).
  • the mark length is 2T to 8T.
  • (1 / 4T) is a frequency when a 2T mark repeats. In the characteristics of FIG. 8, the 2T mark is a frequency region that cannot be reproduced, and the 3T mark can be reproduced.
  • FIG. 9A shows tap coefficients of each channel of the pattern R2. For example, the number of taps of the FIR filter is 31 taps.
  • FIG. 9B shows the frequency phase characteristics of each channel. The frequency phase characteristic represents the phase difference between the two channels. As shown in FIG. 9B, the phase difference between the two channels is small.
  • FIGS. show the effect of area division of the pattern R2 in the case of low linear density.
  • LD35.18 (GB) ⁇ ⁇ ⁇
  • Tp 0.32 ⁇ m
  • the surface capacity is 35.18GB.
  • Tp 0.225 ⁇ m (Land and Groove are both)
  • the surface capacity is 50.0GB together with LD35.18GB.
  • e-MLSE improves.
  • the margin width satisfying e-MLSE ⁇ 15% is not obtained without division (graph expressed as e-MLSE), but as shown in FIG. 10, the defocus margin W20 full width is 0.21 (corresponding to ⁇ 0.18 ⁇ m).
  • the radial coma aberration margin W31 full width is 0.25 (corresponding to ⁇ 0.44 deg).
  • the horizontal axis of the graph in FIG. 10 is the defocus amount normalized by the wavelength.
  • a value of 0 means that the defocus amount is 0. Since defocus occurs during actual reproduction, it is necessary to have a margin for defocus.
  • the defocus margin corresponds to the width of the range in which the value of e-MLSE is approximately 0.15 or less. The larger the width, the larger the defocus margin.
  • FIG. 11 shows a margin for the third-order coma aberration W31 (aberration coefficient normalized by wavelength) corresponding to the radial skew of the disk.
  • the value of e-MLSE is preferably about 0.15 or less.
  • the coma aberration margin corresponds to the width of the range in which the value of e-MLSE is approximately 0.15 or less. The larger this width, the greater the radial disc skew margin.
  • the vertical axis of the graphs in FIG. 10 and FIG. 11 is an index for representing the reproduction performance.
  • the value of i-MLSE is known as an index.
  • MLSE Maximum Likelihood Sequence Error
  • BDXL registered trademark
  • calculation is performed using a method called i-MLSE, weighting data patterns that are likely to cause some errors.
  • BDXL registered trademark
  • i-MLSE a signal evaluation value different from i-MLSE, which is a new data pattern added to improve the accuracy of the signal index value at a higher linear density, is used to explain the effect. Used for.
  • e-MLSE a new index value with improved accuracy
  • the data patterns added in e-MLSE are the following three types.
  • a bit in which 1 is written in the pattern row indicates a place where bit inversion occurs in the error pattern with respect to the detection pattern.
  • e-MLSE and i-MLSE are almost the same at a linear density equivalent to that of conventional BDXL (registered trademark) with sufficient accuracy of i-MLSE, and a difference corresponding to an error improvement appears at a higher linear density.
  • the theoretical correlation of the index value with respect to the error rate that is important in practical use is the same in both cases. Therefore, although there is a difference in calculation and a difference in the range of applied linear density, the evaluation values of the signal quality indicated by both may be regarded as the same sense.
  • an index other than e-MLSE may be used.
  • the amplitude and phase characteristics originally possessed by the crosstalk component are used as they are, and the signal characteristics are improved by using the balance between the amplitude characteristics of the channels without changing the phase difference between the channels.
  • the pattern R2 is divided inward and outward in the radial direction, and has an effect of suppressing crosstalk from adjacent tracks that occurs when the track pitch is narrowed. Therefore, in the example in which the region is divided only in the radial direction as in the pattern R2, there is a problem that it is not possible to sufficiently cope with signal degradation due to intersymbol interference in the tangential direction.
  • the present disclosure described below takes such points into consideration.
  • FIG. 12 is a graph of (normalized defocus amount vs. index).
  • FIG. 13 is a graph of (normalized skew amount in radial direction versus index).
  • FIG. 14 is a graph of (normalized tangential skew amount versus index).
  • the pattern H3A improves the margin as follows.
  • Defocus margin W20 full width 0.27 (equivalent to ⁇ 0.23 ⁇ m).
  • the radial coma aberration margin W31 full width is 0.30 (equivalent to ⁇ 0.53deg).
  • the pattern H4C improves the margin as follows.
  • Defocus margin W20 full width 0.275 (equivalent to ⁇ 0.235 ⁇ m).
  • the radial coma aberration margin W31 full width is 0.30 (equivalent to ⁇ 0.53deg).
  • the tap coefficient of the adaptive equalizer unit is adaptively controlled.
  • an equalizer unit with a fixed tap coefficient or use an analog filter or digital filter other than the FIR filter having equivalent characteristics. It is.
  • the adaptive type is excellent in terms of performance, it is not necessary to perform adaptive control of the tap coefficient, so that the processing and hardware can be simplified. It is also possible to use a fixed equalizer unit for some of the channels and use an adaptive equalizer unit for the other channels.
  • FIG. 15 shows frequency / amplitude characteristics as a result of simulation for the pattern H3A (see FIG. 7).
  • the characteristic L1 is the frequency amplitude characteristic of the channel corresponding to the outer area B in the radial direction
  • the characteristic L2 is the frequency amplitude characteristic of the channel corresponding to the outer area C in the tangential direction
  • the characteristic L3 is the central area.
  • 4 is a frequency amplitude characteristic of a channel corresponding to A.
  • the characteristic is an example of the characteristic at the perturbation origin.
  • FIG. 16A shows tap coefficients of each channel of the pattern H3A.
  • the number of taps of the FIR filter is 31 taps.
  • FIG. 16B shows the frequency phase characteristics of each channel.
  • the frequency phase characteristic represents a phase difference between two of the three channels.
  • a characteristic L11 is a phase difference between reproduction information signals of channels corresponding to the region C outside the tangential direction and the region B outside the radial direction.
  • a characteristic L12 is a phase difference between reproduction information signals of channels corresponding to the central area A and the radial outer area B, respectively.
  • a characteristic L13 is a phase difference between reproduction information signals of channels respectively corresponding to the region C outside the tangential direction and the center region A.
  • the filter characteristics of H3A have the following characteristics.
  • a filter having frequency characteristics that are greatly different in both amplitude and phase can be configured for each region of the three channels, and good reproduction signal reproduction can be realized.
  • the phase of the outer region C in the tangential direction and the outer region B in the radial direction are shifted by 180 degrees with respect to the central region.
  • the center region has a characteristic that cuts off a frequency band corresponding to a 4T signal (near the value 32 on the horizontal axis surrounded by a broken line) and suppresses false signals due to crosstalk.
  • the outer side in the tangential direction should contribute to the reproduction of the short mark and blocks the frequency band corresponding to the 8T signal (in the vicinity of the value 16 on the horizontal axis surrounded by the broken line).
  • a high-pass filter, a low-pass filter, a band-pass filter, a band-stop (or notch) filter, or the like is configured for each region, and a filter characteristic that cannot be realized by optics alone or electricity alone is realized.
  • FIG. 18 is a graph of (normalized defocus amount vs. index).
  • FIG. 19 is a graph of (normalized skew amount in radial direction versus index).
  • the e-MLSE is in the vicinity of 15% in the patterns R2 and H3A that do not have channels with different center positions in the tangential direction.
  • the patterns Hi3A, Hi3B, HT4A, and Hi4A having channels with different center positions in the tangential direction a sufficient margin width for e-MLSE ⁇ 15% can be secured.
  • the pattern HT4A has a margin width equivalent to the pattern H3A in LD35.18GB in LD41GB.
  • FIG. 20 shows the frequency-amplitude characteristics of the simulation results for the pattern HT4A.
  • the characteristic L21 is the frequency amplitude characteristic of the channel corresponding to the area B outside in the radial direction
  • the characteristic L22 is the frequency amplitude characteristic of the channel corresponding to the area C outside in the tangential direction.
  • the characteristic L23 is the frequency amplitude characteristic of the channel corresponding to the center area A
  • the characteristic L24 is the frequency amplitude characteristic of the channel corresponding to the area D outside the tangential direction.
  • the characteristic is an example of the characteristic at the perturbation origin.
  • FIG. 21A shows tap coefficients of each channel of the pattern HT4A.
  • the number of taps of the FIR filter is 31 taps.
  • FIG. 21B shows the frequency phase characteristics of each channel.
  • the frequency phase characteristic represents a phase difference between a channel corresponding to the region C outside the tangential direction and a channel corresponding to the region D outside the tangential direction.
  • the filter characteristics of HT4A have the following characteristics. Similar to the pattern H3A, the central region has a low-pass characteristic, and the outer region in the tangential direction has a high-pass characteristic (here, the high-pass characteristic is more in a frequency band contributing to signal reproduction. The bandpass characteristic that passes the band corresponding to the short mark is expressed as relatively highpass). Furthermore, in the pattern H4TA, the outer area in the tangential direction has two channels independently, and the two areas are 120 to 90 degrees in a frequency band corresponding to 3T and 4T (near the values of 43 and 32 on the horizontal axis). The filter has a phase difference of a certain degree (two clocks as can be seen from the tap coefficient). Thereby, it is possible to detect the short mark with higher sensitivity with respect to the reproduction amplitude based on the simple sum signal. For short mark reproduction, the phase difference between the regions is also utilized to realize good reproduction signal characteristics in the high linear density region.
  • FIG. 22 shows some specific examples of area division.
  • FIG. 23 shows an enlargement of the margin of radial coma aberration by changing the division position.
  • the division positions are set such that the patterns HT4A and H3A have a radial direction ⁇ 0.55 and a tangential direction ⁇ 0.65.
  • the patterns T4A and T3A have a radial direction of ⁇ 0.7 and a tangential direction of ⁇ 0.6, and the division shape is also changed at four corners.
  • the pattern HT4A has a total width 0.33 (corresponding to ⁇ 0.56 deg) of the radial coma aberration W31.
  • the pattern T4A has a full width of the radial coma aberration W31 of 0.34 mm (corresponding to ⁇ 0.60 deg).
  • the pattern H3A has a full width 0.30 (corresponding to ⁇ 0.53 deg) of the radial coma aberration W31.
  • the pattern T3A has a full width 0.32 (corresponding to ⁇ 0.56 deg) of the radial coma aberration W31.
  • FIG. 24 is a pattern in which only the radial direction is divided to form three regions, and shows a case where the field of view moves in accordance with the lens shift of the objective lens (denoted as LS in the figure).
  • R2 regions A, B1, B2
  • R3 regions A, B, C
  • the lens shift is 0.2 in the radial direction (0.2 is 10% because the diameter of the cross section of the beam is 2.0).
  • FIG. 25 is a graph showing the simulation result of the margin of radial coma aberration for these patterns. From FIG. 25, the margin of coma aberration of the pattern R2 (LS 0.2) is reduced. That is, when divided in the radial direction, the influence of visual field movement can be reduced by making the outer two regions independent. As described later, there are other methods for strengthening the visual field movement.
  • FIG. 26A shows changes in radial coma aberration characteristics caused by pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern R3.
  • FIG. 26B shows a 0.2 shift, and
  • FIG. 26C shows no shift.
  • the division width is optimized, the change in the marginal width of the radial coma aberration due to the visual field movement can be suppressed.
  • FIG. 27A shows the radial coma aberration characteristic change due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern T4A.
  • FIG. 27B shows a 0.2 shift, and
  • FIG. 27C shows no shift.
  • a margin width by visual field movement can be secured.
  • the center is slightly shifted.
  • FIG. 28A shows changes in radial coma aberration characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern T3A.
  • FIG. 28B shows a 0.2 shift and
  • FIG. 28C shows no shift.
  • the margin width due to visual field movement is abruptly narrowed. Therefore, in the case of the pattern T3A, it is necessary to suppress the visual field movement amount.
  • FIG. 29A shows a change in defocus characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern R3.
  • FIG. 29B shows a 0.2 shift, and
  • FIG. 29C shows no shift.
  • changes in the defocus margin width due to visual field movement can be suppressed by optimizing the division width.
  • FIG. 30A shows a change in defocus characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern T4A.
  • FIG. 30B shows a 0.2 shift, and
  • FIG. 30C shows no shift.
  • a defocus margin width by moving the visual field can be secured.
  • FIG. 31A shows a change in defocus characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern T3A.
  • FIG. 31B shows 0.2 shift and
  • FIG. 31C shows no shift.
  • the defocus margin width due to visual field movement is abruptly narrowed. Therefore, in the case of the pattern T3A, it is necessary to suppress the visual field movement amount.
  • the pattern R3 is more resistant to lens shift in the three channels than the pattern T3A. That is, the radial coma aberration margin is ⁇ 0.125 (corresponding to ⁇ 0.44 deg) without lens shift, and the lens shift is 0.2 and ⁇ 0.125 (corresponding to ⁇ 0.44 deg).
  • Hi3A is a 3 channel pattern that is resistant to lens shift.
  • FIG. 32A shows changes in radial coma aberration characteristics caused by pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern Hi3A.
  • FIG. 32B shows a 0.2 shift, and
  • FIG. 32C shows no shift.
  • the margin width by visual field movement can be secured to the same extent as the 4-channel pattern T4A (see FIG. 27). That is, the radial coma aberration margin is ⁇ 0.16 (corresponding to ⁇ 0.56 deg.) Without lens shift, the lens shift is 0.2, and ⁇ 0.155 to +0.12 ( ⁇ 0.54 deg to +0.42 deg). Equivalent).
  • FIG. 33A shows a change in defocus characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern Hi3A.
  • FIG. 33B shows a 0.2 shift and
  • FIG. 33C shows no shift.
  • the margin width by visual field movement can be secured to the same extent as the 4-channel pattern T4A (see FIG. 29). That is, the defocus margin is 0.25 (corresponding to ⁇ 0.21 ⁇ m) without a lens shift, and the lens shift is 0.2 and 0.24 (corresponding to ⁇ 0.20 ⁇ m).
  • the pattern T4A is more resistant to lens shift than the pattern T3A in four channels. That is, the radial coma aberration margin is ⁇ 0.17 (corresponding to ⁇ 0.60 deg) without lens shift, and the lens shift is 0.2, ⁇ 0.17 to +0.135 ( ⁇ 0.60 deg to +0.47 deg). Equivalent).
  • FIG. 34A is a 4-channel pattern that is resistant to lens shift.
  • FIG. 34A shows changes in radial coma aberration characteristics caused by pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern X4A.
  • FIG. 34B shows a 0.2 shift, and
  • FIG. 34C shows no shift.
  • the radial coma aberration margin is ⁇ 0.17 (corresponding to ⁇ 0.60 deg) without lens shift, and the lens shift is 0.2 and ⁇ 0.16 (corresponding to ⁇ 0.56 deg).
  • FIG. 35A shows a change in defocus characteristics due to pseudo visual field movement (0.1 shift and 0.2 shift) regarding the pattern X4A.
  • FIG. 35B shows a 0.2 shift and
  • FIG. 35C shows no shift.
  • the change in the defocus margin due to visual field movement is small. That is, the defocus margin is 0.265 (corresponding to ⁇ 0.225 ⁇ m) without a lens shift, and the lens shift is 0.2 and 0.25 (corresponding to ⁇ 0.21 ⁇ m).
  • FIG. 36 shows patterns HT4A, HTR5A, L6A and LR7A.
  • the radial coma aberration characteristics of these patterns are shown in FIGS.
  • FIG. 37 shows the radial coma aberration characteristics of the patterns HT4A and HTR5A when the region is not divided.
  • FIG. 38 shows the radial coma aberration characteristics of the patterns LR7A and L6A when the region is not divided.
  • the radial coma aberration margin can be expanded by combining with the tangential direction division.
  • the channel bit length that is, the mark length is shortened
  • the density is increased in the linear density direction
  • the density is increased in the track density direction by narrowing the track pitch.
  • the reproduction signal on the optical disc detects a change in brightness caused by overlapping and interference of diffracted light generated by a periodic structure such as a recording mark and a groove.
  • ⁇ 1st-order diffracted light with a periodic structure of period p is represented by a center shift amount of ⁇ / (NA ⁇ p) when the pupil radius is 1, and the larger the overlap is, the more the reproduction becomes.
  • the amplitude of the signal increases, and the smaller the overlap, the smaller the amplitude.
  • the spatial frequency characteristics of the MTF are as shown in FIG.
  • the overlapping area contributes to signal reproduction.
  • the outer region in the tangential direction is a filter that performs a high-band pass through a frequency band corresponding to a short mark such as 3T or 4T, and the central region.
  • a low-pass filter that passes many frequency bands corresponding to long marks of 5T or more.
  • the signal is divided into a tangential direction and a radial direction, and a high-pass is applied to the signal from each region.
  • Intersymbol interference and adjacent tracks by applying electrical filters having different characteristics optimum for each, such as filters, low pass filters, band pass filters, band stop filters, etc., and then summing the signals again
  • filters having different characteristics optimum for each, such as filters, low pass filters, band pass filters, band stop filters, etc.
  • a 4-channel signal corresponding to each region is obtained.
  • the region dividing positions in the radial direction are positions that are ⁇ 0.5 and ⁇ 0.7 when the pupil radius is 1.0.
  • the region division position in the tangential direction was set to ⁇ 0.45 and ⁇ 0.65 when the pupil radius was 1.0.
  • FIGS. Simulation results of reproduction performance with respect to the pattern IVT4 are shown in FIGS. These figures show the effect of area division of the pattern IVT4 in the case of low linear density. In each figure, e-MLSE indicates a characteristic when area division is not performed.
  • FIG. 45 shows a comparison of the radial coma aberration margin of the pattern IVT4 and the radial coma aberration margin W31 of the other patterns HTR5A, LR7A, and HT4A described above.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents normalized radial coma aberration. It can be seen that the radial disc skew margin of the pattern IVT4 is better than that of the other patterns.
  • FIG. 46 shows the defocus margin, and the horizontal axis of the graph of FIG. 46 is the defocus amount W20 normalized by the wavelength.
  • a value of 0 means that the defocus amount is 0. Since defocus occurs during actual reproduction, it is necessary to have a margin for defocus.
  • the defocus margin corresponds to the width of the range in which the value of e-MLSE is approximately 0.15 or less. The larger the width, the larger the defocus margin.
  • the pattern IVT4 has a sufficient margin.
  • FIG. 47 shows the margin of spherical aberration SA.
  • the horizontal axis of the graph of FIG. 47 is the normalized spherical aberration amount W40.
  • the pattern IVT4 has a sufficient spherical aberration margin.
  • FIG. 48 shows a tangential coma aberration margin.
  • the horizontal axis of the graph in FIG. 48 is the normalized tangential coma aberration amount W3-1.
  • the pattern IVT4 has a sufficient tangential coma aberration margin.
  • FIG. 49 shows a margin when the pattern is shifted in the radial direction.
  • the horizontal axis of the graph of FIG. 49 is the normalized shift amount, which is described as the pseudo visual field movement above, and when LS is shifted by ⁇ 0.1 and ⁇ 0.2 including the direction.
  • the other perturbations are graphs of e-MLSE changes in the zero state. It can be seen that the pattern IVT4 has a shift margin substantially equal to that of T4A.
  • FIG. 45 shows an example of the value of the 31-tap coefficient of the electric filter at the perturbation origin.
  • the electric filter is configured as an FIR filter.
  • FIG. 53 shows the frequency amplitude characteristics of the respective channels corresponding to the areas A to D when the coefficients are set in this way.
  • FIG. 51 shows the frequency amplitude characteristics of the channels A to D when the coefficients are set in this way.
  • the horizontal axis is n / (256T) (n: value on the horizontal axis).
  • n 64
  • (64 / 256T) (1 / 4T).
  • the mark length is 2T to 8T.
  • (1 / 4T) is a frequency when a 2T mark repeats. 51 and 53, in the band corresponding to 4T (near the horizontal axis value 32) and 3T (near the horizontal axis value 43), C, D, and A regardless of the presence or absence of radial coma aberration.
  • the frequency amplitude characteristics of the pattern IVT have substantially the same shape, and the desired electro-optic filter characteristics can be maintained, leading to a better radial disk skew margin in the pattern IVT4 than in the other patterns.
  • the filter characteristics of the IVT 4 at the perturbation origin have the following characteristics.
  • the central region has a low-pass characteristic
  • the outer region in the tangential direction has a high-pass characteristic (here, the high-pass characteristic means a band corresponding to a shorter mark within the frequency band contributing to signal reproduction).
  • the bandpass characteristics that pass through are expressed as relatively highpass).
  • the outer region in the tangential direction has two channels independently, and a filter is configured so that a channel tap coefficient corresponding to the two regions has a phase difference of about two clocks. .
  • a filter is configured so that a channel tap coefficient corresponding to the two regions has a phase difference of about two clocks.
  • a region B that hardly contains signal components in the band has a low-pass filter characteristic and exists in that region.
  • the component and other noise components are suppressed, the crosstalk component is reduced by the phase difference between C and D, and the remaining crosstalk component is canceled by the balance of the frequency amplitude characteristics with A.
  • FIG. 51 showing the frequency amplitude characteristics of each channel when radial coma occurs is shown in FIG. 53 showing the frequency amplitude characteristics of each channel having the characteristics as described above at the perturbation origin.
  • the frequency amplitude characteristics of C, D, and A regardless of the presence or absence of radial coma aberration.
  • the desired electro-optic filter characteristics can be maintained, and the pattern IVT4 leads to a better radial disk skew margin than the other patterns.
  • the radial region division position is ⁇ 0.3 and ⁇ 0.75 when the pupil radius is 1.0, and the tangential region division position is ⁇ 0.65 (described above). Further, the division position is finely adjusted in consideration of changes in various characteristics due to division of the central area, etc. from the division of the T4A area).
  • This division pattern NST6 increases the number of divisions of spatially different bands in the radial direction and is different from IVT4, but still detects signals corresponding to interference regions with ⁇ 1st order diffracted light by the track structure is doing. As a result, it is possible to widen various margins including a radial coma aberration margin while maintaining good e-MLSE at the perturbation center position.
  • FIGS. Simulation results of reproduction performance with respect to the pattern NST6 are shown in FIGS. These figures show the effect of area division of the pattern NST6 in the case of low linear density. In each figure, e-MLSE indicates a characteristic when area division is not performed.
  • FIG. 55 shows the radial coma aberration margin of the pattern NST6 and the radial coma aberration margins of the other patterns T4A and IVT4 described above for comparison.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents the normalized radial coma aberration W31.
  • the radial disk skew margin of the pattern NST6 increases the number of divisions of spatially different bands in the radial direction with respect to T4A, and is different from IVT4, but still interferes with ⁇ first-order diffracted light due to the track structure By detecting the signal corresponding to the region, it can be seen that it is better than the patterns T4A and IVT4.
  • FIG. 56 shows the defocus margin, and the horizontal axis of the graph of FIG. 56 is the defocus amount W20 normalized by the wavelength.
  • a value of 0 means that the defocus amount is 0.
  • FIG. 57 shows the margin of spherical aberration SA.
  • the horizontal axis of the graph in FIG. 57 is the normalized spherical aberration amount W40. It can be seen that the spherical aberration margin of the pattern NST6 is better than that of the pattern IVT4.
  • FIG. 58 shows a tangential coma aberration margin.
  • the horizontal axis of the graph in FIG. 58 represents the normalized tangential coma aberration amount W3-1. It can be seen that the tangential coma aberration margin of the pattern NST6 is better than that of the pattern IVT4.
  • FIG. 59 shows a margin when the pattern is shifted in the radial direction.
  • the horizontal axis of the graph in FIG. 59 is the normalized shift amount. It can be seen that the shift margin of the pattern NST6 is better than that of the pattern IVT4.
  • a pattern IVNST6 shown in FIG. 60 is an example of 6 channels.
  • the pattern IVNST6 is obtained by merging the good points of the divided patterns IVT4 and NST6 described above. That is, considering the pattern IVT4 as a reference, the central region B in FIG. 44 is further increased by 3 in the radial direction in order to increase the number of divisions of the spatially different bands in the radial direction, similarly to NST6 for T4A. It is thought that it was divided.
  • the regions A1 and A2 are extended to the region E and the region F, and a part (E2) of the region E and a part (F2) of the region F are allowed to enter the region B.
  • a part (E3) of the area E and a part (F3) of the area F enter the area B.
  • the radial region segmentation positions are ⁇ 0.25, ⁇ 0.5, and ⁇ 0.7 when the pupil radius is 1.0, and the tangential region segmentation positions are ⁇ 0.45 and ⁇ 0.65. It was. It is the best solution for most characteristics while suppressing the deterioration of the pattern shift in the radial direction where the deterioration is conspicuous in the pattern IVT4.
  • FIGS. show the effect of area division of the pattern IVNST6 in the case of low linear density.
  • e-MLSE indicates a characteristic when area division is not performed.
  • FIG. 61 shows a radial coma aberration margin for the pattern IVNST6, the pattern NST6 described above, and the pattern IVT4.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents the normalized radial coma aberration W31. It can be seen that the radial disc skew margin of the pattern IVNST6 is the best.
  • FIG. 62 shows the defocus margin, and the horizontal axis of the graph of FIG. 62 is the defocus amount W20 normalized by the wavelength. It can be seen that the defocus margin of the pattern IVNST6 is the best.
  • FIG. 63 shows the margin of spherical aberration SA.
  • the horizontal axis of the graph of FIG. 63 is the normalized spherical aberration amount W40. It can be seen that the spherical aberration margin of the pattern IVNST6 is the best along with NST6.
  • FIG. 64 shows a tangential coma aberration margin.
  • the horizontal axis of the graph of FIG. 64 is the normalized tangential coma aberration amount W3-1. It can be seen that the tangential coma aberration margin of the pattern IVNST6 is the best.
  • FIG. 65 shows a margin when the pattern is shifted in the radial direction.
  • the horizontal axis of the graph of FIG. 65 is the normalized shift amount. It can be seen that the shift margin of the pattern IVNST6 is better than that of the pattern IVT4.
  • the electric filter is configured as an FIR filter.
  • FIG. 69 shows the frequency amplitude characteristics of each channel corresponding to the areas A to F when the coefficients are set in this way.
  • the IVNST6 filter characteristics at the perturbation origin have the following characteristics.
  • the outer region in the tangential direction has a high-pass characteristic as in the case of IVT4 (here, the high-pass characteristic means a bandpass that passes a band corresponding to a shorter mark within a frequency band contributing to signal reproduction. The characteristics are expressed as relatively high-pass).
  • the outer region in the tangential direction has two channels independently, and the tap coefficient of the channel corresponding to the two regions has a phase difference of about two clocks.
  • Such a filter is configured. Thereby, it is possible to detect the short mark with higher sensitivity with respect to the reproduction amplitude based on the simple sum signal. For reproduction of short marks, good reproduction signal characteristics are realized by utilizing the phase difference between regions.
  • the central region which was one in IVT4 is divided into three in the radial direction in IVNST6, but the three regions B, C and D are basically low-pass characteristics similar to IVT4, and at the perturbation origin There is no significant difference in the filter characteristics between the three regions.
  • the regions B, C, and D that hardly contain signal components in the band are low-pass filter characteristics.
  • the crosstalk component and other noise components that exist are suppressed, the crosstalk component is reduced by the phase difference between E and F, and the remaining crosstalk component is still canceled by the balance of the frequency amplitude characteristics with A. ing.
  • FIG. 66 shows the tap coefficient of each channel when radial coma occurs and FIG. 67 shows the frequency amplitude characteristic.
  • FIG. 68 shows the tap coefficient of each channel at the perturbation origin.
  • the electric filter is configured as an FIR filter.
  • the frequency amplitude characteristics of the channels A to F when the coefficients are set in this way are as shown in FIG.
  • FIG. 70 showing the tap coefficient of each channel in a state where defocusing occurs and FIG. 71 showing the frequency amplitude characteristic
  • FIG. 68 showing the tap coefficient of each channel at the perturbation origin
  • the filter is a band-pass filter (the fact that the phase is reversed can also be seen from the tap coefficient in FIG. 70) with the opposite phase, and the filter that strengthens B and D.
  • E and F are filters that reduce the phase difference and slightly increase it.
  • the electric filter is configured as an FIR filter.
  • FIG. 73 shows frequency amplitude characteristics of the channels A to F when the coefficients are set in this way.
  • FIG. 72 showing the tap coefficient of each channel in a state where spherical aberration occurs
  • FIG. 73 showing the frequency amplitude characteristic
  • FIG. 68 showing the tap coefficient of each channel at the perturbation origin
  • indices such as i-MLSE and e-MLSE, but these indices are in a direction approaching the best state. Only by knowing whether or not coma aberration should be reduced, defocusing should be shifted, or spherical aberration should be shifted, no information can be obtained.
  • FIG. 74 shows a simulation result of the defocus characteristic of the pattern IVNST6 described above. The simulation conditions are the same as those described above.
  • FIG. 74 shows a case where the number of taps of the FIR filter is 31 and a case where the number of taps is 15, as described above.
  • a filter that weakens C (the center) and band-passes the vicinity of 8T with an opposite phase and a filter that strengthens B and D. ing.
  • This frequency characteristic is different from that in the case of 31 taps (FIG. 71), and a desired filter characteristic cannot be realized.
  • Channel C is not a band-pass filter with an opposite phase, but a low-pass filter. Therefore, when defocused, there is a difference in the margin due to the number of taps.
  • the difference due to the number of taps is shown for the defocus margin of IVNST6, but the same can be said for other patterns and other margins.
  • RLL (1, 7) PP since there are 2T to 8T recording marks, in order to realize a desired filter characteristic even at a frequency corresponding to 8T marks / spaces, in the case of using a FIR filter, 16T A configuration having a tap coefficient in a range greater than or equal to the width is desirable.
  • the radial region division positions of the central region were ⁇ 0.25 and ⁇ 0.70 when the pupil radius was 1.0, and the tangential region division positions were ⁇ 0.40.
  • FIG. 78 shows a simulation result in the case of 6 channels.
  • IVNST6 standard for NST6
  • NST6H the area (light quantity) of the outer channel in the radial direction is large and the area (light quantity) of the outer channel in the tangential direction is large for increasing the linear density. is there.
  • the pattern IVNST6 shown in FIG. 60 (FIG. 79) is the best solution in almost all characteristics. However, there are cases where it is desirable to reduce the number of channels due to restrictions such as the power consumption of the signal processing circuit, the number of input pins, and the circuit scale.
  • the pattern IVTSP5 reduces the number of channels from 6 to 5 while maintaining the characteristics.
  • the radial region division position is ⁇ 0.25, ⁇ 0.5, and ⁇ 0.7 when the pupil radius is 1.0
  • the tangential region division position is ⁇ 0.45, ⁇ 0.65. It was.
  • FIG. 80 shows a radial coma aberration margin for the pattern IVTSP5s0.5, the pattern IVTSP5s1.0, the pattern IVNST6, and the pattern IVT4.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents the normalized radial coma aberration W31.
  • FIG. 81 shows defocus margins for the pattern IVTSP5s0.5, the pattern IVTSP5s1.0, the pattern IVNST6, and the pattern IVT4.
  • the horizontal axis of the graph in FIG. 81 is the defocus amount W20 normalized by the wavelength.
  • a value of 0 means that the defocus amount is 0. Since defocus occurs during actual reproduction, it is necessary to have a margin for defocus.
  • the defocus margin corresponds to the width of the range in which the value of e-MLSE is approximately 0.15 or less. The larger the width, the larger the defocus margin.
  • FIG. 82 shows a margin of spherical aberration SA for the pattern IVTSP5s0.5, the pattern IVTSP5s1.0, the pattern IVNST6, and the pattern IVT4.
  • the horizontal axis of the graph in FIG. 82 is the normalized spherical aberration amount W40.
  • FIG. 83 shows a tangential coma aberration margin for the pattern IVTSP5s0.5, the pattern IVTSP5s1.0, the pattern IVNST6, and the pattern IVT4.
  • the horizontal axis of the graph in FIG. 83 is the normalized tangential coma aberration amount W3-1.
  • FIG. 84 shows a margin when the pattern is shifted in the radial direction with respect to the pattern IVTSP5s0.5, the pattern IVTSP5s1.0, the pattern IVNST6, and the pattern IVT4.
  • the horizontal axis of the graph in FIG. 84 is the normalized shift amount.
  • FIG. 86 to FIG. 90 show the simulation results of the reproduction performance for the pattern IVTSM4.
  • e-MLSE indicates a characteristic when area division is not performed.
  • FIG. 86 shows a radial coma aberration margin regarding the pattern IVTSM4s0.7 and the pattern IVT4 described above.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents the normalized radial coma aberration W31.
  • FIG. 87 shows the defocus margin for the pattern IVTSM4s0.7 and the pattern IVT4.
  • the horizontal axis of the graph in FIG. 87 is the defocus amount W20 normalized by the wavelength.
  • FIG. 88 shows the margin of spherical aberration SA for the pattern IVTSM4s0.7 and the pattern IVT4.
  • the horizontal axis of the graph in FIG. 88 is the normalized spherical aberration amount W40.
  • FIG. 89 shows a tangential coma aberration margin for the pattern IVTSM4s0.7 and the pattern IVT4.
  • the horizontal axis of the graph in FIG. 89 is the normalized tangential coma aberration amount W3-1.
  • FIG. 90 shows a margin when the pattern is shifted in the radial direction with respect to the pattern IVTSM4s0.7 and the pattern IVT4.
  • the horizontal axis of the graph of FIG. 90 is the normalized shift amount.
  • the defocus margin and the tangential coma aberration margin are slightly narrowed instead of improving the radial coma aberration margin and the spherical aberration margin.
  • the radial pattern shift which was noticeably degraded in IVT4, is not improved.
  • a plurality of Ksm can be switched and used depending on the media or the like.
  • Pattern IVNS5 Maintaining characteristics and reducing the number of channels
  • two channels (E and F) in the tangential direction of pattern IVNST6 are integrated into one channel (E).
  • Channel F regions F1, F2, and F3 are defined as channel E regions E4, E5, and E6.
  • Such a reduced number of channels is referred to as a pattern IVNS5.
  • the radial region division position is ⁇ 0.25, ⁇ 0.5, and ⁇ 0.7 when the pupil radius is 1.0
  • the tangential region division position is ⁇ 0.45, ⁇ 0.65. It was.
  • FIG. 92 shows a radial coma aberration margin for the pattern IVNS5, the pattern IVT4 described above, and the pattern IVNST6 described above.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents the normalized radial coma aberration W31.
  • FIG. 93 shows defocus margins for the pattern IVNS5, the pattern IVT4, and the pattern IVNST6.
  • the horizontal axis of the graph in FIG. 93 is the defocus amount W20 normalized by the wavelength.
  • FIG. 94 shows the margin of spherical aberration SA for the pattern IVNS5, the pattern IVT4, and the pattern IVNST6.
  • the horizontal axis of the graph of FIG. 94 is the normalized spherical aberration amount W40.
  • FIG. 95 shows a tangential coma aberration margin for the pattern IVNS5, the pattern IVT4, and the pattern IVNST6.
  • the horizontal axis of the graph in FIG. 89 is the normalized tangential coma aberration amount W3-1.
  • FIG. 96 shows a margin when the pattern is shifted in the radial direction with respect to the pattern IVNS5, the pattern IVT4, and the pattern IVNST6.
  • the horizontal axis of the graph of FIG. 96 is the normalized shift amount.
  • the electric filter is configured as an FIR filter.
  • FIG. 100 shows the frequency amplitude characteristics of the channels corresponding to the areas A to E when the coefficients are set in this way.
  • the IVNS5 filter characteristics at the origin of perturbation have the following characteristics.
  • the filter characteristics of E corresponding to the outer area in the tangential direction and A corresponding to the outer area in the radial direction are as follows: the outer area in the tangential direction and the outer area in the radial direction in H3A shown in FIGS.
  • the characteristics are similar to the filter characteristics.
  • the central regions B, C, and D divided into three in the radial direction unlike the above-described IVNST6, the three regions B, C, and D are not significantly different at the perturbation origin. A difference is made between the filter characteristics of the region C and the B and D adjacent to the region C.
  • the central region C is similar to the central region in H3A and blocks a frequency band corresponding to the 4T signal (near the horizontal value 32) and a frequency band corresponding to the 3T signal (near the horizontal value 43). ),
  • the phase is inverted by 180 ° from the other channels (also known from the tap near the center of FIG. 99).
  • B and D have filter characteristics similar to B and D of IVNST6.
  • FIG. 97 showing the tap coefficient of each channel when radial coma occurs and FIG. 98 showing the frequency amplitude characteristic
  • FIG. 99 showing the tap coefficient of each channel at the perturbation origin
  • the filter is such that (center) is strengthened and B and D are considerably weakened. Thereby, in the pattern IVNS5, a good radial disc skew margin close to that of IVNST6 can be realized.
  • the electric filter is configured as an FIR filter.
  • the frequency amplitude characteristics of the channels A to E when the coefficients are set in this way are as shown in FIG.
  • the electric filter is configured as an FIR filter.
  • the frequency amplitude characteristics of the channels A to E when the coefficients are set in this way are as shown in FIG.
  • FIG. 101 showing the tap coefficient of each channel in a state where spherical aberration occurs and FIG. 102 showing the frequency amplitude characteristic
  • FIG. 99 showing the tap coefficient of each channel at the perturbation origin
  • FIG. 100 showing the characteristic at the perturbation origin
  • FIG. 98 showing the characteristic in a state where radial coma aberration occurs
  • FIG. 102 showing a characteristic in the state where spherical aberration occurs.
  • IVNS5 as in the case of IVNST6, it is possible to expand the margin for radial coma and spherical aberration by dividing the central portion into three channels B, C, and D.
  • the frequency characteristics of the filter are already different between C (the center) and B and D in the state of the perturbation center more clearly than IVNST6.
  • FIG. 103 shows the radial coma aberration margin for IVSP4s0.5, IVSP4s0.7, IVSP4s1.0, IVSP4s2.0, the above-described pattern IVNS5, and the above-described pattern IVT4.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents the normalized radial coma aberration W31.
  • FIG. 104 shows the dependence of the radial coma aberration margin on the coefficient Ks.
  • FIG. 105 shows defocus margins for IVSP4s0.5, IVSP4s0.7, IVSP4s1.0, IVSP4s2.0, IVNS5, and IVT4.
  • the horizontal axis of the graph of FIG. 105 is the defocus amount W20 normalized by the wavelength.
  • FIG. 106 shows the dependence of the defocus margin on the coefficient Ks. The defocus margin is better when Ks is smaller.
  • FIG. 107 shows the margin of spherical aberration SA for IVSP4s0.5, IVSP4s0.7, IVSP4s1.0, IVSP4s2.0, IVNS5, and IVT4.
  • the horizontal axis of the graph in FIG. 107 is the normalized spherical aberration amount W40.
  • FIG. 108 shows the dependence of the spherical aberration margin on the coefficient Ks.
  • the spherical aberration margin is better when Ks is larger.
  • FIG. 109 shows tangential coma aberration margins for IVSP4s0.5, IVSP4s1.0, IVNS5, and IVT4.
  • the horizontal axis of the graph in FIG. 109 is the normalized tangential coma aberration amount W3-1.
  • FIG. 110 shows margins when the pattern is shifted in the radial direction with respect to IVSP4s0.5, IVSP4s0.7, IVSP4s1.0, IVSP4s2.0, IVNS5, and IVT4.
  • the horizontal axis of the graph of FIG. 110 is the normalized shift amount.
  • FIG. 111 shows a margin when the pattern is shifted in the radial direction.
  • the vertical axis (e-MLSE) is enlarged, and each graph is easily discriminated.
  • FIG. 113 shows the radial coma aberration margin for IVos4, IVSP4s0.5, IVSP4s1.0, IVNS5, and IVT4.
  • the vertical axis represents the index e-MLSE as in the other graphs described above, and the horizontal axis represents the normalized radial coma aberration W31.
  • FIG. 114 shows defocus margins for IVos4, IVSP4s0.5, IVSP4s1.0, IVNS5, and IVT4.
  • the horizontal axis of the graph in FIG. 114 is the defocus amount W20 normalized by the wavelength.
  • FIG. 115 shows the margin of spherical aberration SA for IVos4, IVSP4s0.5, IVSP4s1.0, IVNS5, and IVT4.
  • the horizontal axis of the graph in FIG. 115 is the normalized spherical aberration amount W40.
  • 116 shows tangential coma aberration margins for IVos4, IVSP4s0.5, IVSP4s1.0, IVNS5, and IVT4.
  • the horizontal axis of the graph in FIG. 116 is the normalized tangential coma aberration amount W3-1.
  • FIG. 117 shows a margin when the pattern is shifted in the radial direction with respect to IVos4, IVSP4s0.5, IVSP4s1.0, IVNS5, and IVT4.
  • the horizontal axis of the graph in FIG. 117 is the normalized shift amount.
  • FIG. 118 similarly shows the margin when the pattern is shifted in the radial direction.
  • the vertical axis (e-MLSE) is enlarged, and each graph is easily discriminated.
  • IVos4 also has better characteristics than IVSP4s0.5. It is also possible to switch and use a plurality of Ks or to change the balance of Ks1 and Ks2 depending on the difference in media or the like.
  • each channel it is represented by an arithmetic expression in the table, but it is not necessary to detect it as an independent signal, it may be detected by the same light receiving unit when receiving light by the detection element, or after receiving light separately, You may calculate electrically.
  • IVTSM4 (FIG. 85) has been described as an example of a pattern for reducing the number of channels from 6 channels to 4 channels. However, the ratio IVT4VG in which the channel composed of the B, C, and D regions at the center of IVTSM4 is changed is taken as an example. The characteristic improvement by control will be described.
  • pattern IVT4VG among the six channels A to F in pattern IVNST6, A (channel 1), E (channel 3), and F (channel 4) are left as they are, and the signal of channel 2 is expressed by the following weighted addition formula: Form.
  • FIG. 119 shows a simulation result of the relationship between Kd and e-MLSE when the detrack amount is 0 nm, 10 nm, 20 nm, and 30 nm.
  • a table or a relational expression that defines the relationship between the detrack amount and Kd is created. If the detrack amount is detected by some method such as using a tracking error and the detected detrack amount is applied to a table or a relational expression and Kd is set, e-MLSE can be minimized. That is, signal degradation can be suppressed.
  • Kd 1 ⁇ (BD) / (B + D)
  • the constant ⁇ is set to a value that changes Kd so as to match the simulation results as much as possible.
  • such a change in Kd can reduce signal degradation.
  • other values may be used as the value of ⁇ .
  • the low-frequency change of the term (BD) / (B + D) may be used. Since the RF signals B and D are used as in the above formula and no detrack amount detection circuit and detection signal supply path are required, the signal processing configuration can be simplified. Become.
  • the central area is divided into three areas B, C, and D in the radial direction.
  • the area C may be omitted and an area division pattern having areas B and D may be used.
  • the RF signals in the regions B and D may be weighted and added.
  • the region A may be divided into A1 and A2, and the RF signals of A1 and A2 may be weighted and added.
  • the present disclosure can be applied to other area division patterns that reduce the number of channels.
  • the weighted addition ratio is changed according to the detrack amount, but the ratio may be changed in accordance with the visual field movement (lens shift).
  • Ks, Ksm, Ks1, Ks2, etc. may be changed in order to enlarge the defocus margin, the tangential coma aberration margin, the radial coma aberration margin, the spherical aberration margin, and the like.
  • TSP5, TSM4, NS5, SP4, and os4 can be considered from NST6 in which the central region of T4 is divided into three in the radial direction in the same way as the group of region division patterns shown in Table 3.
  • HTSP5, HTSM4, HNS5, HSP4, and Hos4 can be considered from HNST6 (FIG. 122) obtained by dividing the central region of HT4 into three in the radial direction.
  • Table 4 summarizes the results. The division position may be changed as appropriate in consideration of various characteristics without changing the basic division pattern.
  • HiSP4, HiSM3, and Hios4 can be considered from HiNS5 (FIG. 123) obtained by dividing the central region of Hi3 into three in the radial direction. Table 5 summarizes the results.
  • VT4 (FIG. 124), VHT4 (FIG. 125), and VHi3 (FIG. 126) can be considered by applying the concept of IVT4 to the T4, HT4, and Hi3 systems, respectively. Furthermore, based on these, it may be considered to increase the number of divisions of regions having different bands in the spatial optical direction in the radial direction.
  • FIG. 127 shows a division pattern NST6 (similar to FIG. 54). A case will be described in which this division pattern is further densified. That is, the simulation conditions are as follows.
  • FIG. 128 shows an example of the 31-tap coefficient value of the electric filter in this case.
  • the electric filter is configured as an FIR filter.
  • the frequency amplitude characteristics of the channels A to F when the coefficients are set in this way are as shown in FIG.
  • e-MLSE is 38.6%
  • NST6 and an electrical filter are used, e-MLSE is improved to 8.6%.
  • the signal reproduced from the optical disc is ideal for the ideal signal due to the increase in intersymbol interference due to the higher density in the line direction and the increase in signal leakage from adjacent tracks due to the higher density in the track direction.
  • the signal is far from the signal.
  • this problem is solved by an electric filter.
  • BDXL registered trademark
  • 33.4 GB / L is realized.
  • the configuration for reproducing a high-density recorded signal according to the present disclosure is as shown in FIG. That is, a reproduction signal is supplied to the optical filter 131, and the optical filter 131 spatially separates it into a plurality of signals having different bands in the linear density direction and / or the track density direction.
  • a plurality of separated signals for example, two signals are supplied to the optimum electric filters 132 and 133, respectively, and the outputs of the electric filters 132 and 133 are added together to obtain an output signal.
  • the optical filter is divided into a plurality of regions, and a plurality of channels of signals obtained from each divided region are supplied to the electric filter.
  • a beam splitter is used as an optical filter.
  • the surface of the disk 124 is irradiated with the laser beam from the light source 121 via the forward / return branching beam splitter 122 and the objective lens 123.
  • the return beam from the disk 124 is reflected by the beam splitter 122 and is incident on the beam splitter 125 for the optical filter.
  • FIG. 131 shows the minimum optical elements necessary for explanation.
  • the beam reflected by the beam splitter 125 is converted into an electric signal by the light receiving element 126A, and the beam transmitted through the beam splitter 125 is converted into an electric signal by the light receiving element 126B.
  • the beam splitter 125 has an incident angle dependency, and spatially separates the inside of the pupil using the incident angle dependency.
  • FIG. 132 shows the reflection characteristics of the beam splitter 125.
  • the vertical axis represents the reflectance
  • the horizontal axis represents the radial position.
  • the radial position is a radial position in the radial direction when the pupil radius is 1.
  • the beams are separated, but unlike the above-described embodiment, the beams guided to the light receiving elements 126A and 126B have overlapping portions.
  • another beam splitter 127 may be disposed between the beam splitter 125 and the light receiving element 126B.
  • the beam splitter 127 has an incident angle dependency.
  • the beam splitter 127 guides the beam at an angle different by 90 ° with respect to the beam guided to the light receiving element 126A and the beam guided to the light receiving element 126B. That is, in FIG. 131, the beam is guided in the direction from the back of the paper to the front, and is received by the light receiving element 126C.
  • FIG. 131 the characteristics of the electric filter to which the electric signals converted by the light receiving elements 126A and 126B are supplied are shown in FIGS. 135 and 136, respectively.
  • FIG. 135 shows an example of the 31-tap coefficient value of the electrical filter.
  • the electric filter is configured as an FIR filter.
  • FIG. 136 shows frequency amplitude characteristics of the reflected light side filter and the transmitted light side filter when the coefficients are set in this way.
  • FIG. 137 shows an example of the 31-tap coefficient of the electric filter suitable for the two-stage configuration in which the beam splitter of FIG. 134 is combined with the configuration of FIG.
  • A is the coefficient of the light receiving element 126A
  • B is the coefficient of the filter supplied with the output of the light receiving element 126B
  • C is supplied with the output of the light receiving element 126C. This is the filter coefficient.
  • the frequency amplitude characteristics of the reflected light side filter and the transmitted light side filter when the coefficients are set in this way are as shown in FIG.
  • an incident angle-dependent beam splitter is used as the optical filter, but a configuration is adopted in which the beam is incident on the half-wave plate and the output light of the half-wave plate is incident on the polarizing beam splitter. You may do it.
  • the optical axis direction of the half-wave plate has a different distribution on the two-dimensional plane.
  • different polarizations can be performed depending on the incident position on the half-wave plate, and the input beam can be separated into two by the polarization beam splitter.
  • this indication can also take the following structures.
  • An optical medium reproducing apparatus for optically reproducing an optical medium on which a plurality of tracks are formed, Dividing the cross-section of the beam returning from the optical medium into a plurality of regions, at least one channel corresponding to the region outside in the radial direction, and at least one channel corresponding to the region having a different position in the tangential direction; When dividing into other channels corresponding to the regions, forming the detection signals of the channels, and forming the detection signals of the channels, the detection signals of at least one channel are the plurality of regions.
  • An optical medium reproducing apparatus comprising: a binarization unit that binarizes the equalized signal to obtain binary data.
  • the multi-input equalizer unit is configured as a multi-input adaptive equalizer unit, An equalization error is obtained from an equalization target signal obtained based on a binary detection result of the binarization unit and an equalization signal output from the multi-input adaptive equalizer unit, and the equalization error is determined as the adaptive error.
  • the optical medium reproducing device further comprising: an equalization error calculation unit that supplies the equalizer unit as a control signal for adaptive equalization.
  • the multi-input adaptive equalizer unit performs a partial response equalization process based on the detection signals of the plurality of regions,
  • the binarization unit performs a maximum likelihood decoding process as a binarization process for the equalized signal of the multi-input adaptive equalizer unit,
  • the equalization error calculation unit is calculated by using an equalization target signal obtained by convolution processing of the binary detection result by the maximum likelihood decoding and an equalization signal output from the multi-input adaptive equalizer unit, etc.
  • the optical medium reproducing apparatus according to (2), wherein a conversion error is obtained.
  • the detection unit has a detector divided corresponding to the plurality of regions, The optical medium reproducing device according to any one of (1) to (6), wherein detection signals of the plurality of regions are extracted from the photodetector.
  • An optical path conversion element for separating the plurality of regions is arranged in an optical path passing through the objective lens and reaching the detector, and the plurality of beams separated by the optical path conversion element are respectively input to different detectors (1).
  • the optical medium reproducing device according to any one of (7) to (7).
  • lands and grooves are alternately formed, The optical medium reproducing device according to any one of (1) to (8), wherein information is recorded on both the land and the groove.
  • An optical medium reproducing method for optically reproducing an optical medium on which a plurality of tracks are formed, Dividing the cross-section of the beam returning from the optical medium into a plurality of regions, at least one channel corresponding to the region outside in the radial direction, and at least one channel corresponding to the region having a different position in the tangential direction;
  • the detection signal is divided into one channel corresponding to the other region, and each detection signal of the channel is formed by the detection unit, and the detection signal of the channel is formed, the detection signal of at least one channel is Forming by weighted addition of signals in a predetermined region of the plurality of regions;
  • a multi-input equalizer unit forms an equalized signal based on the detection signals of the plurality of channels,
  • An optical medium reproducing method for obtaining binary data by performing binarization processing on the equalized signal by a binarization unit.
  • An optical medium reproducing apparatus for optically reproducing an optical medium on which a plurality of tracks are formed, An optical filter which returns from the optical medium and which is incident with a beam and spatially optically forms a plurality of signals having different bands in the linear density direction and the track density direction; A plurality of electric filters to which a plurality of signals formed by the optical filter are respectively supplied; An optical medium reproducing apparatus that obtains a reproduction signal by synthesizing outputs of the plurality of electric filters. (12) The optical medium reproducing apparatus according to (11), wherein the optical filter is a beam splitter having an incident angle dependency.
  • Multi-input adaptive equalizer 14 ⁇ binarization detector 15 ⁇ PR convolution units 21 to 23 ⁇ adaptive equalizer unit 100 ⁇ optical disc 101 ⁇ optical pickup 105 ⁇ data detection Processing units 125, 127... Beam splitters 126A, 126B, 126C.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Head (AREA)

