WO2015033576A1 - セキュリティシステム、セキュリティ方法及び非一時的なコンピュータ可読媒体 - Google Patents
セキュリティシステム、セキュリティ方法及び非一時的なコンピュータ可読媒体 Download PDFInfo
- Publication number
- WO2015033576A1 WO2015033576A1 PCT/JP2014/004583 JP2014004583W WO2015033576A1 WO 2015033576 A1 WO2015033576 A1 WO 2015033576A1 JP 2014004583 W JP2014004583 W JP 2014004583W WO 2015033576 A1 WO2015033576 A1 WO 2015033576A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- suspicious
- person
- action
- security system
- store
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000009471 action Effects 0.000 claims abstract description 65
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 238000003384 imaging method Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 claims description 9
- 238000010191 image analysis Methods 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 8
- 230000006399 behavior Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19602—Image analysis to detect motion of the intruder, e.g. by frame subtraction
- G08B13/19608—Tracking movement of a target, e.g. by detecting an object predefined as a target, using target direction and or velocity to predict its new position
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19602—Image analysis to detect motion of the intruder, e.g. by frame subtraction
- G08B13/19613—Recognition of a predetermined image pattern or behaviour pattern indicating theft or intrusion
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19639—Details of the system layout
- G08B13/19645—Multiple cameras, each having view on one of a plurality of scenes, e.g. multiple cameras for multi-room surveillance or for tracking an object by view hand-over
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/28—Recognition of hand or arm movements, e.g. recognition of deaf sign language
Definitions
- the present invention relates to a security system, a security method, and a non-transitory computer-readable medium in which a security program is stored, and in particular, a security system using a person image, a security method, and a non-temporary computer in which a security program is stored. It relates to a readable medium.
- Patent Documents 1 to 5 which are related technologies, is being promoted.
- the related technology has a problem that it is difficult to accurately detect the suspicious behavior of a store clerk or a customer.
- the present invention has an object to provide a non-temporary computer-readable medium storing a security system, a security method, and a security program capable of accurately detecting a suspicious operation.
- the security system includes an image information acquisition unit that acquires input image information obtained by imaging a person in a store, a tracking unit that tracks the movement of the person's hand based on the input image information, and the tracking A suspicious motion detection unit that detects the suspicious motion of the person based on the hand motion.
- the security method obtains input image information obtained by imaging a person in a store, tracks the movement of the person's hand based on the input image information, and based on the movement of the tracked hand, The suspicious action of the person is detected.
- a non-transitory computer-readable medium storing a security program according to the present invention acquires input image information obtained by imaging a person in a store, and tracks the movement of the person's hand based on the input image information. And causing the computer to execute security processing for detecting the suspicious motion of the person based on the motion of the tracked hand.
- a non-transitory computer-readable medium in which a security system, a security method, and a security program capable of accurately detecting a suspicious operation are stored.
- FIG. 1 is a configuration diagram illustrating a configuration of a security system according to a first embodiment.
- 3 is a diagram illustrating a configuration example of a 3D camera according to Embodiment 1.
- FIG. 3 is a diagram illustrating a configuration example of a 3D camera according to Embodiment 1.
- FIG. 3 is a configuration diagram illustrating a configuration of a distance image analysis unit according to Embodiment 1.
- FIG. 3 is a flowchart showing an operation of the security system according to the first embodiment.
- 3 is a flowchart showing an operation of a distance image analysis process according to the first embodiment.
- 6 is a flowchart illustrating an operation of warning information generation processing according to the first embodiment.
- FIG. 6 is an explanatory diagram for explaining an operation of warning information generation processing according to Embodiment 1.
- FIG. 5 is a configuration diagram showing a configuration of a security system according to Embodiment 2.
- FIG. 10 is a configuration diagram illustrating a configuration of a distance image analysis unit according to a second embodiment.
- FIG. 1 shows a main configuration of the security system according to the embodiment.
- the security system 10 includes an image information acquisition unit 11, a tracking unit 12, and a suspicious operation detection unit 13.
- the image information acquisition unit 11 acquires input image information obtained by imaging a person in the store.
- the tracking unit 12 tracks (tracks) the movement of a person's hand based on the input image information.
- the suspicious motion detector 13 detects a suspicious motion of a person based on the tracked hand motion.
- the movement of the hand of a person in the store is tracked, and the suspicious movement is detected based on the tracking result. For example, by tracking the movements of customers and salesclerks in front of store shelves, it is possible to accurately detect suspicious movements leading to shoplifting and embezzlement.
- FIG. 2 shows the configuration of the security system according to the present embodiment.
- This security system is a system that detects a suspicious operation of a customer or a store clerk in a store or the like and outputs (displays) a warning (alarm) or the like.
- the customer includes all persons who have visited (entered) the store, and the store clerk includes all persons involved in the store business.
- the security system 1 includes a security device 100, a 3D camera 210, a face recognition camera 220, an in-store camera 230, and a warning device 240.
- a security device 100 for example, each configuration of the security system 1 is provided in the same store, but the security device 100 and the warning device 240 may be provided outside the store.
- each structure of the security system 1 is demonstrated as a separate apparatus here, each structure is good also as 1 or an arbitrary number of apparatuses.
- the 3D camera (three-dimensional camera) 210 is an imaging device (distance image sensor) that images and measures a target and generates a distance image (distance image information).
- the distance image includes image information obtained by imaging the object and distance information obtained by measuring the distance to the object.
- the 3D camera 210 is configured by Microsoft Kinect (registered trademark), a stereo camera, or the like. By using a 3D camera, it is possible to recognize (track) an object (such as a customer's action) including distance information, and thus highly accurate recognition processing can be performed.
- the 3D camera 210 images a customer or a store clerk at a specific position in the store in order to detect a suspicious operation by the customer or the store clerk.
- the 3D camera 210 images the product shelf (product display shelf) 300 on which the product 301 is arranged (displayed), and in particular, the customer 400 who is trying to contact the product 301 in front of the product shelf 300.
- the 3D camera 210 images a product arrangement region of the product shelf 300 and a region where the customer picks up / views the product in front of the product shelf 300, that is, a presentation region where the product shelf 300 presents the product to the customer.
- the 3D camera 210 is located on the product shelf 300 and a position where the customer 400 in front of (in the vicinity of) the product shelf 300 can take an image, for example, above (such as a ceiling) or in front of the product shelf 300 (such as a wall), or on the product shelf 300. is set up.
- the 3D camera 210 captures an image of the cashier counter 310 in which the cash register 311 is installed, and in particular, the clerk 410 who stands in front of the cashier counter 310 and sells the product 301 to the customer 400 or money
- the clerk 410 trying to contact 302 is imaged.
- the 3D camera 210 has a register counter 310 and a position where the clerk 410 in front of (in the vicinity of) the register counter 310 can take an image, for example, above or in front of the register counter 310 (ceiling, etc.) (in front of the wall, etc.)
- the cash register 311) is installed.
- 3D camera 210 is demonstrated as an apparatus which images the goods shelf 300 and the cash register counter 310, it is comprised not only with 3D camera but with the general camera (2D camera) which outputs only the imaged image. Also good. In this case, tracking is performed using only image information.
- the face recognition camera 220 and the in-store camera 230 are imaging devices (2D cameras) that generate images obtained by imaging a target.
- the face recognition camera 220 is installed at an entrance of a store or the like in order to recognize a customer's face, and captures the face of the customer who visits the store and generates a face image.
- the in-store camera 230 is arranged at a plurality of positions in the store in order to detect a crowded situation by customers in the store, and images each store in the store to generate an in-store image.
