WO2014095180A1 - A method of preparing an edible oil-in-water emulsion and emulsion so obtained - Google Patents
A method of preparing an edible oil-in-water emulsion and emulsion so obtained Download PDFInfo
- Publication number
- WO2014095180A1 WO2014095180A1 PCT/EP2013/073943 EP2013073943W WO2014095180A1 WO 2014095180 A1 WO2014095180 A1 WO 2014095180A1 EP 2013073943 W EP2013073943 W EP 2013073943W WO 2014095180 A1 WO2014095180 A1 WO 2014095180A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flour
- oil
- pulse flour
- heat
- water
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 65
- 239000007764 o/w emulsion Substances 0.000 title claims abstract description 33
- 239000000839 emulsion Substances 0.000 title abstract description 61
- 235000013312 flour Nutrition 0.000 claims abstract description 182
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 64
- 230000000694 effects Effects 0.000 claims abstract description 38
- 102000003820 Lipoxygenases Human genes 0.000 claims abstract description 21
- 108090000128 Lipoxygenases Proteins 0.000 claims abstract description 21
- 239000004615 ingredient Substances 0.000 claims abstract description 13
- 235000021251 pulses Nutrition 0.000 claims description 142
- 229920002472 Starch Polymers 0.000 claims description 43
- 235000019698 starch Nutrition 0.000 claims description 43
- 239000008107 starch Substances 0.000 claims description 41
- 235000014647 Lens culinaris subsp culinaris Nutrition 0.000 claims description 28
- 102000004169 proteins and genes Human genes 0.000 claims description 25
- 108090000623 proteins and genes Proteins 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 17
- 239000006185 dispersion Substances 0.000 claims description 16
- 238000002156 mixing Methods 0.000 claims description 8
- 108040007629 peroxidase activity proteins Proteins 0.000 claims description 8
- 235000013325 dietary fiber Nutrition 0.000 claims description 7
- 235000000346 sugar Nutrition 0.000 claims description 6
- 244000045195 Cicer arietinum Species 0.000 claims description 4
- 235000010523 Cicer arietinum Nutrition 0.000 claims description 4
- 108090000371 Esterases Proteins 0.000 claims description 4
- 150000008163 sugars Chemical class 0.000 claims description 4
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 3
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 3
- 244000043158 Lens esculenta Species 0.000 claims 1
- 102000003992 Peroxidases Human genes 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 20
- 238000002360 preparation method Methods 0.000 abstract description 10
- 230000002411 adverse Effects 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 38
- 235000019198 oils Nutrition 0.000 description 38
- 235000018102 proteins Nutrition 0.000 description 24
- 241000219739 Lens Species 0.000 description 23
- 235000010746 mayonnaise Nutrition 0.000 description 18
- 238000003860 storage Methods 0.000 description 17
- 239000008268 mayonnaise Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 150000003904 phospholipids Chemical class 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 239000008346 aqueous phase Substances 0.000 description 9
- 229940088598 enzyme Drugs 0.000 description 9
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000001125 extrusion Methods 0.000 description 7
- 102000013415 peroxidase activity proteins Human genes 0.000 description 7
- 102000006395 Globulins Human genes 0.000 description 6
- 108010044091 Globulins Proteins 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 102000009027 Albumins Human genes 0.000 description 5
- 108010088751 Albumins Proteins 0.000 description 5
- 240000004322 Lens culinaris Species 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 229920002678 cellulose Polymers 0.000 description 5
- 235000010980 cellulose Nutrition 0.000 description 5
- 235000015071 dressings Nutrition 0.000 description 5
- 238000003801 milling Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 235000002639 sodium chloride Nutrition 0.000 description 5
- YBADLXQNJCMBKR-UHFFFAOYSA-M (4-nitrophenyl)acetate Chemical compound [O-]C(=O)CC1=CC=C([N+]([O-])=O)C=C1 YBADLXQNJCMBKR-UHFFFAOYSA-M 0.000 description 4
- 235000010721 Vigna radiata var radiata Nutrition 0.000 description 4
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 150000002632 lipids Chemical class 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- BTJIUGUIPKRLHP-UHFFFAOYSA-N 4-nitrophenol Chemical compound OC1=CC=C([N+]([O-])=O)C=C1 BTJIUGUIPKRLHP-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 102000002322 Egg Proteins Human genes 0.000 description 3
- 108010000912 Egg Proteins Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OYHQOLUKZRVURQ-HZJYTTRNSA-N Linoleic acid Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(O)=O OYHQOLUKZRVURQ-HZJYTTRNSA-N 0.000 description 3
- 229920000881 Modified starch Polymers 0.000 description 3
- 239000004368 Modified starch Substances 0.000 description 3
- 238000001016 Ostwald ripening Methods 0.000 description 3
- 235000011054 acetic acid Nutrition 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 235000013345 egg yolk Nutrition 0.000 description 3
- 210000002969 egg yolk Anatomy 0.000 description 3
- 239000008344 egg yolk phospholipid Substances 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 235000019426 modified starch Nutrition 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229920000945 Amylopectin Polymers 0.000 description 2
- 244000105624 Arachis hypogaea Species 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 101710094902 Legumin Proteins 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 101710196023 Vicilin Proteins 0.000 description 2
- 244000042295 Vigna mungo Species 0.000 description 2
- 235000006085 Vigna mungo var mungo Nutrition 0.000 description 2
- 240000004922 Vigna radiata Species 0.000 description 2
- 235000011469 Vigna radiata var sublobata Nutrition 0.000 description 2
- 235000015165 citric acid Nutrition 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 239000013068 control sample Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- NEKNNCABDXGBEN-UHFFFAOYSA-L disodium;4-(4-chloro-2-methylphenoxy)butanoate;4-(2,4-dichlorophenoxy)butanoate Chemical compound [Na+].[Na+].CC1=CC(Cl)=CC=C1OCCCC([O-])=O.[O-]C(=O)CCCOC1=CC=C(Cl)C=C1Cl NEKNNCABDXGBEN-UHFFFAOYSA-L 0.000 description 2
- 235000019197 fats Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 235000020778 linoleic acid Nutrition 0.000 description 2
- OYHQOLUKZRVURQ-IXWMQOLASA-N linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000003534 oscillatory effect Effects 0.000 description 2
- 235000020232 peanut Nutrition 0.000 description 2
- 239000001814 pectin Substances 0.000 description 2
- 229920001277 pectin Polymers 0.000 description 2