Abstract

 光媒体から戻る、ビームの断面を複数の領域に分割し、ラジアル方向の外側の領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる領域に対応する少なくとも一つのチャンネルと、それ以外の領域に対応する一つのチャンネルとに分割し、チャンネルのそれぞれの検出信号を形成し、チャンネルの検出信号を形成する場合に、少なくとも一つのチャンネルの検出信号を複数の領域の中の所定の領域の信号を重み付け加算することによって形成する検出部と、複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットを有し、複数のチャンネルの検出信号をもとに、等化信号を形成する多入力イコライザ部と、等化信号について2値化処理を行って2値データを得る2値化部とを備える光媒体再生装置である。

Description

光媒体再生装置および光媒体再生方法
 本開示は、光ディスク等の光媒体を再生する光媒体再生装置および光媒体再生方法に関する。
 光ディスクの高密度化をはかる方法として、チャンネルビット長、すなわち、マーク長を短くし、線密度方向に高密度化をはかる方法と、もうひとつはトラックピッチを狭くする方法とがある。しかしながら、線密度方向に高密度化をはかると、符号間干渉が増大する問題が発生する。また、トラックピッチを狭くすると、隣接トラックからの情報の漏れ込み(隣接トラッククロストーク)が増大する。隣接トラッククロストーク(以下、単にクロストークと適宜称する)を低減するための方法が提案されている。
 例えば特許文献1には、再生対象のトラックと、その両側のトラックとのそれぞれの再生信号を適応イコライザユニットに供給し、適応イコライザユニットのタップ係数を制御することによって、クロストークを打ち消すことが記載されている。
特開2012-079385号公報
 特許文献1に記載のものは、再生対象のトラックと両側のトラックを同時に読み取るために、3個のビームを必要とする。3個のビームにより読み取られる再生信号の位相を合わせることが必要であった。1ビームが3個のトラックを順次再生し、再生信号を同時化することも可能である。同時化するためのメモリが必要となる。したがって、特許文献1に記載のものは、光ピックアップの構成が複雑となったり、位相合わせが複雑となったり、回路規模が大きくなる問題があった。さらに、特許文献1に記載のものは、線密度方向に高密度化をはかることについては、言及されていない。
 したがって、本開示の目的は、一つのトラックの再生信号を使用してクロストークを低減することができると共に、線密度方向に高密度化をはかることができる光媒体再生装置および光媒体再生方法を提供することにある。
 本開示は、複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
 光媒体から戻る、ビームの断面を複数の領域に分割し、ラジアル方向の外側の領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる領域に対応する少なくとも一つのチャンネルと、それ以外の領域に対応する一つのチャンネルとに分割し、チャンネルのそれぞれの検出信号を形成し、チャンネルの検出信号を形成する場合に、少なくとも一つのチャンネルの検出信号を複数の領域の中の所定の領域の信号を重み付け加算することによって形成する検出部と、
 複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットを有し、複数のチャンネルの検出信号をもとに、等化信号を形成する多入力イコライザ部と、
 等化信号について2値化処理を行って2値データを得る2値化部とを備える
 光媒体再生装置である。
 本開示は、複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
 光媒体から戻る、ビームが入射され、空間光学的に線密度方向およびトラック密度方向に帯域の異なる複数の信号を形成する光学フィルタと、
 光学フィルタによって形成される複数の信号がそれぞれ供給される複数の電気フィルタとを備え、
 複数の電気フィルタの出力を合成して再生信号を得る光媒体再生装置である。
 本開示によれば、再生対象のトラックの読み取り出力のみを使用してクロストークを低減することができる。したがって、読み取り用の3個のビームを使用することが不要で、さらに、1ビームで連続的に3本のトラックを再生し、メモリによって同時化することが不要である。したがって、光ピックアップの構成が複雑とならず、位相合わせが不要となり、メモリが増大しない利点がある。これにより、より簡易な構成で光ディスクの高密度化をはかることが可能である。さらに、本開示は、ラジアル方向および線密度方向に高密度化をはかることができる。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であっても良い。
本開示の一実施の形態による光ディスク装置の構成を示すブロック図である。 本開示の一実施の形態における光ピックアップの構成を示す略線図である。 一実施の形態におけるデータ検出処理部の一例のブロック図である。 データ検出処理部における多入力適応イコライザの一例のブロック図である。 多入力適応イコライザの一例のブロック図である。 等化誤差演算器の一例のブロック図である。 領域分割のパターンの複数の例を説明するための略線図である。 パターンR2に関する周波数振幅特性を表すグラフである。 パターンR2に関するタップ係数および周波数位相特性を表すグラフである。 パターンR2に関してデフォーカスマージンを説明するためのグラフである。 パターンR2に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 パターンH3AおよびH4Cに関してデフォーカスマージンを説明するためのグラフである。 パターンH3AおよびH4Cに関してディスクのラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 パターンH3AおよびH4Cに関してディスクのタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 パターンH3Aに関する周波数振幅特性を表すグラフである。 パターンH3Aに関するタップ係数および周波数位相特性を表すグラフである。 固定の線密度と指標との関係を示すグラフである。 デフォーカスマージンの説明に使用するグラフである。 ラジアル方向のコマ収差マージンの説明に使用するグラフである。 パターンHT4Aに関する周波数振幅特性を表すグラフである。 パターンHT4Aに関するタップ係数および周波数位相特性を表すグラフである。 領域分割の具体例を示す略線図である。 分割位置の変更によるラジアルコマ収差のマージンの拡大を示すグラフである。 レンズシフトによる影響を受けた例を示す略線図である。 ラジアルコマ収差に対するレンズシフトによる影響を示すグラフである。 ラジアルコマ収差に対するレンズシフトによる影響を示すグラフである。 ラジアルコマ収差に対するレンズシフトによる影響を示すグラフである。 ラジアルコマ収差に対するレンズシフトによる影響を示すグラフである。 デフォーカス特性に対するレンズシフトによる影響を示すグラフである。 デフォーカス特性に対するレンズシフトによる影響を示すグラフである。 デフォーカス特性に対するレンズシフトによる影響を示すグラフである。 ラジアルコマ収差に対するレンズシフトによる影響を示すグラフである。 デフォーカス特性に対するレンズシフトによる影響を示すグラフである。 ラジアルコマ収差に対するレンズシフトによる影響を示すグラフである。 デフォーカス特性に対するレンズシフトによる影響を示すグラフである。 領域分割のパターンの具体例を示す略線図である。 ラジアル方向のコマ収差マージンの説明に使用するグラフである。 ラジアル方向のコマ収差マージンの説明に使用するグラフである。 回折光のシフト量の説明に使用する略線図である。 振幅伝達関数(MTF)の空間周波数特性を示すグラフである。 回折光のシフトの説明に使用する略線図である。 回折光のシフトの説明に使用する略線図である。 光学フィルタの最適化の説明に用いる略線図である。 領域分割パターンIVT4を示す略線図である。 IVT4に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 IVT4に関してデフォーカスマージンを説明するためのグラフである。 IVT4に関して球面収差マージンを説明するためのグラフである。 IVT4に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 IVT4に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 IVT4に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVT4に最適な電気フィルタの周波数特性を示すグラフである。 IVT4に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVT4に最適な電気フィルタの周波数特性を示すグラフである。 領域分割パターンNST6を示す略線図である。 NST6に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 NST6に関してデフォーカスマージンを説明するためのグラフである。 NST6に関して球面収差マージンを説明するためのグラフである。 NST6に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 NST6に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 領域分割パターンIVNST6を示す略線図である。 IVNST6に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 IVNST6に関してデフォーカスマージンを説明するためのグラフである。 IVNST6に関して球面収差マージンを説明するためのグラフである。 IVNST6に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 IVNST6に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 IVNST6に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVNST6に最適な電気フィルタの周波数特性を示すグラフである。 IVNST6に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVNST6に最適な電気フィルタの周波数特性を示すグラフである。 IVNST6に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVNST6に最適な電気フィルタの周波数特性を示すグラフである。 IVNST6に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVNST6に最適な電気フィルタの周波数特性を示すグラフである。 IVNST6に関してタップ数を変えた場合のデフォーカスマージンを説明するためのグラフである。 IVNST6に関してタップ数を変えた場合のタップ係数の一例を示すグラフである。 IVNST6に関してタップ数を変えた場合の周波数特性を示すグラフである。 領域分割パターンNST6Hを示す略線図である。 NST6Hの説明に用いるグラフである。 領域分割パターンIVTSP5を示す略線図である。 IVTSP5に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 IVTSP5に関してデフォーカスマージンを説明するためのグラフである。 IVTSP5に関して球面収差マージンを説明するためのグラフである。 IVTSP5に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 IVTSP5に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 チャンネル数を削減するパターンIVTSM4の説明に使用する略線図である。 IVTSM4に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 IVTSM4に関してデフォーカスマージンを説明するためのグラフである。 IVTSM4に関して球面収差マージンを説明するためのグラフである。 IVTSM4に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 IVTSM4に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 領域分割パターンIVNS5を示す略線図である。 IVNS5に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 IVNS5に関してデフォーカスマージンを説明するためのグラフである。 IVNS5に関して球面収差マージンを説明するためのグラフである。 IVNS5に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 IVNS5に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 IVNS5に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVNS5に最適な電気フィルタの周波数特性を示すグラフである。 IVNS5に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVNS5に最適な電気フィルタの周波数特性を示すグラフである。 IVNS5に最適な電気フィルタのタップ係数の一例を示すグラフである。 IVNS5に最適な電気フィルタの周波数特性を示すグラフである。 チャンネル数を削減するパターンIVSP4に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 ラジアル方向のコマ収差に対するマージンの係数依存性を示すグラフである。 IVSP4に関してデフォーカスマージンを説明するためのグラフである。 デフォーカスマージンの係数依存性を示すグラフである。 IVSP4に関して球面収差マージンを説明するためのグラフである。 球面収差マージンの係数依存性を示すグラフである。 IVSP4に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 IVSP4に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 IVSP4に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 チャンネル数を削減するパターンIVos4の説明に使用する略線図である。 IVos4に関してラジアル方向のコマ収差に対するマージンを説明するためのグラフである。 IVos4に関してデフォーカスマージンを説明するためのグラフである。 IVos4に関して球面収差マージンを説明するためのグラフである。 IVos4に関してタンジェンシャル方向のコマ収差に対するマージンを説明するためのグラフである。 IVos4に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 IVos4に関してラジアル方向にパターンがシフトした場合を説明するためのグラフである。 各デトラック量におけるKd対e-MLSEを説明するためのグラフである。 デトラック量に対するKdの値の変化の一例を説明するためのグラフである。 領域分割パターンのさらに他の例を示す略線図である。 パターンHNST6を示す略線図である。 パターンHiNS5を示す略線図である。 パターンVT4を示す略線図である。 パターンVHT4を示す略線図である。 パターンVHi3を示す略線図である。 パターンNST6を示す略線図である。 さらに高密度化した場合のパターンNST6に関する電気フィルタのタップ係数を示すグラフである。 さらに高密度化した場合のパターンNST6に関する周波数特性を示すグラフである。 本開示の説明に使用するブロック図である。 本開示の他の実施の形態の再生光学系の一例を示す略線図である。 ビームスプリッタの反射特性を示すグラフである。 ビームスプリッタの透過特性を示すグラフである。 追加するビームスプリッタを含む光学系を示す略線図である。 本開示の他の実施の形態における電気フィルタのタップ係数の一例を示すグラフである。 本開示の他の実施の形態における電気フィルタの周波数特性の一例を示すグラフである。 本開示の他の実施の形態における電気フィルタのタップ係数の他の例を示すグラフである。 本開示の他の実施の形態における電気フィルタの周波数特性の他の例を示すグラフである。
 以下に説明する実施の形態は、本開示の好適な具体例であり、技術的に好ましい種々の限定が付されている。しかしながら、本開示の範囲は、以下の説明において、特に本開示を限定する旨の記載がない限り、これらの実施の形態に限定されないものとする。
 なお、本開示の説明は、下記の順序にしたがってなされる。
<1.一実施の形態>
<2.他の実施の形態>
<3.変形例>
<1.一実施の形態>
「光ディスク装置」
 本開示を適用した光ディスク装置は、図1に示すように、光記録媒体としての光ディスク100に対して情報の記録再生を行う光ピックアップ101と、光ディスク100を回転させるスピンドルモータ102とを備える。光ピックアップ101を光ディスク100の径方向に移動させるために、スレッド(送りモータ)103が設けられている。
 光ディスク100としては、BD(Blu-ray (登録商標)Disc)等の高密度光ディスクを使用できる。BDは、片面単層で約25Gバイト、片面2層で約50Gバイトの記録容量を有する高密度光ディスクである。BD規格では、ビームスポット径を小とするために、光源波長を405nmとし、対物レンズの開口数NA(Numerical Aperture)を0.85と大きくしている。CD規格では、光源波長:780nm、NA:0.45、スポット径:2.11μmであり、DVD規格では、光源波長:650nm、NA:0.6、スポット径:1.32μmである。BD規格では、スポット径を0.58μmまで絞ることができる。
 さらに、近年、BD(Blu-ray (登録商標)Disc)に対し、チャンネルビット長すなわちマーク長を短くし、線密度方向に高密度化をはかり、3層で100GBおよび4層で128GBの大容量化を実現したBDXL(登録商標)が実用化されている。
 これに加え、さらなる記録容量の増大のためには、グルーブトラックおよびランドトラックの両方にデータを記録する方法(ランド/グルーブ記録方式と適宜称する)を採用する光ディスクが望ましい。なお、溝のことをグルーブと称し、グルーブにより形成されるトラックをグルーブトラックと称する。グルーブは、光ディスクを製造する時に、レーザ光によって照射される部分と定義され、隣接するグルーブ間に挟まれるエリアをランドと称し、ランドにより形成されるトラックをランドトラックと称する。さらに、複数の情報記録層が積層された多層光ディスクであれば、より記録容量を増加できる。
 このような高密度記録可能な光ディスク100が光ディスク装置に装填されると、記録/再生時においてスピンドルモータ102によって一定線速度(CLV)または一定角速度(CAV)で回転駆動される。ウォブルグルーブの位相を光ディスク100の半径方向で揃えるためには、CAVまたはゾーンCAVが好ましい。再生時には、光ピックアップ(光学ヘッド)101によって光ディスク100上のトラックに記録されたマーク情報の読出が行われる。光ディスク100に対してのデータ記録時には、光ピックアップ101によって光ディスク100上のトラックに、ユーザーデータがフェイズチェンジマークもしくは色素変化マークとして記録される。
 記録可能型ディスクの場合、ウォブリンググルーブによって形成されるトラック上にはフェイズチェンジマークによるレコーディングマークが記録されるが、フェイズチェンジマークはRLL(1,7)PP変調方式(RLL;Run Length Limited、PP:Parity preserve/Prohibit rmtr(repeated minimum transition runlength))等により、1層あたり23.3GBのBDの場合で線密度0.12μm/bit、0.08μm/channel bitで記録される。同様に、25GB/層のBDの場合、0.0745μm/channel bit、32GB/層のBDXL(登録商標)の場合、0.05826μm/channel bit、33.4 GB/層のBDXL(登録商標)の場合、0.05587μm/channel bit というように、ディスク種別に応じてチャンネルビット長に対応した密度での記録が行われる。チャネルクロック周期を「T」とすると、マーク長は2Tから8Tとなる。再生専用ディスクの場合、グルーブは形成されないが、同様にRLL(1,7)PP変調方式で変調されたデータがエンボスピット列として記録されている。
 光ディスク100の内周エリア等には、再生専用の管理情報として例えばディスクの物理情報等がエンボスピットまたはウォブリンググルーブによって記録される。これらの情報の読出も光ピックアップ101により行われる。さらに、光ピックアップ101によって光ディスク100上のグルーブトラックのウォブリングとして埋め込まれたADIP情報の読み出しもおこなわれる。
 光ピックアップ101内には、レーザ光源となるレーザダイオード、反射光を検出するためのフォトディテクタ、レーザ光の出力端となる対物レンズ、対物レンズを介してディスク記録面にレーザ光を照射し、またその反射光をフォトディテクタに導く光学系等が構成される。光ピックアップ101内において対物レンズは二軸機構によってトラッキング方向およびフォーカス方向に移動可能に保持されている。光ピックアップ101全体はスレッド機構103によりディスク半径方向に移動可能とされている。光ピックアップ101のレーザダイオードに対して、レーザドライバ113からの駆動電流が供給され、レーザダイオードがレーザを発生する。
 光ディスク100からの反射光がフォトディテクタによって検出され、受光光量に応じた電気信号とされてマトリクス回路104に供給される。マトリクス回路104には、フォトディテクタとしての複数の受光素子からの出力電流に対応して電流電圧変換回路、マトリクス演算/増幅回路等を備え、マトリクス演算処理により必要な信号を生成する。信号伝送品質を考慮し、電流電圧変換回路をフォトディテクタ素子内に形成するようにしてもよい。例えば再生データに相当する再生情報信号(RF信号)、サーボ制御のためのフォーカスエラー信号、トラッキングエラー信号などを生成する。さらに、グルーブのウォブリングに係る信号、すなわち、ウォブリングを検出する信号としてプッシュプル信号を生成する。
 マトリクス回路104から出力される再生情報信号はデータ検出処理部105へ供給され、フォーカスエラー信号およびトラッキングエラー信号は光学ブロックサーボ回路111へ供給され、プッシュプル信号はウォブル信号処理回路106へ供給される。
 データ検出処理部105は、再生情報信号の2値化処理を行う。例えばデータ検出処理部105では、RF信号のA/D変換処理、PLLによる再生クロック生成処理、PR(Partial Response)等化処理、ビタビ復号(最尤復号)等を行い、パーシャルレスポンス最尤復号処理(PRML検出方式: Partial Response Maximum Likelihood検出方式)により、2値データ列を得るようになされる。データ検出処理部105は、光ディスク100から読み出した情報としての2値データ列を、後段のエンコード/デコード部107に対して供給する。
 エンコード/デコード部107は、再生時における再生データの復調と、記録時における記録データの変調処理を行う。すなわち、再生時にはデータ復調、デインターリーブ、ECCデコード、アドレスデコード等を行い、記録時には、ECCエンコード、インターリーブ、データ変調等を行う。
 再生時においては、データ検出処理部105で復号された2値データ列がエンコード/デコード部107に供給される。エンコード/デコード部107では、2値データ列に対する復調処理を行い、光ディスク100からの再生データを得る。すなわち、例えばRLL(1,7)PP変調等のランレングスリミテッドコード変調が施されて光ディスク100に記録されたデータに対しての復調処理と、エラー訂正を行うECCデコード処理を行って、光ディスク100からの再生データを得る。
 エンコード/デコード部107で再生データにまでデコードされたデータは、ホストインターフェース108に転送され、システムコントローラ110の指示に基づいてホスト機器200に転送される。ホスト機器200とは、例えばコンピュータ装置やAV(Audio-Visual)システム機器などである。
 光ディスク100に対する記録/再生時には、ADIP情報の処理が行われる。すなわち、グルーブのウォブリングに係る信号としてマトリクス回路104から出力されるプッシュプル信号は、ウォブル信号処理回路106においてデジタル化されたウォブルデータとされる。PLL処理によりプッシュプル信号に同期したクロックが生成される。ウォブルデータは、ADIP復調処理部116で、ADIPアドレスを構成するデータストリームに復調されてアドレスデコーダ109に供給される。アドレスデコーダ109は、供給されるデータについてのデコードを行い、アドレス値を得て、システムコントローラ110に供給する。
 記録時には、ホスト機器200から記録データが転送されてくるが、その記録データはホストインターフェース108を介してエンコード/デコード部107に供給される。エンコード/デコード部107は、記録データのエンコード処理として、エラー訂正コード付加(ECCエンコード)やインターリーブ、サブコードの付加等を行う。これらの処理を施したデータに対して、RLL(1-7)PP方式等のランレングスリミテッドコード変調を施す。
 エンコード/デコード部107で処理された記録データは、ライトストラテジ部114に供給される。ライトストラテジ部114では、記録補償処理として、記録層の特性、レーザ光のスポット形状、記録線速度等に対するレーザ駆動パルス波形調整を行う。そして、レーザ駆動パルスをレーザドライバ113に出力する。
 レーザドライバ113は、記録補償処理したレーザ駆動パルスに基づいて、光ピックアップ101内のレーザダイオードに電流を流し、レーザ発光を行う。これにより光ディスク100に、記録データに応じたマークが形成されることになる。
 光学ブロックサーボ回路111は、マトリクス回路104からのフォーカスエラー信号、トラッキングエラー信号から、フォーカス、トラッキング、スレッドの各種サーボドライブ信号を生成しサーボ動作を実行させる。すなわち、フォーカスエラー信号、トラッキングエラー信号に応じてフォーカスドライブ信号、トラッキングドライブ信号を生成し、ドライバ118により光ピックアップ101内の二軸機構のフォーカスコイル、トラッキングコイルを駆動することになる。これによって、光ピックアップ101、マトリクス回路104、光学ブロックサーボ回路111、ドライバ118、二軸機構によるトラッキングサーボループおよびフォーカスサーボループが形成される。
 さらに、光学ブロックサーボ回路111は、システムコントローラ110からのトラックジャンプ指令に応じて、トラッキングサーボループをオフとし、ジャンプドライブ信号を出力することで、トラックジャンプ動作を実行させる。さらに、光学ブロックサーボ回路111は、トラッキングエラー信号の低域成分として得られるスレッドエラー信号や、システムコントローラ110からのアクセス実行制御などに基づいてスレッドドライブ信号を生成し、スレッドドライバ115によりスレッド機構103を駆動する。