- the face recognition camera 220 and the in-store camera 230 may be configured with a 3D camera. By using a 3D camera, the customer's face and the crowded situation in the store can be accurately recognized.
- the warning device 240 is a device that notifies (outputs) warning information (alarm) to a monitor such as a store manager, manager, or guard, and records it.
- the method of notifying (outputting) the monitor may be any method, for example, displaying characters or images on a display device, or outputting sound by a speaker or the like.
- the warning device 240 is installed at a position where the observer can visually recognize (can hear).
- the warning device 240 may be, for example, a shelf, a cash register, a security guard room, an employee terminal in the store, or a monitoring device connected to the outside of the store via a network.
- the warning device 240 is configured by a computer including a display device and a storage device such as a personal computer and a server computer.
- the security device 100 includes a distance image analysis unit 110, a person recognition unit 120, an in-store situation analysis unit 130, a warning information generation unit 140, a suspicious operation information DB (database) 150, and a 3D moving image information recording unit 160.
- the suspicious person information DB 170 is provided.
- each of these blocks will be described as a function of the security device 100, but other configurations may be used as long as an operation according to the present embodiment to be described later can be realized.
- Each configuration in the security device 100 is configured by hardware and / or software, and may be configured by one piece of hardware or software, or may be configured by a plurality of pieces of hardware or software.
- Each function (each process) of the security device 100 may be realized by a computer having a CPU, a memory, and the like.
- a security program for performing the security method (security processing) in the embodiment may be stored in the storage device, and each function may be realized by executing the security program stored in the storage device by the CPU.
- Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media include magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R / W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable ROM), flash ROM, RAM (random access memory)) are included.
- the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
- the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- the distance image analysis unit 110 acquires the distance image generated by the 3D camera 210, tracks the detection target based on the acquired distance image, and recognizes the operation.
- the distance image analysis unit 110 mainly tracks and recognizes the operation of the customer or the store clerk.
- the distance image analysis unit 110 refers to the suspicious operation information DB 150 in order to recognize the suspicious operation of the customer or the store clerk included in the distance image.
- the distance image analysis unit 110 also performs detection necessary for recognizing a suspicious operation and determining a suspicious level. For example, the time during which the suspicious operation is performed, the quantity of the target product, the amount of money, the scale of the target action (such as the size of the wound), and the like are also detected. Further, the distance image analysis unit 110 records the distance image acquired from the 3D camera 210 in the 3D moving image information recording unit 160 as a 3D moving image.
- the person recognition unit 120 acquires a customer's face image generated by the face recognition camera 220 and recognizes a person included in the acquired face image.
- the person recognizing unit 120 refers to the suspicious person information DB 170 and determines whether or not the person is a suspicious person by comparing with the face image.
- the in-store situation analysis unit 130 acquires the in-store image generated by the in-store camera 230, analyzes the number of customers in the store based on the acquired in-store image, and detects the congestion state in the store.
- the warning information generation unit 140 generates warning information to be reported to the supervisor based on the detection results of the distance image analysis unit 110, the person recognition unit 120, and the in-store situation analysis unit 130, and the generated warning information is sent to the warning device 240. Output.
- the warning information generation unit 140 includes warning information based on the actions of the customer and the store clerk detected by the distance image analysis unit 110, warning information based on the suspicious person recognized by the person recognition unit 120, and the in-store situation analysis unit 130 Generate and output warning information based on the analyzed congestion situation in the store. Further, the warning information generation unit 140 may record the generated warning information in the 3D moving image of the 3D moving image information recording unit 160.
- the suspicious operation information DB 150 stores a suspicious operation pattern (suspicious operation pattern information) for detecting a suspicious operation by a customer or a store clerk.
- the suspicious action is an action (preliminary action) suspected of an illegal act by a person such as a customer or a store clerk, and may include an illegal act.
- the suspicious action information DB 150 stores, for example, a merchandise fraud acquisition pattern 151, a merchandise fraud modification pattern 152, a money fraud acquisition pattern 153, and the like as suspicious action patterns.
- the merchandise fraud acquisition pattern 151 is pattern information of an operation for obtaining a merchandise illegally, and includes, for example, an operation in which a customer puts a merchandise in an illegal place other than a cart or a cart.
- the merchandise fraud modification pattern 152 is pattern information of an operation for illegally modifying a merchandise, and includes, for example, an operation in which a customer destroys or damages the merchandise.
- the money fraud acquisition pattern 153 is pattern information of an operation for illegally acquiring money, and includes, for example, an operation in which a store clerk puts money into an illegal place such as a pocket from a cash register.
- the suspicious person information DB 170 stores suspicious person identification information for detecting that the customer who visited the store is a suspicious person.
- Suspicious persons include previous persons, addicts, and persons requiring attention.
- Suspicious person identification information includes name, gender, age, facial image information (image), and the like.
- the suspicious person information DB 170 acquires and stores suspicious person information such as previous persons from the cloud (cloud network) 250 and the like, and suspicious persons such as addicts (attention required) based on the history of the store and the like. Store information.
- FIG. 4 shows the configuration of the distance image analysis unit 110 of the security device 100.
- the distance image analysis unit 110 includes a distance image acquisition unit 111, a region detection unit 112, a hand tracking unit 113, and a hand motion recognition unit 114.
- a configuration for recognizing the movement of a person's hand will be mainly described, a person's face, line of sight, merchandise, money, and the like can be detected by the same configuration.
- the distance image acquisition unit 111 acquires a distance image including a customer and a store clerk captured and generated by the 3D camera 210.
- the area detection unit 112 detects an area of each part of the customer or salesclerk included in the distance image acquired by the distance image acquisition unit 111.
- the hand tracking unit 113 tracks the operation of the customer (store) 's hand (hand) detected by the area detection unit 112.
- the hand motion recognition unit 114 recognizes a suspicious motion of a customer or a clerk based on the hand (hand) motion tracked by the hand tracking unit 113.
- the hand movement recognition unit 114 Based on the suspicious motion information DB 150, the hand movement recognition unit 114, for example, a merchandise fraud acquisition pattern such as putting a merchandise in a clothes pocket, a merchandise fraud modification pattern such as breaking a merchandise, and money in a pocket of clothes. It is determined whether or not the money fraud acquisition pattern, such as putting in, is applicable.
- a customer enters a store and approaches a shelf in the store (S101).
- the face recognition camera 220 in the store generates an image of the customer's face
- the security device 100 checks the face image against suspicious person information such as a previous history / careful list (S102). That is, the person recognizing unit 120 of the security device 100 compares the face image information of the suspicious person (previous record / precautionary list) stored in the suspicious person information DB 170 with the face image captured by the face recognition camera 220. By searching for a matching person, it is determined whether or not the customer is a suspicious person.
- the suspicious operation such as the customer putting the product into a place other than the cart / cart is performed (S103).
- the 3D camera 210 near the shelf images the customer's hand, and the security device 100 recognizes the movement of the customer's hand from the distance image of the 3D camera 210 (S104). That is, the distance image analysis unit 110 of the security device 100 tracks a distance image obtained by capturing the customer's hand and recognizes that the customer has picked up the product and put it in an illegal place.
- the security device 100 determines a suspicious action based on the action at hand of the customer recognized in S104, and displays and records a warning on the warning device 240 such as a salesclerk terminal or a security terminal (S105). That is, the warning information generation unit 140 of the security device 100 generates and outputs warning information indicating the determined suspicious action. In addition, the warning information generation unit 140 generates and outputs warning information based on the suspicious person recognized in S102.
