WO2014059601A1 - 一种oled拼接显示屏及其制造方法 - Google Patents
一种oled拼接显示屏及其制造方法 Download PDFInfo
- Publication number
- WO2014059601A1 WO2014059601A1 PCT/CN2012/083028 CN2012083028W WO2014059601A1 WO 2014059601 A1 WO2014059601 A1 WO 2014059601A1 CN 2012083028 W CN2012083028 W CN 2012083028W WO 2014059601 A1 WO2014059601 A1 WO 2014059601A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oled
- layer
- tft
- front panel
- display screen
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000002184 metal Substances 0.000 claims description 56
- 238000005538 encapsulation Methods 0.000 claims description 35
- 239000002313 adhesive film Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 12
- 239000011368 organic material Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 7
- 238000003032 molecular docking Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000005192 partition Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 230000028018 membrane docking Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/18—Tiled displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/127—Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/123—Connection of the pixel electrodes to the thin film transistors [TFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/126—Shielding, e.g. light-blocking means over the TFTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/127—Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
- H10K59/1275—Electrical connections of the two substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/131—Interconnections, e.g. wiring lines or terminals
Definitions
- the invention belongs to the field of display technologies, and in particular relates to an OLED splicing display screen and a manufacturing method thereof.
- OLED Organic electroluminescence
- the existing commonly used OLED display preparation technology mainly prepares an OLED illuminating pixel unit directly on a prepared TFT driving substrate, and prepares a large area. OLED luminescent panels are very difficult and costly. As the screen size increases, the manufacturing cost will increase exponentially and the yield will decrease.
- the prior art mostly uses a spliced display screen to directly splicing multiple display screens of ultra-narrow bezels, due to the line at the edge of the display screen / The existence of the column scan driving circuit still can not really achieve 'seamless' splicing.
- the prior art also uses an optical lens array to enlarge the image to the framing screen frame area for seamless display, but The use of optical lenses and precise alignment increase the manufacturing cost and reduce the yield, making the preparation process of large-sized display devices more complicated and costly.
- the large-size spliced OLED display in the prior art still has the problem that the splicing gap is difficult to eliminate and the yield is low.
- the object of the present invention is to provide an OLED splicing display screen, which aims to realize OLED
- the seamless splicing of the display controls costs and increases the yield of the display.
- an OLED spliced display screen includes an OLED front panel and a TFT of a single structure Driving the backplane, and further providing a package substrate on the light emitting side of the front panel of the OLED;
- the OLED front panel includes a plurality of OLED front panel units that are spliced together;
- the OLED front panel unit is docked with the TFT driving backplane through a conductive adhesive film.
- Another object of the present invention is to provide a method of fabricating an OLED spliced display screen comprising the steps of:
- a package substrate is disposed on a light emitting side of the front panel of the OLED.
- the invention splices the OLED front panel unit on the TFT driving back plate of the single structure, due to the small size OLED
- the yield of the front panel unit is relatively high, so that the yield of the direct splicing of the OLED front panel unit is much higher than that of manufacturing the monolithic OLED front panel directly on the TFT driving backplane, thereby enabling the present invention to improve the OLED.
- the splicing OLED front panel eliminates the splicing gap caused by the row/column scan driving circuit, and greatly reduces the OLED.
- the effect of the splicing gap between the front panel units on the display effect achieves seamless splicing; Compared with the traditional structure using an optical lens to eliminate the splicing gap, the cost is saved, the influence of the lens alignment accuracy on the display effect is avoided, and the yield of the OLED splicing screen is improved;
- the conductive film is used to connect the OLED front plate and the TFT driving back plate, thereby avoiding the use of the contact wall, thereby increasing the
- the effective light-emitting area of the OLED front panel unit improves the display aperture ratio and improves the display effect; and the conductive adhesive film can improve the OLED front panel unit and the TFT
- the effective contact between the driving back plates overcomes the problem that the alignment precision caused by the metal hard contact in the prior art is difficult to control, the assembly is difficult, and the docking stability is poor, so that the service life of the display screen is longer; at the same time, the conductive adhesive is used.
- Membrane docking The OLED front panel and the TFT driver backplane also facilitate the fabrication of flexible displays.
- FIG. 1 is a schematic perspective structural view of an OLED spliced display screen according to an embodiment of the present invention
- FIG. 2 is a side view showing a first structure of an OLED spliced display screen according to an embodiment of the present invention
- FIG. 3 is a side view showing a second structure of an OLED spliced display screen according to an embodiment of the present invention.
- FIG. 4 is a side view showing a third structure of an OLED spliced display screen according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a TFT driving backplane according to an embodiment of the present invention.
- FIG. 6 is another schematic structural diagram of a TFT driving backplane according to an embodiment of the present invention.
- FIG. 7 is a flow chart of manufacturing an OLED splicing display screen according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a splicing manner of an OLED splicing display screen according to an embodiment of the present invention.
- FIG. 9 is a schematic diagram of another splicing manner of an OLED spliced display screen according to an embodiment of the present invention.
- FIG 1 is a perspective view showing the three-dimensional structure of the OLED spliced display screen of the present invention
- FIGS. 2, 3, and 4 The side views of the first, second, and third structures of the OLED spliced display screen provided by the present embodiment are respectively shown, and for convenience of explanation, only the parts related to the present embodiment are shown.
- the OLED spliced display includes an OLED front panel 1 and is used to drive the OLED front panel 1
- the light-emitting TFT drives the backplane 2
- a package substrate 3 is further disposed on the light-emitting side of the OLED front panel 1.
- the TFT driving backplane 2 is a single structure
- the OLED front panel 1 The splicing structure is formed by splicing a plurality of OLED front panel units 11 , and each OLED front panel unit 11 is connected to the TFT driving back panel 2 through a conductive adhesive film 4 on the TFT.
- a flat OLED front plate 1 is formed on the driving back plate 2, wherein the conductive film 4 is preferably an anisotropic conductive film.
- OLED front panel 1 It is composed of a plurality of relatively small-sized OLED front panel units 11 , and the yield of the small-sized OLED front panel unit is high, so that the yield of directly splicing the OLED front panel unit 11 is much higher than that directly
- a single-block OLED front panel is fabricated on the TFT driving backplane 2, so that the invention can improve the production efficiency and yield of the OLED splicing display, and greatly reduce the cost;
- the structure eliminates the splicing gap caused by the row/column scan driving circuit, and greatly reduces the width of the splicing gap. Conducive to the realization of seamless splicing; and, compared with the traditional structure using an optical lens to eliminate the splicing gap, the cost is saved, the influence of the lens alignment accuracy on the display effect is avoided, and the OLED is improved.
- conductive film 4 to dock OLED front panel 1 and TFT drive backplane 2
- the use of the contact partition wall is avoided, thereby increasing the effective light-emitting area of the OLED front panel unit 11, improving the display aperture ratio, thereby improving the display effect of the spliced display screen; and, the conductive adhesive film 4 can be improved
- the effective contact between the OLED front panel unit 11 and the TFT driving backplane 2 overcomes the alignment caused by the metal hard contact in the prior art. The precision is difficult to control, the assembly is difficult, and the stability of the docking is poor, so that the display has a longer service life.
- the conductive film 4 is used to dock the OLED front panel 1 and the TFT driver backplane 2 It is also conducive to the production of flexible displays.
- the OLED front panel unit 11 may be disposed on the package substrate 3.
- the splicing gap between the two is a pair of occlusion portions 5, and the plurality of occlusion portions 5 may be collectively referred to as a black matrix.
- the occlusion portion 5 may also be used to block the pixel partition wall 110. Can be completely eliminated by the shielding part 5 The effect of the splicing gap between the OLED front panel units 11 on the display effect improves the display quality.
- the OLED front panel unit 11 in this embodiment includes at least a laminated transparent substrate 111.
- the anode layer 112, the organic material layer 113 and the cathode layer 114 may further be provided with a buffer layer 115 between the transparent substrate 111 and the anode layer 112.
- TFT driver backplane 2 Included at least with a support substrate 21 and a TFT unit disposed on the support substrate 21, the TFT unit including a gate electrode 22, a source electrode 23 and a drain electrode 24 in the TFT
- An encapsulation layer 25 is usually provided outside the unit to protect the internal TFT unit.
- the interface between the OLED front panel unit 11 and the TFT driving backplane 2 in this embodiment is mainly embodied in the OLED front panel unit.
- the cathode layer 114 of the 11 is electrically connected to the source 23 or the drain 24 of the TFT driving backplane 2.
- the cathode layer 114 of the OLED front panel unit 11 and the TFT The electrical connection of the source 23 or drain 24 of the drive backplane 2 can be achieved by:
- the cathode layer 114 of the OLED front panel unit 11 can be passed through the first metal wiring layer 6 Leading, the source 23 or the drain 24 of the TFT driving backplane 2 is taken out through the second metal wiring layer 7, and then the first metal wiring layer 6 and the second metal wiring layer 7 are passed through the conductive adhesive film 4 Docking.
- the first metal lead layer 6 may be directly disposed on the surface of the cathode layer 114, and the cathode layer 114. Directly electrically connected, and then the cathode layer 114 is taken out, as shown in Fig. 2. With further reference to FIG. 3, an indirect electrical connection may also be made to the cathode layer 114. Specifically, the cathode layer 114 An additional encapsulation layer 116 may be provided on the surface to enhance the protection of the OLED front panel 1. In order to distinguish from the encapsulation layer of the TFT driving backplane 2, the cathode layer 114 is used in this embodiment.
- the encapsulation layer of the surface is named 'first encapsulation layer', and the encapsulation layer of the TFT driving backplane 2 is named 'second encapsulation layer'.
- the first encapsulation layer 116 has a plurality of first via holes 117, and the first via holes 117 is filled with a conductive medium.
- the conductive medium can be made of the same material as the first metal lead layer 6.
- the first metal lead layer 6 is disposed on the surface of the first encapsulation layer 116 and is connected to the first via hole 117.
- the conductive medium is in contact with each other, and the other end of the conductive medium is in contact with the cathode layer 114, thereby indirectly electrically connecting the first metal wiring layer 6 and the cathode layer 114.
- the second encapsulation layer 25 of the TFT driving backplane 2 may be provided with a plurality of second via holes 26
- the second via hole 26 is opened from the second encapsulation layer 25 to the source 23 or the drain 24, and is filled with a conductive medium, and the second metal lead layer 7 is disposed on the second encapsulation layer 25
- the surface is electrically connected to the source 23 or the drain 24 through the conductive medium of the second via 251.
- the second metal wiring layer 7 and the first metal wiring layer 6 pass through the conductive adhesive film 4
- the cathode layer 114 of the OLED front panel unit 11 and the source 23 or the drain 24 of the TFT driving backplane 2 are electrically connected and driven by the TFT circuit.
- OLED pixels emit light.
- a metal wiring layer (third metal wiring layer) may be disposed only on the TFT driving backplane 2. 8), and the metal lead layer is not provided on the OLED front panel unit 11. Also, the third metal lead layer 8 on the TFT driving backplane 2 can still pass through the second via hole 26
- the conductive medium in the lead source leads the source 23 or the drain 24 and directly interfaces with the cathode layer 114 of the OLED front panel unit 11 through the conductive film 4.
- the cathode layer 114 Not only is it a necessary functional structural layer of the OLED front panel unit 11, but also has the function of the first metal wiring layer 6 described above, which does not require the fabrication of the first metal wiring layer 6 The manufacturing process is simplified, the cost is saved, and the thickness of the display screen is reduced.
- the TFT unit of the TFT driving backplane 2 may specifically adopt a bottom gate (the gate 22 is close to the supporting substrate 21). Or a top gate (the gate 22 is away from the support substrate 21, the source 23 and the drain 24 are close to the support substrate 21). As shown in Figure 5, when the bottom gate structure is used, the TFT unit is self-supporting the substrate. From the 21st, the gate 22, the semiconductor layer 27, the insulating layer 28, the source 23 and the drain 24 are in turn, and the second via hole 26 penetrates the second encapsulation layer 25 at this time.
- the TFT unit is the source 23 and the drain 24, the semiconductor layer 27, the insulating layer 28, and the gate 22 from the support substrate 21, and the second via hole 26 at this time.
- the second encapsulation layer 25 and the insulating layer 28 are penetrated.
- the screens shown in Figures 2, 3, and 4 all use a TFT unit with a bottom gate structure and a top gate TFT. The display structure of the unit is no longer shown.
- the present invention is not limited to the above structure as long as the TFT in the single structure It is within the scope of the present invention to splicing the OLED front panel unit on the driving backplane and splicing the OLED front panel units on the display panel above the TFT driving backplane through the conductive adhesive film.
- the present invention further provides a method for fabricating the above OLED spliced display screen, the method comprising the following steps, specifically referring to FIG. 7
- FIG. 7 The flowchart shown and the block diagram shown in Figure 2.
- step S101 a TFT driving backplane of a single structure and a plurality of OLED front panel units are prepared;
- the OLED front panel unit 11 includes at least a transparent substrate 111 and an anode layer 112 which are sequentially laminated. , an organic material layer 113 and a cathode layer 114. Further, an encapsulation layer (first encapsulation layer 116) may be disposed on the surface of the cathode layer 114 to protect the internal structure.
- TFT The driving backplane 2 includes at least one supporting substrate 21 on which a gate 22, a source 23 and a drain 24 are provided to form a TFT unit, in the TFT An encapsulation layer (second encapsulation layer 25) is provided outside the unit for protecting the internal TFT unit.