 スピンドルサーボ回路112はスピンドルモータ102をCLV回転またはCAV回転させる制御を行う。スピンドルサーボ回路112は、ウォブル信号に対するPLLで生成されるクロックを、現在のスピンドルモータ102の回転速度情報として得、これを所定の基準速度情報と比較することで、スピンドルエラー信号を生成する。さらに、データ再生時においては、データ検出処理部105内のPLLによって生成される再生クロックが、現在のスピンドルモータ102の回転速度情報となるため、これを所定の基準速度情報と比較することでスピンドルエラー信号が生成される。そして、スピンドルサーボ回路112は、スピンドルエラー信号に応じて生成したスピンドルドライブ信号を出力し、スピンドルドライバ117によりスピンドルモータ102のCLV回転またはCAV回転を実行させる。
 スピンドルサーボ回路112は、システムコントローラ110からのスピンドルキック/ブレーキ制御信号に応じてスピンドルドライブ信号を発生させ、スピンドルモータ102の起動、停止、加速、減速などの動作も実行させる。
 以上のようなサーボ系および記録再生系の各種動作はマイクロコンピュータによって形成されたシステムコントローラ110により制御される。システムコントローラ110は、ホストインターフェース108を介して与えられるホスト機器200からのコマンドに応じて各種処理を実行する。例えばホスト機器200から書込命令(ライトコマンド)が出されると、システムコントローラ110は、まず書き込むべきアドレスに光ピックアップ101を移動させる。そしてエンコード/デコード部107により、ホスト機器200から転送されてきたデータ(例えばビデオデータやオーディオデータ等)について上述したようにエンコード処理を実行させる。そして、エンコードされたデータに応じてレーザドライバ113がレーザ発光を駆動することで記録が実行される。
 さらに、例えばホスト機器200から、光ディスク100に記録されている或るデータの転送を求めるリードコマンドが供給された場合は、システムコントローラ110はまず指示されたアドレスを目的としてシーク動作制御を行う。すなわち、光学ブロックサーボ回路111に指令を出し、シークコマンドにより指定されたアドレスをターゲットとする光ピックアップ101のアクセス動作を実行させる。その後、その指示されたデータ区間のデータをホスト機器200に転送するために必要な動作制御を行う。すなわち、光ディスク100からのデータ読出を行い、データ検出処理部105、エンコード/デコード部107における再生処理を実行させ、要求されたデータを転送する。
 なお、図1の例は、ホスト機器200に接続される光ディスク装置として説明したが、光ディスク装置としては他の機器に接続されない形態もあり得る。その場合は、操作部や表示部が設けられたり、データ入出力のインターフェース部位の構成が、図1とは異なるものとなる。つまり、ユーザーの操作に応じて記録や再生が行われると共に、各種データの入出力のための端子部が形成されればよい。もちろん光ディスク装置の構成例としては他にも多様に考えられる。
「光ピックアップ」
 次に、上述した光ディスク装置に用いられる光ピックアップ101について、図2を用いて説明する。光ピックアップ101は、例えば波長λが405nmのレーザ光(ビーム)を用いて、光ディスク100に情報を記録し、光ディスク100から情報を再生する。レーザ光は、半導体レーザ(LD:Laser Diode)1から出射される。
 レーザ光がコリメータレンズ2と、偏光ビームスプリッタ(PBS:Polarizing BeamSplitter )3と、対物レンズ4とを通過して光ディスク100上に照射される。偏光ビームスプリッタ3は、例えばP偏光を略々100%透過させ、S偏光を略々100%反射する分離面を有する。光ディスク100の記録層からの反射光は同じ光路を戻り、偏光ビームスプリッタ3へと入射する。図示しないλ/4素子を介在させることによって、入射したレーザ光は偏光ビームスプリッタ3で略100%反射される。
 偏光ビームスプリッタ3で反射されたレーザ光は、レンズ5を介してフォトディテクタ6の受光面に集光される。フォトディテクタ6は、受光面上に、入射した光を光電変換する受光セルを有する。受光セルは、光ディスク100のラジアル方向(ディスク径方向)および/またはタンジェンシャル方向(トラック方向)に延びる分割線によって複数の領域に分割されている。フォトディテクタ6は、受光セルの各領域の受光量に応じて複数チャンネルの電気信号を出力する。なお、領域の分割方法については後述する。
 なお、図2の光ピックアップ101の構成は、本開示を説明するための最小限の構成要素を示しており、マトリクス回路104を介して光学ブロックサーボ回路111に出力されるフォーカスエラー信号、トラッキングエラー信号や、マトリクス回路104を介してウォブル信号処理回路106に出力されるプッシュプル信号を生成するための信号等は省略されている。その他、図2に示す構成以外の種々の構成が可能である。
 本開示では、光ディスク100からの戻りビームの光束の断面を複数の領域に分割して、各領域に対応する複数チャンネルの再生情報信号を得る。領域毎の再生情報信号を得る方法としては、フォトディテクタ6を分割する方法以外の方法を使用できる。例えば、対物レンズ4を通過し、フォトディテクタ6に至る光路中に、複数の領域を分離するための光路変換素子を配置し、光路変換素子によって分離された複数のビームを異なるフォトディテクタに供給する方法を使用しても良い。光路変換素子としては、ホログラフィック光学素子等の回折素子や、マイクロレンズアレイ、マイクロプリズム等の屈折素子等を使用することができる。
「データ検出処理部」
 上述したように、光ピックアップ101により光ディスク100から再生され、各領域に対応する検出信号がマトリクス回路104に供給され、各領域に対応する複数チャンネルの再生情報信号とされる。データ検出処理部105は、図3に示すように、マトリクス回路104から供給される再生情報信号が供給されるA/Dコンバータ11を有する。なお、図3および図4は、例えば光ディスク100からの戻りビームの光束の断面を3個の領域に分割し、マトリクス回路104からは、3チャンネルの再生情報信号が得られる例である。
 A/Dコンバータ11に対するクロックがPLL12によって形成される。マトリクス回路104から供給される再生情報信号は、A/Dコンバータ11でデジタルデータに変換される。領域A~Cのデジタル化された3チャンネルの再生情報信号をSa~Scと表記する。PLL12には、再生情報信号Sa~Scを加算回路17によって加算した信号が供給される。
 さらに、データ検出処理部105は、多入力適応イコライザ部13、2値化検出器14、PR畳込器15、等化誤差演算器16を有する。多入力適応イコライザ部13は、再生情報信号Sa~ScをもとにPR適応等化処理を行う。すなわち、再生情報信号Sa~Scが適応イコライザユニットを介して出力され、加算された等化信号y0を目標とするPR波形に近似するように等化される。
 なお、PLL12へ入力する信号として、多入力適応イコライザ部の出力を用いても良い。この場合には、多入力適応イコライザの初期係数をあらかじめ定められた値に設定しておく。
 2値化検出器14は例えばビタビデコーダとされ、PR等化された等化信号y0に対して最尤復号処理を行って2値化データDTを得る。この2値化データDTは、図1に示したエンコード/デコード部107に供給されて再生データ復調処理が行われることになる。ビタビ復号は、所定の長さの連続ビットを単位として構成される複数のステートと、それらの間の遷移によって表されるブランチで構成されるビタビ検出器が用いられ、全ての可能なビット系列の中から、効率よく所望のビット系列を検出するように構成されている。
 実際の回路では、各ステートに対してパスメトリックレジスタとよばれるそのステートに至るまでのパーシャルレスポンス系列と信号のパスメトリックを記憶するレジスタ、パスメモリレジスタと呼ばれるそのステートにいたるまでのビット系列の流れを記憶するレジスタの2つのレジスタが用意される。さらに、各ブランチに対してはブランチメトリックユニットとよばれるそのビットにおけるパーシャルレスポンス系列と信号のパスメトリックを計算する演算ユニットが用意されている。
 このビタビ復号器では、さまざまなビット系列を、ステートを通過するパスのひとつによって一対一の関係で対応付けることができる。また、これらのパスを通過するようなパーシャルレスポンス系列と、実際の信号(再生信号)との間のパスメトリックは、上記のパスを構成するステート間遷移、すなわち、ブランチにおける前述のブランチメトリックを順次加算していくことで得られる。
 さらに、パスメトリックを最小にするようなパスを選択するには、この各ステートにおいて到達する2つ以下のブランチが有するパスメトリックの大小を比較しながら、パスメトリックの小さいパスを順次選択することで実現できる。この選択情報をパスメモリレジスタに転送することで、各ステートに到達するパスをビット系列で表現する情報が記憶される。パスメモリレジスタの値は、順次更新されながら最終的にパスメトリックを最小にするようなビット系列に収束していくので、その結果を出力する。
 PR畳込器15では、下記の式に示すように、2値化結果の畳み込み処理を行って目標信号Zkを生成する。この目標信号Zkは、2値検出結果を畳み込んだものであるためノイズのない理想信号である。例えばPR(1,2,2,2,1)の場合、チャンネルクロック毎の値Pが(1,2,2,2,1)となる。拘束長が5である。さらに、PR(1,2,3,3,3,2,1)の場合、チャンネルクロック毎の値Pが(1,2,3,3,3,2,1)となる。拘束長が7である。レーザ光の波長λ=405nmで、対物レンズのNA=0.85にて、トラックピッチを0.32μm一定として、容量が35GBを超える程度に記録密度を高くした場合、パーシャルレスポンスの拘束長5から7に長くして検出能力を高くしないと、検出が難しくなる。なお、下記の式において、dは、2値化データを表す。
Figure JPOXMLDOC01-appb-M000001
 等化誤差演算器16は、多入力適応イコライザ部13からの等化信号y0と、目標信号Zkから、等化誤差ekを求め、この等化誤差ekを多入力適応イコライザ部13にタップ係数制御のために供給する。図6に示すように、等化誤差演算器16は、減算器25と係数乗算器26とを備える。減算器25は、等化信号y0から目標信号Zkを減算する。この減算結果に対して、係数乗算器26によって所定の係数aを乗算することで等化誤差ekが生成される。
 多入力適応イコライザ部13は、図4に示すように、適応イコライザユニット21,22,23および加算器24を有する。上述した再生情報信号Saが適応イコライザユニット22に入力され、再生情報信号Saが適応イコライザユニット21に入力され、再生情報信号Scは適応イコライザユニット23に入力される。領域分割数が3の場合の多入力適応イコライザ部13の構成が示されている。領域分割数に対応して適応イコライザユニットが備えられている。
 適応イコライザユニット21,22,23の各々は、FIR(Finite Impulse Response) フィルタタップ数、その演算精度(ビット分解能)、適応演算の更新ゲインのパラメーターを持ち、各々に最適な値が設定されている。適応イコライザユニット21,22,23の各々には、適応制御のための係数制御値として等化誤差ekが供給される。
 適応イコライザユニット21,22,23の出力y1,y2,y3は、加算器24で加算されて多入力適応イコライザ部13の等化信号y0として出力される。この多入力適応イコライザ部13の出力目標は、2値検出結果をPR(パーシャルレスポンス)に畳みこんだ理想PR波形となっている。
 適応イコライザユニット21は、例えば図5に示すようなFIRフィルタで構成される。適応イコライザユニット21は、遅延素子30-1~30-n、係数乗算器31-0~31-n、加算器34を有するn+1段のタップを有するフィルタとされる。係数乗算器31-0~31-nは、それぞれ各時点の入力xに対してタップ係数C0~Cnの乗算を行う。係数乗算器31-0~31-nの出力が加算器34で加算されて出力yとして取り出される。
 適応型の等化処理を行うため、タップ係数C0~Cnの制御が行われる。このために、等化誤差ekと、各タップ入力が入力されて演算を行う演算器32-0~32-nが設けられる。また各演算器32-0~32-nの出力を積分する積分器33-0~33-nが設けられる。演算器32-0~32-nのそれぞれでは、例えば-1×ek×xの演算が行われる。この演算器32-0~32-nの出力は積分器33-0~33-nで積分され、その積分結果により係数乗算器31-0~31-nのタップ係数C0~Cnが変更制御される。なお、積分器33-0~33-nの積分を行うのは、適応係数制御の応答性を調整するためである。
 以上の構成のデータ検出処理部105では、クロストーク等の不要な信号の低減が行われたうえで2値化データの復号が行われることになる。
 適応イコライザユニット22および23も、適応イコライザユニット21と同様の構成を有する。適応イコライザユニット21,22,23に対して共通の等化誤差ekが供給されて適応等化が行われる。すなわち、適応イコライザユニット21,22,23では、再生情報信号Sa、Sb、Scの入力信号周波数成分の誤差、位相歪みを最適化、すなわち適応PR等化をおこなう。すなわち、演算器32-0~32-nでの-1×ek×xの演算結果に応じてタップ係数C0~Cnが調整される。このことは、等化誤差を解消していく方向にタップ係数C0~Cnが調整されることである。
 このように、適応イコライザユニット21,22,23では、等化誤差ekを用いてタップ係数C0~Cnが、目標の周波数特性となる方向に適応制御される。適応イコライザユニット21,22,23の出力y1,y2,y3が加算器24で加算されて得られる多入力適応イコライザ部13の等化信号y0は、クロストーク等が低減された信号となる。
「領域分割のパターン」
 最初に本明細書における領域分割のパターンの例について説明する。図7に示すように、光ディスク100から戻るビームの光束の断面の領域を分割するパターンとしては、複数のものがある。各パターンについて説明する。なお、図中の円がビーム光束の断面の外周を示している。正方形は、例えば検出用のフォトディテクタの受光セルのエリアを表している。なお、領域分割図の上下方向が戻り光束のタンジェンシャル方向、左右方向がラジアル方向にそれぞれ対応している。さらに、図7に示す領域分割パターンは、一例であって、図7に示す以外のパターンも可能である。例えば分割線は、直線に限らず、円弧のような曲線であっても良い。
・パターンR2
 パターンR2は、ビームをタンジェンシャル方向に延長する2本の分割線によって、領域Aと領域B(=B1+B2)とラジアル方向に二つに分割する例である。領域B1およびB2の受光信号に応じた電気信号は、加算されて1チャンネルの信号とされる。すなわち、図3の例は、内側チャンネル(領域A)と外側チャンネル(領域B1+B2)の2チャンネルの例である。このような領域分割をパターンR2と称する。
・パターンR3
 パターンR2において、外側の二つの領域をBとCと別のチャンネルの領域として扱う。このような領域分割のパターンをR3と称する。3個の領域に対応する3チャンネルの信号が得られる。
・パターンH3A
 パターンH3Aは、パターンR2に対して、ラジアル方向に延びる分割線によって、領域Aの上下を区切り、タンジェンシャル方向の上下に領域C1およびC2を形成し、残りの中央の領域をAとするものである。すなわち、領域A、領域(B1+B2)、領域C(=C1+C2)の3個に分割するパターンである。3個の領域に対応する3チャンネルの信号が得られる。
・パターンH4C
 パターンH4Cは、パターンH3Aの上下の領域C1およびC2をさらに、タンジェンシャル方向に2分割して領域D1およびD2を形成するものである。すなわち、領域A、領域(B1+B2)、領域C(=C1+C2)、領域D(=D1+D2)の4個に分割するパターンである。4個の領域に対応する4チャンネルの信号が得られる。
・パターンT3A
 パターンT3Aは、パターンH3Aの上下の領域C1およびC2を領域B1およびB2をそれぞれ覆うように延長したパターンである。領域A、領域(B1+B2)、領域C(=C1+C2)の3個に分割するパターンである。3個の領域に対応する3チャンネルの信号が得られる。
・パターンX4A
 パターンX4Aは、パターンH3Aにおいて、領域Aをタンジェンシャル方向に分割する分割線を延長して4隅の領域B2、B3、C2、C3を形成するものである。領域A、領域(B1+B2+B3)、領域C(=C1+C2+C3)、領域D(D1+D2)の4個にビーム断面を分割するパターンである。4個の領域に対応する4チャンネルの信号が得られる。
・パターンHi3A
 パターンH3Aにおいて、上下の領域C1およびC2の内で、タンジェンシャル方向の分割線を1本とし、領域C2を設けないパターンである。その結果、中央の領域Aの中心位置がビーム断面の中心位置に対してタンジェンシャル方向で下方にずれ、タンジャンシャル方向の中心位置の異なる2チャンネルを含む、3チャンネルの信号が得られる。
・パターンHi3B
 パターンHi3Aと同様の領域分割を行うものである。但し、上側の領域C1の幅がパターンHi3Aに比して広いものとされている。
・パターンHT4A
 パターンH3Aの領域C2を第4のチャンネルの領域Dとするものである。領域A、領域(B1+B2)、領域C、領域Dの4個にビーム断面を分割するパターンである。4個の領域に対応し、タンジャンシャル方向の中心位置の異なる3チャンネルを含む、4チャンネルの信号が得られる。
・HTR5A
 パターンHT4Aにおけるラジアル方向外側の二つの領域B1およびB2を別のチャンネルの領域として5チャンネルの信号を得るものである。
・パターンT4A
 パターンHT4Aの上下の領域CおよびDを領域B1およびB2をそれぞれ覆うように延長したパターンである。領域A、領域(B1+B2)、領域C、領域Dの4個に分割するパターンである。4個の領域に対応し、タンジャンシャル方向の中心位置の異なる3チャンネルを含む、4チャンネルの信号が得られる。
・パターンHi4A
 パターンHT4Aにおいて、領域Cの下側に隣接して領域Dを設けるパターンである。その結果、中央の領域Aの中心位置がビーム断面の中心位置に対してタンジェンシャル方向で下方にずれている。タンジャンシャル方向の中心位置の異なる3チャンネルを含む、4チャンネルの信号が得られる。
・パターンL6A
 パターンHT4Aの上下の領域CおよびDのそれぞれの下側に隣接する領域EおよびFを設ける。領域A~Fのそれぞれからタンジャンシャル方向の中心位置の異なる5チャンネルを含む、6チャンネルの信号が得られる。
・パターンLR7A
 パターンL6Aにおいて、領域B1を領域Bとし、領域B2を領域Gとする。領域A~Gのそれぞれから7チャンネルの信号が得られる。
 以下、それぞれのパターンに対するシミュレーション結果に基づき説明を行う。シミュレーション条件は以下の通りである。
 ・Tp=0.225μm(ランド、グルーブのそれぞれが) ・NA=0.85    ・PR(1233321) ・評価指標:e-MLSE(後述する)
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
 また、線密度は直径が120mmディスクでトラックピッチTp=0.32 μmのときの面容量を用いて表すこととする。
 特に、「低線密度」としている場合、
 ・LD35.18(GB)・・・0.053μm/channel bit、 Tp=0.32 μmのとき面容量35.18GBとなる。
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)の場合、LD35.18GBとあわせ、面容量50.0GB となる。
 また、「高線密度」としている場合、
 ・LD41(GB)・・・0.04547μm/channel bit、Tp=0.32μmのとき面容量41GBとなる。
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)の場合、LD41GBとあわせ、面容量58.3GBとなる。
「パターンR2における適応型フィルタ特性」
 本開示に対する比較例として、パターンR2の低線密度の場合の適応型フィルタ特性について説明する。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置とした。上述したように、複数のチャンネルの再生情報信号が多入力適応イコライ ザ部13において処理される。多入力適応イコライザ部13は、チャンネル数に等しい適応イコライザユニットを有している。適応イコライザユニットは、FIRフィルタの構成とされており、それぞれのタップ係数が適応的に制御される。
 パターンR2に関してシミュレーションの結果の周波数振幅特性を図8に示す。特性L1は、外側の領域Bに対応するチャンネルの周波数振幅特性であり、特性L2は、内側の領域Aに対応するチャンネルの周波数振幅特性である。なお、特性は、摂動原点での特性例である。ここでいう摂動原点とは、デフォーカスやディスクスキュー等が全て原点にあり、適応制御を行った場合に基本的にはおおむね最も良好な結果が得られる状態を意味している。
 周波数振幅特性において、横軸は、n/(256T)(n:横軸の値)である。例えば(n=64)の場合には、(64/256T)=(1/4T)となる。例えばRLL(1,7)PP変調方式を使用した場合、チャネルクロック周期を「T」とすると、マーク長は2Tから8Tとなる。(1/4T)は、2Tのマークが繰り返す場合の周波数である。図8の特性では、2Tのマークは、再生できない周波数領域となっており、3Tのマークが再生できる特性となっている。
 図9Aは、パターンR2の各チャンネルのタップ係数を示す。例えばFIRフィルタのタップ数が31タップとされている。図9Bは、各チャンネルの周波数位相特性を示す。周波数位相特性は、2チャンネル間の位相差を表している。図9Bに示すように、2チャンネル間で位相差は小さいものとなる。
「再生性能」
 パターンR2に関しての再生性能のシミュレーション結果を図10および図11に示す。これらの図は、低線密度の場合でパターンR2の領域分割の効果を示す。
 線密度は直径が120mmディスクでトラックピッチTp=0.32μmのときの面容量を用いて表すこととする。
 ・LD35.18(GB)・・・0.053μm/channel bit、 Tp=0.32 μmのとき面容量35.18GBとなる。
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)の場合、LD35.18GBとあわせ、面容量50.0GBとなる。
 ・NA=0.85     ・PR(1233321)   ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
 ・ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置とした。
 このような条件では、e-MLSEが改善する。
 e-MLSE≦15%となるマージン幅は、分割なし(e-MLSEと表すグラフ)では皆無なのに対して、図10に示すように、デフォーカスマージン W20全幅 0.21 ( ±0.18μm相当)となる。図11に示すように、ラジアルコマ収差マージンW31全幅 0.25 (±0.44deg相当)となる。
 図10のグラフの横軸は、波長によって正規化されたデフォーカス量である。0の値がデフォーカス量が0を意味している。実際の再生時には、デフォーカスが発生するので、デフォーカスに対してのマージンを持つことが必要とされる。
 (正規化されたデフォーカス量対指標)のグラフにおいて、e-MLSEの値が小さいほど再生性能が高いことを意味する。一例として、e-MLSEの値がほぼ0.15以下であることが好ましい。したがって、デフォーカスマージンは、e-MLSEの値がほぼ0.15以下となる範囲の幅と対応している。この幅が大きいほど、デフォーカスマージンが大である。
 マージンとして、デフォーカスマージンの他にも、ディスクのスキューに対するマージンも重要である。図11は、ディスクのラジアル方向のスキューに対応した3次コマ収差W31(波長で正規化された収差係数)に対するマージンを示す。一例として、e-MLSEの値がほぼ0.15以下であることが好ましい。したがって、コマ収差マージンは、e-MLSEの値がほぼ0.15以下となる範囲の幅と対応している。この幅が大きいほど、ラジアルディスクスキューマージンが大である。
 図10および図11のグラフの縦軸は、再生性能を表すための指標である。例えば指標として、i-MLSEの値が知られている。MLSE(Maximum Likelihood Sequence Error)は、ビタビ検出されたデータを用いて設定されるターゲットレベルに対して実際の信号のレベルの差を用いて、エラー確率に対応した指標を計算したものである。BDXL(登録商標)の場合では、i-MLSEという方法を用いて、いくつかのエラーを引き起こしやすいデータパターンに重みを付けして計算が行われる。
 なお、BDXL(登録商標)に比してより記録密度を高くした場合には、エラーを引き起こしやすいデータパターンが異なってくる。その結果、従来の信号指標値であるi-MLSEの誤差が問題となってくる。そこで、本開示においては、より高い線密度での信号指標値の精度改善のために必要となる、新たなデータパターンを追加した、i-MLSEとは別の信号評価値を効果の説明のために用いている。以下、精度が改善された新たな指標値をe-MLSEと呼ぶ。
 e-MLSEにおいて追加されたデータパターンは以下の3種となる。
 パターン列の1が記されているビットが、検出パターンに対し、誤りパターンでビット反転が起こる箇所を示している。
追加パターン(1):10111101
追加パターン(2):1011110111101
追加パターン(3):10111100111101
 ちなみに、i-MLSEの精度が十分な従来のBDXL(登録商標)と同等の線密度ではe-MLSEとi-MLSEは、ほぼ一致し、より高い線密度において誤差改善の分の差分が現れる。実用で重要となるエラーレートに対する指標値の理論上の相関関係は両者で同一となっている。したがって、演算上の違い、適用線密度の範囲の違いはあるものの、両者の示す信号品質の評価値は同じ感覚でとらえて構わない。なお、本開示においては、e-MLSE以外の指標を使用しても良い。
 パターンR2の場合は、クロストーク成分がもともと有する振幅位相特性をそのまま活用し、チャネル間の位相差はほとんど変えずに、振幅特性のチャネル間バランスを用いて信号特性を改善している。パターンR2は、ラジアル方向に内外に分割するものであり、トラックピッチを狭くした場合に生じる隣接トラックからのクロストークを抑える効果がある。したがって、パターンR2のように、ラジアル方向でのみ領域分割を行う例では、タンジェンシャル方向の符号間干渉等による信号劣化に充分対応することができない問題がある。以下に説明する本開示は、このような点を考慮したものである。
「タンジェンシャル方向にさらに領域分割を行う(パターンH3AおよびH4C)」
 タンジェンシャル方向にさらに領域分割を行う例として、パターンH3AおよびH4C(図7参照)の再生性能を図12、図13および図14に示す。図12は、(正規化されたデフォーカス量対指標)のグラフである。図13は、(正規化されたラジアル方向のスキュー量対指標)のグラフである。図14は、(正規化されたタンジェンシャル方向のスキュー量対指標)のグラフである。
 これらの図は、低線密度の場合でタンジェンシャル方向分割の効果を示す。
 シミュレーションは、下記の条件で行った。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
 ・ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置で共通とし、タンジェンシャル方向の領域分割位置は、±0.65,±0.30となる位置とした。
 図12~図14から分かるように、タンジェンシャル方向にさらに領域分割を行うと、ラジアル方向でのみ領域分割するパターンR2に比してグラフのボトムがより下がり、マージンが拡大する。
 このような条件においてパターンH3Aは、下記のようにマージンを改善する。
 デフォーカスマージンW20全幅 0.27 (±0.23μm相当)となる。ラジアルコマ収差マージンW31全幅 0.30(±0.53deg相当)となる。
 このような条件においてパターンH4Cは、下記のようにマージンを改善する。