- the store clerk approaches the cashier counter (S106) and performs suspicious behavior such as putting money outside the cashier (S107). Then, as in the case of the customer's operation, the security device 100 recognizes the movement of the store clerk from the distance image of the 3D camera 210 (S104), and displays and records a warning on the warning device 240 (S105). .
- FIG. 6 shows details of the recognition process (tracking process) executed by the distance image analysis unit 110 in S104 of FIG. Note that the processing in FIG. 6 is an example, and the hand movement may be recognized by other image analysis processing. Similarly, a person's face, line of sight, merchandise, money, or the like may be detected.
- the distance image acquisition unit 111 acquires a distance image including a customer or a clerk from the 3D camera 210 (S201).
- the area detection unit 112 detects a customer or salesperson person included in the distance image acquired in S201 (S202), and further detects an area of each area of the person (S203).
- the region detection unit 112 uses a discriminator such as SVM (Support Vector Vector Machine) to detect a person (customer or store clerk) based on the image and distance included in the distance image, and estimates the joint of the detected person By doing so, the human skeleton is detected.
- the area detection unit 112 detects the area of each part such as a human hand (hand) based on the detected skeleton.
- the hand tracking unit 113 tracks the action of the customer or the store clerk detected in S203 (S204).
- the hand tracking unit 113 tracks the skeleton around the customer's hand based on the image and the distance included in the distance image, and detects the movement of the finger or palm of the hand.
- the hand motion recognition unit 114 extracts the hand motion feature based on the hand motion tracked in S204 (S205), and recognizes the suspicious motion of the customer or the clerk based on the extracted feature (S205). S206).
- the hand movement recognition unit 114 extracts changes in the orientation, angle, and movement amount of fingers and palms (wrists) as feature amounts.
- the hand movement recognition unit 114 detects that the customer is holding the product from the angle of the finger, and if the finger is released from the product with the hand close to the clothes pocket, the customer wears the product. Detecting that it is in your pocket. Then, the hand motion recognition unit 114 compares the detected motion pattern with the merchandise fraud acquisition pattern 151, the merchandise fraud modification pattern 152, and the money fraud acquisition pattern 153 in the suspicious motion information DB 150, and corresponds to these motion patterns. In the case, it is determined that the operation is suspicious. Further, the features of the image of the merchandise fraud acquisition pattern 151, the merchandise fraud modification pattern 152, and the money fraud acquisition pattern 153 are learned in advance, and the state of the hand is identified by comparing the learned feature amount with the detected feature amount. May be.
- FIG. 7 shows details of the warning output process executed in S104 and S105 of FIG.
- the distance image analysis unit 110 it is determined whether or not the customer or the store clerk has performed a suspicious operation (S301). For example, the customer determines an operation such as putting a product into a pocket / hand-held bag or the like other than the product basket / cart, or an operation such as breaking the product, scratching it, mixing a foreign object, or changing the arrangement illegally.
- the store clerk determines operations such as dressing sales, embedding the product (putting money into a pocket or the like), and delivering the product to a conspiring customer without receiving a regular price.
- the warning information generation unit 140 acquires suspicious person information (S302), and acquires the congestion status in the store (S303).
- the warning information generation unit 140 acquires suspicious person information indicating whether or not the customer is a suspicious person from the person recognition unit 120 in order to provide warning information based on a person recognition result based on a face image of the face recognition camera 220. Further, the warning information generation unit 140 acquires the congestion status in the store from the store status analysis unit 130 in order to provide warning information based on the congestion status analysis result based on the store image of the store camera 230.
- acquisition of suspicious person information and acquisition of the congestion status may be omitted before the customer is recognized or before the analysis of the congestion status and when each information is unnecessary.
- the warning information generation unit 140 determines a suspicious level for the detected suspicious operation of the customer or the store clerk (S304). For example, a suspicious level is assigned to each suspicious action pattern in the suspicious action information DB 150, and the suspicious level is determined with reference to the suspicious action information DB 150.
- FIG. 8 shows an example of a suspicious level for a suspicious action.
- a level is set between suspicious levels 1-5.
- the higher the suspicious level the stronger the suspicion of fraud.
- the suspicious action information DB 150 is referred to and the suspicious level 3 is set. Then, the suspicious level is adjusted in consideration of other parameters.
- threshold values are set for the operation time, the number of products, and the price of the product.
- the suspicious level is increased according to the amount exceeding the threshold, and when the time is longer than the threshold or the number of products is If the price of the product is low, the suspicious level is reduced according to the amount below the threshold.
- the suspicious action information DB 150 is referred to as suspicious. Level 3 is assumed. Then, the suspicious level is adjusted in consideration of other parameters.
- threshold values are set for the size (ratio) of the wound, the operation time, the number of products, and the price of the product.
- the suspicious behavior information DB 150 is referred to and the suspicious level 3 is set. Then, the suspicious level is adjusted in consideration of other parameters.
- threshold values are set for the operation time and the amount of money. If the time is shorter than this threshold or the amount is high, the suspicious level is increased according to the amount exceeding the threshold, and if the time is longer than the threshold or the amount is cheap, the amount below the threshold Reduce the suspicious level accordingly.
- the suspicious action is likely to be performed, so the suspicious level is increased.
- the suspicious level may be increased when the customer or the store clerk looks around.
- the suspicious level is determined based on the suspicious person or the situation in the store, but this may be taken into account before the suspicious action is detected. For example, warning information (attention information) may be output even if a suspicious operation is not detected when the customer is a suspicious person, the situation in the store is congested / unexploited, or the bag is opened. Further, in this case, the threshold value for detecting the suspicious action (for example, the time until the suspicious action is detected) may be lowered so that the suspicious action can be easily detected.
- warning information attention information
- the threshold value for detecting the suspicious action for example, the time until the suspicious action is detected
- the warning information generation unit 140 outputs warning information based on the determination result (S305).
- the warning information generation unit 140 outputs the detected suspicious action and the determined suspicious level to the warning device 240.
- the output of warning information may be controlled based on the suspicious level.
- the suspicious level is smaller than the predetermined value, no warning is required, so that it is not necessary to output to the warning device 240. In this case, only the recording may be performed without displaying the warning device 240.
- the suspicious action and the suspicious level may be recorded in the 3D video information.
- recording the suspicious level it is possible to extract and confirm only before and after the portion with a high suspicious level, and to efficiently confirm the content of the 3D moving image.
- the movement of the customer or the store clerk is observed by the 3D camera arranged at a position where the customer (shopper) or the store clerk in front of the product shelf or the cash register can be seen, and the customer or the store clerk is suspicious. Recognize movement. When a suspicious operation is recognized, warning information (alarm) is notified to a shelf, a cash register, a security guard room, an employee terminal in the store, and the operation is recorded.
- the movement of the hand can be accurately grasped by the 3D camera, and the operations such as illegally obtaining the product, illegally modifying the product, illegally obtaining money, etc. can be grasped, so that the suspiciously accurately. It is possible to detect an action and output warning information corresponding to the suspicious action. Therefore, it is possible to automate monitoring of suspicious actions / injustices, efficiently enhance security, and improve profit margins.
- the present embodiment is an example of detecting a suspicious operation by detecting a deviating operation from the normal operation information pattern as a complement to the suspicious operation recognition in the first embodiment. That is, not limited to the example of the first embodiment, the store clerk dresses sales, embezzles the product (puts money into a pocket, etc.), delivers the product to the conspiring customer without receiving a regular price, etc. Instead of detecting this, it may be determined that the operation is suspicious by detecting a deviation from the operation of the store clerk's normal cash register work or the like.
