[go: up one dir, main page]

WO2015122498A1 - 親水性重合体、その製造方法、バインダー、及び電極 - Google Patents

親水性重合体、その製造方法、バインダー、及び電極 Download PDF

Info

Publication number
WO2015122498A1
WO2015122498A1 PCT/JP2015/054000 JP2015054000W WO2015122498A1 WO 2015122498 A1 WO2015122498 A1 WO 2015122498A1 JP 2015054000 W JP2015054000 W JP 2015054000W WO 2015122498 A1 WO2015122498 A1 WO 2015122498A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
represented
hydrophilic polymer
weight
negative electrode
Prior art date
Application number
PCT/JP2015/054000
Other languages
English (en)
French (fr)
Inventor
吉田 圭介
裕 粟野
徹 津吉
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014105727A external-priority patent/JP2015220221A/ja
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2015122498A1 publication Critical patent/WO2015122498A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0838Manufacture of polymers in the presence of non-reactive compounds
    • C08G18/0842Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents
    • C08G18/0861Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers
    • C08G18/0866Manufacture of polymers in the presence of non-reactive compounds in the presence of liquid diluents in the presence of a dispersing phase for the polymers or a phase dispersed in the polymers the dispersing or dispersed phase being an aqueous medium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/1053Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/12Polyurethanes from compounds containing nitrogen and active hydrogen, the nitrogen atom not being part of an isocyanate group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a hydrophilic polymer that has excellent hydrophilicity, is flexible, exhibits excellent adhesion to metals, has a low viscosity of its organic solvent solution, and has improved workability, and its production
  • the present invention relates to a method, a binder using the method, and an electrode using the binder.
  • Patent Document 2 uses a non-aqueous polyimide resin having high resin strength to suppress the occurrence of peeling at the interface between the negative electrode current collector and the binder and improve cycle characteristics.
  • dehydration condensation from the binder precursor requires heat treatment at a high temperature, and there is a concern about the influence on the current collector.
  • it since it is a polyimide simple substance, it has a hard physical property, elasticity and flexibility are not enough, and adhesiveness is questioned.
  • Patent Document 3 discloses that a urethane resin containing a soft segment capable of forming a single polymer having an aromatic imide group and a glass transition point of 30 ° C. or lower is used as a non-aqueous binder and does not peel off from a copper foil at a relatively low temperature. A negative electrode with good adhesion is produced.
  • the coating solution is an organic solvent-based NMP, and there is a risk of film formation on the active material surface.
  • the present invention has been made in view of the above-mentioned problems, is flexible while having extremely excellent hydrophilicity, and exhibits excellent adhesion to metals, and further, the viscosity of the organic solvent solution is low.
  • An object of the present invention is to provide a hydrophilic polymer with improved workability.
  • a negative electrode for a lithium ion secondary battery that has little thermal deterioration, a large discharge capacity, and excellent cycle life characteristics, using a negative electrode comprising Si or a Si alloy (hereinafter also referred to as “Si compound”) as an active material.
  • Si compound a negative electrode comprising Si or a Si alloy
  • a polymer having a specific composition is flexible and has excellent adhesion to a metal while having extremely excellent hydrophilicity. It was found that a hydrophilic polymer suitable for a binder was obtained.
  • a negative active material for a lithium ion secondary battery comprising a Si compound, a carbonaceous material, or a carbonaceous material and graphite, and a hydrophilic polymer that binds the negative active material to a collector or the negative active material
  • a negative electrode for a lithium ion secondary battery exhibiting a high discharge capacity and excellent cycle characteristics in a negative electrode comprising a binder comprising: and a conductive carbon compound added to ensure the conductivity of the negative electrode active material.
  • the hydrophilic polymer of the present invention is flexible and excellent in adhesion to metal, has a low environmental load, and is electrochemically stable when used in a secondary battery. Excellent as a binder for binding the active material and the electrode.
  • an electrode during repeated charge and discharge is obtained by uniformly dispersing a negative electrode active material composed of a composite of a silicon compound and a carbonaceous material and a binder that exhibits high binding properties even when heat-treated at a relatively low drying temperature.
  • a negative electrode that suppresses the pulverization of the active material, has a high capacity, and exhibits excellent cycle characteristics is obtained.
  • FIG. The figure which showed the result of the CV measurement of the hydrophilic polymer of Example 3.
  • FIG. The figure which showed the initial stage charge / discharge curve of the battery produced using the hydrophilic polymer.
  • Example 73 The SEM photograph of the electrode surface after preparation of the negative electrode sheet obtained in Example 73.
  • FIG. The SEM photograph of the electrode surface after preparation of the negative electrode sheet obtained by the comparative example 16.
  • the hydrophilic polymer of the present invention has a structure represented by the following formula (1).
  • R 1 represents a divalent organic group having 4 to 30 carbon atoms
  • R 2 is a linear or branched polyoxyalkylene having 2 to 5 carbon atoms having a number average molecular weight of 100 to 10,000.
  • R 3 represents a divalent organic group having a structure
  • R 3 represents a trivalent or more organic group containing one or two aromatic rings having 4 to 30 carbon atoms
  • R 4 represents a tetravalent organic group having 4 to 30 carbon atoms.
  • X represents a carboxyl group or a sulfonic acid group
  • x represents an integer of 1 to 800
  • y represents an integer of 1 to 800
  • z represents an integer of 1 to 100
  • a represents 1 to Represents an integer of 4.
  • X is a carboxyl group
  • the number of aromatic rings of R 3 is 1 and a is 1.
  • formula (1) it is represented by the following formula (2).
  • the structure is 10 to 99% by weight and is represented by the formula (2) with respect to the number of moles A of the urethane unit structure represented by the formula (3).
  • the ratio of moles B of imide unit structure (B / A) is 1-30.
  • R 3 , R 4 , X, y, and a are the same as defined above. However, when X is a carboxyl group, the number of aromatic rings of R 3 is 1, and a is 1. is there.)
  • Formula (1) is characterized in that an imide unit having at least one carboxyl group or sulfonic acid group and a urethane unit are linked via a urea bond in the repeating unit.
  • R 1 is preferably a divalent organic group containing an aromatic ring or aliphatic ring having 4 to 15 carbon atoms.
  • R 2 has an average molecular weight of preferably 100 to 5,000, more preferably 100 to 2,000.
  • R 3 preferably represents a trivalent or higher organic group containing 1 to 2 aromatic rings having 6 to 20 carbon atoms.
  • x preferably represents an integer of 1 to 600.
  • y preferably represents an integer of 2 to 600.
  • the hydrophilic polymer of the present invention exhibits extremely excellent adhesion and hydrophilicity by combining an aromatic ring and a carboxyl group or a sulfonic acid group.
  • the hydrophilic polymer of the present invention is extremely excellent because it has a structure in which the terminal of the polymer represented by the formula (1) is sealed with the dicarboxylic acid anhydride represented by the formula (4).
  • the organic solvent solution has low viscosity and workability is improved.
  • Z represents a divalent organic group for forming a compound in which the dicarboxylic anhydride represented by the formula (4) is selected from the group consisting of the following formula (5).
  • the hydrophilic polymer of the present invention is suitable for use as a binder, but is not particularly limited.
  • the binder refers to a material that binds the current collector metal and the electrode active material, and particularly refers to a binder for a secondary battery.
  • the hydrophilic polymer of the present invention has a rigid polyimide structural unit and a flexible polyalkylene structure in the structure.
  • the hydrophilic polymer of this invention has a polyimide structural unit as a rigid hard segment by a polyimide prepolymer in a structure, and also has a carboxyl group or a sulfonic acid group in a polyimide structural unit. By having such a substituent, it is flexible and exhibits excellent adhesion to a metal.
  • the hydrophilic polymer of the present invention is an electrochemically stable hydrophilic polymer, particularly under conditions assuming use for a secondary battery. For example, in the range of potentials that can be used for lithium ion secondary batteries, oxidation and reduction reactions were not observed with cyclic voltammetry, and it was not known until now that they are stable hydrophilic polymers. .
  • the hydrophilic polymer of the present invention has a polyoxyalkylene structure introduced as a soft segment from a urethane prepolymer at the same time as a polyimide structural unit in the structure with a urea bond that is generated by the reaction of an isocyanate and an amino group.
  • the hydrophilic polymer of the present invention contains 10 to 99% by weight, preferably 10 to 98% by weight, of the structure described in formula (2) in terms of the balance between hydrophilicity and adhesive strength. From the viewpoint of improving hydrophilicity, it is more preferably 40 to 98% by weight, still more preferably 50 to 95% by weight, and particularly preferably 60 to 98% by weight because the balance between hydrophilicity and adhesive force is excellent. It is. If it is less than 10% by weight, the hydrophilicity is inferior, and if it exceeds 99% by weight, the flexibility is insufficient.
  • the ratio (B / A) of the number of moles B of the imide unit structure represented by the formula (2) to the number of moles A of the urethane unit structure represented by the formula (3) is hydrophilic.
  • 1 to 30 in terms of balance between adhesiveness and adhesive strength, preferably greater than 1 and 30 or less, and more preferably greater than 1 and 10 or less in terms of improving hydrophilicity, improving hydrophilicity
  • it is more preferably more than 1 and 5 or less, and most preferably more than 1 and 2 or less because the balance between hydrophilicity and adhesive strength is excellent. If it is less than 1, the cause is unknown, but the viscosity increases during the reaction and a hydrophilic polymer cannot be obtained.
  • the end of the chain of the hydrophilic polymer having a polyimide structure is more stable than the polyurethane structure having an isocyanate group having high reactivity with a hydroxyl group or an amino group.
  • the ratio (B / A) exceeds 30, the hydrophilicity and the adhesive strength are lowered, which is not preferable.
  • the formula (4) with respect to 100 parts by weight of the polymer represented by the formula (1)
  • the ratio of the structure sealed with the dicarboxylic anhydride represented by the formula is not particularly limited, but is preferably 0.02 to 100 parts by weight, and 0.02 in terms of the balance between hydrophilicity and low viscosity. From 1 to 50 parts by weight is more preferable, and from 1 to 50 parts by weight is most preferable because the balance between hydrophilicity and adhesive strength is excellent.
  • the hydrophilic polymer of the present invention is preferably used for a secondary battery, particularly for a lithium ion secondary battery, having a strong binding force between the electrode active material and the electrode.
  • the initial adhesive strength with copper in a T-peeling test (tensile speed of 300 mm / min) representing excellent adhesion to copper, which is a metal, is preferably 0.05 N / mm or more. More preferably, it is 1.0 N / mm or more.
  • aluminum, iron, stainless steel or the like can be used in addition to copper.
  • the hydrophilic polymer of the present invention is a polyamic acid obtained by polycondensing a urethane prepolymer represented by the following formula (6) obtained by reaction of diisocyanate and polyol, tetracarboxylic dianhydride and diamine in a solvent. It can obtain by reacting with the polyimide prepolymer which has an amino group in both the terminals represented by following formula (7) obtained by imide cyclization.
  • R 3 , R 4 , X, y and a are the same as defined above. However, when X is a carboxyl group, the number of aromatic rings in R 3 is 1 and a is 1. .
  • the polymer in which the ends of the hydrophilic polymer are sealed with the dicarboxylic acid anhydride represented by the formula (4) is obtained by combining the urethane prepolymer represented by the formula (6) and the formula (7). After reacting the polyimide prepolymer having an amino group at the terminal to obtain a polymer represented by the formula (1), the polymer represented by the obtained formula (1) and the following formula (4): It can be obtained by reacting the dicarboxylic acid anhydride represented.
  • the urethane prepolymer represented by the formula (6) used for the production of the hydrophilic polymer of the present invention comprises a diisocyanate represented by the following formula (8) and a polyol represented by the following formula (9). It can be obtained by reacting at a molar ratio of isocyanate groups to hydroxyl groups in the polyol (isocyanate groups / hydroxyl groups) in the range of 1 to 2. (Wherein R 1 has the same definition as above). (Wherein R 2 is the same as defined above.)
  • diisocyanate represented by the formula (8) examples include 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate (TDI), and xylylene diisocyanate.
  • MDI 4,4′-diphenylmethane diisocyanate
  • TDI 2,4-tolylene diisocyanate
  • TDI 2,6-tolylene diisocyanate
  • xylylene diisocyanate examples include 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate (TDI), 2,6-tolylene diisocyanate (TDI), and xylylene diisocyanate.
  • XDI polymeric MDI
  • dianisidine diisocyanate diphenyl ether diisocyanate, tolylene diisocyanate, naphthalene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate methyl ester, metaxylylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4 4-trimethylhexamethylene diisocyanate, isopropylidenebis (4-cyclohexylisocyanate), cyclohexylmethanedi Cyanate, methylcyclohexane diisocyanate, methyl cyclohexane diisocyanate dimer and the like. You may use these 1 type or in mixture of 2 or more types.
  • polystyrene resin examples include polyether polyols such as polyoxytetramethylene glycol, polypropylene glycol, and polyethylene glycol. You may use these 1 type or in mixture of 2 or more types. Moreover, a polybutadiene polyol, an acrylic polyol, etc. can also be mixed and used as needed.
  • the urethane prepolymer can be obtained, for example, by mixing and reacting a diisocyanate and a polyol at a predetermined ratio in an inert gas atmosphere such as argon gas or nitrogen gas.
  • an inert gas atmosphere such as argon gas or nitrogen gas.
  • the ratio of isocyanate in the diisocyanate to hydroxyl group in the polyol the closer the isocyanate / hydroxyl charge ratio (molar ratio) is to 1, the greater the degree of polymerization of the urethane prepolymer and the higher the molecular weight.
  • the charging ratio (molar ratio) of isocyanate / hydroxyl group is 1 to 2, preferably more than 1 and 2 or less, and more preferably 1.01 to 2 in view of reactivity with the polyimide prepolymer. .
  • An isocyanate / hydroxyl feed ratio (molar ratio) of less than 1 is not preferred because it does not result in a urethane prepolymer having isocyanate groups at both ends.
  • the reaction is carried out at room temperature to 140 ° C. in the absence or presence of a catalyst depending on the reactivity of a commonly used diisocyanate.
  • a catalyst include organotin compounds and amine compounds.
  • the organic tin compound include dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin bisacetoacetate, tin octoate, and the like.
  • the amine compound include 1,4-diazabicyclo [2,2,2] octane.
  • the solvent examples include acetone, butanone, tetrahydrofuran, dioxane, dimethoxyethane, methoxypropyl acetate, dimethylformamide, dimethylacetamide, N, N′-dimethyl-2,5-diazapentanone, N-methyl-2-pyrrolidone and the like. Can be mentioned.
  • the reaction time is preferably 1 to 24 hours.
  • the polyimide prepolymer represented by the formula (7) used for the production of the hydrophilic polymer of the present invention is a diamine represented by the following formula (10) and a tetracarboxylic acid represented by the following formula (11).
  • acid dianhydride it can be obtained by dehydration imidization after the reaction at a molar ratio of diamine to tetracarboxylic dianhydride (diamine / tetracarboxylic dianhydride) of more than 1 and 2 or less.
  • R 3 , X and a are the same as defined above. However, when X is a carboxyl group, the number of aromatic rings of R 3 is 1 and a is 1.) (Wherein R 4 has the same definition as above).
  • Examples of the diamine represented by the formula (10) include 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 2,4-diaminobenzoic acid, 3,5-diamino-trimethylbenzenesulfonic acid, 2 Benzidine, 2,2'-disulfonic acid, 1,4-diaminobenzene-3-sulfonic acid, 1,3-diaminobenzene-4-sulfonic acid, 4,4'-diamino-5,5'-dimethyl- (1,1 And '-biphenyl) -2,2'-disulfonic acid benzidine. If necessary, two or more of these may be used.
  • Examples of the tetracarboxylic dianhydride represented by the formula (11) include 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, and pyromellitic.
  • the polyimide prepolymer is mixed with a predetermined ratio of diamine and tetracarboxylic dianhydride in an organic solvent in an inert gas atmosphere such as argon gas or nitrogen gas to form a polyamic acid. Furthermore, it can be obtained through an imide cyclization reaction.
  • the polycondensation when synthesizing the polyimide prepolymer is similar to the usual polycondensation reaction, and the closer the charge ratio (molar ratio) of diamine / tetracarboxylic dianhydride is to 1, the higher the degree of polymerization of the polyamic acid produced is. Increase in molecular weight.
  • the charging ratio (molar ratio) of diamine / tetracarboxylic dianhydride is more than 1 and 2 or less, and 1.01 to 2 is preferable in consideration of reactivity with the polyimide prepolymer.
  • a charge ratio (molar ratio) of diamine / tetracarboxylic dianhydride of 1 or less is not preferable because it does not become a polyimide prepolymer having amino groups at both ends.
  • the organic solvent used when synthesizing the polyimide prepolymer is not particularly limited as long as it is inactive with respect to tetracarboxylic dianhydride and diamine, and the generated polyamic acid can be dissolved.
  • the amount of the organic solvent used is not particularly limited as long as the reaction between the tetracarboxylic dianhydride and the diamine can proceed efficiently, but the combined concentration of the tetracarboxylic dianhydride and the diamine is,
  • the content is preferably 1 to 50% by weight, more preferably 5 to 40% by weight.
  • toluene, acetone, tetrahydrofuran, xylene and the like can be added at an arbitrary ratio that does not hinder the reaction.
  • polycarboxylic acid as a polyimide precursor is obtained by reacting tetracarboxylic dianhydride and diamine in these organic solvents at a temperature of 100 ° C. or less, preferably 10 to 90 ° C. Thereafter, imidization is preferably performed at a reaction temperature of 100 to 300 ° C. to obtain a polyimide prepolymer.
  • a base such as triethylamine, isoquinoline, pyridine, methylmorpholine can be added as a catalyst.
  • the water produced as a by-product can be removed from the system by azeotroping with a nonpolar solvent such as toluene to allow the reaction to proceed.
  • reaction solution can be added to a solvent insoluble in a polyimide prepolymer such as water, methanol, ethanol, etc., the polymer can be precipitated, and dried to take out the polyimide prepolymer.
  • reaction liquid of a polyimide prepolymer can be used for reaction with a urethane prepolymer, without isolating a polyimide prepolymer.
  • the reaction between the urethane prepolymer and the polyimide prepolymer can be optionally carried out in the presence of an organic solvent or in the absence of a solvent.
  • a urethane prepolymer and a polyimide prepolymer are added to the organic solvent at a predetermined ratio and mixed, and the reaction is performed in an inert gas atmosphere such as argon gas or nitrogen gas, and hydrophilicity is obtained. It is preferable to obtain a reaction solution containing a functional polymer.
  • the reaction liquid is a uniform reaction liquid free from insoluble gel.
  • the reaction liquid containing the hydrophilic polymer obtained by reacting the urethane prepolymer and the polyimide prepolymer has a flexible phase due to the urethane portion, the glass transition temperature at a low temperature (25 ° C. or lower) is reduced. Show.
  • composition during the reaction to obtain the hydrophilic polymer of the present invention is 10 to 99 weights %, Preferably 10 to 98% by weight, more preferably 40 to 98% by weight, particularly preferably 60 to 98% by weight, and most preferably 80 to 98% by weight. If it is less than 10% by weight, the hydrophilicity is poor, and if it exceeds 99% by weight, the flexibility is insufficient.
  • the molar ratio of the polyimide prepolymer represented by Formula (7) with respect to the urethane prepolymer represented by Formula (6) is larger than 1 and 30 or less, preferably 1
  • the reaction is carried out at 2 or less, more preferably greater than 1 and 2 or less. If it is less than 1, the hydrophilicity is remarkably lowered or the whole is solidified (gelled) during the reaction. If it exceeds 30, the hydrophilicity also decreases.
  • the molecular weight of the urethane prepolymer represented by the formula (6) can be calculated and calculated from the degree of polymerization determined by charging the diisocyanate compound and the polyol, but a known molecular weight measurement method such as GPC (gel permeation chromatography). You can also ask for it.
  • the molecular weight of the polyimide prepolymer represented by the formula (7) can be calculated and obtained from the degree of polymerization obtained by charging diamine and acid anhydride, but it can also be obtained from a known molecular weight measurement method such as GPC. it can.
  • Polyimide fraction (% by weight) [W PI / (W PU + W PI )]
  • W PU Preparation amount of urethane prepolymer
  • W PI Preparation amount of polyimide prepolymer
  • the molecular weight used for the molar ratio of the reaction between the urethane prepolymer and the polyimide prepolymer may be a calculated value or a known molecular weight measurement such as GPC. It is also possible to use values from the method.
  • the organic solvent that can be used in the reaction between the urethane prepolymer and the polyimide prepolymer is not particularly limited as long as it is inert to isocyanate groups that can be used in the synthesis of the polyimide prepolymer.