- 235000010987 pectin Nutrition 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- DCXXMTOCNZCJGO-UHFFFAOYSA-N tristearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(OC(=O)CCCCCCCCCCCCCCCCC)COC(=O)CCCCCCCCCCCCCCCCC DCXXMTOCNZCJGO-UHFFFAOYSA-N 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 235000013311 vegetables Nutrition 0.000 description 2
- MJYQFWSXKFLTAY-OVEQLNGDSA-N (2r,3r)-2,3-bis[(4-hydroxy-3-methoxyphenyl)methyl]butane-1,4-diol;(2r,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O.C1=C(O)C(OC)=CC(C[C@@H](CO)[C@H](CO)CC=2C=C(OC)C(O)=CC=2)=C1 MJYQFWSXKFLTAY-OVEQLNGDSA-N 0.000 description 1
- LUEWUZLMQUOBSB-FSKGGBMCSA-N (2s,3s,4s,5s,6r)-2-[(2r,3s,4r,5r,6s)-6-[(2r,3s,4r,5s,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5s,6r)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-4,5-dihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical compound O[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@@H](O[C@@H]2[C@H](O[C@@H](OC3[C@H](O[C@@H](O)[C@@H](O)[C@H]3O)CO)[C@@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O LUEWUZLMQUOBSB-FSKGGBMCSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- HQFLTUZKIRYQSP-UHFFFAOYSA-N 3-ethyl-2h-1,3-benzothiazole-6-sulfonic acid Chemical compound OS(=O)(=O)C1=CC=C2N(CC)CSC2=C1 HQFLTUZKIRYQSP-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GJCOSYZMQJWQCA-UHFFFAOYSA-N 9H-xanthene Chemical compound C1=CC=C2CC3=CC=CC=C3OC2=C1 GJCOSYZMQJWQCA-UHFFFAOYSA-N 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 241001133760 Acoelorraphe Species 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 244000247812 Amorphophallus rivieri Species 0.000 description 1
- 235000001206 Amorphophallus rivieri Nutrition 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 229920002498 Beta-glucan Polymers 0.000 description 1
- 244000056139 Brassica cretica Species 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 235000017399 Caesalpinia tinctoria Nutrition 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 244000037364 Cinnamomum aromaticum Species 0.000 description 1
- 235000014489 Cinnamomum aromaticum Nutrition 0.000 description 1
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920000926 Galactomannan Polymers 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920002148 Gellan gum Polymers 0.000 description 1
- 229920002581 Glucomannan Polymers 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- 102000008015 Hemeproteins Human genes 0.000 description 1
- 108010089792 Hemeproteins Proteins 0.000 description 1
- 229920002752 Konjac Polymers 0.000 description 1
- 108010023244 Lactoperoxidase Proteins 0.000 description 1
- 102000045576 Lactoperoxidases Human genes 0.000 description 1
- 241000219730 Lathyrus aphaca Species 0.000 description 1
- 235000010666 Lens esculenta Nutrition 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 235000017587 Medicago sativa ssp. sativa Nutrition 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 244000025272 Persea americana Species 0.000 description 1
- 235000008673 Persea americana Nutrition 0.000 description 1
- 229920005439 Perspex® Polymers 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 108010016634 Seed Storage Proteins Proteins 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000388430 Tara Species 0.000 description 1
- 241000219793 Trifolium Species 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 229920000617 arabinoxylan Polymers 0.000 description 1
- 150000004783 arabinoxylans Chemical class 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 238000001218 confocal laser scanning microscopy Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 235000012343 cottonseed oil Nutrition 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- -1 diglycerides Chemical class 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 244000013123 dwarf bean Species 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 235000004426 flaxseed Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229940046240 glucomannan Drugs 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 239000000182 glucono-delta-lactone Substances 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000000252 konjac Substances 0.000 description 1
- 235000010485 konjac Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229940057428 lactoperoxidase Drugs 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 229940049918 linoleate Drugs 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000019865 palm kernel oil Nutrition 0.000 description 1
- 239000003346 palm kernel oil Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 238000001907 polarising light microscopy Methods 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Chemical class 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 238000009331 sowing Methods 0.000 description 1
- 238000007811 spectroscopic assay Methods 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS OR COOKING OILS
- A23D7/00—Edible oil or fat compositions containing an aqueous phase, e.g. margarines
- A23D7/005—Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
- A23D7/0053—Compositions other than spreads
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS OR COOKING OILS
- A23D7/00—Edible oil or fat compositions containing an aqueous phase, e.g. margarines
- A23D7/005—Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
- A23D7/0056—Spread compositions
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23D—EDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS OR COOKING OILS
- A23D7/00—Edible oil or fat compositions containing an aqueous phase, e.g. margarines
- A23D7/02—Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by the production or working-up
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L11/00—Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof
- A23L11/05—Mashed or comminuted pulses or legumes; Products made therefrom
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L27/00—Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
- A23L27/60—Salad dressings; Mayonnaise; Ketchup
Definitions
- the present invention relates to a method of preparing an oil-in-water emulsion, said method comprising combining oil, water, pulse flour and optionally further ingredients.
- oil-in-water emulsions that can suitably be produced by the present method include mayonnaise and dressings.
- the invention also relates to an oil-in-water emulsion that is obtained by the
- the emulsion stability of oil-in-water emulsions is affected adversely by a number of different changes that may occur in the structure of these emulsions as time progresses.
- Creaming/Sedimentation No change in droplet size (or droplet size distribution), but build-up of an equilibrium droplet concentration gradient within the emulsion. This phenomenon results from external force fields, usually gravitational, acting on the system. "Creaming” is the special case in which the droplets collect in a concentrated layer at the top of an emulsion. "Sedimentation” occurs when the droplets collect in a concentrated layer at the bottom of the emulsion.