- FIG. 9 shows the configuration of the security system according to the present embodiment.
- the security device 100 further includes a normal operation information DB 180 compared to the configuration of FIG. 2 of the first embodiment.
- the normal operation information DB 180 stores a normal operation pattern (normal operation pattern information) indicating a normal operation by a customer or a store clerk.
- the normal operation information DB 180 stores, for example, a product normal acquisition pattern 181, a product normal change pattern 182, a money normal acquisition pattern 183, and the like as normal operation patterns.
- the product normal acquisition pattern 181 is pattern information of an operation for acquiring a product normally, and includes, for example, an operation in which a customer puts a product into a basket or cart.
- the product normal change pattern 182 is pattern information of an operation for changing the product normally, and includes, for example, an operation in which the store clerk changes the display of the product.
- the money normal acquisition pattern 183 is pattern information of an operation for acquiring money normally, and includes, for example, a normal cashier operation operation of the store clerk, an operation in which the store clerk delivers money from the register to the customer.
- FIG. 10 shows a configuration of the distance image analysis unit 110 of the security device 100 according to the present embodiment.
- the present embodiment further includes a detachment behavior detection unit 115 with respect to the configuration of FIG. 4 of the first embodiment.
- the detachment behavior detection unit 115 detects whether the operation of the customer or the clerk is out of the normal operation (suspicious operation) based on the operation of the hand (hand) tracked by the hand tracking unit 113.
- the detachment behavior detection unit 115 refers to the normal operation information DB 180, compares the detected operation of the customer or the store clerk with the product normal acquisition pattern 181, the product normal change pattern 182 and the money normal acquisition pattern 183, and the operation of the customer or the store clerk. Is not in these operation patterns, it is determined that the operation is suspicious.
- the suspicious level may be set according to the degree of deviation from the normal operation pattern (degree of mismatch).
- the suspicious motion may be determined in consideration of both the detection result by the hand motion recognition unit 114 using the illegal motion pattern and the detection result by the detachment behavior detection unit 115 using the normal motion pattern. For example, when either the hand movement recognition unit 114 or the detachment action detection unit 115 determines that the suspicious action is suspicious, it may be determined that the movement is suspicious, or both the hand movement recognition unit 114 and the detachment action detection unit 115 If it is determined to be suspicious, it may be determined that the operation is suspicious.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Alarm Systems (AREA)
- Burglar Alarm Systems (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
実施の形態の説明に先立って、実施の形態の特徴についてその概要を説明する。図1は、実施の形態に係るセキュリティシステムの主要な構成を示している。
以下、図面を参照して実施の形態1について説明する。図2は、本実施の形態に係るセキュリティシステムの構成を示している。このセキュリティシステムは、店舗等において、顧客や店員の不審動作を検出し、警告(警報)の出力(表示)等を行うシステムである。なお、顧客には、店舗に来店(入店)した全ての人物を含み、店員には、店舗の業務に関わる全ての人物を含む。
以下、図面を参照して実施の形態2について説明する。本実施の形態は、実施の形態1における不審動作認識の補完として、正常動作情報パターンからの外れ動作を検知することで、不審動作を検知する例である。すなわち、実施の形態1の例に限らず、店員が、売上を着服する、商品を横領(ポケットなどへ金銭を入れる)する、正規の代金を受け取らずに共謀する顧客に商品を渡す等の動作を検知するのでは無く、店員の通常のレジ作業等の動作からの逸脱を検知することで、不審動作と判定してもよい。
11 画像情報取得部
12 トラッキング部
13 不審動作検出部
100 セキュリティ装置
110 距離画像解析部
111 距離画像取得部
112 領域検出部
113 手元トラッキング部
114 手元動作認識部
115 外れ行動検知部
120 人物認識部
130 店内状況解析部
140 警告情報生成部
150 不審動作情報DB
151 商品不正取得パターン
152 商品不正改変パターン
153 金銭不正取得パターン
160 動画情報記録部
170 不審者情報DB
180 正常動作情報DB
181 商品正常取得パターン
182 商品正常変更パターン
183 金銭正常取得パターン
210 3Dカメラ
220 顔認識カメラ
230 店内カメラ
240 警告装置
300 商品棚
301 商品
302 金銭
310 レジカウンター
311 レジ
400 顧客
410 店員
Claims (15)
- 店舗内の人物を撮像した入力画像情報を取得する画像情報取得手段と、
前記入力画像情報に基づいて、前記人物の手の動作をトラッキングするトラッキング手段と、
前記トラッキングした手の動作に基づいて、前記人物の不審動作を検出する不審動作検出手段と、
を備えるセキュリティシステム。 - 前記入力画像情報は、対象を撮像した画像情報と前記対象までの距離を計測した距離情報を含む距離画像情報である、
請求項1に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記手の動作に基づいて、前記人物が商品を不正に取得する動作を検出する、
請求項1または2に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記手の動作に基づいて、前記人物が商品を不正に改変する動作を検出する、
請求項1乃至3のいずれか一項に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記手の動作に基づいて、前記人物が金銭を不正に取得する動作を検出する、
請求項1乃至4のいずれか一項に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記検出した不審動作に応じた不審レベルを判定する、
請求項1乃至5のいずれか一項に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記不審動作の動作時間の長さに応じて前記不審レベルを判定する、
請求項6に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記不審動作に関する商品の数に応じて前記不審レベルを判定する、
請求項6または7に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記不審動作に関する金額に応じて前記不審レベルを判定する、
請求項6乃至8のいずれか一項に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記人物が不審者であるか否かに応じて前記不審レベルを判定する、
請求項6乃至9のいずれか一項に記載のセキュリティシステム。 - 前記不審動作検出手段は、前記店舗の混雑状況に応じて前記不審レベルを判定する、
請求項6乃至10のいずれか一項に記載のセキュリティシステム。 - 前記検出された不審動作に応じて警告を出力する警告出力手段を備える、
請求項1乃至11のいずれか一項に記載のセキュリティシステム。 - 前記判定された不審レベルに応じて、前記不審動作の警告を出力する警告出力手段を備える、
請求項6乃至11のいずれか一項に記載のセキュリティシステム。 - 店舗内の人物を撮像した入力画像情報を取得し、
