WO2014132524A1 - 放熱構造及び光送受信器 - Google Patents
放熱構造及び光送受信器 Download PDFInfo
- Publication number
- WO2014132524A1 WO2014132524A1 PCT/JP2013/083489 JP2013083489W WO2014132524A1 WO 2014132524 A1 WO2014132524 A1 WO 2014132524A1 JP 2013083489 W JP2013083489 W JP 2013083489W WO 2014132524 A1 WO2014132524 A1 WO 2014132524A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- stem
- cylindrical portion
- transfer member
- optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims description 88
- 230000017525 heat dissipation Effects 0.000 title claims description 48
- 239000004065 semiconductor Substances 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 230000005855 radiation Effects 0.000 description 20
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 239000004519 grease Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000020169 heat generation Effects 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4266—Thermal aspects, temperature control or temperature monitoring
- G02B6/4268—Cooling
- G02B6/4269—Cooling with heat sinks or radiation fins
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4246—Bidirectionally operating package structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
- H05K7/2039—Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/3873—Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
Definitions
- the present invention relates to a stem on which a semiconductor optical element is mounted, a heat dissipation structure for dissipating heat from an optical distributor having a cylindrical portion covering the semiconductor optical element in the stem, and an optical transceiver including the optical distributor and the heat dissipation structure. It is about.
- Patent Document 1 has a problem that heat dissipation efficiency is poor because the contact area between the heat transfer member and the housing is small.
- the present invention has been made to solve the above-described problems, and an object thereof is to provide a heat dissipation structure and an optical transceiver that can efficiently dissipate heat from an optical distributor.
- the heat dissipating structure according to the present invention has a curved surface shape along the side surfaces of the stem and the cylindrical portion, has a heat receiving surface on which the stem and the cylindrical portion can be fitted, and a heat dissipating surface provided with the first projecting and recessed portion.
- a heat member, a light distributor and a heat transfer member are mounted, and a housing having a heat receiving surface provided with a second protrusion and recess that meshes with the first protrusion and recess.
- the heat dissipation structure includes a heat transfer member having a curved surface shape along side surfaces of the stem and the cylindrical portion, a heat receiving surface into which the stem and the cylindrical portion can be fitted, and a heat dissipation surface provided with a groove portion. And a housing having a heat receiving surface on which a light distributor and a heat transfer member are mounted and provided with a protrusion that meshes with the groove.
- the heat radiation efficiency is increased by increasing the contact area between the heat transfer member and the housing, and the heat of the optical distributor can be efficiently radiated.
- FIG. 8 is an enlarged sectional view taken along line AA in FIG. 7. It is a disassembled perspective view which shows the structure of the thermal radiation structure which concerns on Embodiment 3 of this invention. It is a disassembled perspective view which shows the structure of the thermal radiation structure which concerns on Embodiment 4 of this invention. It is a perspective view which shows the structure of the thermal radiation structure which concerns on Embodiment 4 of this invention.
- FIG. 12 is an enlarged sectional view taken along line BB in FIG. 11.
- FIG. 1 is a perspective view showing a configuration of a heat dissipation structure 2 according to Embodiment 1 of the present invention
- FIG. 2 is an exploded perspective view.
- FIG. 1 shows a state where the light distributor 1 is housed in the heat dissipation structure 2.
- the optical distributor 1 has a CAN type package, and includes a semiconductor optical element (not shown) that generates heat. Examples of the semiconductor optical element include a semiconductor laser element (laser diode).
- the light distributor 1 may incorporate a light receiving element.
- the optical distributor 1 includes a disk-shaped stem 11 for mounting a semiconductor optical device, and a metal cylindrical portion 12 that covers the semiconductor optical device in the stem 11. ing.
- the stem 11 is provided with a plurality of lead pins 13 that pass through the stem 11 except for a part thereof for supplying a drive current to the semiconductor optical element (or extracting a signal from the light receiving element). ing.
- the heat dissipation structure 2 is a structure for releasing heat generated in the optical distributor 1 to the outside of a device (such as an optical transceiver) on which the optical distributor 1 and the heat dissipation structure 2 are mounted.
- the heat dissipation structure 2 includes a heat transfer member 21 and a housing 22 as shown in FIGS.
- the heat transfer member 21 is a block-shaped member having a size covering the stem 11 and the cylindrical portion 12 of the light distributor 1, and is composed of a single member or a plurality of members.
- the single heat transfer member 21 is provided, for example, the configuration shown in FIG.
- the some heat-transfer member 21 it becomes a structure as shown, for example in FIG.
- the heat transfer member 21 has an inner wall composed of a curved heat receiving surface 211 a along the side surface 111 of the stem 11 and a curved heat receiving surface 211 b along the side surface 121 of the cylindrical portion 12.
- the heat receiving surfaces 211a and 211b are configured so that the stem 11 and the cylindrical portion 12 of the light distributor 1 can be fitted.
- a heat radiating member such as an adhesive or heat radiating grease is interposed, or by welding or the like. A metal bond is applied.
- the heat transfer member 21 is provided with heat radiation surfaces 212a to 212c on the surface (outer wall) opposite to the heat receiving surfaces 211a and 211b.
- the heat radiating surfaces 212a to 212c are surfaces for contacting the case 22 directly or via heat radiating grease or the like and transferring heat generated by the optical distributor 1 to the case 22.
- a device for example, an optical transceiver
- the shape may be the same as that of the housing 22 including the sink part.
- the heat radiating surfaces 212a to 212c are in contact with the device or the component directly or through heat radiating grease or the like, and serve as surfaces for transmitting the heat generated by the optical distributor 1 to the device or the component.
- the heat radiation surfaces 212a and 212b are provided with protrusions (first protrusions) 213a and 213b that mesh with the heat receiving surfaces 222a and 222b of the housing 22 alternately. As shown in FIGS. 1 and 2, the protrusions 213 a and 213 b are configured so that the cross sections along the axial direction of the stem 11 and the cylindrical portion 12 are uneven.
- the housing 22 mounts the optical distributor 1 and the heat transfer member 21 and is provided with a substantially U-shaped mounting portion 221.
- heat receiving surfaces 222 a to 222 c are provided on the inner wall of the mounting portion 221 at portions facing the heat radiating surfaces 212 a to 212 c of the heat transfer member 21.
- the heat receiving surfaces 222a and 222b are provided with protrusions (second protrusions) 223a and 223b that alternately engage with the protrusions 213a and 213b of the heat dissipation surfaces 212a and 212b of the heat transfer member 21, respectively.
- the protrusions 223 a and 223 b are configured so that the cross-sections along the axial direction of the stem 11 and the cylindrical portion 12 are uneven.
- the heat transfer member 21 and the housing are provided by providing protrusions and recesses 213a, 213b, 223a, and 223b that alternately engage the heat radiation surfaces 212a and 212b of the heat transfer member 21 and the heat receiving surfaces 222a and 222b of the housing 22, respectively.
- the surface area in contact with 22 increases, and the heat dissipation area of the heat transfer member 21 and the heat receiving area of the housing 22 increase.
- the amount of heat (Q) passing through the contact surface per unit time is considered to be proportional to the temperature difference between the two contact surfaces (T_heat radiation surface ⁇ T_heat reception surface) and the surface area (B).
- the protrusions 213a, 213b, 223a, and 223b may have any form in which the heat transfer member 21 and the housing 22 are engaged with each other and the contact area is increased. Therefore, the protrusions 213a, 213b, 223a, and 223b are not limited to the concavo-convex shape as shown in FIG. 2, but may be configured in, for example, a zigzag shape as shown in FIG. 4 or a wavy shape as shown in FIG. Good.
- the side surface 111 of the stem 11 and the side surface 121 of the cylindrical portion 12 and the heat receiving surfaces 211a and 211b of the heat transfer member 21 are not provided with the above-described protrusions, and the heat dissipating surfaces 212a and 212b of the heat transfer member 21;
- the protrusions and recesses 213a, 213b, 223a, and 223b on the heat receiving surfaces 222a and 222b of the housing 22 it is possible to expect an increase in heat dissipation thermal efficiency without changing the shape of the light distributor 1.
- the stem 11 and the cylindrical portion 12 are perpendicular to the axial direction with respect to the box-shaped part (main body part) 14 of the optical distributor 1 (x shown in FIG. 2). This is because it is necessary to move in the axial direction and the y-axis direction), and it is necessary to consider the displacement of the stem 11 and the cylindrical portion 12 with respect to the box-shaped portion 14.
- This misalignment is greater than the misalignment due to normal dimensional tolerances.
- the dimensional tolerance is a difference between the maximum value and the minimum value allowed as the actual dimension when it is impossible to process with the same dimension as the reference dimension.
- a gap is required between the light distributor 1 and the housing 22. However, this gap is too large to be filled with an adhesive, heat radiation grease, or the like.
- the shape of the stem 11 and the cylindrical portion 12 does not change even if the above-described positional deviation occurs. Therefore, in the present invention, the heat transfer member 21 is disposed between the optical distributor 1 and the housing 22 so that a gap is not formed as much as possible between the stem 11 and the cylindrical portion 12 and the heat transfer member 21. Configured. Thereby, the hindrance of the heat dissipation by a clearance (air) can be reduced, and the heat dissipation effect can be enhanced.