 デフォーカスマージンW20全幅 0.275 (±0.235μm相当)となる。ラジアルコマ収差マージンW31全幅 0.30(±0.53deg相当)となる。
 上述したように、ラジアル方向に加えてタンジェンシャル方向にさらに領域分割を行うことによって、ラジアル方向のみの分割に比較して再生性能をより高くすることができる。なお、本明細書の説明は、適応イコライザユニット(FIRフィルタ)のタップ係数が適応的に制御するものとしている。しかしながら、シミュレーションの結果、最良なタップ係数が求められた場合、そのタップ係数を固定したイコライザユニットを使用することや、同等の特性を有するFIRフィルタ以外のアナログフィルタ、デジタルフィルタを使用することも可能である。性能面では適応型が優れるが、タップ係数の適応的制御を行わないので良いので、処理およびハードウェアを簡略化することができる。また、複数チャネルのうち、一部のチャネルに固定タイプのイコライザユニットを使用し、その他のチャネルには適応型のイコライザユニットを使用するようにすることも可能である。
「パターンH3Aにおける適応型電気光学フィルタ特性」
 パターンH3Aの低線密度の場合の適応型電気光学フィルタ特性について説明する。パターンH3A(図7参照)に関してシミュレーションの結果の周波数振幅特性を図15に示す。特性L1は、ラジアル方向外側の領域Bに対応するチャンネルの周波数振幅特性であり、特性L2は、タンジェンシャル方向外側の領域Cに対応するチャンネルの周波数振幅特性であり、特性L3は、中央の領域Aに対応するチャンネルの周波数振幅特性である。なお、特性は、摂動原点での特性例である。
 図16Aは、パターンH3Aの各チャンネルのタップ係数を示す。例えばFIRフィルタのタップ数が31タップとされている。図16Bは、各チャンネルの周波数位相特性を示す。周波数位相特性は、3チャンネルの内の2チャンネル間の位相差を表している。特性L11は、タンジェンシャル方向外側の領域Cと、ラジアル方向外側の領域Bとにそれぞれ対応するチャンネルの再生情報信号間の位相差である。特性L12は、中央の領域Aと、ラジアル方向外側の領域Bとにそれぞれ対応するチャンネルの再生情報信号間の位相差である。特性L13は、タンジェンシャル方向外側の領域Cと、中央の領域Aとにそれぞれ対応するチャンネルの再生情報信号間の位相差である。
 上述したように、H3Aのフィルタ特性は、下記のような特徴を有する。
 ・3チャネルの各領域ごとに、振幅、位相ともに大きく異なる周波数特性をもつフィルタを構成し、良好な再生信号再生を実現することができる。
 ・3T信号に相当する周波数帯(破線で囲んで示す横軸の値43の近傍)では、中央領域に対して、タンジェンシャル方向外側の領域Cと、ラジアル方向外側の領域Bの位相を180deg ずらしている。
 ・中央領域は4T信号に相当する周波数帯(破線で囲んで示す横軸の値32の近傍)を遮断する特性とし、クロストークによる偽信号を抑制している。
 ・タンジェンシャル方向外側は、短マーク再生に寄与すべきであり、8T信号に相当する周波数帯(破線で囲んで示す横軸の値16の近傍)を遮断している。
 このように、領域ごとに、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ、バンドストップ(またはノッチ)フィルタ等を構成し、光学だけでも電気だけでも実現しえないフィルタ特性を実現している。
 図17は、(NA=0.85、Tp=0.225、PR(1233321))固定での線密度と指標との関係を示す。タンジェンシャル方向の中心位置が異なるチャネルを作ると、同じPRクラスでもより高線密度な信号を良好に再生できるようになる。パターンHi3Bのように、タンジェンシャル方向の分割位置の最適化でも特性を改善可能である。摂動中心でのe-MLSE≦10%とすると、パターンR2およびH3Aは、LD38GBまでである。これに対し、Hi3B、HT4A、Hi4Aは、LD41GBまで可能である。
「タンジェンシャル方向分割の高線密度化効果」
 パターンH3A、Hi3A、Hi3B、HT4A、Hi4Aと比較用のパターンR2およびH3A(図7参照)の再生性能を図18および図19に示す。図18は、(正規化されたデフォーカス量対指標)のグラフである。図19は、(正規化されたラジアル方向のスキュー量対指標)のグラフである。
 これらの図は、高線密度の場合でタンジェンシャル方向分割の効果を示す。
 シミュレーションは、下記の条件で行った。
 ・LD41(GB)・・・0.04547μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)の場合、LD41(GB)とあわせ、面容量58.3GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
 ・ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.55となる位置で共通とし、タンジェンシャル方向の領域分割位置は、±0.30および±0.65となる位置とした。
 図18および図19から分かるように、LD41GBという高線密度では、タンジェンシャル方向の中心位置が異なるチャネルをもたないパターンR2およびH3Aでは、e-MLSEが15%付近を推移している。これに対して、タンジェンシャル方向の中心位置が異なるチャネルをもつパターンHi3A、Hi3B、HT4A、Hi4Aでは、e-MLSE≦15%となるマージン幅を十分確保できている。特に、パターンHT4Aは、LD41GBにおいて、LD35.18GBにおけるパターンH3Aと同等なマージン幅となっている。
「パターンHT4Aにおける適応型電気光学フィルタ特性」
 パターンHT4A(図7参照)の高線密度の場合の適応型電気光学フィルタ特性について説明する。パターンHT4Aに関してシミュレーションの結果の周波数振幅特性を図20に示す。特性L21は、ラジアル方向外側の領域Bに対応するチャンネルの周波数振幅特性であり、特性L22は、タンジェンシャル方向外側の領域Cに対応するチャンネルの周波数振幅特性である。特性L23は、中央の領域Aに対応するチャンネルの周波数振幅特性であり、特性L24は、タンジェンシャル方向外側の領域Dに対応するチャンネルの周波数振幅特性である。なお、特性は、摂動原点での特性例である。
 図21Aは、パターンHT4Aの各チャンネルのタップ係数を示す。例えばFIRフィルタのタップ数が31タップとされている。図21Bは、各チャンネルの周波数位相特性を示す。周波数位相特性は、タンジェンシャル方向外側の領域Cに対応するチャンネルと、タンジェンシャル方向外側の領域Dに対応するチャンネル間の位相差を表している。
 HT4Aのフィルタ特性は、下記のような特徴を有する。
 ・パターンH3Aと同様に、中央領域はローパス的特性に、タンジェンシャル方向外側領域はハイパス的特性となっている(ここでいうハイパス的とは、信号再生に寄与している周波数帯域内で、より短いマークに対応する帯域を通すバンドパス特性を、相対的にハイパス的と表現している)。
 ・さらに、パターンH4TAでは、タンジェンシャル方向の外側領域が独立に2チャネルとなっており、その2領域が3T、4T相当の周波数帯(横軸の43、32の値の近傍)で120~90deg程度の位相差となるようなフィルタを構成している(タップ係数を見てもわかるように、2クロック分)。これにより、単純な総和信号による再生振幅に対して、短マークに関して、より感度の高い検出が可能となっている。短マーク再生に関して、領域間の位相差も活用することで、高線密度領域における良好な再生信号特性を実現している。
 上述した線密度依存性のグラフからもわかるように、パターンHi3AからHi3Bのように、分割位置の変更により、線密度によらず特性が改善できることもあれば、HT4AとHi4Aのように、線密度によって特性が逆転する場合もある。図22は、領域分割のいくつかの具体例を示している。システムとしてより重視する線密度(面容量)を決めた場合、それに対して分割パターンを最適化することが可能である。
「領域分割による特性最適化」
 次に、良好な特性が得られる分割パターンの種類が多い低線密度の場合を例に、分割パターンの最適化について示す。
 ・LD35.18(GB)・・・0.053μm/channel bit ・Tp=0.225μm(Land、Grooveそれぞれが) 面容量が50GBとなる。
 ・NA=0.85  ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
 図23は、分割位置の変更によるラジアルコマ収差のマージンの拡大を示している。分割位置は、パターンHT4A、H3Aがラジアル方向±0.55、タンジェンシャル方向±0.65とする。パターンT4A、T3Aは、ラジアル方向±0.7、タンジェンシャル方向±0.6で、分割形状も4隅を変更している。
 図23から分かるように、パターンHT4Aは、ラジアルコマ収差W31の全幅 0.32(±0.56deg相当)となる。パターンT4Aは、ラジアルコマ収差W31の全幅0.34 (±0.60deg相当)となる。パターンH3Aは、ラジアルコマ収差W31の全幅 0.30 (±0.53deg相当)となる。パターンT3Aは、ラジアルコマ収差W31の全幅 0.32 (±0.56deg相当)となる。
「ラジアル方向分割の外側領域を独立にする効果」
 図24は、ラジアル方向のみを分割して3個の領域を形成するパターンであって、疑似的に対物レンズのレンズシフト(図ではLSと表記する)に応じて視野が移動した場合を示す。パターンとしては、R2(領域A、B1、B2)およびR3(領域A、B、C)を想定する。レンズシフトがラジアル方向に0.2(ビーム光束の断面の直径を2.0としているので、0.2は、10%)発生したものとしている。
「ラジアル方向分割の外側領域を独立にする効果1」
 これらのパターンに関して、ラジアルコマ収差のマージンのシミュレーション結果を図25のグラフに示す。図25からR2(LS 0.2)のパターンのコマ収差のマージンが低下している。すなわち、ラジアル方向に分割して場合、外側の二つの領域を独立にする方が視野移動の影響を少なくすることができる。なお、視野移動に強くする手法は、後述するように、他のものがある。
「レンズシフト時のラジアルコマ収差のマージン変化」
 パターンR3に関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるラジアルコマ収差特性変化を図26Aに示す。図26Bは、0.2シフトを示し、図26Cは、シフト無しを示す。図26Aから分かるように、分割幅を最適化すれば、視野移動によるラジアルコマ収差のマージン幅の変化を抑えることができる。
 パターンT4Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるラジアルコマ収差特性変化を図27Aに示す。図27Bは、0.2シフトを示し、図27Cは、シフト無しを示す。図27Aから分かるように、視野移動によるマージン幅が確保できている。但し、中心がややシフトしている。
 パターンT3Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるラジアルコマ収差特性変化を図28Aに示す。図28Bは、0.2シフトを示し、図28Cは、シフト無しを示す。図28Aから分かるように、視野移動によるマージン幅が急激に狭くなっている。したがって、パターンT3Aの場合は、視野移動量を抑えることが必要とされる。
「レンズシフト時のデフォーカスマージン変化」
 パターンR3に関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるデフォーカス特性変化を図29Aに示す。図29Bは、0.2シフトを示し、図29Cは、シフト無しを示す。図29Aから分かるように、分割幅を最適化すれば、視野移動によるデフォーカスマージン幅の変化を抑えることができる。
 パターンT4Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるデフォーカス特性変化を図30Aに示す。図30Bは、0.2シフトを示し、図30Cは、シフト無しを示す。図30Aから分かるように、視野移動によるデフォーカスマージン幅が確保できている。
 パターンT3Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるデフォーカス特性変化を図31Aに示す。図31Bは、0.2シフトを示し、図31Cは、シフト無しを示す。図31Aから分かるように、視野移動によるデフォーカスマージン幅が急激に狭くなっている。したがって、パターンT3Aの場合は、視野移動量を抑えることが必要とされる。
「3チャンネルでレンズシフトにつよいパターン」
 上述した図26Aに示す特性から分かるように、パターンR3は、3チャンネルでパターンT3Aに比較してレンズシフトに対して強いものである。すなわち、ラジアルコマ収差マージンがレンズシフト無しで、±0.125(±0.44deg 相当)となり、レンズシフトが0.2で、±0.125(±0.44deg相当)となる。
 3チャンネルのパターンであって、レンズシフトに強いパターンとして、Hi3Aがある。パターンHi3Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるラジアルコマ収差特性変化を図32Aに示す。図32Bは、0.2シフトを示し、図32Cは、シフト無しを示す。図32Aから分かるように、視野移動によるマージン幅が4チャンネルのパターンT4A(図27参照)と同程度確保できている。すなわち、ラジアルコマ収差マージンがレンズシフト無しで、±0.16(±0.56deg 相当)となり、レンズシフトが0.2で、-0.155~+0.12(-0.54deg~+0.42deg相当)となる。
 パターンHi3Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるデフォーカス特性変化を図33Aに示す。図33Bは、0.2シフトを示し、図33Cは、シフト無しを示す。図33Aから分かるように、視野移動によるマージン幅が4チャンネルのパターンT4A(図29参照)と同程度確保できている。すなわち、デフォーカスマージンがレンズシフト無しで、0.25(±0.21μm相当)となり、レンズシフトが0.2で、0.24(±0.20μm相当)となる。
「4チャンネルでレンズシフトにつよいパターン」
 上述した図27Aに示す特性から分かるように、パターンT4Aは、4チャンネルでパターンT3Aに比較してレンズシフトに対して強いものである。すなわち、ラジアルコマ収差マージンがレンズシフト無しで、±0.17(±0.60deg 相当)となり、レンズシフトが0.2で、-0.17~+0.135(-0.60deg~+0.47deg相当)となる。
 4チャンネルのパターンであって、レンズシフトに強いパターンとして、X4Aがある。パターンX4Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるラジアルコマ収差特性変化を図34Aに示す。図34Bは、0.2シフトを示し、図34Cは、シフト無しを示す。図34Aから分かるように、視野移動によるラジアルコマ収差のマージン変化が殆どない。すなわち、ラジアルコマ収差マージンがレンズシフト無しで、±0.17(±0.60deg相当)となり、レンズシフトが0.2で、±0.16(±0.56deg相当)となる。
 パターンX4Aに関して、疑似的な視野移動(0.1シフトおよび0.2シフト)によるデフォーカス特性変化を図35Aに示す。図35Bは、0.2シフトを示し、図35Cは、シフト無しを示す。図35Aから分かるように、視野移動によるデフォーカスマージンの変化が小さい。すなわち、デフォーカスマージンがレンズシフト無しで、0.265(±0.225μm相当)となり、レンズシフトが0.2で、0.25(±0.21μm相当)となる。
「ラジアル方向分割の外側領域を独立にする効果2」
 図36は、パターンHT4A、HTR5A、L6AおよびLR7Aを示す。これらのパターンのラジアルコマ収差特性を図37および図38に示す。図37は、領域分割をしない場合、パターンHT4A、HTR5Aのそれぞれのラジアルコマ収差特性を示す。図38は、領域分割をしない場合、パターンLR7A、L6Aのそれぞれのラジアルコマ収差特性を示す。図37および図38から分かるように、タンジェンシャル方向分割と組み合わせることによって、ラジアルコマ収差マージンを拡大することができる。
 上に述べたように、チャンネルビット長、すなわち、マーク長を短くし、線密度方向に高密度化をはかり、また、トラックピッチを狭くすることによりトラック密度方向に高密度化をはかることにより、光ディスクの高密度化を実現する場合、信号記録面上には、2次元的に記録マークが配置されることになる。
 光ディスクにおける再生信号は、記録マークおよびグルーブ等の周期構造によって発生する回折光が重なり干渉することによって起きる明暗の変化を検出している。周期pの周期構造による±1次回折光は、図39に示すように、瞳半径を1とした場合に、中心のシフト量は λ/(NA・p) であらわされ、その重なりが大きいほど再生信号の振幅が大きくなり、重なりが小さいほど振幅は小さくなる。重なりがなくなる、すなわち、シフト量 λ/(NA・p)=2 となるとき、振幅はゼロとなる。その結果、MTF ( Modulation Transfer Function : 振幅伝達関数 )の空間周波数特性は、図40のようになる。カットオフ空間周波数は、λ/(NA・p)=2 より、 1/p=2NA/λ となり、これよりも小さい周期構造が連続した場合、振幅はゼロとなる。
 これを上述したような、波長405nm、NA=0.85の系に適用すると、1/p=2NA/λより、p=λ/(2NA)=238nm が再生可能な最小の周期構造となる。これはすなわち、低線密度の例としてあげた、RLL(1,7)PPで53nm/channel bitの系においては、最短2Tマーク/スペースは53nm×2×2=212nmとなるためカットオフ空間周波数を超え、2Tマーク/スペース の連続は振幅ゼロとなることを意味している。3Tマーク/スペース53nm×3×2=318nmに相当する周期構造に対しては、シフト量 λ/(NA・p)=1.50となるため、図41の0次光と±1次光が重なっている領域が信号再生に寄与することとなる。同様に高線密度の例としてあげた、 45.47nm/channel bitの系においても、最短2Tマーク/スペースは45.47nm×2×2=182nmとなるためカットオフ空間周波数を超え、3Tマーク/スペース45.47nm×3×2=273nmに相当する周期構造に対しては、シフト量 λ/(NA・p)=1.75となるため、図42の0次光と±1次光が重なっている領域が信号再生に寄与することとなる。PRMLにより、2Tマーク/スペースの振幅がゼロとなるような密度でも、信号処理が破たんすることはないが、短マークの再生品質は重要な要素である。
 上述したように、パターンH3AおよびHT4Aの電気光学フィルタ特性において、タンジェンシャル方向の外側の領域は、3Tや4T等の短いマークに対応する周波数帯域をハイバンドパスするフィルタとなっており、中央領域は5T以上の長いマークに対応する周波数帯域を多く通すようなローパス的なフィルタとなっている。図41、図42との対比からもわかるように、これは、空間光学的に短いマークに対応する帯域の再生に、より多く寄与すべき領域と、長いマークに対応する帯域の再生に、より多く寄与すべき領域とを効果的に分離し、さらにそれぞれの領域において、自トラックの再生信号成分の比率が高いはずの周波数成分を強調し、隣接トラックの再生信号成分の比率が高いはずの周波数成分は抑圧、遮断もしくは他の信号とバランスさせて相殺することで、自トラックの再生信号品質を高めることを実現していることを意味する。さらにHT4Aの場合には、タンジェンシャル方向の外側の2つの領域からの信号に位相差をもたせることによって、単純な総和信号による再生振幅に対して、短マークに関して、より感度の高い検出を可能としているが、図41と図42の比較からもわかるように、高線密度の例の場合には、2Tマーク/スペースのみならず、3Tマーク/スペースの再生に寄与しうる領域も小さくなってしまうことから、単純な総和信号による再生では大きく不利な状況になるところを、位相差検出による高感度化によって特性劣化を抑えていることがわかる。
 このように、空間光学的に線密度方向および/又はトラック密度方向に帯域の異なる複数の信号に分離するために、タンジェンシャル方向およびラジアル方向に領域分割し、それぞれの領域からの信号に、ハイパスフィルタ、ローパスフィルタ、バンドパスフィルタ、バンドストップ(またはノッチ)フィルタ等々、それぞれに最適な別々の特性を有する電気フィルタを作用させ、そののちに再び信号を合算することによって、符号間干渉および隣接トラックからの信号の漏れこみが低減された良好な再生信号を得ることが可能となる。
 ここまでは、単純にタンジェンシャル方向およびラジアル方向に領域分割する場合について述べてきた。しかし、空間光学的に帯域のことなる領域の信号を効果的に分離するフィルタとして、これまで述べてきたような、図43中で*を付した、短マーク再生に対応する、トラック構造による回折光としては0次光の領域の信号だけでなく、トラック構造による±1次回折光との干渉領域(○を付して示す)の領域の信号を分離することで、摂動中心位置におけるe-MLSEを良好にするとともに、ラジアルコマ収差マージンをはじめとする各種マージンを拡大することが可能である。
〔パターンIVT4〕
 図44に示すパターンIVT4は、4チャンネルの例である。すなわち、ラジアル方向の外側の領域A(=A1+A2)と、中央部の領域Bと、タンジェンシャル方向の上部の領域C(C1+C2+C3)と、下部の領域D(D1+D2+D3)とにビームが分割される。各領域と対応する4チャンネルの信号が得られる。ここで、ラジアル方向の領域分割位置は、瞳半径を 1.0としたときに、±0.5、±0.7となる位置とした。タンジェンシャル方向の領域分割位置は、瞳半径を 1.0としたときに、±0.45、±0.65となる位置とした。
 上述したパターンIVT4に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。
 ・LD35.18(GB)・・・0.053μm/channel bit、 Tp=0.32 μmのとき面容量35.18GBとなる。
 ・Tp=0.225μm(ランド、グルーブのそれぞれが) ・NA=0.85     ・PR(1233321) ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
「再生性能」
 パターンIVT4に関しての再生性能のシミュレーション結果を図45乃至図49に示す。これらの図は、低線密度の場合でパターンIVT4の領域分割の効果を示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図45は、パターンIVT4のラジアルコマ収差マージンと、上述した他のパターンHTR5A、LR7A、HT4Aのラジアルコマ収差マージンW31とを比較して示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差である。パターンIVT4のラジアルディスクスキューマージンが他のパターンと比較して良好なことが分かる。
 図46は、デフォーカスマージンを示し、図46のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。0の値がデフォーカス量が0を意味している。実際の再生時には、デフォーカスが発生するので、デフォーカスに対してのマージンを持つことが必要とされる。
 (正規化されたデフォーカス量対指標)のグラフにおいて、e-MLSEの値が小さいほど再生性能が高いことを意味する。一例として、e-MLSEの値がほぼ0.15以下であることが好ましい。したがって、デフォーカスマージンは、e-MLSEの値がほぼ0.15以下となる範囲の幅と対応している。この幅が大きいほど、デフォーカスマージンが大である。パターンIVT4は、十分なマージンを有している。
 図47は、球面収差SAのマージンを示す。図47のグラフの横軸は、正規化された球面収差量W40である。パターンIVT4は、十分な球面収差マージンを有している。
 図48は、タンジェンシャルコマ収差マージンを示す。図48のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。パターンIVT4は、十分なタンジェンシャルコマ収差マージンを有している。
 図49は、ラジアル方向にパターンがシフトした場合のマージンを示す。図49のグラフの横軸は、正規化されたシフト量であり、上で疑似的な視野移動として述べたもので、LSを方向も含めて±0.1、±0.2だけシフトしたときの、他の摂動はゼロの状態でのe-MLSEの変化をグラフにしたものである。パターンIVT4は、T4Aとほぼ同等なシフトマージンを有していることがわかる。
「パターンIVT4に最適な電気フィルタ」
 上述したパターンIVT4に最適な電気フィルタについて説明する。図45において、W31=0のとき、すなわち摂動原点における電気フィルタの31タップの係数の値の一例を図52に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合の領域A~Dと対応する各チャンネルの周波数振幅特性は、図53に示すものとなる。さらに、W31=-0.16のときの電気フィルタの31タップの係数の値の一例を図50に示す。このように係数を設定した場合のA~Dの各チャンネルの周波数振幅特性は、図51に示すものとなる。
 周波数振幅特性において、横軸は、n/(256T)(n:横軸の値)である。例えば(n=64)の場合には、(64/256T)=(1/4T)となる。例えばRLL(1,7)PP変調方式を使用した場合、チャネルクロック周期を「T」とすると、マーク長は2Tから8Tとなる。(1/4T)は、2Tのマークが繰り返す場合の周波数である。図51および図53の特性では、4T(横軸の値32の近傍)、3T(横軸の値43の近傍)に対応する帯域において、ラジアルコマ収差の有無にかかわらず、C、DとAの周波数振幅特性がほぼ同様な形状を保っており、所望の電気光学フィルタ特性が維持できており、パターンIVT4において、他のパターンと比較して良好なラジアルディスクスキューマージンにつながっている。
 図52及び図53に示す、摂動原点におけるIVT4のフィルタ特性は、下記のような特徴を有する。中央領域はローパス的特性に、タンジェンシャル方向外側領域はハイパス的特性となっている(ここでいうハイパス的とは、信号再生に寄与している周波数帯域内で、より短いマークに対応する帯域を通すバンドパス特性を、相対的にハイパス的と表現している)。
 さらに、パターンIVT4では、タンジェンシャル方向の外側領域が独立に2チャネルとなっており、その2領域に対応したチャネルのタップ係数に2クロック分程度の位相差をもたせるようなフィルタを構成している。これにより、単純な総和信号による再生振幅に対して、短マークに関して、より感度の高い検出が可能となっている。短マーク再生に関して、領域間の位相差も活用することで、良好な再生信号特性を実現している。
 4T(横軸の値32の近傍)、3T(横軸の値43の近傍)に対応する帯域において、その帯域の信号成分をほとんど含まない領域Bはローパスフィルタ特性でその領域に存在するクロストーク成分及び他のノイズ成分を抑圧し、さらにC、Dの位相差によってクロストーク成分を低減し、それでも残留するクロストーク成分をAとの周波数振幅特性のバランスによってキャンセルする構成となっている。その結果、C,D及びAの周波数振幅特性も必要以上に持ち上げる必要がなく、それも良好な再生信号特性の実現につながっている。
 また、ラジアルコマ収差が発生しているときの各チャネルの周波数振幅特性を示した図51を、摂動原点における、上記に説明したような特徴をもつ各チャネルの周波数振幅特性を示した図53の特性と比較すると、4T(横軸の値32の近傍)、3T(横軸の値43の近傍)に対応する帯域において、ラジアルコマ収差の有無にかかわらず、C、DとAの周波数振幅特性がほぼ同様な形状を保っており、所望の電気光学フィルタ特性が維持できており、パターンIVT4において、他のパターンと比較して良好なラジアルディスクスキューマージンにつながっている。
〔パターンNST6〕
 図54に示すパターンNST6は、6チャンネルの例である。T4Aの中央領域をラジアル方向にさらに3領域に分割したパターンと考えることができる。すなわち、ラジアル方向の外側の領域A(=A1+A2)と、タンジェンシャル方向の上部の領域Eと、下部の領域Fと、中央部の3つの領域B,C,Dとにビームが分割される。中央部の3つの領域は、領域A1に近い側が領域B、領域A2に近い側が領域D、そして最も中央の領域が領域Cとなっており、各領域と対応する6チャンネルの信号が得られる。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0 としたときに、±0.3および±0.75となる位置とし、タンジェンシャル方向の領域分割位置は、 ±0.65となる位置とした(上に述べたT4Aの領域分割から、中央領域の分割等による各種特性の変化を考慮して、分割位置を微調整している)。
 上述したパターンNST6に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
 図14に示すように、上述したパターンH3Aに対して、パターンH4Cのように、タンジェンシャル方向、すなわち、線密度方向に対応する方向に空間光学的に帯域の異なる領域の分割を増やすと、タンジェンシャル方向の分割数に応じてタンジェンシャルコマ収差マージンが拡大していることがわかる。この考え方をラジアル方向にも適用したのが、NST6である。
 この分割パターンNST6は、ラジアル方向への空間光学的に帯域の異なる領域の分割数を増やすとともに、IVT4とは異なるが、やはり、トラック構造による±1次回折光との干渉領域に対応する信号を検出している。これにより、摂動中心位置におけるe-MLSEを良好に保ちつつ、ラジアルコマ収差マージンをはじめとする各種マージンも広くすることが可能である。
「再生性能」
 パターンNST6に関しての再生性能のシミュレーション結果を図55乃至図59に示す。これらの図は、低線密度の場合でパターンNST6の領域分割の効果を示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図55は、パターンNST6のラジアルコマ収差マージンと、比較用として、上述した他のパターンT4AおよびIVT4のラジアルコマ収差マージンとを示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差W31である。パターンNST6のラジアルディスクスキューマージンが、T4Aに対してラジアル方向への空間光学的に帯域の異なる領域の分割数を増やすとともに、IVT4とは異なるが、やはり、トラック構造による±1次回折光との干渉領域に対応する信号を検出することによって、パターンT4AおよびIVT4と比較して良好なことが分かる。
 図56は、デフォーカスマージンを示し、図56のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。0の値がデフォーカス量が0を意味している。
 図57は、球面収差SAのマージンを示す。図57のグラフの横軸は、正規化された球面収差量W40である。パターンNST6の球面収差マージンがパターンIVT4と比較して良好なことが分かる。
 図58は、タンジェンシャルコマ収差マージンを示す。図58のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。パターンNST6のタンジェンシャルコマ収差マージンがパターンIVT4と比較して良好なことが分かる。
 図59は、ラジアル方向にパターンがシフトした場合のマージンを示す。図59のグラフの横軸は、正規化されたシフト量である。パターンNST6のシフトマージンがパターンIVT4と比較して良好なことが分かる。
〔パターンIVNST6〕
 図60に示すパターンIVNST6は、6チャンネルの例である。パターンIVNST6は、上述した分割パターンIVT4とNST6の良いところを融合させたものである。すなわち、パターンIVT4を基準に考えると、T4Aに対するNST6と同様に、ラジアル方向への空間光学的に帯域の異なる領域の分割数を増やすために、図44の中央領域Bを、ラジアル方向にさらに3分割したものと考えられる。また、パターンNST6を基準に考えれば、領域A1およびA2を領域Eおよび領域Fにまで延長し、さらに、領域Eの一部(E2)と領域Fの一部(F2)を領域Bに入り込ませ、領域Eの一部(E3)と領域Fの一部(F3)を領域Bに入り込ませたものと考えることもできる。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.25、±0.5および±0.7となる位置とし、タンジェンシャル方向の領域分割 位置は、±0.45、±0.65となる位置とした。パターンIVT4で劣化が目立っていたラジアル方向のパターンシフトに対する劣化を抑えつつ、ほとんどの特性において最良解となっている。
 上述したパターンIVNST6に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
「再生性能」
 パターンIVNST6に関しての再生性能のシミュレーション結果を図61乃至図65に示す。これらの図は、低線密度の場合でパターンIVNST6の領域分割の効果を示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図61は、パターンIVNST6と、上述したパターンNST6と、パターンIVT4とに関して、ラジアルコマ収差マージンを示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差W31である。パターンIVNST6のラジアルディスクスキューマージンが最良なことが分かる。
 図62は、デフォーカスマージンを示し、図62のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。パターンIVNST6のデフォーカスマージンが最良なことが分かる。
 図63は、球面収差SAのマージンを示す。図63のグラフの横軸は、正規化された球面収差量W40である。パターンIVNST6の球面収差マージンがNST6と並び最良なことが分かる。
 図64は、タンジェンシャルコマ収差マージンを示す。図64のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。パターンIVNST6のタンジェンシャルコマ収差マージンが最良なことが分かる。
 図65は、ラジアル方向にパターンがシフトした場合のマージンを示す。図65のグラフの横軸は、正規化されたシフト量である。パターンIVNST6のシフトマージンがパターンIVT4と比較して良好なことが分かる。
「パターンIVNST6に最適な電気フィルタ」
 上述したパターンIVNST6に最適な電気フィルタについて説明する。図61において、W31=0のとき、すなわち摂動原点における電気フィルタの31タップの係数の値の一例を図68に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合の領域A~Fと対応する各チャンネルの周波数振幅特性は、図69に示すものとなる。さらに、W31=-0.16のときの電気フィルタの31タップの係数の値の一例を図66に示す。このように係数を設定した場合のA~Fの各チャンネルの周波数振幅特性は、図67に示すものとなる。
 図68及び図69に示す、摂動原点におけるIVNST6のフィルタ特性は、下記のような特徴を有する。タンジェンシャル方向外側領域はIVT4と同様に、ハイパス的特性となっている(ここでいうハイパス的とは、信号再生に寄与している周波数帯域内で、より短いマークに対応する帯域を通すバンドパス特性を、相対的にハイパス的と表現している)。
 さらに、パターンIVNST6では、これもやはりIVT4と同様に、タンジェンシャル方向の外側領域が独立に2チャネルとなっており、その2領域に対応したチャネルのタップ係数に2クロック分程度の位相差をもたせるようなフィルタを構成している。これにより、単純な総和信号による再生振幅に対して、短マークに関して、より感度の高い検出が可能となっている。短マーク再生に関して、領域間の位相差も活用することで、良好な再生信号特性を実現している。
 また、IVT4では1つだった中央領域がIVNST6ではラジアル方向に3分割されているが、その3領域B,C,Dは基本的にはIVT4と同様にローパス的特性であり、摂動原点においては3領域間のフィルタ特性に大きな差はない。
 4T(横軸の値32の近傍)、3T(横軸の値43の近傍)に対応する帯域において、その帯域の信号成分をほとんど含まない領域B、C,Dはローパスフィルタ特性でその領域に存在するクロストーク成分及び他のノイズ成分を抑圧し、さらにE、Fの位相差によってクロストーク成分を低減し、それでも残留するクロストーク成分をAとの周波数振幅特性のバランスによってキャンセルする構成となっている。その結果、E,F及びAの周波数振幅特性も必要以上に持ち上げる必要がなく、それも良好な再生信号特性の実現につながっている。
 また、ラジアルコマ収差が発生しているときの各チャネルのタップ係数を示した図66及び周波数振幅特性を示した図67を、摂動原点における各チャネルのタップ係数を示した図68、周波数振幅特性を示した図69の特性と比較すると分かるように、W31=-0.16のラジアルコマ収差が生じた際には、B ,C,Dの中央部3チャネルのうち、C(最中央)を強め、BとDとをかなり弱めるとともに、E,Fに関しては、やや強めるようなフィルタとなっている。さらに、図67および図69から分かるように、4T,3Tに対応する帯域において、IVT4の場合と同様に、ラジアルコマ収差の有無にかかわらず、E、FとAの周波数振幅特性がほぼ同様な形状を保っており、所望の電気光学フィルタ特性が維持できている。これらにより、パターンIVNST6において、最も良好なラジアルディスクスキューマージンが実現できている。
 図62のデフォーカスW20の特性において、W20=-0.16のときの電気フィルタの31タップの係数の値の一例を図70に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合のA~Fの各チャンネルの周波数振幅特性は、図71に示すものとなる。
 デフォーカスが生じている状態における各チャネルのタップ係数を示した図70及び周波数振幅特性を示した図71を、摂動原点における各チャネルのタップ係数を示した図68、周波数振幅特性を示した図69の特性と比較すると分かるように、W20=-0.16のデフォーカスが生じた際には、B,C,Dの中央部3チャネルのうち、C(最中央)を弱めるとともに8T付近を逆位相にしてバンドパス(逆位相となっていることは、図70のタップ係数からもわかる)するようなフィルタとし、B,Dを強めるようなフィルタとなっている。あわせて、E,Fに関しては、図70のタップ係数からもわかるように、位相差を小さくするとともに、やや強めるようなフィルタとなっている。
 図63の球面収差SAの特性において、W40=-0.20のときの電気フィルタの31タップの係数の値の一例を図72に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合のA~Fの各チャンネルの周波数振幅特性は、図73に示すものとなる。
 球面収差が生じている状態における各チャネルのタップ係数を示した図72及び周波数振幅特性を示した図73を、摂動原点における各チャネルのタップ係数を示した図68、周波数振幅特性を示した図69の特性と比較すると分かるように、W40=-0.20の球面収差が生じた際には、B,C,Dの中央部3チャネルのうち、C(最中央)を強めるようなフィルタとなっている。
 このように、摂動の種類に応じて、中央部の3つの領域B,C,Dのフィルタ特性を独立に変化させることによって、各種マージンを拡大することが実現されている。
「電気フィルタ特性の変化を用いた摂動・収差検出」
 上記のように、摂動あるいは収差がある状態においては、その摂動あるいは収差の種類によって、各チャネルのフィルタ特性(タップ係数)に特徴的な変化があらわれる(表1参照)。
Figure JPOXMLDOC01-appb-T000001
 摂動の種類及び大きさによって各チャネルのフィルタ特性(タップ係数)の変化が異なるため、フィルタ特性(タップ係数)からその状態において、どのような摂動が生じているのか、またその程度はどうなのかが検出可能である。すなわち、FIRフィルタのタップ係数の分布によって、ラジアル収差または球面収差を検出することができる。さらに、FIRフィルタのタップ係数の分布によって、デフォーカスまたはタンジェンシャルコマ収差を検出することができる。さらに、FIRフィルタのタップ係数の分布によって、デトラックまたは視差移動を検出することができる。
 RF再生特性が最良となる状態を実現する際には、i-MLSEやe-MLSE等の指標を用いることが可能であるが、これらの指標は、最良となる状態に近づく方向であるか否かがわかるだけで、コマ収差を低減すればよいのか、デフォーカスをずらせばよいのか、球面収差をずらせばよいのか、等に関しては情報が得られない。それに対して、例えばIVNST6の場合(NST6も同様)、ラジアル方向に3分割された中央領域B,C,Dのフィルタ特性(タップ係数)の変化、タンジェンシャル方向の外側の領域E,Fのフィルタ特性(タップ係数)の変化から、ラジアルコマ収差を低減すればよいのか、デフォーカスをずらせばよいのか、球面収差をずらせばよいのかが検出可能であり、フィルタ特性(タップ係数)の摂動原点からのずれ要因を解消するように調整することが可能である。
「電気フィルタの最適化:デフォーカス特性とタップ数」
 図74は、上述したパターンIVNST6のデフォーカス特性のシミュレーション結果を示している。シミュレーション条件は、上述したものと同様である。図74には、FIRフィルタのタップ数が上述したように、31の場合と、タップ数が15の場合とが示されている。
 上述したように、W20=-0.16のときの電気フィルタの31タップの係数の値の一例は、図70に示され、A~Fの各チャンネルの周波数振幅特性は、図71に示されている。周波数特性において、B,C,Dの中央部3チャネルのうち、C(最中央)を弱めるとともに8T付近を逆位相にしてバンドパスするようなフィルタとし、B,Dを強めるようなフィルタとなっている。
 一方、W20=-0.16のときの電気フィルタの15タップの係数の値の一例は、図75に示すものとなり、A~Fの各チャンネルの周波数振幅特性は、図76に示すものとなる。この周波数特性は、31タップの場合のもの(図71)と相違して所望のフィルタ特性が実現できていない。チャンネルCが逆位相のバンドパスフィルタでなく、ローパスフィルタになってしまっている。したがって、デフォーカスしたときに、タップ数によるマージンに差異が生じる。
 ここでは、一例としてIVNST6のデフォーカスマージンについて、タップ数による差異を示したが、他のパターンおよび他のマージンについても同様なことが言える。RLL(1,7)PPの場合、2Tから8Tの記録マークがあることから、8Tマーク/スペースに対応する周波数においても所望のフィルタ特性を実現するため、FIRフィルタを用いて構成する場合、16T幅以上の範囲でタップ係数を有する構成が望ましい。
〔パターンNST6H〕
 図77に示すパターンNST6Hは、6チャンネルの他の例である。中央領域をラジアル方向にさらに3領域に分割したパターンである。すなわち、ラジアル方向の外側の領域A(=A1+A2)と、タンジェンシャル方向の上部の領域Eと、下部の領域Fと、中央部の3つの領域B,C,Dとにビームが分割される。中央部の3つの領域は、領域A1に近い側が領域B、領域A2に近い側が領域D、そして最も中央の領域が領域Cとなっており、各領域と対応する6チャンネルの信号が得られる。ここで、中央領域のラジアル方向の領域分割位置は、瞳半径を1.0 としたときに、±0.25および±0.70となる位置とし、タンジェンシャル方向の領域分割位置は、 ±0.40となる位置とした。
 図78は、6チャンネルの場合のシミュレーション結果を示す。IVNST6(NST6も同様)をNST6Hに変更すると、ラジアル方向の外側チャンネルの面積(光量)が大きいこと、並びにタンジェンシャル方向の外側チャンネルの面積(光量)が大きいことが高線密度化にとって効果的である。
〔パターンIVTSP5〕(特性を維持してチャンネル数を削減する)
 上述したように、図60(図79)に示すパターンIVNST6は、ほぼすべての特性において最良解となっている。しかしながら、信号処理回路の消費電力や入力ピン数、回路規模等の制約によりチャネル数を削減したほうが望ましい場合もある。パターンIVTSP5は、特性を維持してチャネル数を6チャンネルから5チャンネルへ削減するものである。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.25、±0.5および±0.7となる位置とし、タンジェンシャル方向の領域分割位置は、±0.45、±0.65となる位置とした。
 チャンネル数の削減方法について述べると、パターンIVNST6におけるA~Fの6チャネルのうち、A,E,Fはそのままとし、Cの信号をBおよびDに分配して5チャンネルとする。すなわち、チャンネルBの信号は、B+(Ks×C)とし、チャンネルDの信号は、D+(Ks×C)とする。このようにチャンネル数を削減したものをパターンIVTSP5と称する。
 上述したパターンIVTSP5に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
「再生性能」
 パターンIVTSP5に関しての再生性能のシミュレーション結果を図80乃至図84に示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図80は、パターンIVTSP5s0.5と、パターンIVTSP5s1.0と、上述したパターンIVNST6と、上述したパターンIVT4とに関して、ラジアルコマ収差マージンを示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差W31である。IVTSP5s0.5は、IVTSP5において、Ks=0.5のときを意味する。IVTSP5s1.0は、IVTSP5において、Ks=1.0のときを意味する。
 図81は、パターンIVTSP5s0.5と、パターンIVTSP5s1.0と、パターンIVNST6と、パターンIVT4とに関して、デフォーカスマージンを示す。図81のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。0の値がデフォーカス量が0を意味している。実際の再生時には、デフォーカスが発生するので、デフォーカスに対してのマージンを持つことが必要とされる。
 (正規化されたデフォーカス量対指標)のグラフにおいて、e-MLSEの値が小さいほど再生性能が高いことを意味する。一例として、e-MLSEの値がほぼ0.15以下であることが好ましい。したがって、デフォーカスマージンは、e-MLSEの値がほぼ0.15以下となる範囲の幅と対応している。この幅が大きいほど、デフォーカスマージンが大である。
 図82は、パターンIVTSP5s0.5と、パターンIVTSP5s1.0と、パターンIVNST6と、パターンIVT4とに関して、球面収差SAのマージンを示す。図82のグラフの横軸は、正規化された球面収差量W40である。
 図83は、パターンIVTSP5s0.5と、パターンIVTSP5s1.0と、パターンIVNST6と、パターンIVT4とに関して、タンジェンシャルコマ収差マージンを示す。図83のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。
 図84は、パターンIVTSP5s0.5と、パターンIVTSP5s1.0と、パターンIVNST6と、パターンIVT4とに関して、ラジアル方向にパターンがシフトした場合のマージンを示す。図84のグラフの横軸は、正規化されたシフト量である。
 これらの特性から分かるように、領域間の信号の比率(Ks)を変化させると、「デフォーカスマージン、タンジェンシャルコマ収差マージン」と、「ラジアルコマ収差マージンと球面収差マージン」とがトレードオフの関係になっていることが分かる。メディア等の違いにより、複数のKsを切り替えて用いることも可能である。
 さらに、IVTSP5において、B,C,Dの単純な比率が(B:C:D=1:2Ks:1)となる。パターンIVNST6の上述したフィルタ特性に基づいて考えると、ラジアルコマ収差マージンや球面収差マージンは、Cを相対的に強めるほうがいいことから、(Ks>0.5)とするとその2つのマージンに有利となるはずである。Ks=0.5およびKs=1.0のグラフからわかるように、シミュレーション結果もそうなっている。
〔パターンIVTSM4〕(特性を維持してチャンネル数を削減する)
 IVT4に対して、IVNST6は、各種特性が改善しているが、ラジアルコマ収差マージン、球面収差マージンは、上述したIVNST6からIVTSP5への変換における考え方と同様な考え方で改善可能である。特性を維持してチャネル数を6チャンネルから4チャンネルへ削減するパターンIVTSM4について説明する。図85に示すように、中央の領域(B,C,D)に光学的または電気的に重みづけをすることが効果的である。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.25、±0.5および±0.7となる位置とし、タンジェンシャル方向の領域分割位置は、±0.45、±0.65となる位置とした。
 チャンネル数の削減方法について述べると、パターンIVNST6におけるA~Fの6チャネルのうち、A,E,Fはそのままとし、チャンネルB,C,Dの信号は、(C+Ksm×B+Ksm×D)として一つのチャンネルとする。このようにチャンネル数を削減したものをパターンIVTSM4と称する。
 上述したパターンIVTSM4に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
「再生性能」
 パターンIVTSM4に関しての再生性能のシミュレーション結果を図86乃至図90に示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図86は、パターンIVTSM4s0.7と、上述したパターンIVT4とに関して、ラジアルコマ収差マージンを示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差W31である。IVTSM4s0.7は、IVTSM4において、Ksm=0.7のときを意味する。
 図87は、パターンIVTSM4s0.7と、パターンIVT4とに関して、デフォーカスマージンを示す。図87のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。
 図88は、パターンIVTSM4s0.7と、パターンIVT4とに関して、球面収差SAのマージンを示す。図88のグラフの横軸は、正規化された球面収差量W40である。
 図89は、パターンIVTSM4s0.7と、パターンIVT4とに関して、タンジェンシャルコマ収差マージンを示す。図89のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。
 図90は、パターンIVTSM4s0.7と、パターンIVT4とに関して、ラジアル方向にパターンがシフトした場合のマージンを示す。図90のグラフの横軸は、正規化されたシフト量である。
 これらの特性から分かるように、ラジアルコマ収差マージン、球面収差マージンが改善するかわりに、デフォーカスマージン、タンジェンシャルコマ収差マージンはやや狭くなる。ただし、IVT4で劣化が目立っていたラジアル方向のパターンシフトは改善しない。この場合も、メディア等の違いにより、複数のKsmを切り替えて用いることも可能である。
〔パターンIVNS5〕(特性を維持してチャンネル数を削減する)
 線密度がそれほど高くない場合には、タンジェンシャル方向の中心位置が異なるチャネルもたなくても、所望の特性が得られる。すなわち、図91に示すように、パターンIVNST6のタンジェンシャル方向の2チャネル(EおよびF)を1チャネル(E)に統合する。チャンネルFの領域F1,F2,F3をチャンネルEの領域E4,E5,E6とする。このようにチャンネル数を削減したものをパターンIVNS5と称する。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.25、±0.5および±0.7となる位置とし、タンジェンシャル方向の領域分割位置は、±0.45、±0.65となる位置とした。
 上述したパターンIVNS5に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
「再生性能」
 パターンIVNS5に関しての再生性能のシミュレーション結果を図92乃至図96に示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図92は、パターンIVNS5と、上述したパターンIVT4と、上述したパターンIVNST6に関して、ラジアルコマ収差マージンを示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差W31である。
 図93は、パターンIVNS5と、パターンIVT4と、パターンIVNST6とに関して、デフォーカスマージンを示す。図93のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。
 図94は、パターンIVNS5と、パターンIVT4と、パターンIVNST6とに関して、球面収差SAのマージンを示す。図94のグラフの横軸は、正規化された球面収差量W40である。
 図95は、パターンIVNS5と、パターンIVT4と、パターンIVNST6とに関して、タンジェンシャルコマ収差マージンを示す。図89のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。
 図96は、パターンIVNS5と、パターンIVT4と、パターンIVNST6とに関して、ラジアル方向にパターンがシフトした場合のマージンを示す。図96のグラフの横軸は、正規化されたシフト量である。
 これらの特性から分かるように、線密度がそれほど高くない場合には、タンジェンシャル方向の中心位置が異なるチャンネルを持たない場合でも、所望の特性が得られる。
「パターンIVNS5に最適な電気フィルタ」
 上述したパターンIVNS5に最適な電気フィルタについて説明する。図92において、W31=0のとき、すなわち摂動原点における電気フィルタの31タップの係数の値の一例を図99に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合の領域A~Eと対応する各チャンネルの周波数振幅特性は、図100に示すものとなる。さらに、W31=-0.16のときの電気フィルタの31タップの係数の値の一例を図97に示す。このように係数を設定した場合のA~Eの各チャンネルの周波数振幅特性は、図98に示すものとなる。
 図99及び図100に示す、摂動原点におけるIVNS5のフィルタ特性は、下記のような特徴を有する。タンジェンシャル方向の外側の領域に対応するE、ラジアル方向外側の領域に対応するAのフィルタ特性は、図15及び図16に示したH3Aにおけるタンジェンシャル方向の外側の領域、ラジアル方向外側の領域のフィルタ特性と類似した特性となっている。ラジアル方向に3分割された中央領域B,C,Dに関しては、上記のIVNST6では摂動原点では3領域B,C,Dに大きな差がなかったのとは異なり、摂動原点で既に、最も中央の領域Cと、その横のB及びDのフィルタ特性に差をもたせている。中央の領域Cは、H3Aにおける中央領域に類似した、4T信号に相当する周波数帯(横軸の値32の近傍)を遮断するとともに、3T信号に相当する周波数帯(横軸の値43の近傍)で他のチャネルと位相が180deg反転するようになっている(図99の中心付近のタップからもわかる)。それに対して、B及びDはIVNST6のB及びDに類似したフィルタ特性になっている。