前記入力画像情報に基づいて、前記人物の手の動作をトラッキングし、
前記トラッキングした手の動作に基づいて、前記人物の不審動作を検出する、
セキュリティ方法。 - 店舗内の人物を撮像した入力画像情報を取得し、
前記入力画像情報に基づいて、前記人物の手の動作をトラッキングし、
前記トラッキングした手の動作に基づいて、前記人物の不審動作を検出する、
セキュリティ処理をコンピュータに実行させるためのセキュリティプログラムが格納された非一時的なコンピュータ可読媒体。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480048366.4A CN105518755A (zh) | 2013-09-06 | 2014-09-05 | 安全系统、安全方法和非暂时性计算机可读介质 |
JP2015535321A JP6249021B2 (ja) | 2013-09-06 | 2014-09-05 | セキュリティシステム、セキュリティ方法及びセキュリティプログラム |
US14/916,702 US20160210829A1 (en) | 2013-09-06 | 2014-09-05 | Security system, security method, and non-transitory computer readable medium |
US16/126,818 US11354991B2 (en) | 2013-09-06 | 2018-09-10 | Security system, security method, and non-transitory computer readable medium |
US16/126,777 US10573141B2 (en) | 2013-09-06 | 2018-09-10 | Security system, security method, and non-transitory computer readable medium |
US16/126,729 US20190005785A1 (en) | 2013-09-06 | 2018-09-10 | Security system, security method, and non-transitory computer readable medium |
US17/743,647 US11688256B2 (en) | 2013-09-06 | 2022-05-13 | Security system, security method, and non-transitory computer readable medium |
US18/197,397 US12039844B2 (en) | 2013-09-06 | 2023-05-15 | Security system, security method, and non-transitory computer readable medium |
US18/675,341 US20240321071A1 (en) | 2013-09-06 | 2024-05-28 | Security system, security method, and non-transitory computer readable medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-185130 | 2013-09-06 | ||
JP2013185130 | 2013-09-06 |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/916,702 A-371-Of-International US20160210829A1 (en) | 2013-09-06 | 2014-09-05 | Security system, security method, and non-transitory computer readable medium |
US16/126,777 Continuation US10573141B2 (en) | 2013-09-06 | 2018-09-10 | Security system, security method, and non-transitory computer readable medium |
US16/126,729 Continuation US20190005785A1 (en) | 2013-09-06 | 2018-09-10 | Security system, security method, and non-transitory computer readable medium |
US16/126,818 Continuation US11354991B2 (en) | 2013-09-06 | 2018-09-10 | Security system, security method, and non-transitory computer readable medium |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015033576A1 true WO2015033576A1 (ja) | 2015-03-12 |
Family
ID=52628072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004583 WO2015033576A1 (ja) | 2013-09-06 | 2014-09-05 | セキュリティシステム、セキュリティ方法及び非一時的なコンピュータ可読媒体 |
Country Status (4)
Country | Link |
---|---|
US (7) | US20160210829A1 (ja) |
JP (1) | JP6249021B2 (ja) |
CN (2) | CN105518755A (ja) |
WO (1) | WO2015033576A1 (ja) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194759A (ja) * | 2015-03-31 | 2016-11-17 | 綜合警備保障株式会社 | 警備システム及び警備方法 |
JP2017062594A (ja) * | 2015-09-24 | 2017-03-30 | 日本電気株式会社 | 迷惑行為者推定システム、迷惑行為者推定システムの制御方法及び制御プログラム |
JP2017097599A (ja) * | 2015-11-24 | 2017-06-01 | 宮田 清蔵 | 例外行動顧客の判定方法及び例外行動顧客の判定装置 |
JP2017146957A (ja) * | 2016-02-19 | 2017-08-24 | トヨタ自動車株式会社 | 深層畳み込みニューラルネットワークによるレイヤベースの物体検出の強化 |
JP2018018150A (ja) * | 2016-07-25 | 2018-02-01 | ユニティガードシステム株式会社 | 防犯システム、防犯方法、及びロボット |
JP2018026131A (ja) * | 2016-08-09 | 2018-02-15 | ダンロップスポーツ株式会社 | 動作解析装置 |
JP2018037075A (ja) * | 2016-08-29 | 2018-03-08 | パナソニックIpマネジメント株式会社 | 不審者通報システム及び不審者通報方法 |
JP2018181159A (ja) * | 2017-04-19 | 2018-11-15 | ユニティガードシステム株式会社 | 防犯システム、防犯方法、及びロボット |
WO2019171573A1 (ja) * | 2018-03-09 | 2019-09-12 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
WO2019225232A1 (ja) * | 2018-05-23 | 2019-11-28 | 株式会社日立製作所 | 監視装置、監視システムおよび監視方法 |
JP2020077328A (ja) * | 2018-11-09 | 2020-05-21 | セコム株式会社 | 店舗装置 |
JP2020077330A (ja) * | 2018-11-09 | 2020-05-21 | セコム株式会社 | 店舗装置 |
JP2020154730A (ja) * | 2019-03-20 | 2020-09-24 | アースアイズ株式会社 | 監視装置、監視システム、及び、監視方法 |
JP2020182146A (ja) * | 2019-04-26 | 2020-11-05 | アースアイズ株式会社 | 監視装置、及び、監視方法 |
JP2020184197A (ja) * | 2019-05-08 | 2020-11-12 | 株式会社オレンジテクラボ | 情報処理装置、画像撮影装置、情報処理プログラム及び画像撮影プログラム |
JPWO2021033597A1 (ja) * | 2019-08-20 | 2021-02-25 | ||
JP2021073595A (ja) * | 2021-01-26 | 2021-05-13 | 日本電気株式会社 | 情報処理システム、情報処理方法、及びプログラム |
JP2021081804A (ja) * | 2019-11-14 | 2021-05-27 | 株式会社リコー | 状態認識装置、状態認識方法及び状態認識プログラム |
JP2021166399A (ja) * | 2020-01-15 | 2021-10-14 | 日本電気株式会社 | 画像処理システム、画像処理方法及びプログラム |
JP2022036983A (ja) * | 2018-03-09 | 2022-03-08 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
WO2022092032A1 (ja) * | 2020-10-30 | 2022-05-05 | 株式会社Vaak | 行動推定装置、行動推定方法、プログラム及び行動推定システム |
JP7085257B1 (ja) | 2022-03-17 | 2022-06-16 | 株式会社Iso | 動画解析サービス提供システム、動画解析サービス提供プログラム、及び動画解析サービス提供方法 |
JP2022190576A (ja) * | 2021-06-14 | 2022-12-26 | 東芝テック株式会社 | 防犯システムおよびプログラム |
JPWO2023275968A1 (ja) * | 2021-06-29 | 2023-01-05 | ||
JP2023007363A (ja) * | 2021-06-30 | 2023-01-18 | 富士通株式会社 | 情報処理プログラム、情報処理方法、および情報処理装置 |
JPWO2023152825A1 (ja) * | 2022-02-09 | 2023-08-17 | ||
EP4386661A4 (en) * | 2021-08-12 | 2024-10-09 | Sony Semiconductor Solutions Corporation | Behavior analysis device, behavior analysis method, behavior analysis program, imaging device and behavior analysis system |
JP2024177934A (ja) * | 2023-06-12 | 2024-12-24 | 株式会社寺岡精工 | 情報処理装置及びプログラム |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015033576A1 (ja) * | 2013-09-06 | 2015-03-12 | 日本電気株式会社 | セキュリティシステム、セキュリティ方法及び非一時的なコンピュータ可読媒体 |