  • N-methyl-2-pyrrolidone, N, N′-dimethylacetamide, N, N-dimethylformamide, ⁇ -butyrolactone and the like can be mentioned.
  • the reaction is carried out at a temperature of 0 to 150 ° C., preferably 10 to 100 ° C.
  • the reaction time is 1 to 72 hours, preferably 1 to 42 hours.
  • the reaction is carried out in the absence of a solvent, it can be carried out in an extruder equipped with a heating means having an exhaust system in addition to a usual stirred tank reactor.
  • the reaction between the hydrophilic polymer represented by the formula (1) and the dicarboxylic acid anhydride represented by the formula (4) can be optionally carried out in the presence of an organic solvent or in the absence of a solvent. .
  • the hydrophilic polymer represented by the formula (1) and the dicarboxylic acid anhydride represented by the formula (4) are added to the organic solvent in a predetermined ratio and mixed.
  • Reaction can be performed in an inert gas atmosphere such as argon gas or nitrogen gas to obtain a reaction liquid containing a hydrophilic polymer.
  • a reaction solution containing a hydrophilic polymer can be obtained by carrying out the reaction in an inert gas atmosphere such as a gas.
  • the dicarboxylic acid anhydride represented by the formula (4) is a product obtained by intramolecular dehydration condensation of dicarboxylic acid.
  • phthalic acid anhydride 2,3-naphthalenedicarboxylic acid anhydride, malonic acid anhydride, phenylethynyl
  • examples thereof include phthalic anhydride and 1,8-naphthalenedicarboxylic anhydride.
  • the amount of the dicarboxylic acid anhydride represented by the formula (4) used in the reaction is not particularly limited, but is 0.02 to 100 with respect to 100 parts by weight of the polymer represented by the formula (1). Part by weight is preferred, 0.02 to 50 parts by weight is more preferred in terms of the balance between hydrophilicity and low viscosity, and 1 to 50 parts by weight is most preferred in terms of improving viscosity.
  • the reaction solution is preferably a uniform reaction solution having no insoluble gel content.
  • Dicarboxylic acid anhydrides other than the dicarboxylic acid anhydride represented by the formula (4) can also be used as necessary.
  • the reaction between the hydrophilic polymer represented by the formula (1) and tetracarboxylic dianhydride is not particularly limited, but is preferably performed in an organic solvent or without a solvent at a temperature of 100 ° C. or less, and more preferably thereafter. Is carried out at a temperature of 100 to 300 ° C. Thereby, the hydrophilic polymer by which the terminal of the polymer represented by Formula (1) was sealed with the dicarboxylic acid anhydride represented by Formula (4) can be obtained.
  • a base such as triethylamine, isoquinoline, pyridine, methylmorpholine can be added as a catalyst, if necessary.
  • the by-product water can be removed from the system by azeotroping with a nonpolar solvent such as toluene to allow the reaction to proceed.
  • a nonpolar solvent such as toluene
  • the reaction solution can be added to a solvent insoluble in a polyimide prepolymer such as water, methanol, ethanol, etc. to precipitate the polymer, and the hydrophilic polymer can be taken out.
  • the reaction solution which is an organic solvent solution containing the hydrophilic polymer of the present invention can be used as it is.
  • organic solvents are not particularly limited as long as the hydrophilic polymer is soluble.
  • N-methyl-2-pyrrolidone, N, N′-dimethylacetamide, N, N-dimethyl examples include formamide, monomethylformamide, ⁇ -butyrolactone, monomethylformamide, parachlorophenol, 4-methylphenol, orthodichlorobenzene, phenol, chlorobenzene and the like.
  • Other usage forms are as follows.
  • an aqueous solution of a polymer or a water-containing organic solvent solution is synthesized by a special polymerization method using water as a medium such as emulsion polymerization and suspension polymerization.
  • the hydrophilic polymer of the present invention is an alkali metal. Hydroxyl carbonate, alkali metal carbonate, tertiary amine compound, quaternary amine compound, or ammonia to react to obtain a hydrophilic polymer salt, which is mixed with water, an organic solvent or a hydrous organic solvent. By doing so, a binder solution is obtained.
  • the method is not particularly limited, but is 5 to 1000 parts by weight, preferably 5 to 300 parts by weight of an alkali metal hydroxide or alkali metal carbonate with respect to 100 parts by weight of the hydrophilic polymer.
  • a tertiary amine compound, a quaternary amine compound, or ammonia is added to form a salt with a hydrophilic polymer, and then water is added to form an aqueous solution or a water-containing organic solvent solution to obtain a binder solution.
  • the organic solvent solution of the reaction product of the urethane prepolymer and the polyimide prepolymer is dried under reduced pressure, or poured into a solvent that is not a hydrophilic solvent such as water, methanol, or hexane to precipitate a hydrophilic polymer, After drying, in an aqueous solution to which 5 to 1000 parts by weight of an alkali metal hydroxide, alkali metal carbonate, tertiary amine compound, quaternary amine compound or ammonia is added with respect to 100 parts by weight of the hydrophilic polymer. It can also be dispersed or dissolved in an aqueous solution or a water-containing organic solvent solution to form a binder solution.
  • a solvent that is not a hydrophilic solvent such as water, methanol, or hexane
  • the salt either in the presence or absence of an organic solvent may be used.
  • the organic solvent is not particularly limited as long as the hydrophilic polymer is soluble.
  • the hydrophilic polymer is added to an aqueous solution in which a predetermined amount of an alkali metal hydroxide, an alkali metal carbonate, a tertiary amine compound, a quaternary amine compound or ammonia is dissolved, and is stirred, whereby the hydrophilic polymer is obtained.
  • An aqueous solution or a water-containing organic solvent solution can be obtained.
  • the solution may be heated at a temperature of 30 to 150 ° C. or may be subjected to ultrasonic treatment. Further, after dissolution, water may be further added or concentrated.
  • the hydrophilic polymer of the present invention can be used as a reaction solution (binder solution) containing the hydrophilic polymer and an organic solvent, or in the form of a desired aqueous solution or water-containing organic solvent solution (binder solution). it can. Since the hydrophilic polymer of the present invention has excellent adhesion to metal, it is suitable as a binder for binding an electrode active material and an electrode of a secondary battery. Examples of the electrode active material include those containing carbon, silicon, tin, aluminum, titanium, germanium, or iron.
  • the hydrophilic polymer of the present invention is flexible and exhibits excellent adhesion to metals, it is particularly suitable for a secondary battery, particularly a binder that binds an electrode active material for a lithium ion secondary battery and an electrode. .
  • the buffer solution, the thickener, the condensed phosphate, the dispersant, the adhesive for the purpose of stabilizing the water-containing organic solvent solution and the organic solvent solution and reducing the amount of scale generated.
  • An imparting agent, a pH adjusting agent, an antifoaming agent, an antiseptic, a film forming aid, a surfactant, an antifreezing agent and the like can also be added.
  • the hydrophilic polymer of the present invention is applied to a metal and dried, it does not require special high-temperature treatment like polyamic acid, and can be applied and dried according to a conventional method, so that deformation of the metal foil does not occur.
  • the negative electrode active material used in the present invention is composed of Si or Si alloy having an average particle size (D50) of 0.01 to 5 ⁇ m and a carbonaceous material or a carbonaceous material and a composite having an average particle size of 1 to 40 ⁇ m. It is preferable that it is a compound.
  • Si is a general grade metal silicon having a purity of about 98%, a chemical grade metal silicon having a purity of 2 to 4N, a polysilicon having a purity higher than 4N purified by chlorination and distillation, and a single crystal growth method.
  • Ultra-high-purity single crystal silicon that has undergone a deposition process, wafer polishing and cutting waste generated in the semiconductor manufacturing process, waste wafers that have become defective in the process, etc. It is not limited.
  • the Si alloy is an alloy containing Si as a main component.
  • the element contained other than Si is preferably one or more of elements of Groups 2 to 15 of the periodic table, and the selection and / or addition amount of the element that causes the melting point of the phase contained in the alloy to be 900 ° C. or more. preferable.
  • the average particle diameter (D50) of the Si compound is 0.01 to 5 ⁇ m, and more preferably 0.05 to 0.5 ⁇ m. If it is smaller than 0.01 ⁇ m, the capacity and initial efficiency due to surface oxidation are drastically reduced, and if it is larger than 5 ⁇ m, cracking is severely caused by expansion due to lithium insertion, and cycle deterioration tends to be severe.
  • the average particle diameter (D50) is a volume average particle diameter measured with a laser particle size distribution meter.
  • the average particle size of the composite particles made of Si compound and carbonaceous material or carbonaceous material and graphite is 1 to 40 ⁇ m, preferably 5 to 20 ⁇ m.
  • the average particle diameter of the composite particles is less than 1 ⁇ m, it is bulky and it becomes difficult to produce a high-density electrode, and there is a difficulty in handling because it is a fine powder with a small particle diameter. If the particle diameter exceeds 40 ⁇ m, the sheet cannot be produced unless the coating thickness of the negative electrode is increased, so that the electrode sheet resistance increases and the discharge capacity and cycle characteristics decrease.
  • the carbonaceous material is an amorphous or microcrystalline carbon material, and easily graphitized carbon (soft carbon) that is graphitized by a heat treatment exceeding 2000 ° C. and non-graphitizable carbon (hard carbon) that is difficult to graphitize.
  • the graphite is a crystal whose graphene layer is parallel to the c-axis, natural graphite obtained by refining ore, artificial graphite obtained by graphitizing the pitch of oil or coal, etc. There are oval or spherical, cylindrical or fiber shapes.
  • these graphites are subjected to acid treatment, oxidation treatment, and then expanded by heat treatment. Part of the graphite layer is exfoliated to form an accordion, or delamination by pulverized material of expanded graphite or ultrasonic waves, etc.
  • Graphene or the like that has been used can also be used.
  • the amount of the Si compound present in the composite is preferably 10% by weight or more and 80% by weight or less, and more preferably 15 to 50% by weight.
  • the content of the Si compound is less than 10% by weight, a sufficiently large capacity cannot be obtained as compared with the conventional graphite, and when it is more than 80% by weight, the cycle deterioration tends to become severe.
  • the addition amount of the carbonized product added to and mixed with the composite is preferably 0.5 to 99.5% by weight, more preferably 10 to 90% by weight based on the total amount of the composite and the added carbonized product. %, More preferably 20 to 80% by weight.
  • the carbonized particles to be added preferably have a particle size of 0.1 to 40 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the particle diameter is less than 0.1 ⁇ m, it is very fine and difficult to mix with the composite particles. If the particle diameter exceeds 40 ⁇ m, the sheet cannot be produced unless the coating thickness of the negative electrode is increased, so that the electrode sheet resistance increases, and the discharge capacity and cycle characteristics decrease.
  • the negative electrode active material preferably has a structure in which both the Si compound and the carbonaceous material are sandwiched between graphite thin layers having a thickness of 0.5 ⁇ m or less, preferably 0.1 to 0.5 ⁇ m.
  • a negative electrode active material particle is formed by spreading in a laminated and / or network form, and the graphite thin layer is curved near the surface of the negative electrode active material particle to cover the composite particle. Or it is preferable that the carbonaceous material has arrange
  • the method for producing a negative electrode active material for a lithium ion secondary battery according to the present invention includes a step of mixing a Si compound, a carbon precursor, and, if necessary, a graphite, a step of granulating and compacting, and a pulverizing mixture. And forming the composite particles, firing the composite particles in an inert gas atmosphere, and mixing the composite and the carbonized product.
  • the raw material Si compound As the raw material Si compound, a powder having an average particle size (D50) of 0.01 to 5 ⁇ m is used.
  • the raw material of the Si compound (ingot, wafer, powder, etc.) is pulverized by a pulverizer, and in some cases, classified using a classifier.
  • a pulverizer such as a jaw crusher. After that, for example, a ball or bead is used to move the grinding media, and the impact force, frictional force, compression force, etc.
  • a roller mill that performs pulverization a jet mill that pulverizes the object to be crushed at high speed or collides with each other and impacts by the impact, and a rotor with a fixed hammer, blade, pin, etc. It can be finely pulverized using a hammer mill, pin mill, disk mill that pulverizes the material to be crushed using the impact force of rotation, a colloid mill that uses shear force, or a high-pressure wet-on-front collision disperser "Ultimizer". it can.
  • both wet and dry processes can be used.
  • very fine particles can be obtained, for example, by using a wet bead mill and gradually reducing the diameter of the beads.
  • dry classification, wet classification, or sieving classification can be used. In the dry classification, the process of dispersion, separation (separation of fine particles and coarse particles), collection (separation of solid and gas), and discharge are performed sequentially or simultaneously, mainly using air flow.
  • Pre-classification (adjustment of moisture, dispersibility, humidity, etc.) before classification, or the moisture in the airflow used so that the classification efficiency is not lowered due to the influence of shape, air flow disturbance, velocity distribution, static electricity, etc. It is done by adjusting the oxygen concentration.
  • pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.
  • a method for obtaining a Si compound having a predetermined particle size a method in which the Si compound is heated and evaporated by plasma or laser and solidified in an inert gas, or a CVD or plasma CVD using a gas raw material is used. These methods are suitable for obtaining ultrafine particles of 0.1 ⁇ m or less.
  • the carbon precursor of the carbonaceous material is not particularly limited as long as it is a carbon-based compound mainly composed of carbon and becomes a carbonaceous material by heat treatment in an inert gas atmosphere.
  • petroleum pitch coal pitch, synthetic pitch, tars, cellulose, sucrose, polyvinyl chloride, polyvinyl alcohol, phenol resin, furan resin, furfuryl alcohol, polystyrene, epoxy resin, polyacrylonitrile, melamine resin, acrylic resin
  • Polyamideimide resin, polyamide resin, polyimide resin and the like can be used.
  • raw material graphite natural graphite, artificial graphite obtained by graphitizing the pitch of petroleum or coal, etc. can be used, and scale-like, oval or spherical, cylindrical or fiber-like are used.
  • these graphites are acid-treated, oxidized, and then heat-treated, so that they are expanded and part of the graphite layer is exfoliated to form an accordion, or pulverized products of expanded graphite, ultrasonic waves, etc.
  • Graphene or the like which has been delaminated with can also be used.
  • the raw material graphite is prepared in advance so that it can be used in the mixing process.
  • the particle size before mixing is 1 to 100 ⁇ m for natural graphite or artificial graphite, and 5 ⁇ m for expanded graphite or expanded pulverized graphite, graphene. About 5 mm.
  • the mixing of the Si compound, the carbon precursor, and, if necessary, graphite can be performed by kneading under heating when the carbon precursor is softened or liquefied by heating.
  • the carbon precursor is dissolved in a solvent
  • the Si compound, the carbon precursor, and, if necessary, graphite are added to the solvent, and the carbon precursor is dispersed and mixed in the solution. Then, it can be carried out by removing the solvent.
  • the solvent to be used can be used without particular limitation as long as it can dissolve the carbon precursor.
  • pitch or tar when pitch or tar is used as the carbon precursor, quinoline, pyridine, toluene, benzene, tetrahydrofuran, creosote oil or the like can be used, and when polyvinyl chloride is used, tetrahydrofuran, cyclohexanone, nitrobenzene or the like can be used.
  • phenol resin or furan resin is used, ethanol, methanol or the like can be used.
  • a kneader As a mixing method, when the carbon precursor is heat-softened, a kneader (kneader) can be used.
  • a solvent in addition to the kneader described above, a Nauter mixer, a Roedige mixer, a Henschel mixer, a high speed mixer, a homomixer, and the like can be used. Further, the jacket is heated with these apparatuses, and then the solvent is removed with a vibration dryer, a paddle dryer or the like. With these devices, the carbon precursor is solidified or stirred in the process of solvent removal for a certain period of time, so that the mixture of Si compound, carbon precursor, and, if necessary, graphite is granulated and consolidated. It becomes.
  • the carbon precursor is solidified or the mixture after removing the solvent is compressed by a compressor such as a roller compactor and coarsely pulverized by a crusher, whereby granulation and consolidation can be performed.
  • the size of the resulting granulated / consolidated product is preferably from 0.1 to 5 mm, more preferably from 0.2 to 1 mm, in view of ease of handling in the subsequent pulverization step.
  • the granulated / consolidated product is pulverized by a ball mill that pulverizes the material to be crushed using compressive force, a media agitation mill, a roller mill that pulverizes using the compressive force of a roller, or the crushed material at high speed.
  • a jet mill that collides with materials or collides with particles and crushes using the impact force of the impact, and a hammer mill that crushes the material to be crushed using the impact force of the rotor with a fixed hammer, blade, pin, etc.
  • a dry pulverization method such as a pin mill or a disk mill is preferred.
  • dry classification such as air classification and sieving is used.
  • pulverization and classification are performed at a time, and a desired particle size distribution can be obtained.
  • the composite particles obtained by pulverization are fired in an inert atmosphere such as an argon gas or nitrogen gas stream or in a vacuum.
  • the content of the negative electrode active material is 60 to 99% by weight, preferably 80 to 98% by weight, and the content of the hydrophilic polymer (the binder) is It is preferably 1 to 40% by weight, preferably 2 to 20% by weight, and the conductive carbon compound content is preferably 0.01 to 20% by weight, preferably 0.05 to 5% by weight. . If the negative electrode active material is less than 60% by weight, the discharge capacity as the negative electrode cannot be ensured, and if it exceeds 99% by weight, the binding property and conductivity cannot be ensured, and the cycle characteristics may be deteriorated.
  • the hydrophilic polymer (binder) content exceeds 40% by weight and / or the conductive carbon compound exceeds 20% by weight, the content of the negative electrode active material cannot be ensured, and the initial discharge capacity decreases. There is a possibility. If the content of the hydrophilic polymer is less than 1% by weight and / or the conductive carbon compound is less than 0.01% by weight, the binding property or conductivity cannot be ensured, and the cycle characteristics may be deteriorated.
  • the negative electrode active material for the lithium ion secondary battery, the hydrophilic polymer (binder) of the present invention having high flexibility and high binding property, and the conductive carbon compound are mixed with water, an organic solvent, or a water-containing organic material.
  • a solvent also called a solvent
  • the electrode active material, binder, conductive carbon compound, and collector electrode constituting the negative electrode are integrated by press molding. And water and an organic solvent contained in the electrode are removed by drying.
  • there is a method in which an electrode active material, a binder, a conductive carbon compound, and a solvent are kneaded to form a sheet or pellet.
  • the hydrophilic polymer can be used as a solution dissolved in water, an organic solvent or a water-containing organic solvent to produce a negative electrode.
  • the electrode drying temperature after press molding is sufficient to be 150 ° C. or lower.
  • the purpose of the main drying is to remove water, organic solvent, and the like remaining in the electrode, and therefore may be performed at a temperature of about 100 ° C. under vacuum, air, or an inert gas such as nitrogen gas. In general, a relatively high heat treatment temperature of about 200 to 400 ° C. is required for polyimidization.
  • the hydrophilic polymer of the present invention has already become a low molecular weight imidized product when an electrode is produced.
  • the binding property can be exhibited by drying at a low temperature.
  • the conductive agent is not particularly limited as long as it is an electronically conductive material that does not cause decomposition or alteration in the configured battery.
  • metal powders and metal fibers such as Al, Ti, Fe, Ni, Cu, Zn, Ag, Sn, Si, or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, Pitch-based carbon fiber, PAN-based carbon fiber, graphite such as various resin fired bodies, and the like can be used.
  • the addition amount of the conductive agent is 0 to 20% by weight, preferably 1 to 10% by weight, based on the total amount of the negative electrode material.
  • the solvent for mixing and dispersing is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone, dimethylformamide, isopropanol, and pure water, and the amount used is not particularly limited.
  • a foil such as nickel or copper, a mesh, or the like can be used.
  • the integration can be performed by a molding method such as a roll or a press.
  • the negative electrode thus obtained is placed opposite to the positive electrode via a separator and injected with an electrolyte solution, so that the cycle characteristics are compared with those of a lithium secondary battery using conventional silicon as a negative electrode material. It is possible to manufacture a lithium secondary battery having excellent characteristics such as excellent initial capacity, high capacity, and high initial efficiency.
  • Examples of the material used for the positive electrode include LiNiO 2 , LiCoO 2 , LiMn 2 O 4 , LiNi x Mn y Co 1-xy O 2 (x is 0.1 to 0.5, and y is 0.1 to 0). .5.), LiFePO 4 , Li 0.5 Ni 0.5 Mn 1.5 O 4 , Li 2 MnO 3 —LiMO 2 (M ⁇ Co, Ni, Mn) or the like may be used alone or in combination. it can.