 ラジアルコマ収差が発生しているときの各チャネルのタップ係数を示した図97及び周波数振幅特性を示した図98を、摂動原点における各チャネルのタップ係数を示した図99、周波数振幅特性を示した図100の特性と比較すると分かるように、W31=-0.16のラジアルコマ収差が生じた際には、IVNST6の場合と同様に、B,C,Dの中央部3チャネルのうち、C(最中央)を強め、BとDとをかなり弱めるようなフィルタとなっている。これにより、パターンIVNS5において、IVNST6に近い良好なラジアルディスクスキューマージンが実現できている。
 図94の球面収差SAの特性において、W40=-0.20のときの電気フィルタの31タップの係数の値の一例を図101に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合のA~Eの各チャンネルの周波数振幅特性は、図102に示すものとなる。
 図94の球面収差SAの特性において、W40=-0.20のときの電気フィルタの31タップの係数の値の一例を図101に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合のA~Eの各チャンネルの周波数振幅特性は、図102に示すものとなる。
 球面収差が生じている状態における各チャネルのタップ係数を示した図101及び周波数振幅特性を示した図102を、摂動原点における各チャネルのタップ係数を示した図99、周波数振幅特性を示した図100の特性と比較すると分かるように、W40=-0.20の球面収差が生じた際には、B,C,Dの中央部3チャネルのうち、C(最中央)を強めるようなフィルタとなっている。
 摂動原点における特性を表す図100と、ラジアルコマ収差が生じている状態における特性を表す図98との比較、球面収差が生じている状態における特性を表す図102との比較からわかるように、パターンIVNS5の場合も、IVNST6の場合と同様、中央部をB,C,Dの3チャネルに分けることで、ラジアルコマ収差および球面収差に対するマージンを拡大することが実現されている。IVNS5の場合は、IVNST6よりもさらに明確に、摂動中心の状態で既にC(最中央)とB,Dとでフィルタの周波数特性を異ならせている。加えてラジアルコマ収差W31=-0.16のときや、球面収差W40=-20のときには、C(最中央)とB,Dとでフィルタの周波数特性をさらに変化させている。
「電気フィルタ特性の変化を用いた摂動・収差検出」
 上記のように、IVNS5においても、IVNST6と同様に、摂動あるいは収差がある状態においては、その摂動あるいは収差の種類によって、各チャネルのフィルタ特性(タップ係数)に特徴的な変化があらわれる(表2参照)。
Figure JPOXMLDOC01-appb-T000002
 摂動の種類及び大きさによって各チャネルのフィルタ特性(タップ係数)の変化が異なるため、フィルタ特性(タップ係数)からその状態において、どのような摂動が生じているのか、またその程度はどうなのかが検出可能であり、フィルタ特性(タップ係数)の摂動原点からのずれ要因を解消するように調整することが可能である。
〔パターンIVSP4〕(特性を維持してチャンネル数を削減する)
 IVNST6を基にIVTSP5を考えたのと同様に、IVNS5を基にIVSP4を考えることができる。すなわち、中央の領域Cを光学的または電気的にシェアする方式により、信号処理回路の消費電力や入力ピン数、回路規模等の制約によりチャネル数を削減することが可能となる。
 チャンネル数の削減方法について述べると、パターンIVNS5(図91参照)におけるA~Eの5チャネルのうち、A,Eはそのままとし、Cの信号をBおよびDに分配して4チャンネルとする。すなわち、チャンネルBの信号は、B+(Ks×C)とし、チャンネルDの信号は、D+(Ks×C)とする。このようにチャンネル数を削減したものをパターンIVSP4と称する。
 上述したパターンIVSP4に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
「再生性能」
 パターンIVSP4に関しての再生性能のシミュレーション結果を図103乃至図111に示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図103は、IVSP4s0.5と、IVSP4s0.7と、IVSP4s1.0と、IVSP4s2.0と、上述したパターンIVNS5と、上述したパターンIVT4とに関して、ラジアルコマ収差マージンを示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差W31である。IVSP4s0.5は、IVSP4において、Ks=0.5のときを意味する。IVSP4s0.7は、IVSP4において、Ks=0.7のときを意味する。IVSP4s1.0は、IVSP4において、Ks=1.0のときを意味する。IVSP4s2.0は、IVSP4において、Ks=2.0のときを意味する。
 図104は、係数Ksに対するラジアルコマ収差マージンの依存性を示している。ラジアルコマ収差マージンは、Ksが小さい方向で劣化が顕著である。Ks=1付近が最良となる。
 図105は、IVSP4s0.5と、IVSP4s0.7と、IVSP4s1.0と、IVSP4s2.0と、IVNS5と、IVT4とに関して、デフォーカスマージンを示す。図105のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。
 図106は、係数Ksに対するデフォーカスマージンの依存性を示している。デフォーカスマージンは、Ksが小さいほうが良好である。
 図107は、IVSP4s0.5と、IVSP4s0.7と、IVSP4s1.0と、IVSP4s2.0と、IVNS5と、IVT4とに関して、球面収差SAのマージンを示す。図107のグラフの横軸は、正規化された球面収差量W40である。
 図108は、係数Ksに対する球面収差マージンの依存性を示している。球面収差マージンは、Ksが大きいほうが良好である。
 図109は、IVSP4s0.5と、IVSP4s1.0と、IVNS5と、IVT4とに関して、タンジェンシャルコマ収差マージンを示す。図109のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。
 図110は、IVSP4s0.5と、IVSP4s0.7と、IVSP4s1.0と、IVSP4s2.0と、IVNS5と、IVT4とに関して、ラジアル方向にパターンがシフトした場合のマージンを示す。図110のグラフの横軸は、正規化されたシフト量である。図111も同様に、ラジアル方向にパターンがシフトした場合のマージンを示す。図110と比較して、縦軸(e-MLSE)が拡大されており、各グラフの判別が容易とされている。
 これらの特性から分かるように、領域間の信号の比率(Ks)を変化させると、「デフォーカスマージン、タンジェンシャルコマ収差マージン」と、「ラジアルコマ収差マージンと球面収差マージン」とがトレードオフの関係になっていることが分かる。メディア等の違いにより、複数のKsを切り替えて用いることも可能である。
〔パターンIVos4〕(特性を維持してチャンネル数を削減する)
 IVSP4と同様にIVNS5における中央の領域Cを光学的または電気的にシェアする方式により、信号処理回路の消費電力や入力ピン数、回路規模等の制約によりチャネル数を削減することが可能となる。
 チャンネル数の削減方法について述べると、パターンIVNS5(図91参照)におけるA~Eの5チャネルのうち、A,Eはそのままとし、Cの信号をBおよびDに分配して4チャンネルとする。すなわち、チャンネルBの信号は、B+(Ks1×C)とし、チャンネルDの信号は、D+(Ks2×C)(Ks1≠Ks2)とする。(Ks1=0,Ks2=1)の場合には、図112に示すようなパターン分割と同様となる。このようにチャンネル数を削減したものをパターンIVos4と称する。ここで、ラジアル方向の領域分割位置は、瞳半径を1.0としたときに、±0.25、±0.5および±0.7となる位置とし、タンジェンシャル方向の領域分割位置は、±0.45、±0.65となる位置とした。
 上述したパターンIVos4に対するシミュレーション結果に基づき説明を行う。シミュレーション条件は、上述した「低線密度」としている場合と同様に以下の通りである。
 ・LD35.18(GB)・・・0.053μm/channel bit
 ・Tp=0.225μm(ランド、グルーブのそれぞれが)
 面容量50.0GBとなる。
 ・NA=0.85    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.7  ・Disc Noise, Amp Noiseあり
「再生性能」
 パターンIVos4に関しての再生性能のシミュレーション結果を図113乃至図118に示す。各図において、e-MLSEは、領域分割を行わない場合の特性を示す。
 図113は、IVos4と、IVSP4s0.5と、IVSP4s1.0と、IVNS5と、IVT4とに関して、ラジアルコマ収差マージンを示す。縦軸は、上述した他のグラフと同様に指標e-MLSEであり、横軸が正規化されたラジアルコマ収差W31である。IVos4は、(Ks1=0,Ks2=1)の場合の特性を示す。
 図114は、IVos4と、IVSP4s0.5と、IVSP4s1.0と、IVNS5と、IVT4とに関して、デフォーカスマージンを示す。図114のグラフの横軸は、波長によって正規化されたデフォーカス量W20である。
 図115は、IVos4と、IVSP4s0.5と、IVSP4s1.0と、IVNS5と、IVT4とに関して、球面収差SAのマージンを示す。図115のグラフの横軸は、正規化された球面収差量W40である。
 図116は、IVos4と、IVSP4s0.5と、IVSP4s1.0と、IVNS5と、IVT4とに関して、タンジェンシャルコマ収差マージンを示す。図116のグラフの横軸は、正規化されたタンジェンシャルコマ収差量W3-1である。
 図117は、IVos4と、IVSP4s0.5と、IVSP4s1.0と、IVNS5と、IVT4とに関して、ラジアル方向にパターンがシフトした場合のマージンを示す。図117のグラフの横軸は、正規化されたシフト量である。図118も同様に、ラジアル方向にパターンがシフトした場合のマージンを示す。図117と比較して、縦軸(e-MLSE)が拡大されており、各グラフの判別が容易とされている。
 これらの特性から分かるように、IVos4は、IVSP4s0.5より良好な特性もある。メディア等の違いにより、複数のKsを切り替えて用いたり、Ks1,Ks2のバランスを変えたりすることも可能である。
 ここまで、IVT4の中央領域をラジアル方向に3分割したIVNST6から、IVTSP5、IVTSM4、IVNS5、IVSP4、IVos4に至る流れを説明してきた。これらの関係を表にまとめると、表3のようになる。
Figure JPOXMLDOC01-appb-T000003
 各チャンネルについて、表の中では演算式で表しているが、独立な信号として検出する必要はなく、検出素子で受光する際に同一受光部で検出してもよいし、別々に受光したのち、電気的に演算してもよい。
〔チャンネル数削減時の比率(係数)の制御によるデトラック特性の改善〕
 本開示において、チャンネル数を削減する場合に、Ks、Ksm、Ks1、Ks2等を使用し、必要に応じて係数を切り替えることを述べた。係数を乗じる処理は、光学的な減衰または電気信号処理によって可能である。すなわち、周波数特性を異ならせる必要がなく、比率のみを可変することは、液晶素子等の光学素子を使用する方法、または加減算アンプ等の電気的手法で実現することができる。
 チャンネル数を6チャンネルから4チャンネルへ削減するパターンの一例としてIVTSM4(図85)を説明したが、IVTSM4の中央部のB,C,D領域からなるチャンネルを変更したパターンIVT4VGを例にして比率の制御による特性改善について説明する。パターンIVT4VGは、パターンIVNST6におけるA~Fの6チャンネルのうち、A(チャンネル1),E(チャンネル3),F(チャンネル4)はそのままとし、チャンネル2の信号は、次の重み付け加算の式によって形成する。
 チャンネル2:Kd×B+C+(2-Kd)×D (但し、0≦Kd≦1)
 デトラック量を0nm、10nm、20nm、30nmの場合のKd対e-MLSEの関係のシミュレーション結果を図119に示す。デトラック量は、ビームスポットの中心とトラックの中心とのラジアル方向のずれの量である。例えばデトラック量が0nmの場合、すなわち、トラックずれがない場合では、(Kd=1)でe-MLSEが最小となる。この場合のチャンネル2は、(B+C+D)となる。さらに、デトラック量が〔30nm〕の場合では、(Kd=0.25付近)でe-MLSEが最小となる。この場合のチャンネル2は、(0.25B+C+1.75D)となる。
 このようなシミュレーション結果からe-MLSEが最小となる係数Kdの値が分かるので、デトラック量対Kdの関係を規定するテーブルまたは関係式を作成しておく。トラッキングエラー等を使用する等、何らかの方法でデトラック量を検出し、検出されたデトラック量をテーブルまたは関係式に適用してKdを設定すれば、e-MLSEを最小とできる。すなわち、信号劣化を抑えることができる。
 デトラック量を別に検出する方法に限らず、下記の式によって、係数Kdを変化させても、信号劣化を抑えることができる。
 Kd=1-α(B-D)/(B+D)
 定数αは、シミュレーション結果となるべく一致するように、Kdが変化する値に設定される。一例として、(α=3.5)に設定した場合のKdの変化を図120に示す。図120において、(デトラック量=0nmでKd=1)、(デトラック量=10nmでKd=0.77)、(デトラック量=20nmでKd=0.55)、(デトラック量=30nmでKd=0.33)となる。図119に示すシミュレーション結果から分かるように、Kdのかかる変化によって、信号劣化を減少させることができる。但し、αの値は、他の値を使用しても良い。さらに、(B-D)/(B+D)の項の低域変化分を使用しても良い。なお、上式のように、RF信号BおよびDを使用して、他にデトラック量の検出回路および検出信号の供給経路を必要としないので、信号処理の構成を簡略化することが可能となる。
〔領域分割パターンの他の例〕
 図60に示す領域分割パターンIVNST6では、中央部の領域をB、CおよびDの3個の領域にラジアル方向に分割している。図121に示すように、領域Cを省略して領域BおよびDを有する領域分割パターンとしても良い。領域BおよびDのそれぞれのRF信号を重み付け加算しても良い。さらに、領域BおよびDに代えて領域AをA1およびA2に分けて、A1およびA2のRF信号を重み付け加算しても良い。
 領域分割パターンIVT4VGおよび図121の領域分割パターンについて説明したが、これら以外の領域分割パターンであって、チャンネル数を削減する場合に対しても本開示を適用することができる。さらに、以上の説明では、デトラック量によって重み付け加算の比率を変化させているが、視野移動(レンズシフト)に対応して比率を変化させるようにしても良い。
 また、デフォーカスマージン、タンジェンシャルコマ収差マージン、ラジアルコマ収差マージンと球面収差マージン等を拡大するために、Ks、Ksm、Ks1、Ks2等を変化させるようにしてもよい。
 さらに、表3に示す領域分割パターンのグループと同じ考え方で、T4の中央領域をラジアル方向に3分割したNST6から、TSP5、TSM4、NS5、SP4、os4を考えることができる。また、同様にHT4の中央領域をラジアル方向に3分割したHNST6(図122)から、HTSP5、HTSM4、HNS5、HSP4、Hos4を考えることができる。表にまとめると表4のようになる。基本的な分割パターンはそのままに、各種特性を考慮して分割位置は適宜変更してもよい。
Figure JPOXMLDOC01-appb-T000004
 また、Hi3の中央領域をラジアル方向に3分割したHiNS5(図123)から、HiSP4、HiSM3、Hios4を考えることができる。表にまとめると表5のようになる。
Figure JPOXMLDOC01-appb-T000005
 また、IVT4の考え方をT4、HT4、Hi3系にそれぞれ適用して、VT4(図124)、VHT4(図125)、VHi3(図126)を考えることも可能である。さらに、これらをもとに、ラジアル方向への空間光学的に帯域の異なる領域の分割数を増やすことを考えてもよい。
〔パターンNST6〕(さらに高密度化した場合)
 図127に分割パターンNST6を示す(図54と同様)。この分割パターンにおいて、さらに、高密度化がなされた場合について説明する。すなわち、シミュレーション条件は、下記に示すものである。
 ・LD47(GB)・・・0.03967μm/channel bit
 ・Tp=0.15μm(ランド、グルーブのそれぞれが)
 面容量100.3GBとなる。
 ・NA=0.91    ・PR(1233321)  ・評価指標:e-MLSE
 ・マーク幅=Tp×0.6
 この場合の電気フィルタの31タップの係数の値の一例を図128に示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合のA~Fの各チャンネルの周波数振幅特性は、図129に示すものとなる。光学フィルタを使用しない場合には、e-MLSEが38.6%となるのに対して、光学フィルタ(NST6)および電気フィルタを使用した場合には、e-MLSEが8.6%に改善される。
<2.他の実施の形態>
 光ディスクから再生された信号は、理想信号に対して、線方向の高密度化による符号間干渉の増大、並びにトラック方向の高密度化による隣接トラックからの信号の漏れ込みの増大によって、理想的な信号から大きく乖離したものとなっている。従来では、電気フィルタによってこの問題を解決している。例えばBDXL(登録商標)では、33.4GB/Lが実現されている。
 本開示による高密度記録された信号を再生する構成は、図130に示すものとなる。すなわち、光学フィルタ131に再生信号を供給し、光学フィルタ131によって、空間光学的に線密度方向および/またはトラック密度方向に帯域の異なる複数の信号に分離する。分離した複数の信号例えば2つの信号をそれぞれに最適な電気フィルタ132および133に供給し、電気フィルタ132および133のそれぞれの出力を合算することにより出力信号を得ている。
 上述した一実施の形態では、光学フィルタが複数の領域に分割され、各分割領域から得られる複数チャンネルの信号をそれぞれ電気フィルタに供給する構成であった。他の実施の形態は、光学フィルタとしてビームスプリッタを用いる例である。
 図131に示すように、光源121からのレーザビームが往路/復路分岐用のビームスプリッタ122および対物レンズ123を介してディスク124の面に照射される。ディスク124からの戻りビームがビームスプリッタ122において反射され、光学フィルタ用のビームスプリッタ125に入射される。なお、図131は、説明上必要な最小限の光学要素を示すものである。
 ビームスプリッタ125によって反射されたビームが受光素子126Aによって電気信号に変換され、ビームスプリッタ125を透過したビームが受光素子126Bによって電気信号に変換される。ビームスプリッタ125は、入射角度依存性を有し、入射角度依存性を利用して瞳内を空間光学的に分離する。図132は、ビームスプリッタ125の反射特性を示す。図132において、縦軸が反射率であり、横軸が半径位置である。半径位置は、瞳半径を1としたときのラジアル方向の半径位置である。
 図132および図133から分かるように、ビームスプリッタ125の(半径位置=0)に入射したレーザ光は、殆ど透過して受光素子126Bに導かれる。(半径位置=±1.0)に入射したレーザ光は、殆ど反射して受光素子126Aに導かれる。このように、ビームが分離されるが、上述した一実施の形態と異なり、受光素子126Aおよび126Bに導かれるビームは、互いに重複した部分を持つ。
 さらに、図131の構成において、ビームスプリッタ125と受光素子126Bとの間にもう一段のビームスプリッタ127(図134参照)を配置するようにしても良い。ビームスプリッタ127は、入射角度依存性を有する。ビームスプリッタ127は、受光素子126Aに導かれるビームと受光素子126Bに導かれるビームとに対して90°異なる角度にビームを導くものである。すなわち、図131において、紙面の裏から表に向かう方向にビームを導き、受光素子126Cに受光させる。
「電気フィルタの特性」
 図131に示すように、受光素子126Aおよび126Bによってそれぞれ変換された電気信号が供給される電気フィルタの特性を図135および図136に示す。図135は、電気フィルタの31タップの係数の値の一例を示す。電気フィルタは、FIRフィルタの構成とされている。このように係数を設定した場合の反射光側フィルタおよび透過光側フィルタのそれぞれの周波数振幅特性は、図136に示すものとなる。
 さらに、図131の構成に対して図134のビームスプリッタを組み合わせる2段構成の場合に好適な電気フィルタの31タップの係数の一例を図137に示す。Aで示すものは、受光素子126Aの係数であり、Bで示すものは、受光素子126Bの出力が供給されるフィルタの係数であり、Cで示すものは、受光素子126Cの出力が供給されるフィルタの係数である。このように係数を設定した場合の反射光側フィルタおよび透過光側フィルタのそれぞれの周波数振幅特性は、図138に示すものとなる。
 なお、上述した例では、光学フィルタとして入射角度依存性を有するビームスプリッタを使用しているが、ビームを半波長板に入射し、半波長板の出力光を偏光ビームスプリッタに入射させる構成を採用しても良い。この場合、半波長板の光学軸方位が2次元平面で異なった分布を持つものとされている。その結果、半波長板に対する入射位置によって異なる偏光を行い、入力ビームを偏光ビームスプリッタによって二つに分離することができる。
 なお、本開示は、以下のような構成も取ることができる。
(1)
 複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
 光媒体から戻る、ビームの断面を複数の領域に分割し、ラジアル方向の外側の前記領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる前記領域に対応する少なくとも一つのチャンネルと、それ以外の前記領域に対応する一つのチャンネルとに分割し、前記チャンネルのそれぞれの検出信号を形成し、前記チャンネルの検出信号を形成する場合に、少なくとも一つのチャンネルの検出信号を前記複数の領域の中の所定の領域の信号を重み付け加算することによって形成する検出部と、
 複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットを有し、前記複数のチャンネルの検出信号をもとに、等化信号を形成する多入力イコライザ部と、
 前記等化信号について2値化処理を行って2値データを得る2値化部とを備える
 光媒体再生装置。
(2)
 前記多入力イコライザ部が多入力適応イコライザ部の構成とされ、
 前記2値化部の2値検出結果に基づいて得られる等化目標信号と、前記多入力適応イコライザ部から出力される等化信号とから等化誤差を求め、該等化誤差を、前記適応イコライザユニットに適応等化のための制御信号として供給する等化誤差演算部と
 を有する(1)に記載の光媒体再生装置。
(3)
 前記多入力適応イコライザ部は、前記複数の領域の検出信号をもとにパーシャルレスポンス等化処理を行い、
 前記2値化部は、前記多入力適応イコライザ部の等化信号についての2値化処理として最尤復号処理を行い、
 前記等化誤差演算部は、前記最尤復号による2値検出結果の畳込処理で得られる等化目標信号と、前記多入力適応イコライザ部から出力される等化信号とを用いた演算により等化誤差を求める(2)に記載の光媒体再生装置。
(4)
 前記重み付けの比率を設定する係数の値をラジアルコマ収差または球面収差による信号劣化を減少させるように制御する(1)または(2)に記載の光媒体再生装置。
(5)
 前記重み付けの比率を設定する係数の値をデフォーカスまたはタンジェンシャルコマ収差による信号劣化を減少させるように制御する(1)または(2)に記載の光媒体再生装置。
(6)
 前記重み付けの比率を設定する係数の値をデトラックまたは視差移動による信号劣化を減少させるように制御する(1)または(2)に記載の光媒体再生装置。
(7)
 前記検出部は、前記複数の領域と対応して分割されたディテクタを有し、
 前記光検出器から前記複数の領域の検出信号を取り出すようになされた(1)乃至(6)の何れかに記載の光媒体再生装置。
(8)
 対物レンズを通過し、ディテクタに至る光路中に、前記複数の領域を分離するための光路変換素子を配置し、前記光路変換素子によって分離された複数のビームを異なるディテクタにそれぞれ入力する(1)乃至(7)の何れかに記載の光媒体再生装置。
(9)
 前記光媒体は、ランドおよびグルーブが交互に形成されており、
 前記ランドおよび前記グルーブの両方に情報を記録する(1)乃至(8)の何れかに記載の光媒体再生装置。
(10)
 複数トラックが形成される光媒体を光学的に再生する光媒体再生方法であって、
 光媒体から戻る、ビームの断面を複数の領域に分割し、ラジアル方向の外側の前記領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる前記領域に対応する少なくとも一つのチャンネルと、それ以外の前記領域に対応する一つのチャンネルとに分割し、検出部によって、前記チャンネルのそれぞれの検出信号を形成し、前記チャンネルの検出信号を形成する場合に、少なくとも一つのチャンネルの検出信号を前記複数の領域の中の所定の領域の信号を重み付け加算することによって形成し、
 多入力イコライザ部によって、前記複数のチャンネルの検出信号をもとに等化信号を形成し、
 前記等化信号について2値化部によって2値化処理を行って2値データを得る
 光媒体再生方法。
(11)
 複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
 光媒体から戻る、ビームが入射され、空間光学的に線密度方向およびトラック密度方向に帯域の異なる複数の信号を形成する光学フィルタと、
 前記光学フィルタによって形成される複数の信号がそれぞれ供給される複数の電気フィルタとを備え、
 前記複数の電気フィルタの出力を合成して再生信号を得る光媒体再生装置。
(12)
 前記光学フィルタは、入射角度依存性を有するビームスプリッタである(11)に記載の光媒体再生装置。
(13)
 前記複数のイコライザユニットにおいて使用されるFIRフィルタのタップ係数の分布によって、ラジアル収差または球面収差を検出する(1)に記載の光媒体再生装置。
(14)
 前記複数のイコライザユニットにおいて使用されるFIRフィルタのタップ係数の分布によって、デフォーカスまたはタンジェンシャルコマ収差を検出する(1)に記載の光媒体再生装置。
(15)
 前記複数のイコライザユニットにおいて使用されるFIRフィルタのタップ係数の分布によって、デトラックまたは視差移動を検出する(1)に記載の光媒体再生装置。
<3.変形例>
 以上、本開示の実施の形態について具体的に説明したが、上述の各実施の形態に限定されるものではなく、本開示の技術的思想に基づく各種の変形が可能である。例えば、上述したレーザ光源の波長、トラックピッチ、記録線密度の数値等は、一例であって、他の数値を使用しても良い。さらに、再生性能を評価するための指標としては、上述したもの以外を使用しても良い。さらに、光ディスクに対して記録および再生の一方のみを行う光ディスク装置に対しても本開示を適用できる。
 また、上述の実施の形態の構成、方法、工程、形状、材料および数値などは、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。例えば上述した第1の実施の形態と第2の実施の形態とを組み合わせるようにしても良い。
13・・多入力適応イコライザ
14・・・2値化検出器
15・・・PR畳込器
21~23・・・適応イコライザユニット
100・・・光ディスク
101・・・光ピックアップ
105・・・データ検出処理部
125,127・・・ビームスプリッタ
126A,126B,126C・・・受光素子