US20150206188A1 (en) * | 2014-01-17 | 2015-07-23 | Panasonic Intellectual Property Corporation Of America | Item presentation method, and information display method |
JP6197952B2 (ja) * | 2014-05-12 | 2017-09-20 | 富士通株式会社 | 商品情報出力方法、商品情報出力プログラムおよび制御装置 |
US20180002109A1 (en) * | 2015-01-22 | 2018-01-04 | Nec Corporation | Shelf space allocation management device and shelf space allocation management method |
US10360572B2 (en) * | 2016-03-07 | 2019-07-23 | Ricoh Company, Ltd. | Image processing system, method and computer program product for evaluating level of interest based on direction of human action |
JP6662141B2 (ja) * | 2016-03-25 | 2020-03-11 | 富士ゼロックス株式会社 | 情報処理装置及びプログラム |
GB2557920B (en) * | 2016-12-16 | 2020-03-04 | Canon Kk | Learning analytics |
SG10201610686SA (en) * | 2016-12-20 | 2018-07-30 | Mastercard International Inc | Systems and methods for processing a payment transaction authorization request |
JP6981463B2 (ja) * | 2017-03-06 | 2021-12-15 | 日本電気株式会社 | 商品監視装置、商品監視システム、出力先装置、商品監視方法、表示方法及びプログラム |
WO2018204837A1 (en) * | 2017-05-05 | 2018-11-08 | Walmart Apollo, Llc | System and method for automatically restocking items on shelves using a conveyor system |
CN107886667A (zh) * | 2017-10-11 | 2018-04-06 | 深圳云天励飞技术有限公司 | 报警方法及装置 |
JP2019133437A (ja) * | 2018-01-31 | 2019-08-08 | キヤノン株式会社 | 情報処理装置、システム、情報処理装置の制御方法、及び、プログラム |
RU2679218C1 (ru) * | 2018-02-06 | 2019-02-06 | Акционерное общество Научно-производственный центр "Электронные вычислительно-информационные системы" (АО НПЦ "ЭЛВИС") | Система и способ контроля перемещения людей |
CN108805495A (zh) * | 2018-05-31 | 2018-11-13 | 京东方科技集团股份有限公司 | 物品存放管理方法和系统及计算机可读介质 |
CN108921098B (zh) * | 2018-07-03 | 2020-08-18 | 百度在线网络技术(北京)有限公司 | 人体运动分析方法、装置、设备及存储介质 |
US11521460B2 (en) | 2018-07-25 | 2022-12-06 | Konami Gaming, Inc. | Casino management system with a patron facial recognition system and methods of operating same |
US10878657B2 (en) | 2018-07-25 | 2020-12-29 | Konami Gaming, Inc. | Casino management system with a patron facial recognition system and methods of operating same |
CN109271847B (zh) * | 2018-08-01 | 2023-04-07 | 创新先进技术有限公司 | 无人结算场景中异常检测方法、装置及设备 |
CN109308780A (zh) * | 2018-10-19 | 2019-02-05 | 杭州虹晟信息科技有限公司 | 基于物联网的智能家居安防监控系统 |
JP7408300B2 (ja) * | 2019-06-04 | 2024-01-05 | 東芝テック株式会社 | 店舗管理装置、電子レシートシステム及び制御プログラム |
EP3839855B1 (de) * | 2019-12-17 | 2024-04-03 | Diebold Nixdorf Systems GmbH | Selbstbedienungs-registrierterminal und verfahren |
JP7514770B2 (ja) * | 2021-01-14 | 2024-07-11 | 東芝テック株式会社 | 不正行為認識装置及びその制御プログラム、不正行為認識方法 |
JP7318679B2 (ja) * | 2021-07-30 | 2023-08-01 | 富士通株式会社 | 情報処理プログラム、情報処理方法、および情報処理装置 |
JP7318680B2 (ja) | 2021-07-30 | 2023-08-01 | 富士通株式会社 | 情報処理プログラム、情報処理方法、および情報処理装置 |
JP7658237B2 (ja) * | 2021-09-29 | 2025-04-08 | 富士通株式会社 | 推定プログラム、推定方法、および推定装置 |
CN114708696B (zh) * | 2022-04-02 | 2023-06-16 | 河南大学 | 基于上肢微动作识别的电梯轿厢扒窃行为监控方法及系统 |
KR102810148B1 (ko) * | 2022-04-28 | 2025-05-19 | 한국정보통신주식회사 | 무인점포에 비치된 상품의 도난을 방지하는 전자장치 및 이의 동작방법 |
JP2024089579A (ja) * | 2022-12-21 | 2024-07-03 | 富士通株式会社 | アラート出力プログラム、アラート出力方法及び情報処理装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61260391A (ja) * | 1985-05-14 | 1986-11-18 | 三菱電機株式会社 | 監視制御装置 |
JPS62115388A (ja) * | 1985-11-14 | 1987-05-27 | Matsushita Electric Works Ltd | 測距型異常監視センサ |
US6421462B1 (en) * | 1998-02-06 | 2002-07-16 | Compaq Computer Corporation | Technique for differencing an image |
US20040120581A1 (en) * | 2002-08-27 | 2004-06-24 | Ozer I. Burak | Method and apparatus for automated video activity analysis |
JP2010238186A (ja) * | 2009-03-31 | 2010-10-21 | Sogo Keibi Hosho Co Ltd | 監視装置及び監視方法 |
JP2012032910A (ja) * | 2010-07-29 | 2012-02-16 | Secom Co Ltd | 通報装置 |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7036094B1 (en) * | 1998-08-10 | 2006-04-25 | Cybernet Systems Corporation | Behavior recognition system |
EP1406671A1 (en) | 2001-03-12 | 2004-04-14 | Sub Q, Inc. | Methods for sterilizing cross-linked gelatin compositions |
US20050108063A1 (en) * | 2003-11-05 | 2005-05-19 | Madill Robert P.Jr. | Systems and methods for assessing the potential for fraud in business transactions |
US7631808B2 (en) * | 2004-06-21 | 2009-12-15 | Stoplift, Inc. | Method and apparatus for detecting suspicious activity using video analysis |
EP1872307A4 (en) * | 2005-03-29 | 2012-10-03 | Stoplift Inc | METHOD AND APPARATUS FOR DETECTING SUSPICENT ACTIVITY USING VIDEO ANALYSIS |
US9036028B2 (en) * | 2005-09-02 | 2015-05-19 | Sensormatic Electronics, LLC | Object tracking and alerts |
WO2008008505A2 (en) * | 2006-07-14 | 2008-01-17 | Objectvideo, Inc. | Video analytics for retail business process monitoring |
JP2008257487A (ja) * | 2007-04-05 | 2008-10-23 | Multi Solution:Kk | 顔認証応用万引き検知システム |
US7844105B2 (en) * | 2007-04-23 | 2010-11-30 | Mitsubishi Electric Research Laboratories, Inc. | Method and system for determining objects poses from range images |
JP2009009231A (ja) | 2007-06-26 | 2009-01-15 | Toshiba Corp | セキュリティ管理システムおよびセキュリティ管理方法 |
JP4972491B2 (ja) | 2007-08-20 | 2012-07-11 | 株式会社構造計画研究所 | 顧客動作判定システム |
US20090055205A1 (en) * | 2007-08-23 | 2009-02-26 | Igt | Multimedia player tracking infrastructure |
WO2009054119A1 (ja) * | 2007-10-26 | 2009-04-30 | Panasonic Corporation | 状況判定装置、状況判定方法、状況判定プログラム、異常判定装置、異常判定方法、異常判定プログラムおよび混雑推定装置 |
JP2010094332A (ja) | 2008-10-17 | 2010-04-30 | Okamura Corp | 商品陳列装置 |