  • the electrolyte is a lithium salt such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , for example, in a non-aqueous solvent such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, propylene carbonate, etc.
  • a non-aqueous solvent such as ethylene carbonate, diethyl carbonate, dimethoxyethane, dimethyl carbonate, tetrahydrofuran, propylene carbonate, etc.
  • organic electrolyte solution that has been dissolved can be used.
  • an ionic liquid using an imidazolium, ammonium, or pyridinium type cation can be used.
  • the counter anion is not particularly limited, and examples thereof include BF 4 ⁇ , PF 6 ⁇ , (CF 3 SO 2 ) 2 N ⁇ and the like.
  • the ionic liquid can be used by mixing with the organic electrolyte solvent described above.
  • An SEI (solid electrolyte interface layer) forming agent such as vinylene carbonate or fluoroethylene carbonate can also be added to the electrolytic solution.
  • a solid electrolyte obtained by mixing the above salts with polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, or the like, or a derivative, mixture, or complex thereof can also be used.
  • the solid electrolyte can also serve as a separator, and the separator becomes unnecessary.
  • the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination of these having a polyolefin such as polyethylene or polypropylene as a main component can be used.
  • the battery performance is evaluated using a charge / discharge device.
  • the conditions for battery evaluation are not particularly limited, and examples thereof include a constant current method, a constant current constant voltage method, a constant capacity method, a constant power method, and a pulse method.
  • the constant current method and the constant current constant voltage method are often used for evaluating battery characteristics when the charge / discharge depth (DOD) is close to 100%.
  • the constant capacity method and the constant power method are often used as the charge / discharge depth (DOD). However, it can also be used for battery evaluation in a relatively shallow region.
  • the molecular weight of the urethane prepolymer was calculated from the degree of polymerization determined from the preparation of the diisocyanate compound and the polyol.
  • r 1 number of moles of charged diisocyanate compound ⁇ number of charged moles of polyol
  • N A (r 1 +1) ⁇ (r 1 ⁇ 1)
  • Molecular weight of urethane prepolymer (N A ⁇ 0.5 ⁇ molecular weight of diisocyanate compound) + (N A ⁇ 0.5 ⁇ polyol molecular weight)
  • the molecular weight of the polyimide prepolymer was calculated from the degree of polymerization determined from the preparation of the diamine compound and acid anhydride.
  • the infrared absorption spectrum was measured using a System2000 FT-IR manufactured by PERKIN ELMER.
  • NMP N-methyl-2-pyrrolidone
  • ⁇ Bending test 1> The copper foil obtained by applying a hydrophilic polymer to the copper foil was bent at 180 °, and the lack of the hydrophilic polymer in the bent portion was visually evaluated. The visual criteria were as follows. (1) No missing (excellent adhesion): ⁇ (2) Slight missing on the coated surface is observed (adhesiveness is good): ⁇ (3) Missing and the metal foil is slightly exposed: ⁇ (4) The missing metal foil is completely exposed: ⁇
  • ⁇ Bending test 2> The copper foil obtained by applying a hydrophilic polymer to the copper foil was repeatedly folded from a horizontal state on a pipe having a diameter of 1 cm so that the coated surface was outside and repeatedly bent, and the number of times until the coating film was peeled was measured.
  • Polyimide fraction (ratio of structure of formula (2) in polymer)> Polyimide fraction (% by weight) [W PI / (W PU + W PI )] W PU : Preparation amount of urethane prepolymer W PU : Preparation amount of polyimide prepolymer
  • the glass transition temperature was measured using a differential scanning calorimeter (DSC200F3) manufactured by Netch Co., in the range of ⁇ 100 ° C. to 250 ° C. under a nitrogen atmosphere under a temperature rising condition of 10 ° C./min.
  • DSC200F3 differential scanning calorimeter
  • Electrode coating solution A predetermined amount of the electrode active material, binder, conductive additive, and NMP was mixed, and stirred and mixed with a self-revolving mixer to prepare an electrode coating solution.
  • the obtained electrode coating solution was applied at a coating speed of 1 cm / min. Then, using a coater with a clearance of 0.4 ⁇ m, the coating was applied to a copper foil with a thickness of 18 ⁇ m and at 120 ° C. for 30 min.
  • a copper foil coated with an electrode active material or the like was prepared by vacuum drying. The obtained copper foil was punched out to a diameter of 16 mm to obtain an electrode.
  • the electrode was evaluated by charging and discharging under the following conditions: Counter electrode: Li, electrolyte: 1M-LiPF 6 / ethylene carbonate: dimethyl carbonate (1: 2 (vol ratio)), current: 0.2 CA, temperature: 25 ° C.
  • MDI 4,4′-diphenylmethane diisocyanate
  • polyoxytetramethylene glycol molethoxytetramethylene glycol
  • Example 1 Under a nitrogen atmosphere, 4.4 g of urethane prepolymer 1a and 3.1 g of NMP were weighed into a 500 ml four-necked separable flask and dissolved by stirring. Thereafter, 77.4 g of an organic solvent solution of polyimide prepolymer 1b (equivalent to 8.9 g as a polymer) was added and reacted at room temperature for 24 hours to obtain an organic solvent solution of a uniform hydrophilic polymer having no insoluble components. . The polyimide fraction was 66.9% by weight.
  • NMP was added to the obtained organic polymer solution of the hydrophilic polymer, and 80 g of an organic solvent solution of 1% by weight of the hydrophilic polymer was prepared in a 500 ml four-necked separable flask.
  • Add 0.11 g of sodium hydroxide add 320 g of water over 1 hour, and filter through a 200 mesh nylon filter to obtain a water-containing organic solvent solution of a hydrophilic polymer salt (binder solution).
  • Bin solution Hydrophilic polymer salt
  • the organic solvent solution of the hydrophilic polymer obtained by the reaction was applied to a copper foil with a 0.15 ⁇ m doctor blade, and the adhesion was evaluated.
  • the bending test 1 was extremely excellent (evaluation ⁇ ).
  • Example 2 In the bending test 2, the coating film was not peeled even after repeated folding 100 times or more. Moreover, the initial adhesive force with respect to copper foil was 1.20 N / mm. From the CV measurement results, it was found that the current derived from the oxidation reaction and the reduction reaction was not measured and was suitable for the binder. Examples 2 to 31 were synthesized in the same manner as in Example 1. The results are shown in Table 3.
  • FIG. 1 shows the CV measurement result of the hydrophilic polymer of Example 3.
  • Example 32 Converted from the solid content in the reaction solution obtained in Example 1, 22 parts by weight of phenylethynylphthalic anhydride was added to 100 parts by weight of the polymer, and 40 g of the solution having a solid content of 5% with an NMP solution. After adding 10 g of toluene and reacting at 50 ° C. for 1 hour, the reaction was carried out by removing water azeotroped with toluene at 160 ° C. for 2 hours. The reaction solution was concentrated to obtain a modified hydrophilic polymer solution having a solid content of 15%.
  • the end of the polymer is sealed with phenylethynylphthalic anhydride (dicarboxylic acid anhydride) due to disappearance of absorption at 3466 cm ⁇ 1 derived from NH 2 which is a terminal amino group by infrared absorption spectrum. It was confirmed.
  • the solution viscosity was 130 mPa ⁇ s. From the above results, it was found that the terminal was sealed, the viscosity was low, the workability was excellent, and it was suitable for binders and adhesives.
  • Examples 33 to 66 were synthesized in the same manner as in Example 32. The results are shown in Table 4.
  • Comparative Example 1 In a 500 ml four-necked separable flask, N-methylpyrrolidone was added to urethane prepolymer 1a to prepare 80 g as a 1 wt% organic solvent solution. When 0.06 g of sodium hydroxide was added and 320 g of water was further added over 1 hour, a large amount of aggregates were formed, and a water-containing organic solvent solution (binder solution) of a polymer salt could be obtained. (Hydrophilicity x), inferior to the examples. Moreover, the organic solvent solution of urethane prepolymer was apply
  • the coating film was not peeled even after repeated folding 100 times or more. Moreover, the initial adhesive force with respect to copper foil was 0.1 N / mm, and was inferior to the Example.
  • the CV measurement result of the organic solvent solution of the urethane prepolymer the current derived from the oxidation reaction and the reduction reaction was not measured. The results are shown in Table 5.
  • Comparative Examples 3 to 11 An attempt was made to synthesize a hydrophilic polymer in the same manner as in Example 1 under the conditions described in Table 5. However, any hydrophilic polymer resulted in inferior properties as compared to the examples. In Comparative Example 10, the viscosity increased during the reaction and stirring was impossible, and a hydrophilic polymer could not be obtained. The results are shown in Table 5.
  • Comparative Example 12 Evaluation similar to the Example was performed using commercially available PVDF (KF # 1120, manufactured by Kureha Co., Ltd.) as a polymer. The results are shown in Table 5. For the evaluation of hydrophilicity, NaOH was not added. However, hydrophilicity, initial adhesive strength, bending test 1 and bending test 2 were inferior to the examples ( adhesion durability was low). In CV measurement, a reaction-derived current was observed.
  • SiO manufactured by Osaka Titanium Co., Ltd.
  • Example 68 A lithium ion secondary battery electrode was produced in the same manner as in Example 67 except that Example 22 was used as the hydrophilic polymer. Using this electrode, a charge / discharge test was conducted using Li as a counter electrode. The charge / discharge curve is shown in FIG. From the results of FIG. 3, it was found that an electrode using a hydrophilic polymer as a binder can be charged and discharged.
  • graphite CGB-10 manufactured by Nippon Graphite Co., Ltd.
  • Example 70 A lithium ion secondary battery electrode was produced in the same manner as in Example 67 except that Example 19 was used as the hydrophilic polymer. Using this electrode, a charge / discharge test was conducted using Li as a counter electrode. The charge / discharge curve is shown in FIG. From the results of FIG. 5, it was found that an electrode using a hydrophilic polymer as a binder can be charged and discharged.
  • Example 71 When the reaction solution (organic solvent (NMP) solution) obtained in Example 18 was filtered through a 200-mesh SUS wire mesh, formation of insoluble materials could not be confirmed visually. When the solubility was measured, the hydrophilic polymer was dissolved by 13% by weight. Moreover, the reaction liquid obtained in Example 18 was vacuum-dried until it became constant weight at 110 degreeC. 16.2 g of the hydrophilic polymer obtained in an aqueous solution in which 3.8 g of sodium hydroxide was dissolved in 180 g of water was dissolved and stirred at room temperature for 4 hours. The aqueous solution was filtered through a 400-mesh SUS wire mesh, and the obtained aqueous solution was dried with a hot air dryer at 120 ° C. until it became a constant weight. When the solubility was measured from the solid content, the hydrophilic polymer was dissolved by 9.5% by weight. It was.
  • organic solvent (NMP) solution organic solvent (NMP) solution
  • Example 72 20% by weight of chemical grade metal Si (purity 3N) with an average particle size (D50) of 7 ⁇ m was mixed with ethanol in 20% by weight, and a pulverized wet bead mill using zirconia beads with a diameter of 0.3 mm was performed for 6 hours.
  • the acid-treated graphite was passed through a mullite tube having a length of 1 m and an inner diameter of 11 mm, which was heated to 1150 ° C. with an electric heater by flowing nitrogen gas at a flow rate of 14 L / min so as to obtain a supply rate of 5 g / min.
  • the sulfuric acid in the acid-treated graphite was decomposed and discharged into a gas such as sulfurous acid by the heat treatment, the acid-treated graphite expanded and was collected in a stainless steel container.
  • the expansion coefficient calculated from the ratio of light bulk density before and after heat treatment was 350%. By SEM observation, it was confirmed that the graphite layer exfoliated and expanded in the thickness direction, and was an accordion-shaped powder.
  • this granulated / consolidated product was placed in a new power mill and pulverized at 21000 rpm for 15 minutes while cooling with water, and spheroidized at the same time to obtain a spheroidized powder having a light bulk density of 640 g / L.
  • the obtained powder was put into an alumina boat and fired at a maximum temperature of 900 ° C. for 1 hour while flowing nitrogen gas in a tubular furnace. Thereafter, a mesh having an opening of 45 ⁇ m was passed through to obtain a composite having an average particle diameter (D50) of 18.6 ⁇ m and a lightly packed bulk density of 753 g / L.
  • FIGS. 6 and 7 show the backscattered electron images obtained by FE-SEM of the cross section obtained by cutting the obtained composite particles with an ion beam. Inside the composite particles, a structure in which 0.05 to 1.0 ⁇ m in length of Si fine particles sandwiched between carbonaceous materials and a thin graphite layer with a thickness of 0.02 to 0.5 ⁇ m spreads in a network and was laminated. .
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a stationary operation dryer for 0.5 hour.
  • An SEM photograph of the surface shape of the sheet electrode at this time is shown in FIG. It was observed that the binder was uniformly bound between the particles. After drying, it was punched into a 13.8 mm ⁇ circle, uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 25 ⁇ m.
  • a negative electrode for an ion secondary battery was obtained.
  • the evaluation cell was prepared by electrolyzing the negative electrode, a polypropylene separator having a diameter of 24 mm, a glass filter having a diameter of 21 mm, a metallic lithium having a diameter of 18 mm and a thickness of 0.2 mm, and a stainless steel foil of the base material in a screw cell in a glove box. After dipping into the liquid, the layers were laminated in this order, and finally a lid was screwed in.
  • the electrolyte used was a mixture of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1, dissolved LiPF 6 to a concentration of 1.2 mol / L, and added with 2% by volume of fluoroethylene carbonate. did.
  • the evaluation cell was further placed in a sealed glass container containing silica gel, and the electrode through the silicon rubber lid was connected to a charge / discharge device (SD-8 manufactured by Hokuto Denko).
  • Evaluation conditions The evaluation cell was cycle tested in a constant temperature room at 25 ° C. Charging was performed until the current value reached 0.2 mA at a constant voltage of 0.01 V after charging to 0.01 V at a constant current of 3 mA. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. The initial discharge capacity and initial charge / discharge efficiency were the results of the initial charge / discharge test. In addition, the cycle characteristics were evaluated as the cycle capacity maintenance ratio by comparing the discharge capacity after the 50th charge / discharge test under the charge / discharge conditions with the initial discharge capacity.
  • Example 73 A composite was prepared in the same manner as in Example 72 except that 64.5 g of the above ultrafine particle Si slurry, 25.8 g of the above expanded graphite, and 10.8 g of a resole type phenolic resin (grade 3772 manufactured by ASBERY) were used. A negative electrode active material, a negative electrode, and an evaluation cell were prepared in the same manner as described above, and cell evaluation was performed.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a stationary operation dryer for 0.5 hour.
  • An SEM photograph of the surface shape of the sheet electrode at this time is shown in FIG. It was observed that the binder was uniformly bound between the particles without waste.
  • Comparative Example 13 A negative electrode active material and a negative electrode were produced in the same manner as in Example 72, except that a negative electrode active material consisting of commercially available silicon (manufactured by Hanwa Kogyo Co., Ltd.) having an average particle size of 7 ⁇ m and the natural graphite 30:70 (wt%) was used. The evaluation cells were prepared in this order, and the cells were evaluated.
  • a negative electrode active material consisting of commercially available silicon (manufactured by Hanwa Kogyo Co., Ltd.) having an average particle size of 7 ⁇ m and the natural graphite 30:70 (wt%) was used.
  • the evaluation cells were prepared in this order, and the cells were evaluated.
  • Comparative Example 14 The composite used in Example 72 was weighed as a negative electrode active material, and 5.0% by weight of acetylene black was commercially available as a conductive auxiliary with respect to 79.4% by weight (content in the total solid content) of the negative electrode active material.
  • Polyimide bander (IST, Dream Bond, NMP solution with a solid content of 46.7 wt%) 15.6 wt% is mixed with 0.438 g of NMP, and 25 wt% of the slurry is mixed with a rotating / revolving mixer.
  • the active material was dispersed and mixed to prepare a negative electrode mixture-containing slurry.
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a stationary operation dryer for 0.5 hour.
  • An SEM photograph of the surface shape of the sheet electrode at this time is shown in FIG.
  • a commercially available polyimide binder was composed of fine particles, and it was observed that the binder was coated so as to cover the surface of the active material. After drying, it was punched into a circular shape of 13.8 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 14 ⁇ m.
  • a negative electrode for an ion secondary battery was obtained.
  • Comparative Example 15 A negative electrode active material, a negative electrode, and a cell for evaluation were prepared in the same manner as in Example 73 except that a commercially available polyimide bander (manufactured by IST, Dream Bond) was used as a binder to be used, and cell evaluation was performed.
  • a commercially available polyimide bander manufactured by IST, Dream Bond
  • Comparative Example 16 Weighed as a negative electrode active material consisting of commercially available silicon (manufactured by Hanwa Kogyo Co., Ltd.) having an average particle size of 7 ⁇ m and the natural graphite 30:70 (wt%), and 95.5 wt% of the negative electrode active material (in the total solid content) Content)), 0.5% by weight of acetylene black as a conductive assistant, 1.5% by weight of carboxymethyl cellulose (CMC) and 2.5% by weight of styrene butadiene rubber (SBR) as a binder, and water, A negative electrode active material was dispersed and mixed using a rotation / revolution mixer to prepare a negative electrode mixture-containing slurry.
  • a negative electrode active material consisting of commercially available silicon (manufactured by Hanwa Kogyo Co., Ltd.) having an average particle size of 7 ⁇ m and the natural graphite 30:70 (wt%), and 95.5 wt% of the negative electrode active
  • the obtained slurry was applied to a copper foil having a thickness of 18 ⁇ m using an applicator so that the solid content was 3 mg / cm 2 and dried at 110 ° C. in a stationary operation dryer for 0.5 hour.
  • An SEM photograph of the surface shape of the sheet electrode at this time is shown in FIG.
  • a commercially available polyimide binder was composed of fine particles, and it was observed that the binder was coated so as to cover the surface of the active material. After drying, it was punched into a circular shape of 13.8 mm ⁇ , uniaxially pressed under conditions of a pressure of 0.6 t / cm 2 , and further heat-treated at 110 ° C. for 2 hours under vacuum to form a negative electrode mixture layer having a thickness of 30 ⁇ m.
  • a negative electrode for an ion secondary battery was obtained.
  • Comparative Example 17 The composite material described in Example 72 was used as a negative electrode active material, and a binder containing 1.5% by weight of carboxymethyl cellulose (CMC) and 2.5% by weight of styrene butadiene rubber (SBR) was used as a binder.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • Comparative Example 18 The composite material described in Example 2 was used as the negative electrode active material, and a binder containing 1.5% by weight of carboxymethyl cellulose (CMC) and 2.5% by weight of styrene butadiene rubber (SBR) was used as a binder.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • Comparative Example 19 The composite material described in Comparative Example 1 was used as the negative electrode active material, and a binder containing 1.5% by weight of carboxymethyl cellulose (CMC) and 2.5% by weight of styrene butadiene rubber (SBR) was used as a binder.
  • CMC carboxymethyl cellulose
  • SBR styrene butadiene rubber
  • a negative electrode active material, a negative electrode, and a cell for evaluation were prepared in the same manner as in 72, and cell evaluation was performed.
  • Table 6 shows conditions for producing the negative electrode active materials of Examples 72 to 73 and conditions for producing the negative electrode active materials of Comparative Examples 13 to 19.
  • Table 7 shows the results of Examples 72 to 73 and Comparative Examples 13 to 19.
  • the battery prepared using a polyurethane / polyimide copolymer binder after combining Si, carbonaceous material, and graphite has a high discharge capacity and excellent cycle characteristics even at a low heat treatment temperature. I understand that.
  • Comparative Examples 13 and 16 produced using various commercial binders other than the negative electrode active material produced by mixing commercial Si particles having an average particle size of about 7 ⁇ m and graphite and the binder according to the present invention, It can be seen that the cycle characteristics of the 19 lithium ion secondary battery are greatly deteriorated.
  • Comparative Examples 14, 15, 17, and 18 using a negative electrode active material in which Si and graphite are combined as a negative electrode active material and an aqueous binder such as a polyimide bander or SBR / CMC have a cycle retention ratio as compared with the examples of the present invention. It turns out that it is low.
  • the heat treatment temperature was set to 200 ° C. or higher in order to improve cycle characteristics.
  • the hydrophilic polymer of the present invention is flexible, excellent in adhesion to metals, has a small environmental load, is electrochemically stable, and is an electrode active material and electrode for secondary batteries, particularly lithium ion secondary batteries. It can be used as a binder for bonding. Furthermore, it can be used as a sizing agent for circuit boards, semiconductor device insulating films, composite materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 優れた親水性、柔軟性、及び金属との接着性を示す親水性重合体、その製造方法、それを含む電極、リチウムイオン二次電池用負極を提供する。 式(1)の親水性重合体であり、特に、式(1)中、式(2)の構造が10~99重量%であり、式(3)のウレタンユニットのモル数Aに対する式(2)のイミドユニットのモル数Bの比率(B/A)が1~30である親水性重合体。 (R:炭素数4~30の2価の有機基、R:数平均分子量が100~10,000の直鎖若しくは分枝状の炭素数2~5のポリオキシアルキレン構造を有する2価の有機基、R:炭素数4~30の芳香環を1又は2個含有する3価以上の有機基、R:炭素数4~30の4価の有機基、X:カルボキシル基又はスルホン酸基、x:1~800、y:1~800、z:1~100、a:1~4。Xがカルボキシル基の場合、Rの芳香環の数は1、aは1)

Description

親水性重合体、その製造方法、バインダー、及び電極
 本発明は、優れた親水性を持ちながら、柔軟であり、かつ、金属との優れた接着性を示し、その有機溶媒溶液の粘性が低く、作業性が改善された親水性重合体、その製造方法、それを使用するバインダー、及び該バインダーを使用する電極に関するものである。
 近年、リチウムイオン二次電池に代表される二次電池は、充電可能な高容量電池として、電子機器の高機能化、長時間動作を可能にした。さらに自動車などに搭載され、ハイブリッド車、電気自動車の電池として有力視されている。リチウムイオン電池のエネルギー密度をさらに高めるために、負極活物質として、高い充放電の理論容量を有するシリコン、ゲルマニウム、スズ等を用いることが検討されている(特許文献1参照)。
 一般に、リチウムイオン二次電池として充放電特性を維持するためには、電極活性物質と集電体とが安定に近接した状態を保つ必要があり、集電体との接着性の良いバインダーが求められる。これまで汎用に供されていたバインダーとしては、非水系のポリフッ化ビニリデン(PVDF)又は水系で分散性の良いスチレンブタジエン共重合体(SBR)などが主流であった。
 しかし、上記負極活物質を用いたリチウムイオン二次電池においては、充放電に伴い負極活物質の膨張収縮が起こり、バインダー樹脂が柔軟性と接着性の両立が不足しているため、破壊されたり、負極活物質及び負極集電体とバインダー樹脂との界面での剥離が発生して、充放電サイクル特性が低下する場合があるという課題があった。
 そこで、シリコンを含む負極活物質を、特定ポリイミド樹脂やポリアミドイミド樹脂で結着して負極を得ることで、サイクル特性の向上を図る技術が知られている(特許文献2、3参照)。
 特許文献2は、高い樹脂強度をもつ非水系ポリイミド樹脂を用いて、負極集電体とバインダーとの界面で剥離が生じるのを抑制し、サイクル特性を向上させている。しかし、バインダー前躯体からの脱水縮合には、高温での熱処理が必要で、集電体への影響が懸念される。また、ポリイミド単体のため、硬い物性を有しており、弾性及び柔軟性が十分ではなく、接着性が疑問視される。
 特許文献3は、芳香族イミド基とガラス転移点が30℃以下の単独ポリマーを形成し得るソフトセグメントを含有するウレタン樹脂を非水系の結着剤として、比較的低温で、銅箔と剥離しない接着性の良好な負極を作製している。
 しかし、塗工溶液は有機溶媒系のNMPであり、活物質表面への皮膜形成の恐れがあった。
 一般的に、柔軟性なポリイミド樹脂やポリイミドエラストマーも知られているが(非特許文献1、特許文献4参照)、特別に親水性を意図したものではないため、使用した際に水分散性が得られず、親水性の点で満足できるものではない。特に、それらのうちでも、環境負荷が小さく、溶液安定性に優れた微粒子を水中に均一分散できる水酸基、カルボキシル基、又はスルホン酸基を有するポリイミド系樹脂が注目されている(特許文献5参照)。
 しかしながら、これらのポリマーは、柔軟性及び集電体との接着性の点で満足できるものではない。
 また、リチウム二次電池用電極の作製に、バインダーの前駆体としてポリアミック酸を用い電極塗膜を作製した場合、高温での脱水反応による収縮が起こり、電極が屈曲する課題が指摘されており、ポリイミド前駆体化合物及び高柔軟性高分子からなる組成物が提案されているが(特許文献6参照)、柔軟性については考慮されておらず、親水性の点でも満足できるものではない。ポリイミド前駆体であるポリアミック酸は、200~350℃の高温での熱処理が必要であることが示されており、電極作製時の集電体の強度低下が課題となっている(非特許文献2参照)。
以上から、今後は、活物質を被膜しない水系であり、150℃以下の低い温度の熱処理でも、従来のポリイミド樹脂と同等かそれ以上のバインダー性能が得られるような材料が開発されれば、Si系負極の実用化が急激に進むと期待される。
日本特開2009-199761号公報 日本特開2008-34352号公報 日本特開2000-200608号公報 日本特開2013-129770号公報 日本特開2011-137063号公報 日本特開2008-135384号公報
「ポリイミドウレタンエラストマーの合成と物性」、エラストマー討論会要旨集、1999年、p72-75 「次世代蓄電池(最新)材料技術と性能評価」、技術情報協会、2013年、p166-167
 本発明は、上記課題に鑑みてなされたものであり、極めて優れた親水性を持ちながら、柔軟であり、かつ、金属との優れた接着性を示し、さらに、その有機溶媒溶液の粘性が低く、作業性が改善された親水性重合体を提供することを目的とする。
 更に、特に、Si又はSi合金(以下、併せて「Si化合物」ともいう)を活性物質とする負極の熱劣化が少なく、放電容量が大きく、サイクル寿命特性に優れたリチウムイオン二次電池用負極を提供することを目的とする。
 上記目的を達成するために本発明者等が検討を行った結果、特定の組成を持つ重合体について、極めて優れた親水性を持ちながら、柔軟であり、かつ、金属と優れた接着性を示し、バインダー用として適する親水性重合体が得られことを見出した。
 更に、Si化合物と、炭素質物又は炭素質物と黒鉛とを含んでなるリチウムイオン二次電池用負極活物質と、該負極活物質と集電極又は該負極活物質同士を結着する親水性重合体からなるバインダーと、該負極活物質の導電性を確保するために添加する導電性炭素化合物からなる負極において、高い放電容量と優れたサイクル特性を示すリチウムイオン二次電池用負極が得られることを見出し、本発明を完成するに至った。
 本発明の親水性重合体は、柔軟で、かつ金属との接着性に優れており、環境負荷が小さく、二次電池に使用の際に電気化学的に安定であるため、二次電池の電極活物質と電極を結合させるバインダーとして優れる。
 特に、シリコン化合物と炭素質物との複合化物からなる負極活物質と、比較的低い乾燥温度で熱処理しても高い結着性を示すバインダーとを均質分散することにより、繰り返しの充放電時の電極活物質の微粉化を抑制し、高容量で、かつ優れたサイクル特性を示す負極が得られる。
実施例3の親水性重合体のCV測定の結果を示した図。 親水性重合体を用いて作製した電池の初期充放電曲線を示した図。 親水性重合体を用いて作製した電池の初期充放電曲線を示した図。 親水性重合体を用いて作製した電池の初期充放電曲線を示した図。 親水性重合体を用いて作製した電池の初期充放電曲線を示した図。 複合化粒子の断面(反射電子像)(低倍率)。 複合化粒子の断面(反射電子像)(高倍率)。 実施例72で得られた負極シート作製後の電極表面のSEM写真。 実施例73で得られた負極シート作製後の電極表面のSEM写真。 比較例13で得られた負極シート作製後の電極表面のSEM写真。 比較例16で得られた負極シート作製後の電極表面のSEM写真。
 本発明の親水性重合体は、下記式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000012

(式中、Rは炭素数4~30の2価の有機基を表し、Rは数平均分子量が100~10,000の直鎖若しくは分枝状の炭素数2~5のポリオキシアルキレン構造を有する2価の有機基を表し、Rは炭素数4~30の芳香環を1又は2個含有する3価以上の有機基を表し、Rは炭素数4~30の4価の有機基を表し、Xはカルボキシル基又はスルホン酸基を表し、xは1~800の整数を表し、yは1~800の整数を表し、zは1~100の整数を表し、aは1~4の整数を表す。ただし、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。さらに、式(1)中、下記式(2)で表される構造が10~99重量%であり、式(3)で表されるウレタンユニット構造のモル数Aに対する式(2)で表されるイミドユニット構造のモル数Bの比率(B/A)が1~30である。)
Figure JPOXMLDOC01-appb-C000013

(式中、R、R、X、y、及びaは前記の定義と同じである。但し、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。)
Figure JPOXMLDOC01-appb-C000014

(式中、R、R、及びxは前記の定義と同じである。)
 式(1)は、繰返し単位中に、少なくとも一つのカルボキシル基又はスルホン酸基を持つイミドユニットとウレタンユニットがウレア結合を介して結ばれることを特徴としている。
 Rは、好ましくは炭素数4~15の芳香環又は脂肪族環を含む2価の有機基である。Rは、平均分子量が好ましくは100~5,000であり、更に好ましくは100~2,000である。Rは、好ましくは炭素数6~20の芳香環を1~2含有する3価以上の有機基を表す。xは好ましくは1~600の整数を表す。yは好ましくは2~600の整数を表す。
 本発明の親水性重合体は、芳香環とカルボキシル基又はスルホン酸基を組み合わせることで、極めて優れた接着性と親水性を示す。
 更に、本発明の親水性重合体は、式(1)で表される重合体の末端が、式(4)で表されるジカルボン酸無水物で封止されている構造を有することで極めて優れた接着性と親水性を示し、かつ有機溶媒溶液の粘性が低く、作業性が改善される。
Figure JPOXMLDOC01-appb-C000015

(式中、Zは、式(4)で表されるジカルボン酸無水物が下記式(5)からなる群より選ばれる化合物を形成するための2価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000016
 本発明の親水性重合体は、バインダーとして用いることに適しているが、特に限定されるものでは無い。
 ここに、バインダーとは、集電体金属と電極活物質を結合させるものをいい、特に二次電池用のバインダーをいう。
 本発明の親水性重合体は、構造の中に剛直なポリイミド構造単位と、柔軟なポリアルキレン構造を有するものである。
 本発明の親水性重合体は、構造の中に、ポリイミドプレポリマーにより剛直なハードセグメントとしてポリイミド構造単位を有し、更に、ポリイミド構造単位中にカルボキシル基又はスルホン酸基を有する。このような置換基を有することで、柔軟で、かつ、金属と優れた接着性を示す。
 本発明の親水性重合体は、特に、二次電池用としての使用を想定した条件下では、電気化学的に安定な親水性重合体である。例えば、リチウムイオン二次電池用として使用可能な電位の範囲内では、サイクリックボルタンメトリで酸化及び還元反応が観察されず、安定な親水性重合体であることはこれまで知られていなかった。
 さらに、本発明の親水性重合体は、構造の中に、ポリイミド構造単位と同時に、ウレタンプレポリマーよりソフトセグメントとして導入されるポリオキシアルキレン構造を、イソシアネートとアミノ基の反応により生成するウレア結合を介して導入することで、柔軟性に欠け耐屈曲性に劣るポリイミド構造に、耐久性と柔軟性を付与でき、柔軟で金属との接着性の優れた親水性重合体にできる。
 本発明の親水性重合体は、式(2)に記載の構造を、親水性と接着力のバランスの点で、10~99重量%、好ましくは10~98重量%含むものである。親水性を良くする点で、より好ましくは40~98重量%、さらに好ましくは50~95重量%であり、特に好ましくは、親水性と接着力とのバランスが優れることから、60~98重量%である。10重量%未満では、親水性が劣り、99重量%を超えると柔軟性が不足する。
 本発明の親水性重合体は、式(3)で表されるウレタンユニット構造のモル数Aに対する式(2)で表されるイミドユニット構造のモル数Bの比率(B/A)が、親水性と接着力のバランスの点で、1以上30以下であり、好ましくは1より大きく30以下であり、親水性を良くする点で、より好ましくは1より大きく10以下であり、親水性を改良する点で、さらに好ましくは1より大きく5以下であり、親水性と接着力とのバランスが優れることから、最も好ましくは1より大きく2以下である。1未満の場合は、原因は不明であるが、反応中に高粘度化してしまい親水性重合体が得られない。おそらく、親水性重合体の鎖の末端がポリイミド構造となる方が、水酸基やアミノ基と高い反応性を有するイソシアナート基を持つポリウレタン構造となるより安定なためと推定される。比率(B/A)が30を超えると親水性、及び接着力が低下してしまい、好ましくない。
 本発明の親水性重合体の末端が、式(4)で表されるジカルボン酸無水物で封止されている場合、式(1)で表される重合体100重量部に対する、式(4)で表されるジカルボン酸無水物で封止された構造の割合は、特に限定するものではないが、0.02~100重量部が好ましく、親水性と低粘性のバランスの点で、0.02~50重量部がさらに好ましく、親水性と接着力とのバランスが優れることから、1~50重量部が最も好ましい。
 本発明の親水性重合体は、二次電池、中でも、リチウムイオン二次電池用として、電極活物質と電極との結合力が強いが好ましい。特に、金属である、銅に対して優れた接着性を表す、T字剥離試験(引張速度300mm/分)における銅との初期接着力が0.05N/mm以上であることが好ましい。さらに好ましくは1.0N/mm以上である。
 本発明の親水性重合体を二次電池用として使用する場合、銅の他に、アルミニウム、鉄、ステンレス等を用いることができる。
 本発明の親水性重合体は、ジイソシアネートとポリオールとの反応で得られる下記式(6)で表されるウレタンプレポリマーと、テトラカルボン酸二無水物とジアミンとを溶媒中で重縮合しポリアミド酸を経て、イミド環化させて得られた下記式(7)で表される両末端にアミノ基を有するポリイミドプレポリマーとを反応することにより得ることができる。
Figure JPOXMLDOC01-appb-C000017

(式中、R、R、xは前記の定義と同じである。)
Figure JPOXMLDOC01-appb-C000018

(式中、R、R、X、y、aは前記の定義と同じである。但し、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。)
 親水性重合体の末端を、式(4)で表されるジカルボン酸無水物で封止した重合体は、式(6)で表されるウレタンプレポリマーと、式(7)で表される両末端にアミノ基を有するポリイミドプレポリマーとを反応させて式(1)で表される重合体を得た後、得られた式(1)で表される重合体と、下記式(4)で表されるジカルボン酸無水物とを反応させることにより得ることができる。
 本発明の親水性重合体の製造のために用いられる式(6)で表されるウレタンプレポリマーは、下記式(8)で表されるジイソシアネートと下記式(9)で表されるポリオールとを、イソシアネート基とポリオール中の水酸基のモル比(イソシアネート基/水酸基)を1~2の範囲にして反応することにより得ることができる。
Figure JPOXMLDOC01-appb-C000019

(式中、Rは前記の定義と同じである。)
Figure JPOXMLDOC01-appb-C000020

(式中、Rは前記の定義と同じである。)
 式(8)で表されるジイソシアネートとしては、例えば、4,4’-ジフェニルメタンジイソシアネート(MDI)、2,4-トリレンジイソシアネート(TDI)、2,6-トリレンジイソシアネート(TDI)、キシリレンジイソシアネート(XDI)、ポリメリックMDI、ジアニシジンジイソシアネート、ジフェニルエーテルジイソシアネート、トリレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートメチルエステル、メタキシリレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、イソプロピリデンビス(4-シクロヘキシルイソシアネート)、シクロヘキシルメタンジイソシアネート、メチルシクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート2量体等が挙げられる。これらは1種又は2種以上を混合して用いてもよい。
 式(9)で表されるポリオールとしては、例えば、ポリオキシテトラメチレングリコール、ポリプロピレングリコール、ポリエチレングリコール等のポリエーテルポリオール等が挙げられる。これらは1種又は2種以上を混合して用いてよい。また、必要に応じて、ポリブタジエンポリオール、アクリルポリオール等を混合して使用することもできる。
 ウレタンプレポリマーは、例えば、アルゴンガス、窒素ガス等の不活性ガス雰囲気下、ジイソシアネートとポリオールとを所定の割合で混合して、反応させることで得ることができる。ジイソシアネート中のイソシアネートとポリオール中の水酸基の割合は、イソシアネート/水酸基の仕込み比率(モル比)が1に近いほどウレタンプレポリマーの重合度は大きくなり、分子量が増加する。
 本発明においては、イソシアネート/水酸基の仕込み比率(モル比)は、1~2、好ましくは1より大きく2以下であり、ポリイミドプレポリマーとの反応性を考慮すると、1.01~2がより好ましい。イソシアネート/水酸基の仕込み比率(モル比)が1未満の場合は、両末端にイソシアネート基を有するウレタンプレポリマーとならないため、好ましくない。
 ウレタンプレポリマーの調製において、反応は、通常用いられるジイソシアネートの反応性に応じて室温~140℃で、触媒の非存在下又は存在下で行われる。
 触媒としては、例えば、有機スズ化合物、アミン化合物等が挙げられる。
 有機スズ化合物としては、例えば、二酢酸ジブチルスズ、ジラウリン酸ジブチルスズ、ジオクチルスズジラウレート、ビスアセト酢酸ジブチルスズ、オクタン酸スズ等を挙げることができる。
 アミン化合物としては、例えば、1,4-ジアザビシクロ[2,2,2]オクタン等を挙げることができる。
 任意に、溶媒の存在下又は非存在下で反応することも可能である。溶媒としては、例えば、アセトン、ブタノン、テトラヒドロフラン、ジオキサン、ジメトキシエタン、メトキシプロピルアセタート、ジメチルホルムアミド、ジメチルアセトアミド、N,N’-ジメチル-2,5-ジアザペンタノン、N-メチル-2-ピロリドン等が挙げられる。反応時間としては、1~24時間が好ましい。
 本発明の親水性重合体の製造のために用いられる、式(7)で表されるポリイミドプレポリマーは、下記式(10)で表されるジアミンと下記式(11)で表されるテトラカルボン酸二無水物との反応において、ジアミンとテトラカルボン酸二無水物のモル比(ジアミン/テトラカルボン酸二無水物)が1より大きく2以下で反応後、脱水イミド化により得ることができる。
Figure JPOXMLDOC01-appb-C000021

(式中、R、X、aは前記の定義と同じである。但し、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。)
Figure JPOXMLDOC01-appb-C000022

(式中、Rは前記の定義と同じである。)
 式(10)で表されるジアミンとしては、例えば、3,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸、2,4-ジアミノ安息香酸、3,5-ジアミノ-トリメチルベンゼンスルホン酸、2,2’-ジスルホン酸ベンジジン、1,4-ジアミノベンゼン-3-スルホン酸、1,3-ジアミノベンゼン-4-スルホン酸、4,4’-ジアミノ-5,5’-ジメチル-(1,1’-ビフェニル)-2,2’-ジスルホン酸ベンジジン等が挙げられる。必要に応じて、これらは2種以上使用してもよい。さらに必要に応じて、パラフェニレンジアミン、メタフェニレンジアミン、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルサルファイド、3,3’-ジアミノジフェニルサルファイド、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、又はビス(4-アミノ-3-ヒドロキシフェニル)メチレンを混合して使用することもできる。
 式(11)で表されるテトラカルボン酸二無水物としては、例えば、4,4’-オキシジフタル酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、ピロメリット酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-パラターフェニルテトラカルボン酸二無水物、3,3’,4,4’-メタターフェニルテトラカルボン酸二無水物等が挙げられる。必要に応じて、これらは2種以上使用してもよい。
 本発明においては、必要に応じて、これらの化合物の水素原子1~4個を、カルボキシル基、スルホン酸基又は水酸基により置換したものを使用することもできる。
 ポリイミドプレポリマーは、例えば、アルゴンガス、窒素ガス等の不活性ガス雰囲気下、有機溶媒中で、ジアミンとテトラカルボン酸二無水物とを所定の割合で混合して反応させ、ポリアミド酸とした後、更に、イミド環化反応を経て得ることができる。ポリイミドプレポリマーを合成する際の重縮合は、通常の重縮合反応と同様に、ジアミン/テトラカルボン酸二無水物の仕込み比率(モル比)が1に近いほど、生成するポリアミド酸の重合度は大きくなり、分子量が増加する。本発明においては、ジアミン/テトラカルボン酸二無水物の仕込み比率(モル比)は、1より大きく2以下であり、ポリイミドプレポリマーとの反応性を考慮すると、1.01~2が好ましい。ジアミン/テトラカルボン酸二無水物の仕込み比率(モル比)が1以下の場合は、両末端にアミノ基のポリイミドプレポリマーとならないため、好ましくない。
 ポリイミドプレポリマーを合成する際に用いられる有機溶媒としては、テトラカルボン酸二無水物とジアミンに対して不活性であり、生成したポリアミド酸が溶解するものであれば特に限定するものではなく、例えば、N-メチル-2-ピロリドン、N,N’-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルカプロラクタム、γ-ブチロラクトン、ジメチルイミダゾリン、スルホラン、メチルイソブチルケトン、アセトニトリル、ベンゾニトリル、フェノール、m-クレゾール、クロロフェノール、4-メチルフェノール、ニトロフェノール等の有機溶媒を挙げることができ、1種又は2種以上を用いることができる。有機溶媒の使用量としては、テトラカルボン酸二無水物とジアミンとの反応が効率よく進行できる量であれば特に限定するものではないが、テトラカルボン酸二無水物とジアミンを合わせた濃度が、1~50重量%となるようにすることが好ましく、より好ましくは5~40重量%である。また、反応に支障のない任意の割合で、トルエン、アセトン、テトラヒドロフラン、キシレン等を添加することができる。
 一般に、これらの有機溶媒中で、テトラカルボン酸二無水物とジアミンを100℃以下、好ましくは10~90℃の温度で反応させることにより、ポリイミド前駆体であるポリアミド酸を得る。その後、好ましくは100~300℃の反応温度でイミド化を行い、ポリイミドプレポリマーを得ることができる。イミド化の際に、トリエチルアミン、イソキノリン、ピリジン、メチルモルホリンなどの塩基を触媒として添加することができる。更に副生する水を、トルエンなどの非極性溶媒と共沸させて系外に除去し、反応を進行させることもできる。必要であれば、水、メタノール、エタノール等のポリイミドプレポリマーが不溶な溶媒に反応液を添加し、ポリマーを析出し、乾燥して、ポリイミドプレポリマーを取り出すことができる。また、ポリイミドプレポリマーを単離することなく、ポリイミドプレポリマーの反応液をウレタンプレポリマーとの反応に用いることができる。
 ウレタンプレポリマーとポリイミドプレポリマーとの反応は、任意で、有機溶媒の存在下又は無溶媒のいずれの条件でも行うことができる。有機溶媒の存在下で行う場合には、ウレタンプレポリマーとポリイミドプレポリマーを所定の割合で有機溶媒に加えて混合して、アルゴンガス、窒素ガス等の不活性ガス雰囲気下で反応を行い、親水性重合体を含有する反応液を得るのが好ましい。反応液を、電極活物質と混練してバインダーとして塗布するためには、不溶なゲル分の無い、均一な反応液となることが好ましい。
 ウレタンプレポリマーとポリイミドプレポリマーとを反応して得られた親水性重合体を含有する反応液は、ウレタン部位に起因する柔軟な相が存在するため、低温(25℃以下)のガラス転移温度を示す。
 本発明の親水性重合体を得る反応時の組成(ポリイミド分率=(ポリイミドプレポリマーの仕込み量/(ポリイミドプレポリマーの仕込み量+ウレタンプレポリマーの仕込み量))×100)は10~99重量%であり、好ましくは10~98重量%であり、更に好ましくは40~98重量%であり、特に好ましくは60~98重量%であり、最も好ましい範囲は80~98重量%である。10重量%未満の場合は、親水性が劣り、99重量%を超えると柔軟性が不足する。
 さらに、本発明の親水性重合体を得る場合、式(6)で表されるウレタンプレポリマーに対する式(7)で表されるポリイミドプレポリマーのモル比は、1より大きく30以下、好ましくは1以上2以下で、更に好ましくは1より大きく2以下で反応させる。1未満の場合は親水性が著しく低下したり、反応中に全体が固化(ゲル化)したりする。30を超える場合も親水性が低下する。
 式(6)で表されるウレタンプレポリマーの分子量は、ジイソシアネート化合物とポリオールの仕込みにより求められる重合度より、計算し求めることができるが、GPC(ゲル浸透クロマトグラフ)等の公知の分子量測定方法からも求める事ができる。
 式(7)で表されるポリイミドプレポリマーの分子量は、ジアミンと酸無水物の仕込みにより求められる重合度より、計算し求めることができるが、GPC等の公知の分子量測定方法からも求める事ができる。
 <ポリイミド分率>
 ポリイミド分率(重量%)=[WPI/(WPU+WPI)]
 WPU:ウレタンプレポリマー仕込み量
 WPI:ポリイミドプレポリマー仕込み量
 ウレタンプレポリマーとポリイミドプレポリマーとの反応のモル比に用いる分子量は、計算値を用いても良いし、GPC等の公知の分子量測定方法からの値を用いることも可能である。
 ウレタンプレポリマーとポリイミドプレポリマーとの反応で用いることができる有機溶媒としては、ポリイミドプレポリマーの合成で使用可能な、イソシアネート基に対し不活性なものであれば特に限定するものではない。例えば、N-メチル-2-ピロリドン、N,N’-ジメチルアセトアミド、N,N-ジメチルホルムアミド、γ-ブチロラクトン等を挙げることができる。
 通常、反応は0~150℃、好ましくは10~100℃の温度で行われる。反応時間としては1~72時間、好ましくは1~42時間である。
 無溶媒下で反応を行う場合には、通常の攪拌槽型反応器の他、排気系を有する加熱手段を備えた押し出し機の中でも行うことができる。
 式(1)で表される親水性重合体と式(4)で表されるジカルボン酸無水物との反応は、任意で、有機溶媒の存在下又は無溶媒のいずれの条件でも行うことができる。有機溶媒の存在下で行う場合には、式(1)で表される親水性重合体と式(4)で表されるジカルボン酸無水物を、所定の割合で有機溶媒に加えて混合し、アルゴンガス、窒素ガス等の不活性ガス雰囲気下で反応を行い、親水性重合体を含有する反応液を得ることができる。
 また、ウレタンプレポリマーとポリイミドプレポリマーとを反応して得られた反応液又は混合物に、必要に応じて有機溶媒を添加し、式(4)で表されるジカルボン酸無水物を加えて、窒素ガス等の不活性ガス雰囲気下で反応を行い、親水性重合体を含有する反応液を得ることができる。
 式(4)で表されるジカルボン酸無水物は、ジカルボン酸が分子内脱水縮合したものであり、例えば、フタル酸無水物、2,3-ナフタレンジカルボン酸無水物、マロン酸無水物、フェニルエチニルフタル酸無水物、1,8-ナフタレンジカルボン酸無水物等が挙げられる。
 反応に用いられる式(4)で表されるジカルボン酸無水物の使用量は、特に限定するものではないが、式(1)で表される重合体100重量部に対して0.02~100重量部が好ましく、親水性と低粘性のバランスの点で、0.02~50重量部がさらに好ましく、更に、粘性を改良する点で、1~50重量部が最も好ましい。
 反応液を、電極活物質と混練してバインダーとして塗布するためには、不溶なゲル分の無い均一な反応液であることが好ましい。
 式(4)で表されるジカルボン酸無水物以外のジカルボン酸無水物も、必要に応じて使用することができる。例えば、4-シクロヘキセン-1,2-ジカルボン酸無水物、シクロヘキサン-1,2-ジカルボン酸無水物、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、3-メチルフタル酸無水物、4-メチルフタル酸無水物、4-tert-ブチルフタル酸無水物、3-フルオロフタル酸無水物、4-フルオロフタル酸無水物、テトラフルオロフタル酸無水物、こはく酸無水物、ブチルこはく酸無水物、n-オクチルこはく酸無水物、ドデシルこはく酸無水物、テトラプロペニルこはく酸無水物、テトラデセニルこはく酸無水物、オクタデセニルこはく酸無水物、アリルこはく酸無水物、2-ブテン-1-イルこはく酸無水物、2-ドデセン-1-イルこはく酸無水物、2,3-ジメチルマレイン酸無水物、グルタル酸無水物、シトラコン酸無水物、アリルナジック酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物、p-(トリメトキシシリル)フェニルサクシニックアンヒドリド、m-(トリメトキシシリル)フェニルサクシニックアンヒドリド、トリメトキシシリルプロピルサクシニックアンヒドリド、トリエトキシシリルプロピルサクシニックアンヒドリドナジック酸無水物、シトラコン酸無水物、1,2-ナフタレンジカルボン酸無水物、2,3-ナフタレンジカルボン酸無水物、2,3-ビフェニルジカルボン酸無水物、3,4-ビフェニルジカルボン酸無水物、1,2,3,6-テトラヒドロ無水フタル酸、1,2-シクロヘキサンジカルボン酸無水物、メチル-5-ノルボルネン-2,3-ジカルボン酸無水物等が挙げられる。
 ジカルボン酸無水物は1種のみを用いてもよく、また、2種以上を組合せて用いてもよい。
 式(1)で示される親水性重合体とテトラカルボン酸二無水物の反応は、特に限定するものではないが、有機溶媒中又は無溶媒、100℃以下の温度で行い、その後、さらに、好ましくは100~300℃の温度で行う。これにより、式(1)で表される重合体の末端が、式(4)で表されるジカルボン酸無水物で封止された親水性重合体を得ることができる。
 100~300℃の温度で反応させる際に、トリエチルアミン、イソキノリン、ピリジン、メチルモルホリンなどの塩基を、必要に応じて、触媒として添加することができる。更に、副生する水をトルエンなどの非極性溶媒と共沸させて系外に除去し、反応を進行させることもできる。
 必要であれば、水、メタノール、エタノール等のポリイミドプレポリマーが不溶な溶媒に反応液を添加し、ポリマーを析出させ、親水性重合体を取り出すことができる。
 本発明のバインダー用溶液は、本発明の親水性重合体を含む有機溶媒溶液である反応液をそのまま使用することができる。また、その他の使用可能な有機溶媒としては、親水性重合体が可溶であれば特に限定するものではなく、N-メチル-2-ピロリドン、N,N’-ジメチルアセトアミド、N,N-ジメチルホルムアミド、モノメチルホルムアミド、γ-ブチロラクトン、モノメチルホルムアミド、パラクロルフェノール、4-メチルフェノール、オルトジクロロベンゼン、フェノール、クロルベンゼン等が挙げられる。その他の使用形態は以下の通りである。
 一般的に、重合体の水溶液又は含水有機溶媒溶液は、乳化重合、懸濁重合等の水を媒体とした、特殊な重合法により合成されるが、本発明の親水性重合体は、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、3級アミン化合物、4級アミン化合物又はアンモニアと反応させると親水性重合体の塩が得られ、その塩と水、有機溶媒又は含水有機溶媒とを混合することによりバインダー用溶液が得られる。その方法としては、特に限定するものではないが、親水性重合体100重量部に対して、5~1000重量部、好ましくは5~300重量部のアルカリ金属の水酸化物、アルカリ金属の炭酸塩、3級アミン化合物、4級アミン化合物又はアンモニアを加えて親水性重合体と塩を形成させた後、水を加え、水溶液又は含水有機溶媒溶液とし、バインダー用溶液とすることができる。
 また、ウレタンプレポリマーとポリイミドプレポリマーとの反応物の有機溶媒溶液を減圧乾燥するか、水やメタノール、若しくはヘキサン等の親水性溶媒でない溶媒中に投入して、親水性重合体を析出し、乾燥させた後、親水性重合体100重量部に対し、5~1000重量部のアルカリ金属の水酸化物、アルカリ金属の炭酸塩、3級アミン化合物、4級アミン化合物又はアンモニアを加えた水溶液中に分散又は溶解させ、水溶液又は含水有機溶媒溶液とし、バインダー用溶液とすることもできる。
 塩を形成させる方法としては、有機溶媒の存在下又は非存在下いずれを用いてもよい。有機溶媒としては、親水性重合体が可溶であれば特に限定するものではないが、例えば、N-メチル-2-ピロリドン、N,N’-ジメチルアセトアミド、モノメチルアセトアミド、N,N-ジメチルホルムアミド等を挙げることができる。また、親水性重合体を所定量のアルカリ金属の水酸化物、アルカリ金属の炭酸塩、3級アミン化合物、4級アミン化合物又はアンモニアを溶解した水溶液に加え、攪拌することにより、親水性重合体の水溶液又は含水有機溶媒溶液を得ることができる。水溶液又は含水有機溶媒溶液の溶解性を上げるためには、30~150℃の温度で加温してもよいし、超音波処理を行ってもよい。また、溶解した後に、さらに水を加えたり、濃縮したりしても良い。
 本発明の親水性重合体は、該親水性重合体と有機溶媒を含有する反応液(バインダー用溶液)として使用できる他、所望の水溶液又は含水有機溶媒溶液の形態(バインダー用溶液)としても使用できる。
 本発明の親水性重合体は、金属に対する接着性が優れているので、二次電池の電極活物質と電極を結合させるバインダーに好適である。
 電極活物質としては、炭素、ケイ素、スズ、アルミニウム、チタン、ゲルマニウム又は鉄を含むものが挙げられる。例えば、グラファイト、ハードカーボン、ケイ素、酸化ケイ素、炭化ケイ素、スズ化合物、ケイ素とアルミの合金、ケイ素とスズの合金、ケイ素とチタンの合金、アルミとスズの合金、スズとチタンの合金などが挙げられる。
 本発明の親水性重合体は、柔軟でかつ金属と優れた接着性を示すため、特に二次電池、その中でも、リチウムイオン二次電池用の電極活物質と電極を結合させるバインダーに好適である。
 本発明のバインダー用溶液は、製造する際に、含水有機溶媒溶液及び有機溶媒溶液の安定化やスケール発生量の低減を目的として、緩衝剤、増粘剤、縮合リン酸塩、分散剤、粘着付与剤、pH調整剤、消泡剤、防腐剤、造膜助剤、界面活性剤、凍結防止剤等を添加することもできる。
 本発明の親水性重合体は、金属へ塗布乾燥する際に、ポリアミック酸の様に特別に高温処理が必要ではなく、常法に従い塗布乾燥できる為、金属箔の変形は起こらない。
 本発明に用いる負極活物質は、平均粒子径(D50)が0.01~5μmであるSi又はSi合金と、炭素質物又は炭素質物と黒鉛とからなる、平均粒子径が1~40μmである複合化物であることが好ましい。
 以下、本発明のリチウムイオン二次電池用の負極活物質について説明する。
 本発明でSiとは、純度が98%程度の汎用グレードの金属シリコン、純度が2~4Nのケミカルグレードの金属シリコン、塩素化して蒸留精製した4Nより高純度のポリシリコン、単結晶成長法による析出工程を経た超高純度の単結晶シリコン、半導体製造プロセスで発生したウエハの研磨や切断の屑、プロセスで不良となった廃棄ウエハなど、汎用グレードの金属シリコン以上の純度のものであれば特に限定されない。
 本発明でSi合金とは、Siが主成分の合金である。Si合金において、Si以外に含まれる元素としては、周期表2~15族の元素の一つ以上が好ましく、合金に含まれる相の融点が900℃以上となる元素の選択及び/又は添加量が好ましい。
 負極活物質において、Si化合物の平均粒子径(D50)は0.01~5μmであり、0.05~0.5μmの範囲が更に好ましい。0.01μmより小さいと、表面酸化による容量や初期効率の低下が激しく、5μmより大きいと、リチウム挿入による膨張で割れが激しく生じ、サイクル劣化が激しくなりやすい。なお、平均粒子径(D50)はレーザー粒度分布計で測定した体積平均の粒子径である。
 本発明でSi化合物と、炭素質物又は炭素質物と黒鉛とからなる複合化物粒子の平均粒子径は1~40μm、好ましくは5~20μmである。複合化物粒子の平均粒子径が1μm未満の場合は、嵩高くなって高密度の電極が作製し難くなると共に、粒子径が小さい微粉体であるためハンドリングに難点がある。粒子径が40μmを超えると負極の塗布厚みを厚くしないとシート作製ができないため、電極シート抵抗が大きくなり、放電容量やサイクル特性が低下する。
 本発明で炭素質物とは、非晶質もしくは微結晶の炭素物質であり、2000℃を超える熱処理で黒鉛化する易黒鉛化炭素(ソフトカーボン)と、黒鉛化し難い難黒鉛化炭素(ハードカーボン)がある。
 本発明で黒鉛とは、グラフェン層がc軸に平行な結晶であり、鉱石を精製した天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等があり、原料の形状としては、鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等がある。また、それらの黒鉛を酸処理、酸化処理した後、熱処理することにより膨張させ、黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物又は超音波等により層間剥離させたグラフェン等も用いることができる。
 本発明の負極活物質において、複合化物中に存在するSi化合物の量は、10重量%以上80重量%以下が好ましく、15~50重量%が更に好ましい。Si化合物の含有量が10重量%未満の場合、従来の黒鉛に比べて十分に大きい容量が得られず、80重量%より大きい場合、サイクル劣化が激しくなりやすい。
 負極活物質において、複合化物に添加混合する炭素化物の添加量は、複合化物と添加する炭素化物の総量に対して、0.5~99.5重量%が好ましく、より好ましくは10~90重量%、更に好ましくは20~80重量%である。
 負極活物質において、前記添加する炭素化物の粒子径は0.1~40μmが好ましく、より好ましくは5~20μmである。粒子径が0.1μm未満では、非常に微細な粒子のため、複合化物粒子との均質混合が難しい。粒子径が40μmを超えると、負極の塗布厚みを厚くしないとシート作製ができないため、電極シート抵抗が大きくなり、放電容量やサイクル特性が低下する。
 負極活物質においては、前記Si化合物と炭素質物が、共に0.5μm以下、好ましくは0.1~0.5μmの厚みの黒鉛薄層の間に挟まった構造であることが好ましく、その構造が積層及び/又は網目状に広がって負極活物質粒子を形成し、該黒鉛薄層が負極活物質粒子の表面付近で湾曲して複合化物粒子を覆っており、その複合化物粒子の周りに、黒鉛又は炭素質物が配置していることが好ましい。黒鉛薄層の厚みが0.5μmを超えると黒鉛薄層の電子伝導性が低下する可能性がある。
 次に、本発明のリチウムイオン二次電池用の負極活物質の製造方法について説明する。
 本発明のリチウムイオン二次電池用の負極活物質の製造方法は、Si化合物、炭素前駆体、更に、必要に応じて黒鉛を混合する工程と、造粒・圧密化する工程と、混合物を粉砕して複合化物粒子を形成する工程と、該複合化物粒子を不活性ガス雰囲気中で焼成する工程と、複合化物と炭素化物とを混合する工程を含む。
 原料であるSi化合物は、平均粒子径(D50)が0.01~5μmの粉末を使用する。所定の粒子径のSi化合物を得るためには、Si化合物の原料(インゴット、ウエハ、粉末などの状態)を粉砕機で粉砕し、場合によっては分級機を用いて分級する。インゴット、ウエハなどの塊の場合、最初はジョークラッシャー等の粗粉砕機を用いて粉末化することができる。その後、例えば、ボール、ビーズなどの粉砕媒体を運動させ、その運動エネルギーによる衝撃力や摩擦力、圧縮力等を利用して被砕物を粉砕するボールミル、媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミルや、剪断力を利用するコロイドミルや高圧湿式対向衝突式分散機「アルティマイザー」などを用いて微粉砕することができる。
 粉砕は、湿式、乾式を共に用いることができる。更に微粉砕するには、例えば、湿式のビーズミルを用い、ビーズの径を段階的に小さくすること等により、非常に細かい粒子を得ることができる。また、粉砕後に粒度分布を整えるため、乾式分級や湿式分級、もしくはふるい分け分級を用いることができる。
 乾式分級は、主として気流を用い、分散、分離(細粒子と粗粒子の分離)、捕集(固体と気体の分離)、排出のプロセスが逐次もしくは同時に行われ、粒子相互間の干渉、粒子の形状、気流の乱れ、速度分布、静電気の影響などで分級効率を低下させないように、分級をする前に前処理(水分、分散性、湿度などの調整)を行うか、使用される気流の水分や酸素濃度を調整して行われる。乾式で分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
 別の所定の粒子径のSi化合物を得る方法としては、プラズマやレーザー等でSi化合物を加熱して蒸発させ、不活性ガス中で凝固させて得る方法、ガス原料を用いてCVDやプラズマCVD等で得る方法があり、これらの方法は0.1μm以下の超微粒子を得るのに適している。
 炭素質物の原料の炭素前駆体としては、炭素を主体とする炭素系化合物で、不活性ガス雰囲気中での熱処理により炭素質物になるものであれば特に限定されない。例えば、石油系ピッチ、石炭系ピッチ、合成ピッチ、タール類、セルロース、スクロース、ポリ塩化ビニル、ポリビニルアルコール、フェノール樹脂、フラン樹脂、フルフリルアルコール、ポリスチレン、エポキシ樹脂、ポリアクリロニトリル、メラミン樹脂、アクリル樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂等が使用できる。
 原料である黒鉛は、天然黒鉛、石油や石炭のピッチを黒鉛化した人造黒鉛等が利用でき、鱗片状、小判状もしくは球状、円柱状もしくはファイバー状等が用いられる。また、それらの黒鉛を酸処理し、酸化処理した後、熱処理することにより、膨張させて黒鉛層間の一部が剥離してアコーディオン状となった膨張黒鉛もしくは膨張黒鉛の粉砕物、又は超音波等により層間剥離させたグラフェン等も用いることができる。原料の黒鉛は、予め混合工程で使用可能な大きさに整えて使用し、混合前の粒子サイズとしては、天然黒鉛や人造黒鉛では1~100μm、膨張黒鉛もしくは膨張黒鉛の粉砕物、グラフェンでは5μm~5mm程度である。
 上記のSi化合物、炭素前駆体、及び、必要に応じて黒鉛の混合は、炭素前駆体が加熱により軟化、液状化するものである場合は、加熱下で、混練することによって行うことができる。また、炭素前駆体が溶媒に溶解するものである場合には、溶媒にSi化合物、炭素前駆体、及び、必要に応じて黒鉛を投入し、炭素前駆体が溶解した溶液中で分散し、混合して、次いで、溶媒を除去することで行うことができる。用いる溶媒は、炭素前駆体を溶解できるものであれば、特に制限なく使用することができる。例えば、炭素前駆体としてピッチ、タール類を用いる場合には、キノリン、ピリジン、トルエン、ベンゼン、テトラヒドロフラン、クレオソート油等が使用でき、ポリ塩化ビニルを用いる場合には、テトラヒドロフラン、シクロヘキサノン、ニトロベンゼン等が使用でき、フェノール樹脂、フラン樹脂を用いる場合には、エタノール、メタノール等が使用できる。
 混合方法としては、炭素前駆体を加熱軟化させる場合は、混練機(ニーダー)を用いることができる。溶媒を用いる場合は、上述の混練機の他、ナウターミキサー、レーディゲミキサー、ヘンシェルミキサー、ハイスピードミキサー、ホモミキサー等を用いることができる。また、これらの装置でジャケットを加熱したり、その後、振動乾燥機、パドルドライヤーなどで溶媒を除去する。
 これらの装置で、炭素前駆体を固化、又は、溶媒除去の過程における撹拌をある程度の時間続けることで、Si化合物、炭素前駆体、及び、必要に応じて黒鉛との混合物は、造粒・圧密化される。また、炭素前駆体を固化、又は溶媒除去後の混合物をローラーコンパクタ等の圧縮機によって圧縮し、解砕機で粗粉砕することにより、造粒・圧密化することができる。
 得られる造粒・圧密化物の大きさは、その後の粉砕工程での取り扱いの容易さから、0.1~5mmが好ましく、0.2~1mmがより好ましい。
 造粒・圧密化物の粉砕方法は、圧縮力を利用して被砕物を粉砕するボールミル、あるいは媒体撹拌ミルや、ローラによる圧縮力を利用して粉砕を行うローラミルや、被砕物を高速で内張材に衝突もしくは粒子相互に衝突させ、その衝撃による衝撃力によって粉砕を行うジェットミルや、ハンマー、ブレード、ピンなどを固設したローターの回転による衝撃力を利用して被砕物を粉砕するハンマーミル、ピンミル、ディスクミル等の乾式の粉砕方法が好ましい。また、粉砕後に粒度分布を整えるため、風力分級、ふるい分け等の乾式分級が用いられる。粉砕機と分級機が一体となっているタイプでは、一度に粉砕、分級が行われ、所望の粒度分布とすることが可能となる。
 粉砕して得られた複合粒子は、アルゴンガスや窒素ガス気流中、もしくは真空中など不活性雰囲気下で焼成する。
 本発明のリチウムイオン二次電池用の負極は、負極活物質の含有量が60~99重量%であり、好ましくは80~98重量%であり、親水性重合体(前記バインダー)の含有量が1重量%~40重量%、好ましくは2~20重量%であり、導電性炭素化合物の含有量が0.01重量%~20重量%、好ましくは0.05~5重量%であることが好ましい。負極活物質が60重量%未満では負極としての放電容量が確保できず、99重量%より多いと結着性や導電性が確保できず、サイクル特性が低下する可能性がある。また、親水性重合体(バインダー)含有量が40重量%を超える及び/又は導電性炭素化合物が20重量%を超える場合には負極活物質の含有量が確保できず、初期放電容量が低下する可能性にある。
 親水性重合体の含有量が1重量%未満及び/又は導電性炭素化合物が0.01重量%未満では、結着性又は導電性が確保できず、サイクル特性が低下する可能性がある。
 次に、本発明のリチウムイオン二次電池用の負極の製造方法について説明する。
 前記のリチウムイオン二次電池用の負極活物質と、柔軟性が高く、結着性が高い本発明の親水性重合体(バインダー)と、導電性炭素化合物とを、水、有機溶媒又は含水有機溶媒(溶剤ともいう)に混合分散してスラリーとし、次に、該スラリーを集電極上に塗布した後、負電極を構成する電極活物質、バインダー、導電炭素化合物、集電極をプレス成型により一体化し、電極中に含まれる水、有機溶媒等を乾燥除去する方法が挙げられる。また、スラリーを集電極上に塗工する以外に、電極活物質、バインダー、導電炭素化合物及び溶剤を混練して、シート状、ペレット状等の形状に成形する方法もある。
 また、親水性重合体は、水、有機溶媒又は含水有機溶媒に溶解した溶液として用いて負極を作製することも可能である。
 プレス成型後の電極乾燥温度は150℃以下で十分である。本乾燥の目的は、電極中に残存する水、有機溶媒等を除去することから、100℃程度の温度で、真空、空気中、又は窒素ガス等の不活性ガス下で行えばよい。一般的には、ポリイミド化させるため、200~400℃程度の比較的高い熱処理温度が必要であるが、本発明の親水性重合体は、電極作製時に、すでに低分子量のイミド化体となっており、低温度で乾燥することにより結着性を示すことができる。
 本発明で導電剤は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよい。具体的には、Al,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種コークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛などを用いることができる。導電剤の添加量は、負極材全量に対して0~20重量%であり、1~10重量%が好ましい。導電剤の添加量が少ないと、負極材の導電性が乏しい場合があり、初期抵抗が高くなる傾向がある。一方、導電剤の添加量が多すぎる場合は、電池容量の低下につながる恐れがある。
 前記混合分散用の溶剤としては特に制限はなく、N-メチル-2-ピロリドン、ジメチルホルムアミド、イソプロパノール、純水等が挙げられ、使用量に特に制限はない。集電体は、例えばニッケル、銅等の箔、メッシュなどが使用できる。
 一体化は、例えばロール、プレス等の成型法で行うことができる。
 このようにして得られた負極は、セパレータを介して正極に対向して配置し、電解液を注入することにより、従来のシリコンを負極材料に用いたリチウム二次電池と比較して、サイクル特性に優れ、高容量であり、高初期効率という優れた特性を有するリチウム二次電池を作製することができる。
 正極に用いられる材料は、例えば、LiNiO、LiCoO、LiMn、LiNiMnCo1-x-y(xは0.1~0.5、yは0.1~0.5。)、LiFePO、Li0.5Ni0.5Mn1.5、LiMnO-LiMO(M=Co,Ni,Mn)等を単独又は混合して使用することができる。
 電解液は、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、例えば、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、テトラヒドロフラン、プロピレンカーボネート等の非水系溶剤に溶解させた、いわゆる、有機電解液を使用することができる。
 更には、イミダゾリウム、アンモニウム、又はピリジニウム型のカチオンを用いたイオン液体を使用することができる。対アニオンは、特に限定されるものではないが、BF 、PF 、(CFSO等が挙げられる。
 イオン液体は、前述の有機電解液溶媒と混合して使用することが可能である。電解液には、ビニレンカーボネートやフロロエチレンカーボネートのようなSEI(固体電解質界面層)形成剤を添加することもできる。
 また、上記塩類をポリエチレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド等やこれらの誘導体、混合物、複合体等に混合された固体電解質を用いることもできる。この場合、固体電解質はセパレータも兼ねることができ、セパレータは不要となる。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はこれらを組み合わせたものを使用することができる。
 電池性能の評価は、充放電装置を用いて行われる。電池評価の条件は、特に制約はなく、定電流法、定電流定電圧法、定容量法、定電力法、パルス法などが挙げられる。特に、定電流法や定電流定電圧法は、充放電深度(DOD)が100%近くでの電池特性評価として用いられることが多く、定容量法や定電力法は、充放電深度(DOD)が比較的浅い領域での電池評価にも使用することができる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明は、これらの実施例に限定されるものではない。
 <分子量>
 ウレタンプレポリマーの分子量は、ジイソシアネート化合物とポリオールの仕込みより求められる重合度より計算した。
 r=ジイソシアネート化合物の仕込みモル数÷ポリオールの仕込みモル数
 ウレタンプレポリマーの重合度(N)=(r+1)÷(r-1)
 ウレタンプレポリマーの分子量
 =(N÷0.5×ジイソシアネート化合物の分子量)
   +(N÷0.5×ポリオールの分子量)
 ポリイミドプレポリマーの分子量は、ジアミン化合物と酸無水物の仕込みより求められる重合度より計算した。
 r=ジアミン化合物の仕込みモル数÷
    テトラカルボン酸二無水物の仕込みモル数
 ポリイミドプレポリマーの重合度(N)=(r+1)÷(r-1)
 ポリイミドプレポリマーの分子量
 =(N÷0.5×ジアミン化合物の分子量)
+(N÷0.5×テトラカルボン酸二無水物の分子量)-重合度×18
<赤外吸収スペクトル測定>
 赤外吸収スペクトルは、PERKIN ELMER社製のSystem2000 FT-IRを用いて測定した。
<親水性評価>
 1重量%のNMP溶液を80g調製し、親水性重合体100重量部に対してカルボキシル基に対し3倍等量の水酸化ナトリウムを加え、更に320gの水を1時間かけて添加して、重合体の親水性を評価した。
 (1)含水有機溶媒溶液の生成:◎ (2)僅かに凝集物の生成:○
 (3)多量に凝集物の生成:△   (4)水添加中に塊が生成:×
<接着性の評価>
 親水性重合体を10重量%含むN-メチル-2-ピロリドン(NMP)溶液を調製し、2×10cmの短冊状の銅箔に、ドクターブレードにて塗布した後、乾燥(120℃×2時間熱風乾燥、更に120℃×2時間減圧乾燥)して得られた塗膜を用いて接着試験を行った。
 銅箔;日本テストパネル社製 C122OR(縦100mm×横100mm×厚さ0.05mm)
<折り曲げ試験1>
 前記銅箔に親水性重合体を塗布した銅箔を180°に折り曲げ、折り曲げた部分の親水性重合体の欠落を目視評価した。目視での判定基準は以下のとおりとした。
 (1)欠落なし(接着性がきわめて優れる):◎
 (2)塗布面の僅かな欠落が見られる(接着性良好):○
 (3)欠落して金属箔がわずかに露出する:△
 (4)欠落して金属箔が完全に露出する:×
<折り曲げ試験2>
 前記銅箔に親水性重合体を塗布した銅箔を水平状態から、直径1cmのパイプに塗布面が外になるように重ねて繰返し折り曲げ、塗膜が剥離するまでの回数を測定した。
<ポリイミド分率(重合体中の式(2)の構造の割合)>
 ポリイミド分率(重量%)=[WPI/(WPU+WPI)]
 WPU:ウレタンプレポリマー仕込み量
 WPU:ポリイミドプレポリマー仕込み量
<ガラス転移温度の測定>
 ガラス転移温度の測定は、ネッチ社製の示差走査熱量計(DSC200F3)を用い、-100℃から250℃の範囲にて、窒素雰囲気下、10℃/分の昇温条件にて測定した。
<銅箔とのT字剥離試験による初期接着力の評価>
 1.親水性重合体の反応液をガラス板上に流延し、120℃で2時間熱風乾燥した後、更に120℃で減圧乾燥し、厚さ100μmのフィルムを作製した。
 2.得られたフィルムを幅35mm×長さ70mmに切断し、銅箔:日本テストパネル社製のC122OR(100mm×100mm×厚さ0.05mm)と熱プレス装置を用いて、180℃×1分の条件にて貼り合せた。この貼り合せた試料を、幅15mmの短冊状に打ち抜き、接着力測定試料とした。
 3.接着力は、T字剥離試験(引張速度300mm/分)(JIS6854に準拠)により剥離強度を測定し(n=3)、接着力とした。
<サイクリックボルタンメトリー(CV)の測定>
 12重量%の親水性重合体を含むNMP溶液を調製し、日本テストパネル社製のC122OR(100mm×100mm×厚さ0.05mm)銅箔に、150μmのドクターブレードにて塗布した。その後、乾燥(120℃×2時間熱風乾燥、更に120℃×2時間減圧乾燥)して、得られた塗膜を電極とし、以下の条件によりCV測定を行った。
「CV測定条件」
 対極=Li(16.6cm)、対極=Li/Li
 試験極面積=0.5cm、測定温度=室温(25℃)、
 スイープ速度=0.5mV/sec、
   電解液=1M-LiPF/炭酸エチレン/炭酸ジメチル混合液(1:2(vol比))、
   測定装置=ELECTROCHEMICAL INTERFACE SI-1287(Solartron社製)。
 先ず2V→0V→2Vまでスイープした後、2~0V(vsLi/Li)の範囲で2回泡けしスイープし、流れた電流を記録することでCV測定を実施した。
<電極の調製>
 電極活物質、バインダー、導電助剤、及びNMPを所定量混合し、自公転ミキサーで攪拌混合し、電極用塗工液を調製した。
 得られた電極用塗工液を、塗布速度1cm/min.にて、クリアランス=0.4μmのコーターを使い、厚さ18μmの銅箔に塗工し、120℃で30min.真空乾燥し、電極活物質などが塗布された銅箔を調製した。
 得られた銅箔を直径16mmに打ち抜き、電極とした。
 以下の条件にて、充放電を行ない、電極を評価した
  対極:Li、電解液:1M-LiPF/炭酸エチレン:炭酸ジメチル(1:2(vol比))、電流:0.2CA、温度:25℃。
 合成例1a
 窒素雰囲気下、500mlの四つ口セパラブルフラスコに、ジイソシアネートとして4,4’-ジフェニルメタンジイソシアネート(MDI)20.0gと、ポリオールとしてポリオキシテトラメチレングリコール(分子量1000、三菱化学社製、PTMG1000)76.1gを量り取り(ジイソシアネート/ポリオール(モル比=1.05))、80℃で2時間反応し、ウレタンプレポリマー1aを得た。
 合成例2a~13aについては、合成例1aと同様な操作にて合成を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000023
合成例1b
 窒素雰囲気下、水分定量管と還流冷却器を付けた200mlの四つ口フラスコに、ジアミンとして3,5-ジアミノ安息香酸(DAB)6.25gと、NMP122.9gを量り取り、溶解した。その後、テトラカルボン酸二無水物として4,4’-オキシジフタル酸二無水物12.5gを加え、50℃に加熱し、1時間反応した(ジアミン/テトラカルボン酸二無水物(モル比=1.02))。その後、イソキノリン0.04gをトルエン10.5gに溶解した溶液を加え、180℃で3時間攪拌し、トルエンと共沸した水を取り除いて、ポリイミドプレポリマー1bの有機溶媒溶液を得た。
 合成例2b~13bについては、合成例1bと同様な操作にて合成を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000024
 実施例1
 窒素雰囲気下、500mlの四つ口セパラブルフラスコに、ウレタンプレポリマー1aを4.4g、及びNMP3.1gを量り取り、攪拌し溶解した。その後、ポリイミドプレポリマー1bの有機溶媒溶液77.4g(ポリマーとして8.9g相当)を添加し、室温で24時間反応させて、不溶成分の無い均一な親水性重合体の有機溶媒溶液を得た。ポリイミド分率は66.9重量%であった。赤外吸収スペクトルにより、イソシアネート基に由来する2270cm-1吸収が消失し、1780cm-1、及び1360cm-1にイミド構造に由来する吸収が存在し、3290cm-1、及び1540cm-1にウレタン構造に由来する吸収が存在することから、反応の進行を確認した。得られたポリマーのガラス転移温度は-58℃を示した。イミドユニット/ウレタンユニット(モル比)は2.4であった。
 得られた親水性重合体の有機溶媒溶液にNMPを加え、500mlの四つ口セパラブルフラスコに親水性重合体1重量%の有機溶媒溶液を80g調製した。0.11gの水酸化ナトリウムを加え、更に320gの水を1時間かけて添加し、200メッシュのナイロンフィルターでろ過して、親水性重合体の塩の含水有機溶媒溶液(バインダー用溶液)を得ることができた(親水性◎)。
 反応で得られた親水性重合体の有機溶媒溶液を用いて、0.15μmのドクターブレードで銅箔に塗布し、接着性の評価を行った。折り曲げ試験1ではきわめて優れる結果であった(評価◎)。折り曲げ試験2では100回以上繰返し折り曲げても塗膜が剥離することはなかった。
 また、銅箔に対する初期接着力は、1.20N/mmであった。
 CV測定結果より酸化反応、還元反応に由来する電流は測定されず、バインダー用に適していることがわかった。
 実施例2~31については実施例1と同様な操作にて合成を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 図1に実施例3の親水性重合体のCV測定結果を示す。
実施例32
 実施例1で得られた反応液中の固形分から換算し、重合体100重量部に対し、フェニルエチニルフタル酸無水物を22重量部添加し、NMP溶液で固形分5%とした溶液40gに対しトルエン10gを添加し、50℃で1時間反応させた後、更に160℃で2時間トルエンと共沸した水を取り除いて反応を行った。反応液を濃縮し、固形分15%の変性親水性重合体溶液が得られた。赤外吸収スペクトルにより末端アミノ基であるNHに由来する3466cm-1の吸収が消失したことにより、重合体の末端がフェニルエチニルフタル酸無水物(ジカルボン酸無水物)で封止されていることを確認した。溶液粘度は130mPa・sであった。
 上記の結果より、末端が封止されて低粘度であり、作業性に優れており、バインダー用や接着剤用などに適していることがわかった。
 実施例33~66については実施例32と同様な操作にて合成を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
 比較例1
 500mlの四つ口セパラブルフラスコにウレタンプレポリマー1aにN-メチルピロリドンを加え1重量%の有機溶媒溶液として80gを調製した。0.06gの水酸化ナトリウムを加え、更に320gの水を1時間かけて添加したところ、凝集物が多量に生成し、重合体の塩の含水有機溶媒溶液(バインダー用溶液)を得ることができず(親水性×)、実施例に対して劣った。
 また、ウレタンプレポリマーの有機溶媒溶液を、0.15μmのドクターブレードを用いて、銅箔に塗布し、接着性の評価を行った。折り曲げ試験1ではきわめて優れる結果であった(評価◎)。折り曲げ試験2では100回以上繰返し折り曲げても塗膜が剥離することはなかった。
 また、銅箔に対する初期接着力は、0.1N/mmであり、実施例に対して劣った。
 ウレタンプレポリマーの有機溶媒溶液のCV測定結果は、酸化反応、還元反応に由来する電流は測定されなかった。結果を表5に示す。
 比較例2
 500mlの四つ口セパラブルフラスコにポリイミドプレポリマー1bにN-メチルピロリドンを加え1重量%の有機溶媒溶液として80gを調製した。0.06gの水酸化ナトリウムを加え、更に320gの水を1時間かけて添加したところ、親水性重合体の塩の均一水溶液を得ることができた(親水性○)。
 また、得られたポリイミドプレポリマーの有機溶媒溶液を用いて、0.15μmのドクターブレードで銅箔に塗布し、接着性の評価を行った。折り曲げ試験1ではポリマーが金属箔から剥離し(評価×)、実施例に対し劣った。折り曲げ試験2では53回でポリマーが銅箔から完全に剥離し、実施例に対し劣った。
 また、銅箔に対する初期接着力は、0.00N/mmであり、実施例に対し低かった。
 ポリイミドプレポリマーのCV測定結果は、酸化反応、還元反応に由来する電流は測定されなかった。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000031
 比較例3~11
 表5に記載の条件で実施例1と同様な操作にて親水性重合体の合成を試みた。しかし、いずれの親水性重合体も実施例に対し特性として劣る結果となった。なお、比較例10については反応中に粘度が増大し攪拌不能となり、親水性重合体を得ることができなかった。結果を表5に示す。
 比較例12
 ポリマーとして市販PVDF(KF#1120、クレハ社製)を用い、実施例と同様な評価を行った。結果を表5に示す。親水性の評価についてはNaOHの添加は行わなかった。しかし、実施例に対し親水性、初期接着力、折り曲げ試験1、及び折り曲げ試験2が劣る(=接着耐久性が低い)点で実施例に劣る結果となった。またCV測定においては反応由来の電流が観測された。
 実施例67
 活物質にSiO(大阪チタニウム社製)を用い、活物質/親水性重合体(実施例18)/導電助剤(アセチレンブラック)=70/20/10(重量部)の組成で電極用塗工液を調製し、リチウムイオン二次電池用電極を作製した。この電極を用いLiを対極として充放電試験を行った。その充放電曲線を図2に示す。図2の結果より、親水性重合体をバインダーとして用いた電極は充放電を行うことができることがわかった。
 実施例68
 親水性重合体として実施例22を用いた以外は、実施例67と同様にしてリチウムイオン二次電池用電極を作製した。この電極を用いLiを対極として充放電試験を行った。その充放電曲線を図3に示す。図3の結果より親水性重合体をバインダーとして用いた電極は充放電を行うことができることがわかった。
 実施例69
 活物質に黒鉛(日本黒鉛社製CGB-10)を用い、活物質/親水性重合体(実施例18)=100/5(重量部)の組成で電極用塗工液を調製し、リチウムイオン二次電池用電極を作製した。この電極を用いLiを対極として充放電試験を行った。その充放電曲線を図4に示す。図4の結果より、親水性重合体をバインダーとして用いた電極は充放電を行うことができることがわかった。
 実施例70
 親水性重合体として実施例19を用いた以外は、実施例67と同様にしてリチウムイオン二次電池用電極を作製した。この電極を用いLiを対極として充放電試験を行った。その充放電曲線を図5に示す。図5の結果より、親水性重合体をバインダーとして用いた電極は充放電を行うことができることがわかった。
 実施例71
 実施例18で得られた反応液(有機溶媒(NMP)溶液)を200メッシュのSUS金網でろ過したところ、目視で不溶物の生成は確認できなかった。
 溶解度を測定したところ、親水性重合体は13重量%溶解していた。
 また実施例18で得られた反応液を110℃で恒量となるまで真空乾燥した。3.8gの水酸化ナトリウムを水180gに溶解した水溶液に得られた親水性重合体を16.2g溶かし、4時間室温で攪拌した。水溶液を400メッシュのSUS金網でろ過し、得られた水溶液を120℃の熱風乾燥機で恒量となるまで乾燥し、固形分から溶解度を測定したところ親水性重合体は9.5重量%溶解していた。
 実施例72
 平均粒子径(D50)が7μmのケミカルグレードの金属Si(純度3N)をエタノールに20重量%混合し、直径0.3mmのジルコニアビーズを用いた微粉砕湿式ビーズミルを6時間行い、平均粒子径(D50)が0.3μm、乾燥時のBET表面積が100m/gの超微粒子Siスラリーを得た。
 粒子径約0.5mm、厚み約0.02mmの扁平形状をした天然黒鉛を、濃硫酸に硝酸ナトリウム1重量%、過マンガン酸カリウム7重量%を添加した液に24時間浸漬し、その後、水洗して乾燥し、酸処理黒鉛を得た。この酸処理黒鉛を、5g/分の供給速度になるように14L/分の流量の窒素ガスを流動させて電気ヒーターで1150℃に加熱した長さ1m、内径11mmのムライト管に通した。上記加熱処理により酸処理黒鉛中の硫酸が亜硫酸等のガスに分解排出することによって酸処理黒鉛は膨張し、それをステンレス容器で捕集した。熱処理前後の軽装嵩密度の比率より算出した膨張率は350%であった。SEM観察で、黒鉛層が厚み方向に剥離膨張化し、アコーディオン状の形状をした粉末であることが確認された。
 上記超微粒子Siスラリーを86g、上記膨張黒鉛を20.6g、レゾール型のフェノール樹脂(ASBERY社製グレード3772)を12.9g、エタノール3.2Lを撹拌容器に入れて、ホモミキサーで8000rpm、1時間混合撹拌した。その後、混合液をロータリーエバポレーターに移し、回転しながら温浴で60℃に加熱し、アスピレータで真空に引き、溶媒を除去した。その後、ドラフト中でバットに広げて排気しながら2時間乾燥し、目開き2mmのメッシュを通し、更に12時間乾燥して、約50gの混合乾燥物(軽装嵩密度80g/L)を得た。
 この混合乾燥物を3本ロールミルに2回通し、粒度約2mm、軽装嵩密度467g/Lに造粒・圧密化した。
 次に、この造粒・圧密化物をニューパワーミルに入れて水冷しながら、21000rpmで15分間粉砕し、同時に球形化し、軽装嵩密度640g/Lの球形化粉末を得た。得られた粉末をアルミナボートに入れて、管状炉で窒素ガスを流しながら、最高温度900℃で1時間焼成した。その後、目開き45μmのメッシュを通し、平均粒子径(D50)が18.6μm、軽装嵩密度が753g/Lの複合化物を得た。
 図6、図7に、得られた複合化物粒子をイオンビームで切断した断面のFE-SEMによる反射電子像を示す。複合化物粒子内部は0.05~1.0μmの長さのSiの微粒子が炭素質物と共に0.02~0.5μmの厚みの黒鉛薄層に挟まった構造が網目状に広がり、積層していた。
 「リチウムイオン二次電池用負極の作製」
 得られた前記複合化物を負極活物質として秤量し、前記負極活物質を83.7重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック1.0重量%、実施例18に記載の親水性重合体:バインダー(固形分濃度14.8重量%のNMP溶液)15.3重量%にNMP0.66gを混合し、40重量%のスラリーを自転・公転ミキサー(シンキー社製 泡取り錬太郎、以下でも同じ)を用いて負極活物質を分散混合して負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で定置運転乾燥機にて0.5時間乾燥した。この時のシート電極の表面形状のSEM写真を図8に示す。バインダーが粒子間を均質に結着している様子が観察された。
 乾燥後、13.8mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、更に真空下、110℃で2時間熱処理して、厚みが25μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 「評価用セルの作製」
 評価用セルは、グローブボックス中でスクリューセルに上記負極、直径24mmのポリプロピレン製セパレータ、直径21mmのガラスフィルター、直径18mmで厚み0.2mmの金属リチウム及びその基材のステンレス箔を、各々、電解液にディップした後、この順に積層し、最後に蓋をねじ込み作製した。電解液はエチレンカーボネートとジエチルカーボネートを体積比1対1の混合溶媒とし、LiPFを1.2mol/Lの濃度になるように溶解させ、これにフルオロエチレンカーボネートを2体積%添加したものを使用した。評価用セルは、更にシリカゲルを入れた密閉ガラス容器に入れて、シリコンゴムの蓋を通した電極を充放電装置(北斗電工社製 SD-8)に接続した。
 「評価条件」
 評価用セルは25℃の恒温室にて、サイクル試験した。充電は、3mAの定電流で0.01Vまで充電後、0.01Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。初回放電容量と初期充放電効率は、初回充放電試験の結果とした。
 また、サイクル特性は、前記充放電条件にて50回充放電試験した後の放電容量と初回の放電容量を比較し、そのサイクル容量維持率として評価した。
 実施例73
 複合化物は、上記超微粒子Siスラリーを64.5g、上記膨張黒鉛を25.8g、レゾール型のフェノール樹脂(ASBERY社社製 グレード3772)を10.8g用いて作製したこと以外は、実施例72と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価を行った。
 「リチウムイオン二次電池用負極の作製」
 得られた前記複合化物を負極活物質として秤量し、負極活物質84.0重量%(固形分全量中の含有量。以下同じ。)に対して、導電助剤としてアセチレンブラック1.1重量%、実施例18記載の親水性重合体(固形分濃度14.8重量%のNMP溶液)14.9重量%にNMP0.66gを混合し、35重量%のスラリーと水とを混合後、自転・公転ミキサーを用いて負極活物質を分散混合して負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で定置運転乾燥機にて0.5時間乾燥した。この時のシート電極の表面形状のSEM写真を図9に示す。バインダーが粒子間を無駄なく均質に結着している様子が観察された。
 比較例13
 平均粒子径が7μmの市販のシリコン(阪和工業社製)と前記天然黒鉛30:70(重量%)からなる負極活物質を使用した以外は、実施例72と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価を行った。
 比較例14
 実施例72で用いた複合化物を負極活物質として秤量し、負極活物質79.4重量%(固形分全量中の含有量)に対して、導電助剤としてアセチレンブラック5.0重量%、市販のポリイミドバンダー(IST社製、ドリームボンド、固形分濃度46.7重量%のNMP溶液)15.6重量%にNMP0.438gを混合し、25重量%のスラリーを自転・公転ミキサーを用いて負極活物質を分散混合して負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で定置運転乾燥機にて0.5時間乾燥した。この時のシート電極の表面形状のSEM写真を図10に示す。市販のポリイミドバインダーは微細な粒子からなり、活物質の表面を覆うようにバインダーが被覆している様子が観察された。
 乾燥後、13.8mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、更に真空下、110℃で2時間熱処理して、厚みが14μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 比較例15
 使用するバインダーを市販のポリイミドバンダー(IST社製、ドリームボンド)を使用した以外は実施例73と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価を行った。
 比較例16
 平均粒子径が7μmの市販のシリコン(阪和工業社製)と前記天然黒鉛30:70(重量%)からなる負極活物質として秤量し、前記負極活物質95.5重量%(固形分全量中の含有量)に対して、導電助剤としてアセチレンブラック0.5重量%、バインダーとしてカルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.5重量%、水とを混合後、自転・公転ミキサーを用いて負極活物質を分散混合して負極合剤含有スラリーを調製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が3mg/cmになるように厚みが18μmの銅箔に塗布し、110℃で定置運転乾燥機にて0.5時間乾燥した。この時のシート電極の表面形状のSEM写真を図11に示す。市販のポリイミドバインダーは微細な粒子からなり、活物質の表面を覆うようにバインダーが被覆している様子が観察された。
 乾燥後、13.8mmφの円形に打ち抜き、圧力0.6t/cmの条件で一軸プレスし、更に真空下、110℃で2時間熱処理して、厚みが30μmの負極合剤層を形成したリチウムイオン二次電池用負極を得た。
 比較例17
 負極活物質として実施例72に記載の複合化物を用い、バインダーとして前記カルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.5重量%を含有したものを使用し、実施例72と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価を行った。
 比較例18
 負極活物質として実施例2に記載の複合化物を用い、バインダーとして前記カルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.5重量%を含有したものを使用し、実施例73と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価を行った。
 比較例19
 負極活物質として比較例1に記載の複合化物を用い、バインダーとして前記カルボキシメチルセルロース(CMC)1.5重量%とスチレンブタジエンゴム(SBR)2.5重量%を含有したものを使用し、実施例72と同様の方法で負極活物質、負極、評価用セルの順に作製し、セル評価を行った。
 実施例72~73の負極活物質の作製条件と比較例13~19の負極活物質の作製条件を表6に示す。また、実施例72~73の結果と比較例13~19の結果を表7に示す。
 表7から明らかなように、Si、炭素質物、黒鉛を複合化後、ポリウレタンとポリイミドの共重合体バインダーを用いて作製した電池は、低い熱処理温度においても放電容量が高く、サイクル特性に優れていることがわかる。
 これに対し、平均粒径が7μm程度の大きさの市販のSi粒子と黒鉛を混合して作製した負極活物質と本発明によるバインダー以外の各種市販バインダーを用いて作製した比較例13、16、19のリチウムイオン二次電池は、サイクル特性が大きく低下していることがわかる。
 負極活物質としてSiと黒鉛を複合化した負極活物質とポリイミドバンダーやSBR/CMCなどの水系バインダーを用いた比較例14、15、17、18は、本発明の実施例に比べサイクル維持率が低いことがわかる。また、市販のポリイミドバインダーを用いた場合には、サイクル特性を向上させるため熱処理温度を200℃以上とした。
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
 本発明の親水性重合体は、柔軟で、金属との接着性に優れ、環境負荷が小さく、電気化学的に安定であり、二次電池、特にリチウムイオン二次電池用の電極活物質と電極を結合させるバインダーとして利用できる。更には、回路基板、半導体装置の絶縁膜、複合材料などのサイジング剤としても利用が可能である。
 なお、2014年2月13日に出願された日本特許出願2014-025621号、2014年3月28日に出願された日本特許出願2014-070307号、及び2014年5月21日に出願された日本特許出願2014-105727号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 11 複合化物断面反射電子像中の黒鉛又は炭素化物層(灰色)
 12 複合化物断面反射電子像中の微細Si粒子(白色)
 13 複合化粒子
 14 バインダー

