WO2014175203A1 - トルク指令生成装置 - Google Patents
トルク指令生成装置 Download PDFInfo
- Publication number
- WO2014175203A1 WO2014175203A1 PCT/JP2014/061138 JP2014061138W WO2014175203A1 WO 2014175203 A1 WO2014175203 A1 WO 2014175203A1 JP 2014061138 W JP2014061138 W JP 2014061138W WO 2014175203 A1 WO2014175203 A1 WO 2014175203A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- amplitude
- signal
- torque command
- torque
- Prior art date
Links
- 238000004364 calculation method Methods 0.000 claims abstract description 81
- 238000012937 correction Methods 0.000 claims description 29
- 238000012360 testing method Methods 0.000 claims description 19
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 17
- 230000005540 biological transmission Effects 0.000 claims description 11
- 238000001514 detection method Methods 0.000 claims description 9
- 230000005284 excitation Effects 0.000 abstract description 37
- 230000001133 acceleration Effects 0.000 abstract description 10
- 238000010586 diagram Methods 0.000 description 19
- 238000002485 combustion reaction Methods 0.000 description 11
- 238000000034 method Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 230000001629 suppression Effects 0.000 description 7
- 230000002194 synthesizing effect Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000013016 damping Methods 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/025—Test-benches with rotational drive means and loading means; Load or drive simulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/042—Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
- G01M15/044—Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12 by monitoring power, e.g. by operating the engine with one of the ignitions interrupted; by using acceleration tests
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P31/00—Arrangements for regulating or controlling electric motors not provided for in groups H02P1/00 - H02P5/00, H02P7/00 or H02P21/00 - H02P29/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Definitions
- the present invention relates to a torque command generation device. More specifically, it is built into a drive train test system that generates torque that simulates an engine with a motor connected to the shaft of a vehicle drive train, and generates a motor generated torque command signal for driving the motor.
- the present invention relates to a torque command generating device.
- the drive train is a general term for a plurality of devices for transmitting the energy generated in the engine to the drive wheels, and includes an engine, a clutch, a transmission, a drive shaft, a propeller shaft, a differential gear, and a drive wheel.
- durability and quality are evaluated by continuously driving the transmission with the engine.
- a system for performing such a drive train test a system has been proposed in which a driving torque input to a workpiece is generated by a motor instead of an actual engine.
- the torque command generation device In an actual engine, periodic torque fluctuations occur due to the combustion process in each cylinder. For this reason, the torque command generation device generates a motor-generated torque command signal by synthesizing a DC signal for driving at a predetermined acceleration / deceleration and an AC signal having a predetermined vibration frequency and vibration amplitude. It inputs into a motor drive device (for example, inverter) (for example, refer to patent documents 1, 2, and 3). As a result, the drivetrain test system performs a test simulating an actual engine.
- a motor drive device for example, inverter
- a motor driving device that directly drives a motor operates within a specific allowable range in consideration of heat generation characteristics, mechanical strength, and the like inherent to the motor actually used. For example, if the value of the motor generation torque command signal transmitted from the torque command generation device exceeds the allowable range, for example, the surplus exceeding the allowable range is forced from the motor generation command signal. This is achieved by rounding down.
- Many of the motor drive devices used in the test system are equipped with such a torque limit function in order to protect the motor and the devices constituting the system. With reference to FIG. 13, the adverse effects that can be caused by the torque limit function will be described in detail.
- FIG. 13 is a diagram showing a specific example of a motor generation torque command signal input from the torque command generation device to the motor drive device.
- the thin solid line indicates the time change of the motor generation torque command signal generated in the torque command generation device.
- the motor generation torque command signal is a combination of a DC signal of 500 [Nm] and an AC signal characterized by an excitation amplitude of 1000 [Nm] and an excitation frequency of 10 [Hz]. Is generated by The torque command signal including the DC component and the AC component has a maximum value of 1500 [Nm], a minimum value of ⁇ 500 [Nm], and an average value of 500 [Nm].
- the motor drive device limits the torque generated by the motor between the maximum torque upper limit value specified by 1000 [Nm] and the maximum torque lower limit value specified by ⁇ 1000 [Nm]
- a surplus exceeding the maximum torque upper limit value 1000 [Nm] of the torque command signal is forcibly discarded, so that the torque command signal indicated by a thin solid line is substantially indicated by a thick broken line. It is limited to such a signal.
- the average generated torque is reduced from the originally planned 500 [Nm] by the amount rounded down by the maximum torque upper limit value. Therefore, when truncation occurs in the motor drive device, the average torque shifts, and the required acceleration or deceleration (hereinafter referred to as “acceleration” or the like) cannot be achieved. Further, since the torque command signal is deformed from a sine wave to a distorted wave due to truncation, the excitation force (excitation amplitude) also decreases from the intended magnitude.
- the present invention has been made in view of the problems as described above, and provides a motor generated torque command that can maximize the excitation force while ensuring necessary acceleration and the like within a limited range of motor torque.
- An object of the present invention is to provide a torque command generation device for a generated drive train test system.
- the present invention uses a motor (for example, input side dynamometer 2 described later) connected to a shaft of a vehicle drive train (for example, sample W to be described later) to control the engine of the vehicle.
- a motor for example, input side dynamometer 2 described later
- a torque command generation device for example, a torque command generation device 6 described later
- FIG. 2 FIG. 2
- 6B FIG. 6
- 6C FIG. 10
- the torque command generator generates limit value calculation means for calculating a limit value for the value of the motor-generated torque command signal in accordance with the number of rotations of the motor (for example, maximum torque calculators 633 (FIG. 2) and 665 (to be described later) 6)), DC signal generating means for generating a DC signal (for example, a DC component limiter 635 (FIG. 2) and a DC component computing unit 661 (FIG. 6), which will be described later), and an AC signal for generating an AC signal.
- limit value calculation means for calculating a limit value for the value of the motor-generated torque command signal in accordance with the number of rotations of the motor (for example, maximum torque calculators 633 (FIG. 2) and 665 (to be described later) 6)
- DC signal generating means for generating a DC signal for example, a DC component limiter 635 (FIG. 2) and a DC component computing unit 661 (FIG. 6), which will be described later
- AC signal for generating an AC signal.
- Signal generation means for example, a maximum torque calculation unit 633, a limit amplitude calculation unit 634, a provisional value calculation unit 636, a surplus amplitude calculation unit 637, an AC component limiter 638, a sine wave transmitter 639 in FIG. Component calculation unit 662, multiplication unit 663, attenuation coefficient calculation unit 666, attenuation coefficient calculation unit 666C of FIG. 10, and the like, and the DC signal and the AC signal are combined to generate a torque generated by the motor.
- Synthesizing means for generating a signal for example, a summing unit 640 (FIG. 2), 664 (FIG. 6) described later, etc.
- the AC signal generating means is configured such that the value of the motor generated torque command signal is the limit value. An AC signal having an amplitude that does not exceed 1 is generated.
- the AC signal generating means calculates surplus amplitude by subtracting the limit value from the sum of the value of the DC signal and a predetermined basic amplitude (for example, a later-described diagram).
- a predetermined basic amplitude for example, a later-described diagram.
- the AC signal generation means further includes limit amplitude calculation means (for example, a limit amplitude calculation unit 634 in FIG. 2 described later) for calculating a limit amplitude according to the frequency of the AC signal, and the transmission
- the means Preferably, the means generates an AC signal having a smaller amplitude of the amplitude obtained by subtracting the surplus amplitude from the basic amplitude and the limit amplitude.
- the AC signal generating means includes basic signal generating means for generating a basic AC signal (for example, an AC component calculation unit 662 in FIG. 6 described later), and a predetermined amplitude attenuation to the value of the basic AC signal.
- Multiplying means for generating an AC signal by multiplying by a coefficient for example, a multiplier 663 in FIG. 6 to be described later
- the amplitude attenuation so that a deviation between the maximum value of the motor generated torque command signal and the limit value is eliminated.
- surplus amplitude limiting means for determining a coefficient (for example, surplus amplitude controller 671 in FIG. 8).
- the AC signal generation means includes frequency component detection means (for example, a frequency component detection unit 672 in FIG. 10 described later) for detecting a frequency component of the motor generation torque command signal, and the motor generation torque command.
- Limit amplitude calculating means for calculating a limit amplitude corresponding to the frequency of the signal (for example, a limit amplitude ratio calculating section 673 in FIG. 10 described later) and the frequency component detecting means for the limit amplitude calculated by the limit amplitude calculating means
- Limit ratio calculation means for calculating the ratio of detected amplitude for each of a plurality of different frequencies (for example, limit amplitude ratio calculation section 673 in FIG.
- Limit amplitude limiting means for determining the amplitude attenuation coefficient so that the largest ratio becomes a predetermined target value (for example, limit amplitude controller 675 in FIG. 10 described later). When, it is preferable to provide.
- the present invention provides a drive train test system for generating torque imitating the engine of a vehicle with a motor connected to a drive train shaft of the vehicle.
- a torque command generation device (for example, a torque command generation device 6A in FIG. 4 described later) that generates a motor generation torque command signal is provided.
- the torque command generating device is a basic value calculating means for calculating positive and negative torque limit basic values (UpperLim_bs, LowerLim_bs) with respect to the motor generated torque command signal according to the number of revolutions of the motor (for example, FIG.
- Generating means for example, a torque limiter 655 in FIG. 4 described later
- the correction means includes a torque limit basic value of one of the positive and negative signs in the basic signal. If the surplus occurs for corrects the torque limit basic value of the other code towards the absolute value decreases.
- the correction means determines the DC component of the basic signal.
- a value (L_cor, U_cor) obtained by subtracting the torque limit basic value of one sign from the sum of the value and the extreme value of one sign side of the basic signal is added to the torque limit basic value of the other sign Therefore, it is preferable to correct the torque limit basic value of the other sign.
- a motor generation torque command signal is generated by combining a DC signal and an AC signal.
- a limit value for the value of the motor generated torque command signal is calculated according to the number of rotations of the motor, and an AC signal having an amplitude that does not exceed the limit value of the motor generated torque command signal is generated. To do.
- the motor drive device is then forcibly discarded in an unintended manner, and the average torque is It is possible to prevent deviation from the size.
- the value of the motor generated torque command signal when the value of the motor generated torque command signal does not exceed the limit value according to the motor rotation speed, it is set in association with the excitation force, not in the DC signal set in association with the acceleration or the like. Since the amplitude of the AC signal is suppressed, it is possible to prevent the average torque from being shifted due to the suppression of the amplitude. Further, by preventing the average torque from shifting, it is possible to generate a motor-generated torque command signal that can maximize the excitation force while ensuring necessary acceleration or the like.
- the surplus amplitude is calculated by subtracting the limit value from the sum of the DC signal value and the predetermined basic amplitude value.
- This surplus amplitude corresponds to the surplus that exceeds the limit value in the motor-generated torque command signal generated when the amplitude of the AC signal is the basic amplitude.
- the value of the motor-generated torque command signal can be prevented from exceeding the limit value by generating an AC signal having an amplitude obtained by subtracting the surplus amplitude from the basic amplitude.
- the surplus amplitude is calculated without using the feedback loop, and a motor generation torque command signal is generated using the surplus amplitude. That is, in the present invention, the motor generated torque command signal that does not exceed the limit value is generated by the open loop structure, so that when the frequency or basic amplitude of the AC signal is changed, the change can be quickly followed. .
- a motor generation torque command signal appropriately limited to (within range) can be generated.
- a basic AC signal is generated, and the value of the basic AC signal is multiplied by an amplitude attenuation coefficient determined so that the deviation between the maximum value and the limit value of the motor generated torque command signal is eliminated.
- an AC signal is generated so that the motor generated torque command signal does not exceed the limit value. It can also be a distorted wave with the following frequency component. Therefore, a motor generation torque command signal having a distorted wave close to the combustion waveform of the actual engine can be generated within an operation range determined from the rotational speed of the motor.
- a feedback loop is involved in reducing the AC component of the motor generated torque command signal.
- a module for example, a resonance suppression controller described later
- a function of changing the amplitude of the AC component can be included in the feedback loop.
- the frequency component of the motor generated torque command signal is detected by the frequency component detection means, and the ratio of the amplitude detected by the frequency component detection means to the limit amplitude is calculated for each of a plurality of different frequencies. Then, by determining the amplitude attenuation coefficient so that the largest ratio among the ratios calculated for each frequency becomes a predetermined target value, the range is within the operation range determined from the motor rotation speed and from the motor frequency. It is possible to generate a motor-generated torque command signal that is appropriately limited within a predetermined operating range.
- positive (for example, drive direction) and negative (for example, absorption direction) torque limit basic values are calculated according to the number of rotations of the motor, and these basic values are corrected to correct positive and negative values. Calculate the torque limit value. Then, a generated torque command signal is generated by discarding values exceeding the torque limit value from the basic signal. Thus, by generating a motor generated torque command signal that does not exceed the limit value in the torque command generating device, the motor drive device is then forcibly discarded in an unintended manner, and the average torque is It is possible to prevent deviation from the size.
- the torque limit basic value with the opposite sign to the direction in which the surplus has occurred is generated.
- the correction is made so that the absolute value becomes smaller, that is, the amplitude is more limited.
- the value of the DC component of the basic signal and the one sign of the basic signal is corrected by adding a value obtained by subtracting the one torque side basic limit value from the sum of the extreme value on the one side to the torque limit basic value on the other side.
- FIG. 1 is a block diagram showing a configuration of a drive train test system in which a torque command generation device according to an embodiment of the present invention is incorporated. It is a block diagram which shows the structure of the torque command production
- FIG. It is a block diagram which shows the structure of the torque command production
- FIG. It is a block diagram which shows the procedure of the concrete arithmetic processing which calculates the value of a motor generation torque command signal in a torque limiter. It is a figure which shows the specific example of the motor generation torque command signal produced
- FIG. 10 is a block diagram illustrating a configuration of an attenuation coefficient calculation unit according to a fourth embodiment. It is a figure which shows the frequency component of a torque command signal. It is a figure which shows the limiting amplitude ratio for every frequency order. It is a figure which shows the specific example of the motor generation torque command signal input into a motor drive device from a torque command generation apparatus.
- FIG. 1 is a block diagram showing a configuration of a drive train test system 1 in which a torque command generation device 6 according to the present embodiment is incorporated.
- FIG. 1 shows an example of a test system 1 in which a FF drive type vehicle transmission is a specimen W, but the present invention is not limited to this.
- the specimen W may be an FR drive type vehicle transmission.
