[go: up one dir, main page]

WO2015001837A1 - インホイールモータ駆動車輪のモータ給電線配索構造 - Google Patents

インホイールモータ駆動車輪のモータ給電線配索構造 Download PDF

Info

Publication number
WO2015001837A1
WO2015001837A1 PCT/JP2014/061684 JP2014061684W WO2015001837A1 WO 2015001837 A1 WO2015001837 A1 WO 2015001837A1 JP 2014061684 W JP2014061684 W JP 2014061684W WO 2015001837 A1 WO2015001837 A1 WO 2015001837A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
motor
wheel
knuckle
supply terminal
Prior art date
Application number
PCT/JP2014/061684
Other languages
English (en)
French (fr)
Inventor
豊 又吉
知己 平林
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14818848.5A priority Critical patent/EP3017988B1/en
Priority to JP2015525075A priority patent/JP6056972B2/ja
Priority to CN201480034362.0A priority patent/CN105324266B/zh
Priority to US14/899,593 priority patent/US9553414B2/en
Publication of WO2015001837A1 publication Critical patent/WO2015001837A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/73Means for mounting coupling parts to apparatus or structures, e.g. to a wall
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R39/00Rotary current collectors, distributors or interrupters
    • H01R39/64Devices for uninterrupted current collection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G11/00Arrangements of electric cables or lines between relatively-movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0061Disposition of motor in, or adjacent to, traction wheel the motor axle being parallel to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R35/00Flexible or turnable line connectors, i.e. the rotation angle being limited
    • H01R35/04Turnable line connectors with limited rotation angle with frictional contact members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor feed line routing structure for an in-wheel motor drive wheel driven by a motor and steered by a steering operation.
  • the present invention has been made paying attention to the above-mentioned problem, and provides a motor feed line routing structure for an in-wheel motor drive wheel that reduces the swing of the vehicle body side feed line accompanying turning when the wheel is turned.
  • the purpose is to do.
  • the present invention provides a knuckle that can be steered around an axis of a kingpin shaft whose upper side is inclined inward in the vehicle width direction with respect to the vehicle body, and an axle that is rotatably supported by the knuckle.
  • the motor side power supply line extending from the motor and the vehicle body side power supply line extending from the in-vehicle power source are electrically connected to the motor side power supply line so that the vehicle body side power supply line can be relatively rotated.
  • An electrical connection mechanism is provided. The electric connection mechanism is disposed outside the space of the wheel recess of the wheel and on the knuckle.
  • an electrical connection mechanism that electrically connects the vehicle body side power supply line to the motor side power supply line so as to be relatively rotatable is disposed outside the wheel recess of the wheel and in a knuckle.
  • the knuckle is a member provided so as to be steerable about the axis of the kingpin shaft, which is the steered central axis when the wheels are steered. Therefore, the electrical connection mechanism arranged on the knuckle is arranged close to the kingpin shaft. For this reason, the vehicle body-side power supply line connected to the electrical connection mechanism can be swung around the axis of the kingpin shaft along a small turning radius even if the wheel is largely steered. The swing of the electric wire is reduced. As a result, when the wheels are steered, it is possible to reduce the run-around of the vehicle body side power supply line accompanying the steer.
  • FIG. 6 is an operation explanatory view (No. 2) at the time of turning showing a motor wire and a rotating power supply terminal wire corresponding to a rotating power supply terminal mounting cross section AA of the motor feeder wiring arrangement according to the first embodiment;
  • FIG. 6 is an operation explanatory diagram (No. 3) at the time of turning showing a difference in position of the rotary power supply terminal in the rotary power supply terminal mounting section AA of the motor feeder wiring arrangement according to the second embodiment.
  • FIG. 12 is an explanatory diagram (No.
  • FIG. 10 is a layout explanatory view (No.
  • FIG. 16 is a steered locus explanatory diagram (No. 6) showing a steered locus of a multi-wire integrated rotating power supply terminal corresponding to the rotating power supply terminal mounting cross section AA of the motor feeder wiring arrangement of the fifth embodiment.
  • It is a wiring diagram which shows the fixed electric power feeding wire seen from the rotating power supply terminal attachment motor rear end in the motor electric power feeding wire wiring structure of Example 1.
  • FIG. It is a figure which shows the multiple arrangement structure of the fixed electric power feeding line
  • FIG. 1 It is a perspective view which shows the reinforcement bracket structure which united the fixed feeder of Example 6.
  • FIG. 2 is a perspective view which shows the reinforcement bracket structure which integrated the some fixed electric power supply line of Example 6.
  • FIG. It is sectional drawing which shows the structure of the rotating power supply terminal compactized in the motor feeder wiring structure of Example 7.
  • FIG. It is sectional drawing which shows the structure in consideration of the electrical leakage countermeasure to the periphery of the rotation power supply terminal compactized in the motor feeder wiring arrangement
  • FIG. 1 shows a cross section of a mounting portion of an in-wheel motor drive wheel to which the motor feeder wiring arrangement structure of the first embodiment is applied.
  • FIG. 1 shows a cross section of a mounting portion of an in-wheel motor drive wheel to which the motor feeder wiring arrangement structure of the first embodiment is applied.
  • the whole structure of an in-wheel motor drive wheel is demonstrated.
  • the in-wheel motor drive wheel is a wheel provided on a front wheel or the like in an in-wheel motor vehicle and driven by a motor and steered by a steering operation.
  • the motor feed line routing structure refers to a feed line routing structure around the motor that is swung around by turning when a feed line from an in-vehicle power source is connected to a motor arranged in a wheel.
  • the in-wheel motor drive wheel of the first embodiment includes a tire 1, a wheel 2, a wheel axis 3, a vehicle body side member 4, an in-wheel motor 5 (motor), a knuckle 6, A virtual kingpin shaft 7. And as a front suspension member, the lower arm 8, the shock absorber 9, the upper arm 10, and the third link 11 are provided. Further, the power supply configuration for the in-wheel motor 5 includes a rotating power supply terminal 12 (electrical connection mechanism) and an unsprung power supply line 13.
  • the tire 1 is incorporated in a wheel 2, and a knuckle 6 and an in-wheel motor 5 are incorporated in the wheel 2 along a wheel axis 3 via a brake disk and a hub (not shown).
  • the knuckle 6 is provided to be steerable around the axis of the virtual kingpin shaft 7 whose upper side is inclined inward in the vehicle width direction with respect to the vehicle body.
  • the wheel 2 is connected to an axle that is rotatably supported by the knuckle 6.
  • the in-wheel motor 5 gives a driving force to the axle.
  • the lower arm 8 has a lower arm body side swing point 8a that is pivotably incorporated in the vehicle body, and the other lower arm motor side pivot point & kingpin shaft lower point 8b is rotatably incorporated in the knuckle lower end 6b.
  • the upper end 6 a of the knuckle 6 is rotatably incorporated in the third link 11.
  • a shock-ab lower end shaft 11c of the third link 11 is swingably incorporated into the shock-ab lower end 9a, and the shock-ab upper end 9b is swingably incorporated into the vehicle body.
  • the upper arm vehicle body side shaft 10a is swingably incorporated in the vehicle body side member 4, and the other upper arm third link side shaft 10b is swingably incorporated in the third link 11.
  • the rotating power supply terminal 12 is attached to the knuckle 6 and is composed of a fixed portion 12a and a rotating portion 12b.
  • a movable power supply line 13b (vehicle body) is connected to a fixed power supply line 13a (motor side power supply line) constituting the unsprung power supply line 13.
  • Side feed line is electrically connected so as to be relatively rotatable.
  • the rotary power terminal 12 as an electrical connection mechanism is disposed outside the space of the wheel recess 2 a of the wheel 2 and attached to the knuckle 6.
  • Both ends of the fixed power supply line 13a extending from the in-wheel motor 5 are fixed to the fixed portion 12a disposed on the lower side of the rotating power supply terminal 12 in the vehicle vertical direction and to the motor-side power supply terminal 5a of the in-wheel motor 5. Each is connected.
  • a movable power supply line 13b extending from an in-vehicle power source (not shown) is connected to a rotating portion 12b disposed on the upper side of the rotating power supply terminal 12 in the vehicle vertical direction.
  • the virtual kingpin shaft 7 is the lower end 6b of the knuckle 6 and is the shaft connecting the motor side swing point & kingpin shaft lower point 8b of the lower arm 8 and the upper end 6a of the knuckle 6 and the third link knuckle arm side shaft 11b. .
  • the tire 1 is turned around the virtual kingpin shaft 7 by a tire turning mechanism (not shown).
  • a tire turning mechanism not shown.
  • the tire 1 is steered around the virtual kingpin shaft 7, the wheel 2, the knuckle 6, the in-wheel motor 5, the rotating power supply terminal 12, and the fixed feed line 13a are also steered together.
  • Each component incorporated in the upper arm 10 and the lower arm 8 bounces and rebounds within the set range of the stub shaft 9 with the upper arm vehicle body side shaft 10a and the lower arm vehicle body side swing shaft 8a as axes.
  • FIG. 2 is a cross-sectional view (No. 1) taken along line AA showing the attachment of the rotating power supply terminal in the motor feeder wiring arrangement according to the first embodiment.
  • the rotating power terminal mounting structure will be described with reference to FIG.
  • a knuckle 6 is disposed near the side surface of the tire 1, a fixed power supply line 13a is connected from the motor power supply terminal 5a of the in-wheel motor 5 to the rotary power supply terminal 12, and a movable power supply line 13b from the rotary power supply terminal 12 to the vehicle body side. Is connected.
  • a total of two rotating power supply terminals 12 are arranged at the position of the knuckle 6 in the longitudinal direction of the vehicle. That is, the knuckle 6 is set to have a knuckle width smaller than the motor diameter as viewed in the motor axis direction (see FIG. 12), and the two rotary power terminals 12 and 12 are arranged with substantially the same radius ( It is arranged around the knuckle 6 so as to have a turning radius R1). For this reason, the rotation radius R1 connecting the two rotary power supply terminals 12 and 12 from the virtual kingpin shaft 7, which is the turning center axis, is smaller than the rotation radius R2 connecting the virtual kingpin shaft 7 and the motor power supply terminal 5a. (R1 ⁇ R2).
  • FIG. 3 shows a motor wire and a rotating power supply terminal wire corresponding to a rotating power supply terminal mounting section AA of the motor feeder wiring arrangement of the first embodiment.
  • action of the in-wheel motor drive wheel of Example 1 is demonstrated.
  • a motor power supply wiring arrangement structure in which an unsprung power supply line from an in-vehicle power supply is directly connected to a motor power supply terminal of an in-wheel motor is used as a comparative example.
  • the unsprung feed line is moved from the unsprung feed line C at the neutral position to the position C ′ along the rotation radius R2 together with the motor power terminal. Swing around greatly.
  • the unsprung feed line swings greatly from the unsprung feed line C in the turning neutral position along with the motor power supply terminal to the position C ′′ along the rotation radius R2.
  • the fixed power supply line 13a extending from the in-wheel motor 5 and the movable power supply line 13b extending from the in-vehicle power source can be rotated relative to the fixed power supply line 13a.
