WO2015015931A1 - 車両の回生制動制御装置 - Google Patents
車両の回生制動制御装置 Download PDFInfo
- Publication number
- WO2015015931A1 WO2015015931A1 PCT/JP2014/065840 JP2014065840W WO2015015931A1 WO 2015015931 A1 WO2015015931 A1 WO 2015015931A1 JP 2014065840 W JP2014065840 W JP 2014065840W WO 2015015931 A1 WO2015015931 A1 WO 2015015931A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- regenerative braking
- vehicle
- braking force
- control device
- torque
- Prior art date
Links
- 230000001172 regenerating effect Effects 0.000 title claims abstract description 110
- 230000007423 decrease Effects 0.000 claims description 23
- 230000003247 decreasing effect Effects 0.000 claims description 17
- 230000008929 regeneration Effects 0.000 abstract description 7
- 238000011069 regeneration method Methods 0.000 abstract description 7
- 230000008034 disappearance Effects 0.000 abstract description 6
- 230000005611 electricity Effects 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
- B60L58/13—Maintaining the SoC within a determined range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/51—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by AC motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/18—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/24—Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
- B60L7/26—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18127—Regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/80—Time limits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/24—Energy storage means
- B60W2510/242—Energy storage means for electrical energy
- B60W2510/244—Charge state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/08—Electric propulsion units
- B60W2710/083—Torque
- B60W2710/085—Torque change rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
- B60W2710/184—Brake temperature, e.g. of fluid, pads or discs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2300/00—Purposes or special features of road vehicle drive control systems
- B60Y2300/89—Repartition of braking force, e.g. friction braking versus regenerative braking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a regenerative braking control device for a vehicle which has wheels controlled and driven by a motor and is capable of traveling by driving the motor of the wheels and which covers the braking force of the wheels by the regenerative braking force of the motor. It is.
- the vehicle is braked when coasting with the accelerator pedal released, or when the brake operation is performed by releasing the accelerator pedal and depressing the brake pedal.
- the target braking torque required according to the driving condition around the vehicle is obtained, and the target braking torque is realized by a combination of regenerative braking by a wheel drive system motor and friction braking by a hydraulic brake or electromagnetic brake.
- the purpose is cooperative control.
- the electric power generated by the motor by regenerative braking is stored in an in-vehicle battery that is a power source of the motor and is used for driving the motor thereafter.
- a cooperative control system that preferentially uses regenerative braking and realizes the target braking torque by compensating for the shortage with friction braking when the target braking torque cannot be achieved by regenerative braking alone. Is generally adopted.
- Regenerative braking is used as much as possible with the maximum possible regenerative braking force determined by the battery storage state etc. as the upper limit, and the use of friction braking can be minimized.
- Regenerative braking converts the vehicle's kinetic energy into electrical energy and maximizes the amount of energy recovered into the battery while minimizing the loss of the vehicle's kinetic energy as heat by friction braking. As a result, energy efficiency can be improved and fuel consumption rate and electricity consumption rate can be improved.
- the present invention is based on the fact that the above problem occurs because the regenerative braking force suddenly becomes impossible when the battery is in a battery storage state causing these problems, It is an object of the present invention to propose a regenerative braking control device for a vehicle that is improved so that the regenerative braking force is gradually reduced in advance from a predetermined time immediately before the battery is stored, and the above-described problem does not occur. .
- the regenerative braking control device for a vehicle is configured as follows. First, a vehicle as a premise of the present invention will be described. This vehicle includes wheels controlled by a motor and can be driven by motor driving of the wheels, and the braking force of the wheels is used as the regenerative braking force of the motor. Is to be covered by.
- the present invention is a regenerative braking control device for such a vehicle, It is characterized in that the regenerative braking force is gradually reduced during a predetermined time immediately before the power storage state of the battery as the power source of the motor is reduced to a level at which the regenerative braking force cannot be generated as scheduled. is there.
- FIG. 1 is a schematic system diagram illustrating an overall control system related to a braking / driving force control system of an electric vehicle including a regenerative braking control device according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing a regenerative braking control program executed when the vehicle controller in FIG. 1 is in a battery shortage state. It is an operation
- FIG. 1 is a schematic system diagram showing an overall control system related to a braking / driving force control system of an electric vehicle including a regenerative braking control device according to an embodiment of the present invention.
- This electric vehicle has left and right front wheels 1FL and 1FR and left and right rear wheels 1RL and 1RR.
- the left and right rear wheels 1RL and 1RR can be driven by the electric motor 2 and can be operated by turning the left and right front wheels 1FL and 1FR. It can be directed.