- the test system 1 includes an input-side dynamometer 2 that is coaxially connected to the input shaft S1 of the specimen W, an inverter 3 that supplies power to the input-side dynamometer 2, and the rotational speed of the input-side dynamometer 2 ( A rotation detector 4 that detects an angular velocity), a torque command generator 6 that generates a motor-generated torque command signal based on a detection value of the rotation detector 4, and the both ends of the output shaft S 2 of the specimen W.
- the rotation detector 4 detects the rotation speed of the input-side dynamometer 2 and transmits a signal substantially proportional to the detected value to the torque command generator 6.
- the rotational speed of the input-side dynamometer 2 is referred to as “motor rotational speed”.
- the inverter 3 converts DC power supplied from a DC power source (not shown) into AC power and supplies it to the input-side dynamometer 2.
- the torque command generation device 6 generates a motor generation torque command signal for driving the input-side dynamometer 2 based on the motor rotation speed detected by the rotation detector 4 and inputs it to the inverter 3. The detailed configuration of the torque command generator 6 will be described later in each embodiment.
- a torque imitating an actual engine is generated by the input-side dynamometer 2, and this torque is input to the input shaft S ⁇ b> 1 of the specimen W, and the shift output of the specimen W is output to the output-side dynamometers 7, 8.
- the durability performance and quality of the specimen W are evaluated.
- FIG. 2 is a block diagram showing the configuration of the torque command generation device 6 of this embodiment.
- the torque command generation device 6 When command values for base torque, excitation frequency, and excitation amplitude are input from an external arithmetic unit (not shown), the torque command generation device 6 generates a motor generation torque command signal corresponding to these inputs, Input to 3.
- the motor generated torque command signal generated by the torque command generating device 6 is basically a combination of a DC signal serving as a base torque and a sine wave signal having a frequency and amplitude corresponding to the excitation frequency and the excitation amplitude. It has become a thing.
- the base torque corresponds to a component excluding the torque pulsation component of the engine from the torque generated by a dynamometer simulating an actual engine
- the excitation frequency and the excitation amplitude are the above torque pulsation components. It corresponds to the frequency and amplitude of.
- the maximum torque calculator 633 calculates a maximum torque value that is a limit value for the motor generated torque command signal by searching a predetermined map based on the motor rotation speed detected by the rotation detector. As will be described below, the torque command generation device 6 generates a motor generated torque command signal so as not to exceed the maximum torque value calculated by the maximum torque calculator 633. According to the map illustrated in FIG. 2, the maximum torque value is set to a smaller value as the motor speed increases in consideration of the heat generation characteristics and mechanical strength of the input side dynamometer.
- the limit amplitude calculation unit 634 calculates a limit amplitude that becomes a limit value for the amplitude of the AC component of the motor-generated torque command signal by searching a predetermined map based on the excitation frequency input from the outside. As will be described below, torque command generation device 6 generates a motor generated torque command signal so that the amplitude of the AC component does not exceed the limit amplitude calculated by limit amplitude calculation unit 634. Considering the fact that the input side dynamometer demagnetizes with a smaller torque as the excitation frequency becomes higher, the limit amplitude is set to become smaller as the excitation frequency becomes higher as shown in the map illustrated in FIG. The
- the DC component limiter 635 sets the smaller one of the command value for the base torque input from the outside and the maximum torque value calculated by the maximum torque calculation unit 633 as the determined DC component value.
- the determined DC component value calculated by DC component limiter 635 is the DC component value of the motor-generated torque command signal. Therefore, the DC component limiter 635 has a function of generating a DC signal of a motor generation torque command signal.
- the provisional value calculation unit 636 calculates a quadrature sum value by summing the definite DC component value and the command value for the excitation amplitude input from the outside. This orthogonal sum value corresponds to a provisional value of the motor-generated torque command signal before limiting the AC component.
- the surplus amplitude calculator 637 calculates the surplus amplitude by subtracting the maximum torque value from the orthogonal sum. This surplus amplitude corresponds to the amplitude that should be excluded from the AC component so that the value of the motor generated torque command signal does not exceed the maximum torque value. Therefore, if the value obtained by subtracting the maximum torque value from the orthogonal sum is negative, it means that it is not necessary to limit the amplitude of the AC component. In this case, the surplus amplitude is set to zero.
- the AC component limiter 638 compares the amplitude obtained by subtracting the surplus amplitude from the externally input excitation amplitude and the limit amplitude calculated by the limit amplitude calculation unit 634, and sets the smaller one as the definite AC amplitude. .
- the sine wave transmitter 639 generates a sine wave having a definite AC amplitude and an excitation frequency calculated by the AC component limiter 638.
- the summation unit 640 calculates the value of the motor generated torque command signal by adding the determined DC component value calculated by the DC component limiter 635 and the value of the sine wave generated by the sine wave transmitter 639.
- the surplus amplitude of the amplitude of the sine wave generated by the sine wave transmitter 639 is removed by the function of the AC component limiter 638. Therefore, the motor-generated torque command signal generated by summing unit 640 is limited to the maximum torque value or less.
- the amplitude of the sine wave generated by the sine wave transmitter 639 is limited to a limit amplitude or less by the function of the AC component limiter 638. Therefore, the amplitude of the AC component of the motor-generated torque command signal generated by summing unit 640 is limited to the limit amplitude or less.
- Example 1 there exist the following effects.
- an AC signal having an amplitude such that the value of the motor generation torque command signal does not exceed the maximum torque value calculated according to the motor rotation speed is generated.
- the generated motor generated torque command signal since the amplitude of the AC component, not the DC component, of the motor generated torque command signal is suppressed, it is possible to prevent the average torque from shifting. Further, by preventing the average torque from shifting, it is possible to generate a motor-generated torque command signal that can maximize the excitation force while ensuring necessary acceleration or the like.
- the motor generated torque command signal by generating a sine wave having an amplitude obtained by subtracting the surplus amplitude calculated by the surplus amplitude calculating unit 637 from the excitation amplitude input from the outside, the motor generated torque command signal The value can be prevented from exceeding the maximum torque value. Further, as shown in FIG. 2, in the first embodiment, the motor generated torque command signal that does not exceed the maximum torque value is generated by the open loop structure, so the command value for the base torque, the vibration frequency, the vibration amplitude, etc. When it is changed, this change can be followed quickly.
- Example 1 the limit amplitude according to the excitation frequency is calculated by the limit amplitude calculation unit 634 separately from the maximum torque value.
- the AC component limiter 638 compares the amplitude obtained by subtracting the surplus amplitude from the excitation amplitude input from the outside with the limit amplitude, and sets the smaller one as the definite AC amplitude.
- the DC component limiter 635 and the like correspond to DC signal generation means
- the summation unit 640 corresponds to synthesis means
- a maximum torque calculation unit 633 corresponds to the limit value calculator
- the limit amplitude calculator 634 corresponds to the limit amplitude calculator
- the provisional value calculator 636 and the surplus amplitude calculator 637 correspond to the surplus amplitude calculator.
- the AC component limiter 638 and the sine wave transmitter 639 correspond to transmitting means.
- Example 2 of the torque command generation device in the above embodiment will be described with reference to the drawings.
- the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- FIG. 3 is a block diagram showing the configuration of the torque command generation device 6A of the present embodiment.
- the torque command generator 6A includes a waveform generator 61A, a resonance suppression controller 62A, and a torque limiter 63A.