  • the rotary power terminal 12 is provided to be electrically connected to.
  • positions the rotary power supply terminal 12 to the knuckle 6 was employ
  • the rotation radius R1 of the rotating power supply terminal 12 is smaller than the rotation radius R2 of the motor power supply terminal. Therefore, at the time of right turning, a small swing from the movable feeding line 13b at the steering neutral position to the position of the movable feeding line 13b ′ along the rotation radius R1 together with the rotating power supply terminal 12 is suppressed. Further, at the time of left steering, a small swinging from the movable power supply line 13b to the position of the movable power supply line 13b ′′ along the rotation radius R1 together with the rotary power supply terminal 12 is suppressed. As a result, when the tire 1 is steered, it is possible to reduce the swing of the movable power supply line 13b accompanying the steer.
  • the unsprung feed line 13 of the in-wheel motor 5 when connecting the unsprung feed line 13 of the in-wheel motor 5 from the vehicle body via the rotary power terminal 12, first, the rotary power terminal 12 is attached to the outer position of the wheel 2 in the knuckle 6. Then, the fixing portion 12a of the rotating power supply terminal 12 and the motor power supply terminal 5a are connected by the fixed feeding line 13a, and the movable feeding line 13b from the in-vehicle power source is connected to the rotating portion 12b of the rotating power supply terminal 12.
  • the unsprung power supply wiring is a connection between the rotating portion 12b of the rotary power supply terminal 12 attached to the knuckle 6 and the movable power supply line 13b, and can be arranged compactly in a space away from the in-wheel motor 5.
  • Example 1 when arrange
  • the rotary power terminal when the rotary power terminal is disposed on the knuckle, it can be disposed above the knuckle as long as it extends in the direction of the kingpin shaft.
  • the rotating power supply terminal when the rotating power supply terminal is arranged above the knuckle, the height of the wheel house is increased because it is necessary to avoid interference with the rotating power supply terminal. For this reason, vehicle height or hood height will go up, and the charm as a vehicle will reduce.
  • the wheel diameter has to be increased by the amount necessary to secure the installation space for the rotary power terminal in the wheel, and the wheel becomes large.
  • the rotary power terminal is arranged above the knuckle, the height of the wheel house is increased, and the vehicle height or the hood height is increased, reducing the attractiveness of the vehicle. Resulting in.
  • the rotary power terminal 12 by disposing the rotary power terminal 12 on the knuckle 6 outside the space of the wheel recess 2a of the wheel 2, the height of the wheel house can be lowered, and the vehicle height or the hood height is not increased, and the design freedom is increased. Will be improved and the attractiveness of the vehicle will increase.
  • the knuckle width of the knuckle 6 is set to be smaller than the motor diameter when viewed in the motor axial direction, the fixed portion 12a of the rotary power terminal 12 is disposed on the lower side in the vehicle vertical direction, and the rotary power terminal 12 rotates.
  • positions the part 12b on the upper side of a vehicle up-down direction was employ
  • the knuckle width of the knuckle 6 is set to be smaller than the motor diameter as viewed in the motor axis direction, so that the rotary power terminal 12 can be brought closer to the virtual kingpin shaft 7.
  • the rotating portion 12b rotates due to the force pulled from the movable power supply line 13b, and the connection point between the movable power supply line 13b and the rotating portion 12b is directed to the shortest. That is, the movable power supply lines 13b, 13b ′, 13b ′′ at the respective steering positions become linear power supply lines connecting the in-vehicle power supply side and the rotating part 12b as shown in FIG.
  • the rotary power supply terminal 12 can be brought closer to the virtual kingpin shaft 7 than when the knuckle width is set larger than the motor diameter, and the free full length of the movable feed line 13b can be shortened, so that the swing of the movable feed line 13b can be reduced.
  • the rotation can be further reduced.
  • the degree of freedom in designing peripheral components is increased by reducing the whirling space.
  • due to the movement of the rotating portion 12b of the rotary power supply terminal 12 having the degree of freedom of rotational displacement it is possible to reduce the shake, twist, deformation, etc. of the movable power supply line 13b itself.
  • the space around the knuckle 6 that was originally a dead space can be utilized, it is possible to prevent the movable power supply line 13b from being swung without providing an extra space for arranging the rotating power supply terminal 12. .
  • the configuration arranged in for example, in the case of the two-phase wheel-in motor 5, the two movable power supply lines 13 b and 13 b are connected to the two rotary power supply terminals 12 and 12. At this time, it is possible to keep both the swinging movements small without giving a difference to the swinging reduction effect associated with the turning of the two movable power supply lines 13b and 13b.
  • a knuckle 6 provided to be steerable around the axis of a virtual kingpin shaft 7 whose upper side is inclined inward in the vehicle width direction with respect to the vehicle body;
  • a wheel 2 connected to an axle rotatably supported by the knuckle 6;
  • a motor (in-wheel motor 5) for applying a driving force to the axle;
  • In-wheel motor drive wheel with A motor side power supply line (fixed power supply line 13a) extending from the motor (in-wheel motor 5) and a vehicle body side power supply line (movable power supply line 13b) extending from the in-vehicle power source are connected to the motor side power supply line (fixed power supply line).
  • An electric connection mechanism for electrically connecting the vehicle body side power supply line (movable power supply line 13b) to the electric wire 13a) so as to be relatively rotatable;
  • the electrical connection mechanism was disposed outside the wheel recess 2a of the wheel 2 and on the knuckle 6 (FIG. 1). For this reason, when the wheel (tire 1) is steered, it is possible to reduce the run-out of the vehicle body side feed line (movable feed line 13b) accompanying the turning. Furthermore, since the electrical connection mechanism (rotary power supply terminal 12) is disposed on the knuckle 6 outside the space of the wheel recess 2a of the wheel 2, the height of the wheel house can be kept low.
  • the knuckle 6 is set to have a knuckle width smaller than the motor diameter as viewed in the motor axial direction.
  • the electrical connection mechanism (rotary power supply terminal 12) includes a fixed part 12a to which the motor side power supply line (fixed power supply line 13a) is connected and a rotating part 12b to which the vehicle body side power supply line (movable power supply line 13b) is connected.
  • the fixing portion 12a is disposed on the lower side in the vehicle vertical direction
  • the rotating portion 12b is disposed on the upper side in the vehicle vertical direction (FIG. 1).
  • the electrical connection mechanism (rotary power supply terminal 12) can be brought closer to the virtual kingpin shaft 7, and the free full length of the vehicle body side feed line (movable feed line 13b) can be shortened.
  • the swing of the vehicle body side power supply line (movable power supply line 13b) can be further reduced.
  • a plurality of the electrical connection mechanisms (rotary power supply terminals 12) are provided, and the plurality of electrical connection mechanisms (rotary power supply terminals 12) have substantially the same radius (rotation radius R1) around the virtual kingpin shaft 7. It arranged around the knuckle 6 so as to be (Fig. 2). For this reason, in addition to the effect of (1) or (2), a plurality of vehicle body side power supply lines (movable power supply lines 13b) connected to a plurality of electrical connection mechanisms (rotary power supply terminals 12) can be steered. The whirling can be kept small without giving a difference in the whirling reduction effect.
  • the two first rotary power supply terminals 12 (1) and the second rotary power supply terminal 12 (2) have a turning radius R1 and a turning radius R3 (> R1) around the virtual kingpin shaft 7. This is an example of the arrangement around the knuckle 6.
  • FIG. 4 shows the position difference of the rotary power supply terminal corresponding to the cross section AA of the rotary power supply terminal mounting structure of the motor feeding line wiring structure of the second embodiment.
  • Example 2 will be described with reference to FIG.
  • one of the first rotary power terminals 12 (1) is connected to the knuckle 6 with the rotation radius R1 around the virtual kingpin shaft 7. Arranged around.
  • the other second rotating power supply terminal 12 (2) is placed on the radial extension line connecting the virtual kingpin shaft 7 and the first rotating power supply terminal 12 (1) at the position of the rotation radius R3 (> R1). Arranged.
  • the two rotary power terminals 12 (1) and 12 (2) are both arranged on the vehicle front side from the wheel axis 3.
  • FIG. 4 shows the movable supply when the rotating power terminals 12 (1) and 12 (2), which are different from the turning radius R1 and the turning radius R3 of the virtual kingpin shaft 7, are changed to the left and right at the same turning angle.
  • the change of the electric wires 13b (1) and 13b (2) is shown.
  • the first rotary power terminal 12 (1) and the second rotary power terminal 12 (2) are arranged, the first rotary power terminal 12 (1) is arranged on the knuckle 6 close to the virtual kingpin shaft 7.
  • the second rotary power supply terminal 12 (2) is brought closer to the in-vehicle power supply.
  • the change of the first movable power supply line 13b (1) becomes as shown by the broken line in FIG. Can be kept small.
  • the second movable power supply line 13b (2) can be shortened compared to the first embodiment by arranging the second rotary power supply terminal 12 (2) closer to the in-vehicle power supply. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted. In the in-wheel motor drive wheel motor feeder wiring arrangement of the second embodiment, the effects (1) and (2) of the first embodiment can be obtained.
  • the three rotary power terminals 12 (1), 12 (2), and 12 (3) are arranged around the knuckle 6 so as to substantially coincide with the rotation radius R 1 centered on the virtual kingpin shaft 7. This is an example.
  • FIG. 5 shows the positions of the multiple rotation power supply terminals corresponding to the rotation power supply terminal mounting section AA of the motor feeder wiring arrangement according to the third embodiment
  • FIG. 6 shows the multiple rotation power supply terminal mounting arrow B (No. 1). Show.
  • Example 3 is demonstrated using FIG.5 and FIG.6.
  • all of the three rotary power supply terminals 12 (1), 12 (2), 12 (3) are equidistant positions with the rotation radius R1 around the virtual kingpin shaft 7, and the knuckle 6 Placed around the position.
  • the three movable power supply lines 13b (1), 13b (2), and 13b (3) are connected to the knuckle front side and the knuckle position so that the intervals in the vehicle front-rear direction are equal. And connected to the knuckle rear position respectively.
  • the three rotary power terminals 12 (1), 12 (2), 12 (3) were arranged at the same height in the vehicle vertical direction with respect to the knuckle 6, as shown in FIG.
  • the third embodiment is suitable for supplying power to the three-phase in-wheel motor 5, and the three rotary power terminals 12 (1), 12 (2), 12 (3) are connected to the virtual kingpin shaft 7.
  • the swing of the three movable power supply lines 13b (1), 13b (2), and 13b (3) can be kept small. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • the effects (1) to (3) of the first embodiment can be obtained.
  • Example 4 is an example in which the height positions of the three rotary power supply terminals 12 (1), 12 (2), and 12 (3) arranged around the knuckle 6 are different.
  • FIG. 7 shows a multiple rotation power supply terminal mounting arrow B (part 2) in the motor feeder wiring arrangement of the fourth embodiment
