WO2014119082A1 - フラックス入りワイヤ、フラックス入りワイヤを用いた溶接方法、フラックス入りワイヤを用いた溶接継手の製造方法、および溶接継手 - Google Patents
フラックス入りワイヤ、フラックス入りワイヤを用いた溶接方法、フラックス入りワイヤを用いた溶接継手の製造方法、および溶接継手 Download PDFInfo
- Publication number
- WO2014119082A1 WO2014119082A1 PCT/JP2013/080005 JP2013080005W WO2014119082A1 WO 2014119082 A1 WO2014119082 A1 WO 2014119082A1 JP 2013080005 W JP2013080005 W JP 2013080005W WO 2014119082 A1 WO2014119082 A1 WO 2014119082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flux
- cored wire
- content
- weld metal
- mass
- Prior art date
Links
- 230000004907 flux Effects 0.000 title claims abstract description 63
- 238000003466 welding Methods 0.000 title claims description 65
- 238000000034 method Methods 0.000 title claims description 28
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims description 204
- 229910052751 metal Inorganic materials 0.000 claims description 204
- 229910000831 Steel Inorganic materials 0.000 claims description 93
- 239000010959 steel Substances 0.000 claims description 93
- 239000001257 hydrogen Substances 0.000 claims description 40
- 229910052739 hydrogen Inorganic materials 0.000 claims description 40
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 32
- 239000001301 oxygen Substances 0.000 claims description 32
- 229910052760 oxygen Inorganic materials 0.000 claims description 32
- 239000000463 material Substances 0.000 claims description 31
- 239000007789 gas Substances 0.000 claims description 25
- 229910044991 metal oxide Inorganic materials 0.000 claims description 19
- 150000004706 metal oxides Chemical class 0.000 claims description 19
- 229910004261 CaF 2 Inorganic materials 0.000 claims description 17
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 9
- 239000003921 oil Substances 0.000 claims description 9
- 229910016036 BaF 2 Inorganic materials 0.000 claims description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 7
- 238000009864 tensile test Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 6
- 239000010702 perfluoropolyether Substances 0.000 claims description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 4
- 239000001569 carbon dioxide Substances 0.000 claims description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 abstract 4
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 abstract 2
- 229910001634 calcium fluoride Inorganic materials 0.000 abstract 2
- 230000000694 effects Effects 0.000 description 53
- 238000005336 cracking Methods 0.000 description 32
- 229910001512 metal fluoride Inorganic materials 0.000 description 23
- 238000012360 testing method Methods 0.000 description 19
- 230000006866 deterioration Effects 0.000 description 17
- 239000010949 copper Substances 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 230000001965 increasing effect Effects 0.000 description 9
- 239000002893 slag Substances 0.000 description 8
- 229910001563 bainite Inorganic materials 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 239000000314 lubricant Substances 0.000 description 5
- 239000003381 stabilizer Substances 0.000 description 5
- 230000002411 adverse Effects 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000003749 cleanliness Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 230000002301 combined effect Effects 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- -1 BN and Fe 23 (C Chemical class 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KIZFHUJKFSNWKO-UHFFFAOYSA-M calcium monohydroxide Chemical compound [Ca]O KIZFHUJKFSNWKO-UHFFFAOYSA-M 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000003496 welding fume Substances 0.000 description 1
- 238000005493 welding type Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/368—Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
- B23K35/0244—Powders, particles or spheres; Preforms made therefrom
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
- B23K35/0261—Rods, electrodes, wires
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
- B23K35/0261—Rods, electrodes, wires
- B23K35/0266—Rods, electrodes, wires flux-cored
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/3066—Fe as the principal constituent with Ni as next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3602—Carbonates, basic oxides or hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3603—Halide salts
- B23K35/3605—Fluorides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/3601—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
- B23K35/3606—Borates or B-oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/36—Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
- B23K35/362—Selection of compositions of fluxes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/16—Arc welding or cutting making use of shielding gas
- B23K9/173—Arc welding or cutting making use of shielding gas and of a consumable electrode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/23—Arc welding or cutting taking account of the properties of the materials to be welded
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Definitions
- the present invention relates to a flux-cored wire used for welding high-strength steel with a tensile strength of 780 MPa or more, and in particular, preheating work for preventing low-temperature cracking is unnecessary, or preheating work can be significantly reduced,
- the present invention also relates to a flux-cored wire from which a weld metal excellent in low-temperature toughness can be obtained.
- the present invention also relates to a welding method using the flux-cored wire, a method for manufacturing a welded joint using the flux-cored wire, and a welded joint.
- the steel materials and welding materials used are Extremely low temperature toughness is required.
- the steel material becomes higher in strength, it becomes more difficult to ensure the strength and low-temperature toughness of the welded part, and this is also a factor that 780 MPa class high-strength steel is not used. Therefore, in order for high strength steels of 780 MPa class or higher to be widely used, there is a strong demand for a welding wire that does not require preheating work or is significantly reduced and that provides a weld with excellent low temperature toughness.
- Patent Documents 1 to 7 As a flux-cored wire from which a high-toughness weld metal can be obtained, a wire in which fluoride is added to a flux as a slag forming agent has been proposed (see, for example, Patent Documents 1 to 7). According to these documents, the fluoride increases the basicity of the molten pool, whereby the oxygen content of the weld metal is reduced and high low temperature toughness is obtained.
- Patent Documents 1 to 4 are intended for welding mainly on a steel sheet having a strength level at which weld cracking does not cause a problem, and cold cracking of a weld metal has not been studied at all.
- Patent Document 5 by further optimizing the addition amount of V in the flux-cored wire for 490 to 780 MPa class high-strength steel and by occluding diffusible hydrogen in V, the cold cracking resistance is improved.
- a wire having a welding crack stop preheating temperature of 50 ° C. or lower is proposed, although it is a 780 MPa class wire.
- weld metal needs to have higher toughness, but Patent Document 5 does not particularly examine the toughness of the weld metal.
- Patent Document 6 the addition of CaO as an essential component adjusts the melting point of slag, enables vertical and upward welding, and reduces the oxygen content of the weld metal, thereby improving toughness. Wires have been proposed. Patent Document 7 also proposes a wire that suppresses the toughness deterioration of the weld metal after PWHT while adding oxygen as an essential component to reduce the oxygen content of the weld metal.
- Patent Documents 6 and 7 severe low temperature toughness required for a welded portion of high strength steel of 780 MPa class or higher is not particularly examined, and cold crack resistance is not particularly examined.
- the present invention provides a high strength and high toughness welded portion when welding high strength steel of 780 MPa or more, has excellent low temperature cracking resistance, and suppresses low temperature cracking.
- An object of the present invention is to provide a flux-cored wire that does not require a preheating operation to be performed or can significantly reduce the preheating operation, thereby significantly improving the welding work efficiency of high-strength steel of 780 MPa class or higher.
- Another object of the present invention is to provide a welding method using the flux-cored wire, a method for manufacturing a welded joint using the flux-cored wire, and a welded joint.
- fluoride has been used to obtain a high toughness weld metal in a flux cored wire for steel with a low strength level.
- the effect of fluoride on cold cracking resistance has not been studied at all.
- the present inventors have significantly reduced the diffusible hydrogen of the weld metal in the flux-cored wire used for welding high-strength steel of 780 MPa class or higher, And the optimal slag composition was discovered in order to ensure low temperature toughness.
- the weld metal is a bainite-based structure, has a tensile strength level of 780 MPa to 940 MPa, and the fluoride-based flux-cored wire contains Mo in order to improve the strength toughness balance of the weld metal, and It has been found that optimizing the contents of Mn and Ni is effective.
- the present inventors can obtain a weld metal excellent in strength and low-temperature toughness when welding high-strength steel having a tensile strength of 780 MPa or more, and omit preheating performed for suppressing low-temperature cracking.
- the flux cored wire which can be simplified was discovered. And the present inventors arrived at this invention by adding examination further to the knowledge.
- the gist of the present invention thus made is as follows.
- a flux-cored wire is a flux-cored wire in which a steel outer sheath is filled with a flux, and the flux includes CaF 2 , BaF 2 , SrF 2 , MgF 2 , And one or more of LiF are contained, and when the total content is ⁇ , ⁇ is 3.3 to 6.0% by mass based on the total mass of the flux-cored wire, and Ti oxidation 1 type or 2 types or more among materials, Si oxides, Zr oxides, Mg oxides, and Al oxides, and when the total content is ⁇ , ⁇ is the total mass of the flux-cored wire.
- the mass% with respect to the total mass of the flux-cored wire is 0.1 to 0.5%, and the content of iron powder in the flux is less than 10% by mass% with respect to the total mass of the flux-cored wire.
- Chemical components excluding chemical compounds, metal oxides, and metal carbonates in mass% with respect to the total mass of the flux-cored wire C: 0.04 to 0.09%; Si: 0.3 to 1.0%; Mn : 1.0 to 2.5%; Al: 0.001 to 0.050%; Ni: 1.5 to 3.5%; V: 0 to 0.04%; P: 0.02% or less; S Cu: 0 to 0.5%; Cr: 0 to 0.5%; Mo: 0.3 to 1.0%; Ti: 0 to 0.30%; Nb: 0 to 0 B: 0 to 0.0100%; Ca: 0 to 0.50%; REM: 0 to 0.0100%; balance: iron and impurities Consists, Ceq being defined by the following formula a is a 0.60 to 1.20 wt%, TE, defined by the following formula b is 2.9 to 4.4 mass%.
- the element with [] represents the content in mass% of each element.
- the content of CaO in the flux-cored wire may be 0.15% or less in terms of mass% with respect to the total mass of the flux-cored wire.
- the ratio of the CaF 2 content to ⁇ may be 0.90 or more.
- the ratio of ⁇ to ⁇ may be 3.1 to 15.0.
- the flux-cored wire according to any one of the above (1) to (4) is a weld metal defined in Japanese Industrial Standard JIS Z3111-2005 for gas shielded arc welding using the flux-cored wire. In the tensile test, the tensile strength of the weld metal may be 780 to 940 MPa.
- the steel outer skin may be a seamless shape.
- perfluoropolyether oil may be applied to the surface of the flux-cored wire.
- the steel material is welded using a mixed gas of Ar and 3 to 30 vol% CO 2 .
- the thickness of the steel material is 3 to 100 mm
- the tensile strength of the steel material is 780 MPa or more
- a welded joint according to another aspect of the present invention includes a steel material having a plate thickness of 3 to 100 mm and a tensile strength of 780 MPa or more, and a weld metal. Manufactured by a manufacturing method.
- the amount of diffusible hydrogen in the weld metal is less than 1.0 ml / 100 g
- the amount of oxygen in the weld metal is 300 to 400 ppm
- the tensile strength may be 780 to 940 MPa
- the Charpy absorbed energy at ⁇ 40 ° C. of the weld metal may be 86 J / cm 2 or more.
- a flux-cored wire used for welding high-strength steel having a tensile strength of 780 MPa or more which has excellent weld metal toughness and does not require preheating work for preventing cold cracking, or It is possible to provide a flux-cored wire that can significantly reduce the preheating work.
- fluoride has been considered to have the effect of reducing the oxygen content of the weld metal by increasing the basicity of the weld pool.
- the inventors further examined in detail the effect of fluoride on hydrogen in the weld metal by making various types of flux-cored wires. That is, it contains a metal fluoride such as CaF 2 , a metal oxide, and a metal carbonate such as CaCO 3.
- a metal fluoride such as CaF 2
- a metal oxide such as CaCO 3
- CaCO 3 As an alloy component, Ni for securing toughness, and resistance to reheat embrittlement during multi-layer welding.
- a flux-cored wire containing Mo for securing the amount of metal fluoride was produced by changing the metal fluoride content at various ratios and controlling the total hydrogen content. Using these various flux-cored wires, 780 MPa class high-strength steel was welded.
- the inventors suppressed the amount of diffusible hydrogen in the weld metal to less than 1.0 ml / 100 g when the total content of metal fluorides such as CaF 2 is within a specific range. It has been found that the cold cracking resistance is greatly improved. Furthermore, the present inventors, when welding 780 MPa class high strength steel, in order to secure a weld metal having high strength and excellent low temperature toughness, 1/2 times the Mn content in the flux-cored wire. As a result of the same examination, it is important that the total value TE of the Ni content and the three times the Cr content is within a specific range and that the flux-cored wire contains Mo. It was.
- the present invention has been made as a result of the above studies.
- the reason for limitation of the technical requirements and preferred aspects of the flux-cored wire of the present invention will be sequentially described.
- the steel sheath constituting the flux-cored wire of the present embodiment, the alloy component and metal deoxidation component contained in the flux, and the reasons for limiting the content of each component will be described.
- “%” means “% by mass” unless otherwise specified, and the content of each component is the mass of each component in the steel outer sheath and the flux with respect to the total mass of the flux-cored wire. It shall mean the component content that is the sum of%.
- C is an element that improves the strength of the weld metal.
- the lower limit of the C content needs to be 0.04%.
- the lower limit of the C content may be 0.045%, 0.05%, or 0.055%.
- the toughness of the weld metal deteriorates and the sensitivity to both hot cracking and cold cracking increases.
- the upper limit of the C content is set to 0.09%.