- a primary torque command signal is generated by the waveform generator 61A, and this is input to the resonance suppression controller 62A and the torque limiter 63A.
- a torque command signal is input to the inverter 3.
- the waveform generator 61A When the base torque command value, the vibration frequency command value, and the vibration amplitude command value are input from an external arithmetic device (not shown), the waveform generator 61A generates a torque command signal corresponding to these inputs.
- the waveform generator 61 synthesizes a torque command signal by synthesizing a DC signal having a level proportional to the base torque command value and a sine wave signal having a frequency and amplitude corresponding to the excitation frequency command value and the excitation amplitude command value. Generate.
- the resonance suppression controller 62A attenuates the amplitude in the vicinity of the resonance point of the mechanical system including the input-side dynamometer 2 and the specimen W with respect to the torque command signal generated by the waveform generator 61A. This suppresses the resonance phenomenon that occurs with the vibration of the mechanical system.
- the torque limiter 63 ⁇ / b> A generates a motor-generated torque command signal by performing the process shown in FIG. 4 on the torque command signal that has passed through the resonance suppression controller, and inputs it to the inverter 3.
- FIG. 4 is a block diagram showing a specific procedure for calculating the value of the motor generated torque command signal in the torque limiter 63A of the torque command generating device 6A of the present embodiment.
- the DC component calculation unit 651 calculates the value of the DC component of the torque command signal during one cycle obtained from the excitation frequency.
- the torque command signal is indicated by “Tdr_i”
- the DC component value of the torque command signal calculated by the DC component calculation unit 651 is indicated by “Tdr_i_DC”.
- the peak value calculator 652 calculates the maximum value and the minimum value of the torque command signal during one cycle obtained from the excitation frequency.
- the maximum value of the torque command signal calculated by the peak value calculator 652 is indicated by “V_upper”, and the minimum value is indicated by “V_lower”.
- the basic value calculation unit 653 searches for a predetermined map based on the motor rotation speed detected by the rotation detector, and thereby sets positive and negative values that are basic values of limit values for the value of the motor generated torque command signal. Calculate the maximum torque basic value.
- the positive maximum torque basic value is referred to as a maximum torque basic upper limit value, and is indicated by “UpperLim_bs ( ⁇ 0)”.
- the negative maximum torque basic value is referred to as the maximum torque basic lower limit value and is indicated by “LowerLim_bs ( ⁇ 0)”.
- the map for determining the maximum torque basic upper limit value and the lower limit value is set in consideration of heat generation characteristics and mechanical strength of the input-side dynamometer. More specifically, for example, the maximum basic torque upper limit value is set to a smaller value on the positive side as the motor speed increases, and the maximum basic torque lower limit value is set to a smaller value on the negative side as the motor speed increases.
- the correction calculation unit 654 Based on the DC component value Tdr_iDC, the maximum value V_upper, and the minimum value V_lower of the torque command signal, the correction calculation unit 654 corrects the maximum torque basic upper limit UpperLim_bs and the lower limit LowerLim_bs so that the absolute value becomes smaller. Thus, the positive maximum torque upper limit value and the negative maximum torque lower limit value are calculated.
- the maximum torque upper limit value is indicated by “UpperLim ( ⁇ 0)”
- the maximum torque lower limit value is indicated by “LowerLim ( ⁇ 0)”.
- a specific procedure for correction by the correction calculation unit 654 will be described.
- the correction calculation unit 654 adds the positive lower limit correction value L_cor (> 0) calculated by the lower limit correction value calculation unit 654a to the maximum torque basic lower limit value LowerLim_bs as the maximum torque lower limit value LowerLim (the following formula (1) Reference), and a value obtained by adding the negative upper limit correction value U_cor ( ⁇ 0) calculated by the upper limit correction value calculation unit 654b to the maximum torque basic upper limit value UpperLim_bs is set as the maximum torque upper limit value UpperLim (see the following formula (2)) .
- LowerLim LowerLim_bs + L_cor (1)
- UpperLim UpperLim_bs + U_cor (2)
- the lower limit correction value calculation unit 654a lowers the value obtained by subtracting the maximum torque basic upper limit value UpperLim_bs from the sum of the maximum value V_upper of the torque command signal and the DC component value Tdr_i_DC, as shown in the following equation (3).
- the correction value is L_cor.
- the lower limit correction value L_cor is limited to be a positive value. That is, when the value on the right side of the following formula (3) becomes negative, the lower limit correction value L_cor is set to zero.
- L_cor V_upper + Tdr_i_DC-UpperLim_bs (3)
- the upper limit correction value calculation unit 654b sets the upper limit to the value obtained by subtracting the maximum torque basic lower limit value LowerLim_bs from the sum of the minimum value V_lower of the torque command signal and the DC component value Tdr_iDC, as shown in the following equation (4).
- the correction value is U_cor.
- the upper limit correction value U_cor is limited to be a negative value. That is, when the value on the right side of the following formula (4) becomes positive, the upper limit correction value U_cor is set to zero.
- U_cor V_Lower + Tdr_i_DC-LowerLim_bs (4)
- the torque limiter 655 generates a motor-generated torque command signal Tdr_o from the torque command signal Tdr_i by truncating a value larger than the maximum torque upper limit value UpperLim calculated by the correction calculation unit 654 and a value smaller than the maximum torque lower limit value LowerLim.
- FIG. 5 is a diagram illustrating a specific example of a motor generation torque command signal generated by the torque limiter according to the second embodiment.
- the thin solid line indicates the torque command signal Tdr_i
- the thick broken line indicates the motor generation torque command signal Tdr_o obtained by the torque limiter of the second embodiment.
- the maximum basic torque upper limit value UpperLim_bs was set to 2000 [Nm]
- the maximum basic torque limit value LowerLim_bs was set to -2000 [Nm].
- a surplus of 500 [Nm] is generated in the torque command signal indicated by a thin solid line with respect to the positive maximum torque basic upper limit UpperLim_bs.
- the maximum torque lower limit value is obtained by adding the lower limit correction value L_cor of 1000 [Nm] to the maximum torque basic lower limit value LowerLim_bs of the opposite sign to UpperLim_bs in which the surplus has occurred by the function of the correction calculation unit 654 in FIG. Becomes LowerLim. Therefore, as shown in FIG. 5, the torque command signal Tdr_i is rounded down on the negative side by the same amount as the surplus generated on the positive side. Therefore, the average torque is maintained at 500 [Nm] between the torque command signal Tdr_i and the motor-generated torque command signal Tdr_o.
- the maximum torque basic upper limit value UpperLim_bs and the lower limit value LowerLim_bs are calculated according to the motor speed, and the maximum torque upper limit value UpperLim and the lower limit value LowerLim are calculated by correcting these basic values.
- the motor generated torque command signal Tdr_o is generated by rounding off values exceeding the limit values UpperLim and LowerLim from the torque command signal Tdr_i. Thereby, it is possible to prevent the generated motor generated torque command signal from being forcibly cut off in an unintended manner in the inverter and the average torque from deviating from the intended magnitude.
- the torque command signal Tdr_i is rounded off symmetrically on both the positive and negative sides as described with reference to FIG. .
- the limited motor generation torque command signal is close to a rectangular wave, so that the effective value of the AC component can be increased as compared with the first embodiment.
- the basic value calculator 653 corresponds to the basic value calculator
- the correction calculator 654 corresponds to the corrector
- the torque limiter 655 corresponds to the torque command generator.