  • FIG. 8 shows a multiple rotation power supply terminal attachment arrow B (part 3).
  • 9 shows the multiple rotation power supply terminal attachment arrow B (the 4).
  • FIG. 7 shows that among the three rotary power terminals 12 (1), 12 (2), 12 (3), the first rotary power terminal 12 (1) and the third rotary power terminal 12 (3) have the same height.
  • the second rotary power terminal 12 (2) is shifted to the vehicle lower position.
  • the first rotary power terminal 12 (1) is arranged at the highest position among the three rotary power terminals 12 (1), 12 (2), 12 (3), and the second rotary power terminal 12 This is an example in which (2) is arranged at the next height position and the third rotary power terminal 12 (3) is arranged at the lowest position.
  • the three rotary power terminals 12 (1), 12 (2), and 12 (3) are arranged around the knuckle 6 close to the virtual kingpin shaft 7, the three movable power terminals 12 (1), 12 (2), and 12 (3) In some cases, it is not possible to ensure a sufficient interval between adjacent feeder lines 13b (1), 13b (2), and 13b (3).
  • the fourth embodiment among the three rotary power terminals 12 (1), 12 (2), 12 (3), one at the center is shifted up and down (FIG. 7). They are arranged so as to be shifted up and down (FIG. 8), and one and two above and below are shifted from each other (FIG. 9).
  • the arrangement of the three rotary power supply terminals 12 (1), 12 (2), and 12 (3) with respect to the knuckle 6 is a configuration in which steps are provided on the top, bottom, left, and right. For this reason, even if it steers with a plurality of movable feed lines 13b (1), 13b (2), 13b (3) such as three phases, a sufficient gap with the adjacent feed line is secured, and the movable feed line 13b ( 1), 13b (2), 13b (3) can be prevented from interfering with each other. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • Example 5 is an example in which a multi-line integrated rotary power supply terminal in which a plurality of feed lines are connected to a single rotary power supply terminal is used as the rotary power supply terminal.
  • FIG. 10 shows the position of the multi-wire integrated rotary power supply terminal corresponding to the rotary power supply terminal mounting cross section AA of the motor feeder wiring arrangement according to the fifth embodiment
  • FIG. 11 shows the turning locus of the multi-line integrated rotary power supply terminal. Show.
  • Example 5 will be described with reference to FIGS. 10 and 11.
  • the multi-line integrated rotary power supply terminal 12 ′ has a multipolar rotary power supply terminal structure and includes a single rotary power supply terminal for connecting a plurality of power supply lines such as two or three.
  • the multi-line integrated rotating power supply terminal 12 ′ is disposed only on the vehicle front side of the knuckle 6 at the rotational radius R from the virtual kingpin shaft 7.
  • the rotary power terminal may not be arranged on one side of the knuckle 6.
  • the multi-line integrated rotating power supply terminal 12 ′ is configured to connect the plurality of fixed power supply lines 13a and the movable power supply line 13b to one rotary power supply terminal. Therefore, as shown in FIG. 11, a plurality of movable power supply lines 13b are bundled. The interference space can be reduced.
  • the interference space can be halved, and if three movable power supply lines 13b are bundled, the interference space can be reduced to 1/3. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • the electrical connection mechanism (rotary power supply terminal 12) has a multipolar rotary power supply terminal structure, and one multi-line integrated rotary power supply terminal that connects a plurality of feed lines (fixed feed line 13a, movable feed line 13b). 12 '(FIG. 10). For this reason, even when other members are arranged in the vicinity of the knuckle 6, it is possible to ensure the degree of freedom of arrangement of the rotating power supply terminal 12 at a position close to the virtual kingpin shaft 7 of the knuckle 6, and a plurality of The interference space by the movable power supply line 13b can be reduced.
  • Example 6 is an example in which instead of a bracket for fixing a fixed power supply line and a rotating power supply terminal, a fixed power supply line integrated bracket in which these are integrally formed.
  • FIG. 12 shows the fixed power supply line as viewed from the rear end of the rotating power supply terminal-mounted motor in the motor power supply cable routing structure of the first embodiment.
  • FIG. 13 shows a plurality of arrangement structures of fixed feed line integrated brackets as viewed from the rear end of the rotating power supply terminal mounting motor in the motor feed line wiring structure of the sixth embodiment.
  • FIG. 14 shows a reinforcing bracket structure in which a fixed power supply line is integrated
  • FIG. 15 shows a reinforcing bracket structure in which a plurality of fixed power supply lines are integrated.
  • the motor power terminal 5 a of the in-wheel motor 5 is connected to the fixed portion 12 b of the rotary power terminal 12 disposed in the vicinity of the knuckle 6 by the fixed power supply line 13 a.
  • a movable power supply line 13 b connected to the vehicle body is connected to the rotating portion 12 a of the rotating power supply terminal 12.
  • the rotary power terminal 12 is fixed to the knuckle 6 via a bracket. That is, the bracket for fixing the fixed feeder 13a and the rotary power terminal 12 is a separate body.
  • the in-wheel motor 5, the rotary power supply terminal 12, and the knuckle 6 are positioned by using the fixed feed line integrated bracket 14 having a reinforcing bracket structure in which the fixed feed lines are integrated. Fix it.
  • the fixed feeder integrated bracket 14 has a terminal surface 14c for energizing the in-wheel motor 5 and the rotating power supply terminal 12, and the conductive wire 14a is formed in a non-electric material such as reinforced rubber or reinforced plastic. It is set as the structure fixed by the fixing bolt hole 14b.
  • a fixed power supply line integrated bracket 15 having a reinforcing bracket structure in which a plurality of fixed power supply lines are integrated may be used.
  • the fixed feeder integrated bracket 15 has terminal surfaces 15 c and 15 d for energizing the in-wheel motor 5 and the rotating power supply terminal 12, and the plurality of conductive wires 15 a are made of non-reinforced rubber or reinforced plastic. It is structured to be installed in the electric material and fixed by the fixing bolt hole 15b.
  • the fixed feeder integrated brackets 14 and 15 of the sixth embodiment have a reinforced bracket structure capable of energizing the fixed feeder, and the in-wheel motor 5, the rotary power terminal 12, and the knuckle 6 are positioned and fixed.
  • the support strength of the in-wheel motor 5 can be reinforced.
  • the in-wheel motor 5 is in a both-end support state, and the support strength of the in-wheel motor 5 can be further reinforced.
  • the fixed power supply line is integrated with the bracket, the size can be reduced. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • Example 7 is an example in which the rotary power terminal is made compact.
  • FIG. 16 shows the structure of the rotary power supply terminal that is made compact in the motor feeder wiring arrangement of the seventh embodiment.
  • Example 7 is demonstrated using FIG.
  • the rotary power terminal 12 includes a rotating contact portion 12e and a rotating screw portion 12d that rotate, and a fixing portion 12f and a fixing screw portion 12i that do not rotate.
  • An elastic member 12h that presses against the gap between the fixed portion cylindrical contact surface 12g and the rotary contact surface 12e is rotatably arranged.
  • the rotating power supply terminal 12 is placed between the outer periphery of the rotating shaft member (rotating contact portion 12e and rotating screw portion 12d) and the inner periphery of the cylindrical fixing member (fixing portion 12f and fixing screw portion 12i).
  • the elastic member 12h is sandwiched between the formed gaps. For this reason, it is possible to always stably supply electricity while rotating the rotating contact portion 12e and the rotating screw portion 12d while reducing the number of parts and reducing the size in the radial direction. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • the electrical connection mechanism is a rotary power supply terminal 12,
  • the rotating power supply terminal 12 is formed between the outer periphery of the rotating shaft member (rotating contact portion 12e and rotating screw portion 12d) and the inner periphery of the cylindrical fixing member (fixing portion 12f and fixing screw portion 12i).
  • the elastic member 12h is sandwiched between the gaps (FIG. 16). For this reason, while reducing the number of parts and reducing the size in the radial direction, it is possible to constantly supply electricity stably while the rotating shaft member (the rotating contact portion 12e and the rotating screw portion 12d) rotates.
  • FIG. 17 shows a structure in consideration of a leakage countermeasure around the rotating power supply terminal made compact in the motor feeder wiring arrangement of the eighth embodiment
  • FIG. 18 shows a structure in which the rotating power supply terminal is knuckle-arranged.
  • Example 8 will be described with reference to FIGS. 17 and 18.
  • the rotary power terminal 12 attached to the knuckle 6 is formed with a small shaft shape with a rotary contact portion 12e and a rotary screw portion 12d, which are rotary shaft members.
  • the fixing portion 12f, the elastic member 12h, and the fixing screw portion 12i which are cylindrical fixing members, have a large outer shape and are fixed to the knuckle 6.
  • a contact spring multi-face contactor
  • the outer periphery of the rotating shaft member is covered with a rotating part side leakage covering material 12j having an insertion hole for the movable power supply line 13b.
  • the outer periphery of the cylindrical fixing member is covered with a rotating part side leakage covering material 12k having an insertion hole for the fixed feeder 13a.
  • the rotating power supply terminal 12 is attached to the knuckle 6 with the rotating portion 12b disposed at the vehicle upper position and the fixed portion 12a disposed at the vehicle lower position.
  • the rotating part 12b of the rotating power supply terminal 12 is arranged at the vehicle upper position, the connection point of the movable power supply line 13b is raised, and the interference with the in-wheel motor 5 is reduced. Further, since the fixing portion 12a is arranged at the lower position of the vehicle, the outer peripheral side of the fixing portion 12a becomes a support portion that is fixed to the knuckle 6 via a bracket or the like, and the overall support rigidity of the rotary power supply terminal 12 can be increased. Since other configurations and operations are the same as those in the first embodiment, the description thereof is omitted.
  • the rotating power supply terminal 12 covers the outer periphery of the rotating shaft member with a rotating part side leakage covering material 12j having an insertion hole for the vehicle body side feeding line (movable feeding line 13b), and the cylindrical fixing member
  • the outer periphery was configured to be covered with a rotating part side leakage covering material 12k having an insertion hole for the motor side feeding line (fixed feeding line 13a) (FIG. 17). For this reason, leakage to the periphery of the compact rotary power terminal 12 can be prevented.
  • a fixed portion 12a that connects a fixed power supply line 13a extending from the in-wheel motor 5
  • a movable power supply line 12b that connects a movable power supply line 13b that extends from an in-vehicle power source.
  • An example of the rotary power terminal 12 having the above is shown.
  • any mechanism other than the rotating power supply terminal may be used as long as it has a function of electrically connecting the movable power supply line to the fixed power supply line so as to be relatively rotatable.
  • Embodiments 1 to 8 show examples in which the in-wheel motor drive wheel motor feeder wiring arrangement according to the present invention is applied to a front wheel equipped with a front suspension of an in-wheel motor vehicle.
  • the motor feeding line routing structure for the in-wheel motor drive wheel of the present invention can be applied to the rear wheel as long as it is a wheel that drives and steers.