- the upper limit of C may be 0.08%, 0.075%, or 0.07%.
- Si 0.3-1.0%
- Si is a deoxidizing element and increases the cleanliness by reducing the amount of O in the weld metal.
- the lower limit of the Si content needs to be 0.3%.
- the toughness of the weld metal is deteriorated, so 1.0% is made the upper limit of the Si content.
- the lower limit of the Si content may be set to 0.35%, 0.4%, or 0.45%.
- the upper limit of Si content it is good also considering the upper limit of Si content as 0.8%, 0.7%, or 0.6%.
- Mn is an element necessary for ensuring the hardenability of the weld metal and increasing the strength. In order to exhibit the effect reliably, the lower limit of the Mn content needs to be 1.0%. On the other hand, when Mn is contained exceeding 2.5%, the grain boundary embrittlement susceptibility is increased and the toughness of the weld metal is deteriorated, so 2.5% is made the upper limit of the Mn content. In order to increase the strength of the weld metal more stably, the lower limit of the Mn content may be 1.1%, 1.2%, 1.4%, or 1.6%. In order to further improve the toughness of the weld metal, the upper limit of the Mn content may be 2.3%, 2.1%, 2.0%, or 1.9%.
- P is an impurity element, and when it is excessively present in the weld metal, it reduces both the toughness and ductility of the weld metal, so it is preferable to reduce the P content as much as possible.
- the P content is set to 0.02% or less.
- the P content is preferably 0.017%, 0.015%, 0.012%, or 0.01% or less. There is no need to limit the lower limit of P.
- the lower limit of the P content may be 0%.
- S is also an impurity element, and when it is excessively present in the weld metal, it deteriorates both the toughness and ductility of the weld metal, so it is preferable to reduce the S content as much as possible.
- the S content is set to 0.02% or less as a range in which an adverse effect on toughness and ductility can be tolerated.
- the S content is preferably 0.017%, 0.015%, 0.012%, or 0.01% or less. There is no need to limit the lower limit of S.
- the lower limit of the S content may be 0%.
- Al is a deoxidizing element and, like Si, is effective in reducing the amount of O in the weld metal and improving the cleanliness of the weld metal. In order to exhibit the effect, it is necessary to make the lower limit of the Al content 0.001%. On the other hand, if Al is contained exceeding 0.050%, Al forms nitrides and oxides and lowers the toughness of the weld metal, so 0.050% is made the upper limit of the Al content. In order to sufficiently obtain the effect of improving the toughness of the weld metal, the lower limit of the Al content may be 0.0015%.
- the lower limit of the Al content may be 0.002%, 0.003%, or 0.004%.
- the upper limit of the Al content may be 0.045%, 0.040%, 0.035%, or 0.030%.
- Ni is the only element that can improve the toughness of the weld metal regardless of the structure and components by solid solution toughening (the effect of increasing toughness by solid solution).
- Ni is an effective element in order to increase toughness with a high strength weld metal having a tensile strength of 780 MPa or more.
- the lower limit of the Ni content needs to be 1.5%. The higher the Ni content, the more advantageous in improving toughness. However, if the content exceeds 3.5%, the weld crack resistance decreases, so 3.5% is made the upper limit of the Ni content.
- the lower limit of the Ni content may be 1.8%, 2.0%, 2.1% or 2.2%.
- the upper limit of the Ni content may be 3.3%, 3.1%, 2.9%, or 2.7%.
- Mo is a hardenability improving element and is an element effective for forming a fine carbide and ensuring tensile strength by precipitation strengthening.
- Mo has an effect of suppressing a decrease in strength when subjected to reheating by a subsequent pass during multi-layer welding and suppressing deterioration of toughness. Since large plates use thick plates, in this case, welding is performed by multi-layer welding. In multi-layer welding, the weld metal formed in the previous pass is subjected to reheating from the subsequent weld pass, so that the weld metal formed in the previous pass is softened.
- the lower limit of the Mo content In order to exert these effects, it is necessary to set the lower limit of the Mo content to 0.3% even in consideration of combined effects with other elements having similar effects.
- the Mo content exceeds 1.0%, the precipitate becomes coarse and the toughness of the weld metal deteriorates, so the upper limit of the Mo content is 1.0%.
- the lower limit of the Mo content In order to secure the strength stably by further suppressing the decrease in strength due to reheating and simultaneously suppress the deterioration of toughness, the lower limit of the Mo content is 0.4%, 0.5%, or 0.6. % May be used.
- the upper limit of Mo may be 0.9% or 0.8%.
- the flux-cored wire according to the present embodiment further includes Cu, Cr depending on the strength level of the steel sheet to be welded or the toughness level to be obtained , V, Ti, Nb, and B may be contained as selective elements. However, regardless of whether or not the selective element is contained, if the content of the essential element in the flux-cored wire is within the specified range, the flux-cored wire is considered to be within the scope of the present invention.
- Cu is contained on the surface of the steel outer surface of the flux-cored wire and is included in the flux as a simple substance or an alloy, and can improve the strength and toughness of the weld metal.
- the lower limit of the Cu content is 0%, but in order to sufficiently obtain these effects, the lower limit of the Cu content may be 0.1%.
- the upper limit of the Cu content when Cu is contained in the flux-cored wire is 0.5%.
- the lower limit of the Cu content may be set to 0.15% or 0.2% in order to surely obtain the effect of containing Cu and prevent a decrease in toughness.
- the upper limit of Cu content may be 0.4% or 0.3%.
- about content of Cu in addition to the steel outer skin itself or the part contained in the flux, when the copper plating is performed on the surface of the flux-cored wire, that part is also included.
- Cr 0-0.5%
- Cr enhances the hardenability of the weld metal and is therefore an effective element for increasing the strength of the weld metal.
- the lower limit of the Cr content is 0%, but in order to obtain the effect, the lower limit of the Cr content may be 0.1%.
- the upper limit of Cr content when Cr is contained is 0.5. %.
- the upper limit of Cr may be set to 0.4% or 0.3%.
- V increases the hardenability of the weld metal and is therefore an effective element for increasing the strength of the weld metal.
- the lower limit of V content is 0%, but in order to obtain the effect, the lower limit of V content may be 0.01%.
- the upper limit of V content when V is contained is 0.00. 04%.
- the upper limit of the V content may be set to 0.03% or 0.02% in order to surely obtain the effect of the V content and prevent toughness deterioration due to the excessive content of V.
- Ti is an effective element as a deoxidizing element and has an effect of reducing the amount of O in the weld metal. It is also effective for fixing solute N and mitigating the adverse effect of N on toughness.
- the lower limit of the Ti content is 0%, but in order to exert these effects, the lower limit of the Ti content may be 0.01%. However, if the Ti content in the flux-cored wire exceeds 0.30% and becomes excessive, there is a greater possibility that toughness deterioration due to the formation of coarse oxides and toughness deterioration due to excessive precipitation strengthening will occur. For this reason, when Ti is contained, the upper limit of the Ti content is 0.30%.
- the lower limit of the Ti content may be 0.015 or 0.02%.
- the upper limit of Ti may be set to 0.20%, 0.10%, or 0.05% in order to further suppress toughness deterioration due to Ti.
- Nb forms fine carbides in the weld metal and is therefore an effective element for securing the tensile strength of the weld metal by precipitation strengthening.
- the lower limit of the Nb content is 0%, but in order to obtain these effects, the lower limit of the Nb content is set to 0.01% even in consideration of combined effects with other elements having similar effects. Also good.
- containing Nb exceeding 0.10% is not preferable because Nb excessively contained in the weld metal forms coarse precipitates and deteriorates the toughness of the weld metal. For this reason, the upper limit of Nb content in the case of containing Nb shall be 0.10%.
- the lower limit of the Nb content may be 0.015% or 0.02%.
- the upper limit of Nb may be set to 0.05%, 0.04%, or 0.03%.
- B (B: 0 to 0.0100%)
- B (B: 0 to 0.0100%)
- B is combined with the solid solution N to form BN and has an effect of reducing the adverse effect of the solid solution N on toughness.
- B also has the effect of increasing the hardenability of the weld metal and contributing to strength improvement.
- the lower limit of the B content is 0%, but in order to obtain these effects, the lower limit of the B content in the flux-cored wire may be 0.0001% or 0.0003%.
- B in the weld metal becomes excessive, coarse B compounds such as BN and Fe 23 (C, B) 6 are formed, and the toughness is reversed. It is not preferable because it deteriorates.
- the upper limit of the B content when B is contained is 0.0100%.
- the lower limit of the B content may be 0.0010%.
- the upper limit of B may be 0.0080%, 0.0060%, or 0.0040%.
- one or two of Ca and REM are contained in the flux within the following range. It can be contained in the wire.
- Ca and REM both contribute to improving the ductility and toughness of the weld metal by changing the sulfide structure and reducing the size of the sulfide and oxide in the weld metal.
- the lower limit of the Ca content and the REM content is 0%, but the lower limit content for obtaining the effect may be 0.01% for Ca and 0.0002% for REM.
- Ca and / or REM are contained excessively, the sulfide and oxide are coarsened, and the ductility and toughness of the weld metal are deteriorated. In addition, there is a possibility of deterioration of the weld bead shape and weldability.
- the upper limit of each content is 0.50% for Ca and 0.0100% for REM.
- the lower limit of the Ca content may be 0.03%, and the lower limit of the REM content may be 0.0003%.
- each element is contained as described above as an alloy component or a metal deoxidation component. Furthermore, in order to ensure the toughness of the weld metal, in the flux-cored wire, defined by the following (Equation 1), 1/2 times the Mn content, Ni content, and 3 times the Cr content And the total value TE (when Cr is not contained, Cr is calculated as 0%) must be adjusted to be 2.9 to 4.4%.
- TE [Mn] / 2 + [Ni] + 3 ⁇ [Cr] (Formula 1)
- the elements with [] indicate the content (% by mass) of each element.
- the structure is mainly bainite.
- ⁇ grains austenite grains
- Mn, Ni, and Cr are present in the weld metal mainly in a solid solution state, and these elements are necessary to ensure the toughness of the weld metal by obtaining the optimum hardenability for intragranular transformation. .
- FIG. 2 is a graph showing the relationship between TE and Charpy absorbed energy at ⁇ 40 ° C.
- the weld metal When the value of Ceq is high, the weld metal is hardened and the tensile strength is improved. On the other hand, the toughness of the weld metal is lowered and the weld cracking sensitivity is increased, so that it is necessary to take measures for suppressing low temperature cracking. If the Ceq value is less than 0.50%, the target tensile strength of the weld metal is not satisfied, 780 MPa. If the Ceq value exceeds 0.75%, the weld metal has excessive tensile strength, and the weld metal The toughness of the steel decreases. Therefore, the range of Ceq is 0.50 to 0.75%. In order to more effectively balance tensile strength and toughness, the lower limit of Ceq may be 0.57%, 0.59%, or 0.61%, and the upper limit of Ceq is 0.73%, 0.71. %, 0.69%, or 0.67%.
- the content of the above-described elements contained as an alloy component or a metal deoxidation component does not include the content when these elements are contained as a fluoride, metal oxide, or metal carbonate. Further, these elements do not necessarily have to be pure substances (including cases containing impurities), and there is no problem even if they are contained in the form of an alloy such as Cu—Ni. Moreover, the effect is the same whether these elements are contained in the steel outer shell or as a flux. Therefore, both the steel outer shell and the flux can contain the above-described elements.
- the flux component inserted in the steel outer skin of a flux cored wire is demonstrated.
- “%” means “% by mass” unless otherwise specified, and the content of each component means the mass% of each component with respect to the total mass of the flux-cored wire including the steel outer sheath and the flux. It shall be.
- Metal fluoride containing CaF 2 3.3 to 6.0%
- the flux-cored wire of this embodiment contains 3.3 to 6.0% of metal fluoride containing CaF 2 as a main component.
- the metal fluoride in addition to CaF 2 , one or more of BaF 2 , SrF 2 , MgF 2 , and LiF may be contained as necessary.
- the tensile strength is 780 MPa or more.
- the amount of diffusible hydrogen in the weld metal can be reduced to dramatically improve the cold cracking resistance. This makes it possible to perform welding with omission or simplification of preheating even when welding high-strength steel having a tensile strength of 780 MPa or more.
- metal fluoride since metal fluoride is effective in reducing the amount of oxygen in the weld metal, the metal fluoride can also improve the toughness of the weld metal.
- the lower limit of the total content of metal fluorides needs to be 3.3%.
- the total content of metal fluorides is less than 3.3%, the above effects cannot be obtained sufficiently. If the total content of metal fluorides exceeds 6.0%, welding fumes are excessively generated and the shielding effect due to the shielding gas is reduced, and air is entrained in the shielding gas and slag is excessively generated. Since slag entrainment occurs in the welded portion, welding workability is significantly deteriorated, which is not preferable.
- the ⁇ is a mass% with respect to the total mass of the flux-cored wire. Therefore, the content is 3.3 to 6.0%.
- the lower limit of the total content of the metal fluoride may be set to 3.5% or 3.7%.
- the upper limit of the total content may be 5.8%, 5.6%, or 5.4%.
- any of CaF 2 , BaF 2 , SrF 2 , MgF 2 , and LiF can be used as the metal fluoride.