- the electric motor 2 is drivingly coupled to the left and right rear wheels 1RL and 1RR via a final reduction gear 3 including a differential gear device, and serves as a common power source for the left and right rear wheels 1RL and 1RR.
- the electric motor 2 is driven via the inverter 5 by the electric power of the battery 4.
- the inverter 5 converts the direct current (DC) power of the battery 4 into alternating current (AC) power and supplies it to the electric motor 2, while controlling the supply power and current direction to the electric motor 1 to drive the electric motor 2. And control the direction of rotation.
- the electric motor 2 is a motor / generator that can also function as a generator. Normally, the left and right rear wheels 1RL and 1RR are motor-driven as described above. It is assumed that regenerative braking can be performed. The electric power generated by the electric motor 2 during the regenerative braking is converted into alternating current (AC) ⁇ direct current (DC) by the inverter 5 and stored in the battery 4 for subsequent motor drive. As described above, the left and right rear wheels 1RL and 1RR are individually controlled and driven by the common electric motor 2 via the final reduction gear 3, and the vehicle can be driven or decelerated.
- AC alternating current
- DC direct current
- brake discs (not shown) that rotate with the left and right front wheels 1FL, 1FR and the left and right rear wheels 1RL, 1RR are connected to the individual calipers 6FL, 6FR, 6RL, The purpose can be achieved by clamping with 6RR and friction braking.
- the calipers 6FL, 6FR, 6RL, and 6RR are connected to the master cylinder 9 that responds to the pedaling force of the brake pedal 7 that the driver steps on and outputs the brake fluid pressure corresponding to the pedaling force under the boost of the electric brake booster 8. Connect through 10.
- the brake unit 10 guides the brake fluid pressure from the master cylinder 9 to the calipers 6FL, 6FR, 6RL, 6RR, and the calipers 6FL, 6FR, 6RL, 6RR act to rub the vehicle (wheels 1FL, 1FR, 1RL, 1RR). Braking.
- the electric vehicle in FIG. 1 includes a vehicle controller 11 for performing drive control and regeneration control of the electric motor 2 via the inverter 5, and the vehicle controller 11 further includes an electric brake booster for the cooperative control described above during regeneration control.
- the brake fluid pressure (friction braking force) control via 8 is also performed.
- the vehicle controller 11 includes a signal from the brake pedal depression force sensor 12 that detects the depression force BPF of the brake pedal 7, a signal from the accelerator opening sensor 13 that detects the accelerator opening APO, and a vehicle speed sensor that detects the vehicle speed VSP.
- the signal from 14 and the signal from the battery storage state sensor 15 that detects the storage state SOC of the battery 4 are input.
- the vehicle controller 11 obtains the target motor torque Tm (the driving torque is a positive value and the regenerative torque is a negative value) of the electric motor 2 related to the left and right rear wheels 1RL and 1RR by a known calculation based on the input information.
- This target motor torque Tm is commanded to the inverter 5 that controls the drive and regenerative control of the electric motor 2.
- the inverter 5 responds to the target motor torque Tm (positive drive torque) and supplies DC ⁇ AC conversion power corresponding to the electric motor 2 from the battery 4, thereby changing the left and right rear wheels 1RL and 1RR with the motor torque Tm.
- the vehicle controller 11 simultaneously obtains the target friction braking force Tb for cooperative control described above and supplies this target friction braking force Tb to the electric brake booster 8.
- the electric brake booster 8 responds to the target friction braking force Tb and uses the brake fluid pressure from the master cylinder 9 corresponding to the target friction braking force Tb.
- the brake fluid pressure allows the calipers 6FL, 6FR, 6RL, and 6RR to operate. Actuate to friction brake the wheels 1FL, 1FR, 1RL, 1RR).
- the vehicle controller 11 executes the control program shown in FIG. 2 for the regenerative braking control at the time of battery shortage targeted by the present invention, as shown in the time chart of FIG. Carry out braking control.
- step S11 it is checked whether or not the battery storage state SOC is equal to or lower than the regeneration limit start determination SOC set value SOCs.
- the set value SOCs will be described in detail with reference to FIG. FIG. 3 shows that under the situation where the battery charge state SOC gradually decreases as shown in the figure, the accelerator pedal is released as shown as “accelerator OFF” at instant t1, and as “brake ON” at instant t2 thereafter.
- 6 is an operation time chart when the brake pedal 7 is depressed.
- the battery storage state SOC is determined as a scheduled battery storage state for determining the timing t3 before the predetermined time ⁇ TMs from the instant t6 when the SOC decreases to the SOC limit value SOCL where the regenerative braking force cannot be generated as scheduled.