- Coalescence Flocculated droplets in the bulk of the emulsion, or alternatively,
- Phase inversion A further way in which the structure of an emulsion may change is for the emulsion to "invert", e.g. for an o/w emulsion to change to a w/o emulsion. This may be brought about by a change in temperature or concentration of one of the components or by the addition of a new component to the system.
- Syneresis Yet another way in which emulsions may change is the separating off of one of the main liquid components of the emulsion. In oil-in-water emulsions both oil syneresis and water syneresis may occur.
- Phospholipids are an example of an emulsifier that is widely used to stabilize oil-in-water emulsions.
- Egg yolk contains appreciable levels of phospholipids and is widely used as an oil-in-water emulsifier, e.g. in mayonnaise and dressings.
- water structurants include modified celluloses, starches (modified or non- modified), gums such as xanthan, agar, gelatin, carrageenan (iota, kappa, lambda), gellan, galactomannans (guar, tara, cassia, locust bean gum), konjac glucomannan, gum arabic, pectins, milk proteins, alginate, chitosan and cellulosic fibres.
- modified celluloses such as xanthan, agar, gelatin, carrageenan (iota, kappa, lambda), gellan, galactomannans (guar, tara, cassia, locust bean gum), konjac glucomannan, gum arabic, pectins, milk proteins, alginate, chitosan and cellulosic fibres.
- gums such as xanthan, agar, gelatin, carrageenan (iota,
- WO 01/52670 describes a process of preparing a food product, the process comprising : (a) forming a mixture of a starch and protein containing pea or lentil flour and liquid,
- the flour starch is at least partially gelatinised and the protein flour is at least partially denatured and coagulated;
- Protein coagulation is achieved by inclusion of a protein coagulating agent, especially a calcium or magnesium salt.
- WO 2012/089448 describes a process of preparing an oil-in-water emulsion comprising 15-80 wt.% of a continuous aqueous phase and 20-85 wt.% of a dispersed oil phase, said process comprising:
- the inventors have found that the stability of oil-in-water emulsions containing ground pulse seed (pulse flour) can be improved significantly if at least a part of the pulse flour used in the preparation of the emulsion has previously been subjected to a heat treatment. More particularly, it was found that native (non-heat-treated) pulse flour can be replaced by heat-treated pulse flour to reduce syneresis without adverse effect on product texture. Whereas native pulse flour typically has a lipoxygenase activity well in excess of 20 U per gram of flour, the lipoxygenase activity in the heat-treated pulse flour has been reduced to less than 10 U per gram of flour as a result of the heat treatment.
- the present invention provides a method of preparing an oil-in-water emulsion having an oil content of 5-69 wt.% and a water content of 30-92 wt.%, said method comprising combining the following ingredients in the indicated amounts:
- the combined amount of the heat-treated pulse flour and the native pulse flour is in the range of 1 to 15 parts by weight.
- the heat- treated pulse flour employed in accordance with the present invention differs from native (non heat-treated) pulse flour in that the pulse proteins contained therein have lost at least some of their capacity to build protein bridges between adjacent oil droplets. These protein bridges contribute substantially to the firmness of oil-in-water emulsions.
- heat-treated pulse flour can be applied to reduce syneresis in oil-in-water emulsions, be it that the heat-treated pulse flour contributes substantially less to the firmness of the emulsion than in the case native pulse flour is used. Consequently, the heat-treated pulse flour can be used to prepare oil-in-water emulsion that combine high stability against syneresis with excellent texture.
- one aspect of the present invention relates to a method of preparing an oil-in- water emulsion having an oil content of 5-69 wt.% and a water content of 30-92 wt.%, said method comprising combining the following ingredients in the indicated amounts:
- the combined amount of the heat-treated pulse flour and the native pulse flour is in the range of 1 to 15 parts by weight.
- pulse refers to an annual leguminous crop yielding from one to twelve seeds of variable size, shape, and colour within a pod and is reserved for crops harvested solely for the dry seed. This excludes fresh green beans and fresh green peas, which are considered vegetable crops. Also excluded are crops that are mainly grown for oil extraction (oilseeds like soybeans and peanuts), and crops which are used exclusively for sowing (clovers, alfalfa). Just like words such as “bean” and "lentil”, the word “pulse” may also refer to just the seed, rather than the entire plant
- pulse flour refers to a finely ground seed.
- the pulse flour is suitably produced by milling or grinding dehulled or non-dehulled pulse seeds.
- the pulse seeds may be milled or ground as such, or they may be milled or ground in the presence of water, e.g. to produce an aqueous slurry or paste.
- the term "pulse flour” as used herein refers to heat-treated pulse flour as well as native pulse flour.
- the term “pulse flour”, unless indicated otherwise, may also refer to combinations of two or more pulse flours.
- heat-treated pulse flour refers to a pulse flour that has been subjected to a heating regime that has reduced lipoxygenase activity to less than 10 U per g.
- non pulse flour refers to a pulse flour that has not been heat- treated as evidenced by a lipoxygenase activity of more than 20 U per g.
- starch refers to starch that has not been chemically or enzimatically modified (e.g. by chemical reactions such as esterification or enzymatic hydrolysis, respectively). Starch consists of two types of molecules: the linear and helical amylose and the branched amylopectin.
- starch refers to starch that has undergone gelatinization.
- Starch gelatinization is a process that breaks down the intermolecular bonds of starch molecules in the presence of water and heat, allowing the hydrogen bonding sites to engage more water. This irreversibly dissolves the starch granule.
- the gelatinisation temperature of the starch is in general influenced by the fine structure of the amylopectin.
- the term "protein” as used herein refers to a linear polypeptide comprising at least 10 amino acid residues. Preferably, said protein contains more than 20 amino acid residues. Typically, the protein contains not more than 35,000 amino acid residues.
- albumin refers to a protein that is soluble in water and in moderately concentrated salt solutions and that experiences heat coagulation. Reference is made to the Osborne protein classification system (T.B. Osborne, The Vegetable Proteins, Monographs in Biochemistry, London; Longmans, Green and Co., 1924).