- CaF 2 the main component of the flux.
- the content of contained metal fluoride (CaF 2 , BaF 2 , SrF 2 , MgF 2 , and / or LiF)
- the lower limit of the mass% of CaF 2 with respect to the total ( ⁇ ) is preferably 90%. If necessary, the mass% of the lower limit of CaF 2 may be 95% or 100% relative to alpha.
- Ti oxide, Si oxide, Mg oxide, Zr oxide, and Al oxide for example, TiO 2 , SiO 2 , ZrO 2 , MgO, and Al 2 are used as slag forming agents.
- metal oxides such as O 3 are included. These metal oxides are included to maintain a good weld bead shape.
- the lower limit of the total content ⁇ of the metal oxide needs to be 0.4%. However, if the total content ⁇ of the metal oxide exceeds 1.2%, the oxygen content of the weld metal increases and the toughness is deteriorated.
- the total content of these metal oxides includes the total content of TiO 2 , SiO 2 , ZrO 2 , MgO, Al 2 O 3 , and the content of metal oxides contained in binders used for flux granulation.
- the content includes the amount.
- the lower limit of the total content of metal oxides may be 0.45%, 0.5%, 0.55%, or 0.6%.
- the upper limit of the total content of the metal oxide may be set to 1.0%, 0.9%, or 0.8%.
- each of the Ti oxide, Si oxide, Mg oxide, Zr oxide, and Al oxide there is no need to specifically define the content of each of the Ti oxide, Si oxide, Mg oxide, Zr oxide, and Al oxide, the content ⁇ only needs to be within the above range, and the lower limit of each content is 0%. is there.
- TiO 2 may be added in the range of 0.1 to 0.5% and SiO 2 in the range of 0.3 to 0.6%.
- an arc stabilizer may be further included in the flux as necessary.
- the arc stabilizer include oxides or fluorides of Na or K (for example, Na 2 O, NaF, K 2 O, KF, K 2 SiF 6 , K 2 ZrF 6 ), and the total content thereof 0.001 to 0.40% is appropriate.
- the lower limit of the total content of Na or K oxide or fluoride is 0%.
- the oxide and fluoride as the arc stabilizer exemplified here are not included in the metal oxide as the slag forming agent and the metal fluoride for reducing diffusible hydrogen. If there are a large amount of oxides and fluorides of Na and K, the arc becomes stronger and the spatter and the like increase. Therefore, if necessary, the total of these contents is 0.30% or less, 0.20% or less, 0.0. You may restrict
- the total content of CaF 2 , BaF 2 , SrF 2 , MgF 2 , and LiF is ⁇ , and Ti oxide, Si oxide, Mg oxide, and Al
- ⁇ and ⁇ satisfy the following formula 3. That is, the ratio of ⁇ to ⁇ is preferably 3.1 to 15.0. 3.1 ⁇ ⁇ / ⁇ ⁇ 15.0 (Equation 3)
- Equation 3 the reason for this is that when ⁇ / ⁇ is less than 3.1, the effect of reducing oxygen by metal fluoride cannot be sufficiently obtained, while when ⁇ / ⁇ exceeds 15.0, oxygen is excessively reduced. This is because it is impossible to obtain an optimum amount of oxide for refining the structure using intragranular transformation.
- CaO 0.15% or less
- CaO may be contained in the flux raw material.
- the upper limit of the CaO content is 0.15% by mass% with respect to the total mass of the flux-cored wire. If the upper limit of the CaO content is 0.15%, the effect of the present invention can be obtained. That is, it is preferable to select the flux raw material so that the upper limit of the CaO content is 0.15%. If necessary, the upper limit of the CaO content may be 0.12%, 0.10%, or 0.08%. The inventors obtained the following knowledge through experiments.
- CaO When CaO comes into contact with the atmosphere, it changes to CaOH, which is a compound containing hydrogen, and increases the diffusible hydrogen of the weld metal, which is not preferable as a flux-containing component. Moreover, CaO has the effect of reducing the oxygen of a weld metal by raising the basicity of a molten pool.
- the metal structure of the weld metal is refined by using the oxide as a nucleation site for intragranular transformation, and the toughness of the weld metal is improved, so that CaO and metal fluoride are combined in the flux.
- the flux-cored wire of this embodiment is a metal composed of one or more of CaCO 3 , BaCO 3 , SrCO 3 , MgCO 3, and Li 2 CO 3 for the purpose of enhancing the arc stabilizing action and arc concentration. It is necessary to contain 0.1 to 0.5% of carbonate. If the total content of metal carbonates is less than 0.1%, the above effects cannot be obtained sufficiently, the arc becomes unstable, and the bead shape deteriorates. On the other hand, if the total content of metal carbonates exceeds 0.5%, the arc concentration is too strong and the amount of spatter generated increases. In order to further improve the weldability, the upper limit of the total content of the metal carbonate may be 0.45% or 0.4%. If necessary, the total lower limit of the metal carbonate may be 0.15% or 0.2%.
- Fe powder may be contained as needed for adjusting the filling rate of the flux in the flux-cored wire or for improving the welding efficiency.
- the surface layer of the Fe powder is oxidized, if the flux contains an excessive amount of Fe powder, the oxygen content of the weld metal may be increased and the toughness may be lowered. Therefore, it is not necessary to contain Fe powder.
- the upper limit of the content of Fe powder is set to less than 10% in order to ensure the toughness of the weld metal.
- the component composition of the flux-cored wire of this embodiment is the reason for limitation regarding the component composition of the flux-cored wire of this embodiment, but the other remaining components are Fe and impurities.
- the Fe component Fe in the steel outer shell, iron powder contained in the flux, and Fe in the alloy component are included. Further, impurities that are mixed in the manufacturing process or the like may be contained as long as the balance containing iron as a main component does not impair the characteristics of the present invention.
- a flux-cored wire filled with flux inside the steel outer shell is a seamless wire having a seamless shape without slit-like gaps in the steel outer shell, and a wire having a slit-like gap at the seam of the steel outer shell (seam Can be broadly classified. Any structure can be adopted in the present embodiment. However, if a slit-like gap exists in the steel outer sheath of the flux-cored wire, moisture in the atmosphere may enter the flux-cored wire from the gap during storage of the flux-cored wire, and the flux may absorb moisture.
- the flux-cored wire is a seamless wire.
- a lubricant can be applied to the surface of the flux-cored wire in order to improve the feedability of the flux-cored wire during welding.
- the lubricant for the flux-cored wire various types of lubricants can be used, but in order to suppress low temperature cracking of the weld metal, it is preferable to use perfluoropolyether oil (PFPE oil).
- PFPE oil perfluoropolyether oil
- Perfluoropolyether oil does not contain a hydrogen component. Therefore, perfluoropolyether oil does not increase the amount of diffusible hydrogen in the weld metal even if it is applied to the flux-cored wire as a lubricant.
- Hydrogen that penetrates into the weld during welding diffuses into the weld metal and steel, and in particular accumulates in the stress concentration part, causing cold cracking.
- atmosphere, the rust attached to the steel material surface, a scale, etc. can be considered.
- hydrogen mainly contained as moisture in the flux-cored wire, is the main source of diffusible hydrogen in the weld joint. It becomes.
- a steel outer shell as a seamless tube and suppress hydrogen from entering the flux from the atmosphere through the steel outer shell during the period from the manufacture of the flux cored wire to the use of the flux cored wire.
- the steel outer shell is a pipe having a seam
- moisture in the atmosphere may enter the flux through the seam of the steel outer shell.
- a flux-cored wire having a seam it may not be possible to sufficiently prevent the intrusion of a hydrogen source such as moisture in the form as it is after production, so if the period from the production of the flux-cored wire to the use of the flux-cored wire is long It is desirable to vacuum package the entire flux-cored wire or store it in a container that can hold the flux-cored wire dry.
- the tensile strength of the weld metal or the weld metal is set to a tensile strength equivalent to that of high-tensile steel having a tensile strength of 780 MPa or more.
- the deposited metal refers to a metal that has moved from the filler metal (flux-cored wire) to the welded portion
- the weld metal refers to a metal that has melted and solidified during welding (melted portion, That is, both the welded part and the weld metal are shown.
- the tensile strength of the weld metal or weld metal can be measured by performing a tensile test on the weld metal or weld metal of a welded joint manufactured using the flux-cored wire. It is also known that there is a good correlation between hardness and tensile strength. By utilizing this correlation, the hardness of the weld metal or weld metal of the weld joint may be measured, and the tensile strength of the weld metal or weld metal may be obtained by converting from the hardness. If a flux-cored wire is available, the weld metal tensile test specified in Japanese Industrial Standard JIS Z3111-2005 is conducted without producing a welded joint using high-strength steel. You may ask for strength.
- the upper limit of the tensile strength of the weld metal or the weld metal is not particularly limited, but may be limited to 940 MPa, 930 MPa, or 900 MPa if necessary.
- the Charpy absorbed energy (average value of three pieces) at ⁇ 40 ° C. of the weld metal or the weld metal may be 69 J or more, or ⁇ 40 of the weld metal or the weld metal per unit area.
- the Charpy absorbed energy at 0 ° C. may be 86 J / cm 2 .
- the Charpy absorbed energy at ⁇ 40 ° C. may be 86 J / cm 2 or more.
- the flux cored wire of the present embodiment configured as described above can be manufactured by a normal flux cored wire manufacturing process. That is, first, a steel strip serving as a steel outer shell and a flux containing metal fluoride, an alloy component, a metal oxide, a metal carbonate and an arc stabilizer so as to have a predetermined content are prepared. Next, the steel strip is formed by a forming roll while being sent in the longitudinal direction to form an open pipe (U-shaped), which is used as a steel outer cover. Flux is supplied from the opening of the open pipe in the middle of forming the steel strip. After forming the steel strip, the opposite edge surfaces of the opening are butt seam welded to obtain a seamless tube.
- the seamless pipe is drawn, and the seamless pipe is annealed during or after the drawing process for drawing.
- a seamless wire having a desired wire diameter and having a steel outer shell filled with a flux is obtained.
- a flux-cored wire having a seam can be obtained by supplying a flux from the opening of an open pipe, then forming a seamed pipe without seam welding, and drawing the pipe.
- welding is performed using the flux-cored wire of this embodiment and a shielding gas.
- this shielding gas is not particularly limited, 100 vol% Ar gas (pure Ar gas), 100 vol% carbon dioxide gas (pure carbon dioxide gas), or a mixture of Ar and 3 to 30 vol% CO 2 is commonly used. Any one of the gases is preferable.
- the type of welding is not particularly limited, but gas shielded arc welding is suitable.
- the steel sheet is welded using the flux-cored wire according to the present embodiment and the above-described shield gas.
- this steel plate is not specifically limited, it is mainly applicable to steel materials having a tensile strength of 780 MPa or more. Since it is not hindered to weld a steel material having a tensile strength higher than that of the weld metal, there is no need to particularly limit the upper limit of the tensile strength of the steel material.
- the upper limit of the tensile strength of the steel material may be limited to 1100 MPa, 1050 MPa, 1000 MPa, 940 MPa, or 900 MPa.
- the thickness of the steel material generally, there is a steel material having a thickness of 3 to 100 mm, so that the thickness may be limited to this.
- a welded joint manufactured by the method for manufacturing a welded joint according to this embodiment is a steel material having a tensile strength of 780 MPa or more and a plate thickness of 3 to 100 mm (however, the heat of the steel material) Including the affected part) and a weld metal.
- the amount of diffusible hydrogen in the weld metal is less than 1.0 ml / 100 g
- the amount of oxygen in the weld metal is 300 to 400 ppm
- the tensile strength of the weld metal is 780 to 940 MPa.
- the Charpy absorbed energy at ⁇ 40 ° C. of the weld metal may be 69 J or more.
- the amount of diffusible hydrogen in the weld metal of the welded joint manufactured using the flux cored wire of the present embodiment is less than 1.0 ml / 100 g.
- the amount of oxygen in the weld metal of the welded joint manufactured using the flux-cored wire of this embodiment is 300 to 400 ppm.
- the amount of oxygen in the weld metal can be measured by a known method.
- a measuring method of the oxygen content in the weld metal for example, a measuring method by an inert gas dissolving infrared absorption method is exemplified.
- the welded joint manufactured using the flux-cored wire of this embodiment has a weld metal having a tensile strength of 780 to 940 MPa and a Charpy absorbed energy at ⁇ 40 ° C. of 69 J or more.
- the welded joint according to the present embodiment is excellent in strength and low temperature toughness although the base material is high strength steel having high weld crack sensitivity.
- the steel strip is formed into an open tube by forming it with a forming roll while feeding in the longitudinal direction. Flux is supplied into the open tube from the opening of the open tube in the middle of this forming, and then the opposite edge surface of the opening after forming is formed.
- Flux is supplied into the open tube from the opening of the open tube in the middle of this forming, and then the opposite edge surface of the opening after forming is formed.
- By butt seam welding and making the open pipe a seamless pipe by drawing the flux-cored wire obtained by making the pipe in this way, by annealing the flux-cored wire in the middle of this wire drawing work, A flux-cored wire having a final wire diameter of ⁇ 1.2 mm was manufactured. After the trial production, a lubricant was applied to the surface of the flux-cored wire.