- second via holes 251 may be formed on the second encapsulation layer 25 to facilitate subsequent OLEDs.
- the front panel 1 is docked with the TFT drive backplane 2.
- the size of the TFT driving backplane 2 can be determined according to the size of the actual OLED display to be fabricated, and the OLED front panel unit 11 The size is determined by the ease of the manufacturing process combined with the size after splicing.
- step S102 a plurality of OLED front panel units 11 are bonded to the TFT driving backplane through the conductive adhesive film 4 Forming a spliced OLED front panel 1 on the TFT driving backplane 2;
- the electrical connection between the two can be mainly embodied in the cathode layer 114 of the OLED front panel unit 11 and the source 23 or drain of the TFT driving backplane 2. Electrical connection between.
- step S103 a package substrate 3 is disposed on the light outgoing side of the OLED front panel 1.
- the package substrate 3 may be provided with a shielding portion 5.
- a light-emitting side is provided with a substrate, and then a shielding portion 5 is disposed at a corresponding position on the substrate; or the shielding portion 5 may be first disposed on the substrate according to the position of the predetermined bonding gap, and then the package substrate 3 of the shielding portion 5 is disposed. Placed on the light exit side of the OLED front panel 1.
- the cathode layer 114 of the OLED front panel unit 11 and the TFT driving backplane The electrical connection between source 23 or drain 24 of 2 can be accomplished in a number of ways.
- a first metal wiring layer 6 may be disposed on the cathode layer 114 of the OLED front panel unit 11, and a second metal wiring layer 7 may be disposed on the second encapsulation layer 25 of the TFT driving back panel 2. And, the second metal wiring layer 7 drives the source 23 or the drain 24 through the second via hole 26 on the second encapsulation layer 25 of the backplane 2 through the TFT.
- the second via hole 26 on the second encapsulation layer 25 of the driving backplane 2 is filled with a conductive medium to bring the conductive medium into contact with the source 23 or the drain 24, and the second metal wiring layer is disposed.
- the material forming the second metal lead layer is filled with the second via hole 26, and the second metal via layer 7 can be filled with the second metal via layer.
- Source 23 or drain 24 leads.
- a surface of the first metal wiring layer 7 and/or the second metal wiring layer 7 is coated with a conductive adhesive film 4, and then the first metal wiring layer 6 and the second metal wiring layer 7 are further applied. Docking, the display of the structure shown in Figure 2 can be formed.
- a first encapsulation layer 116 is provided for the OLED front panel unit 11
- a plurality of via holes may be formed in advance, and then the first metal wiring layer 6 is disposed on the first encapsulation layer 116. And filling the metal material with the first via hole 117, thereby drawing the cathode layer 114, and then driving the first metal wiring layer 6 and the second metal wiring layer 7 on the TFT driving back plate 2 through the conductive film 4 Docking to form the display of the structure shown in Figure 3.
- the OLED front panel unit 11 may be only in the TFT
- a metal lead layer (third metal lead layer 8) is disposed on the driving back plate 2, and no metal wiring layer is disposed on the OLED front plate unit 11, and the cathode layer 114 and the TFT are directly connected.
- the third metal lead layer 8 on the driving backplane is docked by the conductive film 4 to form a display screen of the structure shown in FIG.
- the method provided by the invention splices OLED on a TFT drive backplane of a single structure
- the structure of the front panel is formed to form a single back panel, and the yield and the production efficiency are lower and the cost is lower than that of preparing the same size OLED front panel directly on the TFT driving backplane; and the method eliminates OK /
- the splicing gap caused by the column scan driving circuit can realize seamless splicing; and, Compared with the traditional structure using an optical lens to eliminate the splicing gap, the cost is saved, the influence of the lens alignment accuracy on the display effect is avoided, and the yield of the OLED splicing screen is further improved;
- the conductive film is used to dock the OLED front plate and the TFT drive back plate, which avoids the use of the contact partition and increases the OLED.
- the effective light-emitting area of the front panel unit improves the display aperture ratio, thereby improving the display effect of the spliced display screen; and the conductive adhesive film can improve the OLED front panel unit and the TFT.
- the effective contact between the driving back plates overcomes the problem that the alignment precision caused by the metal hard contact in the prior art is difficult to control, the assembly is difficult, and the docking stability is poor, so that the service life of the display screen is longer; Membrane docking The OLED front panel and the TFT driver backplane also facilitate the fabrication of flexible displays.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种适用于显示技术领域的OLED拼接显示屏,包括OLED前板(1)及单体结构的TFT驱动背板(2),在OLED前板(1)之出光侧还设有封装基板(3)。OLED前板(1)包括多块相互拼接的OLED前板单元(11)。OLED前板单元(11)通过导电胶膜与TFT驱动背板(2)对接。通过在TFT背板(2)上拼接OLED前板单元(11),提高了显示屏的生产效率及良品率,降低了成本。拼接OLED前板(1)减小了拼接缝隙,可实现无缝拼接。与传统的采用光学透镜来消除拼接缝隙的结构相比,提高了拼接显示屏的良品率。使用导电胶膜对接OLED前板(1)与TFT驱动背板(2),提高了显示开口率。并且该显示屏克服了对位精度难以控制及稳定性差的问题。
Description
本发明属于显示技术领域,特别涉及一种 OLED 拼接显示屏及其制造方法。
目前,基于各种显示技术(如 PDP 、 LCD 、 OLED
等)的显示器件大多由于其自身尺寸的限制,难以同时得到低成本、高良品率的大屏幕显示器,从而影响了高性能、大屏幕显示技术的发展,限制了显示技术在会议室、家庭影院、室外广告等领域的应用。
有机电致发光( OLED )技术因其主动发光、超薄、低电压、快速响应、高亮度、宽视角等优点,成为新兴的显示技术,多款大屏幕、高清 OLED
显示屏产品已经进入平面显示市场。现有常用的 OLED 显示屏制备技术主要为在制备好的 TFT 驱动基板上直接制备 OLED 发光像素单元,而制备大面积的
OLED 发光板非常困难,成本很高, OLED 显示屏随着屏幕尺寸的增加,制备成本会指数上升,良品率也会降低。
现有技术多采用拼接显示屏的方式直接拼接超窄边框的多块显示屏,由于显示屏边缘的行 /
列扫描驱动电路的存在,仍无法真正实现'无缝'拼接,现有技术还有使用光学透镜阵列将图像放大到拼接屏边框区域以实现无缝显示,但
光学透镜的使用及精确对位增大了制备成本并降低了良品率,使大尺寸显示器件的制备工艺更复杂,成本更高。
综上,现有技术中的大尺寸拼接 OLED 显示屏仍存在拼接缝隙难以消除、良品率低的问题。
本发明的目的 在于提供一种 OLED 拼接显示屏 ,旨在实现 OLED
显示屏的无缝拼接,且可控制成本并提高 显示屏的 良品率。
本发明是这样实现的, 一种 OLED 拼接显示屏,包括 OLED 前板及单体结构的 TFT
驱动背板,在所述 OLED 前板之出光侧还设有封装基板;
所述 OLED 前板包括多块相互拼接的 OLED 前板单元;
所述 OLED 前板单元通过导电胶膜与所述 TFT 驱动背板对接。
本发明的另一目的 在于提供 一种制作 OLED 拼接显示屏的方法,包括下述步骤:
制备单体结构的 TFT 驱动背板及多个 OLED 前板单元;
将多个 OLED 前板单元通过导电胶膜贴合到所述 TFT 驱动背板上,在所述 TFT
驱动背板上形成拼接的 OLED 前板;
在所述 OLED 前板的出光侧设置封装基板。
本发明在单体结构的 TFT 驱动背板上拼接 OLED 前板单元,由于小尺寸 OLED
前板单元的良品率较高,使得直接拼接 OLED 前板单元的良品率远高于直接在 TFT 驱动背板上制造单块同尺寸 OLED 前板,从而使得本发明能够提高 OLED
拼接显示屏的生产效率及良品率,并大幅降低成本;
另外,拼接 OLED 前板消除了 行 / 列扫描驱动电路导致的拼接缝隙, 大幅度减小了 OLED
前板单元间的拼接缝隙对显示效果的影响,实现了无缝拼接;
与传统的采用光学透镜来消除拼接缝隙的结构相比,既节约了成本,又避免了透镜对位精度对显示效果的影响,提高了 OLED 拼接屏的良品率;
并且,使用导电胶膜对接 OLED 前板与 TFT 驱动背板,避免了接触隔壁的使用,从而增大了
OLED 前板单元的有效发光面积,提高了显示开口率,改善了显示效果;并且,导电胶膜可以提高 OLED 前板单元和 TFT
驱动背板间的有效接触,克服了现有技术中金属硬接触导致的对位 精度难以控制、组装难度大,及对接稳定性差的问题,使显示屏的使用寿命更长;同时,采用导电胶膜对接
OLED 前板与 TFT 驱动背板 ,还有利于柔性显示屏的制作。
图 1 是本发明实施例 OLED 拼接显示屏的立体结构示意图;
图 2 是本发明实施例 OLED 拼接显示屏的第一种结构的侧视图;
图 3 是本发明实施例 OLED 拼接显示屏的第二种结构的侧视图;
图 4 是本发明实施例 OLED 拼接显示屏的第三种结构的侧视图;
图 5 是本发明实施例中 TFT 驱动背板的一种结构示意图;
图 6 是本发明实施例中 TFT 驱动背板的另一种结构示意图;
图 7 是本发明实施例 OLED 拼接显示屏的制作流程图;
图 8 是本发明实施例 OLED 拼接显示屏的一种拼接方式示意图;
图 9 是本发明实施例 OLED 拼接显示屏的另一种拼接方式示意图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下通过具体实施例对本发明进行更加详细的说明。
图 1 示出了本发明 OLED 拼接显示屏的立体结构示意图,图 2 、 3 、 4
分别示出了本实施例提供的 OLED 拼接显示屏的第一、二、三种结构的侧视图,为了便于说明,仅示出了与本实施例相关的部分。
如图 1 、 2 ,该 OLED 拼接显示屏包括 OLED 前板 1 以及用于驱动 OLED 前板 1
发光的 TFT 驱动背板 2 ,在 OLED 前板 1 之出光侧还设有封装基板 3 。其中, TFT 驱动背板 2 为单体结构,而 OLED 前板 1
则为拼接结构,由多块 OLED 前板单元 11 拼接而成,每块 OLED 前板单元 11 均通过导电胶膜 4 对接于 TFT 驱动背板 2 上,在 TFT
驱动背板 2 上形成平整的 OLED 前板 1 ,其中,导电胶膜 4 优选为各向异性导电胶膜。
该 OLED 拼接显示屏通过简洁的结构消除了传统 OLED 拼接屏的多种缺陷。第一, OLED 前板
1 由多块相对小尺寸的 OLED 前板单元 11 拼接而成,小尺寸 OLED 前板单元的良品率高,使得直接拼接 OLED 前板单元 11 的良品率远高于直接在
TFT 驱动背板 2 上制造单块同尺寸 OLED 前板,从而使得本发明能够提高 OLED 拼接显示屏的生产效率及良品率,并大幅降低成本;
第二,该结构消除了 行 / 列扫描驱动电路导致的拼接缝隙,极大的减小了拼接缝隙的宽度,
有利于实现无缝拼接;并且, 与传统的采用光学透镜来消除拼接缝隙的结构相比,既节约了成本,又避免了透镜对位精度对显示效果的影响,提高了 OLED
拼接屏的良品率;
第三,使用导电胶膜 4 对接 OLED 前板 1 与 TFT 驱动背板 2
,避免了接触隔壁的使用,从而增大了 OLED 前板单元 11 的有效发光面积,提高了显示开口率,进而改善拼接显示屏的显示效果;并且,导电胶膜 4 可以提高
OLED 前板单元 11 和 TFT 驱动背板 2 间的有效接触,克服了现有技术中金属硬接触导致的对位
精度难以控制、组装难度大,及对接稳定性差的问题,使显示屏的使用寿命更长;另外,采用导电胶膜 4 对接 OLED 前板 1 与 TFT 驱动背板 2
,还有利于柔性显示屏的制作。
参考图 3 ,作为一种优选的方案,可以在封装基板 3 上设置与 OLED 前板单元 11
之间的拼接缝隙一一对位的遮挡部 5 ,多个遮挡部 5 可统一称为黑矩阵,另外,遮挡部 5 还可用于遮挡像素隔壁 110 。 通过遮挡部 5 可彻底消除
OLED 前板单元 11 间的拼接缝隙对显示效果的影响,提升显示质量。
进一步参考图 2 ,本实施例中的 OLED 前板单元 11 至少包括叠层设置的透明基板 111
、阳极层 112 、有机材料层 113 及阴极层 114 ,还可进一步在透明基板 111 和阳极层 112 之间设置一缓冲层 115 。 TFT 驱动背板 2
至少包括一支撑基板 21 ,以及设置于支撑基板 21 上的 TFT 单元, TFT 单元包括栅极 22 、源极 23 和漏极 24 ,在 TFT
单元之外通常设有封装层 25 ,起到保护内部 TFT 单元的作用。
本实施例中的 OLED 前板单元 11 与 TFT 驱动背板 2 的对接主要体现于 OLED 前板单元
11 的阴极层 114 与 TFT 驱动背板 2 的源极 23 或漏极 24 的电连接。具体的, OLED 前板单元 11 的阴极层 114 与 TFT
驱动背板 2 的源极 23 或漏极 24 的电连接可以通过以下方式实现:
作为第一种实现方式,可以将 OLED 前板单元 11 的阴极层 114 通过第一金属引线层 6
引出,将 TFT 驱动背板 2 的源极 23 或漏极 24 通过第二金属引线层 7 引出,然后将第一金属引线层 6 和 第二金属引线层 7 通过导电胶膜 4
对接。
在该实现方式中,第一金属引线层 6 可以直接设置于阴极层 114 的表面,与阴极层 114
直接电性连接,进而将阴极层 114 引出,如图 2 。进一步参考图 3 ,还可以与阴极层 114 进行间接电性连接,具体的,阴极层 114
的表面可以另外设置一层封装层 116 ,以加强对 OLED 前板 1 的保护。为了与 TFT 驱动背板 2 的封装层相区别,本实施例将阴极层 114
表面的封装层命名为'第一封装层',将 TFT 驱动背板 2 的封装层命名为'第二封装层'。该第一封装层 116 具有若干第一导通孔 117 ,第一导通孔
117 中填充有导电介质,导电介质可以和第一金属引线层 6 采用相同的材料,第一金属引线层 6 设置于第一封装层 116 的表面,并与第一导通孔 117
中的导电介质相接触,导电介质的另一端与阴极层 114 相接触,进而使第一金属引线层 6 与阴极层 114 实现间接的电连接。
在该实现方式中, TFT 驱动背板 2 的第二封装层 25 可以设有若干第二导通孔 26
,该第二导通孔 26 自第二封装层 25 开到源极 23 或漏极 24 ,且其中填充有导电介质,第二金属引线层 7 则设置于第二封装层 25
的表面,通过第二导通孔中 251 的导电介质与源极 23 或漏极 24 实现电连接。这样,第二金属引线层 7 与第一金属引线层 6 通过导电胶膜 4
对接后,使得 OLED 前板单元 11 的阴极层 114 和 TFT 驱动背板 2 的源极 23 或漏极 24 实现了电连接,进而通过 TFT 电路驱动
OLED 像素发光。
作为第二种实现方式,如图 4 ,可以只在 TFT 驱动背板 2 上设置一层金属引线层(第三金属引线层
8 ),而 OLED 前板单元 11 上不设置金属引线层。并且, TFT 驱动背板 2 上的 第三金属引线层 8 依然可以通过其第二导通孔 26
中的导电介质将其源极 23 或漏极 24 引出,并且直接与 OLED 前板单元 11 的阴极层 114 通过导电胶膜 4 对接。在该实现方式中,阴极层 114
不仅作为 OLED 前板单元 11 的一个必要的功能结构层,同时还具有上述的第一金属引线层 6 的作用,这种结构不需另外制作第一金属引线层 6
,在制作工艺上得到了简化,并节约了成本,且使显示屏厚度有所减小。
在本实施例中, TFT 驱动背板 2 的 TFT 单元具体可采用底栅极(栅极 22 靠近支撑基板 21
)或顶栅极(栅极 22 远离支撑基板 21 ,源极 23 和漏极 24 靠近支撑基板 21 )结构。如图 5 ,当采用底栅极结构时, TFT 单元自支撑基板
21 起依次为栅极 22 、半导体层 27 、绝缘层 28 、源极 23 和漏极 24 ,此时第二导通孔 26 贯穿第二封装层 25 。如图 6
,若采用顶栅极结构, TFT 单元自支撑基板 21 起依次为源极 23 和漏极 24 、半导体层 27 、绝缘层 28 、栅极 22 ,此时第二导通孔 26
贯穿第二封装层 25 和绝缘层 28 。图 2 、 3 、 4 所示显示屏均采用底栅极结构的 TFT 单元,采用顶栅极 TFT
单元的显示屏结构不再示出。
以上仅提供几种 OLED 显示屏的具体结构,但本发明不仅限于上述结构,只要在单体结构的 TFT
驱动背板上拼接 OLED 前板单元,并且通过导电胶膜将各 OLED 前板单元拼接于 TFT 驱动背板之上的显示屏,均在本发明的保护范围内。
本发明进一步提供一种制作上述 OLED 拼接显示屏的方法,该方法包括下述步骤,具体可参考图 7
所示的流程图及图 2 所示的结构图。
在步骤 S101 中,制备单体结构的 TFT 驱动背板及多个 OLED 前板单元;
在该步骤中, OLED 前板单元 11 至少包括依次叠层设置的透明基板 111 、阳极层 112
、有机材料层 113 及阴极层 114 。进一步的,还可以在阴极层 114 的表面设置一层封装层(第一封装层 116 ),对内部结构起到保护作用。 TFT
驱动背板 2 至少包括一支撑基板 21 ,在支撑基板 21 上设有栅极 22 、源极 23 和漏极 24 ,以形成 TFT 单元,在 TFT
单元之外设有一封装层(第二封装层 25 ),用于保护内部的 TFT 单元。
进一步的,可以在第二封装层 25 上开设若干个导通孔(第二导通孔 251 ),方便后续的 OLED
前板 1 与 TFT 驱动背板 2 的对接。并且, TFT 驱动背板 2 的尺寸可以根据实际要制作的 OLED 显示屏的大小确定,而 OLED 前板单元 11
的尺寸则根据制造工艺的难易结合拼接后的尺寸确定。
在步骤 S102 中,将多个 OLED 前板单元 11 通过导电胶膜 4 贴合到 TFT 驱动背板 2
上,在 TFT 驱动背板 2 上形成拼接的 OLED 前板 1 ;
在本实施例中, OLED 前板 1 与 TFT 驱动背板 2
贴合之后,二者之间的电连接关系可以主要体现在 OLED 前板单元 11 的阴极层 114 和 TFT 驱动背板 2 的源极 23 或漏极 24
之间的电连接。
在步骤 S103 中,在 OLED 前板 1 的出光侧设置封装基板 3 。
优选的,封装基板 3 可以设有遮挡部 5 。具体的,可以先在 OLED 前板 1
的出光侧设置一基板,然后在该基板上的相应位置设置遮挡部 5 ;也可以先在基板上根据预设的拼接缝隙的位置设置遮挡部 5 ,然后将设置好遮挡部 5 的封装基板 3
置于 OLED 前板 1 的出光侧。
进一步的,在上述步骤 S102 中, OLED 前板单元 11 的阴极层 114 和 TFT 驱动背板
2 的源极 23 或漏极 24 之间的电连接可以通过多种方式实现。
作为第一种实现方式:如图 8 ,针对 OLED 前板单元 11 未设有第一封装层 116 的情况,
可以 在 OLED 前板单元 11 的阴极层 114 上设置第一金属引线层 6 ,在 TFT 驱动背板 2 的第二封装层 25 上设置第二金属引线层 7
,并且,第二金属引线层 7 通过 TFT 驱动背板 2 的第二封装层 25 上的第二导通孔 26 将源极 23 或漏极 24 引出。具体的,可以预先在 TFT
驱动背板 2 的第二封装层 25 上的第二导通孔 26 中填充导电介质,使导电介质与源极 23 或漏极 24 接触,在设置第二金属引线层 7
时使之与导电介质相接触,进而将源极 23 或漏极 24 引出;也可以在设置第二金属引线层 7 时使形成第二金属引线层的材料填充第二导通孔 26 ,同样可将源极
23 或漏极 24 引出。然后,在第一金属引线层 7 和 / 或第二金属引线层 7 的表面涂覆导电胶膜 4 ,再将第一金属引线层 6 和第二金属引线层 7
对接,可形成图 2 所示结构的显示屏。
作为第二种实现方式:如图 9 ,针对 OLED 前板单元 11 设有第一封装层 116
的情况,可以预先在第一封装层 116 上开设若干导通孔(第一导通孔 117 ),然后在第一封装层 116 上设置第一金属引线层 6
,并使金属材料充满第一导通孔 117 ,进而将阴极层 114 引出,然后将第一金属引线层 6 与 TFT 驱动背板 2 上的第二金属引线层 7 通过导电胶膜
4 对接,可形成图 3 所示结构的显示屏。
作为第三种实现方式:针对 OLED 前板单元 11 未设有第一封装层 116 的情况,可以只在 TFT
驱动背板 2 上设置一层金属引线层(第三金属引线层 8 ),而 OLED 前板单元 11 上不设置金属引线层,直接将阴极层 114 与 TFT
驱动背板上的第三金属引线层 8 通过导电胶膜 4 对接,可形成图 4 所示结构的显示屏。
本发明提供的方法在单体结构的 TFT 驱动背板上拼接 OLED
显示前板,形成单背板拼前板的结构,与直接在 TFT 驱动背板上制备同尺寸的 OLED 前板相比,其良品率和生产效率更高,成本更低;并且,该方法消除了 行 /
列扫描驱动电路导致的拼接缝隙,可实现无缝拼接;并且,
与传统的采用光学透镜来消除拼接缝隙的结构相比,既节约了成本,又避免了透镜对位精度对显示效果的影响,进一步提高了 OLED 拼接屏的良品率;
另外,使用导电胶膜对接 OLED 前板与 TFT 驱动背板,避免了接触隔壁的使用,增大了 OLED
前板单元的有效发光面积,提高了显示开口率,进而改善拼接显示屏的显示效果;并且,导电胶膜可以提高 OLED 前板单元和 TFT
驱动背板间的有效接触,克服了现有技术中金属硬接触导致的对位 精度难以控制、组装难度大,及对接稳定性差的问题,使显示屏的使用寿命更长;另外,采用导电胶膜对接
OLED 前板与 TFT 驱动背板 ,还有利于柔性显示屏的制作。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (16)
- 一种 OLED 拼接显示屏,其特征在于,包括 OLED 前板及单体结构的 TFT 驱动背板,在所述 OLED 前板之出光侧还设有封装基板;所述 OLED 前板包括多块相互拼接的 OLED 前板单元;所述 OLED 前板单元通过导电胶膜与所述 TFT 驱动背板对接。
- 如权利要求 1 所述的 OLED 拼接显示屏,其特征在于,所述封装基板上设有与所述 OLED 前板单元之间的拼接缝隙一一对位的遮挡部。
- 如权利要求 1 所述的 OLED 拼接显示屏,其特征在于,所述导电胶膜为各向异性导电胶膜。
- 如权利要求 1 、 2 或 3 所述的 OLED 拼接显示屏,其特征在于,所述 OLED 前板单元包括依次叠层设置的透明基板、阳极层、有机材料层及阴极层,所述阴极层与所述 TFT 驱动背板的源极或漏极通过所述导电胶膜电连接。
- 如权利要求 4 所述的 OLED 拼接显示屏,其特征在于,所述阴极层通过第一金属引线层引出,所述 TFT 驱动背板的源极或漏极通过第二金属引线层引出,所述第一金属引线层和 第二金属引线层通过所述导电胶膜对接。
- 如权利要求 5 所述的 OLED 拼接显示屏,其特征在于,所述第一金属引线层设置于所述阴极层的表面。
- 如权利要求 5 所述的 OLED 拼接显示屏,其特征在于,所述阴极层的表面设有具有第一导通孔的第一封装层,所述第一导通孔中填充有导电介质,所述第一金属引线层设置于所述第一封装层的表面,并通过所述导电介质与所述阴极层电连接。
- 如权利要求 5 所述的 OLED 拼接显示屏,其特征在于,所述 TFT 驱动背板包括支撑基板、设置于所述支撑基板上的包括有栅极和所述源极和漏极的 TFT 单元,以及设于所述 TFT 单元之外的第二封装层;自所述第二封装层到所述源极或漏极之间开设有第二导通孔,且所述第二导通孔中填充有导电介质;所述第二金属引线层设置于所述第二封装层的表面,通过所述第二导通孔中的导电介质与所述源极或漏极电连接。
- 如权利要求 4 所述的 OLED 拼接显示屏,其特征在于,所述 TFT 驱动背板的源极或漏极通过第三金属引线层引出,所述阴极层和 第三金属引线层通过所述导电胶膜对接。
- 一种制作 OLED 拼接显示屏的方法,其特征在于,包括下述步骤:制备单体结构的 TFT 驱动背板及多个 OLED 前板单元;将多个 OLED 前板单元通过导电胶膜贴合到所述 TFT 驱动背板上,在所述 TFT 驱动背板上形成拼接的 OLED 前板;在所述 OLED 前板的出光侧设置封装基板。
- 如权利要求 10 所述的方法,其特征在于,所述封装基板上设有与所述 OLED 前板单元之间的拼接缝隙一一对位的遮挡部。
- 如权利要求 10 或 11 所述的方法,其特征在于,所述 OLED 前板单元包括依次叠层设置的透明基板、阳极层、有机材料层及阴极层。
- 如权利要求 10 或 11 所述的方法,其特征在于,将多个 OLED 前板单元通过导电胶膜贴合到所述 TFT 驱动背板上的步骤具体为:在所述 OLED 前板单元上设置第一金属引线层,将所述阴极层引出;在所述 TFT 驱动背板上设置第二金属引线层,将所述 TFT 驱动背板的源极或漏极引出;将所述第一金属引线层通过所述导电胶膜与所述第二金属引线层对接。
- 如权利要求 13 所述的方法,其特征在于,所述第一金属引线层设置于所述阴极层的表面。
- 如权利要求 13 所述的方法,其特征在于,所述阴极层的表面还设有一封装层,所述封装层具有填充有导电介质的导通孔,所述第一金属引线层设置于所述封装层的表面,并通过所述导通孔中的导电介质与所述阴极层电连接。
- 如权利要求 10 或 11 所述的方法,其特征在于,将多个 OLED 前板单元通过导电胶膜贴合到所述 TFT 驱动背板上的步骤具体为:在所述 TFT 驱动背板上设置第三金属引线层,将所述 TFT 驱动背板的源极或漏极引出;将 OLED 前板单元的阴极层通过导电胶膜与所述 TFT 驱动背板上的第二金属引线层对接。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/083028 WO2014059601A1 (zh) | 2012-10-16 | 2012-10-16 | 一种oled拼接显示屏及其制造方法 |
CN201280001474.7A CN103907190B (zh) | 2012-10-16 | 2012-10-16 | 一种oled拼接显示屏及其制造方法 |
US14/688,485 US9590025B2 (en) | 2012-10-16 | 2015-04-16 | Tiled OLED display and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/083028 WO2014059601A1 (zh) | 2012-10-16 | 2012-10-16 | 一种oled拼接显示屏及其制造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/688,485 Continuation-In-Part US9590025B2 (en) | 2012-10-16 | 2015-04-16 | Tiled OLED display and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014059601A1 true WO2014059601A1 (zh) | 2014-04-24 |
Family
ID=50487425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/083028 WO2014059601A1 (zh) | 2012-10-16 | 2012-10-16 | 一种oled拼接显示屏及其制造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9590025B2 (zh) |
CN (1) | CN103907190B (zh) |
WO (1) | WO2014059601A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019085115A1 (zh) * | 2017-11-01 | 2019-05-09 | 深圳市华星光电半导体显示技术有限公司 | Oled封装方法与oled封装结构 |
US10446790B2 (en) | 2017-11-01 | 2019-10-15 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | OLED encapsulating structure and manufacturing method thereof |
CN111028697A (zh) * | 2018-10-09 | 2020-04-17 | 财团法人工业技术研究院 | 拼接显示装置 |
CN111128048A (zh) * | 2020-02-14 | 2020-05-08 | 广州新视界光电科技有限公司 | 显示面板以及显示装置 |
CN111769048A (zh) * | 2020-07-10 | 2020-10-13 | 山东傲晟智能科技有限公司 | 一种显示屏及其制造方法 |
US11810484B2 (en) | 2018-10-09 | 2023-11-07 | Industrial Technology Research Institute | Spliced display |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102098261B1 (ko) | 2014-06-18 | 2020-04-08 | 엑스-셀레프린트 리미티드 | 마이크로 어셈블링된 led 디스플레이들 |
US10380930B2 (en) | 2015-08-24 | 2019-08-13 | X-Celeprint Limited | Heterogeneous light emitter display system |
US10230048B2 (en) | 2015-09-29 | 2019-03-12 | X-Celeprint Limited | OLEDs for micro transfer printing |
US10066819B2 (en) | 2015-12-09 | 2018-09-04 | X-Celeprint Limited | Micro-light-emitting diode backlight system |
US10153256B2 (en) | 2016-03-03 | 2018-12-11 | X-Celeprint Limited | Micro-transfer printable electronic component |
US10008483B2 (en) | 2016-04-05 | 2018-06-26 | X-Celeprint Limited | Micro-transfer printed LED and color filter structure |
US10199546B2 (en) | 2016-04-05 | 2019-02-05 | X-Celeprint Limited | Color-filter device |
CN108206196B (zh) | 2016-12-16 | 2025-02-25 | 京东方科技集团股份有限公司 | 一种有机电致发光显示装置 |
US10468391B2 (en) | 2017-02-08 | 2019-11-05 | X-Celeprint Limited | Inorganic light-emitting-diode displays with multi-ILED pixels |
US10943946B2 (en) | 2017-07-21 | 2021-03-09 | X Display Company Technology Limited | iLED displays with substrate holes |
TWI781241B (zh) | 2017-11-08 | 2022-10-21 | 美商康寧公司 | 用於組裝顯示區域的裝置及方法 |
TWI669816B (zh) * | 2018-04-18 | 2019-08-21 | 友達光電股份有限公司 | 拼接用顯示面板及其製造方法 |
CN108615820B (zh) * | 2018-04-27 | 2020-04-28 | 武汉华星光电技术有限公司 | Oled显示装置 |
US10665573B2 (en) | 2018-04-28 | 2020-05-26 | Shenzhen China Star Optoelectronics Technology Co., Ltd. | Manufacturing method of micro light-emitting diode display panel having elastic conductive layer filled between pixel electrode and micro light-emitting diode and micro light-emitting diode display panel manufactured with the same |
CN108493154B (zh) * | 2018-04-28 | 2020-09-29 | 深圳市华星光电技术有限公司 | Micro LED显示面板的制作方法及Micro LED显示面板 |
CN108644628B (zh) * | 2018-06-06 | 2024-03-29 | 北京夏禾科技有限公司 | 高良率低成本大面积柔性oled照明模组 |
CN109037270B (zh) * | 2018-07-26 | 2021-05-04 | 武汉天马微电子有限公司 | 一种显示面板及显示装置 |
WO2020040483A1 (en) * | 2018-08-20 | 2020-02-27 | Samsung Electronics Co., Ltd. | Display apparatus and manufacturing method thereof |
WO2020050652A1 (en) * | 2018-09-05 | 2020-03-12 | Samsung Electronics Co., Ltd. | Display device and method for manufacturing the same |
KR102620974B1 (ko) | 2018-10-05 | 2024-01-05 | 삼성전자주식회사 | 디스플레이 장치 및 그 제조 방법 |
CN110599946B (zh) * | 2019-08-08 | 2021-11-16 | 长春希达电子技术有限公司 | 基于tft玻璃基板的高密度led显示箱体及显示屏 |
WO2021130806A1 (ja) * | 2019-12-23 | 2021-07-01 | シャープ株式会社 | 表示装置 |
US11444120B2 (en) * | 2020-01-14 | 2022-09-13 | Au Optronics Corporation | Display apparatus and method of fabricating the same |
CN111276058B (zh) | 2020-02-11 | 2022-10-11 | 京东方科技集团股份有限公司 | 拼接显示面板及拼接显示装置 |
CN113571002A (zh) * | 2020-04-29 | 2021-10-29 | 深圳市柔宇科技股份有限公司 | 像素电路、显示面板及电子设备 |
CN111951697B (zh) * | 2020-08-10 | 2022-02-01 | Tcl华星光电技术有限公司 | 拼接显示屏 |
KR20230001031A (ko) * | 2021-06-25 | 2023-01-04 | 삼성디스플레이 주식회사 | 타일형 표시 장치 |
CN116072010A (zh) * | 2021-11-02 | 2023-05-05 | 武汉华星光电半导体显示技术有限公司 | 拼接显示面板和显示装置 |
CN114299818B (zh) * | 2021-12-20 | 2023-05-02 | 武汉华星光电半导体显示技术有限公司 | 拼接显示屏 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1465038A (zh) * | 2001-06-13 | 2003-12-31 | 索尼公司 | 平铺型显示系统及其制造方法 |
CN1615057A (zh) * | 2003-11-07 | 2005-05-11 | 精工爱普生株式会社 | 有机电致发光显示装置及其制造方法及电子设备 |
US20080150437A1 (en) * | 2006-11-17 | 2008-06-26 | Sony Corporation | Pixel circuit and display device, and a method of manufacturing pixel circuit |
EP2259322A2 (en) * | 1999-09-17 | 2010-12-08 | Semiconductor Energy Laboratory Co., Ltd. | EL display device |
CN102077385A (zh) * | 2008-06-30 | 2011-05-25 | 佳能株式会社 | 发光装置 |
CN102097448A (zh) * | 2009-12-14 | 2011-06-15 | 乐金显示有限公司 | 有机电致发光显示设备及其制造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002372928A (ja) | 2001-06-13 | 2002-12-26 | Sony Corp | タイリング型表示装置及びその製造方法 |
KR20050039018A (ko) * | 2003-10-23 | 2005-04-29 | 엘지.필립스 엘시디 주식회사 | 액정표시장치 모듈 및 그 제작방법 |
JP2008147418A (ja) * | 2006-12-11 | 2008-06-26 | Hitachi Ltd | 薄膜トランジスタ装置、画像表示装置およびその製造方法 |
JP2010153813A (ja) * | 2008-11-18 | 2010-07-08 | Semiconductor Energy Lab Co Ltd | 発光装置及びその作製方法、並びに、携帯電話機 |
US8232718B2 (en) * | 2009-04-30 | 2012-07-31 | Global Oled Technology Llc | Tiled electroluminescent device with filled gaps |
US8896505B2 (en) * | 2009-06-12 | 2014-11-25 | Global Oled Technology Llc | Display with pixel arrangement |
US8618731B2 (en) * | 2010-05-18 | 2013-12-31 | General Electric Company | Large-area flexible OLED light source |
US9177500B2 (en) * | 2011-01-31 | 2015-11-03 | Global Oled Technology Llc | Display with secure decryption of image signals |
US8358066B1 (en) * | 2011-08-10 | 2013-01-22 | General Electric Company | Organic light emitting diode package with energy blocking layer |
-
2012
- 2012-10-16 WO PCT/CN2012/083028 patent/WO2014059601A1/zh active Application Filing
- 2012-10-16 CN CN201280001474.7A patent/CN103907190B/zh active Active
-
2015
- 2015-04-16 US US14/688,485 patent/US9590025B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2259322A2 (en) * | 1999-09-17 | 2010-12-08 | Semiconductor Energy Laboratory Co., Ltd. | EL display device |
CN1465038A (zh) * | 2001-06-13 | 2003-12-31 | 索尼公司 | 平铺型显示系统及其制造方法 |
CN1615057A (zh) * | 2003-11-07 | 2005-05-11 | 精工爱普生株式会社 | 有机电致发光显示装置及其制造方法及电子设备 |
US20080150437A1 (en) * | 2006-11-17 | 2008-06-26 | Sony Corporation | Pixel circuit and display device, and a method of manufacturing pixel circuit |
CN102077385A (zh) * | 2008-06-30 | 2011-05-25 | 佳能株式会社 | 发光装置 |
CN102097448A (zh) * | 2009-12-14 | 2011-06-15 | 乐金显示有限公司 | 有机电致发光显示设备及其制造方法 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019085115A1 (zh) * | 2017-11-01 | 2019-05-09 | 深圳市华星光电半导体显示技术有限公司 | Oled封装方法与oled封装结构 |
US10446790B2 (en) | 2017-11-01 | 2019-10-15 | Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | OLED encapsulating structure and manufacturing method thereof |
CN111028697A (zh) * | 2018-10-09 | 2020-04-17 | 财团法人工业技术研究院 | 拼接显示装置 |
US11810484B2 (en) | 2018-10-09 | 2023-11-07 | Industrial Technology Research Institute | Spliced display |
CN111128048A (zh) * | 2020-02-14 | 2020-05-08 | 广州新视界光电科技有限公司 | 显示面板以及显示装置 |
CN111769048A (zh) * | 2020-07-10 | 2020-10-13 | 山东傲晟智能科技有限公司 | 一种显示屏及其制造方法 |
CN111769048B (zh) * | 2020-07-10 | 2022-01-04 | 深圳市双禹盛泰科技有限公司 | 一种显示屏及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US9590025B2 (en) | 2017-03-07 |
CN103907190B (zh) | 2017-05-17 |
US20150221712A1 (en) | 2015-08-06 |
CN103907190A (zh) | 2014-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014059601A1 (zh) | 一种oled拼接显示屏及其制造方法 | |
CN110379314B (zh) | 一种无缝拼接屏 | |
WO2014043850A1 (zh) | 一种大尺寸显示屏及其制造方法 | |
WO2021007998A1 (zh) | 显示面板、显示模组及显示装置 | |
CN110707121B (zh) | 显示面板 | |
WO2021189581A1 (zh) | 显示面板及显示装置 | |
WO2019144483A1 (zh) | 显示模组及电子设备 | |
WO2020091228A1 (ko) | 표시 장치 | |
WO2014059603A1 (zh) | 一种双面显示屏及其制造方法 | |
WO2019184163A1 (zh) | 背光模组及显示装置 | |
WO2019114053A1 (zh) | 柔性触控面板及柔性 oled 显示面板 | |
WO2015027718A1 (zh) | 一种消除显示边框的显示装置 | |
WO2019000711A1 (zh) | 一种背光模组及液晶显示装置 | |
WO2016095243A1 (zh) | 液晶面板及其制备方法 | |
WO2017088230A1 (zh) | Coa基板、液晶显示面板及液晶显示装置 | |
WO2017181463A1 (zh) | 阵列基板及其制造方法、液晶显示器 | |
CN111312090A (zh) | 显示面板及其制作方法、显示装置 | |
WO2019148661A1 (zh) | 一种液晶显示面板及其制作方法、液晶显示装置 | |
WO2023123572A1 (zh) | 一种拼接屏及显示装置 | |
WO2019095500A1 (zh) | 一种显示面板以及显示器 | |
CN114299828B (zh) | 显示单元、拼接屏以及显示装置 | |
WO2016123797A1 (zh) | 一种阵列基板、液晶显示面板及装置 | |
WO2018232925A1 (zh) | 一种阵列基板、液晶面板及液晶显示器 | |
WO2017193439A1 (zh) | 双面显示器、显示模组及其tft阵列基板 | |
WO2019037218A1 (zh) | 一种 oled 显示面板及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12886825 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23.06.2015) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12886825 Country of ref document: EP Kind code of ref document: A1 |