Claims (20)

  1.  下記式(1)で表されることを特徴とする親水性重合体。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは炭素数4~30の2価の有機基を表し、Rは数平均分子量が100~10,000の直鎖若しくは分枝状の炭素数2~5のポリオキシアルキレン構造を有する2価の有機基を表し、Rは炭素数4~30の芳香環を1又は2個含有する3価以上の有機基を表し、Rは炭素数4~30の4価の有機基を表し、Xはカルボキシル基又はスルホン酸基を表し、xは1~800の整数を表し、yは1~800の整数を表し、zは1~100の整数を表し、aは1~4の整数を表す。ただし、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。さらに、式(1)中、下記式(2)で表される構造が10~99重量%であり、式(3)で表されるウレタンユニット構造のモル数Aに対する式(2)で表されるイミドユニット構造のモル数Bの比率(B/A)が1~30である。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、R、R、X、y、及びaは前記の定義と同じである。但し、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。)
    Figure JPOXMLDOC01-appb-C000003

    (式中、R、R、及びxは前記の定義と同じである。)
  2.  式(1)で表される重合体の末端が、下記式(4)で表されるジカルボン酸無水物で封止されている、請求項1に記載の親水性重合体。
    Figure JPOXMLDOC01-appb-C000004

    (式中、Zは、上記式(4)で表されるジカルボン酸無水物が下記式(5)からなる群より選ばれる化合物を形成するための2価の有機基を示す。)
    Figure JPOXMLDOC01-appb-C000005
  3.  式(1)で表される重合体100重量部に対して、式(4)で表されるジカルボン酸無水物0.02~100重量部で封止されている、請求項2に記載の親水性重合体。
  4.  T字剥離試験(引張速度300mm/分)における、銅との初期接着力が0.05N/mm以上である、請求項1乃至3のいずれかに記載の親水性重合体。
  5.  請求項1又は4に記載の親水性重合体の製造方法であり、下記式(6)で表されるウレタンプレポリマー(A)と、下記式(7)で表されるポリイミドプレポリマー(B)とを、反応時におけるポリイミド分率([(B)の重量/[(A)の重量+(B)の重量]]×100)が10~99重量%であり、かつ、式(6)で表されるウレタンプレポリマーに対する式(7)で表されるポリイミドプレポリマーのモル比が1以上30以下で反応させることを特徴とする製造方法。
    Figure JPOXMLDOC01-appb-C000006

    (式中、R、R、及びxは前記の定義と同じである。)
    Figure JPOXMLDOC01-appb-C000007

    (式中、R、R、X、y、及びaは前記の定義と同じである。但し、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。)
  6.  請求項2乃至4に記載の親水性重合体の製造方法であり、式(6)で表されるウレタンプレポリマー(A)と、式(7)で表されるポリイミドプレポリマー(B)とを、反応時におけるポリイミド分率([(B)の重量/[(A)の重量+(B)の重量]]×100)が10~99重量%であり、かつ、式(6)で表されるウレタンプレポリマーに対する式(7)で表されるポリイミドプレポリマーのモル比が1以上30以下で反応させ、その後、式(4)で表されるジカルボン酸無水物を反応させることを特徴とする製造方法。
  7.  ウレタンプレポリマー(A)が、下記式(8)で表されるジイソシアネートと下記式(9)で表されるポリオールとを、イソシアネート基と水酸基のモル比(イソシアネート基/水酸基)が1~2の範囲で反応させて得られる、請求項5又は6に記載の親水性重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000008

    (式中、Rは前記の定義と同じである。)
    Figure JPOXMLDOC01-appb-C000009

    (式中、Rは前記の定義と同じである。)
  8.  ポリイミドプレポリマー(B)が、下記式(10)で表されるジアミンと下記式(11)で表されるテトラカルボン酸二無水物とを、ジアミンとテトラカルボン酸二無水物のモル比(ジアミン/テトラカルボン酸二無水物)が1より大きく2以下の範囲で反応させて得られる、請求項5乃至7のいずれかに記載の親水性重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000010

    (式中、R、X、及びaは前記の定義と同じである。但し、Xがカルボキシル基の場合、Rの芳香環の数は1であり、aは1である。)
    Figure JPOXMLDOC01-appb-C000011

    (式中、Rは前記の定義と同じである。)
  9.  請求項1乃至4のいずれかに記載の親水性重合体に対して、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、3級アミン化合物、4級アミン化合物又はアンモニアを反応させて得られる、親水性重合体の塩。
  10.  請求項1乃至4のいずれかに記載の親水性重合体及び/又は請求項9に記載の親水性重合体の塩を、水、有機溶媒又は含水有機溶媒に溶かしてなる、バインダー用溶液。
  11.  請求項10に記載のバインダー用溶液を乾燥して得られる二次電池用バインダー。
  12.  請求項1乃至4のいずれかに記載の親水性重合体及び/又は請求項9に記載の親水性重合体の塩を含む電極。
  13.  請求項12に記載の電極からなるリチウムイオン二次電池用電極。
  14.  電極が負極であり、負極活物質がSi又はSi合金と、炭素質物若しくは炭素質物と黒鉛とを含む、請求項13に記載のリチウムイオン二次電池用電極。
  15.  負極活物質が、平均粒子径が0.01~5μmであるSi又はSi合金と、炭素質物又は炭素質物と黒鉛とからなる平均粒子径が1~40μmである複合化物である、請求項14に記載のリチウムイオン二次電池用電極。
  16.  負極活物質が、Si又はSi合金と、炭素質物とが共に0.5μm以下の厚みの黒鉛薄層の間に挟まった構造であり、その構造は積層及び/又は網目状に広がっており、該黒鉛薄層が活物質粒子の表面付近で湾曲して複合化物粒子を覆っており、その複合化物粒子の周りに黒鉛又は炭素質物が配置している、請求項14又は15に記載のリチウムイオン二次電池用電極。
  17.  負極活物質を60重量%以上99重量%以下、請求項11に記載のバインダーを1重量%以上40重量%以下、導電性炭素化合物を0.01重量%以上20重量%以下含有する、請求項14乃至16のいずれかに記載のリチウムイオン二次電池用電極。
  18.  請求項14乃至17のいずれかに記載のリチウムイオン二次電池用電極の製造方法であり、負極活物質と、請求項11に記載のバインダー若しくは請求項10に記載のバインダー溶液と、前記導電性炭素化合物を水、有機溶媒又は含水有機溶媒に混合分散してスラリー化する工程と、該スラリーを集電極上に塗布して塗工物を形成する工程と、塗工物をプレスして集電極と一体化するプレス成型工程と、該電極中に含まれる水及び/又は有機溶媒を除去する乾燥工程を含むことを特徴とする製造方法。
  19.  前記スラリーが、請求項11に記載のバインダーと、水、有機溶媒若しくは含水有機溶媒とを含むバインダー用溶液、又は請求項10に記載のバインダー溶液を用いて作製したものである、請求項18に記載の製造方法。
  20.  前記乾燥工程を150℃以下で実施する、請求項18又は19に記載の製造方法。
PCT/JP2015/054000 2014-02-13 2015-02-13 親水性重合体、その製造方法、バインダー、及び電極 WO2015122498A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014025621 2014-02-13
JP2014-025621 2014-02-13
JP2014070307 2014-03-28
JP2014-070307 2014-03-28
JP2014-105727 2014-05-21
JP2014105727A JP2015220221A (ja) 2014-05-21 2014-05-21 リチウムイオン2次電池用負極およびその製造方法

Publications (1)

Publication Number Publication Date
WO2015122498A1 true WO2015122498A1 (ja) 2015-08-20

Family

ID=53800238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054000 WO2015122498A1 (ja) 2014-02-13 2015-02-13 親水性重合体、その製造方法、バインダー、及び電極

Country Status (2)

Country Link
TW (1) TW201531499A (ja)
WO (1) WO2015122498A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995034B1 (ja) * 2016-05-30 2016-09-21 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP6062091B1 (ja) * 2016-04-14 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
JP6062097B1 (ja) * 2016-07-07 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体の製造方法
JP6062090B1 (ja) * 2016-04-14 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体の製造方法
WO2017047523A1 (ja) * 2015-09-18 2017-03-23 東レ株式会社 グラフェン分散液およびその製造方法、グラフェン-活物質複合体粒子の製造方法ならびに電極用ペーストの製造方法
WO2017047521A1 (ja) * 2015-09-18 2017-03-23 東レ株式会社 グラフェン分散液およびその製造方法、グラフェン-活物質複合体粒子の製造方法ならびに電極ペーストの製造方法
WO2017047522A1 (ja) * 2015-09-18 2017-03-23 東レ株式会社 グラフェン/有機溶媒分散液およびその製造方法ならびにリチウムイオン電池用電極の製造方法
WO2017073766A1 (ja) * 2015-10-30 2017-05-04 ユニチカ株式会社 蓄電素子電極用ポリイミド溶液、蓄電素子電極の製造方法および蓄電素子電極
WO2017094719A1 (ja) * 2015-11-30 2017-06-08 日本電気株式会社 リチウムイオン二次電池
WO2017110710A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 樹脂組成物
WO2017141836A1 (ja) * 2016-02-16 2017-08-24 株式会社村田製作所 リチウムイオン二次電池およびその製造方法
WO2017179268A1 (ja) * 2016-04-14 2017-10-19 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
US10756337B2 (en) 2015-11-30 2020-08-25 Nec Corporation Lithium ion secondary battery
CN113130897A (zh) * 2020-01-14 2021-07-16 深圳市优宝新材料科技有限公司 水系粘结剂及其制备方法和应用
CN114899404A (zh) * 2022-05-27 2022-08-12 瑞固新能(上海)材料科技有限公司 一种锂电池用防开裂剂
CN115799484A (zh) * 2022-12-29 2023-03-14 北京航空航天大学 有机锂电池活性材料及其制备方法
CN116589649A (zh) * 2023-07-14 2023-08-15 宁德时代新能源科技股份有限公司 聚合物、制备方法、分散剂、正极浆料、正极极片、二次电池和用电装置
CN116589676A (zh) * 2023-07-14 2023-08-15 宁德时代新能源科技股份有限公司 聚合物、制备方法、分散剂、正极浆料、正极极片、二次电池和用电装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017155059A1 (ja) * 2016-03-10 2017-09-14 日本ゼオン株式会社 非水系二次電池電極用バインダー、非水系二次電池電極用スラリー、非水系二次電池用電極、および非水系二次電池
CN114672272A (zh) * 2022-03-11 2022-06-28 江苏环峰电工材料有限公司 一种基于聚酰亚胺的导电粘合剂的制备工艺及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208835A (ja) * 1995-01-31 1996-08-13 Japan Synthetic Rubber Co Ltd ポリイミド系共重合体の製造方法、薄膜形成剤、並びに液晶配向膜およびその製造方法
JPH08231719A (ja) * 1994-10-31 1996-09-10 Korea Res Inst Of Chem Technol ポリ(イミド−アミックエステル)及びその製造方法並びにそれを用いたポリイミド、ポリイミドフィルム、ポリイミドファイバー及びそれらの製造方法
JP2000204250A (ja) * 1998-11-12 2000-07-25 Jsr Corp 液晶配向剤および液晶表示素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08231719A (ja) * 1994-10-31 1996-09-10 Korea Res Inst Of Chem Technol ポリ(イミド−アミックエステル)及びその製造方法並びにそれを用いたポリイミド、ポリイミドフィルム、ポリイミドファイバー及びそれらの製造方法
JPH08208835A (ja) * 1995-01-31 1996-08-13 Japan Synthetic Rubber Co Ltd ポリイミド系共重合体の製造方法、薄膜形成剤、並びに液晶配向膜およびその製造方法
JP2000204250A (ja) * 1998-11-12 2000-07-25 Jsr Corp 液晶配向剤および液晶表示素子

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028366A (zh) * 2015-09-18 2018-05-11 东丽株式会社 石墨烯/有机溶剂分散液及其制造方法以及锂离子电池用电极的制造方法
US10654721B2 (en) 2015-09-18 2020-05-19 Toray Industries, Inc. Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
US10763494B2 (en) 2015-09-18 2020-09-01 Toray Industries, Inc. Graphene/organic solvent dispersion and method for producing same, and method for producing lithium-ion battery electrode
US10636586B2 (en) 2015-09-18 2020-04-28 Toray Industries, Inc. Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
WO2017047523A1 (ja) * 2015-09-18 2017-03-23 東レ株式会社 グラフェン分散液およびその製造方法、グラフェン-活物質複合体粒子の製造方法ならびに電極用ペーストの製造方法
WO2017047521A1 (ja) * 2015-09-18 2017-03-23 東レ株式会社 グラフェン分散液およびその製造方法、グラフェン-活物質複合体粒子の製造方法ならびに電極ペーストの製造方法
WO2017047522A1 (ja) * 2015-09-18 2017-03-23 東レ株式会社 グラフェン/有機溶媒分散液およびその製造方法ならびにリチウムイオン電池用電極の製造方法
CN108028352B (zh) * 2015-09-18 2019-08-23 东丽株式会社 石墨烯分散液及其制造方法
CN108028352A (zh) * 2015-09-18 2018-05-11 东丽株式会社 石墨烯分散液及其制造方法、石墨烯-活性物质复合体粒子的制造方法以及电极用糊剂的制造方法
JP6152923B1 (ja) * 2015-09-18 2017-06-28 東レ株式会社 グラフェン/有機溶媒分散液およびその製造方法ならびにリチウムイオン電池用電極の製造方法
JP6152925B1 (ja) * 2015-09-18 2017-06-28 東レ株式会社 グラフェン分散液およびその製造方法、グラフェン−活物質複合体粒子の製造方法ならびに電極用ペーストの製造方法
JP6152924B1 (ja) * 2015-09-18 2017-06-28 東レ株式会社 グラフェン分散液およびその製造方法、グラフェン−活物質複合体粒子の製造方法ならびに電極ペーストの製造方法
WO2017073766A1 (ja) * 2015-10-30 2017-05-04 ユニチカ株式会社 蓄電素子電極用ポリイミド溶液、蓄電素子電極の製造方法および蓄電素子電極
JPWO2017073766A1 (ja) * 2015-10-30 2018-09-20 ユニチカ株式会社 蓄電素子電極用ポリイミド溶液、蓄電素子電極の製造方法および蓄電素子電極
CN108352500A (zh) * 2015-10-30 2018-07-31 尤尼吉可株式会社 蓄电元件电极用聚酰亚胺溶液、蓄电元件电极的制造方法和蓄电元件电极
JPWO2017094719A1 (ja) * 2015-11-30 2018-09-13 日本電気株式会社 リチウムイオン二次電池
WO2017094719A1 (ja) * 2015-11-30 2017-06-08 日本電気株式会社 リチウムイオン二次電池
US10707519B2 (en) 2015-11-30 2020-07-07 Nec Corporation Lithium ion secondary battery
US10756337B2 (en) 2015-11-30 2020-08-25 Nec Corporation Lithium ion secondary battery
WO2017110710A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 樹脂組成物
JPWO2017110710A1 (ja) * 2015-12-25 2018-10-11 東レ株式会社 樹脂組成物
WO2017141836A1 (ja) * 2016-02-16 2017-08-24 株式会社村田製作所 リチウムイオン二次電池およびその製造方法
JPWO2017141836A1 (ja) * 2016-02-16 2018-07-19 株式会社村田製作所 リチウムイオン二次電池およびその製造方法
JP2017190409A (ja) * 2016-04-14 2017-10-19 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
JP6062090B1 (ja) * 2016-04-14 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体の製造方法
JP6062091B1 (ja) * 2016-04-14 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
JP2017190408A (ja) * 2016-04-14 2017-10-19 第一工業製薬株式会社 ポリイミド水分散体の製造方法
WO2017179268A1 (ja) * 2016-04-14 2017-10-19 第一工業製薬株式会社 ポリイミド水分散体、電極用結着剤、電極、二次電池およびポリイミド水分散体の製造方法
JP5995034B1 (ja) * 2016-05-30 2016-09-21 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2017216064A (ja) * 2016-05-30 2017-12-07 Jsr株式会社 蓄電デバイス電極用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP2017190443A (ja) * 2016-07-07 2017-10-19 第一工業製薬株式会社 ポリイミド水分散体の製造方法
JP6062097B1 (ja) * 2016-07-07 2017-01-18 第一工業製薬株式会社 ポリイミド水分散体の製造方法
CN113130897A (zh) * 2020-01-14 2021-07-16 深圳市优宝新材料科技有限公司 水系粘结剂及其制备方法和应用
CN113130897B (zh) * 2020-01-14 2022-10-21 深圳市优宝新材料科技有限公司 水系粘结剂及其制备方法和应用
CN114899404A (zh) * 2022-05-27 2022-08-12 瑞固新能(上海)材料科技有限公司 一种锂电池用防开裂剂
CN115799484A (zh) * 2022-12-29 2023-03-14 北京航空航天大学 有机锂电池活性材料及其制备方法
CN116589649A (zh) * 2023-07-14 2023-08-15 宁德时代新能源科技股份有限公司 聚合物、制备方法、分散剂、正极浆料、正极极片、二次电池和用电装置
CN116589676A (zh) * 2023-07-14 2023-08-15 宁德时代新能源科技股份有限公司 聚合物、制备方法、分散剂、正极浆料、正极极片、二次电池和用电装置
CN116589676B (zh) * 2023-07-14 2023-12-22 宁德时代新能源科技股份有限公司 聚合物、制备方法、分散剂、正极浆料、正极极片、二次电池和用电装置
CN116589649B (zh) * 2023-07-14 2023-12-22 宁德时代新能源科技股份有限公司 聚合物、制备方法、分散剂、正极浆料、正极极片、二次电池和用电装置

Also Published As

Publication number Publication date
TW201531499A (zh) 2015-08-16

Similar Documents

Publication Publication Date Title
WO2015122498A1 (ja) 親水性重合体、その製造方法、バインダー、及び電極
JP4883323B2 (ja) 非水電解質二次電池負極材及びSi−O−Al複合体の製造方法、ならびに非水電解質二次電池負極及び非水電解質二次電池
JP5338676B2 (ja) 非水電解質二次電池負極材、非水電解質二次電池用負極及び非水電解質二次電池
JP4844764B2 (ja) 非水電解質二次電池負極及びそれを用いた非水電解質二次電池
JP5390336B2 (ja) 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
JP6010279B2 (ja) 非水電解質二次電池用負極活物質の製造方法
JP5272492B2 (ja) 非水電解質二次電池用負極材及びその製造方法、ならびに非水電解質二次電池用負極及び非水電解質二次電池
KR101803568B1 (ko) 비수전해질 이차 전지용 부극 활성 물질의 제조 방법 및 비수전해질 이차 전지용 부극 활성 물질 및 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극, 비수전해질 이차 전지
JP6105826B1 (ja) リチウムイオン二次電池の負極用の合材ペースト、リチウムイオン二次電池用の負極、リチウムイオン二次電池用の負極の製造方法およびリチウムイオン二次電池
KR101667125B1 (ko) 비정질 탄소 입자의 제조 방법, 비정질 탄소 입자, 리튬 이온 이차 전지용 부극 재료 및 리튬 이온 이차 전지
CN106133956A (zh) 锂离子二次电池用负极活性物质及其制造方法
KR20130135951A (ko) 폴리이미드 전구체 용액, 폴리이미드 전구체, 폴리이미드 수지, 합제 슬러리, 전극, 합제 슬러리 제조 방법, 및 전극 형성 방법
KR20130048160A (ko) 비수전해질 이차전지용 음극활물질 및 이의 제조 방법
KR102191190B1 (ko) 리튬 이온 2차전지용 부극재료, 그 제조 방법, 부극용 페이스트, 부극 시트 및 리튬 이온 2차전지
JP2015220221A (ja) リチウムイオン2次電池用負極およびその製造方法
JP2016170930A (ja) 負極活物質層及びその負極活物質層を具備する蓄電装置
TW201343840A (zh) 鋰離子二次電池用電極合劑漿料及電極、以及鋰離子二次電池
KR20160107737A (ko) 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
JP4171259B2 (ja) 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP5129066B2 (ja) リチウムイオン二次電池用負極及びその製造方法
JP4495531B2 (ja) 粒状複合炭素材料およびその製造方法、ならびにリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極およびリチウムイオン二次電池
TWI864128B (zh) 負極用活性物質層及其製造方法、蓄電裝置負極用電極合劑膏、蓄電裝置用負極、以及蓄電裝置
JP2023155344A (ja) 蓄電デバイス用ポリイミド系バインダー、電極合剤ペースト、負極活物質層、蓄電デバイス用負極シート及び蓄電デバイス
JP5444984B2 (ja) 非水電解質二次電池用負極材の製造方法及び非水電解質二次電池
JP4299608B2 (ja) 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15749015

Country of ref document: EP

Kind code of ref document: A1