- a flux-cored wire having a seam with a wire diameter of ⁇ 1.2 mm was prototyped by drawing a part of the pipe with a seam that was not seam welded.
- a solid wire (a welding wire that is not hollow and has the same cross-section) that has an alloy component within the scope of the present invention but does not contain a flux was also prototyped.
- the analysis of the chemical composition of the prototype flux cored wire was performed as follows. First, the filled flux was taken out from the flux-cored wire, and the flux-cored wire was divided into a steel outer shell and a flux. The chemical component of the steel outer skin was determined by measuring the content of each metal component by chemical analysis.
- the flux was first quantitatively evaluated for constituents and components by X-ray diffraction and fluorescent X-ray analysis. Thereafter, the flux was separated into a slag component and an alloy component using a beneficiation method such as flotation and magnetic beneficiation, and each chemical component was analyzed by performing chemical analysis and gas analysis.
- the component compositions of the trial-made flux cored wires are shown in [Table 1-1] to [Table 1-6] and [Table 2-1] to [Table 2-6].
- the chemical components described in [Table 2-1] to [Table 2-6] do not include chemical components of fluoride, metal oxide, and metal carbonate.
- A78 and A85 were flux-cored wires with seams, and B39 and B40 were solid wires (SW).
- a base material with a plate thickness of 20 mm is butted with a root gap of 16 mm and a groove angle of 20 °, and welding is performed using the above-described flux-cored wire under the welding conditions shown in [Table 3] using a backing metal. did.
- SM490A defined in JIS G3106-2008 was used as the base material and backing metal, but on the groove surface of the base material and the surface of the backing metal, a flux-cored wire to be tested was used. Battering with a layer height of 3 mm or more was performed.
- -Tensile strength A sample having a tensile strength of 780 MPa or more at room temperature was accepted.
- -Toughness A sample having an absorbed energy (average value of three) of 69 J or more in a Charpy impact test at -40 ° C was accepted. The evaluation results of the obtained mechanical properties are shown in [Table 4-1] to [Table 4-6].
- a test piece was collected from the obtained weld metal, and the amount of oxygen in the weld metal was measured.
- the oxygen content of the deposited metal was measured by an inert gas dissolution infrared absorption method.
- the measured oxygen amounts are shown in [Table 4-1] to [Table 4-6].
- the evaluation of the oxygen content is 300 to 400 ppm which is the optimal oxygen content in order to obtain the effect of improving toughness by reducing oxygen with fluoride and obtaining the effect of improving low temperature toughness by refining the structure using intragranular transformation.
- the oxygen content of the weld metal satisfies the acceptance criteria, it can be determined that the weld metal substantially satisfies the acceptance criteria regarding the oxygen content.
- the amount of diffusible hydrogen was measured by a gas chromatographic method in accordance with JIS Z3118-2007 (method for measuring the amount of hydrogen in steel welds) on specimens welded under the same welding conditions as the mechanical property test (diffusivity). Hydrogen test). The results are shown in [Table 4-1] to [Table 4-6].
- the evaluation criteria for the measured amount of diffusible hydrogen were as follows. Diffusion hydrogen amount: Less than 1.0 ml / 100 g (very low hydrogen level) was accepted.
- Evaluation of cold cracking resistance was carried out by conducting a test according to a method based on JIS Z3157-1993 (U-shaped weld cracking test). That is, first, a 25 mm thick steel plate of WEL-TEN780 (trademark) (manufactured by NS A weld crack specimen was prepared. Next, test welding was carried out under the welding conditions shown in Table 3 at a welding location under a constant atmosphere control at a temperature of 0 ° C. and a humidity of 60% to obtain a test specimen. A cross-sectional observation of the welded specimen was performed to measure the cracking rate, and the low temperature cracking resistance of the flux-cored wire was evaluated based on the measurement result. Evaluation of cold cracking resistance was as follows.
- the flux-cored wire numbers A01 to A85 as examples of the present invention are tensile strength, toughness, amount of deposited metal oxygen, diffusible hydrogen. The amount and cold cracking resistance were all excellent and passed.
- the flux-cored wire numbers B01 to B44 which are comparative examples, do not satisfy the requirements specified in the present invention, so the low temperature cracking resistance and the ⁇ 40 ° C. Charpy absorbed energy do not satisfy the pass / fail criteria. Also failed in the overall judgment.
- the use of the flux-cored wire of the present invention eliminates the need for preheating work for suppressing low-temperature cracking or can significantly reduce the preheating work. It can be remarkably improved and has great value in the industry.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Nonmetallic Welding Materials (AREA)
- Arc Welding In General (AREA)
Abstract
Description
本願は、2013年1月31日に、日本に出願された特願2013-017604号に基づき優先権を主張し、その内容をここに援用する。
これら高強度鋼が使用される理由は、鋼材使用量が減ることで鋼材費用及び運搬費用が減少すること、および鋼材が薄手になり単重が減ることである。これにより、鋼材の取り扱いが容易になり、且つ溶接量が軽減されるので、建設工期短縮及び施工コスト削減が期待される。
この理由は、鋼が高強度になるほど鋼の溶接割れ感受性が高くなるからである。溶接割れの抑制には予熱作業が必須となるので、高強度鋼の使用は、かえって溶接施工効率を悪化させてしまい、工期短縮・施工コスト削減に寄与しないという問題がある。
従って、780MPa級以上の高強度鋼が広く使用されるようになるためには、予熱作業が不要であるかまたは著しく軽減され、かつ低温靭性の優れた溶接部が得られる溶接ワイヤが強く要求される。
これらの文献では、弗化物が溶融池の塩基度を上げることで溶接金属の酸素量が低減され、高い低温靭性が得られるとされている。しかし、特許文献1~4は、いずれも、溶接割れが問題とならない強度レベルの鋼板を主として溶接の対象とするものであり、溶接金属の低温割れについては全く検討されていない。
特許文献6では、CaOを必須成分として添加することで、スラグの融点を調整し、立向、及び上向での溶接を可能にし、且つ溶接金属の酸素量を低減することで、靭性の改善をしたワイヤが提案されている。また、特許文献7も、CaOを必須成分として添加することで、溶接金属の酸素量を低減しつつ、PWHT後の溶接金属の靭性劣化を抑制したワイヤを提案している。しかし、特許文献6、特許文献7ともに、780MPa級以上の高強度鋼の溶接部に要求される厳しい低温靭性については特に検討されておらず、また耐低温割れ性についても特に検討されていない。
本発明者らは、そのような弗化物に着目して種々検討した結果、780MPa級以上の高強度鋼の溶接に使用されるフラックス入りワイヤにおいて、溶接金属の拡散性水素を大幅に低減し、かつ、低温靭性を確保するために最適なスラグ組成を見出した。
さらに、溶接金属がベイナイト主体の組織で、780MPa~940MPaの引張強さレベルとなり、かつ、弗化物が主体のフラックス入りワイヤにおいて、溶接金属の強度靭性バランスを向上させるためにMoを含有させ、かつ、Mn及びNiの含有量を最適化することが有効であることを見出した。
これによって、本発明者らは、引張強さ780MPa以上の高強度鋼の溶接の際に、強度及び低温靭性に優れる溶接金属が得られ、かつ、低温割れ抑制のために実施される予熱を省略又は簡略化できるフラックス入りワイヤを見出した。そして本発明者らは、その知見にさらに検討を加えることにより、本発明に到達した。
そのようになされた本発明の要旨は次のとおりである。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 ・・・(式a)
TE=[Mn]/2+[Ni]+3×[Cr] ・・・(式b)
但し、[]付元素は、それぞれの元素の質量%での含有量を表す。
(2)上記(1)に記載のフラックス入りワイヤは、前記フラックス入りワイヤ中のCaOの含有量が、前記フラックス入りワイヤ全質量に対する質量%で0.15%以下であってもよい。
(3)上記(1)又は(2)に記載のフラックス入りワイヤは、前記αに対する前記CaF2の含有量の比が0.90以上であってもよい。
(4)上記(1)~(3)のいずれか一項に記載のフラックス入りワイヤは、前記βに対する前記αの比が3.1~15.0であってもよい。
(5)上記(1)~(4)のいずれか一項に記載のフラックス入りワイヤは、前記フラックス入りワイヤを用いたガスシールドアーク溶接に対する、日本工業規格JIS Z3111-2005に規定された溶着金属の引張試験において、前記溶着金属の引張強さが780~940MPaとなってもよい。
(6)上記(1)~(5)のいずれか一項に記載のフラックス入りワイヤは、前記鋼製外皮がシームレス形状であってもよい。