- globulin refers to a protein that is insoluble in water, but soluble in saline solutions.
- oil refers to lipids selected from the group of triglycerides, diglycerides, monoglycerides, phospholipids and free fatty acids.
- oil encompasses lipids that are liquid at ambient temperature as well as lipids that are partially or wholly solid at ambient temperature.
- dietary fiber refers to indigestible non-starch polysaccharides such as arabinoxylans, cellulose, lignin, pectins and beta-glucans.
- phospholipid refers to a lipid comprising a glycerol bound to one or two fatty acids and a phosphate group.
- sacgars refers to mono- and disaccharides.
- diameter refers to the diameter as determined with the help of confocal laser scanning microscopy.
- Lipoxygenase (LOX) activity as referred to herein is determined using the methods of Ben-Aziz (A. Ben Aziz et al., Linoleate oxidation induced by lipoxygenase and heme proteins: A direct spectroscopic assay. Anal. Biochem. 34, p. 88-100 (1 970)) with
- LOX activity is expressed in units (U) defined as: 1 unit of LOX activity is the amount of enzyme that catalyses the conversion of 1 ⁇ linoleic acid per minute ( ⁇ 234 nm, 25 °C, 1 cm cuvet).
- Peroxidase (PO) activity as referred to herein is measured by monitoring the increase in the absorbance at 414 nm with 2,2'-Azino-bis(3-Ethylbenzthiazoline-6-Sulfonic Acid
- ABTS ABTS
- the reaction mixture consists of 2 mM - ABTS and 1 mM H 2 0 2 in 50 mM Na-acetate buffer pH 5, 25 °C. Reaction is started with the addition of 10 ⁇ 0.1 M H 2 0 2 .
- the optical density (OD/absorbance) at 414 nm is recorded in time for 3 min.
- the specific activity of PO is expressed in units (U) defined as: 1 unit of peroxidase activity is the amount of enzyme that catalyses the conversion of 1 ⁇ ABTS per minute under the indicated conditions.
- the molar extinction coefficient for ABTS is 31 .1 mM “1 -cm “1 ( ⁇ 414 nm, 25 °C, 1 cm cuvet).
- Esterase activity as referred to herein is determined by monitoring the increase in the absorbance at 410 nm with p-nitrophenyl acetate (pNA) as substrate based on the method as described by Khalameyzer et al. (Khalameyzer et al., Appl. Environ. Microbiol. 65 (2), p. 477-482 (1999)). The measurement is performed using a 96 well plate and in each well 150 or 1 80 ⁇ phosphate buffer (50 mM, pH 7.4) and 20 or 50 ⁇ extract (enzyme) preparation is pipetted. The enzymatic reaction starts after adding 40 ⁇ 10 mM pNA (dissolved in DMSO) using a multipipette.
- pNA p-nitrophenyl acetate
- the final volume per well is 240 ⁇ _.
- the absorbance is measured at 410 nm for 120 seconds at 25 °C.
- the blank represents the autohydrolysis of pNA without enzyme.
- the pulse flour (heat-treated pulse flour as well as native pulse flour) that is employed in accordance with the present invention may be obtained from dehulled and/or non- dehulled pulse seed.
- the water-structuring and emulsifying properties of the pulse flour are believed to be largely attributable to the starch and protein components. Since the hulls of pulse seed predominantly consist of dietary fibre, dehulling does not significantly affect the functionality of the pulse flour in the present emulsion.
- the pulse flour employed is obtained from dehulled pulse seed.
- the water content of the heat-treated or native pulse flour typically does not exceed 20 wt.%. More preferably the water content of the pulse flour does not exceed 1 5 wt.%. Most preferably, the water content of the pulse flour does not exceed 1 0 wt.%
- the starch content of the pulse flour typically is within the range of 20-75 wt.%, more preferably in the range of 25-70 wt.% and most preferably in the range of 30-60 wt.%.
- the protein content of the pulse flour is in the range of 1 0-40 wt.%, more preferably of 12-38 wt.% and most preferably of 1 5-35 wt.%.
- the pulse flour typically contains starch and protein in a weight ratio of 1 :2 to 5:1 , more preferably of 2:3 to 3:1 and most preferably of 1 :1 to 5:2.
- the pulse flour employed in accordance with the present invention contains less than 25%, most preferably less than 20% of dietary fiber by weight of dry matter.
- the oil content of the pulse flour preferably lies in the range of 0.3-1 2 wt.%. More preferably, the oil content is in the range of 0.5-1 0 wt.%, even more preferably in the range of 0.6-8 wt.% and most preferably in the range of 0.8-5 wt.% According to a particularly preferred embodiment, the pulse flour has the following composition, calculated on dry matter: 30-60 wt.% of starch;
- starch, dietary fiber, sugars, protein and oil together make up 90-1 00 wt.%, more preferably 95-1 00 wt.% of the dry matter contained in the pulse seed.
- Globulins and albumins typically represent a major part of the protein contained in the pulse flour. Accordingly, in a preferred embodiment, globulins and albumins represent at least 50 wt.%, more preferably 55-95 wt.% and most preferably 60-90 wt.% of the protein contained in the pulse flour.
- Emulsions of particular good quality can be obtained if the pulse flour contains globulins and albumins in a weight ratio that lies within the range of 1 0:1 to 1 :1 , or even more preferably in a weight ratio of 7:1 to 2:1 .
- the globulins legumin and vicilin together represent at least 35 wt.%, more preferably 40-75 wt.% and most preferably 45- 70 wt.% of the protein comprised in the pulse flour.
- the content of globulin, albumin, legumin, vicilin, and glutelin in the pulse flour is suitably determined by the method described by Gupta & Dhillon [Gupta, R., & Dhillon, S. 1993. Characterization of seed storage proteins of Lentil ⁇ Lens culinaris M.). Annals of Biology, 9, 71 -78].
- the pulse flour is advantageously obtained from a pulse selected from lentils, chickpeas, beans and combinations thereof. Even more preferably, the pulse flour is obtained from a pulse selected from lentils, chickpeas, mung beans and combinations thereof. Most preferably, the pulse flour is lentil flour.
- the heat-treated pulse flour that is employed in the present method preferably has been subjected to serious heat treatment as evidenced by a lipoxygenase activity of less than 5 U/g , more preferably of less than 3 U/g and most preferably of less than 1 U/g. Also peroxidase activity in the heat-treated pulse flour has been reduced by the heat treatment that the flour has been subjected to.
- the heat-treated pulse flour has a peroxidase activity of less than 1 U/g, more preferably of less than 0.7 U/g and most preferably of less than 0.5 U/g.
- the heat treatment that the heat-treated pulse flour has undergone is not sufficient to remove all enzyme activity. Accordingly, it is preferred that the heat-treated pulse flour has an esterase activity of at least 0.2 U/g, more preferably of at least 0.4 U/g, most preferably of at least 0.5 U/g.
- the heat-treated pulse flour is preferably employed in an amount of 0.6 to 8 parts by weight, more preferably of 0.8 to 7 parts by weight and most preferably of 1 to 6 parts by weight.
- the heat-treated pulse flour is preferably employed in an amount of 0.6-14%, more preferably 1 -12% and most preferably 1 .5-10% by weight of the water that is contained in the oil-in-water emulsion.
- the heat-treated pulse flour has been heat-treated under conditions that cause most of the starch contained therein to become gelatinized.
- at least 80 wt.% of the starch contained in the heat- treated flour is gelatinized.
- the heat-treated pulse flour contains not more than a a limited amount, e.g. less than 40 wt.%, more preferably less than 20 wt.% and most preferably less than 10 wt.% of gelatinized starch.
- a heat-treated pulse flour containing virtually no gelatinized starch can suitably be produced by heating native pulse flour in the presence of not more than 50% water by weight of the starch that is contained in the pulse flour. More preferably, the native pulse flour is heated in the presence of less than 40% water by weight of the starch that is contained in the pulse flour for
- the heat-treated pulse flour may be produced by different heating methods. These methods may comprise heating of an aqueous suspension of native pulse flour followed by drying. Examples of suitable drying techniques that may be employed include spray drying, drum drying and moving belt drying. In case the drying yields large agglomerates of heat-treated flour particles, grinding or milling is preferably applied to produce heat- treated pulse flour having the desired particle size distribution.
- the heat-treated pulse flour may also be produced from native pulse flour using extrusion. Extrusion offers the advantage that little or no water needs to be used. The extrudate may be subjected to grinding or milling to produce heat-treated pulse flour having the desired particle size distribution.
- both heat-treated pulse flour and native pulse flour are employed in the preparation of the oil- in-water emulsion.
- the inventors have discovered that the use of a combination of heat- treated pulse flour and native pulse flour enables the preparation of O/W emulsions with a very pleasant creamy texture.
- the native pulse flour is employed in an amount of 0.1 to 6 parts by weight, more preferably of 0.3 to 5 parts by weight and most preferably of 0.5 to 4 parts by weight.
- the native pulse flour is suitably employed in an amount of 0.1 to 12%, more preferably 0.5 to 10% and most preferably 1 to 8% by weight of the water that is contained in the oil- in-water emulsion.
- the native pulse flour employed in the present method preferably has a lipoxygenase activity of more than 30 U/g, most preferably of more than 40 U/g.
- the peroxidase activity of the native pulse flour typically exceeds 0.8 U/g, more preferably it exceeds 1 U/g.
- the starch contained in the native pulse flour typically less than 20 wt.% , more preferably less than 10 wt.% and most preferably less than 5 wt.% of the starch is gelatinized.
- a mixture of the native pulse flour and the water is heated to a temperature of more than 60 °C for more than 10 seconds, more preferably to a temperature of 70 °C for more than 10 seconds.
- the heat-treated pulse flour and the native pulse flour are employed in a combined amount of 2-15%, more preferably 3-1 2% and most preferably 4-10% by weight of the water that is contained in the oil-in-water emulsion.
- the heat-treated pulse flour and the native pulse flour are combined in a weight ratio that lies within the range of 1 :20 to 20:1 , more preferably in the range of 1 :3 to 10:1 . It is important that the pulse flour (heat-treated as well as native) employed in the present emulsion has been finely ground so that starch, protein and dietary fiber are easily released from the seed material when the flour is combined with the water.
- the pulse flour (native or heat-treated) has a mass weighted average diameter of 12-200 ⁇ , most preferably of 15-120 ⁇ .
- the pulse flour (native or heat-treated) preferably contains not more than 5 wt.% of flour particles having a diameter of 200 ⁇ or more, preferably of 1 50 ⁇ or more and most preferably of 120 ⁇ or more.
- the particle size distribution of pulse flour is suitably determined with the help of sieves.
- the present method preferably comprises combining 10-60 parts by weight of oil, more preferably 15-50 parts by weight of oil with 40-90 parts by weight of water, more preferably 50-85 parts by weight water.
- 80-100 vol.% of the oil droplets contained in the present emulsion have a diameter of less than 15 ⁇ , more preferably of 0.5-10 ⁇ .
- ingredients examples include acidulants, salts, sugar, spices, vitamins, flavouring, colouring, preservatives,
- the present method yields an emulsion containing 0.05-1 .0 wt.% of phospholipids. More preferably, phospholipids are present in the emulsion in a concentration of at least 0.1 %, more preferably of at least 0.15 wt.% and most preferably of at least 0.2 wt.%. Phospholipids may suitably be introduced into the emulsion by adding egg or an egg component.
- egg lecithin refers to phospholipids that originate from egg.
- Egg lecithin is preferably introduced in the emulsion by adding egg yolk.
- Salt notably NaCI and/or KCI
- aqueous phase is preferably employed in the present method in an amount of 0.5-9% by weight of aqueous phase, more preferably of 1 .0-7.0% by weight of aqueous phase and most preferably of 1 .5-6.0% by weight of aqueous phase.
- Sucrose is typically applied in the preparation of the oil-in-water emulsion in an amount of 1 -12% by weight of aqueous phase, more preferably of 2-10% by weight of aqueous phase.