- the above set value SOCs is set in advance.
- step S11 If it is determined in step S11 that the state of charge of the battery SOC is not less than or equal to the set value SOCs for determining the regeneration limit (SOC> SOCs), the control targeted by the present invention should not yet be started (from the moment t3 in FIG. 3). Therefore, after the absence determination timer TM is reset to 0 in step S12, the control program of FIG. 2 is exited.
- step S11 When it is determined in step S11 that the state of charge of the battery SOC is equal to or less than the set value SOCs for determining whether to start regenerative restriction (SOC ⁇ SOCs), the control targeted by the present invention should be started (at the moment t3 in FIG. 3). Therefore, control proceeds to step S13 and subsequent steps.
- step S13 the electric shortage determination timer TM that has been reset to 0 in step S12 is stepped (incremented), so that the duration determined in step S11 as (SOC ⁇ SOCs), that is, the instantaneous time in FIG. Measure the elapsed time from t3.
- step S14 whether or not the electric shortage determination timer TM value (the elapsed time from the instant t3 in FIG. 3, which is the duration of the SOC ⁇ SOCs state) indicates the predetermined time ⁇ TMs or more described above with reference to FIG. (Whether or not the instant t6 in FIG. 3 has been reached) is checked. If it is determined that TM ⁇ TMs in step S14 (between the instants t3 and t6 in FIG. 3), the control sequentially proceeds to step S15 and step S16, and the regenerative torque Tm (see FIG. 1) is gradually increased in step S15. In step S16, the decrease in regenerative torque in step S15 is compensated by friction braking torque Tb (see FIG. 1).
- step S15 when the regenerative torque Tm is gradually decreased to 0, this is performed as follows.
- the cooperative regenerative braking torque Tm_b among the coastal torque Tm_c and the cooperative regenerative braking torque Tm_b that form the regenerative torque Tm Is gradually decreased along the Tm_Lim so as to decrease with the time-varying gradient ⁇ , so that the remaining coast torque Tm_c also decreases with the time-varying gradient ⁇ along the Tm_Lim from the instant t5 when the cooperative regenerative braking torque Tm_b becomes 0.
- the regenerative torque Tm is reduced to 0 at the instant t6.
- the decrease gradient ⁇ of the regenerative torque Tm (cooperative regenerative braking torque Tm_b and coastal torque Tm_c) is determined by a predetermined time ⁇ TMs between the instants t3 and t6 in FIG. It is preferable to set the minimum time necessary for preventing the decrease gradient ⁇ of the cooperative regenerative braking torque Tm_b and the coasting torque Tm_c) from giving the driver the above-mentioned uncomfortable feeling.
- step S16 when the regenerative torque decrease in step S15 is compensated by the friction braking torque Tb, this is performed as follows. During the instant t4 to t5, while gradually reducing the cooperative regenerative braking torque Tm_b so as to decrease with the time change gradient ⁇ along Tm_Lim as described above, the combined torque (Tm + Tb) is compensated for the gradually decreasing amount of the cooperative regenerative braking torque Tm_b. Is generated as indicated by a two-dot chain line in FIG. 3.
- the friction braking torque Tb is maintained at the value at the instant t5 as shown by a two-dot chain line in FIG. 3 after the instant t5, whereby the combined torque (Tm + Tb) gradually decreases the coastal torque Tm_c after the instant t5. Following the above, it is made to decrease at a time change gradient ⁇ .
- step S14 of FIG. 2 the electric shortage determination timer TM value (the elapsed time from the instant t3 in FIG. 3, which is the duration of the SOC ⁇ SOCs state) indicates a predetermined time ⁇ TMs or more (the moment t6 in FIG. 3 is reached). 2), the battery 4 is in an electric shortage state and the regenerative braking force cannot be generated as scheduled. Therefore, after the control proceeds to step S17 and the electric shortage determination is performed, the control of FIG. Exit.
- ⁇ Effect> According to the regenerative braking control of the above-described embodiment, during a predetermined time ⁇ TMs immediately before the battery power storage state SOC decreases to a level SOCL at which the regenerative braking force cannot be generated as scheduled (immediately before the instant t6 in FIG. 3). Since the regenerative braking torque Tm is gradually reduced, It is possible to avoid the phenomenon that the regenerative braking torque Tm cannot be obtained suddenly at the instant t6 when the battery charge state SOC has decreased to the above level SOCL, and the vehicle deceleration caused by this regenerative braking force disappearance phenomenon It is possible to prevent a sense of incongruity that has a change (decrease) that is not related to the operation.