(7)上記(1)~(6)のいずれか一項に記載のフラックス入りワイヤは、前記フラックス入りワイヤの表面にパーフルオロポリエーテル油が塗布されていてもよい。
(8)本発明の別の態様に係る溶接方法では、上記(1)~(7)のいずれか一項に記載のフラックス入りワイヤを用いて、且つシールドガスとして、純Arガス、純炭酸ガス、またはArと3~30vol%CO2との混合ガスを用いて鋼材を溶接する。
(9)本発明の別の態様に係る溶接継手の製造方法では、前記鋼材の板厚が3~100mmであり、前記鋼材の引張強さが780MPa以上であり、上記(8)に記載の溶接方法によって溶接する。
(10)本発明の別の態様に係る溶接継手は、板厚が3~100mmであり引張強さが780MPa以上である鋼材と、溶接金属とを備え、上記(9)に記載の溶接継手の製造方法によって製造される。
(11)上記(10)に記載の溶接継手は、前記溶接金属の拡散性水素量が1.0ml/100g未満であり、前記溶接金属中の酸素量が300~400ppmであり、前記溶接金属の引張強さが780~940MPaであり、前記溶接金属の-40℃でのシャルピー吸収エネルギーが86J/cm2以上であってもよい。
すなわち、CaF2などの金属弗化物、金属酸化物、及びCaCO3などの金属炭酸塩を含有し、合金成分として、靭性の確保のためのNiと、多層盛溶接時の耐再熱脆化性を確保するためのMoとを含有したフラックス入りワイヤであって、金属弗化物の含有量を種々の割合で変化させ、さらに含有される全水素量を管理したフラックス入りワイヤを試作した。これら種々のフラックス入りワイヤを用いて、780MPa級の高強度鋼の溶接を実施した。
先ず、本実施形態のフラックス入りワイヤを構成する鋼製外皮およびフラックス中に含有される合金成分及び金属脱酸成分、並びに各成分の含有量の限定理由について説明する。
以下の説明において、「%」は特に説明がない限り、「質量%」を意味し、各成分の含有量は、フラックス入りワイヤ全質量に対する、鋼製外皮およびフラックスそれぞれの中の各成分の質量%の合計となる成分含有量を意味するものとする。
Cは、溶接金属の強度を向上させる元素である。溶接金属の引張強さを780MPa以上とするためには、C含有量の下限を0.04%とする必要がある。溶接金属の強度をさらに向上させるために、C含有量の下限を0.045%、0.05%又は0.055%としてもよい。
溶接ワイヤ(フラックス入りワイヤ)中のC含有量が多いほど、溶接金属中のC含有量が増加し、溶接金属の強度が高まるので、好ましい。しかし、Cが多くなり過ぎると、溶接金属の靭性が劣化するとともに、高温割れ及び低温割れの双方に対する感受性が高まる。そこで、溶接金属の靭性と耐溶接割れ性とを確保するために、C含有量の上限を0.09%とする。また、安定して低温靭性を確保するには、Cの上限を、0.08%、0.075%、又は0.07%としてもよい。
Siは、脱酸元素であり、溶接金属中のO量を低減して清浄度を高める。この効果を得るために、Si含有量の下限を0.3%とする必要がある。ただし、1.0%を超えてSiを含有させると溶接金属の靭性を劣化させるので、1.0%をSi含有量の上限とする。溶接金属中のO量を十分に低減させるために、Si含有量の下限を0.35%、0.4%又は0.45%としてもよい。また、溶接金属の靭性を安定して確保するためには、Si含有量の上限を、0.8%、0.7%、又は0.6%としてもよい。
Mnは、溶接金属の焼入性を確保して強度を高めるために必要な元素である。その効果を確実に発揮するためには、Mn含有量の下限を1.0%とする必要がある。一方、2.5%を超えてMnを含有させると、粒界脆化感受性を増加させて溶接金属の靭性が劣化するので、2.5%をMn含有量の上限とする。より安定して溶接金属の強度を高めるためには、Mn含有量の下限を1.1%、1.2%、1.4%又は1.6%としてもよい。溶接金属の靭性をさらに向上させるために、Mn含有量の上限を2.3%、2.1%、2.0%、又は1.9%としてもよい。
Pは不純物元素であり、溶接金属中に過大に存在する場合、溶接金属の靭性及び延性をともに低下させるので、P含有量は極力低減することが好ましい。靭性及び延性への悪影響が許容できる範囲として、P含有量を0.02%以下とする。溶接金属の靭性および延性の低下を確実に防ぐために、P含有量を0.017%、0.015%、0.012%又は0.01%以下とすることが好ましい。Pの下限を制限する必要はない。P含有量の下限は、0%としてもよい。
(S:0.02%以下)
Sも不純物元素であり、溶接金属中に過大に存在する場合、溶接金属の靭性と延性とをともに劣化させるので、S含有量は極力低減することが好ましい。靭性及び延性への悪影響が許容できる範囲として、S含有量を0.02%以下とする。溶接金属の靭性および延性の劣化を確実に防ぐために、S含有量を0.017%、0.015%、0.012%又は0.01%以下とすることが好ましい。Sの下限を制限する必要はない。S含有量の下限は、0%としてもよい。
Alは脱酸元素であり、Siと同様に、溶接金属中のO量低減、及び溶接金属の清浄度向上に効果がある。その効果を発揮するために、Al含有量の下限を0.001%とすることが必要である。一方、0.050%を超えてAlを含有させると、Alが窒化物及び酸化物を形成して、溶接金属の靭性を低下させるので、0.050%をAl含有量の上限とする。また、溶接金属の靭性を向上させる効果を十分に得るためには、Al含有量の下限を0.0015%としてもよい。溶接金属の靭性を向上させる効果を十分に得るためには、Al含有量の下限を0.002%、0.003%又は0.004%としてもよい。粗大酸化物の生成を抑制するために、Al含有量の上限を、0.045%、0.040%、0.035%又は0.030%としてもよい。
Niは、固溶靭化(固溶により靭性を高める作用)により、組織及び成分によらず溶接金属の靭性を向上させることができる唯一の元素である。特に、引張強さが780MPa以上の高強度の溶接金属で靭性を高めるために、Niは有効な元素である。必要な固溶靭化効果を得るためには、Ni含有量の下限を1.5%とする必要がある。
Ni含有量が多いほど、靭性を向上させる上で有利である。しかし、含有量が3.5%を超えると耐溶接割れ性が低下するので、3.5%をNi含有量の上限とする。Niの効果が確実に靭性向上に寄与するためには、Ni含有量の下限を1.8%、2.0%、2.1%又は2.2%としてもよい。また、耐溶接割れ性を確保するためには、Ni含有量の上限を3.3%、3.1%、2.9%又は2.7%としてもよい。
Moは、焼入性向上元素であり、かつ微細炭化物を形成して、析出強化による引張強さの確保に有効な元素である。また、Moは、多層盛溶接時の後続パスによる再加熱を受けた際の強度低下を抑制し、靭性の劣化も抑制する効果を持つ。大型構造物では厚板が使用されるので、この場合、溶接は多層盛溶接によって行われる。多層盛溶接では、後続の溶接パスから、その前のパスで形成された溶接金属が再加熱を受けることで、前のパスで形成された溶接金属に軟化が生じる。ここで、780MPa級の高強度鋼では、溶接金属の組織がベイナイト主体となるので、その軟化の程度が大きくなり、従って溶接金属の強度を安定的に確保するのが難しい。さらに、その再加熱によってセメンタイトが粗大化するので、溶接金属の靭性も劣化する。Moは、多層盛溶接で再加熱を受けた際に溶接金属内にて微細炭化物を形成し、これによって溶接金属の強度低下を抑制し、さらにセメンタイトの粗大化を抑制し、これによって溶接金属の靭性の劣化も抑制する効果を持つ。
Cuは、フラックス入りワイヤの鋼製外皮表面のめっき、および、フラックスに単体または合金として含まれ、溶接金属の強度と靭性とを向上させることができる。Cu含有量の下限は0%とするが、それらの効果を十分に得るためには、Cu含有量の下限を0.1%としてもよい。一方、含有量が0.5%を超えると靭性が低下する。そのため、Cuをフラックス入りワイヤに含有させる場合のCu含有量の上限は0.5%とする。Cuを含有させる効果を確実に得るとともに、靭性の低下を防ぐために、Cu含有量の下限を0.15%又は0.2%としてもよい。靭性の向上のため、Cu含有量の上限を0.4%又は0.3%としてもよい。
なお、Cuの含有量については、鋼製外皮自体、又はフラックス中に含有されている分に加えて、フラックス入りワイヤ表面に銅めっきされる場合にはその分も含む。
Crは、溶接金属の焼入性を高めるので、溶接金属の高強度化に有効な元素である。Cr含有量の下限は0%とするが、その効果を得るためには、Cr含有量の下限を0.1%としてもよい。一方、Crを0.5%を超えて過剰に含有させると、溶接金属のベイナイト組織を不均一に硬化させ、靭性を劣化させるので、Crを含有させる場合のCr含有量の上限は0.5%とする。Crによる靭性の劣化をより抑制するために、Crの上限を0.4%又は0.3%としてもよい。
Vは、溶接金属の焼入性を高めるので、溶接金属の高強度化に有効な元素である。V含有量の下限は0%とするが、その効果を得るためには、V含有量の下限を0.01%としてもよい。一方で、0.04%を超えて過剰にVを含有させると、炭化物が析出することにより、溶接金属の硬化および靭性劣化が生じるので、Vを含有させる場合のV含有量の上限は0.04%とする。Vの含有による効果を確実に得るとともに、Vの過剰な含有による靭性劣化を防ぐために、V含有量の上限を0.03%又は0.02%としてもよい。
Tiも、Alと同様に、脱酸元素として有効な元素であり、溶接金属中のO量を低減させる効果がある。また、固溶Nを固定して、Nの靭性への悪影響を緩和するためにも有効である。Ti含有量の下限は0%とするが、これら効果を発揮させるためには、Ti含有量の下限を0.01%としてもよい。ただし、フラックス入りワイヤ中のTi含有量が0.30%を超えて過剰になると、粗大な酸化物の形成に起因した靭性劣化、及び過度な析出強化による靭性劣化が生じる可能性が大きくなる。このため、Tiを含有させる場合のTi含有量の上限は0.30%とする。Tiの含有による効果を確実に得るために、Ti含有量の下限を0.015又は0.02%としてもよい。また、Tiによる靭性劣化をより抑制するためにTiの上限を0.20%、0.10%又は0.05%としてもよい。
Nbは、溶接金属中にて微細炭化物を形成するので、析出強化による溶接金属の引張強さ確保に有効な元素である。Nb含有量の下限は0%とするが、これらの効果を得るためには、他の同様の効果を有する元素との複合効果を考慮しても、Nb含有量の下限を0.01%としてもよい。一方、0.10%を超えてNbを含有させることは、溶接金属中に過剰に含有されたNbが粗大な析出物を形成して溶接金属の靭性を劣化させるので、好ましくない。このため、Nbを含有させる場合のNb含有量の上限は0.10%とする。Nbの含有による効果を確実に得るために、Nb含有量の下限を0.015%又は0.02%としてもよい。また、Nbによる靭性劣化をより抑制するためにはNbの上限を0.05%、0.04%又は0.03%としてもよい。
Bは、溶接金属中に適正量含有させると、固溶Nと結びついてBNを形成して、靭性に対する固溶Nの悪影響を減じる効果がある。また、Bは、溶接金属の焼入性を高めて強度向上に寄与する効果もある。B含有量の下限は0%とするが、これらの効果を得るためには、フラックス入りワイヤ中のB含有量下限を0.0001%又は0.0003%としてもよい。一方、Bの含有量が0.0100%超となることは、溶接金属中のBが過剰となり、粗大なBN及びFe23(C、B)6等のB化合物が形成されて、靭性を逆に劣化させるので、好ましくない。そこで、Bを含有させる場合のB含有量の上限は0.0100%とする。Bの含有による効果を確実に得るために、B含有量の下限を0.0010%としてもよい。また、Bによる靭性劣化をより抑制するためにはBの上限を0.0080%、0.0060%又は0.0040%としてもよい。
(REM:0~0.0100%)
Ca及びREMは、いずれも硫化物の構造を変化させ、溶接金属中での硫化物及び酸化物のサイズを微細化して、溶接金属の延性及び靭性向上に寄与する。Ca含有量及びREM含有量の下限は0%とするが、その効果を得るための下限の含有量は、Caでは0.01%としてもよく、REMでは0.0002%としてもよい。一方、Ca及び/又はREMを過剰に含有すると、硫化物及び酸化物の粗大化を生じさせて、溶接金属の延性及び靭性の劣化を招く。また、溶接ビード形状の劣化、及び溶接性の劣化の可能性も生じる。従って、含有させる場合のそれぞれの上限を、Caでは0.50%、REMでは0.0100%とする。これら元素の含有による効果を確実に得るために、Ca含有量の下限を0.03%としてもよく、REM含有量の下限を0.0003%としてもよい。
TE=[Mn]/2+[Ni]+3×[Cr]・・・(式1)
但し、[]付元素は、それぞれの元素の含有量(質量%)を示す。
これら元素を含有することによる効果を得るためには、(1/2)×[Mn]+[Ni]+3×[Cr]、即ちTEの下限を2.9%とする必要がある。TEが2.9%より低いと、焼入性が低下することにより粗大な粒界フェライトが生成するので、溶接金属の靭性が劣化する。一方で、TEが4.4%を超えると、焼入性が過度に向上するので、粒内変態が起こらず、溶接金属の金属組織が主に粗大なベイナイト組織または粗大なマルテンサイト組織となるので、溶接金属の靭性が劣化する。強度と靭性とのより優れたバランスが確保できる範囲として、TEの下限を3.0%、3.1%又は3.2%、TEの上限を4.2%、4.0%又は3.9%とするのが好ましい。
このような知見が得られた実験について図2に示す。図2は、TEと-40℃でのシャルピー吸収エネルギーとの関係を示すグラフである。TEが2.9%未満である場合、及びTEが4.4%超である場合には、低温靭性が低下する。したがって、TEは2.9~4.4%にする必要がある。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14・・・(式2)
但し、[]付元素は、それぞれの元素の含有量(質量%)を示す。含有していない元素は0%とする。
また、それらの元素は必ずしも純物質(不純物を含有する場合を含む)である必要はなく、Cu-Ni等の合金の形態で含有されていても何ら問題はない。また、それらの元素は鋼製外皮中に含有されていても、フラックスとして含有されていても、その効果は同じである。従って、鋼製外皮とフラックスとの何れでも、上述の元素を含有することが可能である。
以下の説明において、「%」は特に説明がない限り「質量%」を意味し、各成分の含有量は、鋼製外皮及びフラックスを含むフラックス入りワイヤ全質量に対する、各成分の質量%を意味するものとする。
(CaF2を含む金属弗化物:3.3~6.0%)
本実施形態のフラックス入りワイヤは、CaF2を主成分とする金属弗化物を合計で3.3~6.0%含む。金属弗化物として、CaF2の他にBaF2、SrF2、MgF2、及びLiFのうちの1種または2種以上を必要に応じて含有させてもよい。
CaF2、BaF2、SrF2、MgF2、及びLiFのうちの1種または2種以上からなる金属弗化物を、フラックス入りワイヤ中に上記のように含有させることで、引張強さ780MPa以上の高強度鋼の溶接において、溶接金属の拡散性水素量を微量にして、耐低温割れ性を劇的に改善することが可能となる。これにより、780MPa以上の引張強さを有する高強度鋼の溶接の際にも、予熱を省略あるいは簡略化して溶接することが可能になる。また、金属弗化物は溶接金属中の酸素量を低減させることに関して有効であるので、金属弗化物は溶接金属の靭性も向上させることが可能である。
本実施形態のフラックス入りワイヤでは、スラグ形成剤として、Ti酸化物、Si酸化物、Mg酸化物、Zr酸化物およびAl酸化物、例えば、TiO2、SiO2、ZrO2、MgO、及びAl2O3などの金属酸化物のうちの1種または2種以上が含まれる。これら金属酸化物は、溶接ビード形状を良好に維持するために含まれる。金属酸化物の適正な効果を得るためには、金属酸化物の合計含有量βの下限を0.4%とする必要がある。しかし、金属酸化物の合計含有量βが1.2%を超えると、溶接金属の酸素量が増加し、靭性を劣化させるので好ましくない。