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 車輪を転舵したとき、転舵に伴う車体側給電線の振れ回りを低減すること。 車体に対し上側が車幅方向内側に傾斜した仮想キングピン軸(7)の軸線周りに転舵可能に設けられたナックル(6)と、ナックル(6)に回転可能に支持された車軸に接続されたホイール(2)と、車軸に駆動力を与えるインホイールモータ(5)と、を備える。このインホイールモータ駆動車輪において、インホイールモータ(5)から延在する固定給電線(13a)と車載電源から延在する可動給電線(13b)とを、固定給電線(13a)に対し可動給電線(13b)を相対回転可能に電気的に接続する回転電源端子(12)を設ける。そして、回転電源端子(12)を、ホイール(2)のホイール凹部(2a)の空間外で、且つ、ナックル(6)に配置した。

Description

インホイールモータ駆動車輪のモータ給電線配索構造
 本発明は、モータにより駆動されると共に舵取り操作により転舵されるインホイールモータ駆動車輪のモータ給電線配索構造に関する。
 従来、キングピン軸に対して車幅方向内側に配置された転舵輪に用いる電気自動車用インホイールモータにおいて、モータの車体側端部から上方に向かって電力供給線及び回転速度信号線が出ている構成が記載されている(例えば、特許文献1の図2参照)。
特開2002-247713号公報
 しかしながら、従来の電気自動車用インホイールモータにあっては、車輪を転舵した場合に、モータから出た電力供給線が大きく振れ回るため、ホイールハウス内に配置された部品に干渉してしまう、という問題があった。
 また、電線と部品との干渉を防止するためには、ホイールハウス内の部品とのクリアランスを大きくとる(配線のための生存空間を大きく確保する)必要があり、ホイールハウスが大きくなってしまう、という問題があった。
 本発明は、上記問題に着目してなされたもので、車輪を転舵したとき、転舵に伴う車体側給電線の振れ回りを低減するインホイールモータ駆動車輪のモータ給電線配索構造を提供することを目的とする。
 上記目的を達成するため、本発明は、車体に対し上側が車幅方向内側に傾斜したキングピン軸の軸線周りに転舵可能に設けられたナックルと、前記ナックルに回転可能に支持された車軸に接続されたホイールと、前記車軸に駆動力を与えるモータと、を備える。
このインホイールモータ駆動車輪において、前記モータから延在するモータ側給電線と車載電源から延在する車体側給電線とを、前記モータ側給電線に対し前記車体側給電線を相対回転可能に電気的に接続する電気接続機構を設ける。
前記電気接続機構を、前記ホイールのホイール凹部の空間外で、且つ、前記ナックルに配置した。
 よって、モータ側給電線に対し車体側給電線を相対回転可能に電気的に接続する電気接続機構が、ホイールのホイール凹部の空間外で、且つ、ナックルに配置される。
すなわち、ナックルは、車輪を転舵する際の転舵中心軸であるキングピン軸の軸線周りに転舵可能に設けられた部材である。したがって、ナックルに配置した電気接続機構は、キングピン軸に近接して配置されることになる。このため、電気接続機構に接続される車体側給電線は、車輪を大きく転舵させたとしてもキングピン軸の軸線周りを小さな回転半径に沿って振れ回るというように、転舵に伴う車体側給電線の振れ回りが低減される。
この結果、車輪を転舵したとき、転舵に伴う車体側給電線の振れ回りを低減することができる。
実施例1のモータ給電線配索構造が適用されたインホイールモータ駆動車輪の取付け部を示す正面図である。 実施例1のモータ給電線配索構造における回転電源端子取付けを示すA-A断面図(その1)である。 実施例1のモータ給電線配索構造の回転電源端子取付け断面A-A相当におけるモータ電線と回転電源端子電線を示す転舵時作動説明図(その2)である。 実施例2のモータ給電線配索構造の回転電源端子取付け断面A-A相当における回転電源端子位置違いを示す転舵時作動説明図(その3)である。 実施例3のモータ給電線配索構造の回転電源端子取付け断面A-A相当における複数回転電源端子位置を示す配置説明図(その4)である。 実施例3のモータ給電線配索構造における複数回転電源端子取付け矢視B(その1)を示す図である。 実施例4のモータ給電線配索構造における複数回転電源端子取付け矢視B(その2)を示す図である。 実施例4のモータ給電線配索構造における複数回転電源端子取付け矢視B(その3)を示す図である。 実施例4のモータ給電線配索構造における複数回転電源端子取付け矢視B(その4)を示す図である。 実施例5のモータ給電線配索構造の回転電源端子取付け断面A-A相当における複数線一体回転電源端子位置を示す配置説明図(その5)である。 実施例5のモータ給電線配索構造の回転電源端子取付け断面A-A相当における複数線一体回転電源端子の転舵軌跡を示す転舵軌跡説明図(その6)である。 実施例1のモータ給電線配索構造において回転電源端子取付けモータ後端から見た固定給電線を示す配線図である。 実施例6のモータ給電線配索構造において回転電源端子取付けモータ後端から見た固定給電線一体ブラケットの複数配置構造を示す図である。 実施例6の固定給電線を一体にした補強ブラケット構造を示す斜視図である。 実施例6の複数の固定給電線を一体にした補強ブラケット構造を示す斜視図である。 実施例7のモータ給電線配索構造においてコンパクト化した回転電源端子の構造を示す断面図である。 実施例8のモータ給電線配索構造においてコンパクト化した回転電源端子の周辺への漏電対策を考慮した構造を示す断面図である。 実施例8のコンパクト化した回転電源端子をナックル配置した構造を示す斜視図である。
 以下、本発明のインホイールモータ駆動車輪のモータ給電線配索構造を実現する最良の形態を、図面に示す実施例1~実施例8に基づいて説明する。
 まず、構成を説明する。
図1は、実施例1のモータ給電線配索構造が適用されたインホイールモータ駆動車輪の取付け部の断面を示す。以下、図1に基づき、インホイールモータ駆動車輪の全体構成を説明する。
 インホイールモータ駆動車輪とは、インホイールモータ車両において、前輪などに設けられ、モータにより駆動されると共に舵取り操作により転舵される車輪をいう。モータ給電線配索構造とは、ホイール内に配置されたモータに車載電源からの給電線を接続するとき、転舵により振れ回るモータの周辺における給電線の配索構造をいう。
 実施例1のインホイールモータ駆動車輪は、図1に示すように、タイヤ1と、ホイール2と、車輪軸線3と、車体サイドメンバ4と、インホイールモータ5(モータ)と、ナックル6と、仮想キングピン軸7と、を備えている。そして、フロントサスペンション部材として、ロワアーム8と、ショックアブシャフト9と、アッパーアーム10と、サードリンク11と、を備えている。さらに、インホイールモータ5への給電構成として、回転電源端子12(電気接続機構)と、バネ下給電線13と、を備えている。
 前記タイヤ1は、ホイール2に組み込まれ、ホイール2には図示しないブレーキディスクやハブを介し、ナックル6とインホイールモータ5が車輪軸線3に沿って組み込まれている。ナックル6は、車体に対し上側が車幅方向内側に傾斜した仮想キングピン軸7の軸線周りに転舵可能に設けられている。ホイール2は、ナックル6に回転可能に支持された車軸に接続されている。インホイールモータ5は、車軸に駆動力を与える。
 前記ロアアーム8は、ロワアーム車体側揺動点8aが車体に揺動自在に組み込まれ、もう片方のロワアームモータ側揺動点&キングピン軸下点8bはナックル下端6bに回転自在に組み込まれている。ナックル6の上端6aは、サードリンク11に回転自在に組み込まれる。サードリンク11のショックアブ下端軸11cは、ショックアブ下端9aに揺動自在に組み込まれ、ショックアブ上端9bは車体に揺動自在組み込まれている。
 前記アッパーアーム10は、アッパーアーム車体側軸10aが車体サイドメンバ4に揺動自在に組み込まれ、もう片方のアッパーアームサードリンク側軸10bはサードリンク11と揺動自在に組み込まれている。
 前記回転電源端子12は、ナックル6に取り付けられ、固定部12aと回転部12bにより構成され、バネ下給電線13を構成する固定給電線13a(モータ側給電線)に対し可動給電線13b(車体側給電線)を相対回転可能に電気的に接続する。そして、電気接続機構である回転電源端子12を、ホイール2のホイール凹部2aの空間外で、且つ、ナックル6に取り付けて配置している。インホイールモータ5から延在する固定給電線13aの両端部は、回転電源端子12の車両上下方向の下側に配置された固定部12aと、インホイールモータ5のモータ側電源端子5aと、にそれぞれ接続される。図示しない車載電源から延在する可動給電線13bは、回転電源端子12の車両上下方向の上側に配置された回転部12bに接続される。
 前記仮想キングピン軸7は、ナックル6の下端6bでありロアアーム8のモータ側揺動点&キングピン軸下点8bと、ナックル6の上端6aでありサードリンクナックルアーム側軸11bを結んだ軸である。タイヤ1は、図示しないタイヤ転舵機構により、仮想キングピン軸7を中心に転舵する。尚、仮想キングピン軸7を中心としてタイヤ1が転舵するとき、ホイール2・ナックル6・インホイールモータ5・回転電源端子12・固定給電線13aも合わせて一体的に転舵する。また、アッパーアーム10とロアアーム8に組み込まれた各部品は、アッパーアーム車体側軸10aと、ロアアーム車体側揺動軸8aを軸としてショッアブシャフト9の設定範囲でバウンドやリバウンドを行っている。
 図2は、実施例1のモータ給電線配索構造における回転電源端子取付けを示すA-A断面図(その1)である。以下、図2に基づき、回転電源端子取付け構成を説明する。
 前記タイヤ1の側面近くにナックル6が配置され、インホイールモータ5のモータ電源端子5aから回転電源端子12に固定給電線13aが接続されると共に、回転電源端子12から車体側へ可動給電線13bが接続されている。
 前記回転電源端子12は、図2に示すように、ナックル6の車両前後方向位置に、それぞれ1個ずつの合計2個配置している。すなわち、ナックル6は、モータ軸方向視でモータ直径よりもナックル幅を小さく設定し(図12参照)、2個の回転電源端子12,12を、仮想キングピン軸7を中心として略同一の半径(回転半径R1)となるように、ナックル6の周りに配置している。このため、転舵中心軸である仮想キングピン軸7から2個の回転電源端子12,12を結ぶ回転半径R1は、仮想キングピン軸7からモータ電源端子5aを結ぶ回転半径R2より小さい半径になる配置とされている(R1<R2)。
 次に、作用を説明する。
図3は、実施例1のモータ給電線配索構造の回転電源端子取付け断面A-A相当におけるモータ電線と回転電源端子電線を示す。以下、図3に基づき、実施例1のインホイールモータ駆動車輪のモータ給電線配索作用を説明する。
 まず、車載電源からのバネ下給電線を、インホイールモータのモータ電源端子に対しそのまま接続したモータ給電線配索構造を比較例とする。
この比較例の場合、右転舵角θRによる車輪転舵を行うと、転舵中立位置のバネ下給電線Cからモータ電源端子と共に回転半径R2に沿ってバネ下給電線がC’の位置まで大きく振れ回る。また、左転舵角θLによる車輪転舵を行うと、転舵中立位置のバネ下給電線Cからモータ電源端子と共に回転半径R2に沿ってバネ下給電線がC”の位置まで大きく振れ回る。このとき、バネ下給電線の最小曲げ半径と車体側を固定された電源端子に制約されることで、右転舵でのバネ下給電線C’は、図3に示すように、車両前方側に大きく膨らむ円弧形状になる。また、左転舵でのバネ下給電線がC”は、図3に示すように、ショッアブシャフト9に接触干渉して曲がり変形する。
 これに対し、実施例1では、インホイールモータ5から延在する固定給電線13aと、車載電源から延在する可動給電線13bとを、固定給電線13aに対し可動給電線13bを相対回転可能に電気的に接続する回転電源端子12を設けた。そして、回転電源端子12を、ナックル6に配置する構成を採用した。
すなわち、右転舵角θRと左転舵角θLに対しナックル6に配置された回転電源端子12が回転するものの、回転電源端子12はモータ電源端子5aより仮想キングピン軸7に近い。このため、回転電源端子12の回転半径R1は、モータ電源端子の回転半径R2に比べて小さくなる。したがって、右転舵時には、転舵中立位置の可動給電線13bから回転電源端子12と共に回転半径R1に沿って可動給電線13b’の位置までの小さな振れ回りに抑えられる。また、左転舵時には、可動給電線13bから回転電源端子12と共に回転半径R1に沿って可動給電線13b”の位置までの小さな振れ回りに抑えられる。