- the regeneration limit torque Tm_Lim is set to the above-described value from the time when it is determined that the battery storage state SOC has become equal to or less than the set value SOCs greater than the level SOCL (step S11).
- the time variation gradient ⁇ determined by the predetermined time ⁇ TMs is gradually decreased toward 0, and the regenerative braking torque Tm is gradually decreased along this,
- the above-mentioned gradual reduction control of the regenerative braking torque Tm is possible only by gradually reducing the existing regenerative limiting torque Tm_Lim to the regenerative control, and the gradual reduction control of the regenerative braking torque Tm is easy, which is very advantageous in terms of cost. .
- the amount of the regenerative braking force Tm is compensated by compensating for the friction braking torque Tb, so that the vehicle braking force is not changed even while the regenerative braking torque Tm is gradually decreasing.
- the friction braking torque Tb for compensating for the gradually decreasing amount of the regenerative braking force Tm is used as the gradually decreasing end amount of the regenerative braking torque Tm (t5 to t6 in FIG. 3).
- the vehicle braking force is reduced at t6 when the lack of electric power is determined. From such a decrease in the vehicle braking force (synthetic braking torque Tm + Tb), the driver can sensuously know that the battery 4 has run out of power, and can reliably handle the battery shortage. .
- the driver is informed of the lack of battery 4 due to a decrease in the combined braking torque (Tm + Tb) from t5 to t6 in FIG. 3 (a decrease in vehicle braking force).
- the friction braking torque Tb that causes an increase in the combined braking torque (Tm + Tb) (increase in vehicle braking force) from t5 to t6 in FIG. 3 is changed to the gradually decreasing end of the regenerative braking torque Tm (t5 in FIG. 3). Needless to say, it may be given to t6).
- the present invention has been described with respect to the case where the vehicle is the electric vehicle shown in FIG. However, it is a matter of course that the same operation and effect can be achieved in any vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Automation & Control Theory (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
上記の協調制御に際しては、回生制動を優先的に利用し、回生制動だけでは目標制動トルクを実現し得ない場合に、不足分を摩擦制動で補うことにより目標制動トルクを実現するという協調制御方式を採用するのが一般的である。
摩擦制動が車両の運動エネルギーを熱として消失させてしまうのを最小限にしつつ、回生制動が車両の運動エネルギーを電気エネルギーに変換してバッテリへ回収するエネルギー量を最大にすることができる。
その結果、エネルギー効率が向上し、燃料消費率や電気消費率を向上させるできることができる。
当該バッテリ蓄電状態となる直前の所定時間中から前もって回生制動力を徐々に低下させ、これにより上記の問題が発生することのないよう改良した車両の回生制動制御装置を提案することを目的とする。
先ず本発明の前提となる車両を説明するに、これは、モータにより制駆動される車輪を具え、該車輪のモータ駆動により走行可能であって、該車輪の制動力を前記モータの回生制動力によって賄うようにしたものである。
前記モータの電源であるバッテリの蓄電状態が前記回生制動力を予定通りに発生させ得なくなるレベルまで低下する直前の所定時間中、前記回生制動力を漸減させるよう構成した点に特徴づけられるものである。
バッテリの蓄電状態が回生制動力を予定通りに発生させ得なくなるレベルまで低下する直前の所定時間中、前もって回生制動力を漸減させるため、