CN101794481A (zh) * | 2009-02-04 | 2010-08-04 | 深圳市先进智能技术研究所 | Atm自助银行监控系统和方法 |
US20110063108A1 (en) * | 2009-09-16 | 2011-03-17 | Seiko Epson Corporation | Store Surveillance System, Alarm Device, Control Method for a Store Surveillance System, and a Program |
JP5540622B2 (ja) | 2009-09-16 | 2014-07-02 | セイコーエプソン株式会社 | レシートプリンター、レシートプリンターの制御方法およびプログラム |
JP2011108769A (ja) | 2009-11-16 | 2011-06-02 | Yokogawa Electric Corp | 半導体装置 |
JP2011108169A (ja) * | 2009-11-20 | 2011-06-02 | Ishida Co Ltd | 店舗管理システム |
JP5655928B2 (ja) * | 2011-03-07 | 2015-01-21 | 富士通株式会社 | 商品決済チェックシステム、登録/決済装置、確認装置及び商品決済チェック方法 |
US20140347479A1 (en) * | 2011-11-13 | 2014-11-27 | Dor Givon | Methods, Systems, Apparatuses, Circuits and Associated Computer Executable Code for Video Based Subject Characterization, Categorization, Identification, Tracking, Monitoring and/or Presence Response |
US9247211B2 (en) * | 2012-01-17 | 2016-01-26 | Avigilon Fortress Corporation | System and method for video content analysis using depth sensing |
US9412180B2 (en) * | 2012-01-17 | 2016-08-09 | Sony Corporation | Information processing apparatus, information processing method, and program |
CN102881100B (zh) * | 2012-08-24 | 2017-07-07 | 济南纳维信息技术有限公司 | 基于视频分析的实体店面防盗监控方法 |
US9165190B2 (en) * | 2012-09-12 | 2015-10-20 | Avigilon Fortress Corporation | 3D human pose and shape modeling |
CN202995945U (zh) * | 2012-12-08 | 2013-06-12 | 南通纺织职业技术学院 | 一种智能防盗系统 |
US9443148B2 (en) * | 2013-03-15 | 2016-09-13 | International Business Machines Corporation | Visual monitoring of queues using auxiliary devices |
US9589433B1 (en) * | 2013-07-31 | 2017-03-07 | Jeff Thramann | Self-checkout anti-theft device |
WO2015033576A1 (ja) * | 2013-09-06 | 2015-03-12 | 日本電気株式会社 | セキュリティシステム、セキュリティ方法及び非一時的なコンピュータ可読媒体 |
CN106462725A (zh) * | 2014-01-07 | 2017-02-22 | Arb实验室公司 | 监测游戏场所的活动的系统和方法 |
-
2014
- 2014-09-05 WO PCT/JP2014/004583 patent/WO2015033576A1/ja active Application Filing
- 2014-09-05 JP JP2015535321A patent/JP6249021B2/ja active Active
- 2014-09-05 US US14/916,702 patent/US20160210829A1/en not_active Abandoned
- 2014-09-05 CN CN201480048366.4A patent/CN105518755A/zh active Pending
- 2014-09-05 CN CN202010433744.8A patent/CN111723668A/zh active Pending
-
2018
- 2018-09-10 US US16/126,729 patent/US20190005785A1/en not_active Abandoned
- 2018-09-10 US US16/126,818 patent/US11354991B2/en active Active
- 2018-09-10 US US16/126,777 patent/US10573141B2/en active Active
-
2022
- 2022-05-13 US US17/743,647 patent/US11688256B2/en active Active
-
2023
- 2023-05-15 US US18/197,397 patent/US12039844B2/en active Active
-
2024
- 2024-05-28 US US18/675,341 patent/US20240321071A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61260391A (ja) * | 1985-05-14 | 1986-11-18 | 三菱電機株式会社 | 監視制御装置 |
JPS62115388A (ja) * | 1985-11-14 | 1987-05-27 | Matsushita Electric Works Ltd | 測距型異常監視センサ |
US6421462B1 (en) * | 1998-02-06 | 2002-07-16 | Compaq Computer Corporation | Technique for differencing an image |
US20040120581A1 (en) * | 2002-08-27 | 2004-06-24 | Ozer I. Burak | Method and apparatus for automated video activity analysis |
JP2010238186A (ja) * | 2009-03-31 | 2010-10-21 | Sogo Keibi Hosho Co Ltd | 監視装置及び監視方法 |
JP2012032910A (ja) * | 2010-07-29 | 2012-02-16 | Secom Co Ltd | 通報装置 |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016194759A (ja) * | 2015-03-31 | 2016-11-17 | 綜合警備保障株式会社 | 警備システム及び警備方法 |
JP2017062594A (ja) * | 2015-09-24 | 2017-03-30 | 日本電気株式会社 | 迷惑行為者推定システム、迷惑行為者推定システムの制御方法及び制御プログラム |
JP2017097599A (ja) * | 2015-11-24 | 2017-06-01 | 宮田 清蔵 | 例外行動顧客の判定方法及び例外行動顧客の判定装置 |
JP2017146957A (ja) * | 2016-02-19 | 2017-08-24 | トヨタ自動車株式会社 | 深層畳み込みニューラルネットワークによるレイヤベースの物体検出の強化 |
JP2018018150A (ja) * | 2016-07-25 | 2018-02-01 | ユニティガードシステム株式会社 | 防犯システム、防犯方法、及びロボット |
JP7057959B2 (ja) | 2016-08-09 | 2022-04-21 | 住友ゴム工業株式会社 | 動作解析装置 |
JP2018026131A (ja) * | 2016-08-09 | 2018-02-15 | ダンロップスポーツ株式会社 | 動作解析装置 |
JP2018037075A (ja) * | 2016-08-29 | 2018-03-08 | パナソニックIpマネジメント株式会社 | 不審者通報システム及び不審者通報方法 |
JP2018181159A (ja) * | 2017-04-19 | 2018-11-15 | ユニティガードシステム株式会社 | 防犯システム、防犯方法、及びロボット |
JP7568004B2 (ja) | 2018-03-09 | 2024-10-16 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
JP2023153148A (ja) * | 2018-03-09 | 2023-10-17 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
US11922482B2 (en) | 2018-03-09 | 2024-03-05 | Nec Corporation | Self-checkout system, purchased product management method, and purchased product management program |
JP7327458B2 (ja) | 2018-03-09 | 2023-08-16 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
US12141856B2 (en) | 2018-03-09 | 2024-11-12 | Nec Corporation | Self-checkout system, purchased product management method, and purchased product management program |
WO2019171573A1 (ja) * | 2018-03-09 | 2019-09-12 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
US12205159B2 (en) | 2018-03-09 | 2025-01-21 | Nec Corporation | Self-checkout system, purchased product management method, and purchased product management program |
US12165191B2 (en) | 2018-03-09 | 2024-12-10 | Nec Corporation | Self-checkout system, purchased product management method, and purchased product management program |
JPWO2019171573A1 (ja) * | 2018-03-09 | 2021-01-14 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
JP2022036983A (ja) * | 2018-03-09 | 2022-03-08 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