- FIG. 6 is a block diagram showing the configuration of the torque command generation device 6B of the present embodiment.
- the torque command generator 6B generates a motor by generating a combustion simulation waveform generator 61B that generates a primary torque command signal, and applying a restriction process described below to the torque command signal generated by the combustion simulation waveform generator 61B.
- a torque limiter 63B that generates a torque command signal.
- Combustion simulation waveform generator 61B generates a waveform signal simulating the torque generated by the actual engine as a torque command signal.
- FIG. 7 is a diagram illustrating an example of a torque command signal generated by the combustion simulation waveform generator 61B.
- the combustion simulated waveform generator 61B outputs a distortion wave generated as a torque command signal by combining a DC signal and an AC signal including a plurality of frequency components in order to perform a test closer to an actual engine.
- the torque limiter 63B includes a DC component calculation unit 661 that calculates the value of the DC component of the torque command signal, an AC component calculation unit 662 that calculates the value of the AC component of the torque command signal, and a predetermined value.
- the DC component calculation unit 661 calculates the value of the DC component of the torque command signal during one cycle obtained from the lowest frequency of the torque command signal.
- the AC component calculation unit 662 calculates the value of the AC component of the torque command signal by subtracting the value of the DC component calculated by the DC component calculation unit 661 from the value of the torque command signal.
- the maximum torque calculation unit 665 searches a predetermined map based on the motor rotation speed detected by the rotation detector, and thereby sets a positive maximum torque upper limit value and a negative value that become a limit value for the motor generated torque command signal. Calculate the maximum torque lower limit.
- the map for determining the maximum torque upper limit value and the lower limit value is the same as the basic value calculation unit 653 described in the second embodiment with reference to FIG.
- the damping coefficient calculation unit 666 will be described later with reference to FIG. 8 so that the value of the motor-generated torque command signal is not more than the maximum torque upper limit value calculated by the maximum torque calculation unit 665 and not less than the maximum torque lower limit value.
- the amplitude attenuation coefficient is calculated according to the following procedure.
- the multiplying unit 663 multiplies the value of the AC component calculated by the AC component calculating unit 662 by the amplitude attenuation coefficient calculated by the attenuation coefficient calculating unit 666, and sets this as the attenuated AC component value.
- the summation unit 664 calculates the value of the motor generation torque command signal by adding the DC component value calculated by the DC component calculation unit 661 and the attenuated AC component value calculated by the multiplication unit 663.
- the amplitude attenuation coefficient is determined by the function of the attenuation coefficient calculation unit 666 so that the value of the motor generated torque command signal falls within the range from the maximum torque upper limit value to the maximum torque lower limit value. Therefore, the motor-generated torque command signal generated by summing unit 664 is generally limited within the range from the maximum torque upper limit value to the maximum torque lower limit value.
- FIG. 8 is a block diagram showing a specific procedure for calculating the amplitude attenuation coefficient in the attenuation coefficient calculation unit 666.
- the peak value calculation unit 667 calculates the maximum value and the minimum value of the motor generated torque command signal during one cycle obtained from the lowest frequency of the torque command signal.
- the multipliers 668a and 668b multiply the positive maximum torque upper limit value and the negative maximum torque lower limit value by a predetermined margin coefficient (for example, 0.95) smaller than 1.
- the deviation calculator 669 subtracts the drive side surplus amplitude obtained by subtracting the maximum torque upper limit value from the maximum value of the motor generated torque command signal and the minimum value of the motor generated torque command signal from the maximum torque lower limit value.
- the larger one of the absorption-side surplus amplitudes is defined as the surplus amplitude.
- Multiplier 670 calculates a dimensionless deviation by multiplying a surplus amplitude having a torque dimension by a predetermined coefficient.
- the surplus amplitude controller 671 calculates an amplitude attenuation coefficient that eliminates the deviation calculated by the multiplication unit 670.
- a controller incorporating an integrator that makes the steady deviation zero is used as the surplus amplitude controller 671.
- the amplitude attenuation coefficient is determined so that there is no deviation between the maximum value (or minimum value) of the motor-generated torque command signal and the maximum torque upper limit value (or lower limit value).
- the AC component of the motor generated torque command signal is determined by multiplying the AC component value extracted from.
- FIG. 9 is a diagram in which only the module relating to the determination of the amplitude of the AC component of the motor-generated torque command signal is extracted from the torque command generation device 6B of the third embodiment shown in FIG.
- the torque command generating device 6B of the third embodiment reduces the amplitude of the AC component of the motor generated torque command signal.
- the coefficient calculation involves a feedback loop. Therefore, in the third embodiment, as shown in FIG. 9, a resonance suppression controller 62A having a function of changing the amplitude of the AC component can be included in this feedback loop.
- the maximum torque calculation unit 665 corresponds to the limit value calculation unit
- the DC component calculation unit 661 corresponds to the DC signal generation unit
- the summation unit 664 corresponds to the synthesis unit
- 662, a multiplication unit 663, and an attenuation coefficient calculation unit 666 correspond to AC signal generation means. More specifically, the AC component calculation unit 662 corresponds to basic signal generation means, the multiplication unit 663 corresponds to multiplication means, and the surplus amplitude controller 671 corresponds to surplus amplitude limiting means.
- Example 4 of the torque command generation device in the above embodiment will be described with reference to the drawings.
- the same components as those in the third embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
- FIG. 10 is a block diagram showing a configuration of the attenuation coefficient calculation unit 666C of the present embodiment.
- the torque command generation device 6C of the second embodiment is different from the torque command generation device 6B of the third embodiment in the configuration of the damping coefficient calculation unit 666C.
- the attenuation coefficient calculation unit 666C according to the fourth embodiment includes a limit amplitude controller 675 in addition to the surplus amplitude controller 671 according to the third embodiment. The smaller one of the two coefficients calculated by the two controllers 671 and 675 is used as the amplitude.
- the difference from the third embodiment is that the attenuation coefficient is used.
- functions added from the third embodiment will be described with reference to FIG.
- the frequency component detector 672 detects the frequency component of the torque command signal based on the information on the frequency of the torque command signal transmitted from the combustion simulation waveform generator 61B (see FIG. 6). As shown in FIG. 7, the torque command signal is generated by superposing AC signals having a plurality of frequencies in addition to the DC component. As shown in FIG. 11, the frequency component detector 672 detects the frequency component of the torque command signal and calculates the amplitude (B1, B2,... Bn) for each order.
- the limit amplitude ratio calculation unit 673 calculates the limit amplitude (A1, A2,... An) for each order based on a map as shown in FIG. Since the same map as the limit amplitude calculation unit 634 described with reference to FIG. 2 in the first embodiment is used for the map for determining the limit amplitude, detailed description thereof is omitted.
- the limit amplitude ratio calculation unit 673 calculates the ratio of the amplitude (B1, B2,... Bn) calculated by the frequency component detection unit 672 to the calculated limit amplitude (A1, A2,... An) for each order.
- the limit amplitude ratio is (B1 / A1, B2 / A2,... Bn / An).
- the maximum ratio selection unit 674 selects the largest ratio from the limit amplitude ratios (B1 / A1, B2 / A2,... Bn / An) calculated for each order.
- the limit amplitude ratio (B2 / A2) of the secondary frequency is the largest. Therefore, in this case, by determining the amplitude attenuation coefficient so that the amplitude of the secondary frequency component is 1 or less, all the frequency components can be made smaller than the limit amplitude.
- the limit amplitude controller 675 calculates the amplitude attenuation coefficient so that the largest limit amplitude ratio selected by the maximum ratio selection unit 674 becomes a predetermined target value (for example, 1).
- a controller incorporating an integrator that sets the steady-state deviation between the limit amplitude ratio and the target value to 0 is used similarly to the surplus amplitude controller 671.
- the minimum value selection unit 676 sets the smaller one of the coefficient calculated by the surplus amplitude controller 671 and the coefficient calculated by the limit amplitude controller 675, that is, the one in which the amplitude of the AC signal is more strongly limited, as the amplitude attenuation coefficient. To do.
- the frequency component of the motor generated torque command signal is detected by the frequency component detector 672, and the ratio of the amplitude detected by the frequency component detector 672 to the limit amplitude (limit amplitude ratio) Calculate for each order. Then, the amplitude attenuation coefficient is determined so that the largest ratio among the limit amplitude ratios calculated for each order is 1. As a result, it is possible to generate a motor-generated torque command signal that is appropriately limited within the operating range determined from the motor speed and within the operating range determined from the motor frequency.
- the frequency component detector 672 corresponds to the frequency component detector
- the limit amplitude ratio calculator 673 corresponds to the limit amplitude calculator and limit ratio calculator, and corresponds to the limit amplitude controller.
- torque limiter 653 ... basic value calculating section (basic value calculating means), 654 ... correction calculating section (correcting means), 655 ... torque recovery 6B ... torque command generator, 661 ... DC component calculator (DC signal generator), 662 ... AC component calculator (AC signal generator, basic signal generator), 663 ... multiplication Unit (AC signal generation unit, multiplication unit), 664... Summation unit (synthesis unit), 665... Maximum torque calculation unit (limit value calculation unit), 666... Attenuation coefficient calculation unit (AC signal generation unit), 671. Controller (excess amplitude control means), 6C... Torque command generation device, 666C... Attenuation coefficient calculation section (AC signal generation means), 672... Frequency component detection section (frequency component detection means), 673. Limit amplitude calculating means, limit ratio calculating means), 675... Limit amplitude controller (limit amplitude limiting means)
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
図1は、本実施形態に係るトルク指令生成装置6が組み込まれたドライブトレインの試験システム1の構成を示すブロック図である。なお図1には、FF駆動方式の車両の変速機を供試体Wとした試験システム1の例を示すが、本発明はこれに限るものではない。供試体WはFR駆動方式の車両の変速機でもよい。
図2は、本実施例のトルク指令生成装置6の構成を示すブロック図である。
トルク指令生成装置6は、図示しない外部の演算装置からベーストルク、加振周波数、及び加振振幅に対する指令値が入力されると、これらの入力に応じたモータ発生トルク指令信号を生成し、インバータ3へ入力する。トルク指令生成装置6によって生成されるモータ発生トルク指令信号は、基本的には、ベーストルクとなる直流信号と、加振周波数及び加振振幅に応じた周波数及び振幅の正弦波信号とを合成したものとなっている。ただし、以下で説明するように、直流信号及び正弦波信号の振幅には所定の制限が設けられている。ここで、ベーストルクとは、実エンジンを模して動力計で発生させるトルクのうち、エンジンのトルク脈動成分を除いた成分に相当し、加振周波数及び加振振幅とは、上記トルク脈動成分の周波数及び振幅に相当する。以下、トルク指令生成装置6においてモータ発生トルク指令信号の値を算出する具体的な手順を説明する。
(1)実施例1では、モータ発生トルク指令信号の値が、モータ回転数に応じて算出された最大トルク値を超えないような振幅の交流信号を生成する。これにより、生成したモータ発生トルク指令信号がインバータにおいて意図しない態様で強制的に切り捨てられてしまい、平均トルクが意図した大きさからずれてしまうのを防止できる。また実施例1では、モータ発生トルク指令信号の直流成分ではなく交流成分の振幅を抑制するので、平均トルクがずれるのを防止できる。また、平均トルクがずれるのを防止することにより、必要な加速度等を確保しながら加振力を最大化できるようなモータ発生トルク指令信号を生成できる。
トルク指令生成装置6Aは、波形生成器61Aと、共振抑制制御器62Aと、トルク制限器63Aと、を備える。トルク指令生成装置6Aでは、波形生成器61Aによって一次的なトルク指令信号を生成し、これを共振抑制制御器62A及びトルク制限器63Aに入力し、これらの処理を経たものを最終的なモータ発生トルク指令信号とし、インバータ3へ入力する。
LowerLim=LowerLim_bs+L_cor (1)
UpperLim=UpperLim_bs+U_cor (2)
L_cor=V_upper+Tdr_i_DC-UpperLim_bs (3)
U_cor=V_Lower+Tdr_i_DC-LowerLim_bs (4)
(4)実施例2では、モータ回転数に応じて最大トルク基本上限値UpperLim_bs及び下限値LowerLim_bsを算出し、これら基本値を補正することによって最大トルク上限値UpperLim及び下限値LowerLimを算出する。そして、トルク指令信号Tdr_iからこれら制限値UpperLim,LowerLimを超える値を切り捨てることによってモータ発生トルク指令信号Tdr_oを生成する。これにより、生成したモータ発生トルク指令信号がインバータにおいて意図しない態様で強制的に切り捨てられてしまい、平均トルクが意図した大きさからずれてしまうのを防止できる。また実施例2では、また、平均トルクがずれるのを防止することにより、必要な加速度等を確保しながら加振力を最大化できるようなモータ発生トルク指令信号を生成できる。
図6は、本実施例のトルク指令生成装置6Bの構成を示すブロック図である。
トルク指令生成装置6Bは、一次的なトルク指令信号を生成する燃焼模擬波形生成器61Bと、燃焼模擬波形生成器61Bによって生成されたトルク指令信号に以下で説明する制限処理を施すことによりモータ発生トルク指令信号を生成するトルク制限器63Bと、を備える。
図7は、燃焼模擬波形生成器61Bによって生成されるトルク指令信号の一例を示す図である。燃焼模擬波形生成器61Bでは、より実エンジンに近い試験を行うため、直流信号と複数の周波数成分を含んだ交流信号とを合成することによって生成したひずみ波をトルク指令信号として出力する。
(6)実施例3では、モータ発生トルク指令信号の最大値(又は最小値)と最大トルク上限値(又は下限値)との偏差がなくなるように振幅減衰係数を決定し、これをトルク指令信号から抽出された交流成分値に乗算することによってモータ発生トルク指令信号の交流成分を決定する。これにより、燃焼模擬波形生成器61Bによって生成する基本交流信号を図7に示すようなひずみ波とすることができる。したがって、モータ回転数から定められた運転範囲内で、実エンジンの燃焼波形に近いひずみ波のモータ発生トルク指令信号を生成できる。