この結果、タイヤ1を転舵したとき、転舵に伴う可動給電線13bの振れ回りを低減することができる。
 また、車体からインホイールモータ5のバネ下給電線13を、回転電源端子12を経由して接続するとき、まず、回転電源端子12を、ナックル6のうちホイール2の外側位置に取り付ける。そして、回転電源端子12の固定部12aとモータ電源端子5aを固定給電線13aにより接続し、車載電源からの可動給電線13bを回転電源端子12の回転部12bに接続することで行われる。このように、バネ下給電配索がナックル6に取り付けた回転電源端子12の回転部12bと可動給電線13bの接続となり、インホイールモータ5から離れたスペースでコンパクトに配置できる。
 実施例1では、回転電源端子12をナックル6に配置する際、ホイール2のホイール凹部2aの空間外に配置する構成を採用した。
例えば、回転電源端子をナックルに配置するとき、キングピン軸の延長方向であればナックル上方に配置することも可能である。しかし、ナックル上方に回転電源端子を配置した場合、回転電源端子との干渉を避ける必要がある分、ホイールハウスの高さが高くなってしまう。このため、車高またはフード高が上がってしまうことになり、車両としての魅力が低減してしまう。
また、モータ上部のホイール凹部の空間内に配置することも可能である。しかし、ホイール内に回転電源端子を設けた場合には、回転電源端子の設置スペースをホイール内に確保する必要がある分、ホイール径を大きくせざるを得ず、車輪が大型化してしまう。このため、上記回転電源端子をナックルの上方に配置した場合と同様に、ホイールハウスの高さが高くなってしまうし、車高またはフード高が上がってしまうことになり、車両としての魅力が低減してしまう。
これに対し、回転電源端子12を、ホイール2のホイール凹部2aの空間外のナックル6に配置することで、ホイールハウスの高さを低くでき、車高またはフード高が上がることなく、デザイン自由度が向上し、車両としての魅力が高くなる。
 実施例1では、ナックル6のナックル幅を、モータ軸方向視でモータ直径よりも小さく設定し、回転電源端子12の固定部12aを車両上下方向の下側に配置し、回転電源端子12の回転部12bを車両上下方向の上側に配置する構成を採用した。
このように、ナックル6のナックル幅を、モータ軸方向視でモータ直径よりも小さく設定したことで、回転電源端子12をより仮想キングピン軸7に近づけることができる。そして、回転電源端子12が左右方向の転舵に伴い回転すると、可動給電線13bから引っ張られる力により回転部12bが回転し、可動給電線13bの回転部12bとの接続点が最短に向く。すなわち、各転舵位置での可動給電線13b,13b’,13b”が、図3に示すように、車載電源側と回転部12bを結ぶ直線状給電線になる。
したがって、ナックル幅をモータ直径よりも大きく設定した場合より回転電源端子12を仮想キングピン軸7に近づけることができると共に、可動給電線13bの自由全長の短縮が図れることで、可動給電線13bの振れ回りをより小さく抑えることができる。また、振れ回り空間が低減化されることで、周辺部品の設計自由度が増す。併せて、回転変位自由度を有する回転電源端子12の回転部12bの動きにより、可動給電線13b自身の振れ・捻り・変形なども低減できる。また、もともとデッドスペースだったナックル6の周囲空間を活用することができるため、回転電源端子12を配置する為の余分な空間を設けることなく、可動給電線13bの振れ回りを防止することができる。
 実施例1では、回転電源端子12を2個有し、2個の回転電源端子12を、仮想キングピン軸7を中心として略同一の半径(=回転半径R1)となるように、ナックル6の周りに配置する構成を採用した。
例えば、2相のホイールインモータ5の場合、2個の回転電源端子12,12に対して2本の可動給電線13b,13bが接続されることになる。このとき、2本の可動給電線13b,13bに対し、転舵に伴う振れ回り低減効果に差を持たせることなく、振れ回りを共に小さく抑えることができる。
 次に、効果を説明する。
実施例1のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、下記に列挙する効果を得ることができる。
 (1) 車体に対し上側が車幅方向内側に傾斜した仮想キングピン軸7の軸線周りに転舵可能に設けられたナックル6と、
 前記ナックル6に回転可能に支持された車軸に接続されたホイール2と、
 前記車軸に駆動力を与えるモータ(インホイールモータ5)と、
 を備えたインホイールモータ駆動車輪において、
 前記モータ(インホイールモータ5)から延在するモータ側給電線(固定給電線13a)と車載電源から延在する車体側給電線(可動給電線13b)とを、前記モータ側給電線(固定給電線13a)に対し前記車体側給電線(可動給電線13b)を相対回転可能に電気的に接続する電気接続機構(回転電源端子12)を設け、
 前記電気接続機構(回転電源端子12)を、前記ホイール2のホイール凹部2aの空間外で、且つ、前記ナックル6に配置した(図1)。
  このため、車輪(タイヤ1)を転舵したとき、転舵に伴う車体側給電線(可動給電線13b)の振れ回りを低減することができる。さらに、ホイール2のホイール凹部2aの空間外のナックル6に電気接続機構(回転電源端子12)を配置したため、ホイールハウスの高さを低く抑えることができる。
 (2) 前記ナックル6は、モータ軸方向視でモータ直径よりもナックル幅を小さく設定し、
 前記電気接続機構(回転電源端子12)は、前記モータ側給電線(固定給電線13a)が接続される固定部12aと、前記車体側給電線(可動給電線13b)が接続される回転部12bと、を有し、前記固定部12aを車両上下方向の下側に配置し、前記回転部12bを車両上下方向の上側に配置した(図1)。
  このため、(1)の効果に加え、電気接続機構(回転電源端子12)をより仮想キングピン軸7に近づけることができると共に、車体側給電線(可動給電線13b)の自由全長の短縮が図れることで、車体側給電線(可動給電線13b)の振れ回りをより小さく抑えることができる。
 (3) 前記電気接続機構(回転電源端子12)を複数個有し、前記複数個の電気接続機構(回転電源端子12)を、仮想キングピン軸7を中心として略同一の半径(回転半径R1)となるように、前記ナックル6の周りに配置した(図2)。
  このため、(1)又は(2)の効果に加え、複数個の電気接続機構(回転電源端子12)に接続される複数本の車体側給電線(可動給電線13b)に対し、転舵に伴う振れ回り低減効果に差を持たせることなく、振れ回りを共に小さく抑えることができる。
 実施例2は、2個の第1回転電源端子12(1)と第2回転電源端子12(2)を、仮想キングピン軸7を中心とする回転半径R1と回転半径R3(>R1)となるようにナックル6の周りに配置した例である。
 図4は、実施例2のモータ給電線配索構造の回転電源端子取付け断面A-A相当における回転電源端子位置違いを示す。以下、図4を用いて実施例2を説明する。
 実施例2では、2個の回転電源端子12(1),12(2)のうち、一方の第1回転電源端子12(1)を、仮想キングピン軸7を中心として回転半径R1によるナックル6の周りに配置した。そして、他方の第2回転電源端子12(2)を、仮想キングピン軸7と第1回転電源端子12(1)を結ぶ径方向の延長線上であって、回転半径R3(>R1)の位置に配置した。なお、2個の回転電源端子12(1),12(2)は、いずれも車輪軸線3より車両前方側に配置した。
 図4は、仮想キングピン軸7の回転半径R1と回転半径R3と異なる各1個の回転電源端子12(1),12(2)を、同一の転舵角で左右に変化したときの可動給電線13b(1),13b(2)の変化を示したものである。このように、第1回転電源端子12(1)と第2回転電源端子12(2)を配置するとき、第1回転電源端子12(1)を仮想キングピン軸7に近づけてナックル6に配置し、第2回転電源端子12(2)を車載電源により近づける構成としている。このとき、第1回転電源端子12(1)を仮想キングピン軸7に近づけて配置したことで、第1可動給電線13b(1)の変化は、図4の破線に示すようになり、振れ回りが小さく抑えられる。そして、第2回転電源端子12(2)を車載電源により近づけて配置したことで、実施例1に比べて第2可動給電線13b(2)を短くできる。
なお、他の構成及び作用については、実施例1と同様であるので、説明を省略する。
実施例2のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、実施例1の(1),(2)の効果を得ることができる。
 実施例3は、3個の回転電源端子12(1),12(2),12(3)を、仮想キングピン軸7を中心とする回転半径R1に略一致するようにナックル6の周りに配置した例である。
 図5は、実施例3のモータ給電線配索構造の回転電源端子取付け断面A-A相当における複数回転電源端子位置を示し、図6は、複数回転電源端子取付け矢視B(その1)を示す。以下、図5及び図6を用いて実施例3を説明する。
 実施例3では、3個の回転電源端子12(1),12(2),12(3)の全てを、仮想キングピン軸7を中心とする回転半径R1の等距離位置であって、ナックル6の周りの位置に配置した。このとき、3本の可動給電線13b(1),13b(2),13b(3)は、図5に示すように、車両前後方向間隔が等間隔になるように、ナックル前方側とナックル位置とナックル後方位置にそれぞれ接続した。そして、3個の回転電源端子12(1),12(2),12(3)は、図6に示すように、ナックル6に対し車両上下方向の同じ高さ位置に配置した。
 したがって、実施例3では、3相のインホイールモータ5に給電するのに適していると共に、3個の回転電源端子12(1),12(2),12(3)を仮想キングピン軸7に近づけて配置したことで(回転半径R1)、3本の可動給電線13b(1),13b(2),13b(3)の振れ回りが小さく抑えられる。
なお、他の構成及び作用については、実施例1と同様であるので、説明を省略する。
実施例3のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、実施例1の(1)~(3)の効果を得ることができる。
 実施例4は、ナックル6の周りに配置した3個の回転電源端子12(1),12(2),12(3)の高さ位置を異ならせた例である。
 図7は、実施例4のモータ給電線配索構造における複数回転電源端子取付け矢視B(その2)を示し、図8は、複数回転電源端子取付け矢視B(その3)を示し、図9は、複数回転電源端子取付け矢視B(その4)を示す。以下、図7~図9を用いて実施例4を説明する。
 図7は、3個の回転電源端子12(1),12(2),12(3)のうち、第1回転電源端子12(1)と第3回転電源端子12(3)を同じ高さに配置し、第2回転電源端子12(2)を車両下方位置にずらして配置した例である。図8は、3個の回転電源端子12(1),12(2),12(3)のうち、第1回転電源端子12(1)を最も高い位置に配置し、第2回転電源端子12(2)を次の高さ位置に配置し、第3回転電源端子12(3)を最も低い位置に配置した例である。図9は、3個の回転電源端子12(1),12(2),12(3)のうち、第1回転電源端子12(1)を車両前方側に配置し、第2回転電源端子12(2)と第3回転電源端子12(3)を車両後方側に上下位置に並べて配置した例である。
 3個の回転電源端子12(1),12(2),12(3)を、仮想キングピン軸7に近づけてナックル6の周りに配置する場合、同じ高さ位置に配置すると、3本の可動給電線13b(1),13b(2),13b(3)の隣接する給電線間隔が十分に確保できない場合がある。これに対し、実施例4では、3個の回転電源端子12(1),12(2),12(3)のうち、中央の1個を上下にずらして配置したり(図7)、順に上下にずらして配置したり(図8)、1個と上下2個を互いにずらして配置している(図9)。このように、3個の回転電源端子12(1),12(2),12(3)のナックル6に対する配置構成として、上下左右に段差を設けて配置した構成とした。このため、3相などの複数の可動給電線13b(1),13b(2),13b(3)で転舵しても隣の給電線との隙間が十分に確保され、可動給電線13b(1),13b(2),13b(3)同士の干渉を防止することができる。
なお、他の構成及び作用については、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例4のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、実施例1の(1)~(3)の効果に加え、下記の効果を得ることができる。
 (4) 前記電気接続機構(回転電源端子12)を、前記仮想キングピン軸7に近づけて前記ナックル6の周りに複数個配置するとき、車両上下方向に高さを異ならせた段差を設けて配置する構成とした(図7,図8,図9)。
  このため、複数個の電気接続機構(回転電源端子12(1),12(2),12(3))を仮想キングピン軸7に近づけてナックル6の周りに配置しても、複数本の車体側給電線(可動給電線13b(1),13b(2),13b(3))同士の干渉を防止することができる。
 実施例5は、回転電源端子として、1つの回転電源端子に対し複数の給電線が接続される複数線一体回転電源端子を用いた例である。
 図10は、実施例5のモータ給電線配索構造の回転電源端子取付け断面A-A相当における複数線一体回転電源端子位置を示し、図11は、複数線一体回転電源端子の転舵軌跡を示す。以下、図10及び図11を用いて実施例5を説明する。
 前記複数線一体回転電源端子12’は、多極回転電源端子構造とし、2本や3本などの複数の給電線を接続する回転電源端子を1個で構成したものである。実施例5では、複数線一体回転電源端子12’を、図10に示すように、仮想キングピン軸7から回転半径Rの位置で、ナックル6の車両前方側のみに配置している。
 例えば、仮想キングピン軸7に対してナックル6の一方にショックアブシャフト9がオフセットして配置されたときなどにおいては、ナックル6の一方側に回転電源端子を配置できないときがある。これに対し、複数線一体回転電源端子12’を用いることで、ナックル6の他方側の空きスペースに配置することができる。そして、複数線一体回転電源端子12’は、複数の固定給電線13aと可動給電線13bを1個の回転電源端子に接続する構成なので、図11に示すように、可動電源線13bを複数束ねて配置可能であり、干渉空間を減少させることができる。例えば、2本の可動電源線13bを束ねると干渉空間を半減できるし、3本の可動電源線13bを束ねると干渉空間を1/3に減少できる。
なお、他の構成及び作用については、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例5のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、実施例1の(1)~(3)の効果に加え、下記の効果を得ることができる。
 (5) 前記電気接続機構(回転電源端子12)を、多極回転電源端子構造とし、複数の給電線(固定給電線13a,可動給電線13b)を接続する1個の複数線一体回転電源端子12’で構成した(図10)。
  このため、ナックル6の近傍に他の部材が配置された場合でも、ナックル6の仮想キングピン軸7に近接する位置への回転電源端子12の配置自由度を確保することができると共に、複数本の可動電源線13bによる干渉空間を減少させることができる。
 実施例6は、固定給電線と回転電源端子を固定するブラケットに代え、これらを一体に形成した固定給電線一体ブラケットを用いた例である。
 図12は、実施例1のモータ給電線配索構造において回転電源端子取付けモータ後端から見た固定給電線を示す。図13は、実施例6のモータ給電線配索構造において回転電源端子取付けモータ後端から見た固定給電線一体ブラケットの複数配置構造を示す。図14は、固定給電線を一体にした補強ブラケット構造を示し、図15は、複数の固定給電線を一体にした補強ブラケット構造を示す。以下、図12~図15を用いて実施例5を説明する。
 まず、実施例1の場合、図12に示すように、インホイールモータ5のモータ電源端子5aは、ナックル6の近傍に配置した回転電源端子12の固定部12bに対し固定給電線13aにより接続される。一方、回転電源端子12の回転部12aには、車体へつなぐ可動給電線13bが接続される。回転電源端子12は、ナックル6に対しブラケットを介して固定される。すなわち、固定給電線13aと回転電源端子12を固定するブラケットが別体となる。
 これに対し、実施例6では、図13に示すように、固定給電線を一体にした補強ブラケット構造による固定給電線一体ブラケット14を用い、インホイールモータ5と回転電源端子12とナックル6を位置決め固定する。この固定給電線一体ブラケット14は、図14に示すように、インホイールモータ5や回転電源端子12に通電する端子表面14cを有し、導電線14aを強化ゴムや強化プラスチックなど非電動材に内設し、固定ボルト孔14bで固定した構造としている。
 なお、固定給電線一体ブラケットとしては、複数の固定給電線を一体にした補強ブラケット構造の固定給電線一体ブラケット15を用いても良い。この固定給電線一体ブラケット15は、図15に示すように、インホイールモータ5や回転電源端子12に通電する端子表面15c,15dを有し、複数の導電線15aを強化ゴムや強化プラスチックなど非電動材に内設し、固定ボルト孔15bで固定した構造としている。
 このように、実施例6の固定給電線一体ブラケット14,15は、固定給電線を通電可能な補強ブラケット構造とし、インホイールモータ5と回転電源端子12とナックル6を位置決め固定しているため、インホイールモータ5の支持強度を補強することができる。特に、図13に示すように、一対の固定給電線一体ブラケット14,14を固定すると、インホイールモータ5が両持ち支持状態となり、インホイールモータ5の支持強度をより補強することができる。また、固定給電線をブラケットと一体化したことによりコンパクト化も図ることができる。
なお、他の構成及び作用については、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例6のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、実施例1の(1)~(3)の効果、実施例4の(4)の効果、実施例5の(5)の効果に加え、下記の効果を得ることができる。
 (6) 前記固定給電線を、前記モータ(インホイールモータ5)と前記電気接続機構(回転電源端子12)と前記ナックル6に固定される通電可能な補強ブラケット構造による固定給電線一体ブラケット14,15とした(図13)。
  このため、モータ(インホイールモータ5)の支持強度を補強することができると共に、部品点数の削減及びコンパクト化を図ることができる。さらに、固定給電線一体ブラケット14,15は、強化ゴムや強化プラスチックなどのように金属と異なるバネ定数を持つ構成なので、モータ自身の振動低減が図られ、モータケースの変形を抑えることもできる。
 実施例7は、回転電源端子のコンパクト化を図った例である。
 図16は、実施例7のモータ給電線配索構造においてコンパクト化した回転電源端子の構造を示す。以下、図16を用いて実施例7を説明する。
 前記回転電源端子12は、図16に示すように、回転する回転接触部12e及び回転ネジ部12dと、回転しない固定部12f及び固定ネジ部12iと、を備える。そして、固定部円筒接触面12gと回転接触面12eの隙間に押圧する弾性部材12hを回転自在に介装して構成している。
 このように、回転電源端子12を、回転軸部材(回転接触部12e及び回転ネジ部12d)の外周と、円筒状固定部材(固定部12f及び固定ネジ部12i)の内周と、の間に形成される隙間に弾性部材12hを挟んだ構成とした。このため、部品点数削減と径方向の大きさを小型化しながらも、回転接触部12e及び回転ネジ部12dが回転しながら電気を常に安定して通電することができる。
なお、他の構成及び作用については、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例7のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、実施例1の(1)~(3)の効果、実施例4の(4)の効果、実施例5の(5)の効果、実施例6の(6)の効果に加え、下記の効果を得ることができる。
 (7) 前記電気接続機構を、回転電源端子12とし、
 前記回転電源端子12は、回転軸部材(回転接触部12e及び回転ネジ部12d)の外周と、円筒状固定部材(固定部12f及び固定ネジ部12i)の内周と、の間に形成される隙間に弾性部材12hを挟んだ構成とした(図16)。
  このため、部品点数削減と径方向の大きさを小型化しながらも、回転軸部材(回転接触部12e及び回転ネジ部12d)が回転しながら電気を常に安定して通電することができる。
 実施例8は、コンパクト化した回転電源端子の周辺への漏電対策を考慮した例である。
 図17は、実施例8のモータ給電線配索構造においてコンパクト化した回転電源端子の周辺への漏電対策を考慮した構造を示し、図18は、回転電源端子をナックル配置した構造を示す。以下、図17及び図18を用いて実施例8を説明する。
 前記ナックル6に取り付ける回転電源端子12は、図17に示すように、回転軸部材である回転接触部12e及び回転ネジ部12dが小さい軸形状で形成される。そして、円筒状固定部材である固定部12f、弾性部材12h及び固定ネジ部12iは、外形が大きくナックル6に固定する構造としている。なお、弾性部材12hとしては、多面接触による低接触抵抗により接続を可能とするコンタクトスプリング(多面接触子)などが用いられる。さらに、回転軸部材の外周は、可動給電線13bの挿通穴を有する回転部側漏洩被覆材12jにより覆われている。また、円筒状固定部材の外周は、固定給電線13aの挿通穴を有する回転部側漏洩被覆材12kにより覆われている。前記回転電源端子12のナックル6への取り付け状態は、図18に示すように、回転部12bを車両上方位置に配置し、固定部12aを車両下方位置に配置している。
 このように、回転電源端子12の回転部12bを車両上方位置に配置することで、可動給電線13bの接続点が上がり、インホイールモータ5との干渉が軽減される。また、固定部12aを車両下方位置に配置する構造なので、固定部12aの外周側がブラケットなどを介してナックル6に固定する支持部となり、回転電源端子12の全体支持剛性を高くすることができる。
なお、他の構成及び作用については、実施例1と同様であるので、説明を省略する。
 次に、効果を説明する。
実施例8のインホイールモータ駆動車輪のモータ給電線配索構造にあっては、実施例7の(7)の効果に加え、下記の効果を得ることができる。
 (8) 前記回転電源端子12は、前記回転軸部材の外周を、前記車体側給電線(可動給電線13b)の挿通穴を有する回転部側漏洩被覆材12jにより覆い、前記円筒状固定部材の外周を、前記モータ側給電線(固定給電線13a)の挿通穴を有する回転部側漏洩被覆材12kにより覆う構成とした(図17)。
  このため、コンパクト化した回転電源端子12の周辺への漏電を防止することができる。
 以上、本発明のインホイールモータ駆動車輪のモータ給電線配索構造を実施例1~実施例8に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1~8では、電気接続機構として、インホイールモータ5から延在する固定給電線13aを接続する固定部12aと、車載電源から延在する可動給電線13bを接続する可動給電線12bと、を有する回転電源端子12の例を示した。しかし、電気接続機構としては、固定給電線に対し可動給電線を相対回転可能に電気的に接続する機能を備えたものであれば、回転電源端子以外の機構を用いても良い。
 実施例1~8では、本発明のインホイールモータ駆動車輪のモータ給電線配索構造を、インホイールモータ車のフロントサスペンションを備えた前輪に適用する例を示した。しかし、本発明のインホイールモータ駆動車輪のモータ給電線配索構造は、駆動と転舵を行う車輪であれば、後輪などに対しても適用することができる。
関連出願の相互参照
 本出願は、2013年7月4日に日本国特許庁に同日出願された特願2013-140571に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (8)