Claims (15)

  1.  複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
     光媒体から戻る、ビームの断面を複数の領域に分割し、ラジアル方向の外側の前記領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる前記領域に対応する少なくとも一つのチャンネルと、それ以外の前記領域に対応する一つのチャンネルとに分割し、前記チャンネルのそれぞれの検出信号を形成し、前記チャンネルの検出信号を形成する場合に、少なくとも一つのチャンネルの検出信号を前記複数の領域の中の所定の領域の信号を重み付け加算することによって形成する検出部と、
     複数のチャンネルの検出信号がそれぞれ供給される複数のイコライザユニットを有し、前記複数のチャンネルの検出信号をもとに、等化信号を形成する多入力イコライザ部と、
     前記等化信号について2値化処理を行って2値データを得る2値化部とを備える
     光媒体再生装置。
  2.  前記多入力イコライザ部が多入力適応イコライザ部の構成とされ、
     前記2値化部の2値検出結果に基づいて得られる等化目標信号と、前記多入力適応イコライザ部から出力される等化信号とから等化誤差を求め、該等化誤差を、前記適応イコライザユニットに適応等化のための制御信号として供給する等化誤差演算部と
     を有する請求項1に記載の光媒体再生装置。
  3.  前記多入力適応イコライザ部は、前記複数の領域の検出信号をもとにパーシャルレスポンス等化処理を行い、
     前記2値化部は、前記多入力適応イコライザ部の等化信号についての2値化処理として最尤復号処理を行い、
     前記等化誤差演算部は、前記最尤復号による2値検出結果の畳込処理で得られる等化目標信号と、前記多入力適応イコライザ部から出力される等化信号とを用いた演算により等化誤差を求める請求項2に記載の光媒体再生装置。
  4.  前記重み付けの比率を設定する係数の値をラジアルコマ収差または球面収差による信号劣化を減少させるように制御する請求項1に記載の光媒体再生装置。
  5.  前記重み付けの比率を設定する係数の値をデフォーカスまたはタンジェンシャルコマ収差による信号劣化を減少させるように制御する請求項1に記載の光媒体再生装置。
  6.  前記重み付けの比率を設定する係数の値をデトラックまたは視差移動による信号劣化を減少させるように制御する請求項1に記載の光媒体再生装置。
  7.  前記検出部は、前記複数の領域と対応して分割されたディテクタを有し、
     前記光検出器から前記複数の領域の検出信号を取り出すようになされた請求項1に記載の光媒体再生装置。
  8.  対物レンズを通過し、ディテクタに至る光路中に、前記複数の領域を分離するための光路変換素子を配置し、前記光路変換素子によって分離された複数のビームを異なるディテクタにそれぞれ入力する請求項1に記載の光媒体再生装置。
  9.  前記光媒体は、ランドおよびグルーブが交互に形成されており、
     前記ランドおよび前記グルーブの両方に情報を記録する請求項1に記載の光媒体再生装置。
  10.  複数トラックが形成される光媒体を光学的に再生する光媒体再生方法であって、
     光媒体から戻る、ビームの断面を複数の領域に分割し、ラジアル方向の外側の前記領域に対応する少なくとも一つのチャンネルと、タンジェンシャル方向に位置の異なる前記領域に対応する少なくとも一つのチャンネルと、それ以外の前記領域に対応する一つのチャンネルとに分割し、検出部によって、前記チャンネルのそれぞれの検出信号を形成し、前記チャンネルの検出信号を形成する場合に、少なくとも一つのチャンネルの検出信号を前記複数の領域の中の所定の領域の信号を重み付け加算することによって形成し、
     多入力イコライザ部によって、前記複数のチャンネルの検出信号をもとに等化信号を形成し、
     前記等化信号について2値化部によって2値化処理を行って2値データを得る
     光媒体再生方法。
  11.  複数トラックが形成される光媒体を光学的に再生する光媒体再生装置であって、
     光媒体から戻る、ビームが入射され、空間光学的に線密度方向およびトラック密度方向に帯域の異なる複数の信号を形成する光学フィルタと、
     前記光学フィルタによって形成される複数の信号がそれぞれ供給される複数の電気フィルタとを備え、
     前記複数の電気フィルタの出力を合成して再生信号を得る光媒体再生装置。
  12.  前記光学フィルタは、入射角度依存性を有するビームスプリッタである請求項11に記載の光媒体再生装置。
  13.  前記複数のイコライザユニットにおいて使用されるFIRフィルタのタップ係数の分布によって、ラジアル収差または球面収差を検出する請求項1に記載の光媒体再生装置。
  14.  前記複数のイコライザユニットにおいて使用されるFIRフィルタのタップ係数の分布によって、デフォーカスまたはタンジェンシャルコマ収差を検出する請求項1に記載の光媒体再生装置。
  15.  前記複数のイコライザユニットにおいて使用されるFIRフィルタのタップ係数の分布によって、デトラックまたは視差移動を検出する請求項1に記載の光媒体再生装置。
PCT/JP2015/002839 2014-07-11 2015-06-05 光媒体再生装置および光媒体再生方法 WO2016006157A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/322,618 US9847100B2 (en) 2014-07-11 2015-06-05 Optical medium reproduction device and optical medium reproduction method
JP2016532411A JP6489126B2 (ja) 2014-07-11 2015-06-05 光媒体再生装置および光媒体再生方法
CN201580036552.0A CN106575512B (zh) 2014-07-11 2015-06-05 光学介质再现装置及光学介质再现方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014143274 2014-07-11
JP2014-143274 2014-07-11
JP2015025667 2015-02-12
JP2015-025667 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016006157A1 true WO2016006157A1 (ja) 2016-01-14