Ti酸化物、Si酸化物、Mg酸化物、Zr酸化物およびAl酸化物のそれぞれの含有量を特に定める必要はなく、含有量βが上記範囲内となればよく、それぞれの下限は0%である。ただし、良好なビード形状を得るために、TiO2を0.1~0.5%、SiO2を0.3~0.6%の範囲で添加してもよい。
以上の他、必要に応じてアーク安定剤をさらにフラックス中に含有させてもよい。アーク安定剤としては、Na、又はKの酸化物又は弗化物(例えば、Na2O、NaF、K2O、KF、K2SiF6、K2ZrF6)などがあり、その含有量の合計は0.001~0.40%が適当である。しかしながら、必ずしもアーク安定剤を含有しなくてもよいので、Na又はKの酸化物又は弗化物の合計含有量の下限は0%である。なお、ここで例示したアーク安定剤としての酸化物及び弗化物は、上述されたスラグ形成剤としての金属酸化物、及び拡散性水素を低減させるための金属弗化物には含めない。NaおよびKの酸化物及び弗化物が多いと、アークが強くなりスパッタ等が増加するので、必要に応じて、これらの含有量の合計を0.30%以下、0.20%以下、0.10%未満、0.08%以下に制限してもよい。
3.1≦α/β≦15.0・・・・・・(式3)
この理由は、α/βが3.1未満では、金属弗化物による酸素低減効果が十分に得られず、一方でα/βが15.0を超えると、過剰に酸素が低減されることで、粒内変態を利用した組織微細化に最適な酸化物量が得られなくなるためである。
本実施形態においては、フラックス中にCaOが含まれないことが好ましい。しかしながら、フラックスの原料にCaOが含有されている場合がある。その場合、フラックス入りワイヤ全質量に対する質量%で、CaO含有量の上限を0.15%とすることが好ましい。CaO含有量の上限を0.15%とすれば、本発明の効果は得られる。つまり、CaO含有量の上限が0.15%となるように、フラックスの原料を選定することが好ましい。なお、必要に応じて、CaOの含有量の上限を0.12%、0.10%又は0.08%としてもよい。
発明者らは、実験により以下の知見を得た。CaOは、大気に触れると、水素を含む化合物であるCaOHに変化して、溶接金属の拡散性水素を増加させるので、フラックスの含有成分として好ましくない。また、CaOは、溶融プールの塩基度を高めることで、溶接金属の酸素を低減する効果がある。本実施形態では、酸化物を粒内変態の核生成サイトとして利用することで溶接金属の金属組織を微細化し、溶接金属の靭性を向上させているので、CaOと金属弗化物とをフラックスに複合的に含有させることは、溶接金属の酸素量を過剰に低減し、溶接金属の低温靭性を低下させるので、好ましくない。
このような知見が得られた実験について図3、及び図4に示す。図3に示される結果から、CaOが増加するにつれて溶接金属中の拡散性水素が増加するが、CaO含有量が0.15%を下回る場合、拡散性水素量が1.0ml/100g以下となることがわかった。図4に示される結果から、CaOが増加するにつれて溶接金属中の酸素量が低減することがわかった。本実施形態では、溶接金属中の酸素量が過剰に低減されると溶接金属の低温靭性が低下する。従って、拡散性水素量、及び酸素量の両方を考慮すると、CaO含有量の上限は0.15%とすることが好ましい。
本実施形態のフラックス入りワイヤは、アーク安定化作用とアーク集中性とを高める目的で、CaCO3、BaCO3、SrCO3、MgCO3及びLi2CO3のうち1種または2種以上からなる金属炭酸塩を0.1~0.5%含有する必要がある。金属炭酸塩の含有量の合計が0.1%未満では、前記のような効果が十分に得られず、アークが不安定となりビード形状が劣化する。一方、金属炭酸塩の含有量の合計が0.5%を超えると、アークの集中性が強すぎてスパッタ発生量が多くなる。溶接性をより向上させるために、金属炭酸塩の含有量の合計の上限を0.45%又は0.4%としてもよい。必要に応じて、金属炭酸塩の合計の下限を0.15%又は0.2%としてもよい。
Fe粉は、フラックス入りワイヤにおけるフラックスの充填率の調整のために、又は溶着効率の向上のために必要に応じて含有させる場合がある。しかし、Fe粉の表層は酸化されているので、フラックスがFe粉を過剰に含有すると、溶接金属の酸素量を増加させて靭性を低下させる場合がある。したがって、Fe粉は含有させなくてもよい。充填率の調整のためにFe粉を含有させる場合には、溶接金属の靭性を確保するために、Fe粉の含有量の上限を10%未満とする。
鋼製外皮の内部にフラックスが充填されたフラックス入りワイヤは、鋼製外皮にスリット状の隙間がないシームレス形状を有するシームレスワイヤと、鋼製外皮の継目にスリット状の隙間を有するワイヤ(シームを有するワイヤ)とに大別できる。
本実施形態ではいずれの構造も採用することができる。しかし、スリット状の隙間がフラックス入りワイヤの鋼製外皮に存在すると、フラックス入りワイヤの保管中に、大気中の水分が隙間からフラックス入りワイヤ内に侵入し、フラックスが吸湿する場合がある。このような状態のフラックス入りワイヤを用いて溶接を行うと、溶接金属中の拡散性水素量が増加し、溶接金属の低温割れが生じる場合がある。溶接金属の低温割れを抑制するためには、フラックス入りワイヤをシームレスワイヤとすることが好ましい。
また、溶接時にフラックス入りワイヤの送給性を向上させるために、フラックス入りワイヤの表面に潤滑剤を塗布することができる。フラックス入りワイヤ用の潤滑剤としては、様々な種類のものを使用できるが、溶接金属の低温割れを抑制するためには、パーフルオロポリエーテル油(PFPE油)を使用することが好ましい。パーフルオロポリエーテル油は水素成分を含まない。従って、パーフルオロポリエーテル油は、潤滑剤としてフラックス入りワイヤに塗布されても、溶接金属中の拡散性水素量を増加させない。
このため、鋼製外皮をシームレスの管とし、フラックス入りワイヤの製造からフラックス入りワイヤの使用までの期間内に、大気から鋼製外皮を通じてフラックス中へ水素が侵入することを抑制することが望ましい。
鋼製外皮を、シームを有する管とした場合、大気中の水分が鋼製外皮のシームを通じてフラックス中に侵入する場合がある。シームを有するフラックス入りワイヤは、製造後そのままの形態では、水分等の水素源の侵入を十分に防止できない場合があるので、フラックス入りワイヤの製造からフラックス入りワイヤの使用までの期間が長い場合は、フラックス入りワイヤ全体を真空包装するか、又はフラックス入りワイヤを乾燥した状態に保持できる容器内でこれを保存することが望ましい。
本実施形態において、溶接金属又は溶着金属の引張強さは、780MPa以上の引張強さを有する高張力鋼と同等レベルの引張強さとしている。ここで、溶着金属(Deposited Metal)とは、溶加材(フラックス入りワイヤ)から溶接部に移行した金属を示し、溶接金属(Weld Metal)とは、溶接中に溶融凝固した金属(溶融部、即ち溶接部の中で母材が溶融した部分と、溶着金属との両方)を示す。溶接金属又は溶着金属の引張強さは、当該のフラックス入りワイヤを用いて製作された溶接継手の溶接金属又は溶着金属に引張試験を行うことで測定できる。また、硬さと引張強さとの間にはよい相関関係があることが知られている。この相関関係を利用して、溶接継手の溶接金属又は溶着金属の硬さを測定し、硬さから換算して溶接金属又は溶着金属の引張強さを求めてもよい。また、フラックス入りワイヤが入手できるのであれば、高張力鋼を用いた溶接継手を製作しなくとも、日本工業規格JIS Z3111-2005に規定された溶着金属の引張試験を行って、溶着金属の引張強さを求めてもよい。なお、溶接金属又は溶着金属の引張強さの上限を特に制限する必要はないが、必要があれば、940MPa、930MPa又は900MPaに制限してもよい。また、本実施形態において、溶接金属又は溶着金属の-40℃でのシャルピー吸収エネルギー(3個の平均値)を、69J以上としてもよく、又は、単位面積当たりの溶接金属又は溶着金属の-40℃でのシャルピー吸収エネルギーを86J/cm2としてもよい。サブサイズ試験片でシャルピー衝撃試験を行う場合には、-40℃でのシャルピー吸収エネルギーを86J/cm2以上としてもよい。
すなわち、まず、鋼製外皮となる鋼帯と、金属弗化物、合金成分、金属酸化物、金属炭酸塩及びアーク安定剤が所定の含有量になるように配合したフラックスとを準備する。次いで、鋼帯を、長手方向に送りながら成形ロールにより成形してオープン管(U字型)とし、これを鋼製外皮とする。鋼帯の成形の途中でオープン管の開口部からフラックスを供給する。鋼帯の成形の後に、開口部の相対するエッジ面を突合せシーム溶接し、継目無し管を得る。この継目無し管を、伸線し、この伸線を行う伸線工程の途中又は伸線工程の完了後に継目無し管を焼鈍処理する。以上の工程により、所望の線径を有し、鋼製外皮の内部にフラックスが充填されたシームレスワイヤを得る。シームを有するフラックス入りワイヤは、オープン管の開口部からフラックスを供給した後、シーム溶接をしない継目有りの管とし、その管を伸線することで得られる。
本実施形態のフラックス入りワイヤを用いた溶接方法(本実施形態に係る溶接方法)では、本実施形態のフラックス入りワイヤとシールドガスとを用いて溶接する。このシールドガスは特に限定されないが、一般的に多用されている100vol%のArガス(純Arガス)、100vol%の炭酸ガス(純炭酸ガス)、またはArと3~30vol%CO2との混合ガスのいずれか1種類であることが好ましい。また、溶接の種類は特に限定されないが、ガスシールドアーク溶接が適している。
本実施形態のフラックス入りワイヤを用いた溶接継手の製造方法(本実施形態に係る溶接継手の製造方法)では、鋼板に、本実施形態のフラックス入りワイヤと、上述のシールドガスとを用いて溶接する。この鋼板は特に限定されないが、主として引張強さ780MPa以上の鋼材に適用できる。溶接金属の引張強さより高い引張強さの鋼材に溶接を行うことは妨げられないので、鋼材の引張強さの上限を特に制限する必要はない。しかしながら、鋼材の引張強さの上限を、1100MPa、1050MPa、1000MPa、940MPa又は900MPaに制限してもよい。鋼材の板厚を特に限定する必要はないが、一般的には板厚3~100mmの鋼材があるので、この板厚に限定しても差し支えない。
本実施形態の溶接継手の製造方法によって製造される溶接継手(本実施形態に係る溶接継手)は、引張強さが780MPa以上であり、板厚が3~100mmである鋼材(ただし、鋼材の熱影響部を含む)と、溶接金属とを備える。本実施形態に係る溶接継手は、溶接金属の拡散性水素量が1.0ml/100g未満であり、溶接金属中の酸素量が300~400ppmであり、溶接金属の引張強さが780~940MPaであり、溶接金属の-40℃でのシャルピー吸収エネルギーが69J以上であってもよい。 本実施形態のフラックス入りワイヤを用いて製造される溶接継手の溶接金属の拡散性水素量は、1.0ml/100g未満である。加えて、本実施形態のフラックス入りワイヤを用いて製造される溶接継手の溶接金属中の酸素量は、300~400ppmである。この溶接金属中の酸素量は、公知の方法によって測定することが可能である。溶接金属中の酸素量の測定方法として、例えば不活性ガス溶解赤外線吸収法による測定方法が例示される。溶接金属の拡散性水素量を1.0ml/100g未満に制限し、且つ溶接継手の溶接金属中の酸素量を300~400ppmとすることにより、溶接部の靱性および耐低温割れ性を高めることができる。本実施形態のフラックス入りワイヤを用いて製造される溶接継手は、引張強さが780~940MPaであり、-40℃でのシャルピー吸収エネルギーが69J以上である溶接金属を有する。
本実施形態に係る溶接継手は、その母材が、溶接割れ感受性が高い高強度鋼であるにも関わらず、強度および低温靱性に優れる。
鋼帯を、長手方向に送りながら成形ロールにより成形してオープン管とし、この成形の途中のオープン管の開口部からオープン管内にフラックスを供給し、次いで成形後の開口部の相対するエッジ面を突合わせシーム溶接してオープン管を継目無し管とし、このように造管することで得られたフラックス入りワイヤを伸線し、この伸線作業の途中でフラックス入りワイヤに焼鈍を加えることにより、最終のワイヤ径がφ1.2mmのフラックス入りワイヤを試作した。試作後、フラックス入りワイヤの表面には潤滑剤を塗布した。加えて、一部はシーム溶接をしない継目有りの管を伸線することで、ワイヤ径がφ1.2mmのシームを有するフラックス入りワイヤを試作した。また、合金成分は本発明の範囲内であるがフラックスを含まないソリッドワイヤ(中空ではない、断面同質な溶接ワイヤ)も試作した。
試作したフラックス入りワイヤの化学成分の分析は以下のように行った。まず、充填されたフラックスをフラックス入りワイヤから取り出し、フラックス入りワイヤを鋼製外皮とフラックスとに分けた。鋼製外皮の化学成分は、化学分析によって各金属成分の含有量を測定することにより求められた。フラックスは、先ずX線回折、及び蛍光X線分析によって構成物および成分についての定量評価が行われた。この後、浮遊選鉱、及び磁力選鉱などの選鉱法を用いてフラックスをスラグ分と合金分とに分離し、それぞれの化学成分を、化学分析、及びガス分析などを行うことで分析した。
試作したフラックス入りワイヤの成分組成を[表1-1]~[表1-6]、及び[表2-1]~[表2-6]に示す。なお、[表2-1]~[表2-6]に記載された化学成分は、弗化物、金属酸化物、および金属炭酸塩の化学成分を含まない。表に記載された実施例および比較例のうち、A78及びA85はシームを有するフラックス入りワイヤであり、B39及びB40はソリッドワイヤ(SW)であった。その他の実施例および比較例は、全てシームレス形状を有するフラックス入りワイヤであった。また、表に記載された実施例および比較例のうち、A03、A12、A19、A36、A39、A40、A42、A61、及びB18は、PFPE油が塗布された。その他の実施例および比較例はPFPE油が塗布されなかった。なお、表中の「-」との記号は、元素を意図的に含有させなかったことを示す。
機械特性の評価基準は以下の通りとした。なお、溶着金属の機械的特性が合格基準を上回っている場合、実質的に、溶接金属も溶着金属と同様の特性を有すると判断することができる。
・引張強さ:室温で引張強さ780MPa以上の試料を合格とした。
・靭性:-40℃でのシャルピー衝撃試験で、吸収エネルギー(3個の平均値)が69J以上の試料を合格とした。
得られた機械特性の評価結果を[表4-1]~[表4-6]に示す。
溶着金属の酸素量測定は、不活性ガス溶解赤外線吸収法により測定した。測定した酸素量を[表4-1]~[表4-6]に示す。
酸素量の評価は、弗化物による低酸素化による靭性改善効果を得るために、かつ、粒内変態を利用した組織微細化による低温靭性向上効果を得るために最適な酸素量である300~400ppmのものを合格とした。なお、溶着金属の酸素量が合格基準を満たしている場合、実質的に、溶接金属も酸素量に関する合格基準を満たしていると判断することができる。
結果を[表4-1]~[表4-6]に示す。測定した拡散性水素量の評価基準は以下の通りとした。
・拡散水素量:1.0ml/100g未満(極低水素水準)を合格とした。
・耐低温割れ性:U形溶接割れ試験で、断面割れが溶接部にて生じなかった試料(断面割れ率が0である試料)を合格とした。
得られたU形溶接割れ試験結果を[表4-1]~[表4-6]に示す。拡散性水素が1.0ml/ml未満のものは、非常に低温の条件である0℃にて予熱を行うことなく試験溶接を実施した場合でも、U形溶接割れ試験にて作製された試験体のすべての断面において、断面割れ無し(断面割れが発生していないこと)であり、極めて高い耐低温割れ性が証明された。
一方、比較例であるフラックス入りワイヤ番号B01~B44は、本発明で規定する要件を満たしていないので、耐低温割れ性及び-40℃シャルピー吸収エネルギーなどが合否判断基準を満たしておらず、いずれも総合判定で不合格となった。
2 裏当金
3 溶接ビード
4 シャルピー試験片(Vノッチ試験片)
5 A1号引張試験片(丸棒)(径=12.5mm)