バッテリ蓄電状態が上記レベルに低下したとき急に回生制動力が得られなくなるという現象を回避することができ、当該回生制動力消失現象に起因した車両減速度変化(低下)による違和感を運転者に与えることがない。
1RL,1RR 左右後輪(モータ制駆動車輪)
2 電動モータ(モータ)
3 終減速機
4 バッテリ
5 インバータ
6FL,6FR 左右前輪ブレーキキャリパ
6RL,6RR 左右後輪ブレーキキャリパ
7 ブレーキペダル
8 電動ブレーキブースタ
9 マスターシリンダ
10 ブレーキユニット
11 車両コントローラ
12 ブレーキペダル踏力センサ
13 アクセル開度センサ
14 車速センサ
15 バッテリ蓄電状態センサ
図1は、本発明の一実施例になる回生制動制御装置を具えた電気自動車の制駆動力制御系に係わる全体制御システムを示す概略系統図である。
なお電動モータ2は、ディファレンシャルギヤ装置を含む終減速機3を介して左右後輪1RL,1RRに駆動結合し、これら左右後輪1RL,1RRの共通な動力源とする。
インバータ5は、バッテリ4の直流(DC)電力を交流(AC)電力に変換して電動モータ2へ供給すると共に電動モータ1への供給電力および電流方向を制御して、電動モータ2の駆動力および回転方向を制御する。
この回生制動中に電動モータ2が発電した電力を、インバータ5により交流(AC)→直流(DC)変換してバッテリ4に蓄電し、以後のモータ駆動に供する。
以上によって左右後輪1RL,1RRはそれぞれ、共通な電動モータ2により終減速機3を介し個別に制駆動されて、車両を駆動走行させたり、減速走行させることができる。
ブレーキユニット10は、マスターシリンダ9からのブレーキ液圧をキャリパ6FL,6FR,6RL,6RR に導き、これらキャリパ6FL,6FR,6RL,6RRの作動により車両(車輪1FL,1FR, 1RL,1RR)を摩擦制動する。
車両コントローラ11は、これら入力情報を基に周知の演算によって、左右後輪1RL,1RRに係わる電動モータ2の目標モータトルクTm(駆動トルクは正値、回生トルクは負値)を求める。
この目標モータトルクTmは、電動モータ2の駆動・回生制御を司るインバータ5に指令される。
インバータ5は目標モータトルクTm(正値の駆動トルク)に応動して、バッテリ4から電動モータ2へ対応するDC→AC変換電力を供給することにより、モータトルクTmで左右後輪1RL,1RRを駆動したり、または目標モータトルクTm(負値の回生トルク)に対応した発電負荷を電動モータ2にかけて左右後輪1RL,1RRを回生制動すると共に、このとき電動モータ2が発電した電力をAC→DC変換してバッテリ4へ蓄電する。
電動ブレーキブースタ8は、目標摩擦制動力Tbに応動してマスターシリンダ9からのブレーキ液圧を目標摩擦制動力Tbに対応したものとなし、このブレーキ液圧でキャリパ6FL,6FR,6RL,6RRを作動させて、車輪1FL,1FR, 1RL,1RR)を摩擦制動する。
本発明が狙いとするバッテリ電欠時回生制動制御に際し、車両コントローラ11は本実施例の場合、図2の制御プログラムを実行して、図3のタイムチャートに示すごとくに当該バッテリ電欠時回生制動制御を遂行する。
設定値SOCsを図3につき詳述する。
図3は、バッテリ蓄電状態SOCが図示のごとくに徐々に低下する状況下で、瞬時t1に「アクセルOFF」として示すようにアクセルペダルが釈放され、その後の瞬時t2に「ブレーキON」として示すようにブレーキペダル7が踏み込まれた場合の動作タイムチャートである。
本実施例では、バッテリ蓄電状態SOCが回生制動力を予定通りに発生させ得なくなるSOC限界値SOCLに低下する瞬時t6よりも所定時間ΔTMs前のタイミングt3を判定するための予定のバッテリ蓄電状態として上記の設定値SOCsを設定しておく。
ステップS13においては、ステップS12で0にリセットされていた電欠判定タイマTMを歩進(インクリメント)させることにより、ステップS11で(SOC≦SOCs)と判定している継続時間、つまり図3の瞬時t3からの経過時間を計測する。
ステップS14でTM<ΔTMsと判定する間(図3の瞬時t3~t6間)と判定する場合、制御を順次ステップS15およびステップS16を進め、ステップS15において回生トルクTm(図1参照)を徐々に0に向け漸減させ、ステップS16においてステップS15での回生トルク減少分を摩擦制動トルクTb(図1参照)によって補填する。
バッテリ蓄電状態SOCなどによって、図3の瞬時t3までの破線により例示するごとくに決まる回生制限トルクTm_Limを、図3の(SOC≦SOCs)判定瞬時t3以降、徐々に低下するよう、また(TM=ΔTMs)判定瞬時t6に丁度Tm_Lim=0になるような時間変化勾配θで漸減させる。
瞬時t4~t5において上記の通り協調回生分制動トルクTm_bをTm_Limに沿って時間変化勾配θで低下するよう漸減させる間、当該協調回生分制動トルクTm_bの漸減分を補填して合成トルク(Tm+Tb)を瞬時t4における値に保持する摩擦制動トルクTbを図3に二点鎖線で示すように発生させる。
上記した実施例の回生制動制御によれば、バッテリ蓄電状態SOCが回生制動力を予定通りに発生させ得なくなるレベルSOCLまで低下する直前(図3の瞬時t6の直前)における所定時間ΔTMs中、前もって回生制動トルクTmを漸減させるよう構成したため、
バッテリ蓄電状態SOCが上記レベルSOCLに低下した瞬時t6に急に回生制動トルクTmが得られなくなるという現象を回避することができ、この回生制動力消失現象に起因して車両減速度が、運転者の操作に係わりのない変化(低下)を持ったものになる違和感を防止することができる。
上記の回生制動トルクTmの漸減制御が、もともと回生制御に既存の回生制限トルクTm_Limを漸減させるだけで可能となり、回生制動トルクTmの漸減制御が容易であって、コスト的にも大いに有利である。
図3のt5~t6における合成制動トルク(Tm+Tb)の変化から明らかなように、電欠判定時t6に車両制動力が低下されることとなる。
かかる車両制動力(合成制動トルクTm+Tb)の低下から運転者は、バッテリ4が電欠状態になったのを感覚的に知ることができ、バッテリ電欠状態への対処を確実に行うことができる。
この代わりに図3のt5~t6で合成制動トルク(Tm+Tb)の増大(車両制動力の増大)変化が発生するような摩擦制動トルクTbを、回生制動トルクTmの漸減終末期(図3のt5~t6)に付与するようにしてもよいのは言うまでもない。
Claims (5)
- モータにより制駆動される車輪を具え、該車輪のモータ駆動により走行可能であって、該車輪の制動力を前記モータの回生制動力によって賄うようにした車両の回生制動制御装置において、
前記モータの電源であるバッテリの蓄電状態が前記回生制動力を予定通りに発生させ得なくなるレベルまで低下する直前の所定時間中、前記回生制動力を漸減させるよう構成したことを特徴とする車両の回生制動制御装置。 - 請求項1に記載された、車両の回生制動制御装置において、
前記バッテリ蓄電状態が前記回生制動力を予定通りに発生させ得なくなる瞬時よりも前記所定時間前のタイミングを判定するための予定のバッテリ蓄電状態を設定しておき、バッテリ蓄電状態が該予定のバッテリ蓄電状態まで低下した時から前記所定時間中、前記回生制動力の漸減を行うよう構成したことを特徴とする車両の回生制動制御装置。 - 車両が車輪の摩擦制動によっても制動可能である、請求項1または2に記載された、車両の回生制動制御装置において、
前記回生制動力の漸減中、該回生制動力の漸減量を前記車輪の摩擦制動により補って補償するよう構成したことを特徴とする車両の回生制動制御装置。 - 請求項3に記載された、車両の回生制動制御装置において、
前記回生制動力の漸減終末期における前記摩擦制動による車輪制動力を、前記回生制動力の漸減量と異ならせて、前記所定時間の経過時に車両制動力が変化するよう構成したことを特徴とする車両の回生制動制御装置。 - 請求項4に記載された、車両の回生制動制御装置において、
前記回生制動力の漸減終末期における前記摩擦制動による車輪制動力を、該終末期の開始時における値に保持することにより、前記所定時間の経過時に車両制動力が低下するよう構成したことを特徴とする車両の回生制動制御装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112016001113-9A BR112016001113B1 (pt) | 2013-07-29 | 2014-06-16 | Dispositivo de controle de frenagem regenerativa de veículo |
EP14831494.1A EP3028891B1 (en) | 2013-07-29 | 2014-06-16 | Vehicle regenerative braking control device |
US14/904,986 US10076959B2 (en) | 2013-07-29 | 2014-06-16 | Vehicle regenerative braking control device |
JP2015529449A JP5983885B2 (ja) | 2013-07-29 | 2014-06-16 | 車両の回生制動制御装置 |
MX2016000804A MX352115B (es) | 2013-07-29 | 2014-06-16 | Dispositivo de control de frenado regenerativo de vehículo. |
RU2016106323A RU2671429C2 (ru) | 2013-07-29 | 2014-06-16 | Устройство управления рекуперативным торможением транспортного средства |
CN201480042627.1A CN105408161B (zh) | 2013-07-29 | 2014-06-16 | 车辆的再生制动控制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-156325 | 2013-07-29 | ||
JP2013156325 | 2013-07-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015015931A1 true WO2015015931A1 (ja) | 2015-02-05 |
Family
ID=52431473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/065840 WO2015015931A1 (ja) | 2013-07-29 | 2014-06-16 | 車両の回生制動制御装置 |
Country Status (9)
Country | Link |
---|---|
US (1) | US10076959B2 (ja) |
EP (1) | EP3028891B1 (ja) |
JP (1) | JP5983885B2 (ja) |
CN (1) | CN105408161B (ja) |
BR (1) | BR112016001113B1 (ja) |
MX (1) | MX352115B (ja) |
MY (1) | MY171372A (ja) |
RU (1) | RU2671429C2 (ja) |
WO (1) | WO2015015931A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108263218A (zh) * | 2016-12-30 | 2018-07-10 | 比亚迪股份有限公司 | 电动汽车、电动汽车车身稳定方法和系统 |
EP3351421A4 (en) * | 2015-09-18 | 2018-08-29 | Hitachi Automotive Systems, Ltd. | Brake control device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3012781B1 (fr) * | 2013-11-05 | 2015-11-20 | Renault Sas | Procede et systeme de commande du freinage recuperatif d'un vehicule automobile electrique ou hybride. |
JP6183333B2 (ja) * | 2014-11-07 | 2017-08-23 | トヨタ自動車株式会社 | ハイブリッド自動車 |
KR102518656B1 (ko) * | 2018-05-23 | 2023-04-06 | 현대자동차주식회사 | 친환경 차량의 토크 분담식 관성주행제어방법 |
JP7300321B2 (ja) * | 2019-06-20 | 2023-06-29 | 株式会社Subaru | 制動制御装置 |
US11390283B2 (en) | 2019-07-25 | 2022-07-19 | Ford Global Technologies, Llc | System and method for controlling vehicle during coast |
CN114929507B (zh) * | 2019-11-06 | 2024-10-08 | 株式会社电装 | 车用控制装置 |
JP7404887B2 (ja) * | 2020-01-24 | 2023-12-26 | 株式会社アドヴィックス | 制動制御装置 |
EP4019315A4 (en) * | 2020-04-28 | 2022-11-23 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Vehicle braking device |
CN115648955B (zh) * | 2022-11-14 | 2024-07-09 | 中车株洲电力机车有限公司 | 一种车辆的电制动能量回收控制方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06153315A (ja) | 1992-11-13 | 1994-05-31 | Honda Motor Co Ltd | 電動車両の制動装置 |
JPH11141365A (ja) * | 1997-11-10 | 1999-05-25 | Nissan Motor Co Ltd | ハイブリッド車両 |
JP2011148411A (ja) * | 2010-01-22 | 2011-08-04 | Toyota Motor Corp | 車両の制御装置 |
JP2011240904A (ja) * | 2010-05-21 | 2011-12-01 | Honda Motor Co Ltd | ハイブリッド車両 |
JP2013123279A (ja) * | 2011-12-09 | 2013-06-20 | Honda Motor Co Ltd | 電動車両 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528959B2 (en) * | 2000-07-19 | 2003-03-04 | Honda Giken Kogyo Kabushiki Kaisha | Driving force control system for front-and-rear wheel drive vehicles |
JP3863838B2 (ja) * | 2002-11-12 | 2006-12-27 | 本田技研工業株式会社 | ハイブリッド車両 |
KR100721060B1 (ko) * | 2005-12-07 | 2007-05-22 | 주식회사 만도 | 차량의 제동시스템 및 그 제동방법 |
JP2010200557A (ja) * | 2009-02-26 | 2010-09-09 | Nissan Motor Co Ltd | 回生協調制御装置および回生協調制御方法 |
JP2011230528A (ja) * | 2010-04-23 | 2011-11-17 | Nissan Motor Co Ltd | 複合ブレーキの協調制御装置 |
US8612074B2 (en) * | 2010-05-07 | 2013-12-17 | GM Global Technology Operations LLC | Regenerative braking control in vehicles |
CN103180184B (zh) * | 2010-10-25 | 2015-03-11 | 丰田自动车株式会社 | 制动器控制装置 |
JP5079864B2 (ja) | 2010-12-06 | 2012-11-21 | 日野自動車株式会社 | 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム |
DE102011101543A1 (de) * | 2011-05-14 | 2012-11-15 | Volkswagen Aktiengesellschaft | Verfahren und Vorrichtung zur Steuerung einer Bremsleistung eines Elektro- oder Hybridfahrzeugs |
US8634939B2 (en) * | 2011-09-13 | 2014-01-21 | Ford Global Technologies, Llc | Method and system for vehicle speed control |
KR101337231B1 (ko) * | 2011-11-22 | 2013-12-06 | 주식회사 만도 | 통합 전자제어 유압제동 시스템 |
US20130168168A1 (en) * | 2011-12-28 | 2013-07-04 | Kawasaki Jukogyo Kabushiki Kaisha | Hybrid Vehicle |
US8657058B2 (en) * | 2011-12-28 | 2014-02-25 | Kawasaki Jukogyo Kabushiki Kaisha | Vehicle |
JP5962608B2 (ja) * | 2013-07-30 | 2016-08-03 | 株式会社アドヴィックス | 車両の制動システム |
-
2014
- 2014-06-16 WO PCT/JP2014/065840 patent/WO2015015931A1/ja active Application Filing
- 2014-06-16 RU RU2016106323A patent/RU2671429C2/ru active
- 2014-06-16 MX MX2016000804A patent/MX352115B/es active IP Right Grant
- 2014-06-16 MY MYPI2016700220A patent/MY171372A/en unknown
- 2014-06-16 BR BR112016001113-9A patent/BR112016001113B1/pt active IP Right Grant
- 2014-06-16 EP EP14831494.1A patent/EP3028891B1/en active Active
- 2014-06-16 JP JP2015529449A patent/JP5983885B2/ja active Active
- 2014-06-16 CN CN201480042627.1A patent/CN105408161B/zh active Active
- 2014-06-16 US US14/904,986 patent/US10076959B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06153315A (ja) | 1992-11-13 | 1994-05-31 | Honda Motor Co Ltd | 電動車両の制動装置 |
JPH11141365A (ja) * | 1997-11-10 | 1999-05-25 | Nissan Motor Co Ltd | ハイブリッド車両 |
JP2011148411A (ja) * | 2010-01-22 | 2011-08-04 | Toyota Motor Corp | 車両の制御装置 |
JP2011240904A (ja) * | 2010-05-21 | 2011-12-01 | Honda Motor Co Ltd | ハイブリッド車両 |
JP2013123279A (ja) * | 2011-12-09 | 2013-06-20 | Honda Motor Co Ltd | 電動車両 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3028891A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3351421A4 (en) * | 2015-09-18 | 2018-08-29 | Hitachi Automotive Systems, Ltd. | Brake control device |
US10647205B2 (en) | 2015-09-18 | 2020-05-12 | Hitachi Automotive Systems, Ltd. | Braking control apparatus |
CN108263218A (zh) * | 2016-12-30 | 2018-07-10 | 比亚迪股份有限公司 | 电动汽车、电动汽车车身稳定方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
RU2671429C2 (ru) | 2018-10-31 |
RU2016106323A3 (ja) | 2018-04-25 |
CN105408161A (zh) | 2016-03-16 |
EP3028891A1 (en) | 2016-06-08 |
RU2016106323A (ru) | 2017-09-01 |
CN105408161B (zh) | 2018-04-06 |
JPWO2015015931A1 (ja) | 2017-03-02 |
MX2016000804A (es) | 2016-04-27 |
MY171372A (en) | 2019-10-10 |
EP3028891B1 (en) | 2018-09-19 |
MX352115B (es) | 2017-11-09 |
BR112016001113B1 (pt) | 2021-12-28 |
BR112016001113A2 (pt) | 2017-07-25 |
US20160152143A1 (en) | 2016-06-02 |
US10076959B2 (en) | 2018-09-18 |
EP3028891A4 (en) | 2016-09-07 |
JP5983885B2 (ja) | 2016-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5983885B2 (ja) | 車両の回生制動制御装置 | |
JP5561435B2 (ja) | ハイブリッド車両の制御装置 | |
US10118493B2 (en) | System and method for controlling regenerative braking force of a vehicle | |
JP5771953B2 (ja) | 電動車両の発進時ずり下がり防止制御装置 | |
JP6361916B2 (ja) | 車両制御装置および車両制御方法 | |
WO2013137098A1 (ja) | 制動制御装置及び制御方法 | |
US20100049414A1 (en) | Control apparatus for electric vehicle | |
KR20120109097A (ko) | 전기자동차의 오토크루즈 제어 방법 | |
JP5348226B2 (ja) | 車両の制動制御装置 | |
JP6048540B2 (ja) | 車両の発進時ずり下がり防止制御装置 | |
KR20150071568A (ko) | 자동 긴급 제동 방법 및 시스템 | |
JP6058564B2 (ja) | 電動車両の制動制御装置 | |
JP6124123B2 (ja) | 回生協調ブレーキ制御システム | |
JP6291460B2 (ja) | 電動車両 | |
KR101500348B1 (ko) | 하이브리드 차량의 제동 제어방법 | |
KR101714084B1 (ko) | 인휠 구동시스템 및 에이비에스 제동방법 | |
JP2020096448A (ja) | 電気自動車 | |
TW201843065A (zh) | 電動車之動能回收裝置 | |
JP5829872B2 (ja) | 車両 | |
JP5760489B2 (ja) | 車両のブレーキシステム | |
JP6153875B2 (ja) | 電動車両の制動制御装置 | |
JP2020082928A (ja) | 電動車両の制御装置 | |
KR20160097587A (ko) | 하이브리드 차량의 회생 제동 장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480042627.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14831494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015529449 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14904986 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2016/000804 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112016001113 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2016106323 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014831494 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112016001113 Country of ref document: BR Kind code of ref document: A2 Effective date: 20160118 |