  1.  車体に対し上側が車幅方向内側に傾斜したキングピン軸の軸線周りに転舵可能に設けられたナックルと、
     前記ナックルに回転可能に支持された車軸に接続されたホイールと、
     前記車軸に駆動力を与えるモータと、
     を備えたインホイールモータ駆動車輪において、
     前記モータから延在するモータ側給電線と車載電源から延在する車体側給電線とを、前記モータ側給電線に対し前記車体側給電線を相対回転可能に電気的に接続する電気接続機構を設け、
     前記電気接続機構を、前記ホイールのホイール凹部の空間外で、且つ、前記ナックルに配置した
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
  2.  請求項1に記載されたインホイールモータ駆動車輪のモータ給電線配索構造において、
     前記ナックルは、モータ軸方向視でモータ直径よりもナックル幅を小さく設定し、
     前記電気接続機構は、前記モータ側給電線が接続される固定部と、前記車体側給電線が接続される回転部と、を有し、前記固定部を車両上下方向の下側に配置し、前記回転部を車両上下方向の上側に配置した
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
  3.  請求項1又は2に記載されたインホイールモータ駆動車輪のモータ給電線配索構造において、
     前記電気接続機構を複数個有し、前記複数個の電気接続機構を、キングピン軸を中心として略同一の半径となるように、前記ナックルの周りに配置した
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
  4.  請求項1から3までの何れか一項に記載されたインホイールモータ駆動車輪のモータ給電線配索構造において、
     前記電気接続機構を、前記キングピン軸に近づけて前記ナックルの周りに複数個配置するとき、車両上下方向に高さを異ならせた段差を設けて配置する構成とした
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
  5.  請求項1から3までの何れか一項に記載されたインホイールモータ駆動車輪のモータ給電線配索構造において、
     前記電気接続機構を、多極回転電源端子構造とし、複数の給電線を接続する1個の複数線一体回転電源端子で構成した
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
  6.  請求項1から5までの何れか一項に記載されたインホイールモータ駆動車輪のモータ給電線配索構造において、
     前記固定給電線を、前記モータと前記電気接続機構と前記ナックルに固定される通電可能な補強ブラケット構造による固定給電線一体ブラケットとした
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
  7.  請求項1から6までの何れか一項に記載されたインホイールモータ駆動車輪のモータ給電線配索構造において、
     前記電気接続機構を、回転電源端子とし、
     前記回転電源端子は、回転軸部材の外周と、円筒状固定部材の内周と、の間に形成される隙間に弾性部材を挟んだ構成とした
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
  8.  請求項7に記載されたインホイールモータ駆動車輪のモータ給電線配索構造において、
     前記回転電源端子は、前記回転軸部材の外周を、前記車体側給電線の挿通穴を有する回転部側漏洩被覆材により覆い、前記円筒状固定部材の外周を、前記モータ側給電線の挿通穴を有する回転部側漏洩被覆材により覆う構成とした
     ことを特徴とするインホイールモータ駆動車輪のモータ給電線配索構造。
PCT/JP2014/061684 2013-07-04 2014-04-25 インホイールモータ駆動車輪のモータ給電線配索構造 WO2015001837A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14818848.5A EP3017988B1 (en) 2013-07-04 2014-04-25 Motor power feed wiring routing structure for in-wheel motor driven wheel
JP2015525075A JP6056972B2 (ja) 2013-07-04 2014-04-25 インホイールモータ駆動車輪のモータ給電線配索構造
CN201480034362.0A CN105324266B (zh) 2013-07-04 2014-04-25 轮内电动机驱动车轮的电动机供电线布线构造
US14/899,593 US9553414B2 (en) 2013-07-04 2014-04-25 Motor power feed wiring structure having a vehicle body-side power feed wire rotatably connected to a motor-side power feed wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-140571 2013-07-04
JP2013140571 2013-07-04

Publications (1)

Publication Number Publication Date
WO2015001837A1 true WO2015001837A1 (ja) 2015-01-08

Family

ID=52143431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/061684 WO2015001837A1 (ja) 2013-07-04 2014-04-25 インホイールモータ駆動車輪のモータ給電線配索構造

Country Status (5)

Country Link
US (1) US9553414B2 (ja)
EP (1) EP3017988B1 (ja)
JP (1) JP6056972B2 (ja)
CN (1) CN105324266B (ja)
WO (1) WO2015001837A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202592A (ja) * 2018-05-22 2019-11-28 マツダ株式会社 インホイールモータ駆動装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334590B2 (ja) * 2016-04-06 2018-05-30 Ntn株式会社 インホイールモータ駆動装置
JP6918459B2 (ja) * 2016-04-06 2021-08-11 Ntn株式会社 インホイールモータ動力線の配線構造およびインホイールモータ駆動装置
US11718248B2 (en) * 2020-02-20 2023-08-08 Sumitomo Wiring Systems, Ltd. Wire harness and wire harness routing structure
US11848546B2 (en) * 2021-02-01 2023-12-19 Magna Powertrain Of America, Inc. High voltage wire protection system for electric vehicles
WO2023056531A1 (en) * 2021-10-09 2023-04-13 Applied Electric Vehicles Ltd Wheel assembly and suspension upright for electric vehicle
DE102021213787A1 (de) 2021-12-03 2023-06-07 Continental Automotive Technologies GmbH Kraftfahrzeug mit einer innenseitig liegenden elektrischen Verbindung für eine elektromechanische Radbremse
DE102023107011A1 (de) 2023-03-21 2024-09-26 Audi Aktiengesellschaft Radaufhängung für ein Rad einer Achse eines Kraftfahrzeugs sowie Kraftfahrzeug
CN118572299B (zh) * 2024-06-06 2025-01-28 佛山市兴旺盛电子科技有限公司 一种燃油发动机启动电池组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112724A (ja) * 1989-09-25 1991-05-14 Aisin Aw Co Ltd 車両用モータの配線および配管装置
JPH11102765A (ja) * 1997-09-25 1999-04-13 Nec Corp ロータリコネクタ
JP2002247713A (ja) 2001-02-19 2002-08-30 Japan Science & Technology Corp 電気自動車用インホイールモーター
JP2006062388A (ja) * 2004-08-24 2006-03-09 Honda Motor Co Ltd 車両用ホイール駆動装置
JP2008213571A (ja) * 2007-03-01 2008-09-18 Mitsuba Corp 差動式キャスタ
JP2008308033A (ja) * 2007-06-14 2008-12-25 Toyota Motor Corp 車輪駆動装置
JP2011004526A (ja) * 2009-06-18 2011-01-06 Aisin Seiki Co Ltd 電動機の結線構造および結線方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043841A1 (de) * 1970-09-04 1972-03-09 Daimler Benz Ag, 7000 Stuttgart Insbesondere fur Bremskraft Regelanla gen bei Kraftfahrzeugen bestimmte Schleif nnganordnung
US3767909A (en) * 1972-06-26 1973-10-23 J Bell Automobile wheel light accessory
DE3100190C2 (de) * 1980-01-11 1983-11-03 Nissan Motor Co., Ltd., Yokohama, Kanagawa Lenkvorrichtung für Fahrzeuge, insbesondere Kraftfahrzeuge
JPH03121930A (ja) 1989-10-05 1991-05-23 Aisin Aw Co Ltd 車両用モータの配線接続装置
JP4024025B2 (ja) * 2001-10-11 2007-12-19 ナイルス株式会社 回転コネクタ装置
DE112008003948T5 (de) * 2008-07-23 2011-06-01 Harmonic Drive Systems Inc. Elektrische Verdrahtungskonstruktion eines hohlen Drehelements
JP5117528B2 (ja) * 2010-03-30 2013-01-16 古河電気工業株式会社 回転コネクタ装置
JP5041447B2 (ja) * 2010-03-30 2012-10-03 古河電気工業株式会社 回転コネクタ装置
JP5224404B2 (ja) * 2010-03-30 2013-07-03 古河電気工業株式会社 回転コネクタ装置
JP5041449B2 (ja) * 2010-11-19 2012-10-03 古河電気工業株式会社 回転コネクタ装置
JP2013159224A (ja) 2012-02-06 2013-08-19 Nissan Motor Co Ltd 動力源一体式車輪のワイヤハーネス配索構造

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112724A (ja) * 1989-09-25 1991-05-14 Aisin Aw Co Ltd 車両用モータの配線および配管装置
JPH11102765A (ja) * 1997-09-25 1999-04-13 Nec Corp ロータリコネクタ
JP2002247713A (ja) 2001-02-19 2002-08-30 Japan Science & Technology Corp 電気自動車用インホイールモーター
JP2006062388A (ja) * 2004-08-24 2006-03-09 Honda Motor Co Ltd 車両用ホイール駆動装置
JP2008213571A (ja) * 2007-03-01 2008-09-18 Mitsuba Corp 差動式キャスタ
JP2008308033A (ja) * 2007-06-14 2008-12-25 Toyota Motor Corp 車輪駆動装置
JP2011004526A (ja) * 2009-06-18 2011-01-06 Aisin Seiki Co Ltd 電動機の結線構造および結線方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3017988A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202592A (ja) * 2018-05-22 2019-11-28 マツダ株式会社 インホイールモータ駆動装置
JP7190102B2 (ja) 2018-05-22 2022-12-15 マツダ株式会社 インホイールモータ駆動装置

Also Published As

Publication number Publication date
EP3017988A4 (en) 2016-07-27
US9553414B2 (en) 2017-01-24
JP6056972B2 (ja) 2017-01-11
EP3017988B1 (en) 2018-03-21
US20160149357A1 (en) 2016-05-26
JPWO2015001837A1 (ja) 2017-02-23
EP3017988A1 (en) 2016-05-11
CN105324266A (zh) 2016-02-10
CN105324266B (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
JP6056972B2 (ja) インホイールモータ駆動車輪のモータ給電線配索構造
JP5252840B2 (ja) 車輪駆動装置
JP4980825B2 (ja) ステアリング装置
JP4628136B2 (ja) 配線装置
US9796235B2 (en) Suspension device for in-wheel motor driven wheel
EP2896520B1 (en) Suspension structure for in-wheel motor drive device
EP3112194B1 (en) Link structure between in-wheel motor drive device and damper, and suspension device including the link structure
WO2014042030A1 (ja) インホイールモータ駆動装置のサスペンション構造
JP6323555B2 (ja) インホイールモータ車のばね下給電装置
JP6438228B2 (ja) インホイールモータ駆動装置の電力線配索構造
WO2022014477A1 (ja) 足回り用配線モジュール及び足回り用配線モジュールの配索構造
JP2015013528A (ja) インホイールモータ駆動車輪のモータ給電線配索構造
JP2011218931A (ja) 操舵輪用モータ駆動ユニット
JP2014054920A (ja) インホイールモータ駆動装置のサスペンション構造
WO2022014481A1 (ja) 車輪側機器及び足回り用配線装置
WO2022014330A1 (ja) 足回り用配線モジュール及び足回り用配線モジュールの配索構造
JP2001301472A (ja) ホイールインモータ車の動力供給体支持構造
JP5978077B2 (ja) インホイールモータ駆動装置のサスペンション構造
WO2022014480A1 (ja) 足回り用配線モジュール及び足回り用配線モジュールの配索構造
US20250087983A1 (en) Suspension wiring module
JP6363850B2 (ja) インホイールモータ駆動装置と転舵機構との連結構造
US20250196912A1 (en) Vehicle suspension system
WO2021095756A1 (ja) 配線支持構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480034362.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525075

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14899593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014818848

Country of ref document: EP