Claims (11)
- 鋼製外皮の内部にフラックスが充填されたフラックス入りワイヤであって、前記フラックス中に、
CaF2、BaF2、SrF2、MgF2、及びLiFのうち1種または2種以上が含有され、その含有量の合計をαとしたとき、前記αがフラックス入りワイヤ全質量に対する質量%で3.3~6.0%であり、
Ti酸化物、Si酸化物、Zr酸化物、Mg酸化物、及びAl酸化物のうち1種または2種以上が含有され、その含有量の合計をβとしたとき、前記βが前記フラックス入りワイヤ全質量に対する質量%で0.4~1.2%であり、
CaCO3、BaCO3、SrCO3、MgCO3、及びLi2CO3のうちの1種または2種以上が含有され、その含有量の合計が、前記フラックス入りワイヤ全質量に対する質量%で0.1~0.5%であり、
前記フラックス中の鉄粉の含有量が、前記フラックス入りワイヤ全質量に対する質量%で10%未満であり、
弗化物、金属酸化物、および金属炭酸塩を除く化学成分が、前記フラックス入りワイヤ全質量に対する質量%で:
C:0.04~0.09%;
Si:0.3~1.0%;
Mn:1.0~2.5%;
Al:0.001~0.050%;
Ni:1.5~3.5%;
V:0~0.04%;
P:0.02%以下;
S:0.02%以下;
Cu:0~0.5%;
Cr:0~0.5%;
Mo:0.3~1.0%;
Ti:0~0.30%;
Nb:0~0.10%;
B:0~0.0100%;
Ca:0~0.50%;
REM:0~0.0100%;
残部:鉄および不純物;
からなり、
以下の式aで定義されるCeqが0.60~1.20質量%であり、
以下の式bで定義されるTEが2.9~4.4質量%である
ことを特徴とするフラックス入りワイヤ。
Ceq=[C]+[Si]/24+[Mn]/6+[Ni]/40+[Cr]/5+[Mo]/4+[V]/14 ・・・(式a)
TE=[Mn]/2+[Ni]+3×[Cr] ・・・(式b)
但し、[]付元素は、それぞれの元素の質量%での含有量を表す。 - 前記フラックス入りワイヤ中のCaOの含有量が、前記フラックス入りワイヤ全質量に対する質量%で0.15%以下であることを特徴とする請求項1に記載のフラックス入りワイヤ。
- 前記αに対する前記CaF2の含有量の比が0.90以上であることを特徴とする請求項1又は2に記載のフラックス入りワイヤ。
- 前記βに対する前記αの比が3.1~15.0であることを特徴とする請求項1~3のいずれか一項に記載のフラックス入りワイヤ。
- 前記フラックス入りワイヤを用いたガスシールドアーク溶接に対する、日本工業規格JIS Z3111-2005に規定された溶着金属の引張試験において、前記溶着金属の引張強さが780~940MPaとなることを特徴とする請求項1~4のいずれか一項に記載のフラックス入りワイヤ。
- 前記鋼製外皮がシームレス形状であることを特徴とする請求項1~5のいずれか一項に記載のフラックス入りワイヤ。
- 前記フラックス入りワイヤの表面にパーフルオロポリエーテル油が塗布されていることを特徴とする請求項1~6のいずれか一項に記載のフラックス入りワイヤ。
- 請求項1~7のいずれか一項に記載のフラックス入りワイヤを用いて、且つ
シールドガスとして、純Arガス、純炭酸ガス、またはArと3~30vol%CO2との混合ガスを用いて
鋼材を溶接することを特徴とする溶接方法。 - 前記鋼材の板厚が3~100mmであり、
前記鋼材の引張強さが780MPa以上であり、
請求項8に記載の溶接方法によって溶接することを特徴とする溶接継手の製造方法。 - 板厚が3~100mmであり、引張強さが780MPa以上である前記鋼材と、
溶接金属とを備え、
請求項9に記載の溶接継手の製造方法によって製造される
ことを特徴とする溶接継手。 - 前記溶接金属の拡散性水素量が1.0ml/100g未満であり、
前記溶接金属中の酸素量が300~400ppmであり、
前記溶接金属の引張強さが780~940MPaであり、
前記溶接金属の-40℃でのシャルピー吸収エネルギーが86J/cm2以上である
ことを特徴とする請求項10に記載の溶接継手。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13873656.6A EP2952288B1 (en) | 2013-01-31 | 2013-11-06 | Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint |
JP2014526287A JP5644984B1 (ja) | 2013-01-31 | 2013-11-06 | フラックス入りワイヤ、フラックス入りワイヤを用いた溶接方法、フラックス入りワイヤを用いた溶接継手の製造方法、および溶接継手 |
KR1020157020215A KR101616237B1 (ko) | 2013-01-31 | 2013-11-06 | 플럭스 코어드 와이어, 플럭스 코어드 와이어를 사용한 용접 방법, 플럭스 코어드 와이어를 사용한 용접 조인트의 제조 방법 및 용접 조인트 |
CN201380071725.3A CN104955610B (zh) | 2013-01-31 | 2013-11-06 | 药芯焊丝、使用了药芯焊丝的焊接方法、使用了药芯焊丝的焊接接头的制造方法以及焊接接头 |
US14/764,126 US9505088B2 (en) | 2013-01-31 | 2013-11-06 | Flux-cored wire, welding method using flux-cored wire, method for manufacturing weld joint using flux-cored wire, and weld joint |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-017604 | 2013-01-31 | ||
JP2013017604 | 2013-01-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014119082A1 true WO2014119082A1 (ja) | 2014-08-07 |
Family
ID=51261814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080005 WO2014119082A1 (ja) | 2013-01-31 | 2013-11-06 | フラックス入りワイヤ、フラックス入りワイヤを用いた溶接方法、フラックス入りワイヤを用いた溶接継手の製造方法、および溶接継手 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9505088B2 (ja) |
EP (1) | EP2952288B1 (ja) |
JP (1) | JP5644984B1 (ja) |
KR (1) | KR101616237B1 (ja) |
CN (1) | CN104955610B (ja) |
WO (1) | WO2014119082A1 (ja) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104191111A (zh) * | 2014-08-15 | 2014-12-10 | 郑州机械研究所 | 一种含锗、铪的铝硅无缝药芯焊丝及其制备方法 |
JP5696824B1 (ja) * | 2013-11-08 | 2015-04-08 | 新日鐵住金株式会社 | 溶接継手の製造方法 |
WO2015068443A1 (ja) * | 2013-11-08 | 2015-05-14 | 新日鐵住金株式会社 | 溶接継手の製造方法 |
JP2015110247A (ja) * | 2013-11-08 | 2015-06-18 | 新日鐵住金株式会社 | ガスシールドアーク溶接用フラックス入りワイヤ及び極低温用鋼の溶接方法ならびに溶接継手の製造方法 |
JP2016087622A (ja) * | 2014-10-31 | 2016-05-23 | 日鐵住金溶接工業株式会社 | 高張力鋼のガスシールドアーク溶接用フラックス入りワイヤ |
JP2016209931A (ja) * | 2015-05-01 | 2016-12-15 | リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. | 改良された溶接法 |
US9770789B2 (en) | 2013-11-08 | 2017-09-26 | Nippon Steel & Sumitomo Metal Corporation | Flux-cored wire for gas-shielded arc welding, method for welding steel for very low temperature use, and method for manufacturing weld joint |
WO2018159844A1 (ja) * | 2017-03-02 | 2018-09-07 | 株式会社神戸製鋼所 | アーク溶接方法 |
JP2018144103A (ja) * | 2017-03-02 | 2018-09-20 | 株式会社神戸製鋼所 | アーク溶接方法 |
KR20180108731A (ko) | 2016-03-08 | 2018-10-04 | 신닛테츠스미킨 카부시키카이샤 | 플럭스 코어드 와이어, 용접 조인트의 제조 방법, 및 용접 조인트 |
JP2018164935A (ja) * | 2017-03-28 | 2018-10-25 | 株式会社神戸製鋼所 | アーク溶接方法 |
JP2018192519A (ja) * | 2017-05-22 | 2018-12-06 | 新日鐵住金株式会社 | ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 |
CN112719691A (zh) * | 2020-12-22 | 2021-04-30 | 四川大西洋焊接材料股份有限公司 | 一种焊丝药粉芯、药芯焊丝及其制备方法和应用 |
JP2021109243A (ja) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | フラックス入りワイヤ及び溶接継手の製造方法 |
US11400539B2 (en) * | 2016-11-08 | 2022-08-02 | Nippon Steel Corporation | Flux-cored wire, manufacturing method of welded joint, and welded joint |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6382117B2 (ja) * | 2015-01-16 | 2018-08-29 | 日鐵住金溶接工業株式会社 | Ar−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ |
JP6437327B2 (ja) * | 2015-01-28 | 2018-12-12 | 日鐵住金溶接工業株式会社 | 炭酸ガスシールドアーク溶接用フラックス入りワイヤ |
US11426821B2 (en) * | 2015-02-25 | 2022-08-30 | Hobart Brothers Llc | Aluminum metal-cored welding wire |
JP6437419B2 (ja) * | 2015-11-11 | 2018-12-12 | 日鐵住金溶接工業株式会社 | 炭酸ガスシールドアーク溶接用フラックス入りワイヤ |
JP2017094360A (ja) * | 2015-11-25 | 2017-06-01 | 日鐵住金溶接工業株式会社 | Ar−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ |
KR102118897B1 (ko) * | 2016-03-08 | 2020-06-04 | 닛폰세이테츠 가부시키가이샤 | 플럭스 코어드 와이어, 용접 조인트의 제조 방법 및 용접 조인트 |
JP6683505B2 (ja) * | 2016-03-08 | 2020-04-22 | 株式会社神戸製鋼所 | 特殊トーチを用いた溶接方法 |
JP6762131B2 (ja) * | 2016-04-28 | 2020-09-30 | 株式会社神戸製鋼所 | フラックス入りワイヤ |
JP6765259B2 (ja) * | 2016-08-30 | 2020-10-07 | 株式会社神戸製鋼所 | 溶接用フラックス入りシームレスワイヤ |
CN107262962A (zh) * | 2017-05-09 | 2017-10-20 | 安徽飞弧焊业股份有限公司 | 一种管线钢用高强度耐低温药芯焊丝 |
CN107225339B (zh) * | 2017-06-02 | 2019-04-05 | 重庆大学 | 一种用于大型热锻模具夹心层的自保护药芯丝材及其制备方法 |
KR102246519B1 (ko) * | 2018-03-28 | 2021-04-30 | 닛폰세이테츠 가부시키가이샤 | 플럭스 코어드 와이어의 제조 방법, 플럭스 코어드 와이어, 및 용접 조인트의 제조 방법 |
CN108838577A (zh) * | 2018-06-14 | 2018-11-20 | 温州大学 | 一种高强钢用低温相变金属粉型药芯焊丝 |
CN109434321B (zh) * | 2018-11-28 | 2020-10-27 | 东阳市鑫联工业设计有限公司 | 一种埋弧焊药芯焊丝及其制备方法 |
CN112512742B (zh) * | 2019-04-10 | 2022-03-29 | 日本制铁株式会社 | 实心焊丝以及焊接接头的制造方法 |
CN110091028A (zh) * | 2019-06-13 | 2019-08-06 | 河北工业大学 | 一种熔化极活性气体保护堆焊合金材料 |
CN110666289A (zh) * | 2019-09-09 | 2020-01-10 | 中铁九桥工程有限公司 | 一种高性能耐候桥梁钢手工焊立位对接方法 |
JP7332946B2 (ja) * | 2019-11-08 | 2023-08-24 | 日本製鉄株式会社 | フラックス入りワイヤ及び溶接継手の製造方法 |
CN115091005B (zh) * | 2022-05-20 | 2024-05-31 | 国家石油天然气管网集团有限公司 | 一种金属粉芯焊丝及其应用和焊接长输管道的方法 |
CN115502610A (zh) * | 2022-10-14 | 2022-12-23 | 成都先进金属材料产业技术研究院股份有限公司 | 一种含钒钛的高强钢用焊丝钢水和高强钢用焊丝及其生产方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0271098A (ja) | 1988-09-06 | 1990-03-09 | Kobe Steel Ltd | 熱交換器用伝熱管 |
JPH03294093A (ja) | 1990-04-13 | 1991-12-25 | Nippon Steel Corp | ガスシールドアーク溶接用フラックス入りワイヤ |
JPH06155079A (ja) | 1992-11-27 | 1994-06-03 | Nippon Steel Corp | ガスシールドアーク溶接用フラックス入りワイヤ |
JPH08197283A (ja) | 1995-01-23 | 1996-08-06 | Nippon Steel Corp | 溶接変形の少ない高靱性溶接部が得られるマグ溶接用フラックス入りワイヤ |
JPH08257785A (ja) | 1995-01-23 | 1996-10-08 | Nippon Steel Corp | 鋼溶接部の耐低温割れ性を改善するアーク溶接用フラックス入りワイヤ |
