[go: up one dir, main page]

WO2015046613A1 - 造水システムおよび造水方法 - Google Patents

造水システムおよび造水方法 Download PDF

Info

Publication number
WO2015046613A1
WO2015046613A1 PCT/JP2014/076217 JP2014076217W WO2015046613A1 WO 2015046613 A1 WO2015046613 A1 WO 2015046613A1 JP 2014076217 W JP2014076217 W JP 2014076217W WO 2015046613 A1 WO2015046613 A1 WO 2015046613A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
concentration
bactericidal agent
semipermeable membrane
Prior art date
Application number
PCT/JP2014/076217
Other languages
English (en)
French (fr)
Inventor
祐一 菅原
寛生 高畠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to SG11201602478WA priority Critical patent/SG11201602478WA/en
Priority to CN201480054044.0A priority patent/CN105579119B/zh
Priority to JP2014556290A priority patent/JP6447133B2/ja
Priority to US15/025,771 priority patent/US20160220964A1/en
Publication of WO2015046613A1 publication Critical patent/WO2015046613A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a fresh water generation system and a fresh water generation method in which raw water is treated water A1 and dilution water B1 having different osmotic pressures, and fresh water is obtained by a desalination technique.
  • Patent Document 2 discloses injecting a bactericide into water to be treated, dilution water, and mixed water.
  • the processing system shown in FIG. 1 of Patent Document 2 has a problem that biofouling cannot be sufficiently suppressed because there is no way to add an appropriate amount of a bactericide.
  • the present invention has been made in view of the above-mentioned problems and the like, and an object thereof is to provide a fresh water generation system and a fresh water generation method capable of suppressing biofouling of a semipermeable membrane treatment apparatus for mixed water.
  • a fresh water generation system and a fresh water generation method have any of the following configurations.
  • a first bactericidal agent addition unit that obtains water to be treated A2 by adding a bactericidal agent to the water to be treated A1; Second sterilization to obtain dilution water B2 by adding a bactericidal agent to dilution water B1 having a salt concentration lower than that of the water to be treated A1 and at least one of organic substance concentration or nutrient salt concentration being greater than the water to be treated A1.
  • Agent addition part A mixing unit that obtains mixed water by mixing dilution water B2 with the water to be treated A2.
  • XA, XB, and XM represent the following bactericidal agent amounts.
  • XA Bactericidal agent addition amount to treated water
  • A1 XB Bactericidal agent addition amount to dilution water
  • B1 XM Bactericidal agent addition amount to mixed water)
  • CA ⁇ FA + CB ⁇ FB Bactericidal agent addition amount to mixed water
  • CA ⁇ FA + CB ⁇ FB Bactericidal agent addition amount to mixed water
  • a first semipermeable membrane treatment unit for separating the mixed water into concentrated water and permeated water A fresh water generation system characterized by comprising: (2) The fresh water generation system according to (1), wherein the amount of the bactericidal agent added by the third bactericidal agent addition unit is represented by the following formula (3) or formula (4).
  • the dilution water B1 is obtained by subjecting waste water, biological treated water obtained by biological treatment of the waste water, concentrated water obtained by semi-permeable membrane treatment of the waste water, and semi-permeable membrane treatment of the biological treated water.
  • a second semipermeable membrane treatment unit that separates wastewater or second treated water E10 containing biologically treated water obtained by biologically treating wastewater into concentrated water E12 and permeated water F, The fresh water system according to (1), wherein the dilution water B1 includes concentrated water E12.
  • the second treated water E10 further includes a fourth bactericidal agent addition unit for adding a bactericidal agent U,
  • the amount of the sterilizing agent added by the third sterilizing agent adding unit is represented by the following formula (5) or formula (6), the fresh water generation system according to (4).
  • the method further comprises a sterilizing agent amount adjusting unit that adjusts the amount of the sterilizing agent added by the third sterilizing agent adding unit so as to be proportional to the water temperature of the mixed water. ) Any fresh water system.
  • the amount of the bactericide adjusted by the third bactericidal agent addition unit so as to be proportional to at least one of the water temperature of the mixed water or the recovery rate of the second semipermeable membrane treatment unit.
  • the fresh water generation system according to any one of (4) to (6), further comprising an adjustment unit.
  • the first to third fungicide adding portions add at least one fungicide selected from the group consisting of organic bromine compound fungicides, chloramines and chloramine derivatives (1) to The fresh water generation system according to any one of (8).
  • Agent addition step A mixing step of obtaining mixed water by mixing the dilution water B2 with the treated water A2.
  • XA, XB, and XM represent the following bactericidal agent amounts.
  • XA Amount of fungicide added to treated water
  • a XB Amount of fungicide added to dilution water
  • B XM Amount of fungicide added to mixed water
  • CA ⁇ FA + CB ⁇ FB Amount of fungicide added to mixed water
  • CA ⁇ FA + CB ⁇ FB Amount of fungicide added to mixed water
  • CA ⁇ FA + CB ⁇ FB Amount of fungicide added to mixed water
  • CA, CB, CM, FA, and FB represent the following.
  • a first semipermeable membrane treatment step for separating the mixed water into concentrated water and permeated water comprising: (11) A second semipermeable membrane treatment unit that generates concentrated water E12 and permeated water F from the water to be treated E10, and a fourth bactericidal agent addition unit that adds the bactericidal agent U to the water to be treated E10.
  • a second processing device which has the mixing part which mixes the said concentrated water E12 and the to-be-processed water A1, and the 1st semipermeable membrane process part which produces
  • a desalination system comprising at least The salt concentration of the concentrated water E12 is lower than the salt concentration of the treated water A1, and at least one of the organic substance concentration and the nutrient salt concentration of the concentrated water E12 is the organic substance concentration or nutrient salt of the treated water A1.
  • a fresh water generating system wherein a bactericidal agent is added so that a bactericidal load of the mixed water A3 is larger than a bactericidal load of the water to be treated E10.
  • the bactericide load has an oxidizing power represented by at least one of total chlorine and combined chlorine measured by the DPD method.
  • the disinfectant load is represented by a D value (decimal reduction time).
  • the pH of the treated water treated in the first semipermeable membrane treatment unit and the second semipermeable membrane treatment unit is 4 or less, and the bactericidal agent load is represented by a hydrogen ion concentration.
  • Fresh water generation system (15) The pH of the treated water treated in the first semipermeable membrane treatment unit and the second semipermeable membrane treatment unit is 10 or more, and the bactericide load is represented by a hydroxide ion concentration. (11) fresh water generation system. (16) The fresh water generation system according to (11), wherein the disinfectant load is represented by a reducing power that is confirmed by measuring sodium hypochlorite consumption. (17) The fresh water generation system according to (11) to (16), wherein a bactericidal agent is added to any one or more of the treated water E10, the concentrated water E12, the treated water A1, and the mixed water A3.
  • FIG. 1 is a flowchart showing a first embodiment of a fresh water generation system according to the present invention.
  • FIG. 2 is a flowchart showing a second embodiment of the fresh water generation system according to the present invention.
  • FIG. 3 is a flowchart showing a third embodiment of the fresh water generation system according to the present invention.
  • FIG. 4 is a flowchart showing a fourth embodiment of the fresh water generation system according to the present invention.
  • FIG. 5 is a flowchart showing a fifth embodiment of the fresh water generation system according to the present invention.
  • FIG. 6 is a flowchart showing a sixth embodiment of the fresh water generation system according to the present invention.
  • FIG. 7 is a flowchart showing a seventh embodiment of the fresh water generation system according to the present invention.
  • FIG. 8 is a flowchart showing an eighth embodiment of the fresh water generation system according to the present invention.
  • FIG. 1 is a flowchart showing a first embodiment of a fresh water generation system according to the present invention. The fresh water generation system according to the first embodiment will be described with reference to FIG.
  • the fresh water generation system 101 performs a semipermeable membrane treatment on the mixed water obtained by mixing the water to be treated A1 and the dilution water B1, and concentrates the permeated water C.
  • This is a fresh water generation system that separates into water D.
  • the fresh water generation system 101 includes a liquid feeding pump 21, a first semipermeable membrane processing unit 20, a first chemical liquid feeding pump (first sterilizing agent adding unit) 23, and a second chemical liquid feeding pump (second sterilizing agent). (Addition part) 22, a third medicine feeding pump (third disinfectant addition part) 24, and a mixing part 5.
  • the fresh water generation system 101 includes pipes such as flow paths 41 and 42.
  • the first semipermeable membrane processing unit 20 includes a semipermeable membrane.
  • the semipermeable membrane is a semipermeable membrane that allows some components in the solution, for example, the solvent to permeate and does not allow other components to permeate.
  • Examples of semipermeable membranes include nanofiltration (NF) membranes and reverse osmosis (RO) membranes.
  • NF membrane and the RO membrane have a performance capable of reducing the solute contained in the water to be treated to a concentration that can be used as reclaimed water.
  • An NF membrane is a filtration membrane with an operating pressure of 1.5 MPa or less, a fractional molecular weight of 200 to 1,000, and a rejection rate of sodium chloride of 90% or less, with a fractional molecular weight smaller than that and high inhibition performance. It is an RO membrane that has Also, the RO film close to the NF film is also called a loose RO film.
  • the first semipermeable membrane treatment section 20 can be applied to any shape of hollow fiber membrane or flat membrane.
  • the 1st semipermeable membrane process part 20 may be provided with the fluid separation element (element) provided with a housing
  • the semipermeable membrane can be easily handled by being incorporated in the fluid separation element.
  • the fluid separation element includes a flat membrane-like semipermeable membrane
  • the fluid separation element includes, for example, a cylindrical center pipe having a large number of holes, and a membrane unit wound around the center pipe. And a housing for housing the center pipe and the membrane unit.
  • the membrane unit is a laminate including a permeate flow channel material such as tricot, a semipermeable membrane, and a feed water flow channel material such as a plastic net.
  • the plurality of fluid separation elements may be connected in series or in parallel to form a separation membrane module.
  • supply water is supplied into the membrane unit from one end.
  • the supplied water is separated into permeated water that permeates the semipermeable membrane and concentrated water that does not permeate the semipermeable membrane before reaching the other end.
  • Permeate flows to the central pipe and is removed from the central pipe at the other end of the fluid separation element.
  • the concentrated water is taken out from the other end of the fluid separation element.
  • NF membrane and RO membrane materials polymer materials such as cellulose acetate, cellulose polymers, polyamides, and vinyl polymers can be used.
  • Typical NF and RO membranes include cellulose acetate or polyamide asymmetric membranes; and composite membranes having polyamide or polyurea active layers.
  • medical agent liquid feeding pump 23 is an example of the 1st disinfectant addition part which obtains the to-be-processed water A2 by adding the disinfectant W to the to-be-processed water A1.
  • the first drug delivery pump 23 adds the sterilizing agent W to the water to be treated A1 flowing through the flow path 41 upstream from the first semipermeable membrane treatment unit 20 and further upstream from the mixing unit 5. Be placed.
  • medical agent liquid feeding pump 22 is an example of the 2nd disinfectant addition part which obtains the dilution water B2 by adding the disinfectant V to the dilution water B1.
  • medical agent liquid feeding pump 22 is arrange
  • the flow path 42 is connected to the flow path 41 and joins the dilution water B2 to the water to be treated A2.
  • medical agent liquid feeding pump 24 is an example of the 3rd disinfectant addition part which adds disinfectant X to the mixed water obtained by mixing to-be-processed water A2 and dilution water B2.
  • the third drug delivery pump 24 is arranged to add the sterilizing agent X to the fluid flowing through the flow path 41 downstream from the mixing unit 5.
  • the amount of the bactericidal agent added to the mixed water by the third drug delivery pump 24 is set so as to satisfy the following formula (1) or formula (2).
  • (XA + XB) ⁇ XM (1)
  • XA Bactericidal agent addition amount to treated water
  • A1 Bactericidal agent addition amount to dilution water
  • B1 Bactericidal agent addition amount to mixed water.
  • XA, XB, XM, FA, and FB represent the following.
  • CA Disinfectant concentration in treated water
  • CB Disinfectant concentration in diluted water
  • B2 CM Disinfectant concentration in mixed water after adding disinfectant to mixed water
  • FA Treated water
  • FB Diluted water B1 Flow rate
  • the bactericidal agent concentration is the added bactericidal concentration per unit time and per unit volume, and in the case of intermittent injection, it is calculated as the added bactericidal agent concentration per unit volume per average unit time.
  • the added bactericidal concentration per unit volume per unit time is, for example, mg / hr / m 3 , and when 24 mg is added to 1 m 3 / hr running water once a day for 1 hour, 1 mg / hr / M 3 is calculated.
  • the bactericidal agent to be added is not particularly limited, and examples thereof include a chlorine-based bactericidal agent and a bromine-based bactericidal agent.
  • chloramine derivatives such as DBNPA (2,2-dibromo-3-nitrilopropionamide), chloramine, and chloramine t (N-chloro-p-toluenesulfonamide, sodium salt), which are organic bromine compound fungicides, are preferable.
  • the to-be-processed water A1 or the dilution water B1 is clean and it is not necessary to add a disinfectant, it is not necessary to add.
  • the water to be treated A1 is clean seawater and contains almost no nutrient salt or organic matter, it may not be necessary to add a bactericidal agent because bacteria do not grow even if bacteria are present.
  • the mixed water A3 is likely to generate biofouling as described above, it is necessary to add a disinfectant to the mixed water.
  • the fungicide in proportion to the growth rate of the bacteria. Therefore, for example, it is desirable to increase the addition amount as the temperature of the water to be added increases, and the addition amount may be determined in proportion to the water temperature. That is, the fresh water generation system 101 is disposed in the flow paths 41 and 42 and the like. Based on the thermometer that measures the water temperature in the flow path and the measurement result of the thermometer, each of the disinfectants W, V, and X An addition amount determination unit that determines the addition amount and an addition amount control unit that controls the first to third drug delivery pumps based on the determination of the addition amount determination unit may be provided. These configurations are collectively referred to as a sterilization amount adjusting unit.
  • the addition amount of the bactericidal agent in the third drug delivery pump 24 is preferably determined so as to be proportional to the water temperature of the mixed water A3 while being based on the above formulas (1) and (2).
  • the mixing unit 5 is realized by connecting the flow channel 41 and the flow channel 42.
  • the liquid feeding pump 21 plays the role which sends to the 1st semi-permeable membrane process part 20, after adding a disinfectant to mixed water A3.
  • the liquid delivery pump 21 is disposed on the flow path 41, particularly downstream of the third drug delivery pump 24 and upstream of the first semipermeable membrane treatment unit 20.
  • Dilution water B1 has a lower salt concentration than water to be treated A1. That is, the osmotic pressure of the dilution water B1 is lower than the osmotic pressure of the water to be treated A1.
  • the osmotic pressure of the water to be treated A1 to be treated can be reduced, and the power required for the filtration in the first semipermeable membrane treatment unit 20 can be reduced.
  • any water can be applied as long as the osmotic pressure is in the relation as described above.
  • salt water is particularly suitable if it is any of surface water (lakes, ponds, rivers, etc.), ground water, waste water, waste water biologically treated water, semi-permeable membrane treated concentrated water thereof, or a mixed water thereof. This is desirable because the concentration is low.
  • the salt concentration of the dilution water B1 is 10000 mg / L or less, preferably 5000 mg / L or less, more preferably 3000 mg / L or less in TDS (Total Dissolved Solids).
  • the to-be-processed water A1 should just have a salt concentration higher than dilution water B1, for example, seawater, brackish water, waste water, etc. are mentioned.
  • the salt concentration of the water to be treated A1 is 25000 mg / L or more in TDS, and 35000 to 50000 mg / L in seawater.
  • dilution water B1 is water whose organic substance density
  • concentration is larger than to-be-processed water A1 rather than to-be-processed water A1.
  • the organic substance concentration is measured by TOC (Total Organic Carbon) or the like, and the dilution water B1 is 6 mg / L or more and the treated water A1 is 5 mg / L or less.
  • Nutrient concentration is measured by TN (Total Nitrogen), TP (Total Phosphorus), etc.
  • TP 1 mg / L or more
  • TP 0.5 mg / L or less.
  • phosphorus is often low, and this distilling system is particularly effective when the TP is higher than the water to be treated A1, such as the biologically treated water or its semipermeable membrane treated concentrated water.
  • the relationship between the concentrations of these salts, organic substances and nutrient salts is maintained even after the addition of the above-mentioned fungicides. That is, the relationship between the concentration of the for-treatment water and the dilution water immediately before mixing (that is, the relationship between the concentration of the for-treatment water A2 and the dilution water B2) satisfies these relationships.
  • the fresh water generation method by the structure demonstrated above is as follows.
  • the water to be treated A1 flows through the flow path 41 toward the first semipermeable membrane treatment unit 20.
  • To-be-processed water A2 is obtained by adding the bactericidal agent W to the to-be-processed water A1 in the flow path 41 by the 1st chemical
  • FIG. On the other hand, the bactericidal agent V is added to the dilution water B ⁇ b> 1 passing through the flow path 42 by the second drug delivery pump 22. In this way, dilution water B2 containing a bactericidal agent is obtained.
  • the water to be treated A2 and the dilution water B2 are mixed by the dilution water B2 flowing through the flow path 42 and the water to be treated A2 flowing through the flow path 41 at the connection point between the flow path 41 and the flow path 42.
  • the mixed water A3 obtained by mixing flows through the flow path 41 and further toward the first semipermeable membrane processing unit 20.
  • the sterilizing agent X is added to the mixed water A3 by the third chemical feeding pump 24. Thereafter, the mixed water A3 to which the sterilizing agent X is added is separated into the permeated water C and the concentrated water D by the first semipermeable membrane treatment unit 20.
  • medical agent liquid pump 22 add a disinfectant to the to-be-processed water A1 and dilution water B1 in a flow path, respectively, and flow path downstream from each addition position.
  • the occurrence of biofouling on the wall can be suppressed.
  • the third drug delivery pump 24 adds a bactericidal agent to the mixed water A3, so that the biofouling in the wall of the flow path downstream from the addition position of the bactericidal agent and the first semipermeable membrane treatment unit 20 is performed. Can be suppressed.
  • the inventors of the present invention have proposed that a new fouling is more likely to occur when a reverse osmosis membrane treatment is performed by mixing dilution water with high salt concentration water than when only high salt concentration water or only dilution water is subjected to membrane treatment. I found some knowledge.
  • the biofilm-forming carrier is exposed to a continuous flow of high-salt water, dilution water, or mixed water for a certain period of time to increase the amount of ATP attached to the surface of the carrier. When the speed was measured, they were 20, 150 and 400 pg / cm 2 / day, respectively.
  • Such water combinations include biologically treated water of seawater and wastewater or its semipermeable membrane concentrate, semipermeable membrane concentrated water and groundwater of wastewater biological water, seawater and surface water or its semipermeable membrane concentrated water, etc. There is.
  • biofouling can be effectively suppressed by setting the addition amount by the third drug delivery pump 24 as described above.
  • FIG. 2 is a flowchart showing a second embodiment of the fresh water generation system according to the present invention, and the fresh water generation system according to the second embodiment will be described with reference to FIG.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the fresh water generation system 102 includes a salt water treatment device 2 having the same configuration as the fresh water generation system 101 of the first embodiment, and a low salt concentration waste water treatment device 3.
  • the low salt concentration wastewater treatment apparatus 3 can obtain dilution water containing biologically treated water.
  • Biologically treated water is water in which contaminants in sewage are biologically oxidized or reduced by bacteria and stabilized.
  • sewage treated with activated sludge treatment or membrane bioreactor (MBR) Is mentioned.
  • the low-salt concentration wastewater treatment apparatus 3 includes a wastewater treatment unit 30 that treats other treated water E1 (hereinafter referred to as “wastewater E1” in order to distinguish it from the treated water A1), flow rate adjusting units 31 and 32, And flow paths 33 and 34.
  • sewage is used as the wastewater E1.
  • the wastewater treatment unit 30 is not limited to a specific configuration, but is an activated sludge treatment facility, a two-stage treatment facility with activated sludge treatment and microfiltration (MF) or ultrafiltration (UF) membrane, activated sludge treatment.
  • a two-stage treatment facility such as sand filtration or MBR facility can be used.
  • an oxidant such as a flocculant, a pH adjuster, or sodium hypochlorite may be added to the wastewater E1 upstream of the wastewater treatment unit 30. Absent.
  • the membrane or filter to be used is not particularly limited, and a flat membrane, a hollow fiber membrane, a tubular type membrane, a thread filter, a cloth filter, a metal firing, A binding filter or any other shape can be used as appropriate.
  • the material of the membrane or filter is not particularly limited, but is selected from the group consisting of inorganic materials such as polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, and ceramics. It is preferable to contain at least one selected from the above.
  • the wastewater treatment unit 30 removes substances that cause fouling of the semipermeable membrane such as turbidity and impurities from the wastewater E1. Thereby, it becomes possible to extend the cleaning interval and the life of the first semipermeable membrane processing unit 20.
  • the water thus obtained is referred to as biologically treated water E2.
  • the flow rate adjusting unit 31 is disposed downstream of the waste water treatment unit 30 on the flow path 33.
  • the flow rate adjusting unit 31 can adjust the amount of the biologically treated water E ⁇ b> 2 that goes to the salt water treatment apparatus 2.
  • the flow rate adjustment unit 32 is disposed on the flow path 34 that is a bypass line, and adjusts the amount of waste water E1 that goes to the salt water treatment device 2 without passing through the waste water treatment unit 30.
  • the flow rate adjusting units 31 and 32 can be realized by a gate valve, a globe valve, a ball valve, a butterfly valve or the like as the flow rate adjusting unit.
  • the flow rate can also be adjusted by inverter control of the liquid feed pump.
  • the flow path 33 sends the wastewater E1 to the wastewater treatment unit 30 and continues from the wastewater treatment unit 30 to the saltwater treatment device 2.
  • the flow path 34 branches from the flow path 33 upstream from the wastewater treatment unit 30 and is connected to the flow path 33 downstream from the flow rate adjustment unit 31. That is, the flow path 34 functions as a bypass line that causes some wastewater E1 to bypass the wastewater treatment unit 30 and merge with the biologically treated water E2.
  • Waste water E1 and biologically treated water E2 are mixed by connecting the flow paths 33 and 34 to each other.
  • the mixed water obtained in this way merges with the above-mentioned flow path 41 through the flow path 42 as dilution water B1.
  • only the wastewater E1 may be supplied to the salt water treatment apparatus 2 as the dilution water B1 by the flow rate adjusting units 31 and 32, or only the biologically treated water E2 may be supplied, or the wastewater E1 and the biologically treated water may be supplied.
  • Mixed water with water E2 may be supplied.
  • the dilution water B1 is thus obtained by mixing the biologically treated water E2 and the wastewater E1 treated by the wastewater treatment unit 30. Further, the mixing ratio of the biologically treated water E2 and the wastewater E1 contained in the dilution water B1, the salt concentration, and the total amount of water obtained by mixing can be adjusted by the flow rate adjusting units 31 and 32.
  • the dilution water B1 that is, the low salt concentration water contains biologically treated water
  • the dilution water B1 contains a lot of nutrient salts, so that the treatment water A1 (treatment water A2) and the dilution water B1 (dilution water B2) are mixed. After that, fouling is likely to occur as described above.
  • the biofouling is effectively suppressed by adding a bactericidal agent by the third drug delivery pump 24.
  • FIG. 3 is a flowchart showing a third embodiment of the fresh water generation system according to the present invention, and the fresh water generation system according to the third embodiment will be described with reference to FIG. 3.
  • the same components as those described in the first or second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the fresh water generation system 103 includes a salt water treatment device 200 and a low salt concentration wastewater treatment device 300 that performs a semipermeable membrane treatment on the second treated water E10.
  • the low salt concentration wastewater treatment apparatus 300 is an apparatus that obtains the dilution water B1 from the second treated water E10.
  • the low salt concentration wastewater treatment apparatus 300 includes a second semipermeable membrane treatment unit 301, flow rate adjustment units 302 and 303, a pump 304, a fourth chemical feed pump (fourth bactericidal agent addition unit) 305, a flow. Paths 306, 307, 308 and 309 are provided.
  • waste water E10 waste water E1, biological treated water E2, or mixed water of waste water E1 and biological treated water E2 is used.
  • the waste water treatment unit 30 may be provided in the flow channel 306 upstream of the branch point of the flow channel 309 from the flow channel 306.
  • the second semipermeable membrane treatment unit 301 separates the second treated water E10 supplied through the flow path 306 into the concentrated water E12 and the permeated water F.
  • the second semipermeable membrane processing section 301 the same configuration as that of the first semipermeable membrane processing section 20 is adopted.
  • the concentrated water E12 is sent to the salt water treatment apparatus 200 through the flow path 308.
  • the permeated water F is sent to another process by the flow path 307 or is sent outside the system.
  • the flow rate adjusting units 302 and 303 are disposed on the flow paths 306 and 309, respectively, and adjust the flow rate of the second treated water E10 flowing through the flow paths.
  • the flow rate adjusting units 302 and 303 adjust the mixing ratio of the concentrated water E12 and the second treated water E10 in the dilution water B1.
  • the same configuration as the flow rate adjusting units 31 and 32 can be used.
  • the pump 304 is disposed on the flow path 306 and supplies the second treated water E10 to the second semipermeable membrane treatment unit 301.
  • the pump 304 is disposed downstream of the addition position of the sterilizing agent U and upstream of the second semipermeable membrane processing unit 301.
  • the fourth chemical feed pump 305 adds the sterilizing agent U upstream of the second semipermeable membrane treatment unit 301 to the second treated water E10 in the flow path 306.
  • the type and the like of the bactericidal agent U are the same as those of the other bactericidal agents described in the first embodiment.
  • the flow path 306 supplies the second treated water E10 to the second semipermeable membrane treatment unit 301.
  • the permeated water F and the concentrated water E12 obtained by the second semipermeable membrane treatment unit 301 flow, respectively.
  • a flow path 309 that is a bypass line branches from the flow path 306 upstream of the flow rate adjustment unit 302 and is connected to the flow path 308.
  • the sterilizing agent U is added to a part of the second treated water E10, and the second treated water E10 containing the sterilizing agent U is sent to the second semipermeable membrane treatment unit 301.
  • the concentrated water E12 obtained in the second semipermeable membrane treatment unit 301 is sent to the salt water treatment apparatus 200 through the flow path 308 and used as the dilution water B1.
  • the mixing ratio of the concentrated water E12 and the second treated water E10 in the dilution water B1 can be changed by the flow rate adjusting units 302 and 303.
  • the salt concentration of the concentrated water E12 obtained by the second semipermeable membrane treatment unit 301 is lower than the water to be treated A1
  • only the concentrated water E12 may be supplied to the salt water treatment apparatus 200 as the diluted water B1.
  • the salt concentration of the concentrated water E12 is higher than the treated water A1, or the amount of the second treated water E10 exceeds the treatment capacity of the second semipermeable membrane treatment unit 301, and the second treated water E10 is surplus.
  • the mixed water of the concentrated water E12 and the second treated water E10 may be supplied to the salt water treatment apparatus 200 as the dilution water B1. Further, only the second treated water E10 may be supplied to the salt water treatment apparatus 200 as the dilution water B1.
  • the apparatus which carries out the UF process or the sand filtration of the 2nd to-be-processed water E10 may be further provided.
  • These UF processing devices or sand filtration devices can be arranged upstream of the branch point of the flow channel 309 in the flow channel 306, for example.
  • the salt water treatment apparatus 200 includes the configuration of the salt water treatment apparatus 2, a pretreatment unit 25, a water tank 26 to be treated, a dilution water tank 27, and a mixing tank 28.
  • the pretreatment section 25, the water tank 26 to be treated, the mixing tank 28, the liquid feed pump 21, and the first semipermeable membrane treatment section 20 are connected in this order by a flow path 41.
  • the pretreatment unit 25 is a device that performs UF treatment or sand filtration on the water to be treated A1.
  • medical agent liquid feeding pump 23 adds the disinfectant W to the to-be-processed water A1 in the upstream of the pre-processing part 25 in the flow path 41.
  • the treated water tank 26 stores the treated water A2.
  • a flow path 41 and a flow path 42 are connected to the mixing tank 28, and the water to be treated A2 and the dilution water B2 are mixed in the mixing tank 28.
  • the mixing unit may be formed only by piping as in the first embodiment and the second embodiment. However, the flow rate can be further stabilized by the mixing tank 28.
  • the dilution water tank 27 is disposed in the flow path 42 downstream of the addition position of the bactericidal agent V by the second drug delivery pump 22 and upstream of the mixing tank 28.
  • the dilution water tank 27 stores the dilution water B2, that is, the second treated water E10, the concentrated water E12, or the mixed water of the second treated water E10 and the concentrated water E12 sent from the low salt concentration wastewater treatment apparatus 300. Is done.
  • the water stored in the dilution water tank 27 includes the bactericidal agent added by the second drug delivery pump 22.
  • the bactericidal agent U added by the fourth chemical feed pump 305 remains in the concentrated water E12.
  • the concentrated water E12 nutrient salts and bacteria are also concentrated. Therefore, it is preferable to further add a bactericidal agent to the mixed water of the water to be treated A2 and the dilution water B2.
  • CA Disinfectant concentration in treated water
  • A2 CB Disinfectant concentration in diluted water
  • B2 C2 Disinfectant concentration in second treated water E10 after addition of disinfectant to second treated water
  • CM Mixed water Disinfectant concentration FA in the mixed water after addition of the disinfectant
  • A1 flow rate FB dilution water
  • B1 flow rate F2 represents the flow rate of the second treated water E10.
  • the concentration of nutrient salts and bacteria contained in the concentrated water E12 obtained in the second semipermeable membrane treatment unit 301 increases as the recovery rate of the semipermeable membrane treatment unit increases. It is desirable to increase the amount added.
  • the fresh water generation system 103 is proportional to the amount of the bactericidal agent X added by the third drug delivery pump 24 in accordance with the water temperature of the mixed water A3 and / or the recovery rate of the second semipermeable membrane treatment unit 301. You may further provide the bactericide adjustment part adjusted so that it may do.
  • the recovery rate of the second semipermeable membrane treatment unit 301 is expressed by (volume of permeated water F / amount of second treated water E10 supplied to the second semipermeable membrane treatment unit 301). As described above, bacteria are more likely to grow as the temperature of the water to which the bactericide is added increases. In addition, the higher the recovery rate of the second semipermeable membrane treatment unit 301, the higher the organic substance concentration or the nutrient salt concentration.
  • FIG. 4 is a flowchart which shows 4th Embodiment of the fresh water generation system which concerns on this invention, and demonstrates the fresh water generation system which concerns on 4th Embodiment with reference to FIG.
  • the same components as those described in the first embodiment, the second embodiment, or the third embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the bactericidal agent U added by the fourth drug delivery pump 305 is consumed by the second semipermeable membrane processing unit 301. If the bactericidal agent U does not permeate the semipermeable membrane, it depends on the recovery rate of the semipermeable membrane treatment. And concentrated.
  • the sterilizing agent load of the mixed water supplied to the first semipermeable membrane treating unit 20 is larger than the sterilizing agent load of the second treated water E10 supplied to the second semipermeable membrane treating unit 301.
  • the bactericidal agent load can be measured by a measuring method according to the bactericidal agent.
  • the sterilizing agent is an oxidizing sterilizing agent such as a chlorine-based sterilizing agent or a bromine-based sterilizing agent
  • the oxidizing power can be measured by at least one of combined chlorine conversion or total chlorine conversion by the DPD method.
  • a disinfectant is an acid or an alkali
  • it can measure with a pH meter.
  • the bactericidal agent is a reducing agent, it can be measured indirectly by simply measuring the ORP, but since the ORP depends on the pH, it can be detected by the DPD method when measuring more accurately.
  • the sodium hypochlorite is titrated until the content of the reducing agent can be known from the titration amount.
  • FIG. 5 is a flowchart which shows 5th Embodiment of the fresh water generation system which concerns on this invention, and demonstrates the fresh water generation system which concerns on 5th Embodiment with reference to FIG.
  • the same components as those described in the first embodiment, the second embodiment, the third embodiment, or the fourth embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the disinfectant U added by the fourth drug delivery pump 305 is consumed by the second semipermeable membrane processing unit or permeated through the semipermeable membrane, so that sufficient disinfectant reaches the first semipermeable membrane processing unit. If not, it is desirable to add a disinfectant.
  • the disinfectant V is added by the pump 22.
  • the sterilizing agent load has a higher sterilizing agent concentration.
  • each disinfectant type is different, for example, when the disinfectant U is an oxidizing disinfectant and the disinfectant V is an acidic disinfectant, the disinfectant of the first semipermeable membrane treatment part and the second semipermeable membrane treatment part.
  • a D value decimal reduction time
  • FIG. 6 is a flowchart which shows 6th Embodiment of the fresh water generation system which concerns on this invention, and demonstrates the fresh water generation system which concerns on 6th Embodiment with reference to FIG.
  • the same components as those described in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, or the fifth embodiment are denoted by the same reference numerals, and the description thereof will be given. Omitted.
  • the sterilizing agent X is added to the mixed water by the third chemical feeding pump 24.
  • Some bactericides such as sodium hypochlorite are consumed by organic substances, and it may be desirable to add a bactericidal agent at a position closer to the semipermeable membrane, and it is desirable to use this embodiment.
  • FIG. 7 is a flowchart which shows 7th Embodiment of the fresh water generation system which concerns on this invention, and demonstrates the fresh water generation system which concerns on 7th Embodiment with reference to FIG.
  • the same components as those described in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, or the sixth embodiment are denoted by the same reference numerals. The description is omitted.
  • the sterilizing agent V is added by the pump 22 and the sterilizing agent X is added by the third medicine feeding pump 24.
  • the type and timing of addition of the sterilizing agent can be changed. For example, when an acidic disinfectant and an oxidizing disinfectant are used in combination, it is possible to disinfect both microorganisms that are weak against acids and microorganisms that are weak against oxidizing agents, which is effective in suppressing biofouling. Further, when an oxidizing bactericide and a reducing bactericide are used in combination, they react when mixed, and the effect disappears. Therefore, it is necessary to add them at different timings, and this embodiment is appropriate.
  • FIG. 8 is a flowchart which shows 8th Embodiment of the fresh water generation system which concerns on this invention, and demonstrates the fresh water generation system which concerns on 8th Embodiment with reference to FIG.
  • the same components as those described in the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, the fifth embodiment, the sixth embodiment, or the seventh embodiment are included.
  • the same reference numerals are given and description thereof is omitted.
  • the treated water A1 is not clean and biofouling occurs in the flow path 41 or the treated water tank 26, it is desirable to add a bactericidal agent, and the eighth embodiment can be used.
  • DPD measurement method A sample was sampled from the disinfectant addition part and upstream from the pretreatment part or the membrane module and from the flow path 42, and immediately measured with a waterside maker Posiden DPD residual salt checker (CRP-1000). .
  • the brackish water 550m 3 / d is taken, treated with the pre-treatment unit 25 (Tofu HFU-2020 4 module / Train ⁇ 2 Trains), mixed with concentrated water 1: 1, and the first semipermeable membrane treatment unit 20 (Toray TM840C-160 1st bank 6 elements / Vessel ⁇ 1 Vessel, TM820E-400 2nd bank 6 elements / Vessel ⁇ 3 Vessel) Recovery rate was 50% .
  • the disinfectant was the second semipermeable membrane treatment part 301, the first semipermeable membrane.
  • DBNPA Pul made by Nalco
  • Clean PC-11 was added.
  • FA 550m 3 / hr
  • FB 560m 3 / hr
  • F2 1400m 3 / hr.
  • Example 1 (use seawater) DBNPA was added to the second semipermeable membrane treatment section 301 by a fourth drug delivery pump 305 for 1 hour / day, corresponding to 10 mg / L, and measured with a DPD measurement residual salt checker.
  • DBNPA was added for 1 hour / day corresponding to 1 mg / L by the second chemical liquid feeding pump 22 so as to be mixed with the chemical of the fourth chemical liquid feeding pump, and the concentrated water E12 was measured by the DPD measurement residual salt checker.
  • the DBNPA is added to the water to be treated A1 with the first chemical delivery pump 23 for 1 hour / day so as to be mixed with the medicine of the fourth chemical delivery pump with the mixed water A3.
  • the second semipermeable membrane treatment unit 301 and the first semipermeable membrane treatment unit 20 were able to operate for 5 months without chemical washing (DP (water flow differential pressure) of the first semipermeable membrane treatment unit 20 was 150). ⁇ 170 kPa).
  • the pretreatment unit 25 was also able to operate well.
  • Formula (6) (CA ⁇ FA + CB ⁇ FB + C2 ⁇ F2) / (FA + FB + F2) ⁇ CM is satisfied.
  • Example 2 (use seawater) DBNPA was added to the second semipermeable membrane treatment section 301 with a fourth drug delivery pump 305 for 1 hour / day, corresponding to 10 mg / L, and measured with a DPD measurement residual salt checker.
  • (X2 ) 10 mg / L L.
  • DBNPA was added for 1 hour / day corresponding to 1 mg / L by the second chemical liquid feeding pump 22 so as to be mixed with the chemical of the fourth chemical liquid feeding pump, and the concentrated water E12 was measured by the DPD measurement residual salt checker.
  • DBNPA was added for 1 hour / day, corresponding to 15 mg / L, using a liquid pump.
  • XM bound chlorine
  • the second semipermeable membrane treatment unit 301 and the first semipermeable membrane treatment unit 20 were able to operate for 5 months without chemical washing (DP (water flow differential pressure) of the first semipermeable membrane treatment unit 20 was 150). ⁇ 180 kPa).
  • DP water flow differential pressure
  • Formula (6) (CA ⁇ FA + CB ⁇ FB + C2 ⁇ F2) / (FA + FB + F2) ⁇ CM is satisfied.
  • Example 3 (using brine) DBNPA was added to the second semipermeable membrane treatment section 301 with a fourth drug delivery pump 305 for 1 hour / day, corresponding to 10 mg / L, and measured with a DPD measurement residual salt checker.
  • (X2 ) 10 mg / L L.
  • DBNPA was added for 1 hour / day corresponding to 1 mg / L by the second chemical liquid feeding pump 22 so as to be mixed with the chemical of the fourth chemical liquid feeding pump, and the concentrated water E12 was measured by the DPD measurement residual salt checker.
  • the DBNPA is added to the water to be treated A1 with the first chemical delivery pump 23 for 1 hour / day so as to be mixed with the medicine of the fourth chemical delivery pump with the mixed water A3.
  • the second semipermeable membrane treatment unit 301 and the first semipermeable membrane treatment unit 20 were able to operate for 5 months without chemical washing (DP (water flow differential pressure) of the first semipermeable membrane treatment unit 20 was 150). ⁇ 170 kPa).
  • the pretreatment unit 25 was also able to operate well.
  • Formula (6) (CA ⁇ FA + CB ⁇ FB + C2 ⁇ F2) / (FA + FB + F2) ⁇ CM is satisfied.
  • Comparative example 1 (use seawater) DBNPA was added to the second semipermeable membrane treatment section 301 with a fourth drug delivery pump 305 for 1 hour / day, corresponding to 10 mg / L, and measured with a DPD measurement residual salt checker.
  • DBNPA was added for 1 hour / day corresponding to 1 mg / L by the second chemical liquid feeding pump 22 so as to be mixed with the chemical of the fourth chemical liquid feeding pump, and the concentrated water E12 was measured by the DPD measurement residual salt checker.
  • the DBNPA is added to the water to be treated A1 with the first chemical delivery pump 23 for 1 hour / day so as to be mixed with the medicine of the fourth chemical delivery pump with the mixed water A3.
  • the second semipermeable membrane treatment unit 301 was able to operate for 5 months without chemical washing, but the first semipermeable membrane treatment unit 20 had a DP (water differential pressure) of 150 ⁇ 200 kPa in 2 weeks, Washing was necessary.
  • DP water differential pressure
  • Formula (6) (CA ⁇ FA + CB ⁇ FB + C2 ⁇ F2) / (FA + FB + F2) ⁇ CM is not satisfied.
  • Equipment that can produce fresh water that is energy-saving and efficient and can be used in industrial water production fields such as water purification in the waterworks, industrial water, food, medical process water, and semiconductor-related cleaning water. Can be used as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

 造水システムにおいて、造水に必要なエネルギーを減らすために水質の異なる被処理水を混合することで、増長するバイオファウリングを抑制するための殺菌剤の添加方法を提供する。 被処理水(A1)に、殺菌剤を添加することで被処理水(A2)を得る第1殺菌剤添加部と、被処理水(A1)よりも塩濃度が低く、かつ有機物濃度または栄養塩濃度の少なくとも一方が被処理水(A1)より大きい希釈水(B1)に殺菌剤を添加することで、希釈水(B2)を得る第2殺菌剤添加部と、被処理水(A2)に、希釈水(B2)を混合することで混合水を得る混合部と、混合水に、(XA+XB)<XMの式で示される量の殺菌剤を添加する第3殺菌剤添加部と(XA:被処理水A2中の殺菌剤濃度、XB:希釈水B2中の殺菌剤濃度、XM:混合水へ殺菌剤添加後の混合水中の殺菌剤濃度)、混合水を濃縮水と透過水とに分離する第1半透膜処理部と、を備える造水システム。

Description

造水システムおよび造水方法
 本発明は、浸透圧が異なる被処理水A1と希釈水B1とを原水とし、淡水化技術により淡水を得る造水システムおよび造水方法に関するものである。
 近年、水の不足している地域において、高塩濃度水から利用可能な水を造水する際に、逆浸透膜による造水が実施されている。例えば、逆浸透膜での2段処理であって、2段目の逆浸透膜モジュールの濃縮水(塩類や不純物が濃縮された水)を1段目の供給水に返送するシステムにおいて、濃縮水の返送経路に吸着樹脂塔を備えることにより、2段の逆浸透膜により透過水の水質を向上させるとともに、1段目の逆浸透膜モジュールの供給水の溶質濃度の上昇を抑制する方法が開示されている(例えば特許文献1)。
 また、水処理技術において、更なる省エネを達成するために、下水や工業廃水等の廃水を半透膜処理して排出される濃縮水を、高塩濃度水へ混合して造水することが提案されている(例えば特許文献2)。
日本国特開2008-55317号公報 国際公開第2011/021415号
 特許文献1の逆浸透膜による造水では、塩濃度が高く、造水に必要なエネルギーが大きく、経済的ではない。
 さらに、本発明者らは、高塩濃度水に希釈水を混合し逆浸透膜処理した場合、高塩濃度水のみ、または、希釈水のみを膜処理した場合よりもバイオファウリングが発生しやすいという新たな知見を見いだした。バイオフィルム形成速度を定量的に測定するため、バイオフィルム形成担体を高塩濃度水、希釈水、混合水(高塩濃度水:希釈水=1:1)に曝露させ、担体表面に付着するATP量の増加速度を測定したところ、それぞれ、20,150,400pg/cm/dayとなった。混合水では高塩濃度水と希釈水の平均値85pg/cm/dayが期待されたが、それを大きく上回った。その理由としては、一方の水、例えば高塩濃度水に栄養塩が不足しておりバクテリアが飢餓状態であり、もう一方の水、例えば低塩濃度水に栄養塩が過剰に含まれている場合、混合することで飢餓状態であった高塩濃度水のバクテリアが増殖するためであることが考えられる。特に低塩濃度水が生物処理水の場合、栄養塩が多く含まれるために上記現象が顕著となる傾向になる。
 特許文献2において、被処理水、希釈水、混合水へ殺菌剤を注入することが開示されている。しかしながら、特許文献2の図1に示した処理システムでは、適当量の殺菌剤を添加する術がないため十分にバイオファウリングを抑制することができない、という課題があった。
 本発明は、上記課題等に鑑み、混合水の半透膜処理装置のバイオファウリングを抑制することができる造水システムおよび造水方法を提供することを目的とする。
 上記目的を達成するために、本発明における造水システムおよび造水方法は、以下の構成のいずれかからなる。
(1)被処理水A1に、殺菌剤を添加することで被処理水A2を得る第1殺菌剤添加部と、
 前記被処理水A1よりも塩濃度が低く、かつ有機物濃度または栄養塩濃度の少なくとも一方が前記被処理水A1より大きい希釈水B1に殺菌剤を添加することで、希釈水B2を得る第2殺菌剤添加部と、
 前記被処理水A2に、希釈水B2を混合することで混合水を得る混合部と、
 前記混合水に、以下の式(1)または式(2)で示される量の殺菌剤を添加する第3殺菌剤添加部と、
   (XA+XB)≦XM    ・・・(1)
 (式(1)において、XA,XB,XMは、以下の殺菌剤量を表す。
  XA: 被処理水A1への殺菌剤量添加量
  XB: 希釈水B1への殺菌剤量添加量
  XM: 混合水への殺菌剤添加量)
   (CA×FA+CB×FB)/(FA+FB)<CM    ・・・(2)
 (式(2)において、CA,CB,CM,FA,FBは、以下を表す。
  CA: 被処理水A2中の殺菌剤濃度
  CB: 希釈水B2中の殺菌剤濃度
  CM: 混合水へ殺菌剤添加後への混合水中の殺菌剤濃度
  FA: 被処理水A1流量
  FB: 希釈水B1流量)
 前記混合水を濃縮水と透過水とに分離する第1半透膜処理部と、
を備えることを特徴とする造水システム。
(2)前記第3殺菌剤添加部が添加する殺菌剤の量が、以下の式(3)または式(4)で示されることを特徴とする(1)の造水システム。
   (XA+XB)≦XM≦10(XA+XB)    ・・・(3)
   (CA×FA+CB×FB)/(FA+FB)<CM<10(CA×FA+CB×FB)    ・・・(4)
(3)前記希釈水B1が、廃水、前記廃水を生物処理して得られる生物処理水、前記廃水を半透膜処理して得られる濃縮水、および前記生物処理水を半透膜処理して得られる濃縮水のうち、少なくとも1種を含むことを特徴とする(1)または(2)の造水システム。
(4)廃水または廃水を生物処理して得られる生物処理水を含む第2被処理水E10を濃縮水E12と透過水Fとに分離する第2の半透膜処理部をさらに備え、
 前記希釈水B1が、濃縮水E12を含むことを特徴とする
(1)の造水システム。
(5)前記第2被処理水E10に、殺菌剤Uを添加する第4殺菌剤添加部をさらに備え、
 前記第3殺菌剤添加部が添加する殺菌剤の量が以下の式(5)または式(6)で示されることを特徴とする(4)の造水システム。
  (XA+XB+X2)≦XM  ・・・(5)
 (式(5)において、X2は第2被処理水E10への殺菌剤添加量を表す。)
  (CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CM  ・・・(6)
 (式(6)において、C2は第2被処理水E10へ殺菌剤添加後の第2被処理水E10中の殺菌剤濃度、F2は第2被処理水E10の流量を表す。)
(6)前記第3殺菌剤添加部が添加する殺菌剤の量が以下の式(7)または式(8)で示されることを特徴とする(5)の造水システム。
  (XA+XB+X2)≦XM≦10(XA+XB+X2)   ・・・(7)
  (CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CM<10(CA×FA+CB×FB+C2×F2)  ・・・(8)
(7)前記第3殺菌剤添加部が添加する殺菌剤の量を、前記混合水の水温に比例するように調整する殺菌剤量調整部を更に備えることを特徴とする(1)~(6)のいずれかの造水システム。
(8)前記第3殺菌剤添加部が添加する殺菌剤の量を、前記混合水の水温または前記第2の半透膜処理部の回収率の少なくとも一方に比例するように調整する殺菌剤量調整部を更に備えることを特徴とする(4)~(6)のいずれかの造水システム。
(9)前記第1-第3殺菌剤添加部が、有機臭素化合物殺菌剤、クロラミンおよびクロラミン誘導体からなる群より選択される少なくとも1種の殺菌剤を添加することを特徴とする(1)~(8)のいずれかの造水システム。
(10)被処理水A1に、殺菌剤を添加することで被処理水A2を得る第1殺菌剤添加ステップと、
 前記被処理水A1よりも塩濃度が低く、かつ有機物濃度または栄養塩濃度の少なくとも一方が前記被処理水A1より大きい希釈水B1に殺菌剤を添加することで、希釈水B2を得る第2殺菌剤添加ステップと、
 前記被処理水A2に、前記希釈水B2を混合することで混合水を得る混合ステップと、
 前記混合水に、以下の式(1)または式(2)で示される量の殺菌剤を添加する第3殺菌剤添加ステップと、
   (XA+XB)≦XM    ・・・(1)
 (式(1)において、XA,XB,XMは、以下の殺菌剤量を表す。
  XA: 被処理水Aへの殺菌剤量添加量
  XB: 希釈水Bへの殺菌剤量添加量
  XM: 混合水への殺菌剤添加量)
   (CA×FA+CB×FB)/(FA+FB)<CM    ・・・(2)
 (式(2)において、CA,CB,CM,FA,FBは、以下を表す。
  CA: 被処理水A2中の殺菌剤濃度
  CB: 希釈水B2中の殺菌剤濃度
  CM: 混合水へ殺菌剤添加後への混合水中の殺菌剤濃度
  FA: 被処理水A1流量
  FB: 希釈水B1流量)
 前記混合水を濃縮水と透過水とに分離する第一の半透膜処理ステップと、
を備えることを特徴とする造水方法。
(11)被処理水E10から濃縮水E12および透過水Fを生成する第2の半透膜処理部と、前記被処理水E10に殺菌剤Uを添加する第4殺菌剤添加部と、を有する第2処理装置と、
前記濃縮水E12と、被処理水A1とを混合する混合部と、得られた混合水から、濃縮水Dおよび透過水Cを生成する第1半透膜処理部と、を有する第1処理装置と、
を少なくとも備える造水システムであって、
 前記濃縮水E12の塩濃度は、前記被処理水A1の塩濃度よりも低く、かつ、前記濃縮水E12の有機物濃度または栄養塩濃度の少なくとも一方が、前記被処理水A1の有機物濃度または栄養塩濃度よりも大きく、
 前記被処理水E10の殺菌剤負荷よりも前記混合水A3の殺菌剤負荷のほうが大きくなるように殺菌剤を添加することを特徴とする造水システム。
(12)前記殺菌剤負荷がDPD法で測定される全塩素または結合塩素の少なくとも一方で表される酸化力を有することを特徴とする(11)の造水システム。
(13) 前記殺菌剤負荷がD値(decimal reduction time)で表されることを特徴とする(11)の造水システム。
(14)第1の半透膜処理部および第2の半透膜処理部で処理される処理水のpHが4以下で且つ前記殺菌剤負荷が水素イオン濃度で表されることを特徴とする(11)の造水システム。
(15)第1の半透膜処理部および第2の半透膜処理部で処理される処理水のpHが10以上で且つ前記殺菌剤負荷が水酸化物イオン濃度で表されることを特徴とする(11)の造水システム。
(16)前記殺菌剤負荷が、次亜塩素酸ナトリウム消費量を測定することで確認される還元力で表されることを特徴とする(11)の造水システム。
(17)被処理水E10と濃縮水E12、被処理水A1、混合水A3、のいずれか1箇所以上に殺菌剤を添加することを特徴とする(11)~(16)の造水システム。
 半透膜処理設備への殺菌剤添加量をコントロールすることで、バイオファウリングを抑制し、効率よく造水することが可能となる。
図1は、本発明に係る造水システムの第1実施形態を示すフロー図である。 図2は、本発明に係る造水システムの第2実施形態を示すフロー図である。 図3は、本発明に係る造水システムの第3実施形態を示すフロー図である。 図4は、本発明に係る造水システムの第4実施形態を示すフロー図である。 図5は、本発明に係る造水システムの第5実施形態を示すフロー図である。 図6は、本発明に係る造水システムの第6実施形態を示すフロー図である。 図7は、本発明に係る造水システムの第7実施形態を示すフロー図である。 図8は、本発明に係る造水システムの第8実施形態を示すフロー図である。
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
 (第1実施形態)
 図1は、本発明に係る造水システムの第1実施形態を示すフロー図で、図1を参照して第1実施形態に係る造水システムを説明する。
 図1に示すように、第1実施形態に係る造水システム101は、被処理水A1と希釈水B1とを混合することで得られる混合水を、半透膜処理して透過水Cと濃縮水Dとに分離する造水システムである。造水システム101は、送液ポンプ21と、第1半透膜処理部20と、第1薬剤送液ポンプ(第1殺菌剤添加部)23と、第2薬剤送液ポンプ(第2殺菌剤添加部)22と、第3薬剤送液ポンプ(第3殺菌剤添加部)24と、混合部5とを備える。また、造水システム101は、流路41および42等の配管を備える。
 第1半透膜処理部20は半透膜を備えている。半透膜とは、溶液中の一部の成分、例えば溶媒を透過させ他の成分を透過させない半透性の膜である。半透膜の一例としてナノろ過(NF)膜や逆浸透(RO)膜が挙げられる。
 NF膜およびRO膜は、処理対象である水の中に含まれる溶質を、再生水として利用可能な濃度まで低減することができる性能を有する。具体的には、NF膜およびRO膜は、塩分やミネラル成分等、多種のイオン、例えばカルシウムイオン、マグネシウムイオン、硫酸イオンのような二価イオンや、ナトリウムイオン、カリウムイオン、塩素イオンのような一価イオン、また、フミン酸(分子量Mw≧100,000)、フルボ酸(分子量Mw=100~1,000)、アルコール、エーテル、糖類などをはじめとする溶解性有機物を阻止する性能を有する。
 NF膜とは、操作圧力が1.5MPa以下、分画分子量が200から1,000で、塩化ナトリウムの阻止率90%以下のろ過膜であり、それよりも分画分子量の小さく、高い阻止性能を有するものがRO膜である。また、RO膜でもNF膜に近いものはルースRO膜とも呼ばれる。
 第1半透膜処理部20に対しては、中空糸膜または平膜のいずれの形状の膜であっても適用することができる。また、第1半透膜処理部20は、筐体と、その筐体内に収容された中空糸膜または平膜とを備える流体分離素子(エレメント)を備えてもよい。また複数の筐体を直列および/または並列に配置して運転することもできる。
 半透膜は、流体分離素子に組み込まれていることで、容易に取り扱うことができる。この流体分離素子が平膜状の半透膜を備える場合、流体分離素子は、例えば、多数の孔を穿設した筒状の中心パイプと、その中心パイプの周囲に巻回された膜ユニットと、中心パイプおよび膜ユニットを収容する筐体と、を備えることが好ましい。
 膜ユニットとは、トリコットなどの透過水流路材と、半透膜と、プラスチックネットなどの供給水流路材とを含む積層体である。複数の流体分離素子は、直列あるいは並列に接続され分離膜モジュールを形成してもよい。
 この流体分離素子において、供給水は一方の端部から膜ユニット内に供給される。供給水は、他方の端部に到達するまでの間に、半透膜を透過する透過水と、半透膜を透過しない濃縮水とに分離される。透過水は中心パイプへと流れ、流体分離素子の他方の端部において中心パイプから取り出される。一方、濃縮水は、流体分離素子の他方の端部から取り出される。
 これら半透膜の素材として、特にNF膜およびRO膜の素材としては、酢酸セルロース、セルロース系のポリマー、ポリアミド、及びビニルポリマーなどの高分子材料を用いることができる。代表的なNF膜およびRO膜としては、酢酸セルロース系またはポリアミド系の非対称膜;及びポリアミド系またはポリ尿素系の活性層を有する複合膜を挙げることができる。
 第1薬剤送液ポンプ23は、被処理水A1に殺菌剤Wを添加することで被処理水A2を得る第1殺菌剤添加部の一例である。第1薬剤送液ポンプ23は、流路41を流れる被処理水A1に、第1半透膜処理部20よりも上流、さらには混合部5よりも上流で、殺菌剤Wを添加するように配置される。
 また、第2薬剤送液ポンプ22は、希釈水B1に殺菌剤Vを添加することで希釈水B2を得る第2殺菌剤添加部の一例である。第2薬剤送液ポンプ22は、流路42内を流れる希釈水B1に殺菌剤Vを添加するように配置される。流路42は、流路41に接続され、希釈水B2を被処理水A2に合流させる。
 第3薬剤送液ポンプ24は、被処理水A2と希釈水B2とが混合されて得られた混合水に、殺菌剤Xを添加する第3殺菌剤添加部の一例である。具体的には、第3薬剤送液ポンプ24は、流路41を流れる流体に、混合部5よりも下流で殺菌剤Xを添加するように配置される。
 ここで、第3薬剤送液ポンプ24によって混合水に添加される殺菌剤の量は、以下の式(1)または式(2)を満たすように設定される。
(XA+XB)≦XM    ・・・(1)
式(1)において、
XA: 被処理水A1への殺菌剤量添加量
XB: 希釈水B1への殺菌剤量添加量
XM: 混合水への殺菌剤添加量
である。
(CA×FA+CB×FB)/(FA+FB)<CM    ・・・(2)
(式(1)において、XA,XB,XM,FA,FBは、以下を表す。
CA: 被処理水A2中の殺菌剤濃度
CB: 希釈水B2中の殺菌剤濃度
CM: 混合水へ殺菌剤添加後への混合水中の殺菌剤濃度
FA: 被処理水A1流量
FB: 希釈水B1流量)
である。
より好ましくは1.5×(CA×FA+CB×FB)/(FA+FB)<CM である。
 殺菌剤濃度とは、連続注入の場合、単位時間当たり・単位体積当たりの添加殺菌剤濃度であり、間欠注入の場合、平均単位時間当たり単位体積当たりの添加殺菌剤濃度で計算される。ここで単位時間当たり単位体積当たりの添加殺菌剤濃度とは、例えばmg/hr/mなどであり、1m/hrの流水に1日に1回1時間で24mg添加する場合、1mg/hr/mと計算される。
 殺菌剤の過剰な添加は経済的ではなく、さらに殺菌剤の持つ酸化力が膜へダメージを与えることがあるため、さらに望ましくは、以下の式(3)または式(4)に従う。
(XA+XB)≦XM≦10(XA+XB)   ・・・(3)
(CA×FA+CB×FB)/(FA+FB)<CM<10(CA×FA+CB×FB)    ・・・(4)
 添加する殺菌剤は、特に制限はされず、例えば、塩素系殺菌剤や臭素系殺菌剤などが挙げられる。中でも、有機臭素化合物殺菌剤であるDBNPA(2,2-dibromo-3-nitrilopropionamide)やクロラミン、クロラミンt(N-クロロ-p-トルエンスルホンアミド, ナトリウム塩)などのクロラミン誘導体が好ましい。
 なお、被処理水A1または希釈水B1が清浄で殺菌剤を添加する必要が無い場合、添加しなくても良い。例えば、被処理水A1が清浄な海水で、栄養塩や有機物をほとんど含んでいない場合、バクテリアが存在していても流路内で増殖しないため、殺菌剤を添加する必要が無い場合がある。ただし、混合水A3は前述の通りバイオファウリングが発生しやすいため、混合水には殺菌剤を添加する必要がある。
 また、殺菌剤添加量はバクテリアの増殖速度に比例して添加することが好ましい。そこで、例えば、添加する対象の水の温度が高いほど添加量を増やすことが望ましく、添加量を水温に比例して決定してもよい。つまり、造水システム101は、流路41および42等に配置され、流路内の水温を測定する温度計と、その温度計の測定結果に基づいて、殺菌剤W、V、Xのそれぞれの添加量を決定する添加量決定部と、添加量決定部の決定に基づいて第1~第3薬剤送液ポンプを制御する添加量制御部と、を備えてもよい。これらの構成をまとめて殺菌量調整部と呼ぶ。特に、第3薬剤送液ポンプ24における殺菌剤の添加量は、上述の式(1)および(2)に基づくと共に、混合水A3の水温に比例するように決定されることが好ましい。
 混合部5は、流路41と流路42との接続により実現される。そして、送液ポンプ21は、混合水A3に殺菌剤を添加した後に第1半透膜処理部20に送る役目をする。送液ポンプ21は特に、流路41上で、特に第3薬剤送液ポンプ24の下流で、第1半透膜処理部20の上流に配置される。
 希釈水B1は、被処理水A1よりも塩濃度が低い。つまり、希釈水B1の浸透圧は、被処理水A1の浸透圧より低い。被処理水A1に希釈水B1を混合することによって処理する被処理水A1の浸透圧を低減させ、第1半透膜処理部20におけるろ過に必要な動力を低減することができる。このような被処理水A1および希釈水B1は、浸透圧の関係が前述のような関係にあればどのような水でも適用することができる。
 希釈水B1としては、特に表層水(湖沼、池、河川など)、地下水、廃水、廃水の生物処理水、又はそれらの半透膜処理濃縮水のいずれかまたはそれらの混合水であれば、塩濃度が低いので望ましい。希釈水B1の塩濃度としては、TDS(Total Dissolved Solids)で10000mg/L以下、好ましくは5000mg/L以下、更に好ましくは3000mg/L以下である。また、被処理水A1は、塩濃度が希釈水B1より高いものであればよく、例えば、海水や汽水、廃水等が挙げられる。被処理水A1の塩濃度としては、TDSで25000mg/L以上、海水では35000~50000mg/Lである。そして、希釈水B1は、被処理水A1よりも有機物濃度または栄養塩濃度の少なくとも一方が被処理水A1より大きい水である。有機物濃度は、TOC(Total Organic Carbon)などで測定され、希釈水B1は、6mg/L以上、被処理水A1は、5mg/L以下である。栄養塩濃度は、TN(Total Nitrogen)、TP(Total Phosphorus)などで測定され、希釈水B1は、TN=5mg/L以上または、TP=1mg/L以上、被処理水A1は、TN=2mg/L以下または、TP=0.5mg/L以下である。特に海水ではリンが少ないことが多く、希釈水B1が生物処理水やその半透膜処理濃縮水など、TPが被処理水A1より高い場合、特に本造水システムが有効となる。
 なお、上述の殺菌剤の添加後も、これらの塩、有機物、栄養塩の濃度の関係は維持される。つまり、混合される直前の被処理水と希釈水との濃度の関係(つまり被処理水A2と希釈水B2との濃度の関係)は、これらの関係を満たす。
 以上に説明した構成による造水方法は以下のとおりである。
 被処理水A1は、流路41を通って、第1半透膜処理部20に向けて流れる。流路41中の被処理水A1に、第1薬剤送液ポンプ23によって殺菌剤Wが添加されることで、被処理水A2が得られる。一方、流路42を通る希釈水B1には、第2薬剤送液ポンプ22によって殺菌剤Vが添加される。こうして殺菌剤を含む希釈水B2が得られる。流路41を流れる被処理水A2に、流路42を流れる希釈水B2が、流路41と流路42との接続地点において合流することで、被処理水A2と希釈水B2とが混合される。混合によって得られた混合水A3は、流路41を通ってさらに第1半透膜処理部20に向かって流れる。その混合水A3に、第3薬剤送液ポンプ24によって、殺菌剤Xが添加される。その後、殺菌剤Xが添加された混合水A3は、第1半透膜処理部20によって、透過水Cと濃縮水Dとに分離される。
 第1薬剤送液ポンプ23および第2薬剤送液ポンプ22は、流路中の被処理水A1および希釈水B1にそれぞれに殺菌剤を添加することで、それぞれの添加位置より下流の流路の壁にバイオファウリングが発生することを抑制できる。さらに、第3薬剤送液ポンプ24は、混合水A3に殺菌剤を添加することによって、その殺菌剤の添加位置より下流の流路の壁および第1半透膜処理部20でのバイオファウリングの発生を抑制することができる。
 本発明者らは、高塩濃度水に希釈水を混合し逆浸透膜処理する場合、高塩濃度水のみ、または希釈水のみを膜処理する場合よりもバイオファウリングが発生しやすいという新たな知見を見いだした。バイオフィルム形成速度を定量的に測定するため、バイオフィルム形成担体を連続的に供給される高塩濃度水、希釈水、混合水の流れに一定期間曝露させ、担体表面に付着するATP量の増加速度を測定したところ、それぞれ、20,150,400pg/cm/dayとなった。混合水では高塩濃度水と希釈水の平均値85pg/cm/dayが期待されたが、それを大きく上回った。その理由としては、一方の水、例えば高塩濃度水に栄養塩が不足しておりバクテリアが飢餓状態であり、もう一方の水、例えば低塩濃度水に栄養塩が過剰に含まれている場合、混合することで飢餓状態であった高塩濃度水のバクテリアが増殖するためであること、高塩濃度水と低塩濃度水に生息するバクテリアの餌がそれぞれ異なる場合、混合することで各々消費されずに残っていたバクテリアの餌を補完し合うことでバクテリアが増殖することなどが考えられる。このように異種の水を混合して半透膜処理する場合、栄養塩濃度や有機物濃度が異なり、バクテリアが増殖する危険性が高くなる。そのような水の組み合わせとしては、海水と廃水の生物処理水またはその半透膜濃縮水、廃水の生物処理水の半透膜濃縮水と地下水、海水と表層水またはその半透膜濃縮水などがある。
 第1実施形態では、第3薬剤送液ポンプ24による添加量が、上述のとおりに設定されていることにより、バイオファウリングを効果的に抑制することができる。
 (第2実施形態)
 図2は、本発明に係る造水システムの第2実施形態を示すフロー図で、図2を参照して第2実施形態に係る造水システムを説明する。第2実施形態では、第1実施形態で説明した構成と同一の構成要素には同一符号を付して、その説明を省略する。
 第2実施形態に係る造水システム102は、第1実施形態の造水システム101と同構成を備える塩水処理装置2と、低塩濃度廃水処理装置3とを備える。
 低塩濃度廃水処理装置3は、生物処理水を含む希釈水を得ることができる。生物処理水とは、細菌などにより汚水中の汚濁物質を生物学的に酸化または還元して安定化させた水であり、例えば、下水を活性汚泥処理や膜バイオリアクター(MBR)で処理したものが挙げられる。
 低塩濃度廃水処理装置3は、他の被処理水E1(以下、被処理水A1と区別するために「廃水E1」と述べる)を処理する廃水処理部30と、流量調整部31および32と、流路33,34とを備える。廃水E1としては、例えば下水が用いられる。廃水処理部30は、具体的な構成に限定されることはなく、活性汚泥処理設備、活性汚泥処理と精密ろ過(MF)若しくは限外ろ過(UF)膜との二段処理設備、活性汚泥処理と砂ろ過との二段処理設備またはMBR設備などが使用できる。
 また、廃水処理部30を効率的に稼動させるために、廃水処理部30の上流で、廃水E1に凝集剤、pH調整剤、または次亜塩素酸ナトリウムのような酸化剤を添加しても構わない。
 また、廃水処理部30で膜やフィルターを使用する場合、使用される膜やフィルターについても特に限定されることはなく、平膜、中空糸膜、管状型膜、糸巻きフィルター、布製フィルター、金属焼結フィルター、その他いかなる形状のものも適宜用いることができる。膜やフィルターの素材については、特に限定しないが、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースや、セラミック等の無機素材からなる群から選ばれる少なくとも1種を含んでいると好ましい。
 第2実施形態において、廃水処理部30は、廃水E1から、濁質や不純物などの半透膜をファウリングさせる物質を除去する。これにより、第1半透膜処理部20の洗浄間隔や寿命を延ばすことが可能となる。こうして得られた水を生物処理水E2と称する。
 流量調整部31は、流路33上で廃水処理部30より下流に配置される。流量調整部31は、塩水処理装置2に向かう生物処理水E2の量を調整することができる。流量調整部32は、バイパスラインである流路34上に配置され、廃水処理部30を通らずに塩水処理装置2に向かう廃水E1の量を調整する。流量調整部31および32は、流量調整部としては、ゲートバルブ、グローブバルブ、ボールバルブ、バタフライバルブ等によって実現可能である。また、図2に記載はないが、送液ポンプのインバーター制御等により流量を調整することもできる。
 流路33は、廃水処理部30に廃水E1を送り、更に廃水処理部30から塩水処理装置2に至るまで続く。流路34は、廃水処理部30より上流で流路33から分岐し、流量調整部31より下流で流路33に接続する。つまり、流路34は、一部の廃水E1に廃水処理部30を迂回させて、生物処理水E2に合流させるバイパスラインとして機能する。
 廃水E1と生物処理水E2とは、流路33と34とが接続することで混合される。こうして得られる混合水は、希釈水B1として、流路42を通って上述の流路41に合流する。なお、流量調整部31および32によって、希釈水B1として、塩水処理装置2に、廃水E1のみが供給されてもよいし、生物処理水E2のみが供給されてもよいし、廃水E1と生物処理水E2との混合水が供給されてもよい。
 第2実施形態では、こうして、希釈水B1が、廃水処理部30で処理された生物処理水E2と廃水E1との混合によって得られる。さらに、希釈水B1に含まれ生物処理水E2と廃水E1との混合比率、塩濃度、混合して得られる水の総量は、流量調整部31、32によって調節可能である。
 希釈水B1、つまり低塩濃度水が生物処理水を含む場合、希釈水B1が栄養塩を多く含むため、被処理水A1(被処理水A2)と希釈水B1(希釈水B2)との混合した後で、上述したようにファウリングが発生しやすい。しかしながら、第2実施形態では、第3薬剤送液ポンプ24によって殺菌剤が添加されることで、このバイオファウリングが効果的に抑制される。
 (第3実施形態)
 図3は、本発明に係る造水システムの第3実施形態を示すフローズで、図3を参照して第3実施形態に係る造水システムを説明する。第3実施形態では、第1または第2実施形態で説明した構成と同一の構成要素には同一符号を付して、その説明を省略する。
 第3実施形態に係る造水システム103は、塩水処理装置200と、第2被処理水E10を半透膜処理する低塩濃度廃水処理装置300とを備える。低塩濃度廃水処理装置300は、第2被処理水E10から希釈水B1を得る装置である。具体的には、低塩濃度廃水処理装置300は、第2半透膜処理部301、流量調整部302および303、ポンプ304および第4薬剤送液ポンプ(第4殺菌剤添加部)305、流路306,307,308および309を備える。
 第2被処理水E10としては、廃水E1、生物処理水E2または廃水E1と生物処理水E2との混合水が用いられる。例えば、流路306において、流路306からの流路309の分岐点よりも上流に、廃水処理部30が設けられてもよい。
 第2半透膜処理部301は、流路306によって供給される第2被処理水E10を、濃縮水E12と透過水Fとに分離する。第2半透膜処理部301としては、第1半透膜処理部20と同様の構成が採用される。濃縮水E12は流路308によって塩水処理装置200に送られる。透過水Fは、流路307によって、別の工程に送られるか、システム外に送水される。
 流量調整部302および303は、それぞれ、流路306および309上に配置され、各流路を流れる第2被処理水E10の流量を調整する。これらの流量調整部302および303によって、希釈水B1における濃縮水E12と第2被処理水E10との混合比率が調整される。流量調整部302および303としては、流量調整部31および32と同様の構成が利用できる。
 ポンプ304は、流路306上に配置され、第2被処理水E10を第2半透膜処理部301に供給する。特に本実施形態では、ポンプ304は、殺菌剤Uの添加位置よりも下流で、第2半透膜処理部301よりも上流に配置される。
 第4薬剤送液ポンプ305は、流路306中の第2被処理水E10に対して、第2半透膜処理部301より上流で殺菌剤Uを添加する。殺菌剤Uの種類等については、第1実施形態で説明した他の殺菌剤と同様である。
 流路306は、第2被処理水E10を第2半透膜処理部301に供給する。流路307および308には、それぞれ、第2半透膜処理部301で得られた透過水Fおよび濃縮水E12が流れる。バイパスラインである流路309は、流量調整部302の上流で、流路306から分岐し、流路308に接続する。
 上述の構成により、第2被処理水E10の一部には、殺菌剤Uが添加され、殺菌剤Uを含む第2被処理水E10は、第2半透膜処理部301に送られる。第2半透膜処理部301で得られた濃縮水E12は、流路308を通って塩水処理装置200に送られ、希釈水B1として利用される。
 上述したとおり、希釈水B1における濃縮水E12と第2被処理水E10との混合比率は、流量調整部302および303によって変更可能である。例えば、第2半透膜処理部301で得られた濃縮水E12の塩濃度が被処理水A1よりも低ければ、この濃縮水E12のみが希釈水B1として塩水処理装置200に供給されてもよい。また、濃縮水E12の塩濃度が被処理水A1よりも高いか、または第2被処理水E10の量が第2半透膜処理部301の処理能力を超え第2被処理水E10が余剰となる等、他の理由によって、濃縮水E12と第2被処理水E10との混合水が希釈水B1として塩水処理装置200に供給されてもよい。また、第2被処理水E10のみが希釈水B1として塩水処理装置200に供給されてもよい。
 なお、第2被処理水E10の濁質が高い場合等は、第2被処理水E10をUF処理または砂ろ過する装置がさらに設けられてもよい。これらのUF処理装置または砂ろ過装置は、例えば流路306において、流路309の分岐点より上流に配置可能である。
 塩水処理装置200は、塩水処理装置2の構成、並びに前処理部25、被処理水槽26、希釈水槽27および混合槽28を備える。前処理部25、被処理水槽26、混合槽28、送液ポンプ21、第1半透膜処理部20は、流路41によって、この順に接続される。前処理部25は被処理水A1をUF処理または砂ろ過する装置である。また、第1薬剤送液ポンプ23は、流路41において前処理部25の上流で、殺菌剤Wを被処理水A1に添加する。被処理水槽26は、被処理水A2を貯留する。
 混合槽28には、流路41および流路42が接続しており、この混合槽28において、被処理水A2と希釈水B2とが混合される。混合槽28は、容積が小さい方が、混合槽28での混合水A3の滞留時間が短くなるので、菌類などの生物の繁殖を抑制することができる。被処理水A2と希釈水B2を十分に混合できるのであれば、第1実施形態および第2実施形態のように、配管のみで混合部を形成してもよい。ただし、混合槽28によって、流量をより安定させることができる。
 希釈水槽27は、流路42において、第2薬剤送液ポンプ22による殺菌剤Vの添加位置より下流で、かつ混合槽28より上流に配置される。希釈水槽27には、希釈水B2、つまり低塩濃度廃水処理装置300から送られてくる第2被処理水E10、濃縮水E12または第2被処理水E10と濃縮水E12との混合水が貯留される。希釈水槽27に貯留された水には、第2薬剤送液ポンプ22によって添加された殺菌剤が含まれる。
 希釈水B1が濃縮水E12を含有する場合、第4薬剤送液ポンプ305によって添加された殺菌剤Uは濃縮水E12へ残る。しかし、濃縮水E12では、栄養塩およびバクテリアなども濃縮される。よって、被処理水A2と希釈水B2の混合水には、更に殺菌剤を添加することが好ましい。
 添加量として、以下の式に従うことが望ましい。
(XA+XB+X2)≦XM   ・・・(5)
式(5)において
XA: 被処理水A1への殺菌剤量Wの添加量
XB: 希釈水B1への殺菌剤量Vの添加量
X2: 第二の半透膜処理設備の被処理水への殺菌剤Uの添加量
XM: 混合水への殺菌剤Xの添加量
である。
(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CM  ・・・(6)
式(6)において、
CA: 被処理水A2中の殺菌剤濃度
CB: 希釈水B2中の殺菌剤濃度
C2: 第2被処理水E10へ殺菌剤添加後の第2被処理水E10中の殺菌剤濃度
CM: 混合水へ殺菌剤添加後への混合水中の殺菌剤濃度
FA: 被処理水A1流量
FB: 希釈水B1流量
F2: 第2被処理水E10の流量を表す。)
である。
より好ましくは、1.5×(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CM である。
 また、以下の式(7)または式(8)に従うことが更に望ましい。
(XA+XB+X2)≦XM≦10(XA+XB+X2)   ・・・(7)
(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CM<10(CA×FA+CB×FB+C2×F2)  ・・・(8)
更に望ましくは式(9)に従う。
(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<XM<7(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)   ・・・(9)
 第2半透膜処理部301で得られる濃縮水E12に含まれる栄養塩やバクテリアは半透膜処理部の回収率が高いほど濃度が高くなるので、混合水への殺菌剤は回収率が高いほど添加量を増やすことが望ましい。
 第3実施形態において、造水システム103は、第3薬剤送液ポンプ24が添加する殺菌剤Xの量を、混合水A3の水温および/または第2半透膜処理部301の回収率に比例するように調整する殺菌剤量調整部を更に備えてもよい。第2半透膜処理部301の回収率とは、(透過水Fの体積/第2半透膜処理部301に供給される第2被処理水E10の量)で表される。上述したように、殺菌剤を添加する対象である水の温度が高いほどバクテリアが増殖しやすい。また、第2半透膜処理部301の回収率が高いほど有機物濃度または栄養塩濃度が高くなるので、バクテリアが増殖しやすい。
 (第4実施形態)
 図4は、本発明に係る造水システムの第4実施形態を示すフロー図で、図4を参照して第4実施形態に係る造水システムを説明する。第4実施形態では、第1実施形態、第2実施形態または第3実施形態で説明した構成と同一の構成要素には同一符号を付して、その説明を省略する。
 第4薬剤送液ポンプ305で添加された殺菌剤Uは第2半透膜処理部301で消費されるが、殺菌剤Uが半透膜を透過しない場合、半透膜処理の回収率に応じて濃縮される。
 前述の通り、高塩濃度水に希釈水を混合することでバイオファウリングが発生しやすくなるため、第1半透膜処理部および第2半透膜処理部のバイオファウリングを防止するためには、第2半透膜処理部301へ供給される第2被処理水E10の殺菌剤負荷よりも第1半透膜処理部20へ供給される混合水の殺菌剤負荷を大きくすることが望ましい。
 ここで、殺菌剤負荷は、殺菌剤濃度が高い方が大きいため、殺菌剤に合わせた測定方法で測定できる。例えば、殺菌剤が塩素系殺菌剤や臭素系殺菌剤のような酸化性殺菌剤の場合、DPD法で結合塩素換算または全塩素換算の少なくとも一方として酸化力が測定できる。また、殺菌剤が酸やアルカリの場合、pH計で測定することができる。殺菌剤が還元剤の場合、簡易的にはORPを測定することで間接的に測定することができるが、ORPはpHにより左右されるため、より正確に測る場合には、DPD法で検出できるまで次亜塩素酸ナトリウムを滴定し、その滴定量より還元剤の含有量を知ることができる。
 殺菌剤を常時添加している場合は任意の時間の測定値を使用することができるが、間欠添加している場合、添加開始から次の添加開始までの平均値で比較することが望ましい。例えば、酸化性殺菌剤を添加し、1回/18時間、5分間に亘り結合塩素が1ppm検出された場合、1×5÷(18×60)=4.6×10-3ppmとなる。
 (第5実施形態)
 図5は、本発明に係る造水システムの第5実施形態を示すフロー図で、図5を参照して第5実施形態に係る造水システムを説明する。第5実施形態では、第1実施形態、第2実施形態、第3実施形態または第4実施形態で説明した構成と同一の構成要素には同一符号を付して、その説明を省略する。
 第4薬剤送液ポンプ305で添加された殺菌剤Uが第2半透膜処理部で消費されたり、半透膜を透過したりして第1半透膜処理部に十分な殺菌剤が到達しない場合、殺菌剤を追加することが望ましい。第5実施形態では、ポンプ22で殺菌剤Vを添加する。
 第4薬剤送液ポンプ305で添加された殺菌剤Uおよびポンプ22で添加された殺菌剤Vが共に酸化性殺菌剤、というように同一種の場合、殺菌剤負荷は、殺菌剤濃度が高い方が大きいため、前述の測定方法で確認することが可能である。一方、それぞれの殺菌剤種が異種の場合、例えば殺菌剤Uが酸化性殺菌剤で殺菌剤Vが酸性殺菌剤の場合、第1半透膜処理部と第2半透膜処理部の殺菌剤負荷を比較するには、D値(decimal reduction time)を用いることが望ましい。これは、殺菌により菌数を初期の殺菌数から1/10にする時間であり、短いほど殺菌負荷が大きい。
 (第6実施形態)
 図6は、本発明に係る造水システムの第6実施形態を示すフロー図で、図6を参照して第6実施形態に係る造水システムを説明する。本実施形態では、第1実施形態、第2実施形態、第3実施形態、第4実施形態または第5実施形態で説明した構成と同一の構成要素には同一符号を付して、その説明を省略する。
 第6実施形態では、混合水へ第3薬剤送液ポンプ24で殺菌剤Xを添加する。次亜塩素酸ナトリウムなど、殺菌剤によっては有機物に消費されるものがあり、より半透膜に近い位置で殺菌剤を添加することが望ましい場合があり、本実施形態を使用することが望ましい。
 (第7実施形態)
 図7は、本発明に係る造水システムの第7実施形態を示すフロー図で、図7を参照して第7実施形態に係る造水システムを説明する。本実施形態では、第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態または第6実施形態で説明した構成と同一の構成要素には同一符号を付して、その説明を省略する。
 第7実施形態では、ポンプ22で殺菌剤Vを、第3薬剤送液ポンプ24で殺菌剤Xを添加する。当該実施形態のように、複数の殺菌剤添加場所を設けることで、殺菌剤の種類や添加タイミングを変えることができる。例えば酸性殺菌剤と酸化性殺菌剤を併用した場合、酸に弱い微生物と酸化剤に弱い微生物の両方の殺菌が可能となり、バイオファウリングの抑制に効果的である。また、酸化性殺菌剤と還元性殺菌剤を併用する場合、両者が混合すると反応し、互いに効果が消えるため、タイミングをずらして添加することが必要となり、当該実施形態が適切である。
(第8実施形態)
 図8は、本発明に係る造水システムの第8実施形態を示すフロー図で、図8を参照して第8実施形態に係る造水システムを説明する。本実施形態では、第1実施形態、第2実施形態、第3実施形態、第4実施形態、第5実施形態、第6実施形態または第7実施形態で説明した構成と同一の構成要素には同一符号を付して、その説明を省略する。
 被処理水A1が清浄でなく、流路41や被処理水槽26でバイオファウリングが発生する場合、殺菌剤を添加することが望ましく、第8実施形態を用いることができる。
 以上、本発明の造水システムを上記の実施形態に基づいて説明したが、本発明は上記の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
 以下本発明を実施例により更に詳細に説明する。
(1)DPD測定方法
 試料を殺菌剤添加部より下流かつ前処理部または膜モジュールより上流および流路42、からサンプリングし、すぐに水道機工製ポサイドンDPD残塩チェッカー(CRP-1000)で測定した。
(2)TOC測定方法
 東レエンジニアリング製 TNC-6000(燃焼酸化非分散赤外線吸収方式)で分析した。
(3)TN測定方法
 堀場製作所製 PN-155(紫外線酸化分解法)で分析した。
(4)TP測定方法
 堀場製作所製 PN-155(紫外線酸化分解法)で分析した。
(5)TDS測定方法
 サンプルを105℃×2時間乾燥し、残存物の重量を測定した。
(6)実験装置
 図8のフローの装置を使用し実験した。MBR処理水1400m/dを第2半透膜処理部301(東レ製TML20-370 7エレメント/Vessel (1st bank 6Vessel+2nd bank 3Vessel)回収率60%で処理し濃縮水で得た。また、海水またはかん水550m/dを取水し、前処理部25(東レ製HFU-2020 4モジュール/Train ×2Trains)で処理し、濃縮水と1:1で混合し、第1半透膜処理部20(東レ製TM840C-160 1st bank 6エレメント/Vessel×1Vessel、TM820E-400 2nd bank 6エレメント/Vessel×3Vessel)回収率50%で処理した。殺菌剤は第2半透膜処理部301、第1半透膜処理部20の直前でDBNPA(ナルコ社製PeamaClean PC-11)を添加した。ここでは、FA=550m/hr、FB=560m/hr、F2=1400m/hrである。
 MBR処理水、濃縮水E12、海水A1の水質を表に示す(mg/L)。
Figure JPOXMLDOC01-appb-T000001
実施例1(海水を使用)
 第2半透膜処理部301へ第4薬剤送液ポンプ305でDBNPAを1時間/日、10mg/L相当添加し、DPD測定残塩チェッカーで測定したところ、結合塩素として(C2=)10mg/Lだった。濃縮水E12へ第4薬剤送液ポンプの薬剤と混ざるように第2薬剤送液ポンプ22でDBNPAを1時間/日、1mg/L相当添加し、濃縮水E12をDPD測定残塩チェッカーで測定したところ、結合塩素として(CB=)5mg/Lだった。第1半透膜処理部20までの滞留時間を考え、混合水A3で第4薬剤送液ポンプの薬剤と混ざるように被処理水A1へ第1薬剤送液ポンプ23でDBNPAを1時間/日、4mg/L相当添加し、DPD測定残塩チェッカーで測定したところ、結合塩素として(CA=)4mg/Lだった。また、第2半透膜処理部301から第1半透膜処理部20までの滞留時間を考え、濃縮水E12にDBNPAが最も含まれる時間に第1半透膜処理部20へ第3薬剤送液ポンプでDBNPAを1時間/日、15mg/L相当添加した。DPD測定残塩チェッカーで測定したところ、結合塩素として(CM=)18mg/Lだった。その結果、第2半透膜処理部301、第1半透膜処理部20共に薬洗せずに5ヶ月運転できた(第1半透膜処理部20のDP(通水差圧)が150→170kPa)。前処理部25も良好に運転できた。
 上記実施例は、
式(1)XA(=4ppm×550m/hr)+XB(=1ppm×560m/hr)≦XM(=15ppm×1110m/hr)を満たす。
式(2)(CA×FA+CB×FB)/(FA+FB)<CMを満たす。
式(5)(XA(=4ppm×550m/hr)+XB(=1ppm×560m/hr)+X2(=10ppm×1400m/hr))≦XM(=15ppm×1110m/hr)を満たす。
式(6)(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CMを満たす。
実施例2(海水を使用)
 第2半透膜処理部301へ第4薬剤送液ポンプ305でDBNPAを1時間/日、10mg/L相当添加し、DPD測定残塩チェッカーで測定したところ、結合塩素として(X2=)10mg/Lだった。濃縮水E12へ第4薬剤送液ポンプの薬剤と混ざるように第2薬剤送液ポンプ22でDBNPAを1時間/日、1mg/L相当添加し、濃縮水E12をDPD測定残塩チェッカーで測定したところ、結合塩素として(XB=)5mg/Lだった。
 また、第2半透膜処理部301から第1半透膜処理部20までの滞留時間を考え、濃縮水E12にDBNPAが最も含まれる時間に第1半透膜処理部20へ第3薬剤送液ポンプでDBNPAを1時間/日、15mg/L相当添加した。DPD測定残塩チェッカーで測定したところ、結合塩素として(XM=)17.5mg/Lだった。その結果、第2半透膜処理部301、第1半透膜処理部20共に薬洗せずに5ヶ月運転できた(第1半透膜処理部20のDP(通水差圧)が150→180kPa)。ただし、前処理部25が若干バイオファウリングしたため、薬液洗浄が必要となった。
 上記実施例は、
式(1)XA(=0ppm×550m/hr)+XB(=1ppm×560m/hr)≦XM(=15ppm×1110m/hr)を満たす。
式(2)(CA×FA+CB×FB)/(FA+FB)<CMを満たす。
式(5)(XA(=0ppm×550m/hr)+XB(=1ppm×560m/hr)+X2(=10ppm×1400m/hr))≦XM(=15ppm×1110m/hr)を満たす。
式(6)(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CMを満たす。
実施例3(かん水を使用)
 第2半透膜処理部301へ第4薬剤送液ポンプ305でDBNPAを1時間/日、10mg/L相当添加し、DPD測定残塩チェッカーで測定したところ、結合塩素として(X2=)10mg/Lだった。濃縮水E12へ第4薬剤送液ポンプの薬剤と混ざるように第2薬剤送液ポンプ22でDBNPAを1時間/日、1mg/L相当添加し、濃縮水E12をDPD測定残塩チェッカーで測定したところ、結合塩素として(XB=)5mg/Lだった。第1半透膜処理部20までの滞留時間を考え、混合水A3で第4薬剤送液ポンプの薬剤と混ざるように被処理水A1へ第1薬剤送液ポンプ23でDBNPAを1時間/日、4mg/L相当添加し、DPD測定残塩チェッカーで測定したところ、結合塩素として(XA=)4mg/Lだった。また、第2半透膜処理部301から第1半透膜処理部20までの滞留時間を考え、濃縮水E12にDBNPAが最も含まれる時間に第1半透膜処理部20へ第3薬剤送液ポンプでDBNPAを1時間/日、15mg/L相当添加した。DPD測定残塩チェッカーで測定したところ、結合塩素として(XM=)18mg/Lだった。その結果、第2半透膜処理部301、第1半透膜処理部20共に薬洗せずに5ヶ月運転できた(第1半透膜処理部20のDP(通水差圧)が150→170kPa)。前処理部25も良好に運転できた。
 上記実施例は、
式(1)XA(=4ppm×550m/hr)+XB(=1ppm×560m/hr)≦XM(=15ppm×1110m/hr)を満たす。
式(2)(CA×FA+CB×FB)/(FA+FB)<CMを満たす。
式(5)(XA(=4ppm×550m/hr)+XB(=1ppm×560m/hr)+X2(=10ppm×1400m/hr))≦XM(=15ppm×1110m/hr)を満たす。
式(6)(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CMを満たす。
比較例1(海水を使用)
 第2半透膜処理部301へ第4薬剤送液ポンプ305でDBNPAを1時間/日、10mg/L相当添加し、DPD測定残塩チェッカーで測定したところ、結合塩素として(X2=)10mg/Lだった。濃縮水E12へ第4薬剤送液ポンプの薬剤と混ざるように第2薬剤送液ポンプ22でDBNPAを1時間/日、1mg/L相当添加し、濃縮水E12をDPD測定残塩チェッカーで測定したところ、結合塩素として(XB=)5mg/Lだった。第1半透膜処理部20までの滞留時間を考え、混合水A3で第4薬剤送液ポンプの薬剤と混ざるように被処理水A1へ第1薬剤送液ポンプ23でDBNPAを1時間/日、4mg/L相当添加し、DPD測定残塩チェッカーで測定したところ、結合塩素として(XA=)4mg/Lだった。また、第2半透膜処理部301から第1半透膜処理部20までの滞留時間を考え、濃縮水E12にDBNPAが最も含まれる時間に第1半透膜処理部20へ第3薬剤送液ポンプでDBNPAを1時間/日、1mg/L相当添加した。DPD測定残塩チェッカーで測定したところ、結合塩素として(XM=)4mg/Lだった。
 その結果、第2半透膜処理部301は薬洗せずに5ヶ月運転できたが、第1半透膜処理部20は2週間でDP(通水差圧)が150→200kPaとなり、薬洗が必要となった。第1半透膜処理部20の膜を解体して調査したところ、バイオファウリングが発生しており、バクテリアの増殖がDP(通水差圧)の原因と判明した。
 上記比較例は、
式(1)XA(=4ppm×550m/hr)+XB(=1ppm×560m/hr)≦XM(=1ppm×1110m/hr)を満たさない。
式(2)(CA×FA+CB×FB)/(FA+FB)<CMを満たさない。
式(5)(XA(=4ppm×550m/hr)+XB(=1ppm×560m/hr)+X2(=10ppm×1400m/hr))≦XM(=1ppm×1110m/hr)を満たさない。
式(6)(CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CMを満たさない。
 本出願は、2013年9月30日出願の日本特許出願、特願2013-203123に基づくものであり、その内容はここに参照として取り込まれる。
 上水道における浄水処理分野、工業用水や食品、医療プロセス用水、半導体関連洗浄用水といった産業用水製造分野などに適用可能な淡水を省エネルギーかつ効率的に生産することができ、淡水化技術により淡水を得る装置として利用することができる。
 101:造水システム
 102:造水システム
 103:造水システム
 2: 塩水処理装置
 3: 低塩濃度廃水処理装置
 20:第1半透膜処理部
 21:送液ポンプ
 22:第2薬剤送液ポンプ(第2殺菌剤添加部)
 23:第1薬剤送液ポンプ(第1殺菌剤添加部)
 24:第3薬剤送液ポンプ(第3殺菌剤添加部)
 25:前処理部
 26:被処理水槽
 27:希釈水槽
 28:混合槽
 29:ポンプ
 200:塩水処理装置
 30:廃水処理部
 31:流量調整部
 32:流量調整部
 33:流路
 34:流路
 300:低塩濃度廃水処理装置
 301:第2半透膜処理部
 302:流量調整部
 303:流量調整部
 304:ポンプ
 305:第4薬剤送液ポンプ(第4殺菌剤添加部)
 306:流路
 307:流路
 308:流路
 309:流路
 41:流路
 42:流路
 A1:被処理水(高塩濃度)
 A2:被処理水(高塩濃度・殺菌剤含有)
 A3:混合水
 B1:希釈水
 B2:希釈水(殺菌剤含有)
 C:透過水
 D:濃縮水
 E1:被処理水(低塩濃度)、廃水
 E2:生物処理水
 E10:(第2)被処理水(低塩濃度)
 E12:濃縮水
 F:透過水
 U:殺菌剤
 V:殺菌剤
 W:殺菌剤
 X:殺菌剤

Claims (17)

  1.  被処理水A1に、殺菌剤を添加することで被処理水A2を得る第1殺菌剤添加部と、
     前記被処理水A1よりも塩濃度が低く、かつ有機物濃度または栄養塩濃度の少なくとも一方が被処理水A1より大きい希釈水B1に殺菌剤を添加することで、希釈水B2を得る第2殺菌剤添加部と、
     被処理水A2に、希釈水B2を混合することで混合水を得る混合部と、
     前記混合水に、下記式(1)または式(2)で表される量の殺菌剤を添加する第3殺菌剤添加部と、
       (XA+XB)≦XM    ・・・(1)
     (式(1)において、XA,XB,XMは、以下の殺菌剤量を表す。
      XA: 被処理水A1への殺菌剤量添加量
      XB: 希釈水B1への殺菌剤量添加量
      XM: 混合水への殺菌剤添加量)
       (CA×FA+CB×FB)/(FA+FB)<CM    ・・・(2)
     (式(2)において、CA,CB,CM,FA,FBは、以下を表す。
      CA: 被処理水A2中の殺菌剤濃度
      CB: 希釈水B2中の殺菌剤濃度
      CM: 混合水へ殺菌剤添加後への混合水中の殺菌剤濃度
      FA: 被処理水A1流量
      FB: 希釈水B1流量)
     前記混合水を濃縮水と透過水とに分離する第1半透膜処理部と、
    を備える造水システム。
  2.  前記第3殺菌剤添加部が添加する殺菌剤の量が、以下の式(3)または式(4)で示されることを特徴とする請求項1の造水システム。
       (XA+XB)≦XM≦10(XA+XB)    ・・・(3)
       (CA×FA+CB×FB)/(FA+FB)<CM<10(CA×FA+CB×FB)    ・・・(4)
  3.  前記希釈水B1が、廃水、前記廃水を生物処理して得られる生物処理水、前記廃水を半透膜処理して得られる濃縮水、および前記生物処理水を半透膜処理して得られる濃縮水のうち、少なくとも1種を含むことを特徴とする請求項1または2に記載の造水システム。
  4.  廃水または廃水を生物処理して得られる生物処理水を含む第2被処理水E10を濃縮水E12と透過水Fとに分離する第2の半透膜処理部をさらに備え、
     前記希釈水B1が、濃縮水E12を含むことを特徴とする
    請求項1に記載の造水システム。
  5.  前記第2被処理水E10に、殺菌剤Uを添加する第4殺菌剤添加部をさらに備え、
     前記第3殺菌剤添加部が添加する殺菌剤の量が以下の式(5)または式(6)で示されることを特徴とする請求項4に記載の造水システム。
      (XA+XB+X2)≦XM     ・・・(5)
      (ここで、X2は第2被処理水E10への殺菌剤添加量を表す。)
      (CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CM  ・・・(6)
     (式(6)において、C2は第2被処理水E10へ殺菌剤添加後の第2被処理水E10中の殺菌剤濃度、F2は第2被処理水E10の流量を表す。)
  6.  前記第3殺菌剤添加部が添加する殺菌剤の量が以下の式(7)または式(8)で示されることを特徴とする請求項5に記載の造水システム。
      (XA+XB+X2)≦XM≦10(XA+XB+X2)   ・・・(7)
      (CA×FA+CB×FB+C2×F2)/(FA+FB+F2)<CM<10(CA×FA+CB×FB+C2×F2)  ・・・(8)
  7.  前記第3殺菌剤添加部が添加する殺菌剤の量を、前記混合水の水温に比例するように調整する殺菌剤量調整部を更に備えることを特徴とする請求項1から6のいずれか1項に記載の造水システム。
  8.  前記第3殺菌剤添加部が添加する殺菌剤の量を、前記混合水の水温または前記第2の半透膜処理部の回収率の少なくとも一方に比例するように調整する殺菌剤量調整部を更に備えることを特徴とする請求項4から6のいずれか1項に記載の造水システム。
  9.  前記第1-第3殺菌剤添加部が、有機臭素化合物殺菌剤、クロラミンおよびクロラミン誘導体からなる群より選択される少なくとも1種の殺菌剤を添加することを特徴とする請求項1から8のいずれか1項に記載の造水システム。
  10.  被処理水A1に、殺菌剤を添加することで被処理水A2を得る第1殺菌剤添加ステップと、
     前記被処理水A1よりも塩濃度が低く、かつ有機物濃度または栄養塩濃度の少なくとも一方が前記被処理水A1より大きい希釈水B1に殺菌剤を添加することで、希釈水B2を得る第2殺菌剤添加ステップと、
     前記被処理水A2に、前記希釈水B2を混合することで混合水を得る混合ステップと、
     前記混合水に、下記式(1)または式(2)で表される量の殺菌剤を添加する第3殺菌剤添加ステップと、
       (XA+XB)≦XM    ・・・(1)
     (式(1)において、XA,XB,XMは、以下の殺菌剤量を表す。
      XA: 被処理水Aへの殺菌剤量添加量
      XB: 希釈水Bへの殺菌剤量添加量
      XM: 混合水への殺菌剤添加量)
       (CA×FA+CB×FB)/(FA+FB)<CM    ・・・(2)
     (式(2)において、CA,CB,CM,FA,FBは、以下を表す。
      CA: 被処理水A2中の殺菌剤濃度
      CB: 希釈水B2中の殺菌剤濃度
      CM: 混合水へ殺菌剤添加後への混合水中の殺菌剤濃度
      FA: 被処理水A1流量
      FB: 希釈水B1流量)
     前記混合水を濃縮水と透過水とに分離する第一の半透膜処理ステップと、
    を備える造水方法。
  11.  被処理水E10から濃縮水E12および透過水Fを生成する第2の半透膜処理部と、前記被処理水E10に殺菌剤Uを添加する第4殺菌剤添加部と、を有する第2処理装置と、
    前記濃縮水E12と、被処理水A1とを混合する混合部と、得られた混合水から、濃縮水Dおよび透過水Cを生成する第1半透膜処理部と、を有する第1処理装置と、
    を少なくとも備える造水システムであって、
     前記濃縮水E12の塩濃度は、前記被処理水A1の塩濃度よりも低く、かつ、前記濃縮水E12の有機物濃度または栄養塩濃度の少なくとも一方が、前記被処理水A1の有機物濃度または栄養塩濃度よりも大きく、
     前記被処理水E10の殺菌剤負荷よりも前記混合水A3の殺菌剤負荷のほうが大きくなるように殺菌剤を添加することを特徴とする造水システム。
  12.  前記殺菌剤負荷がDPD法で測定される全塩素または結合塩素の少なくとも一方で表される酸化力を有することを特徴とする請求項11に記載の造水システム。
  13.  前記殺菌剤負荷がD値(decimal reduction time)で表されることを特徴とする請求項11に記載の造水システム。
  14.  第1の半透膜処理部および第2の半透膜処理部で処理される処理水のpHが4以下で且つ前記殺菌剤負荷が水素イオン濃度で表されることを特徴とする請求項11に記載の造水システム。
  15.  第1の半透膜処理部および第2の半透膜処理部で処理される処理水のpHが10以上で且つ前記殺菌剤負荷が水酸化物イオン濃度で表されることを特徴とする請求項11に記載の造水システム。
  16.  前記殺菌剤負荷が、次亜塩素酸ナトリウム消費量を測定することで確認される還元力で表されることを特徴とする請求項11に記載の造水システム。
  17.  被処理水E10と濃縮水E12、被処理水A1、混合水A3、のいずれか1箇所以上に殺菌剤を添加することを特徴とする請求項11から16のいずれか1項に記載の造水システム。
     
PCT/JP2014/076217 2013-09-30 2014-09-30 造水システムおよび造水方法 WO2015046613A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201602478WA SG11201602478WA (en) 2013-09-30 2014-09-30 Fresh water generation system and fresh water generation method
CN201480054044.0A CN105579119B (zh) 2013-09-30 2014-09-30 淡水生成系统和淡水生成方法
JP2014556290A JP6447133B2 (ja) 2013-09-30 2014-09-30 造水システムおよび造水方法
US15/025,771 US20160220964A1 (en) 2013-09-30 2014-09-30 Fresh water generation system and fresh water generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013203123 2013-09-30
JP2013-203123 2013-09-30

Publications (1)

Publication Number Publication Date
WO2015046613A1 true WO2015046613A1 (ja) 2015-04-02

Family

ID=52743734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076217 WO2015046613A1 (ja) 2013-09-30 2014-09-30 造水システムおよび造水方法

Country Status (5)

Country Link
US (1) US20160220964A1 (ja)
JP (1) JP6447133B2 (ja)
CN (1) CN105579119B (ja)
SG (1) SG11201602478WA (ja)
WO (1) WO2015046613A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078988A1 (ja) * 2016-10-25 2018-05-03 オルガノ株式会社 逆浸透膜を用いる水処理方法および水処理装置
JP2018069124A (ja) * 2016-10-25 2018-05-10 オルガノ株式会社 逆浸透膜を用いる水処理装置および水処理方法
JP2018069120A (ja) * 2016-10-25 2018-05-10 オルガノ株式会社 逆浸透膜を用いる水処理方法および水処理装置
WO2023149310A1 (ja) * 2022-02-01 2023-08-10 オルガノ株式会社 水処理方法および水処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115522B2 (ja) * 2020-09-14 2022-08-09 栗田工業株式会社 脱塩装置の運転方法
CN115520934B (zh) * 2021-06-25 2024-05-03 中国石油化工股份有限公司 膜分离回收系统和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105852A (en) * 1978-02-07 1979-08-20 Nitto Electric Ind Co Ltd Solution separating method
WO2010061879A1 (ja) * 2008-11-28 2010-06-03 株式会社神鋼環境ソリューション 淡水生成方法、淡水生成装置、海水淡水化方法および海水淡水化装置
WO2011021415A1 (ja) * 2009-08-21 2011-02-24 東レ株式会社 造水方法
WO2013031543A1 (ja) * 2011-08-26 2013-03-07 株式会社日立プラントテクノロジー 海水淡水化システムおよび海水淡水化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500895B1 (ko) * 2001-04-05 2005-07-14 도레이 가부시끼가이샤 수처리용 살균제, 수처리방법 및 수처리장치
CN1714048B (zh) * 2002-10-08 2010-05-26 水质标准股份有限公司 移动式脱盐装置和系统以及生产脱盐水的方法
CN102067470B (zh) * 2008-07-14 2014-08-13 美国博通公司 用于蓝牙802.11交替mac/phy传输功率控制的方法和系统
US8345934B2 (en) * 2010-07-19 2013-01-01 Telefonica, S.A. Method for automatic storytelling for photo albums using social network context

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54105852A (en) * 1978-02-07 1979-08-20 Nitto Electric Ind Co Ltd Solution separating method
WO2010061879A1 (ja) * 2008-11-28 2010-06-03 株式会社神鋼環境ソリューション 淡水生成方法、淡水生成装置、海水淡水化方法および海水淡水化装置
WO2011021415A1 (ja) * 2009-08-21 2011-02-24 東レ株式会社 造水方法
WO2013031543A1 (ja) * 2011-08-26 2013-03-07 株式会社日立プラントテクノロジー 海水淡水化システムおよび海水淡水化方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018078988A1 (ja) * 2016-10-25 2018-05-03 オルガノ株式会社 逆浸透膜を用いる水処理方法および水処理装置
JP2018069124A (ja) * 2016-10-25 2018-05-10 オルガノ株式会社 逆浸透膜を用いる水処理装置および水処理方法
JP2018069120A (ja) * 2016-10-25 2018-05-10 オルガノ株式会社 逆浸透膜を用いる水処理方法および水処理装置
KR20190057369A (ko) * 2016-10-25 2019-05-28 오르가노 코포레이션 역침투막을 이용하는 수처리 방법 및 수처리 장치
KR102291224B1 (ko) * 2016-10-25 2021-08-19 오르가노 코포레이션 역침투막을 이용하는 수처리 방법 및 수처리 장치
JP7050414B2 (ja) 2016-10-25 2022-04-08 オルガノ株式会社 逆浸透膜を用いる水処理方法
WO2023149310A1 (ja) * 2022-02-01 2023-08-10 オルガノ株式会社 水処理方法および水処理装置

Also Published As

Publication number Publication date
CN105579119B (zh) 2018-06-29
US20160220964A1 (en) 2016-08-04
CN105579119A (zh) 2016-05-11
JPWO2015046613A1 (ja) 2017-03-09
JP6447133B2 (ja) 2019-01-09
SG11201602478WA (en) 2016-05-30

Similar Documents

Publication Publication Date Title
JP5691519B2 (ja) 造水方法
US6743363B2 (en) Method of bacteriostasis or disinfection for permselective membrane
JP5549591B2 (ja) 淡水製造方法及び淡水製造装置
JP5549589B2 (ja) 造水システム
JP6447133B2 (ja) 造水システムおよび造水方法
JP5691522B2 (ja) 造水システムおよびその運転方法
JP2008161797A (ja) 淡水製造装置の運転方法および淡水製造装置
WO2011125764A1 (ja) 逆浸透膜処理方法
WO2014115769A1 (ja) 淡水製造装置の運転方法
JP5867082B2 (ja) 淡水の製造方法
JP2009028724A (ja) 水処理方法および水処理装置
JP2014140794A (ja) 造水装置および造水方法
JP2014221450A (ja) 造水方法
JP3269496B2 (ja) 膜の殺菌方法および造水方法
JP2015123430A (ja) 造水方法
JP2004121896A (ja) 処理水の生産方法および塩水の処理装置
JP2020104038A (ja) 水処理システム運転方法及び水処理システム
JP2005040661A (ja) 淡水またはかん水の処理方法および処理装置
TW201940225A (zh) 水系統的氧化還原電位監測及/或控制方法、水處理方法、逆滲透膜處理方法、水系統的氧化還原電位的監測及/或控制裝置以及水處理裝置
JP2004344800A (ja) 淡水またはかん水の処理方法および処理装置
JP2000301148A (ja) 造水方法
MXPA00002792A (en) Method for inhibiting growth of bacteria or sterilizing around separating membrane
SA05260268B1 (ar) طريقة لتثبيط نمو البكتيريا أو تطهير ما حول الغشاء الفاصل

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480054044.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014556290

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14848884

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15025771

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14848884

Country of ref document: EP

Kind code of ref document: A1