- the gap in the z-axis direction shown in FIG. 6A is a gap for enabling the above-described parts to be assembled.
- the gaps in the x-axis and y-axis directions shown in FIG. 6 are the optical axis adjustment tolerances of the stem 11 and the cylindrical part 12 (also serving as gaps for enabling the above parts to be assembled).
- the gap is filled with a heat radiating member such as heat radiating grease.
- the case where the heat radiating surfaces 212a to 212c are in direct contact with the housing 22 is a case where the optical axis adjustment tolerance and the dimensional tolerance (assembly tolerance) are the maximum values (lower limit / upper limit value). Note that when the heat radiating surfaces 212a to 212c come into contact with the housing 3, heat becomes easy to pass through, so that the heat radiating efficiency is improved.
- the optical distributor 1 does not require optical axis adjustment, it may be possible to increase the heat dissipation effect by directly contacting the stem 11 and the cylindrical portion 12 and the housing 22 without using the present invention.
- it is generally necessary to increase the component size and make an expensive optical distributor. In other words, it cannot answer the market needs of size reduction.
- it is possible to obtain an optical transceiver using the small optical distributor 1 that adjusts the optical axis in order to obtain a required optical transmission power. This makes it possible to reduce the size of the optical transceiver.
- the optical distributor 1 generally has a Peltier element.
- the Peltier element consumes power.
- the present invention that can increase the heat dissipation efficiency by the heat dissipation structure 2, it is possible to reduce the power consumption due to the cooling using the Peltier element.
- the heat receiving surfaces 211a and 211b which are curved surfaces along the side surfaces 111 and 121 of the stem 11 and the cylindrical portion 12 and can be fitted with the stem 11 and the cylindrical portion 12,
- the heat transfer member 21 having the heat radiation surfaces 212a and 212b provided with the protrusions 213a and 213b, the optical distributor 1 and the heat transfer member 21, and the protrusions 213a and 213b of the heat transfer member 21 are mounted. Since the housing 22 having the heat receiving surfaces 222a and 222b provided with the engaging and protruding portions 223a and 223b is provided, the contact area between the heat transfer member 21 and the housing 22 is increased, so that the heat radiation efficiency is increased. In addition, the heat of the optical distributor 1 can be radiated efficiently. As a result, it is possible to increase the heat generation density of the optical distributor 1, to reduce the size of the housing 22, and to expand the operating temperature range for higher temperatures.
- FIG. 7 is a perspective view showing a configuration of the heat dissipation structure 2 of the optical distributor 1 according to Embodiment 2 of the present invention
- FIG. 8 is an enlarged cross-sectional view taken along line AA of FIG. 7 and 8, the same reference numerals are given to the same configurations as those of the heat dissipation structure 2 according to the first embodiment shown in FIGS. 1 and 2, and only different portions will be described.
- the protrusions 213a and 213b of the heat transfer member 21 according to the second embodiment have cross sections substantially perpendicular to the axial centers of the stem 11 and the cylindrical portion 12, and the side surfaces of the stem 11 and the cylindrical portion 12.
- the curved surface shape along the lines 111 and 121 is configured.
- the protrusions 223a and 223b of the housing 22 in the second embodiment also have cross sections substantially perpendicular to the axial centers of the stem 11 and the cylindrical portion 12 on the side surfaces 111 and 121 of the stem 11 and the cylindrical portion 12, respectively. It is configured in a curved shape along.
- Embodiment 3 In the first and second embodiments, the case where the heat sink surfaces 212a and 212b of the heat transfer member 21 and the heat receiving surfaces 222a and 222b of the housing 22 are provided with the protrusions and recesses 213a, 213b, 223a, and 223b has been described.
- the grooves 214a and 214b are provided on the heat radiation surface 212c of the heat transfer member 21, and the protrusions 224a and 224b that engage with the grooves 214a and 214b are provided on the heat receiving surface 222c of the housing 22. Show about. FIG.
- FIG. 9 is an exploded perspective view showing the configuration of the heat dissipation structure 2 of the optical distributor 1 according to Embodiment 3 of the present invention.
- the optical distributor 1 is not shown.
- FIG. 9 the same components as those of the heat dissipation structure 2 according to the first embodiment shown in FIGS.
- the heat transfer member 21 in the third embodiment is provided with grooves 214a and 214b on the heat radiating surface 212c, instead of the projecting parts 213a and 213b.
- the housing 22 in the third embodiment is provided with protrusions 224a and 224b that mesh with the grooves 214a and 214b on the heat receiving surface 222c, instead of the protrusions 223a and 223b.
- the contact area between the heat transfer member 21 and the housing 22 increases, so that the heat dissipation efficiency increases and the heat of the optical distributor 1 can be efficiently radiated.
- Embodiment 4 In the configurations of the first to third embodiments, when the stem 11 and the heat transfer member 21 are bonded, the heat transfer efficiency may decrease depending on the application state of the adhesive. Moreover, since it takes time until an adhesive dries, there exists a subject that productivity is bad. Therefore, in the fourth embodiment, as shown in FIG. 10, the stem 11 is fixed by sandwiching and fixing the cylindrical portion 12 together with the heat transfer member 21 using the leaf spring 31.
- the leaf spring 31 is configured to be attachable to the heat transfer member 21 and fixes the stem 11 by sandwiching and fixing the cylindrical portion 12 together with the heat transfer member 21.
- the plate spring 31 is formed by bending a plate member into an L shape, and bent portions 311 a and 311 b that are hooked by the engaging portions 215 a and 215 b of the heat transfer member 21 are provided at both ends in the longitudinal direction. It has been. Further, the heat transfer member 21 is provided with engaging portions 215a and 215b on which the bent portions 311a and 311b of the leaf spring 31 are hooked (see FIG. 12).
- FIG. 11 is a perspective view when the leaf spring 31 is mounted
- FIG. 12 is an enlarged sectional view taken along line BB of FIG.
- the leaf spring 31 is attached to the heat transfer member 2 in which the cylindrical portion 12 is accommodated.
- the bent portions 311 a and 311 b of the leaf spring 31 are hooked on the engaging portions 215 a and 215 b of the heat transfer member 21.
- the leaf spring 31 sandwiches and fixes the cylindrical portion 12 together with the heat transfer member 21.
- the space formed by the heat transfer member 21 and the leaf spring 31 when the leaf spring 31 is attached is designed to be smaller than the diameter of the cylindrical portion 12 of the light distributor 1 even at the worst tolerance.
- the leaf spring 31 has a role of bending when it is attached to the heat transfer member 21 and applying a load to the cylindrical portion 12, and a role of radiating the heat of the cylindrical portion 12 to the heat transfer member 21. It is desirable to be.
- the heat dissipation structure and the optical transceiver according to the present invention can efficiently dissipate heat from the optical distributor, and have a stem on which the semiconductor optical element is mounted, and a cylindrical portion that covers the semiconductor optical element in the stem. It is suitable for use in a heat dissipation structure that dissipates heat from a distributor, an optical transmitter / receiver including the optical distributor and the heat dissipation structure, and the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Lasers (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
そこで、例えば特許文献1に開示された技術では、樹脂と金属の熱伝導率の差を利用した放熱構造を光分配器に取り付けている。この放熱構造では、光分配器のステムを樹脂の伝熱部材で上下から挟み込み、ステム及び伝熱部材よりも熱膨張率が小さい金属のフレームにより上下の伝熱部材を連結することで、発熱時に樹脂が膨張するのを金属のフレームで抑えている。これにより、発熱時にステムと伝熱部材とが密着し、熱抵抗を減らすことで放熱効率を増加させている。
実施の形態1.
図1はこの発明の実施の形態1に係る放熱構造2の構成を示す斜視図であり、図2は分解斜視図である。図1では、放熱構造2に光分配器1が収納された状態を示している。
まず、光分配器1の構成について説明する。
光分配器1は、CAN型のパッケージを有するものであり、発熱する半導体光素子(不図示)を内蔵している。この半導体光素子としては、例えば半導体レーザ素子(レーザダイオード)等が挙げられる。また、光分配器1は受光素子を内蔵してもよい。
さらに、放熱面212a,212bには、筐体22の受熱面222a,222bと互い違いに噛み合う突没部(第1の突没部)213a,213bが設けられている。この突没部213a,213bは、図1,2に示すように、ステム11及び円筒部12の軸心方向に沿った断面が凹凸形状に構成されている。
そして、一般的に単位時間当たりに接触面を通過する熱量(Q)は、両接触面の温度(T_放熱面-T_受熱面)差と表面積(B)とに比例すると考えられる。そして、比例係数をhとすれば、熱量(Q)は下式(1)で表される。
Q=h・(T_放熱面-T_受熱面)・B (1)
したがって、上記突没部213a,213b,223a,223bを設けることで、伝熱部材21と筐体22との接触面を通過する熱量が増え、放熱熱効率の増加が見込める。
そして、放熱面212a~212cが筐体22と直接接触する場合とは、光軸調整公差、寸法公差(組立公差)が最大値(下限/上限値)の場合である。なお、放熱面212a~212cが筐体3と接触した場合には、熱が通りやすくなるため、放熱効率が上がる。
それに対して、本発明の構成を適用することで、必要な光送信パワーを得るために光軸を調整する小型の光分配器1を用いた光送受信器を得ることができる。これにより、光送受信機のサイズダウンを実現可能となる。
実施の形態2では、ステム11及び円筒部12が円筒形状であることを利用して、伝熱部材21の突没部213a,213b及び筐体22の突没部223a,223bを当該円筒形状に合わせた曲面形状とした場合について示す。
図7はこの発明の実施の形態2に係る光分配器1の放熱構造2の構成を示す斜視図であり、図8は図7のA-A線拡大断面図である。図7,8において、図1,2に示す実施の形態1に係る放熱構造2と同様の構成については同一の符号を付して、異なる箇所についてのみ説明を行う。
これにより、実施の形態1の構成に対し、図8に示す斜線部5a,5bの分だけ放熱面積が拡大するため、放熱効率の増加が見込める。
実施の形態1,2では、伝熱部材21の放熱面212a,212b及び筐体22の受熱面222a,222bに突没部213a,213b,223a,223bを設けた場合について示した。それに対して、実施の形態3では、伝熱部材21の放熱面212cに溝部214a,214bを設け、筐体22の受熱面222cに当該溝部214a,214bと噛み合う突起部224a,224bを設けた場合について示す。
図9はこの発明の実施の形態3に係る光分配器1の放熱構造2の構成を示す分解斜視図である。なお図9では光分配器1の図示を省略している。図9において、図1,2に示す実施の形態1に係る放熱構造2と同一構成については同一の符号を付して、異なる箇所についてのみ説明を行う。
これにより、伝熱部材21の溝部214aと筐体22の突起部224aとが噛み合い、溝部214bと突起部224bとが噛み合う。その結果、実施の形態1と同様に、伝熱部材21と筐体22との接触面積が増大することで放熱効率が増大し、光分配器1の熱を効率的に放熱することができる。
実施の形態1~3の構成において、ステム11と伝熱部材21とを接着した場合、接着剤の塗布状況により、伝熱効率が落ちる場合がある。また、接着剤が乾燥するまでに時間がかかるため、生産性が悪いという課題がある。そこで、実施の形態4では、図10に示すように、板バネ31を用いて円筒部12を伝熱部材21とともに挟み込んで固定することで、ステム11を固定するようにした。
また、伝熱部材21には、板バネ31の曲げ部311a,311bが引っ掛けられる係り部215a,215bが設けられている(図12参照)。
なお、板バネ31は、伝熱部材21に取り付けた際に撓んで円筒部12に荷重を与える役目と、円筒部12の熱を伝熱部材21へ放熱する役目も持っているため、金属であることが望ましい。
Claims (14)
- 半導体素子を搭載するステム、及び当該ステムにおいて当該半導体素子を覆う円筒部を有する光分配器の熱を放熱する放熱構造であって、
前記ステム及び前記円筒部の側面に沿った曲面形状であり当該ステム及び当該円筒部を嵌め込み可能な受熱面、及び第1の突没部が設けられた放熱面を有する伝熱部材と、
前記光分配器及び前記伝熱部材を搭載し、前記第1の突没部と噛み合う第2の突没部が設けられた受熱面を有する筐体とを備えた
ことを特徴とする放熱構造。 - 前記第1,2の突没部は、前記ステム及び前記円筒部の軸心方向に沿った断面が凹凸形状である
ことを特徴とする請求項1記載の放熱構造。 - 前記第1,2の突没部は、前記ステム及び前記円筒部の軸心方向に沿った断面がジグザグ形状である
ことを特徴とする請求項1記載の放熱構造。 - 前記第1,2の突没部は、前記ステム及び前記円筒部の軸心方向に沿った断面が波線形状である
ことを特徴とする請求項1記載の放熱構造。 - 前記第1,2の突没部は、前記ステム及び前記円筒部の軸心に略垂直な断面が、当該ステム及び当該円筒部の側面に沿った曲面形状である
ことを特徴とする請求項1記載の放熱構造。 - 半導体素子を搭載するステム、及び当該ステムにおいて当該半導体素子を覆う円筒部を有する光分配器の熱を放熱する光分配器の放熱構造であって、
前記ステム及び前記円筒部の側面に沿った曲面形状であり当該ステム及び当該円筒部を嵌め込み可能な受熱面、及び溝部が設けられた放熱面を有する伝熱部材と、
前記光分配器及び前記伝熱部材を搭載し、前記溝部と噛み合う突起部が設けられた受熱面を有する筐体とを備えた
ことを特徴とする放熱構造。 - 前記伝熱部材は、単一部材または複数部材から構成された
ことを特徴とする請求項1記載の放熱構造。 - 前記伝熱部材は、単一部材または複数部材から構成された
ことを特徴とする請求項6記載の放熱構造。 - 前記光分配器は、本体部分に対して前記ステム及び前記円筒部が軸心方向に略垂直な方向に動くことで光軸調整を行う
ことを特徴とする請求項1記載の放熱構造。 - 前記光分配器は、本体部分に対して前記ステム及び前記円筒部が軸心方向に略垂直な方向に動くことで光軸調整を行う
ことを特徴とする請求項6記載の放熱構造。 - 半導体素子を搭載するステム、及び当該ステムにおいて当該半導体素子を覆う円筒部を有する光分配器と、当該光分配器の熱を放熱する放熱構造とを備えた光送受信器であって、
前記放熱構造は、
前記ステム及び前記円筒部の側面に沿った曲面形状であり当該ステム及び当該円筒部を嵌め込み可能な受熱面、及び第1の突没部が設けられた放熱面を有する伝熱部材と、
前記光分配器及び前記伝熱部材を搭載し、前記第1の突没部と噛み合う第2の突没部が設けられた受熱面を有する筐体とを備えた
ことを特徴とする光送受信器。 - 半導体素子を搭載するステム、及び当該ステムにおいて当該半導体素子を覆う円筒部を有する光分配器と、当該光分配器の熱を放熱する放熱構造とを備えた光送受信器であって、
前記放熱構造は、
前記ステム及び前記円筒部の側面に沿った曲面形状であり当該ステム及び当該円筒部を嵌め込み可能な受熱面、及び溝部が設けられた放熱面を有する伝熱部材と、
前記光分配器及び前記伝熱部材を搭載し、前記溝部と噛み合う突起部が設けられた受熱面を有する筐体とを備えた
ことを特徴とする光送受信器。 - 前記光分配器は、本体部分に対して前記ステム及び前記円筒部が軸心方向に略垂直な方向に動くことで光軸調整を行う
ことを特徴とする請求項11記載の光送受信器。 - 前記光分配器は、本体部分に対して前記ステム及び前記円筒部が軸心方向に略垂直な方向に動くことで光軸調整を行う
ことを特徴とする請求項12記載の光送受信器。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157023214A KR101755966B1 (ko) | 2013-02-28 | 2013-12-13 | 방열 구조 및 광 송수신기 |
JP2015502725A JP6124990B2 (ja) | 2013-02-28 | 2013-12-13 | 放熱構造及び光送受信器 |
CN201380073940.7A CN105009388B (zh) | 2013-02-28 | 2013-12-13 | 散热构造及光收发器 |
US14/762,069 US9594222B2 (en) | 2013-02-28 | 2013-12-13 | Heat dissipation structure and optical transceiver |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-039187 | 2013-02-28 | ||
JP2013039187 | 2013-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014132524A1 true WO2014132524A1 (ja) | 2014-09-04 |
Family
ID=51427810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/083489 WO2014132524A1 (ja) | 2013-02-28 | 2013-12-13 | 放熱構造及び光送受信器 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9594222B2 (ja) |
JP (1) | JP6124990B2 (ja) |
KR (1) | KR101755966B1 (ja) |
CN (1) | CN105009388B (ja) |
WO (1) | WO2014132524A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3252889A4 (en) * | 2015-01-26 | 2018-08-22 | Hitachi-LG Data Storage, Inc. | Light module and scanning type image display device |
JP2019009174A (ja) * | 2017-06-21 | 2019-01-17 | 日亜化学工業株式会社 | 発光モジュール |
EP3264543A4 (en) * | 2015-02-25 | 2019-01-30 | Hitachi-LG Data Storage, Inc. | LIGHT MODULE AND SCANNING IMAGE DISPLAY DEVICE |
JP7452774B1 (ja) | 2023-10-30 | 2024-03-19 | 三菱電機株式会社 | 光半導体装置および光トランシーバ |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN217213253U (zh) * | 2022-04-20 | 2022-08-16 | 苏州旭创科技有限公司 | 光模块及光通信设备 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05235484A (ja) * | 1992-02-21 | 1993-09-10 | Omron Corp | 半導体光源 |
JP2000031583A (ja) * | 1998-07-09 | 2000-01-28 | Sharp Corp | 発光素子の発光点検出方法、および光学素子固定装置 |
US20050135757A1 (en) * | 2002-08-21 | 2005-06-23 | Martin Wisecarver | Deformable optical signal transmitter port |
JP2005234464A (ja) * | 2004-02-23 | 2005-09-02 | Tdk Corp | 光トランシーバ及びこれに用いる光モジュール |
JP2005317925A (ja) * | 2004-04-02 | 2005-11-10 | Ricoh Co Ltd | 光源装置、記録装置、製版装置及び画像形成装置 |
JP2007273497A (ja) * | 2006-03-30 | 2007-10-18 | Sumitomo Electric Ind Ltd | 光モジュールの放熱構造、及び光通信モジュール |
JP2007287850A (ja) * | 2006-04-14 | 2007-11-01 | Sumitomo Electric Ind Ltd | 光トランシーバ |
JP2009016456A (ja) * | 2007-07-02 | 2009-01-22 | Ricoh Co Ltd | Ld放熱構造 |
JP2012042719A (ja) * | 2010-08-19 | 2012-03-01 | Nec Corp | 光トランシーバ |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2675173B2 (ja) * | 1990-03-02 | 1997-11-12 | 株式会社日立製作所 | 電子デバイスの冷却装置 |
JPH0784156A (ja) | 1993-09-14 | 1995-03-31 | Matsushita Electric Ind Co Ltd | 光ファイバーモジュール |
CA2446728C (en) * | 2001-04-30 | 2007-12-18 | Thermo Composite, Llc | Thermal management material, devices and methods therefor |
JP2003181526A (ja) * | 2001-12-19 | 2003-07-02 | Showa Denko Kk | 押出用工具、フィン付形材の製造方法ならびにヒートシンク |
JP3941704B2 (ja) * | 2003-02-05 | 2007-07-04 | 株式会社デンソー | 電子部品の放熱構造 |
US20060107986A1 (en) * | 2004-01-29 | 2006-05-25 | Abramov Vladimir S | Peltier cooling systems with high aspect ratio |
US20050145369A1 (en) * | 2003-12-31 | 2005-07-07 | Meng-Cheng Huang | Structure of a uniform thermal conductive heat dissipation device |
EP1637228A1 (en) * | 2004-09-16 | 2006-03-22 | Roche Diagnostics GmbH | Method an apparatus for performing rapid thermo cycling as well as a micro fabricated system |
US20060087816A1 (en) * | 2004-09-21 | 2006-04-27 | Ingo Ewes | Heat-transfer devices |
EP1710017B1 (en) * | 2005-04-04 | 2012-12-19 | Roche Diagnostics GmbH | Thermocycling of a block comprising multiple samples |
JP4617209B2 (ja) * | 2005-07-07 | 2011-01-19 | 株式会社豊田自動織機 | 放熱装置 |
DE102007004303A1 (de) * | 2006-08-04 | 2008-02-07 | Osram Opto Semiconductors Gmbh | Dünnfilm-Halbleiterbauelement und Bauelement-Verbund |
JP5312947B2 (ja) * | 2006-10-27 | 2013-10-09 | パナソニック株式会社 | 短波長光源およびレーザ画像形成装置 |
US8235361B2 (en) * | 2009-02-09 | 2012-08-07 | Tribute Creations, Llc | Structured packing for a reactor |
US9217542B2 (en) * | 2009-10-20 | 2015-12-22 | Cree, Inc. | Heat sinks and lamp incorporating same |
JP5930596B2 (ja) | 2010-03-25 | 2016-06-08 | 古河電気工業株式会社 | モジュール内蔵コネクタ、及びモジュール内蔵コネクタ付き機器 |
JP5653072B2 (ja) * | 2010-05-19 | 2015-01-14 | 本田技研工業株式会社 | ステータコイルアッセンブリ |
US8652860B2 (en) * | 2011-01-09 | 2014-02-18 | Bridgelux, Inc. | Packaging photon building blocks having only top side connections in a molded interconnect structure |
GB2493019A (en) * | 2011-07-21 | 2013-01-23 | Control Tech Ltd | Heat sink adaptor or cooling hat |
US9459056B2 (en) * | 2011-09-02 | 2016-10-04 | Gabe Cherian | SPRDR—heat spreader—tailorable, flexible, passive |
-
2013
- 2013-12-13 KR KR1020157023214A patent/KR101755966B1/ko not_active Expired - Fee Related
- 2013-12-13 JP JP2015502725A patent/JP6124990B2/ja not_active Expired - Fee Related
- 2013-12-13 WO PCT/JP2013/083489 patent/WO2014132524A1/ja active Application Filing
- 2013-12-13 CN CN201380073940.7A patent/CN105009388B/zh not_active Expired - Fee Related
- 2013-12-13 US US14/762,069 patent/US9594222B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05235484A (ja) * | 1992-02-21 | 1993-09-10 | Omron Corp | 半導体光源 |
JP2000031583A (ja) * | 1998-07-09 | 2000-01-28 | Sharp Corp | 発光素子の発光点検出方法、および光学素子固定装置 |