JP6992874B2 (ja) | 2018-03-09 | 2022-01-13 | 日本電気株式会社 | セルフレジシステム、購入商品管理方法および購入商品管理プログラム |
WO2019225232A1 (ja) * | 2018-05-23 | 2019-11-28 | 株式会社日立製作所 | 監視装置、監視システムおよび監視方法 |
JP2019204259A (ja) * | 2018-05-23 | 2019-11-28 | 株式会社日立製作所 | 監視装置、監視システムおよび監視方法 |
JP7134708B2 (ja) | 2018-05-23 | 2022-09-12 | 株式会社日立製作所 | 監視装置、監視システムおよび監視方法 |
JP2020077330A (ja) * | 2018-11-09 | 2020-05-21 | セコム株式会社 | 店舗装置 |
JP2020077328A (ja) * | 2018-11-09 | 2020-05-21 | セコム株式会社 | 店舗装置 |
JP7161920B2 (ja) | 2018-11-09 | 2022-10-27 | セコム株式会社 | 店舗装置 |
JP7138547B2 (ja) | 2018-11-09 | 2022-09-16 | セコム株式会社 | 店舗装置 |
JP2020154730A (ja) * | 2019-03-20 | 2020-09-24 | アースアイズ株式会社 | 監視装置、監視システム、及び、監視方法 |
WO2020189313A1 (ja) * | 2019-03-20 | 2020-09-24 | アースアイズ株式会社 | 監視装置、監視システム、及び、監視方法 |
JP2020182146A (ja) * | 2019-04-26 | 2020-11-05 | アースアイズ株式会社 | 監視装置、及び、監視方法 |
JP2020184197A (ja) * | 2019-05-08 | 2020-11-12 | 株式会社オレンジテクラボ | 情報処理装置、画像撮影装置、情報処理プログラム及び画像撮影プログラム |
JP7337354B2 (ja) | 2019-05-08 | 2023-09-04 | 株式会社オレンジテクラボ | 情報処理装置及び情報処理プログラム |
JPWO2021033597A1 (ja) * | 2019-08-20 | 2021-02-25 | ||
WO2021033597A1 (ja) * | 2019-08-20 | 2021-02-25 | コニカミノルタ株式会社 | 画像処理システム、画像処理プログラム、および画像処理方法 |
JP7388440B2 (ja) | 2019-08-20 | 2023-11-29 | コニカミノルタ株式会社 | 画像処理システム、画像処理プログラム、および画像処理方法 |
JP2021081804A (ja) * | 2019-11-14 | 2021-05-27 | 株式会社リコー | 状態認識装置、状態認識方法及び状態認識プログラム |
JP7487888B2 (ja) | 2020-01-15 | 2024-05-21 | 日本電気株式会社 | 画像処理システム、画像処理方法及びプログラム |
JP2022003529A (ja) * | 2020-01-15 | 2022-01-11 | 日本電気株式会社 | 情報処理装置、情報処理方法、プログラム |
JP2021166399A (ja) * | 2020-01-15 | 2021-10-14 | 日本電気株式会社 | 画像処理システム、画像処理方法及びプログラム |
WO2022092032A1 (ja) * | 2020-10-30 | 2022-05-05 | 株式会社Vaak | 行動推定装置、行動推定方法、プログラム及び行動推定システム |
JP2022072825A (ja) * | 2020-10-30 | 2022-05-17 | 株式会社Vaak | 行動推定装置、行動推定方法、プログラム及び行動推定システム |
JP2022073882A (ja) * | 2020-10-30 | 2022-05-17 | 株式会社Vaak | 行動推定装置、行動推定方法、プログラム及び行動推定システム |
JP7649934B2 (ja) | 2020-10-30 | 2025-03-24 | 株式会社Vaak | 行動推定装置、行動推定方法、プログラム及び行動推定システム |
JP7054075B2 (ja) | 2021-01-26 | 2022-04-13 | 日本電気株式会社 | 情報処理システム、情報処理方法、及びプログラム |
JP2021073595A (ja) * | 2021-01-26 | 2021-05-13 | 日本電気株式会社 | 情報処理システム、情報処理方法、及びプログラム |
JP2022190576A (ja) * | 2021-06-14 | 2022-12-26 | 東芝テック株式会社 | 防犯システムおよびプログラム |
JP7491472B2 (ja) | 2021-06-29 | 2024-05-28 | 日本電信電話株式会社 | 異常判定装置、異常判定方法、及び異常判定プログラム |
JPWO2023275968A1 (ja) * | 2021-06-29 | 2023-01-05 | ||
WO2023275968A1 (ja) * | 2021-06-29 | 2023-01-05 | 日本電信電話株式会社 | 異常判定装置、異常判定方法、及び異常判定プログラム |
JP7318753B2 (ja) | 2021-06-30 | 2023-08-01 | 富士通株式会社 | 情報処理プログラム、情報処理方法、および情報処理装置 |
JP2023007363A (ja) * | 2021-06-30 | 2023-01-18 | 富士通株式会社 | 情報処理プログラム、情報処理方法、および情報処理装置 |
EP4386661A4 (en) * | 2021-08-12 | 2024-10-09 | Sony Semiconductor Solutions Corporation | Behavior analysis device, behavior analysis method, behavior analysis program, imaging device and behavior analysis system |
WO2023152825A1 (ja) * | 2022-02-09 | 2023-08-17 | 日本電気株式会社 | 動作評価システム、動作評価方法、及び非一時的なコンピュータ可読媒体 |
JPWO2023152825A1 (ja) * | 2022-02-09 | 2023-08-17 | ||
JP2023136747A (ja) * | 2022-03-17 | 2023-09-29 | 株式会社Iso | 動画解析サービス提供システム、動画解析サービス提供プログラム、及び動画解析サービス提供方法 |
JP7085257B1 (ja) | 2022-03-17 | 2022-06-16 | 株式会社Iso | 動画解析サービス提供システム、動画解析サービス提供プログラム、及び動画解析サービス提供方法 |
JP2024177934A (ja) * | 2023-06-12 | 2024-12-24 | 株式会社寺岡精工 | 情報処理装置及びプログラム |
Also Published As
Publication number | Publication date |
---|---|
US20240321071A1 (en) | 2024-09-26 |
US10573141B2 (en) | 2020-02-25 |
US20230282084A1 (en) | 2023-09-07 |
CN105518755A (zh) | 2016-04-20 |
CN111723668A (zh) | 2020-09-29 |
US20220270455A1 (en) | 2022-08-25 |
US20190005787A1 (en) | 2019-01-03 |
US20190005785A1 (en) | 2019-01-03 |
US11354991B2 (en) | 2022-06-07 |
JP6249021B2 (ja) | 2017-12-20 |
US12039844B2 (en) | 2024-07-16 |
US20190005786A1 (en) | 2019-01-03 |
JPWO2015033576A1 (ja) | 2017-03-02 |
US20160210829A1 (en) | 2016-07-21 |
US11688256B2 (en) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6249021B2 (ja) | セキュリティシステム、セキュリティ方法及びセキュリティプログラム | |
JP7318697B2 (ja) | 商品監視システム、出力先装置、商品監視方法、表示方法及びプログラム | |
RU2753959C2 (ru) | Модуль видеоанализа и способ формирования материалов расследования поведения пользователя | |
US20170068945A1 (en) | Pos terminal apparatus, pos system, commodity recognition method, and non-transitory computer readable medium storing program | |
WO2015033577A1 (ja) | 顧客行動分析システム、顧客行動分析方法、非一時的なコンピュータ可読媒体及び棚システム | |
JP5673888B1 (ja) | 情報通知プログラム及び情報処理装置 | |
WO2018104999A1 (ja) | 情報処理装置、制御方法、及びプログラム | |
US20230394556A1 (en) | Information processing method, information processing device, and recording medium | |
WO2020170854A1 (ja) | セルフposシステム、セルフpos端末装置、制御方法及び制御プログラムを格納した非一時的なコンピュータ可読媒体 | |
CN115546703B (zh) | 自助收银的风险识别方法、装置、设备及存储介质 | |
JP7010030B2 (ja) | 店内監視装置、店内監視方法、および店内監視プログラム | |
US20250239143A1 (en) | Security system, security method, and non-transitory computer readable medium | |
JP2005128701A (ja) | 電子物品監視システム及びその方法 | |
JP2022190576A (ja) | 防犯システムおよびプログラム | |
JP7609293B2 (ja) | 報知システム、方法、及び、プログラム | |
WO2024166313A1 (ja) | 報知システム、報知方法、および記録媒体 | |
WO2023181328A1 (ja) | 情報処理装置、情報処理装置の制御方法、及び、情報処理装置の制御プログラムが格納された記録媒体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14842912 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015535321 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14916702 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14842912 Country of ref document: EP Kind code of ref document: A1 |