- the oil-in-water emulsion of the present invention is produced by:
- the mixing of the oil-in-water emulsion may be achieved, for instance, by homogenization in a high shear mixer (e.g. Silverson) or a rotor-stator mixer (e.g. colloid mill) or by high pressure homogenisation.
- a high shear mixer e.g. Silverson
- a rotor-stator mixer e.g. colloid mill
- the aqueous dispersion is suitably prepared by mixing pulse flour (heat-treated pulse flour and the optional native pulse flour) with water and optionally further ingredients.
- the present method comprises the addition of an acidulant to adjust the pH of the aqueous dispersion to a pH within the range of less than 5.5, preferably to a pH of 2 to 5.5, more preferably to a pH of 3.0 to 5.0.
- an acidulant to adjust the pH of the aqueous dispersion to a pH within the range of less than 5.5, preferably to a pH of 2 to 5.5, more preferably to a pH of 3.0 to 5.0.
- the acidulant is added, after the oil has been added to the aqueous dispersion, even more preferably after the oil-in-water emulsion has been produced by the mixing.
- the acidulant employed in the present method is preferably selected from acetic acid, citric acid, lactic acid, malic acid, phosphoric acid, hydrochloric acid, glucono-delta-lactone and combinations thereof. Even more preferably, the acidulant is selected from acetic acid, citric acid and combinations thereof. Most preferably, the acidulant comprises acetic acid.
- the aqueous dispersion, the oil-and-water mixture or the oil-in-water emulsion are preferably heated using the following heating conditions:
- the preferred times are as follows:
- the present method comprises the step of heating the aqueous dispersion containing the pulse flour to gelatinize non-gelatinized starch contained therein.
- the aqueous dispersion contains native pulse flour
- After the heating of the aqueous dispersion typically 50-100 wt.%, more preferably 70-100 wt.% and most preferably 90-100 wt.% of the starch contained in the dispersion is gelatinized.
- Gelatinized starch is believed to enhance the emulsion stability by structuring the continuous aqueous phase of the emulsion.
- a particularly stable emulsion can be produced by the present method by combining the pulse flour(s) and the water and heating the resulting combination before adding the oil.
- the combination of pulse flour(s) and water is heated to a temperature of more than 60 °C for at least 10 seconds.
- the heat-treated pulse flour, the optional native pulse flour and water are combined and the combination is heated prior to the addition of oil using the
- phospholipids are added in the preparation of the present oil-in-water emulsion, it is preferred to do so after the oil-in-water emulsion has been subjected to the heat treatment. Furthermore, it is preferred to add the phospholipids after the oil-in-water emulsion has been acidified. As described in WO 01/52670, divalent metal ions, such as Ca 2+ and Mg 2+ may induce protein gelation.
- the aqueous phase of the present emulsion comprises less than 1 .0 mmol per gram of protein, more preferably less than 0.5 mmol per gram of protein of divalent metal cation selected from Ca 2+ , Mg 2+ and combinations thereof.
- the present emulsion is not in the form of a gel (as opposed to the products described in WO 01 /52670).
- modified starch refers to an enzymatically or chemically modified starch.
- modified cellulose refers to an enzymatically or chemically modified cellulose.
- the emulsions produced by the present method typically are pourable or spoonable as opposed to solid.
- the consistency of the emulsion is such that it cannot be cut into two parts that remain separate but will confluence after the cutting.
- the present emulsion typically has a Stevens value at 20 °C of 35-300, more preferably of 50-250 and most preferably of 70-200.
- the Stevens value expressed in grams, can be determined by using a typical mayonnaise grid in a Stevens LFRA Texture Analyzer (ex. Stevens Advanced Weighing Systems, UK) with a maximum load/measuring range of 1000 grams and by applying a penetration test of 20 mm at 1 mm/s penetration rate in a cup having a diameter of 65 mm.
- the mayonnaise grid comprises square openings of approximately 3x3 mm, is made up of wire with a thickness of approximately 1 mm and has a diameter of 40 mm.
- the oil-in-water emulsion of the present invention preferably has a storage modulus G', measured at 20 °C, within the range of 100-3,500 Pa, most preferably in the range of 800-2,000 Pa.
- the viscosity of the present emulsion typically lies in the range of 100-80,000 mPa.s, more preferably in the range of 200-30,000 mPa-s at 10 s " and 20°C.
- the G' and viscosity of the emulsion are measured using a standard protocol with the following 3 consecutive steps:
- the sample is rested for 3 minutes after the introduction into the rheometer to allow relaxation of the stresses accumulated due to the loading of the sample.
- a viscosity measurement is done at a shear rate of 50 s " for a total of 1 minute. A viscosity point is measured every 10 seconds. Typically the last point is reported. The test is carried out at 20 °C using a cone and plate rheometer. The cone used has a diameter of 4 cm and a cone angle of 2° degrees.
- the storage modulus G' is the mathematical description of an object's or substance's tendency to be deformed elastically (i.e., non-permanently) when a force is applied to it.
- the term "storage" in storage modulus refers to the storage of the energy applied to the sample. The stored energy is recovered upon the release of the stress.
- the storage modulus of an oil-in-water emulsion is suitably determined by a dynamic oscillatory measurement, where the shear stress is varied (from low to high stress) in a sinusoidal manner. The resulting strain and the phase shift between the stress and strain is measured. From the amplitude of the stress and the strain and the phase angle (phase shift) the storage modulus is calculated.
- the G' (Pa) is taken at the plateau value at low stress (linear viscoelastic region).
- a suitable state of the art rheometer is used (e.g. a TA AR2000EX, United Kingdom).
- the oil employed in the present method typically contains 50-1 00 wt.%, more preferably 70-100 wt.% and most preferably 90-100 wt.% of triglycerides.
- the oil advantageously contains a high level of unsaturated fatty acids.
- 40-1 00 wt.%, more preferably 50-100 wt.% and most preferably 60-100 wt.% of the fatty acids contained in the oil are unsaturated fatty acids.
- the melting point of the oil typically does not exceed 30 °C, more preferably it does not exceed 20 °C and most preferably it does not exceed 1 0 °C.
- oils that may be employed in the present method include those which are liquid at ambient temperature like avocado, mustard, cottonseed, fish, flaxseed, grape, olive, palm, peanut, rapeseed, safflower, sesame, soybean, sunflower, mixtures thereof and the like.
- oils that solid at ambient temperature and suitable for use in accordance with this invention include butter fat, cocoa butter chicken fat, coconut oil, palm kernel oil mixtures thereof and the like.
- the present invention also encompasses the use of olein and/or stearin fractions of the aforementioned oils.
- the oil content of the present emulsion preferably is in the range of 1 0 to 60 wt.%, more preferably of 12 to 55 wt.% and most preferably of 15 to 50 wt.%.
- the continuous aqueous phase of the emulsion preferably represents 40-90 wt.%, more preferably 45-88 wt.% and most preferably 50-85 wt.% of the emulsion.
- Examples of edible oil-in-water emulsions according to the present invention include dressings, mayonnaise, soups, sauces and drinks.
- the present emulsion is a dressing or a mayonnaise.
- the emulsion is a mayonnaise.
- the emulsion according to the present invention typically have a shelf-life of at least 4, more preferably at least 8 weeks under ambient conditions ⁇ 20 °C).
- a heat-treated brown lentil flour was prepared from native brown lentil flour by pressure cooking the flour at low moisture, followed by air drying and milling. DSC and X-ray powder diffraction showed that the starch in the flour had not been gelatinized as a result of this heat treatment.
- a heat-treated red lentil flour was prepared from native red lentil flour by means of extrusion. DSC and X-ray powder diffraction showed that the starch in the red lentil flour had been gelatinized during the extrusion.
- Enzyme activities in the aforementioned treated lentil flours were determined. The same enzyme activities were determined in three different native pulse flours, i.e. native red lentil flour, native yellow pea flour and native black gram flour. The results are shown in Table 1 .
- Mayonnaises were prepared on the basis of the recipe shown in Table 2.
- the mayonnaises were prepared using the following procedure: • Pulse flour (native and/or pre-treated) was added to cold water and stirred until well dispersed
- Oil was slowly added with Silverson at 7,000 rpm, moving container to help mixing of oil
- the samples containing heat-treated lentil flour showed lower syneresis and improved texture (i.e. less gelling) during storage than the control sample that only contained native lentil flour.
- Example 2 was repeated except that this time the mayonnaises were prepared from native red lentil flour and/or instant extrusion cooked red lentil flour (INTIBO 1 15-5, Hanseland Ltd., Netherlands) as shown in Table 5.
- Mayonnaises were prepared on the basis of the recipe shown in Table 7.
- the extra lentil flour used was either native red lentil flour (control) or a heat-treated lentil flour. Storage modulus and syneresis of the samples so obtained was measured after 2 weeks storage at 5°C. The results are shown in Table 8. Table 8
- Texture of the products containing heat-treated lentil flour was found to be more smooth than that of the control product solely containing native flour. Also, the samples containing heat-treated lentil flour showed improved texture and less gelling/hardening during storage compared to the control sample.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Nutrition Science (AREA)
- Health & Medical Sciences (AREA)
- Botany (AREA)
- Agronomy & Crop Science (AREA)
- Edible Oils And Fats (AREA)
- Seasonings (AREA)
- Colloid Chemistry (AREA)
- Grain Derivatives (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112015013140-9A BR112015013140B1 (pt) | 2012-12-20 | 2013-11-15 | Método de preparação de uma emulsão óleo-em-água e emulsão óleo-em-água |
MX2015007364A MX366012B (es) | 2012-12-20 | 2013-11-15 | Metodo para preparar emulsion aceite en agua comestible y emulsion obtenida mediante ese metodo. |
EA201500666A EA026685B9 (ru) | 2012-12-20 | 2013-11-15 | Способ приготовления пищевой эмульсии типа "масло-в-воде" и полученная таким способом эмульсия |
PH12015501139A PH12015501139A1 (en) | 2012-12-20 | 2015-05-22 | A method of preparing an edible oil-in-water emulsion and emulsion so obtained |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12198613.7 | 2012-12-20 | ||
EP12198613 | 2012-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014095180A1 true WO2014095180A1 (en) | 2014-06-26 |
Family
ID=47519908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2013/073943 WO2014095180A1 (en) | 2012-12-20 | 2013-11-15 | A method of preparing an edible oil-in-water emulsion and emulsion so obtained |
Country Status (7)
Country | Link |
---|---|
AR (1) | AR094089A1 (ru) |
BR (1) | BR112015013140B1 (ru) |
CL (1) | CL2015001354A1 (ru) |
EA (1) | EA026685B9 (ru) |
MX (1) | MX366012B (ru) |
PH (1) | PH12015501139A1 (ru) |
WO (1) | WO2014095180A1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017211635A1 (en) * | 2016-06-07 | 2017-12-14 | Unilever N.V. | Process of preparing a foodstuff with water-dispersible powder containing dehulled pulse seed component |
WO2020114746A1 (en) | 2018-12-06 | 2020-06-11 | Unilever N.V. | Dressing |
WO2022108714A1 (en) * | 2020-11-18 | 2022-05-27 | Corn Products Development, Inc. | Powdered chickpea-protein based emulsifer, uses and methods of manufacture |
WO2023172343A1 (en) * | 2021-03-05 | 2023-09-14 | Archer Daniels Midland Company | Novel starch-based compositions, manufacturing methods, and applications thereof |
US12011018B2 (en) | 2015-11-13 | 2024-06-18 | Conopco, Inc. | Process for the manufacture of an aqueous dispersion comprising mustard bran and aqueous dispersion comprising mustard bran |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001052670A1 (en) | 2000-01-20 | 2001-07-26 | New Zealand Institute For Crop & Food Research Limited | Novel food products and processes of making same |
US20050214432A1 (en) * | 2004-03-24 | 2005-09-29 | Conopco, Inc. | Process for the preparation of an emulsion |
WO2012089448A1 (en) | 2010-12-27 | 2012-07-05 | Unilever Nv | Stabilized edible oil-in-water emulsion comprising ground pulse seed |
-
2013
- 2013-11-15 EA EA201500666A patent/EA026685B9/ru not_active IP Right Cessation
- 2013-11-15 MX MX2015007364A patent/MX366012B/es active IP Right Grant
- 2013-11-15 WO PCT/EP2013/073943 patent/WO2014095180A1/en active Application Filing
- 2013-11-15 BR BR112015013140-9A patent/BR112015013140B1/pt active IP Right Grant
- 2013-12-18 AR ARP130104826A patent/AR094089A1/es active IP Right Grant
-
2015
- 2015-05-19 CL CL2015001354A patent/CL2015001354A1/es unknown
- 2015-05-22 PH PH12015501139A patent/PH12015501139A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001052670A1 (en) | 2000-01-20 | 2001-07-26 | New Zealand Institute For Crop & Food Research Limited | Novel food products and processes of making same |
US6777016B2 (en) * | 2000-01-20 | 2004-08-17 | Canterbury Agriculture & Science Centre | Food products comprising pea or lentil flours and the process of making the same |
US20050214432A1 (en) * | 2004-03-24 | 2005-09-29 | Conopco, Inc. | Process for the preparation of an emulsion |
WO2012089448A1 (en) | 2010-12-27 | 2012-07-05 | Unilever Nv | Stabilized edible oil-in-water emulsion comprising ground pulse seed |
Non-Patent Citations (4)
Title |
---|
A. BEN AZIZ ET AL.: "Linoleate oxidation induced by lipoxygenase and heme proteins: A direct spectroscopic assay", ANAL. BIOCHEM., vol. 34, 1970, pages 88 - 100 |
GUPTA, R.; DHILLON, S.: "Characterization of seed storage proteins of Lentil (Lens culinaris M.", ANNALS OF BIOLOGY, vol. 9, 1993, pages 71 - 78 |
J.S. SHINDLER ET AL.: "Steady state kinetics of lactoperoxidase with ABTS as chromogen.", BIOCHEM. BIOPHYS. RES. COMMUN., vol. 67, 1975, pages 1307 |
KHALAMEYZER ET AL., APPL. ENVIRON. MICROBIOL., vol. 65, no. 2, 1999, pages 477 - 482 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12011018B2 (en) | 2015-11-13 | 2024-06-18 | Conopco, Inc. | Process for the manufacture of an aqueous dispersion comprising mustard bran and aqueous dispersion comprising mustard bran |
WO2017211635A1 (en) * | 2016-06-07 | 2017-12-14 | Unilever N.V. | Process of preparing a foodstuff with water-dispersible powder containing dehulled pulse seed component |
WO2020114746A1 (en) | 2018-12-06 | 2020-06-11 | Unilever N.V. | Dressing |
WO2022108714A1 (en) * | 2020-11-18 | 2022-05-27 | Corn Products Development, Inc. | Powdered chickpea-protein based emulsifer, uses and methods of manufacture |
WO2023172343A1 (en) * | 2021-03-05 | 2023-09-14 | Archer Daniels Midland Company | Novel starch-based compositions, manufacturing methods, and applications thereof |
Also Published As
Publication number | Publication date |
---|---|
EA026685B1 (ru) | 2017-05-31 |
PH12015501139B1 (en) | 2015-08-10 |
BR112015013140A2 (pt) | 2017-07-11 |
EA201500666A1 (ru) | 2015-11-30 |
MX366012B (es) | 2019-06-24 |
MX2015007364A (es) | 2015-09-10 |
BR112015013140B1 (pt) | 2021-04-13 |
PH12015501139A1 (en) | 2015-08-10 |
EA026685B9 (ru) | 2017-07-31 |
CL2015001354A1 (es) | 2015-08-28 |
AR094089A1 (es) | 2015-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2822844C (en) | Stabilized edible oil-in-water emulsion comprising ground pulse seed | |
EP2866583B1 (en) | Edible oil-in-water emulsion | |
KR20210087447A (ko) | 비유제품 치즈 유사체 및 그의 제조를 위한 공정 | |
JP2019509036A (ja) | 緑豆由来の機能性組成物 | |
WO2014001030A1 (en) | Edible oil-in-water emulsion | |
CN102448326A (zh) | 含芝麻的酸性乳化液状调味料 | |
CN101500425A (zh) | 使用高度精制的纤维素纤维成分减少或替代蛋含量的强化消费品 | |
PH12015501139B1 (en) | A method of preparing an edible oil-in-water emulsion and emulsion so obtained | |
JP2022506280A (ja) | 非乳性チーズ組成物及びその製造方法 | |
CA2961559C (en) | Oil-in-water emulsion containing first flour and second flour high in amylopectin | |
WO2013092086A1 (en) | Edible oil-in-water emulsion comprising ground pulse seed and seed mucilage gum | |
WO2014001031A1 (en) | Edible water-in-oil emulsion and process for the manufacture thereof | |
CA2944823C (en) | Composition in the form of an oil-in-water emulsion comprising ground white or yellow mustard seed | |
US20210195909A1 (en) | Oil-in-water emulsion containing wheat flour and physically modified starch | |
WO2012002285A1 (ja) | 酸性水中油型乳化食品 | |
CN111565574B (zh) | 植物蛋白基结构剂 | |
JP5644212B2 (ja) | 酸性水中油型乳化食品 | |
CN109938115B (zh) | 油水组合物及其用途 | |
WO2013092023A1 (en) | Edible oil-in-water emulsion comprising ground pulse seed and phospholipids | |
JP5644211B2 (ja) | 酸性水中油型乳化食品 | |
Parmar et al. | Macromolecules Interactions in Food Formulations | |
JP6884066B2 (ja) | 粉末油脂 | |
TANG et al. | Oil Structuring for Baking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13789832 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12015501139 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/007364 Country of ref document: MX |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015013140 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201500666 Country of ref document: EA |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13789832 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112015013140 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150605 |