US20050135757A1 (en) * | 2002-08-21 | 2005-06-23 | Martin Wisecarver | Deformable optical signal transmitter port |
JP2005234464A (ja) * | 2004-02-23 | 2005-09-02 | Tdk Corp | 光トランシーバ及びこれに用いる光モジュール |
JP2005317925A (ja) * | 2004-04-02 | 2005-11-10 | Ricoh Co Ltd | 光源装置、記録装置、製版装置及び画像形成装置 |
JP2007273497A (ja) * | 2006-03-30 | 2007-10-18 | Sumitomo Electric Ind Ltd | 光モジュールの放熱構造、及び光通信モジュール |
JP2007287850A (ja) * | 2006-04-14 | 2007-11-01 | Sumitomo Electric Ind Ltd | 光トランシーバ |
JP2009016456A (ja) * | 2007-07-02 | 2009-01-22 | Ricoh Co Ltd | Ld放熱構造 |
JP2012042719A (ja) * | 2010-08-19 | 2012-03-01 | Nec Corp | 光トランシーバ |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3252889A4 (en) * | 2015-01-26 | 2018-08-22 | Hitachi-LG Data Storage, Inc. | Light module and scanning type image display device |
EP3264543A4 (en) * | 2015-02-25 | 2019-01-30 | Hitachi-LG Data Storage, Inc. | LIGHT MODULE AND SCANNING IMAGE DISPLAY DEVICE |
JP2019009174A (ja) * | 2017-06-21 | 2019-01-17 | 日亜化学工業株式会社 | 発光モジュール |
JP7025624B2 (ja) | 2017-06-21 | 2022-02-25 | 日亜化学工業株式会社 | 発光モジュール |
JP7452774B1 (ja) | 2023-10-30 | 2024-03-19 | 三菱電機株式会社 | 光半導体装置および光トランシーバ |
WO2025094245A1 (ja) * | 2023-10-30 | 2025-05-08 | 三菱電機株式会社 | 光半導体装置および光トランシーバ |
Also Published As
Publication number | Publication date |
---|---|
US20150355425A1 (en) | 2015-12-10 |
JPWO2014132524A1 (ja) | 2017-02-02 |
KR101755966B1 (ko) | 2017-07-07 |
KR20150111998A (ko) | 2015-10-06 |
CN105009388B (zh) | 2018-04-10 |
JP6124990B2 (ja) | 2017-05-10 |
CN105009388A (zh) | 2015-10-28 |
US9594222B2 (en) | 2017-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6124990B2 (ja) | 放熱構造及び光送受信器 | |
JP6117288B2 (ja) | 冷却装置 | |
WO2011105364A1 (ja) | ヒートシンク | |
JP5698894B2 (ja) | 電子部品の放熱構造 | |
WO2014132399A1 (ja) | 放熱構造 | |
US9772143B2 (en) | Thermal module | |
JP2007273497A (ja) | 光モジュールの放熱構造、及び光通信モジュール | |
WO2017020624A1 (zh) | 一种射频拉远单元、安装件及射频通信系统 | |
JP6645487B2 (ja) | プリント回路板 | |
JP2015038396A (ja) | ヒートシンク | |
CN112262334B (zh) | 光收发器 | |
JP6745492B2 (ja) | 放熱装置及び発電装置 | |
US10352625B2 (en) | Thermal module | |
JP2018031549A (ja) | 放熱装置 | |
JP2007274565A (ja) | 撮像装置 | |
JP7172065B2 (ja) | 半導体装置 | |
JP5901258B2 (ja) | 光モジュール、光送受信器及び光送受信器製造方法 | |
JP2009016456A (ja) | Ld放熱構造 | |
JP3168842U (ja) | 放熱モジュール構造 | |
KR200235545Y1 (ko) | 피씨비 방열 새시 | |
WO2019030809A1 (ja) | 放熱構造体 | |
JP6419398B1 (ja) | 情報処理装置 | |
CN110891396A (zh) | 散热结构及其光模块 | |
JP2018195844A (ja) | ヒートシンク | |
JP7661842B2 (ja) | 電子制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13876198 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015502725 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14762069 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20157023214 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13876198 Country of ref document: EP Kind code of ref document: A1 |