Family

ID=55063817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002839 WO2016006157A1 (ja) 2014-07-11 2015-06-05 光媒体再生装置および光媒体再生方法

Country Status (4)

Country Link
US (1) US9847100B2 (ja)
JP (1) JP6489126B2 (ja)
CN (1) CN106575512B (ja)
WO (1) WO2016006157A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208721A1 (ja) * 2016-05-31 2017-12-07 ソニー株式会社 情報処理装置、光ストレージ装置、および情報処理方法、並びにプログラム
US10373640B2 (en) 2016-02-05 2019-08-06 Sony Corporation Information processing device, information processing method, and program

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105340012B (zh) 2013-06-28 2019-06-28 索尼公司 光学介质再现装置和光学介质再现方法
JP6167918B2 (ja) * 2013-08-14 2017-07-26 ソニー株式会社 光媒体再生装置および光媒体再生方法
JP6428619B2 (ja) 2013-08-14 2018-11-28 ソニー株式会社 光媒体再生装置および光媒体再生方法
JP6551418B2 (ja) * 2014-11-10 2019-07-31 ソニー株式会社 光媒体再生装置及び光媒体再生方法
JP6123821B2 (ja) * 2015-02-12 2017-05-10 ソニー株式会社 光媒体再生装置及び光媒体再生方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750030A (ja) * 1993-06-02 1995-02-21 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JPH10143901A (ja) * 1996-11-13 1998-05-29 Matsushita Electric Ind Co Ltd 光ピックアップ
JP2000348361A (ja) * 1999-03-30 2000-12-15 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2002342938A (ja) * 2001-03-14 2002-11-29 Fujitsu Ltd データ再生装置
JP2009283040A (ja) * 2008-05-20 2009-12-03 Sony Corp 記録装置、記録方法、再生装置、再生方法、記録再生装置、記録再生方法
WO2014054246A1 (ja) * 2012-10-05 2014-04-10 パナソニック株式会社 情報再生装置及び情報再生方法
WO2014057674A1 (ja) * 2012-10-11 2014-04-17 パナソニック株式会社 光情報装置、クロストーク低減方法、コンピュータ、プレーヤ及びレコーダ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079385A (ja) 2010-10-04 2012-04-19 Sony Corp データ検出装置、再生装置、データ検出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750030A (ja) * 1993-06-02 1995-02-21 Matsushita Electric Ind Co Ltd 光ピックアップ装置
JPH10143901A (ja) * 1996-11-13 1998-05-29 Matsushita Electric Ind Co Ltd 光ピックアップ
JP2000348361A (ja) * 1999-03-30 2000-12-15 Matsushita Electric Ind Co Ltd 光ディスク装置
JP2002342938A (ja) * 2001-03-14 2002-11-29 Fujitsu Ltd データ再生装置
JP2009283040A (ja) * 2008-05-20 2009-12-03 Sony Corp 記録装置、記録方法、再生装置、再生方法、記録再生装置、記録再生方法
WO2014054246A1 (ja) * 2012-10-05 2014-04-10 パナソニック株式会社 情報再生装置及び情報再生方法
WO2014057674A1 (ja) * 2012-10-11 2014-04-17 パナソニック株式会社 光情報装置、クロストーク低減方法、コンピュータ、プレーヤ及びレコーダ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10373640B2 (en) 2016-02-05 2019-08-06 Sony Corporation Information processing device, information processing method, and program
WO2017208721A1 (ja) * 2016-05-31 2017-12-07 ソニー株式会社 情報処理装置、光ストレージ装置、および情報処理方法、並びにプログラム
JPWO2017208721A1 (ja) * 2016-05-31 2019-03-22 ソニー株式会社 情報処理装置、光ストレージ装置、および情報処理方法、並びにプログラム
US10978107B2 (en) 2016-05-31 2021-04-13 Sony Corporation Information processing apparatus, optical storage apparatus, and method for processing information

Also Published As

Publication number Publication date
JP6489126B2 (ja) 2019-03-27
CN106575512A (zh) 2017-04-19
US9847100B2 (en) 2017-12-19
JPWO2016006157A1 (ja) 2017-04-27
CN106575512B (zh) 2019-09-27
US20170133049A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP6167918B2 (ja) 光媒体再生装置および光媒体再生方法
JP6489126B2 (ja) 光媒体再生装置および光媒体再生方法
JP6428619B2 (ja) 光媒体再生装置および光媒体再生方法
JP6311711B2 (ja) 光媒体再生装置および光媒体再生方法
JP6123821B2 (ja) 光媒体再生装置及び光媒体再生方法
JP6551418B2 (ja) 光媒体再生装置及び光媒体再生方法
JP6597779B2 (ja) 光ディスク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818580

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532411

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322618

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818580

Country of ref document: EP

Kind code of ref document: A1