図9に示す実施例3と、図3に示す実施例2とを比較して明らかなように、実施例3のトルク指令生成装置6Bは、モータ発生トルク指令信号の交流成分を縮減させる振幅減衰係数の演算はフィードバックループを伴う。このため実施例3では、図9に示すように、交流成分の振幅を変化させる機能を有する共振抑制制御器62Aをこのフィードバックループ内に含めることができる。
Claims (7)
- 車両のドライブトレインの軸に接続されたモータで前記車両のエンジンを模したトルクを発生させるドライブトレイン試験システムにおいて、前記モータを駆動するためのモータ発生トルク指令信号を生成するトルク指令生成装置であって、
前記モータの回転数に応じて前記モータ発生トルク指令信号の値に対する制限値を算出する制限値算出手段と、
直流信号を生成する直流信号生成手段と、
交流信号を生成する交流信号生成手段と、
前記直流信号と前記交流信号と合成しモータ発生トルク指令信号を生成する合成手段と、を備え、
前記交流信号生成手段は、前記モータ発生トルク指令信号の値が前記制限値を超えないような振幅の交流信号を生成すること特徴とするトルク指令生成装置。 - 前記交流信号生成手段は、
前記直流信号の値と所定の基本振幅との和から前記制限値を減算することにより余剰振幅を算出する余剰振幅算出手段と、
前記基本振幅から前記余剰振幅を減算して得られる振幅の交流信号を生成する発信手段と、を備えることを特徴とする請求項1に記載のトルク指令生成装置。 - 前記交流信号生成手段は、前記交流信号の周波数に応じた限界振幅を算出する限界振幅算出手段をさらに備え、
前記発信手段は、前記基本振幅から前記余剰振幅を減算して得られる振幅と前記限界振幅とのうち小さい方の振幅の交流信号を生成することを特徴とする請求項2に記載のトルク指令生成装置。 - 前記交流信号生成手段は、
基本交流信号を生成する基本信号生成手段と、
前記基本交流信号の値に所定の振幅減衰係数を乗算することにより交流信号を生成する乗算手段と、
前記モータ発生トルク指令信号の最大値と前記制限値との偏差がなくなるように前記振幅減衰係数を決定する余剰振幅制限手段と、を備えることを特徴とする請求項1に記載のトルク指令生成装置。 - 前記交流信号生成手段は、
前記モータ発生トルク指令信号の周波数成分を検出する周波数成分検出手段と、
前記モータ発生トルク指令信号の周波数に応じた限界振幅を算出する限界振幅算出手段と、
前記限界振幅算出手段によって算出された限界振幅に対する前記周波数成分検出手段によって検出された振幅の比を複数の異なる周波数毎に算出する限界比算出手段と、
前記限界比算出手段によって算出された複数の比のうち最も大きな比が所定の目標値になるように前記振幅減衰係数を決定する限界振幅制限手段と、を備えることを特徴とする請求項4に記載のトルク指令生成装置。 - 車両のドライブトレインの軸に接続されたモータで前記車両のエンジンを模したトルクを発生させるドライブトレイン試験システムにおいて、前記モータを駆動するためのモータ発生トルク指令信号を生成するトルク指令生成装置であって、
前記モータの回転数に応じて前記モータ発生トルク指令信号に対する正及び負のトルク制限基本値を算出する基本値算出手段と、
前記正及び負のトルク制限基本値を補正し正及び負のトルク制限値を算出する補正手段と、
直流成分及び交流成分を含む基本信号から前記正のトルク制限値より大きな値及び前記負のトルク制限値より小さな値を切り捨てることによって発生トルク指令信号を生成するトルク指令生成手段と、を備え、
前記補正手段は、前記基本信号に前記正及び負の何れか一方の符号のトルク制限基本値に対して余剰が生じた場合には、他方の符号のトルク制限基本値を絶対値が小さくなる方へ補正することを特徴とするトルク指令生成装置。 - 前記補正手段は、前記基本信号に前記正及び負の何れか一方の符号のトルク制限値に対して余剰が生じた場合には、前記基本信号の直流成分の値と前記基本信号の一方の符号側の極値との和から一方の符号のトルク制限基本値を減算して得られる値を他方の符号のトルク制限基本値に加算することによって、当該他方の符号のトルク制限基本値を補正することを特徴とする請求項6に記載のトルク指令生成装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480023501.XA CN105143844B (zh) | 2013-04-26 | 2014-04-21 | 转矩指令生成装置 |
US14/787,238 US9689774B2 (en) | 2013-04-26 | 2014-04-21 | Torque command generation device |
US15/601,414 US10151666B2 (en) | 2013-04-26 | 2017-05-22 | Torque command generation device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013094622A JP5673727B2 (ja) | 2013-04-26 | 2013-04-26 | トルク指令生成装置 |
JP2013-094622 | 2013-04-26 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/787,238 A-371-Of-International US9689774B2 (en) | 2013-04-26 | 2014-04-21 | Torque command generation device |
US15/601,414 Division US10151666B2 (en) | 2013-04-26 | 2017-05-22 | Torque command generation device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014175203A1 true WO2014175203A1 (ja) | 2014-10-30 |
Family
ID=51791779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/061138 WO2014175203A1 (ja) | 2013-04-26 | 2014-04-21 | トルク指令生成装置 |
Country Status (4)
Country | Link |
---|---|
US (2) | US9689774B2 (ja) |
JP (1) | JP5673727B2 (ja) |
CN (1) | CN105143844B (ja) |
WO (1) | WO2014175203A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017228087A (ja) * | 2016-06-22 | 2017-12-28 | 株式会社明電舎 | 共振抑制制御回路及びこれを用いた試験システム並びに共振抑制制御回路の設計方法 |
JP2018031734A (ja) * | 2016-08-26 | 2018-03-01 | 株式会社明電舎 | ドライブトレインの試験システム及びドライブトレインの試験方法 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6037364B2 (ja) * | 2013-10-23 | 2016-12-07 | 三菱電機株式会社 | モータ制御装置およびモータ制御方法 |
JP6168126B2 (ja) * | 2015-11-09 | 2017-07-26 | 株式会社明電舎 | ダイナモメータシステムのダイナモ制御装置及びそのエンジン始動方法 |
JP6172349B1 (ja) * | 2016-06-27 | 2017-08-02 | 株式会社明電舎 | モータドライブシステム |
JP6531250B2 (ja) * | 2016-07-22 | 2019-06-19 | 株式会社明電舎 | 軸トルク制御装置 |
JP6390734B1 (ja) * | 2017-03-10 | 2018-09-19 | 株式会社明電舎 | 試験システムの入出力特性推定方法 |
JP6465164B2 (ja) * | 2017-06-20 | 2019-02-06 | 株式会社明電舎 | 機械特性推定方法 |
US10300907B2 (en) * | 2017-08-04 | 2019-05-28 | Toyota Motor Engineering & Manufacturing North America, Inc. | Deceleration control in a hybrid vehicle |
US10618512B2 (en) | 2017-08-04 | 2020-04-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Expanding electric vehicle mode during downhill grade conditions |
US10507820B2 (en) | 2017-08-04 | 2019-12-17 | Toyota Motor Engineering & Manufacturing North America, Inc. | Vehicle mass and road load estimation in an EV condition |
US10392003B2 (en) | 2017-08-04 | 2019-08-27 | Toyota Motor Engineering & Manufacturing North America, Inc. | Navigation-enhanced battery state of charge maintenance |
JP6390774B1 (ja) * | 2017-09-13 | 2018-09-19 | 株式会社明電舎 | 動力計制御装置 |
JP6493578B1 (ja) * | 2018-02-08 | 2019-04-03 | 株式会社明電舎 | 試験システムの機械特性推定方法及び機械特性推定装置 |
JP6660038B1 (ja) * | 2018-11-05 | 2020-03-04 | 株式会社明電舎 | 軸トルク制御装置 |
JP7257940B2 (ja) * | 2019-11-25 | 2023-04-14 | 東洋電機製造株式会社 | 制御装置 |
JP7040581B1 (ja) * | 2020-09-29 | 2022-03-23 | 株式会社明電舎 | 試験システム |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08137555A (ja) * | 1994-01-25 | 1996-05-31 | Shinko Electric Co Ltd | 振動制御装置 |
JPH0915100A (ja) * | 1995-06-30 | 1997-01-17 | Meidensha Corp | パワートレイン試験装置の異常検出装置 |
JP2002071520A (ja) * | 2000-08-25 | 2002-03-08 | Meidensha Corp | 動力伝達系の試験装置 |
JP2009287986A (ja) * | 2008-05-28 | 2009-12-10 | Meidensha Corp | パワートレインの試験システム |
JP2013257234A (ja) * | 2012-06-13 | 2013-12-26 | Meidensha Corp | 動力計システム |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5323644A (en) * | 1992-07-06 | 1994-06-28 | Ford Motor Company | Traction control road simulator |
JP3334318B2 (ja) | 1994-02-01 | 2002-10-15 | 神鋼電機株式会社 | 振動制御装置 |
JP5393238B2 (ja) * | 2009-04-28 | 2014-01-22 | 株式会社日立製作所 | 電動機駆動システム,電動機制御装置及び電動機の駆動方法 |
CN102906994B (zh) * | 2010-05-20 | 2015-05-20 | 三菱电机株式会社 | 马达控制装置 |
SE535471C2 (sv) * | 2010-10-18 | 2012-08-21 | Metod och anordning för dynamometerprovning av ett motorfordon | |
JP5733477B2 (ja) * | 2012-07-09 | 2015-06-10 | 株式会社明電舎 | ドライブトレインの試験システム |
JP5708704B2 (ja) * | 2013-05-15 | 2015-04-30 | 株式会社明電舎 | エンジンベンチシステム |
JP5776731B2 (ja) * | 2013-06-19 | 2015-09-09 | 株式会社明電舎 | ドライブトレインの試験システム |
JP6167363B2 (ja) * | 2013-09-12 | 2017-07-26 | 日立オートモティブシステムズ株式会社 | 電動車両の制御装置及び電動車両の制御方法 |
JP2016088380A (ja) * | 2014-11-07 | 2016-05-23 | トヨタ自動車株式会社 | ハイブリッド自動車 |
WO2016143762A1 (ja) * | 2015-03-09 | 2016-09-15 | 本田技研工業株式会社 | 車両の油圧制御装置及び方法 |
US10071653B2 (en) * | 2016-08-19 | 2018-09-11 | Ford Global Technologies, Llc | Speed controlling an electric machine of a hybrid electric vehicle |
US10640106B2 (en) * | 2016-08-19 | 2020-05-05 | Ford Global Technologies, Llc | Speed controlling an electric machine of a hybrid electric vehicle |
CN108146240B (zh) * | 2016-12-05 | 2021-02-12 | 本田技研工业株式会社 | 车辆的扭矩分配控制装置 |
-
2013
- 2013-04-26 JP JP2013094622A patent/JP5673727B2/ja active Active
-
2014
- 2014-04-21 WO PCT/JP2014/061138 patent/WO2014175203A1/ja active Application Filing
- 2014-04-21 US US14/787,238 patent/US9689774B2/en active Active
- 2014-04-21 CN CN201480023501.XA patent/CN105143844B/zh active Active
-
2017
- 2017-05-22 US US15/601,414 patent/US10151666B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08137555A (ja) * | 1994-01-25 | 1996-05-31 | Shinko Electric Co Ltd | 振動制御装置 |
JPH0915100A (ja) * | 1995-06-30 | 1997-01-17 | Meidensha Corp | パワートレイン試験装置の異常検出装置 |
JP2002071520A (ja) * | 2000-08-25 | 2002-03-08 | Meidensha Corp | 動力伝達系の試験装置 |
JP2009287986A (ja) * | 2008-05-28 | 2009-12-10 | Meidensha Corp | パワートレインの試験システム |
JP2013257234A (ja) * | 2012-06-13 | 2013-12-26 | Meidensha Corp | 動力計システム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017228087A (ja) * | 2016-06-22 | 2017-12-28 | 株式会社明電舎 | 共振抑制制御回路及びこれを用いた試験システム並びに共振抑制制御回路の設計方法 |
WO2017221876A1 (ja) * | 2016-06-22 | 2017-12-28 | 株式会社明電舎 | 共振抑制制御回路及びこれを用いた試験システム並びに共振抑制制御回路の設計方法 |
US10444117B2 (en) | 2016-06-22 | 2019-10-15 | Meidensha Corporation | Resonance suppression control circuit and testing system employing same, and method of designing resonance suppression control circuit |
JP2018031734A (ja) * | 2016-08-26 | 2018-03-01 | 株式会社明電舎 | ドライブトレインの試験システム及びドライブトレインの試験方法 |
WO2018038144A1 (ja) * | 2016-08-26 | 2018-03-01 | 株式会社明電舎 | ドライブトレインの試験システム及びドライブトレインの試験方法 |
US10444116B2 (en) | 2016-08-26 | 2019-10-15 | Meidensha Corporation | Drive train testing system and drive train testing method |
Also Published As
Publication number | Publication date |
---|---|
JP5673727B2 (ja) | 2015-02-18 |
US20160109328A1 (en) | 2016-04-21 |
US10151666B2 (en) | 2018-12-11 |
CN105143844B (zh) | 2018-01-23 |
US9689774B2 (en) | 2017-06-27 |
CN105143844A (zh) | 2015-12-09 |
US20170254725A1 (en) | 2017-09-07 |
JP2014215253A (ja) | 2014-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5673727B2 (ja) | トルク指令生成装置 | |
KR101619663B1 (ko) | 하이브리드 차량의 능동형 진동 저감 제어장치 및 그 방법 | |
EP3249806B1 (en) | Control device for rotating electrical machine | |
JP5344067B1 (ja) | 動力計システム | |
US9517704B2 (en) | Apparatus for controlling rotary machine | |
JP5125764B2 (ja) | パワートレインの試験システム | |
US10879827B2 (en) | Apparatus for reducing belt slip | |
JP6492514B2 (ja) | パワートレイン試験装置 | |
WO2018190303A1 (ja) | 電気慣性制御装置 | |
US11204302B2 (en) | Dynamometer system having electric inertia control device to simulate behavior of inertial body | |
JP2011107051A (ja) | パワートレインの試験システム | |
JP2008286580A (ja) | 動力試験システム | |
JP6026921B2 (ja) | 内燃機関の制御装置 | |
WO2015186616A1 (ja) | シャシーダイナモメータの制御装置 | |
JP6826938B2 (ja) | 制御装置 | |
WO2020095507A1 (ja) | 軸トルク制御装置 | |
JP7257940B2 (ja) | 制御装置 | |
EP3671172B1 (en) | Transmission testing device | |
JP5812229B1 (ja) | シャシーダイナモメータの制御装置 | |
De Hesselle et al. | Hybrid Powertrain Operation Optimization Considering Cross Attribute Performance Metrics | |
JP2018093622A (ja) | 制御装置 | |
JP2008203053A (ja) | 動力計測システムの電気慣性制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480023501.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14788143 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14787238 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14788143 Country of ref document: EP Kind code of ref document: A1 |