JP2003033895A (ja) * | 2001-05-28 | 2003-02-04 | Kisswell:Kk | 高張力鋼用ガスシールドアーク溶接用フラックス入りワイヤ |
JP2008168312A (ja) * | 2007-01-10 | 2008-07-24 | Nippon Steel Corp | 耐高温割れ特性に優れた高Niフラックス入りワイヤおよびこれを用いた隅肉溶接方法 |
JP2009248175A (ja) * | 2008-04-10 | 2009-10-29 | Nippon Steel Corp | フラックス入りワイヤを用いた高強度鋼のtig溶接方法 |
JP2011020154A (ja) | 2009-07-16 | 2011-02-03 | Nippon Steel Corp | ガスシールド溶接用フラックス入りワイヤ |
WO2011074689A1 (ja) | 2009-12-16 | 2011-06-23 | 新日本製鐵株式会社 | 全姿勢溶接が可能なガスシールドアーク溶接用フラックス入りワイヤ |
JP2013017604A (ja) | 2011-07-09 | 2013-01-31 | Mizuno Corp | シューズのソール構造体 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5915758B2 (ja) * | 1980-02-02 | 1984-04-11 | 新日本製鐵株式会社 | 低水素系被覆ア−ク溶接棒の製造法 |
JPH01271098A (ja) | 1988-04-21 | 1989-10-30 | Nippon Steel Corp | ガスシールドアーク溶接用フラックス入りワイヤ |
JP2500020B2 (ja) * | 1992-03-31 | 1996-05-29 | 株式会社神戸製鋼所 | ガスシ―ルドア―ク溶接用塩基性フラックス入りワイヤ |
US5219822A (en) | 1992-04-01 | 1993-06-15 | Eastman Kodak Company | Non-volatile tertiary amines in donor for laser-induced thermal dye transfer |
US5233160A (en) * | 1992-06-22 | 1993-08-03 | The Lincoln Electric Company | Cored electrode with fume reduction |
JP3148042B2 (ja) * | 1993-03-30 | 2001-03-19 | 株式会社神戸製鋼所 | パーフルオロポリエーテルを塗布したワイヤ |
KR100520371B1 (ko) * | 1999-12-17 | 2005-10-11 | 제이에프이 스틸 가부시키가이샤 | 용접재료 및 용접조인트의 제조방법과 이 제조방법에 의한 용접조인트 |
JP3758040B2 (ja) * | 2002-07-26 | 2006-03-22 | 株式会社神戸製鋼所 | 低合金耐熱鋼用ガスシールドアーク溶接用フラックス入りワイヤ |
CN100488706C (zh) | 2007-06-22 | 2009-05-20 | 安泰科技股份有限公司 | 全位置焊接用高韧性自保护药芯焊丝 |
CN100515655C (zh) * | 2007-08-09 | 2009-07-22 | 武汉铁锚焊接材料股份有限公司 | 一种二氧化碳气体保护焊用低合金钢药芯焊丝 |
EP2289661B1 (en) * | 2009-08-27 | 2014-04-02 | Nippon Steel & Sumikin Welding Co., Ltd. | Flux cored wire for gas shielded arc welding of high strength steel |
-
2013
- 2013-11-06 WO PCT/JP2013/080005 patent/WO2014119082A1/ja active Application Filing
- 2013-11-06 KR KR1020157020215A patent/KR101616237B1/ko active Active
- 2013-11-06 US US14/764,126 patent/US9505088B2/en active Active
- 2013-11-06 JP JP2014526287A patent/JP5644984B1/ja active Active
- 2013-11-06 EP EP13873656.6A patent/EP2952288B1/en not_active Not-in-force
- 2013-11-06 CN CN201380071725.3A patent/CN104955610B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0271098A (ja) | 1988-09-06 | 1990-03-09 | Kobe Steel Ltd | 熱交換器用伝熱管 |
JPH03294093A (ja) | 1990-04-13 | 1991-12-25 | Nippon Steel Corp | ガスシールドアーク溶接用フラックス入りワイヤ |
JPH06155079A (ja) | 1992-11-27 | 1994-06-03 | Nippon Steel Corp | ガスシールドアーク溶接用フラックス入りワイヤ |
JPH08197283A (ja) | 1995-01-23 | 1996-08-06 | Nippon Steel Corp | 溶接変形の少ない高靱性溶接部が得られるマグ溶接用フラックス入りワイヤ |
JPH08257785A (ja) | 1995-01-23 | 1996-10-08 | Nippon Steel Corp | 鋼溶接部の耐低温割れ性を改善するアーク溶接用フラックス入りワイヤ |
JP2003033895A (ja) * | 2001-05-28 | 2003-02-04 | Kisswell:Kk | 高張力鋼用ガスシールドアーク溶接用フラックス入りワイヤ |
JP2008168312A (ja) * | 2007-01-10 | 2008-07-24 | Nippon Steel Corp | 耐高温割れ特性に優れた高Niフラックス入りワイヤおよびこれを用いた隅肉溶接方法 |
JP2009248175A (ja) * | 2008-04-10 | 2009-10-29 | Nippon Steel Corp | フラックス入りワイヤを用いた高強度鋼のtig溶接方法 |
JP2011020154A (ja) | 2009-07-16 | 2011-02-03 | Nippon Steel Corp | ガスシールド溶接用フラックス入りワイヤ |
WO2011074689A1 (ja) | 2009-12-16 | 2011-06-23 | 新日本製鐵株式会社 | 全姿勢溶接が可能なガスシールドアーク溶接用フラックス入りワイヤ |
JP2013017604A (ja) | 2011-07-09 | 2013-01-31 | Mizuno Corp | シューズのソール構造体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2952288A4 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2014345139B2 (en) * | 2013-11-08 | 2016-03-31 | Nippon Steel Corporation | Method for producing weld joint |
JP5696824B1 (ja) * | 2013-11-08 | 2015-04-08 | 新日鐵住金株式会社 | 溶接継手の製造方法 |
WO2015068443A1 (ja) * | 2013-11-08 | 2015-05-14 | 新日鐵住金株式会社 | 溶接継手の製造方法 |
JP2015110247A (ja) * | 2013-11-08 | 2015-06-18 | 新日鐵住金株式会社 | ガスシールドアーク溶接用フラックス入りワイヤ及び極低温用鋼の溶接方法ならびに溶接継手の製造方法 |
JP2016020004A (ja) * | 2013-11-08 | 2016-02-04 | 新日鐵住金株式会社 | ガスシールドアーク溶接用フラックス入りワイヤ |
US9770789B2 (en) | 2013-11-08 | 2017-09-26 | Nippon Steel & Sumitomo Metal Corporation | Flux-cored wire for gas-shielded arc welding, method for welding steel for very low temperature use, and method for manufacturing weld joint |
CN104191111B (zh) * | 2014-08-15 | 2016-02-17 | 郑州机械研究所 | 一种含锗、铪的铝硅无缝药芯焊丝的制备方法 |
CN104191111A (zh) * | 2014-08-15 | 2014-12-10 | 郑州机械研究所 | 一种含锗、铪的铝硅无缝药芯焊丝及其制备方法 |
JP2016087622A (ja) * | 2014-10-31 | 2016-05-23 | 日鐵住金溶接工業株式会社 | 高張力鋼のガスシールドアーク溶接用フラックス入りワイヤ |
JP2016209931A (ja) * | 2015-05-01 | 2016-12-15 | リンカーン グローバル, インコーポレイテッドLincoln Global, Inc. | 改良された溶接法 |
US11331742B2 (en) | 2016-03-08 | 2022-05-17 | Nippon Steel Corporation | Flux-cored wire, manufacturing method of welded joint, and welded joint |
KR20180108731A (ko) | 2016-03-08 | 2018-10-04 | 신닛테츠스미킨 카부시키카이샤 | 플럭스 코어드 와이어, 용접 조인트의 제조 방법, 및 용접 조인트 |
US11400539B2 (en) * | 2016-11-08 | 2022-08-02 | Nippon Steel Corporation | Flux-cored wire, manufacturing method of welded joint, and welded joint |
WO2018159844A1 (ja) * | 2017-03-02 | 2018-09-07 | 株式会社神戸製鋼所 | アーク溶接方法 |
CN110402177A (zh) * | 2017-03-02 | 2019-11-01 | 株式会社神户制钢所 | 电弧焊方法 |
CN110402177B (zh) * | 2017-03-02 | 2021-12-21 | 株式会社神户制钢所 | 电弧焊方法 |
JP2018144103A (ja) * | 2017-03-02 | 2018-09-20 | 株式会社神戸製鋼所 | アーク溶接方法 |
JP2018164935A (ja) * | 2017-03-28 | 2018-10-25 | 株式会社神戸製鋼所 | アーク溶接方法 |
JP2018192519A (ja) * | 2017-05-22 | 2018-12-06 | 新日鐵住金株式会社 | ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 |
JP2021109243A (ja) * | 2020-01-10 | 2021-08-02 | 日本製鉄株式会社 | フラックス入りワイヤ及び溶接継手の製造方法 |
JP7674641B2 (ja) | 2020-01-10 | 2025-05-12 | 日本製鉄株式会社 | フラックス入りワイヤ及び溶接継手の製造方法 |
CN112719691A (zh) * | 2020-12-22 | 2021-04-30 | 四川大西洋焊接材料股份有限公司 | 一种焊丝药粉芯、药芯焊丝及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
JP5644984B1 (ja) | 2014-12-24 |
KR20150092348A (ko) | 2015-08-12 |
EP2952288B1 (en) | 2018-09-05 |
JPWO2014119082A1 (ja) | 2017-01-26 |
EP2952288A1 (en) | 2015-12-09 |
CN104955610B (zh) | 2016-09-07 |
CN104955610A (zh) | 2015-09-30 |
US9505088B2 (en) | 2016-11-29 |
KR101616237B1 (ko) | 2016-04-27 |
US20150360327A1 (en) | 2015-12-17 |
EP2952288A4 (en) | 2016-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5644984B1 (ja) | フラックス入りワイヤ、フラックス入りワイヤを用いた溶接方法、フラックス入りワイヤを用いた溶接継手の製造方法、および溶接継手 | |
JP5565518B2 (ja) | 溶接方法、溶接継手の製造方法及び溶接継手 | |
US20220281024A1 (en) | Flux-cored wire, manufacturing method of welded joint, and welded joint | |
JP5005309B2 (ja) | 高張力鋼用ガスシールドアーク溶接フラックス入りワイヤ | |
CN108698175B (zh) | 药芯焊丝、焊接接头的制造方法和焊接接头 | |
WO2015068261A1 (ja) | 溶接継手の製造方法 | |
JP2010110817A (ja) | 低水素系被覆アーク溶接棒 | |
JPWO2017154122A1 (ja) | フラックス入りワイヤ、溶接継手の製造方法、及び溶接継手 | |
JP6265051B2 (ja) | 溶接継手部の疲労強度と耐低温割れ性に優れるフラックス入りワイヤ | |
WO2015068273A1 (ja) | ガスシールドアーク溶接用フラックス入りワイヤ及びそのワイヤを用いた極低温用鋼の溶接方法 | |
JP7469597B2 (ja) | フラックス入りワイヤ及び溶接継手の製造方法 | |
JP6221628B2 (ja) | ボックス柱の製造方法 | |
JP2018192518A (ja) | ガスシールドアーク溶接用フラックス入りワイヤ、及び溶接継手の製造方法 | |
JP6728806B2 (ja) | ガスシールドアーク溶接用高Niフラックス入りワイヤ及び溶接継手の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2014526287 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13873656 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157020215 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14764126 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013873656 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |