[go: up one dir, main page]

WO2014061196A1 - Soiウェーハの製造方法 - Google Patents

Soiウェーハの製造方法 Download PDF

Info

Publication number
WO2014061196A1
WO2014061196A1 PCT/JP2013/005396 JP2013005396W WO2014061196A1 WO 2014061196 A1 WO2014061196 A1 WO 2014061196A1 JP 2013005396 W JP2013005396 W JP 2013005396W WO 2014061196 A1 WO2014061196 A1 WO 2014061196A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
soi
heat treatment
oxide film
silicon
Prior art date
Application number
PCT/JP2013/005396
Other languages
English (en)
French (fr)
Inventor
曲 偉峰
田原 史夫
裕喜 大井
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to EP13846328.6A priority Critical patent/EP2911183A1/en
Priority to SG11201501678UA priority patent/SG11201501678UA/en
Priority to US14/426,582 priority patent/US20150287630A1/en
Priority to KR1020157005883A priority patent/KR20150070096A/ko
Priority to CN201380047651.XA priority patent/CN104620351A/zh
Publication of WO2014061196A1 publication Critical patent/WO2014061196A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/20Doping by irradiation with electromagnetic waves or by particle radiation
    • C30B31/22Doping by irradiation with electromagnetic waves or by particle radiation by ion-implantation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • H01L21/3226Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering of silicon on insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing

Definitions

  • the present invention manufactures an SOI wafer by a so-called ion implantation separation method (also called a Smart Cut (registered trademark) method) in which an ion-implanted wafer is bonded and then peeled to produce an SOI (Silicon on Insulator) wafer. Regarding the method.
  • ion implantation separation method also called a Smart Cut (registered trademark) method
  • an ion implantation separation method As a typical method for manufacturing an SOI wafer, there is an ion implantation separation method. Briefly describing this ion implantation separation method, first, two silicon wafers are prepared as a bond wafer and a base wafer, and at least one silicon wafer, for example, an oxide film to be a buried oxide film of an SOI wafer is formed on the bond wafer.
  • ion implantation is performed through the oxide film from the surface to be a bonding surface of the silicon wafer on which the oxide film is formed, an ion implantation layer is formed in the silicon wafer, and the silicon on which the ion implantation layer is formed
  • the silicon wafer is peeled off by the ion-implanted layer and separated into a peeled wafer and an SOI wafer by bonding and heat-treating the wafer and the base wafer.
  • an SOI wafer is manufactured.
  • Patent Document 5 a method of heat-treating the bond wafer in a non-oxidizing atmosphere or the like is also performed before manufacturing the SOI wafer.
  • Patent Document 5 a method of heat-treating the bond wafer in a non-oxidizing atmosphere or the like is also performed before manufacturing the SOI wafer.
  • the present invention has been made in view of the above problems, and in the manufacture of an SOI wafer, an SOI wafer capable of sufficiently eliminating defects of a bond wafer and manufacturing an SOI wafer having almost no defects such as defects.
  • An object is to provide a manufacturing method. It is another object of the present invention to provide a method for manufacturing an SOI wafer in which a separation wafer generated as a by-product in the ion implantation separation method can be reused many times as a bond wafer.
  • a step of preparing a silicon wafer cut from a silicon single crystal ingot grown by the Czochralski method as a bond wafer, and a step of forming an oxide film on the prepared silicon wafer A step of forming an ion implantation layer in the silicon wafer by performing ion implantation through the oxide film from a surface to be a bonding surface of the silicon wafer on which the oxide film is formed, and silicon on which the ion implantation layer is formed
  • a method of manufacturing an SOI wafer comprising: bonding a wafer and a base wafer; separating the silicon wafer with the ion implantation layer and separating the wafer into a separation wafer and an SOI wafer; Before the oxide film forming step, the prepared silicon wafer is subjected to a heat treatment at a temperature of 1100 ° C. to 1250 ° C. for 30 minutes to 120 minutes in an oxidizing atmosphere, and the bonded surface of the silicon wafer after the heat
  • an SOI wafer having almost no defects such as defects can be manufactured by sufficiently eliminating the defects of the bond wafer in manufacturing the SOI wafer. Further, a separation wafer generated as a by-product in the ion implantation separation method can be reused many times as a bond wafer.
  • the polishing step after removing the oxide film formed on the silicon wafer after the heat treatment, it is preferable to polish the surface to be a bonding surface by 0.1 to 0.2 ⁇ m.
  • the peeled wafer is reused as a bond wafer when manufacturing an SOI wafer.
  • the exfoliated wafer produced as a by-product in the production method of the present invention has defects sufficiently eliminated by heat treatment and surface polishing under an oxidizing atmosphere in the present invention.
  • a high-quality SOI wafer can be manufactured at a low cost.
  • NPC N region
  • a nitrogen-doped wafer having a nitrogen concentration of 1 ⁇ 10 13 to 1 ⁇ 10 15 atoms / cm 3 is preferable to use as the nitrogen-doped wafer.
  • oxygen precipitation nuclei and oxygen precipitates that cause HF defects are completely extinguished into the bulk by heat treatment and surface polishing in an oxidizing atmosphere in the present invention. be able to.
  • the defects related to oxygen precipitation in the bond wafer can be sufficiently eliminated, the generation of HF defects can be suppressed. Therefore, even if a heat treatment during the manufacturing process of the SOI wafer (heat treatment for forming an oxide film to be a buried oxide film of the SOI wafer) is performed, a bond wafer in which HF defects are not generated and grow can be obtained. Therefore, it is possible to efficiently manufacture a high-quality SOI wafer having almost no defects such as defects and excellent electrical characteristics. Further, since a separation wafer generated as a by-product in the ion implantation separation method can be reused many times as a bond wafer, the cost can be reduced and it is economical.
  • an HF defect may be detected at the center by the oxidation heat treatment in the SOI wafer manufacturing process. Further, when the peeled wafer is reused as a bond wafer, it is necessary to perform a heat treatment each time or at least when a defect is confirmed to eliminate the surface layer defect.
  • the present inventors can manufacture an SOI wafer having almost no defects such as defects, and the surface layer of the separation wafer is reused when the separation wafer generated as a by-product in the ion implantation separation method is reused as a bond wafer.
  • the conditions under which HF defects were not formed even if the heat treatment for eliminating the crystal defects was not frequently performed were examined.
  • the HF defect is a general term for crystal defects in the SOI layer detected by immersing the SOI wafer in the HF solution, and the HF solution etches the buried oxide film layer through the defect portion penetrating the SOI layer. The detected cavity is detected.
  • a silicon wafer prepared as a bond wafer is subjected to a heat treatment in an oxygen atmosphere at a temperature of 1100 ° C. to 1250 ° C. for 30 minutes to 120 minutes as a pretreatment before the step of forming an oxide film to be a buried oxide film,
  • heat treatment of the present invention for convenience
  • FIG. 1 is a flowchart showing an example of an embodiment of a method for manufacturing an SOI wafer according to the present invention.
  • a silicon wafer cut out from a silicon single crystal ingot grown by the Czochralski method is prepared as the bond wafer 1 (FIG. 1A).
  • Examples of the silicon wafer to be prepared include a silicon wafer having at least one surface mirror-polished.
  • the initial oxygen concentration is 14 ppma (JEIDA (Japan Electronics Industry Promotion Association)
  • JEIDA is currently renamed as JEITA (Japan Electronics and Information Technology Industries Association) N region (NPC) wafer below or nitrogen with initial oxygen concentration below 7 ppma (JEIDA) It is particularly preferable to use a doped wafer.
  • the initial oxygen concentration of the N region (NPC) wafer is 14 ppma (JEIDA) or less, and the nitrogen-doped wafer is not an N region wafer, the initial oxygen concentration is 7 ppma (JEIDA) or less. Even if the oxidation heat treatment of the process is repeated, HF defects are hardly formed by initially performing the heat treatment of the present invention.
  • the defect size is reduced in a low oxygen concentration wafer, and even if it is not an N region wafer, the oxygen precipitation nuclei and oxygen precipitates that cause HF defects are completely extinguished by the above heat treatment to the bulk. be able to.
  • a nitrogen-doped wafer it is more preferable to use a nitrogen-doped wafer having a nitrogen concentration of 1 ⁇ 10 13 to 1 ⁇ 10 15 atoms / cm 3 .
  • the prepared silicon wafer is heat-treated at a temperature of 1100 ° C. to 1250 ° C. for 30 minutes to 120 minutes in an oxidizing atmosphere (FIG. 1B).
  • an oxygen atmosphere or a mixed gas such as an oxygen gas and a rare gas (in this case, the oxygen gas content exceeds 50%) can be used.
  • the atmosphere in which the heat treatment is performed may be appropriately selected according to the characteristics of the bond wafer to be used, but an oxygen atmosphere (oxygen gas 100%) is particularly preferable because defects can be eliminated efficiently.
  • Such heat treatment can be performed, for example, in a resistance heating heat treatment furnace.
  • the temperature during the heat treatment is 1100 ° C. to 1250 ° C., and the time is 30 minutes to 120 minutes.
  • heat treatment exceeding 1250 ° C. imposes a burden on the bond wafer, and causes slip dislocation and impurity contamination. Further, since the defects in the bulk can be eliminated by performing the heat treatment for about 120 minutes, the heat treatment is performed at 1250 ° C. or less and 120 minutes or less from the viewpoint of the effect and efficiency of the heat treatment. Preferably, they are 1170 ° C. to 1200 ° C. and 60 minutes to 120 minutes.
  • the polishing allowance of the surface to be the bonding surface of the silicon wafer can be determined as appropriate, but it is usually sufficient to carry out about 0.2 ⁇ m from the surface, and the polishing allowance of 0.1 to 0.2 ⁇ m is sufficient. More preferred.
  • the oxide film 2 may be formed by the heat treatment of the present invention.
  • Polishing shown in FIG. 1 (d) may be performed.
  • the oxide film 2 can be removed by etching or the like. In the above polishing, the oxide film may be removed by polishing first, and then the bonded surface of the silicon wafer (bond wafer 1) may be continuously polished.
  • an oxide film 3 to be a buried oxide film 8 of the SOI wafer is formed on the silicon wafer (bond wafer 1) (FIG. 1E).
  • the oxide film 3 can be formed by performing a heat treatment at a temperature of about 900 to 1200 ° C. for 5 to 6 hours, for example.
  • the oxide film 3 is formed on the entire surface of the silicon wafer (bond wafer 1), but the oxide film 3 may be formed only on the bonding surface.
  • ion implantation is performed through the oxide film 3 from the surface to be a bonding surface of the silicon wafer on which the oxide film 3 is formed, thereby forming an ion implantation layer 4 in the silicon wafer (FIG. 1F).
  • the depth of the ion implantation layer 4 is determined by the ion implantation energy. Therefore, a large implantation energy is required for deep implantation, but in a normal case, the implantation is performed at a depth of about 2 ⁇ m or less at a depth of 1 ⁇ m or less even when deep from the surface of the oxide film 3.
  • the silicon wafer (bond wafer 1) on which the ion-implanted layer 4 is formed and the base wafer 5 are formed on the oxide film 3
  • the ion-implanted layer 4 side is bonded through (FIG. 1 (g)).
  • the silicon wafer (bond wafer 1) is peeled off by the ion implantation layer 4 and separated into the peeling wafer 6 and the SOI wafer 7 (FIG. 1 (h)).
  • the bonding surface of one or both wafers is subjected to plasma treatment to increase the bonding strength, thereby eliminating the peeling heat treatment and mechanically peeling. It can also be made.
  • an SOI wafer having a defect-free SOI layer can be obtained by bonding heat treatment for increasing the bonding strength or polishing the surface of the separated SOI wafer 7 (FIG. 1 (j )).
  • the peeled wafer 6 by-produced by the manufacturing method of the present invention as described above is reused as a bond wafer in the manufacture of other SOI wafers.
  • the bonded wafer subjected to the heat treatment and surface polishing of the present invention has almost no oxygen precipitation nuclei or oxygen precipitates, that is, a peeled wafer after the SOI layer of about 1 ⁇ m is peeled off. Even so, there are almost no oxygen precipitation nuclei and oxygen precipitates. Accordingly, since the peeled wafer 6 can be used again as a bond wafer only by polishing with a small polishing allowance (FIG. 1 (i)), an SOI wafer can be manufactured with high productivity and low cost.
  • the polishing allowance of the release surface is not particularly limited, but in order to surely remove the step formed on the periphery of the release surface and the distortion of the ion implantation layer and sufficiently suppress the occurrence of bonding failure.
  • the polishing allowance is 3 ⁇ m or more, preferably more than 5 ⁇ m.
  • Example 1 Comparative Examples 1 to 3
  • An oxidation heat treatment at 900 ° C./6 hrs is performed, (2) the oxide film is removed with HF (pseudo-peeling), and (3) SP1 manufactured by KLA Tencor is used.
  • the “pseudo-peeling” in (2) refers to the peeling process (bonding with the base wafer + peeling at the ion-implanted layer) performed in the SOI wafer manufacturing process, and the bond wafer after the oxidation heat treatment in (1). It is known that the same tendency as the result of measuring the HF defect density of an actual SOI wafer can be obtained even if the oxide film is replaced with a step of removing the oxide film with HF and evaluated in this way. .
  • Condition 1 NPC + no heat treatment
  • Condition 2 NPC + RTA (Ar atmosphere, heating rate 50 ° C./second, maximum temperature 1250 ° C., holding time 10 seconds)
  • Condition 3 NPC + resistance heating (Ar atmosphere, 1200 ° C., 60 minutes)
  • Condition 4 NPC + resistance heating (oxygen atmosphere, 1200 ° C., 60 minutes) +0.1 ⁇ m surface polishing
  • Example 2 Verification of effect due to difference in initial oxygen concentration between nitrogen-doped wafer and NPC wafer Diameter 200 mm, nitrogen concentration 5 ⁇ 10 13 atoms / cm 3 , initial oxygen concentration 3 to 17 ppma wafer, diameter 200 mm, N region (NPC), initial A wafer having an oxygen concentration of 3 to 17 ppma was subjected to a heat treatment at 1200 ° C. for 60 minutes in an oxygen atmosphere, and then the pseudo regeneration method was repeated five times in the same manner as in Example 1 to measure the HF defect density. The results are shown in FIG.
  • Example 3 Manufacturing of SOI wafers 1
  • a bond wafer a mirror-polished silicon wafer having a diameter of 200 mm, an N region (NPC), and an initial oxygen concentration of 12 ppma was prepared, and heat treatment for eliminating defects of the bond wafer was performed at 1200 ° C. for 60 minutes in an oxygen atmosphere. Then, after removing the oxide film by etching with HF, the surface to be the bonded surface was polished by 0.1 ⁇ m. Then, (i) after performing an oxidation heat treatment at 900 ° C./6 hrs to form an oxide film, (ii) hydrogen ions are implanted through this oxide film (implantation conditions are acceleration energy 70 keV, implantation amount 6 ⁇ 10 16 / cm 2.
  • the obtained SOI wafer was a high-quality one having no defects such as defects in the SOI layer and excellent electrical characteristics.
  • Example 4 Manufacturing of SOI wafers 2 An SOI wafer was prepared in the same manner as in Example 3 except that a bonded wafer was prepared as a mirror-polished silicon wafer having a diameter of 200 mm, nitrogen dope (nitrogen concentration 5 ⁇ 10 13 atoms / cm 3 ), and initial oxygen concentration 6 ppma. Produced.
  • the HF defect was at a level with no problem.
  • the obtained SOI wafer was a high-quality one having no defects such as defects in the SOI layer and excellent electrical characteristics.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Element Separation (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 本発明は、SOIウェーハを製造する方法であって、酸化膜形成工程の前に、準備したシリコンウェーハに酸化性雰囲気下で1100℃~1250℃の温度で30分~120分間の熱処理を施す工程、及び該熱処理後のシリコンウェーハの貼り合わせ面となる表面を研磨する工程を行うことを特徴とするSOIウェーハの製造方法である。これにより、SOIウェーハの製造において、ボンドウェーハの欠陥を十分に消滅させて、欠陥等の不良のほとんどないSOIウェーハを製造することができ、また、イオン注入剥離法において副産物として生成される剥離ウェーハをボンドウェーハとして何度も再利用することができるSOIウェーハの製造方法が提供される。

Description

SOIウェーハの製造方法
 本発明は、イオン注入したウェーハを貼り合わせ後に剥離してSOI(Silicon on Insulator)ウェーハを製造する、いわゆるイオン注入剥離法(スマートカット(登録商標)法とも呼ばれている)によるSOIウェーハの製造方法に関する。
 SOIウェーハの製造方法としては、代表的なものにイオン注入剥離法がある。
 このイオン注入剥離法を簡単に説明すると、まず、ボンドウェーハ及びベースウェーハとして、2枚のシリコンウェーハを準備し、少なくとも一方のシリコンウェーハ、例えばボンドウェーハにSOIウェーハの埋め込み酸化膜となる酸化膜を形成した後に、該酸化膜を形成したシリコンウェーハの貼り合わせ面となる表面から前記酸化膜を通してイオン注入を行って、前記シリコンウェーハ中にイオン注入層を形成し、該イオン注入層を形成したシリコンウェーハとベースウェーハを貼り合わせて熱処理することによって、前記シリコンウェーハを前記イオン注入層で剥離して剥離ウェーハとSOIウェーハとに分離させ、その後更に必要に応じて、結合熱処理を加えて強固に結合して、SOIウェーハを製造する方法である。
 デバイスプロセスの微細化に伴い、SOIウェーハのSOI層を形成するボンドウェーハは無欠陥化を要求されてきており、現状ではSOIのボンドウェーハとして低酸素、低欠陥のN領域(NPC(Nearly Perfect Crystal))ウェーハを使用している(特許文献1)。
 しかし、このようなCOP(Crystal Originated Particle)フリーのNPCウェーハを使用しても、SOIウェーハの埋め込み酸化膜となる酸化膜を形成するため例えば900℃で6時間の熱処理を施すと、SOI層となる表層に酸素析出核や酸素析出物(Bulk Micro Defect:BMD)等の酸素析出関連欠陥であるHF欠陥が発生する場合があり、特に、剥離ウェーハをボンドウェーハとして再利用した場合に、このような欠陥の発生が顕著であった。
 このような欠陥を発生させないようにするため、剥離したN領域ウェーハにRTA処理を行い、表層の欠陥を消滅させてからボンドウェーハとして再利用する方法が行われてきた(特許文献2~4)。
 しかし、このようなRTA処理はその都度行わなければならず、また何度もRTA処理を繰り返すとボンドウェーハが破損しやすくなるという問題があった。
 このような再生処理におけるボンドウェーハの熱処理回数を減らすため、SOIウェーハを作製する前に、非酸化性雰囲気下等でボンドウェーハを熱処理する方法も行われている(特許文献5)。
 しかし、このような方法であっても、再利用する前の検査で欠陥が確認された場合には、再度熱処理を行う必要があった。
特開2006-294737号公報 特開2011-238758号公報 特開2008-021892号公報 特開2007-149907号公報 特開2011-176293号公報
 これらの問題を解決するためには、LST(Laser Scattering Tomography(赤外散乱トモグラフィー))で検出されるBMD密度が例えば1×10/cm未満のウェーハをボンドウェーハとして使用する必要がある。
 また、SOIウェーハのコスト低減を実現するため、ボンドウェーハの再利用を考えると、バルクまで完全に無欠陥となるウェーハの作製技術の開発が必要である。
 本発明は、上記問題に鑑みなされたものであって、SOIウェーハの製造において、ボンドウェーハの欠陥を十分に消滅させて、欠陥等の不良のほとんどないSOIウェーハを製造することができるSOIウェーハの製造方法を提供することを目的とする。また、イオン注入剥離法において副産物として生成される剥離ウェーハをボンドウェーハとして何度も再利用することができるSOIウェーハの製造方法を提供することを目的とする。
 上記課題を解決するため、本発明では、チョクラルスキー法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハをボンドウェーハとして準備する工程と、該準備したシリコンウェーハに酸化膜を形成する工程と、該酸化膜を形成したシリコンウェーハの貼り合わせ面となる表面から前記酸化膜を通してイオン注入を行って、前記シリコンウェーハ中にイオン注入層を形成する工程と、該イオン注入層を形成したシリコンウェーハとベースウェーハを貼り合わせて、前記シリコンウェーハを前記イオン注入層で剥離して剥離ウェーハとSOIウェーハとに分離させる工程とを含むSOIウェーハを製造する方法であって、
 前記酸化膜形成工程の前に、前記準備したシリコンウェーハに酸化性雰囲気下で1100℃~1250℃の温度で30分~120分間の熱処理を施す工程、及び該熱処理後のシリコンウェーハの貼り合わせ面となる表面を研磨する工程を行うことを特徴とするSOIウェーハの製造方法を提供する。
 このような本発明のSOIウェーハの製造方法によれば、SOIウェーハの製造において、ボンドウェーハの欠陥を十分に消滅させて、欠陥等の不良のほとんどないSOIウェーハを製造することができる。また、イオン注入剥離法において副産物として生成される剥離ウェーハをボンドウェーハとして何度も再利用することができる。
 ここで、前記研磨工程において、前記熱処理後のシリコンウェーハに形成された酸化膜を除去した後、貼り合わせ面となる表面を0.1~0.2μm研磨することが好ましい。
 このように、酸化膜を除去してから貼り合わせ面となる表面を0.1~0.2μm研磨すれば、酸化性雰囲気下での熱処理で形成される酸化膜直下の欠陥を確実に除去することができる。
 また、前記剥離ウェーハを、SOIウェーハの製造の際にボンドウェーハとして再利用することが好ましい。
 本発明の製造方法で副生された剥離ウェーハは、本発明における酸化性雰囲気下での熱処理及び表面研磨により欠陥が十分に消滅しているため、これをボンドウェーハとして再利用すれば、生産性良く、低コストで高品質のSOIウェーハを製造することができる。
 また、前記準備するシリコンウェーハとして、初期酸素濃度が14ppma以下のN領域(NPC)のウェーハ又は初期酸素濃度が7ppma以下の窒素ドープウェーハを用いることが好ましい。
 このようなウェーハを用いれば、SOIウェーハの製造工程の酸化熱処理(SOIウェーハの埋め込み酸化膜となる酸化膜を形成するための熱処理)を繰り返し行っても、HF欠陥が殆ど形成されることがない。
 更に、前記窒素ドープウェーハとして、窒素濃度が1×1013~1×1015atoms/cmの窒素ドープウェーハを用いることが好ましい。
 このような窒素濃度の窒素ドープウェーハを用いれば、本発明における酸化性雰囲気下での熱処理及び表面研磨により、バルク中までHF欠陥の原因となる酸素析出核や酸素析出物等を完全に消滅させることができる。
 以上説明したように、本発明によれば、ボンドウェーハの酸素析出関連欠陥を十分に消滅させることができるため、HF欠陥の発生を抑制することができる。そのため、SOIウェーハの製造工程中の熱処理(SOIウェーハの埋め込み酸化膜となる酸化膜を形成するための熱処理)を行っても、HF欠陥が発生、成長しないボンドウェーハとすることができ、SOI層に欠陥等の不良がほとんどなく、電気特性に優れた高品質のSOIウェーハを効率的に製造することができる。また、イオン注入剥離法において副産物として生成される剥離ウェーハをボンドウェーハとして何度も再利用することができるため、コストを削減でき経済的である。
本発明のSOIウェーハの製造方法の実施態様の一例を示すフロー図である。 実施例1、比較例1~3における再生回数別のHF欠陥密度を示すグラフである。 実施例2におけるHF欠陥密度を示すグラフである。
 以下、本発明についてより詳細に説明する。
 前述のように、従来SOIウェーハの製造においては、SOIウェーハ製造工程の酸化熱処理により中心部にHF欠陥が検出されることがあった。また、剥離したウェーハをボンドウェーハとして再利用する際には、その都度、又は少なくとも欠陥が確認された場合には熱処理を行い、表層の欠陥を消滅させる必要があった。
 そこで、本発明者らは、欠陥等の不良のほとんどないSOIウェーハを製造することができ、イオン注入剥離法において副産物として生成される剥離ウェーハをボンドウェーハとして再利用する際に、剥離ウェーハの表層の結晶欠陥を消滅させる熱処理を頻繁に行わなくとも、HF欠陥が形成されない条件を検討した。尚、HF欠陥とは、SOIウェーハをHF溶液に浸漬することで検出されるSOI層中の結晶欠陥の総称であり、SOI層を貫通する欠陥部分を通してHF溶液が埋め込み酸化膜層をエッチングしてできた空洞を検出するものである。
 その結果、埋め込み酸化膜となる酸化膜の形成工程前に、ボンドウェーハとして準備したシリコンウェーハに対し、前処理として酸素雰囲気下、1100℃~1250℃の温度で30分~120分間熱処理を施し、表面研磨を行うと、この最初の1回の熱処理(以下、便宜上「本発明の熱処理」ということもある)のみでSOIウェーハの製造工程の酸化熱処理を繰り返し行ってもHF欠陥が形成されないことを知見し、本発明を完成させた。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれらに限定されるものではない。
 図1は、本発明のSOIウェーハの製造方法の実施態様の一例を示すフロー図である。
 まず、本発明の製造方法では、ボンドウェーハ1として、チョクラルスキー法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハを準備する(図1(a))。
 この準備するシリコンウェーハ(ボンドウェーハ1)としては、少なくとも一方の表面が鏡面研磨されたシリコンウェーハ等を挙げることができ、本発明においては、初期酸素濃度が14ppma(JEIDA(日本電子工業振興協会)による換算係数を使用した値である。なお、JEIDAは現在JEITA(日本電子情報技術産業協会)に改名された)以下のN領域(NPC)のウェーハ又は初期酸素濃度が7ppma(JEIDA)以下の窒素ドープウェーハを用いることが特に好ましい。
 このように、N領域(NPC)のウェーハは初期酸素濃度が14ppma(JEIDA)以下、窒素ドープウェーハではN領域ウェーハでなくても初期酸素濃度が7ppma(JEIDA)以下であれば、SOIウェーハの製造工程の酸化熱処理を繰り返し行っても、当初本発明の熱処理をすることで、HF欠陥が形成されることが殆どない。
 特に、窒素ドープすると低酸素濃度のウェーハでは欠陥サイズが小さくなり、N領域のウェーハでなくても上記熱処理によりバルク中までHF欠陥の原因となる酸素析出核や酸素析出物等を完全に消滅させることができる。
 窒素ドープウェーハを用いる場合には、窒素濃度が1×1013~1×1015atoms/cmの窒素ドープウェーハを用いることがより好ましい。
 次に、前記準備したシリコンウェーハに酸化性雰囲気下で1100℃~1250℃の温度で30分~120分間の熱処理を施す(図1(b))。
 酸化性雰囲気としては、酸素雰囲気や、酸素ガスと希ガス等の混合ガス(この場合、酸素ガスの含有率は50%を超えるものとする)を用いることができる。どのような雰囲気で熱処理するかは使用するボンドウェーハの特性に従い適宜選択すればよいが、効率よく欠陥を消滅させることができることから、酸素雰囲気(酸素ガス100%)が特に好ましい。
 このような熱処理は、例えば抵抗加熱熱処理炉で行うことができる。
 熱処理の際の温度は1100℃~1250℃、時間は30分~120分間である。
 このように、1100℃以上の高温で30分以上の熱処理を行えば、一度の熱処理でバルク中の酸素析出核及び酸素析出物等を完全に消滅させることができ、その後の剥離ウェーハをボンドウェーハとして再利用する工程において、表層の欠陥を消滅させるための熱処理をその都度行う必要はないので、工程の簡略化を実現することができる。
 一方、1250℃を超える熱処理はボンドウェーハに負担となり、スリップ転位の発生や不純物汚染の問題が生じる。また、120分程度熱処理を行えばバルク中の欠陥まで消滅させることができるため、熱処理による効果や効率等の観点から、熱処理は1250℃以下で120分以下とする。
 好ましくは、1170℃~1200℃、60分~120分である。
 このように、酸化性雰囲気下で1100℃~1250℃の温度で30分~120分間の熱処理を施すと、熱処理により格子間シリコンが注入され、バルク中の空孔が対消滅してHF欠陥の原因となる酸素析出核や酸素析出物等を減少させることができるので有効である。
 一方、このような酸化性雰囲気下での熱処理を行うと、酸化によるバルク析出を消滅すると同時に、酸化膜直下の表層付近(厚さは熱処理温度及び基板酸素固溶度に依存する)は酸素の内方拡散に伴い、結晶欠陥が成長(COP内面酸化膜が厚くなり、空洞内面に酸化膜が形成され、BMDも成長)して、欠陥が顕在化する傾向がある。そのため、前記熱処理後に、シリコンウェーハの貼り合わせ面となる表面を研磨する工程(図1(d))を行う必要がある。
 このシリコンウェーハの貼り合わせ面となる表面の研磨代は、適宜決定することができるが、通常表面から0.2μm程度行えば十分であり、0.1~0.2μmの研磨代とすることがより好ましい。
 尚、図1(b)に示すように、本発明の熱処理により、酸化膜2が形成される場合もあるので、このような場合には、酸化膜2を除去した後(図1(c))、図1(d)の研磨を行っても良い。
 酸化膜2の除去は、エッチング等により行うことができる。また、上述の研磨の際、先に酸化膜を研磨により除去してから、シリコンウェーハ(ボンドウェーハ1)の貼り合わせ面の研磨を連続して行っても良い。
 次に、シリコンウェーハ(ボンドウェーハ1)にSOIウェーハの埋め込み酸化膜8となる酸化膜3を形成する(図1(e))。酸化膜3は、例えば900~1200℃程度の温度で5~6時間熱処理を行うことにより、形成することができる。図1(e)の場合は、シリコンウェーハ(ボンドウェーハ1)の表面全体に酸化膜3が形成されているが、貼り合わせ面のみに酸化膜3を形成しても良い。
 次に、該酸化膜3を形成したシリコンウェーハの貼り合わせ面となる表面から前記酸化膜3を通してイオン注入を行って、前記シリコンウェーハ中にイオン注入層4を形成する(図1(f))。
 イオン注入層4の深さは、イオン注入エネルギーにより決定される。従って、深く注入するためには大きな注入エネルギーが必要とされるが、通常の場合、酸化膜3表面から深くても2μm程度であり、1μm以下の深さに注入することが多い。
 次に、該イオン注入層4を形成したシリコンウェーハ(ボンドウェーハ1)とベースウェーハ5(ベースウェーハ5としては、特に限定されず、例えばシリコンウェーハ等を準備することができる)を、酸化膜3を介して、前記イオン注入層4側を貼り合わせる(図1(g))。その後、剥離のための熱処理を行うことによって、前記シリコンウェーハ(ボンドウェーハ1)を前記イオン注入層4で剥離して剥離ウェーハ6とSOIウェーハ7とに分離させる(図1(h))。また、ボンドウェーハ1とベースウェーハ5とを貼り合わせる前に、どちらか一方又は両方のウェーハの貼り合わせ面にプラズマ処理を施して結合強度を高めることによって、剥離熱処理を省略し、機械的に剥離させることもできる。
 そして、必要に応じて、結合強度を高めるための結合熱処理や、分離したSOIウェーハ7の表面を研磨等することで、欠陥のないSOI層を有するSOIウェーハを得ることができる(図1(j))。
 また、上記のように本発明の製造方法で副生された剥離ウェーハ6を、他のSOIウェーハの製造において、ボンドウェーハとして再利用することが好ましい。
 前述したように、本発明の熱処理及び表面研磨を行ったボンドウェーハは、酸素析出核や酸素析出物等が殆ど存在しておらず、即ち、1μm程度のSOI層が剥離された後の剥離ウェーハであっても、酸素析出核、酸素析出物等が殆ど存在していない。従って、剥離ウェーハ6を少ない研磨代で研磨する(図1(i))だけで、再びボンドウェーハとして使用することができるため、生産性良く低コストでSOIウェーハを製造できる。
 剥離面を研磨するに際し、剥離面の研磨代は特に限定されないが、剥離面周辺部に形成されている段差とイオン注入層の歪を確実に除去し、結合不良の発生を十分に抑制するため、研磨代としては3μm以上、好ましくは5μmより多く研磨することが望ましい。
 上記のように再生処理としての剥離面の研磨を行った剥離ウェーハ6をボンドウェーハとして、再度、図1(e)~(g)の工程を行う。このように、本発明によれば、剥離ウェーハ6をボンドウェーハとして再利用する際に再度熱処理工程(b)を行わなくとも、HF欠陥が生じることのないSOIウェーハを製造することができる。また、このSOIウェーハ製造後の剥離ウェーハを再度上記の再生処理(研磨処理)を施して再利用する等、複数回再利用することもできる。これにより、低コストで高品質のSOIウェーハを製造することができる。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1、比較例1~3)
抵抗加熱処理の効果の証明
 直径200mm、N領域(NPC)、初期酸素濃度12ppmaのシリコンウェーハに、前処理なし(条件1)、RTA(条件2)、抵抗加熱処理(条件3)、又は抵抗加熱処理+研磨(条件4)を行った後、(1)900℃/6hrsの酸化熱処理を行い、(2)HFで酸化膜を除去(擬似剥離)した後に、(3)KLAテンコール社製SP1で65nm以上の表面のHF欠陥密度を測定し、(4)その後5μm研磨して、これを再生回数0回目とし、更に(1)~(4)を繰り返すことで擬似的にボンドウェーハの再利用工程を行い再生回数別のHF欠陥密度を比較した。結果を図2に示す。
 尚、(2)の「擬似剥離」とは、SOIウェーハの製造工程にて行われる剥離工程(ベースウェーハとの貼り合わせ+イオン注入層での剥離)を、(1)の酸化熱処理後にボンドウェーハの酸化膜をHFで除去する工程に置き換えたものであり、このように置き換えて評価しても、実際のSOIウェーハのHF欠陥密度を測定した結果と同様の傾向が得られることがわかっている。
(比較例1)
条件1:NPC+熱処理なし
(比較例2)
条件2:NPC+RTA(Ar雰囲気、昇温速度50℃/秒、最高温度1250℃、保持時間10秒)
(比較例3)
条件3:NPC+抵抗加熱(Ar雰囲気、1200℃、60分)
(実施例1)
条件4:NPC+抵抗加熱(酸素雰囲気、1200℃、60分)+0.1μm表面研磨
 図2に示すように、条件1のNPC+熱処理なし(前処理として全く熱処理を行わなかった比較例1)では、再生回数0回目よりHF欠陥が検出された。再生回数2回目までは問題ない程度であったものの、再生回数を増やすに従いHF欠陥密度が増加した。条件2のNPC+RTA(前処理としてRTA処理を行った比較例2)では、再生回数4回目よりHF欠陥が検出され、再生回数5回目までは問題ない程度であったものの、その後再生回数を増やすに従いHF欠陥密度が増加した。条件3のNPC+抵抗加熱(前処理としてAr雰囲気下での熱処理を行った比較例3)では、再生回数1回目よりHF欠陥が検出された。再生回数3回目までは問題ない程度であったものの、再生回数を増やすに従いHF欠陥密度が増加した。
 一方、条件4のNPC+抵抗加熱(前処理として酸素雰囲気下での熱処理及び0.1μm表面研磨を行った実施例1)では、再生回数を増やしても、HF欠陥は殆ど検出されず、低いままの状態を保っていた。
(実施例2)
窒素ドープウェーハ及びNPCウェーハの初期酸素濃度の違いによる効果の検証
 直径200mm、窒素濃度5×1013atoms/cm、初期酸素濃度3~17ppmaのウェーハ、及び直径200mm、N領域(NPC)、初期酸素濃度3~17ppmaのウェーハに、酸素雰囲気下で1200℃、60分間の熱処理を行い、その後、実施例1と同様に擬似的な再生方法を5回繰り返し、HF欠陥密度を測定した。結果を図3に示す。
 その結果、いずれのウェーハにおいても、HF欠陥は問題ない程度であった。中でも、窒素ドープウェーハでは初期酸素濃度が7ppma以下、NPCウェーハでは初期酸素濃度が14ppma以下においては、HF欠陥は殆ど検出されなかった。
(実施例3)
SOIウェーハの製造1
 ボンドウェーハとして、直径200mm、N領域(NPC)、初期酸素濃度12ppmaの鏡面研磨されたシリコンウェーハを準備し、ボンドウェーハの欠陥消滅のための熱処理を、酸素雰囲気で1200℃、60分行った後、HFでエッチングして酸化膜を除去してから貼り合わせ面となる表面を0.1μm研磨した。そして、(i)900℃/6hrsの酸化熱処理を行って酸化膜を形成した後、(ii)この酸化膜を通して水素イオンを注入(注入条件は、加速エネルギー70keV、注入量6×1016/cmである)し、(iii)イオン注入したボンドウェーハを、ベースウェーハ(シリコンウェーハ)と室温で貼り合わせた後、500℃、30分の剥離熱処理を加えることにより、イオン注入層で剥離し、SOIウェーハを作製した。
 この際、SOIウェーハから分離した剥離ウェーハが副生された。この剥離ウェーハを用いて、上記(i)~(iii)を繰り返した。
 再生回数5回目のHF欠陥を測定した結果、HF欠陥は問題のないレベルであった。
 また、得られたSOIウェーハも、SOI層に欠陥等の不良がなく、電気特性に優れた高品質のものであった。
(実施例4)
SOIウェーハの製造2
 ボンドウェーハとして、直径200mm、窒素ドープ(窒素濃度5×1013atoms/cm)、初期酸素濃度6ppmaの鏡面研磨されたシリコンウェーハを準備した以外は、実施例3と同様にして、SOIウェーハを作製した。
 再生回数5回目のHF欠陥を測定した結果、HF欠陥は問題のないレベルであった。
 また、得られたSOIウェーハは、SOI層に欠陥等の不良がなく、電気特性に優れた高品質のものであった。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  チョクラルスキー法により育成されたシリコン単結晶インゴットから切り出されたシリコンウェーハをボンドウェーハとして準備する工程と、該準備したシリコンウェーハに酸化膜を形成する工程と、該酸化膜を形成したシリコンウェーハの貼り合わせ面となる表面から前記酸化膜を通してイオン注入を行って、前記シリコンウェーハ中にイオン注入層を形成する工程と、該イオン注入層を形成したシリコンウェーハとベースウェーハを貼り合わせて、前記シリコンウェーハを前記イオン注入層で剥離して剥離ウェーハとSOIウェーハとに分離させる工程とを含むSOIウェーハを製造する方法であって、
     前記酸化膜形成工程の前に、前記準備したシリコンウェーハに酸化性雰囲気下で1100℃~1250℃の温度で30分~120分間の熱処理を施す工程、及び該熱処理後のシリコンウェーハの貼り合わせ面となる表面を研磨する工程を行うことを特徴とするSOIウェーハの製造方法。
  2.  前記研磨工程において、前記熱処理後のシリコンウェーハに形成された酸化膜を除去した後、貼り合わせ面となる表面を0.1~0.2μm研磨することを特徴とする請求項1に記載のSOIウェーハの製造方法。
  3.  前記剥離ウェーハを、SOIウェーハの製造の際にボンドウェーハとして再利用することを特徴とする請求項1又は請求項2に記載のSOIウェーハの製造方法。
  4.  前記準備するシリコンウェーハとして、初期酸素濃度が14ppma以下のN領域(NPC)のウェーハ又は初期酸素濃度が7ppma以下の窒素ドープウェーハを用いることを特徴とする請求項1乃至請求項3のいずれか1項に記載のSOIウェーハの製造方法。
  5.  前記窒素ドープウェーハとして、窒素濃度が1×1013~1×1015atoms/cmの窒素ドープウェーハを用いることを特徴とする請求項4に記載のSOIウェーハの製造方法。
PCT/JP2013/005396 2012-10-16 2013-09-12 Soiウェーハの製造方法 WO2014061196A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13846328.6A EP2911183A1 (en) 2012-10-16 2013-09-12 Soi wafer manufacturing method
SG11201501678UA SG11201501678UA (en) 2012-10-16 2013-09-12 Method of manufacturing soi wafer
US14/426,582 US20150287630A1 (en) 2012-10-16 2013-09-12 Method of manufacturing soi wafer
KR1020157005883A KR20150070096A (ko) 2012-10-16 2013-09-12 Soi 웨이퍼의 제조방법
CN201380047651.XA CN104620351A (zh) 2012-10-16 2013-09-12 Soi晶圆的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-229111 2012-10-16
JP2012229111A JP2014082316A (ja) 2012-10-16 2012-10-16 Soiウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2014061196A1 true WO2014061196A1 (ja) 2014-04-24

Family

ID=50487777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005396 WO2014061196A1 (ja) 2012-10-16 2013-09-12 Soiウェーハの製造方法

Country Status (7)

Country Link
US (1) US20150287630A1 (ja)
EP (1) EP2911183A1 (ja)
JP (1) JP2014082316A (ja)
KR (1) KR20150070096A (ja)
CN (1) CN104620351A (ja)
SG (1) SG11201501678UA (ja)
WO (1) WO2014061196A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7172747B2 (ja) * 2019-03-06 2022-11-16 信越半導体株式会社 シリコン単結晶の抵抗率測定方法
US20220223475A1 (en) * 2019-05-23 2022-07-14 Tokyo Electron Limited Substrate processing method and substrate processing system
US12164126B2 (en) 2021-06-30 2024-12-10 Openlight Photonics, Inc. High bandwidth photonic integrated circuit with etalon compensation
CN113655094B (zh) * 2021-08-06 2024-01-19 上海新昇半导体科技有限公司 一种确定硅片导电类型的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073057A1 (ja) * 2003-02-14 2004-08-26 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハの製造方法
JP2006294737A (ja) 2005-04-07 2006-10-26 Sumco Corp Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。
JP2007149907A (ja) 2005-11-28 2007-06-14 Sumco Corp 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
JP2008021892A (ja) 2006-07-14 2008-01-31 Shin Etsu Handotai Co Ltd 剥離ウェーハを再利用する方法
JP2011176293A (ja) 2010-01-26 2011-09-08 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2011238758A (ja) 2010-05-10 2011-11-24 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法
JP2012153548A (ja) * 2011-01-24 2012-08-16 Shin Etsu Handotai Co Ltd シリコン単結晶ウェーハの製造方法及びアニールウェーハ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073057A1 (ja) * 2003-02-14 2004-08-26 Sumitomo Mitsubishi Silicon Corporation シリコンウェーハの製造方法
JP2006294737A (ja) 2005-04-07 2006-10-26 Sumco Corp Soi基板の製造方法及びその製造における剥離ウェーハの再生処理方法。
JP2007149907A (ja) 2005-11-28 2007-06-14 Sumco Corp 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
JP2008021892A (ja) 2006-07-14 2008-01-31 Shin Etsu Handotai Co Ltd 剥離ウェーハを再利用する方法
JP2011176293A (ja) 2010-01-26 2011-09-08 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2011238758A (ja) 2010-05-10 2011-11-24 Shin Etsu Handotai Co Ltd Soiウェーハの製造方法
JP2012153548A (ja) * 2011-01-24 2012-08-16 Shin Etsu Handotai Co Ltd シリコン単結晶ウェーハの製造方法及びアニールウェーハ

Also Published As

Publication number Publication date
US20150287630A1 (en) 2015-10-08
JP2014082316A (ja) 2014-05-08
SG11201501678UA (en) 2015-04-29
KR20150070096A (ko) 2015-06-24
CN104620351A (zh) 2015-05-13
EP2911183A1 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP4715470B2 (ja) 剥離ウェーハの再生加工方法及びこの方法により再生加工された剥離ウェーハ
EP2048697B1 (en) Method for reusing delaminated wafer
CN105190835B (zh) 混合基板的制造方法和混合基板
JP2006216826A (ja) Soiウェーハの製造方法
WO2013102968A1 (ja) 貼り合わせsoiウェーハの製造方法
JP4419147B2 (ja) 貼り合わせウェーハの製造方法
WO2014061196A1 (ja) Soiウェーハの製造方法
JP2014120587A (ja) Soiウェーハの製造方法
JP2008016534A (ja) 貼り合わせウェーハの製造方法
JP2009212402A (ja) 貼り合わせウェーハの製造方法
KR101910100B1 (ko) Soi 웨이퍼의 제조방법
JP5522175B2 (ja) Soiウェーハの製造方法
US20190198386A1 (en) Method for manufacturing bonded soi wafer
WO2014080565A1 (ja) Soiウェーハの製造方法
JP2010098167A (ja) 貼り合わせウェーハの製造方法
JP5541136B2 (ja) 貼り合わせsoiウエーハの製造方法
WO2016059748A1 (ja) 貼り合わせウェーハの製造方法
JP5125194B2 (ja) 貼り合わせウエーハの製造方法
WO2017217129A1 (ja) 貼り合わせウェーハの製造方法
KR102317552B1 (ko) 접합 soi 웨이퍼의 제조방법
JP5211550B2 (ja) シリコン単結晶ウェーハの製造方法
JP2010073988A (ja) 貼り合わせウェーハの製造方法
JP2652346B2 (ja) シリコンウエーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13846328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157005883

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14426582

Country of ref document: US

Ref document number: 2013846328

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE