[go: up one dir, main page]

WO2013111726A1 - 金属部材の焼鈍方法 - Google Patents

金属部材の焼鈍方法 Download PDF

Info

Publication number
WO2013111726A1
WO2013111726A1 PCT/JP2013/051149 JP2013051149W WO2013111726A1 WO 2013111726 A1 WO2013111726 A1 WO 2013111726A1 JP 2013051149 W JP2013051149 W JP 2013051149W WO 2013111726 A1 WO2013111726 A1 WO 2013111726A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal member
annealing
heater
laminated core
central axis
Prior art date
Application number
PCT/JP2013/051149
Other languages
English (en)
French (fr)
Inventor
保郎 大杉
剛 浜谷
新井 聡
英治 柳田
新也 佐野
正顕 近藤
高橋 利光
羊治 佐藤
Original Assignee
新日鐵住金株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, トヨタ自動車株式会社 filed Critical 新日鐵住金株式会社
Priority to EP13741187.2A priority Critical patent/EP2713485B1/en
Priority to CN201380001827.8A priority patent/CN103620926B/zh
Priority to PL13741187T priority patent/PL2713485T3/pl
Priority to US14/124,131 priority patent/US10370733B2/en
Priority to JP2013555257A priority patent/JP6021270B2/ja
Publication of WO2013111726A1 publication Critical patent/WO2013111726A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories or equipment specially adapted for furnaces of these types
    • F27B5/14Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/021Magnetic cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, moulding insulation, heating or drying of windings, stators, rotors or machines
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B5/00Muffle furnaces; Retort furnaces; Other furnaces in which the charge is held completely isolated
    • F27B5/06Details, accessories or equipment specially adapted for furnaces of these types
    • F27B5/14Arrangements of heating devices
    • F27B2005/143Heating rods disposed in the chamber

Definitions

  • the present invention relates to a method for annealing a hollow cylindrical metal member. More specifically, the present invention relates to an annealing method for a metal member suitable for annealing a laminated core formed by laminating electromagnetic steel sheets and the like, and relates to an annealing method for removing strain and reducing iron loss.
  • This application claims priority based on Japanese Patent Application No. 2012-013403 filed in Japan on January 25, 2012, the contents of which are incorporated herein by reference.
  • a general laminated core applied to an electric motor is formed by punching and laminating electromagnetic steel sheets into a predetermined shape and joining them by welding or caulking.
  • a distortion may occur in the electromagnetic steel sheet during the punching process.
  • the iron loss increases and the energy efficiency of the electric motor decreases.
  • annealing may be performed to remove strain after the punched electromagnetic steel sheets are stacked and joined.
  • Patent Document 3 discloses a configuration in which a laminated core is inductively heated. However, Patent Document 3 does not disclose a specific heating method.
  • a method of heating in a short time a method of energizing the laminated core and heating it by Joule heat can be considered.
  • the method of heating by energization if the dimensions of the laminated core are large, it is difficult to make the electrodes contact uniformly. For this reason, it is difficult to heat the laminated core uniformly in a short time.
  • the present invention has been made in view of the above problems, and in annealing a laminated core formed by laminating hollow cylindrical metal members, for example, electromagnetic steel sheets, the heating time is shortened and the productivity is reduced.
  • the purpose is to improve.
  • an internal space of a hollow cylindrical metal member in which a plurality of teeth protruding toward the center direction is formed on the inner peripheral surface extends in parallel to the central axis direction of the metal member.
  • a first heater that radiates infrared rays is disposed, the metal member is heated from the internal space by the first heater, and the heated metal member is gradually cooled. is there.
  • a plurality of the first heaters may be arranged at equal intervals in the circumferential direction.
  • a first partition member that blocks between the plurality of first heaters may be disposed along the central axis of the metal member.
  • the first partition wall member may be formed of at least one of white ceramic and aluminum.
  • each of the plurality of first heaters may be disposed between the plurality of teeth.
  • a second partition member extending along the central axis direction of the metal member may be disposed in the internal space of the metal member. Good.
  • the second partition wall member may be formed of at least one of white ceramic and aluminum.
  • the metal member is disposed in a plurality of layers in the central axis direction, and the first heater is disposed in a plurality of ways. It may be inserted into the internal space of the metal member, and a plurality of the metal members may be heated simultaneously.
  • the first heater may be a halogen heater.
  • the metal member In the method for annealing a metal member according to any one of (1) to (9), the metal member extends on the outer peripheral side of the metal member in parallel with the central axis direction of the metal member.
  • a second heater may be further provided, and the metal member may be heated from the outer peripheral side by the second heater.
  • the second heater In the method for annealing a metal member according to (10), the second heater may be a heater that emits infrared rays. (12) In the method for annealing a metal member according to (11) above, the second heater may be a halogen heater. (13) In the method for annealing a metal member according to any one of (1) to (12), the metal member may be a laminated core formed by laminating a plurality of electromagnetic steel plates.
  • the metal member can be heated from the internal space by infrared rays emitted from the first heater disposed so as to extend in parallel with the central axis direction of the metal member. Furthermore, a 1st heater can be made to approach a uniform distance over the full length of the center axis direction of the several tooth
  • gear formed in the internal peripheral surface of a metal member can be heated, the maintenance and improvement of the effect which remove
  • the metal member of this invention is not limited to a laminated core.
  • (First embodiment) 1A and 2A are perspective views schematically showing a method of annealing a laminated core according to the first embodiment.
  • 1B and 2B are plan views schematically showing the method of annealing a laminated core according to the first embodiment.
  • the method for annealing a laminated core according to the first embodiment can anneal the laminated core 9 having a conventional general configuration.
  • the configuration of the laminated core 9 will be briefly described as follows.
  • the laminated core 9 is formed by laminating a plurality of electromagnetic steel plates 90 punched into a predetermined shape, and has a hollow cylindrical configuration as a whole.
  • a plurality of teeth 91 are formed on the inner peripheral surface 9 a of the laminated core 9.
  • the plurality of teeth 91 has a configuration that protrudes toward the center side in the radial direction, and is formed so as to be arranged at a predetermined distance from each other in the circumferential direction.
  • one or more first heaters 1 that emit infrared rays for heating the laminated core 9 are used. Is used.
  • the first heater 1 is disposed so as to extend in parallel with the central axis direction of the laminated core 9.
  • the first heater 1 is, for example, a rod-like halogen heater (also called a halogen lamp heater) that emits near infrared light (infrared light having a wavelength band of 0.78 to 2.0 ⁇ m) or infrared light including a near infrared wavelength band.
  • the halogen heater has, for example, a configuration in which a tungsten filament is disposed inside a cylindrical quartz glass tube and an inert gas and a halogen substance are enclosed. The tungsten filament radiates infrared rays when energized.
  • Various known halogen heaters can be applied to the first heater 1 of the first embodiment. Therefore, detailed description is omitted.
  • One or a plurality of first heaters 1 are inserted into the internal space of the laminated core 9 and arranged so that the surface of the teeth 91 can be directly irradiated with infrared rays.
  • the first heater 1 that can irradiate infrared rays in all directions of the circumference is at the center of the internal space of the laminated core 9.
  • the axis of the rod-shaped first heater 1 is parallel to the central axis direction of the laminated core 9 so that the teeth 91 can be heated uniformly over the entire length in the central axis direction.
  • the first heater 1 can be disposed close to a uniform distance over the entire length of the teeth 91. Therefore, the first heater 1 can directly irradiate infrared rays with uniform intensity over the entire length of the teeth 91 in the central axis direction.
  • gear 91 is set uniformly.
  • the plurality of first heaters 1 are arranged at equal intervals in the circumferential direction. Then, the laminated core 9 is heated by the first heater 1 until it reaches the target temperature. Since the 1st heater 1 is arrange
  • the target temperature may be 750 ° C., which is the same as the heating temperature in the conventional laminated core annealing method.
  • the annealing conditions (for example, the method and temperature history) may be the same as those of the conventional method for annealing a laminated core. For example, conventional general furnace cooling or air cooling can be applied. Therefore, the description is omitted.
  • slow cooling is started immediately after the laminated core 9 reaches the target temperature.
  • heating is performed for a predetermined time (for example, about 2 hours) for soaking even after the laminated core 9 reaches the target temperature. It continued. For this reason, in the conventional method for annealing a laminated core, “time until the laminated core 9 reaches the target temperature” and “time for soaking” are required as the heating time. In contrast, in the method for annealing a laminated core according to the first embodiment, only “time until the laminated core 9 reaches the target temperature” is required as the heating time, and “time for soaking” is required. Is not necessary.
  • the heating and gradual cooling of the laminated core 9 is preferably performed in a non-oxidizing atmosphere in order to prevent oxidation of the electrical steel sheet 90 constituting the laminated core 9.
  • a configuration in which the chamber 3 is filled with a non-oxidizing gas and the laminated core 9 is heated and gradually cooled can be applied.
  • the configuration of the chamber 3 is not particularly limited, and various conventionally known chambers can be applied. In short, any configuration may be used as long as the inside can be maintained in a non-oxidizing atmosphere.
  • the chamber 3 since the laminated core 9 is heated using the first heater 1, the chamber 3 may not include a heater.
  • the laminated core 9 is heated from the internal space by infrared rays emitted from the first heater 1. Since the first heater 1 is arranged in the internal space of the cylindrical laminated core 9, infrared rays are irradiated almost uniformly over the entire surface of the teeth 91 formed on the inner peripheral surface 9 a of the laminated core 9. it can. Further, in comparison with the conventional method for annealing a laminated core using a heating furnace, in the first embodiment, the heat source (infrared source) can be brought close to the surface of the teeth 91, and thus the laminated core 9 can be uniformly formed in a short time. Can be heated. Thereby, the “time until the laminated core 9 reaches the target temperature” can be shortened.
  • the first heater 1 that radiates near infrared rays when the first heater 1 that radiates near infrared rays is applied, the responsiveness of temperature rise can be improved. For this reason, the laminated core 9 can be heated in a short time. Furthermore, according to the first embodiment, after the laminated core 9 reaches the target temperature, it is possible to immediately start the slow cooling without continuing the heating for soaking. Therefore, “time for soaking” can be omitted, and the heating time can be shortened. As described above, according to the first embodiment, the heating time can be shortened in annealing, and the productivity of the laminated core 9 can be improved.
  • the iron loss can be reduced while shortening the heating time of the laminated core 9. That is, the punched magnetic steel sheet 90 has a substantially simple circular outer peripheral surface 9b, whereas the inner peripheral surface 9a has irregularities because the teeth 91 are formed. For this reason, the inner peripheral surface 9a of the laminated core 9 has a longer cut and a larger strain than the outer peripheral surface 9b. Therefore, in order to reduce the iron loss, it is necessary to remove the strain by increasing the effect of annealing particularly on the inner peripheral surface 9a.
  • the first heater 1 is disposed in the internal space of the laminated core 9.
  • the laminated core 9 is heated from internal space by directly irradiating the surface of the tooth
  • the plurality of laminated cores 9 are arranged so as to be overlapped (or arranged side by side) in the central axis direction, and the single or plural first heaters 1 are arranged. It arrange
  • FIG. 1A, FIG. 1B, FIG. 2A, and FIG. 2B show a configuration in which the first heater 1 is formed in a straight line, but the shape of the first heater 1 is not limited.
  • the first heater 1 may be U-shaped.
  • 2A and 2B show a configuration in which four first heaters 1 are used, but the number of first heaters 1 is not limited.
  • FIG. 4A is a perspective view schematically showing a method of annealing a laminated core according to the second embodiment.
  • FIG. 4B is a plan view schematically showing the method for annealing a laminated core according to the second embodiment.
  • the plurality of first heaters 1 are inserted into the internal space of the laminated core 9 and arranged so as to be close to the teeth 91. Further, a first partition member 2 a is disposed between the plurality of first heaters 1.
  • the 1st partition member 2a has a function which interrupts
  • the first partition member 2a has a configuration in which a plurality of recesses extending along the central axis direction of the laminated core 9 are formed on the outer periphery thereof. And each of the some 1st heater 1 is accommodated in each of a some recessed part.
  • positioned between the mutually adjacent 1st heaters 1 may be sufficient.
  • the first partition member 2a has a portion interposed between the plurality of first heaters 1 and can prevent the plurality of first heaters 1 from directly irradiating infrared rays with each other. That's fine.
  • the first partition member 2a can prevent the plurality of first heaters 1 from directly irradiating infrared rays with each other. For this reason, it is possible to protect the first heater 1 by preventing the first heaters 1 from being directly heated with each other. Further, the first partition member 2 a reflects infrared rays emitted from the first heater 1 toward the teeth 91. Therefore, according to the second embodiment, the thermal efficiency can be improved, and the heating time of the laminated core 9 can be further shortened.
  • FIG. 5A is a perspective view schematically showing a method of annealing a laminated core according to the third embodiment.
  • FIG. 5B is a plan view schematically showing the method for annealing a laminated core according to the third embodiment.
  • a plurality of first heaters 1 are inserted into the inner space of the laminated core 9, and a plurality of teeth 91 are formed on the inner peripheral surface 9 a of the laminated core 9. Arranged between the two. And the lamination
  • the plurality of first heaters 1 can be brought close to the surfaces of the plurality of teeth 91 formed on the inner peripheral surface 9 a of the laminated core 9.
  • the circumferential end surfaces of the teeth 91 that is, adjacent teeth
  • the surface facing 91 can be irradiated with stronger infrared rays. For this reason, the thermal efficiency can be further improved, and the heating time can be further shortened.
  • the plurality of teeth 91 formed on the inner peripheral surface 9a of the laminated core 9 can prevent the plurality of first heaters 1 from directly irradiating infrared rays with each other. That is, the plurality of teeth 91 formed on the inner peripheral surface 9a of the laminated core 9 can function as the first partition member 2a in the second embodiment. Therefore, the first heater 1 can be protected.
  • FIG. 6A is a perspective view schematically showing a method of annealing a laminated core according to the third embodiment.
  • FIG. 6B is a plan view schematically showing the method for annealing a laminated core according to the third embodiment.
  • a plurality of first heaters 1 are inserted into the inner space of the laminated core 9, and a plurality of teeth 91 are formed on the inner peripheral surface 9 a of the laminated core 9.
  • the second partition wall member 2 b is disposed so as to extend along the central axis direction of the laminated core 9 on the center side in the radial direction from the teeth 91 (that is, the internal space).
  • the 2nd partition member 2b has a function which reflects the infrared rays irradiated toward the center side of radial direction from each 1st heater 1 toward the radial direction outer side.
  • a cylindrical or columnar configuration that can be inserted into the internal space of the laminated core 9 can be applied to the second partition member 2b.
  • the second partition member 2b is formed of a material that blocks and reflects infrared rays.
  • the second partition member 2b is formed of white ceramic, aluminum, or the like.
  • the same effect as the third embodiment can be obtained. Furthermore, in the fourth embodiment, infrared rays radiated from the respective first heaters 1 toward the center in the radial direction are directed outward in the radial direction by the second partition member 2b (that is, the inner circumference of the teeth 91). Reflected towards the surface 9a). Therefore, the thermal efficiency can be further improved and the heating time can be further shortened.
  • FIG. 7A is a perspective view schematically showing a method of annealing a laminated core according to the fifth embodiment.
  • FIG. 7B is a plan view schematically showing the laminated core annealing method according to the fifth embodiment.
  • the first heater 1 is inserted and heated in the internal space of the laminated core 9, and the central axis of the laminated core 9 is also provided on the outer peripheral side of the laminated core 9.
  • a second heater 11 extending along the direction is disposed and heated.
  • 7A and 7B show a configuration in which the first embodiment is applied to the first heater 1 inserted into the internal space of the laminated core 9, but any of the second to fourth embodiments is applied. It may be a configuration.
  • the same effects as those of the above embodiments can be obtained. Furthermore, according to the fifth embodiment, since the laminated core 9 is also heated from the outer peripheral side, the amount of heat per unit time given to the laminated core 9 can be increased. Further, by adopting a configuration in which the laminated core 9 is also heated from the outer peripheral side, it is possible to prevent heat applied from the inner peripheral side surface 9a from moving to the outer peripheral surface 9b and being dissipated from the outer peripheral surface 9b to the outside. Therefore, the heating time of the laminated core 9 can be further shortened.
  • FIG. 8 is a perspective view schematically showing the configuration of the laminated core 9 used in the examples and the positions of temperature measurement points.
  • the laminated core 9 has a cylindrical configuration as a whole.
  • a plurality of teeth 91 projecting toward the radius method center side are formed on the inner peripheral surface 9a.
  • the outer diameter (maximum) D O of the laminated core 9 is about 180 mm
  • the inner diameter (minimum) D I is about 115 mm
  • the length L in the central axis direction is about 55 mm.
  • the temperature was measured at 8 points A to H.
  • the measurement points A and E are located at one end of the inner peripheral surface 9a of the tooth 91 in the central axis direction.
  • the measurement points B and F are located at the center of the inner peripheral surface 9a of the tooth 91 in the central axis direction.
  • Measurement points C and G are located at one end of the outer peripheral surface in the central axis direction.
  • the measurement points D and H are located at the center in the central axis direction on the outer peripheral surface.
  • the measurement points A, B, C, and D have the same circumferential position.
  • the measurement points E, F, G, and H have the same circumferential position.
  • the measurement points A, B, C, and D and the measurement points E, F, G, and H are at positions shifted from each other by 90 ° in the circumferential direction.
  • four rod-shaped halogen heaters were inserted into the inner space of the laminated core 9 and arranged so as to be evenly spaced in the circumferential direction.
  • the distance from the inner peripheral surface 9a of the tooth portion 91 of the laminated core 9 to each first heater 1 was 25 mm.
  • FIG. 9 is a graph showing the temperature change at each measurement point.
  • FIG. 10 is a table showing the maximum temperature at each measurement point. As shown in FIGS. 9 and 10, all the measurement points reached the target temperature of 700 ° C. or higher by heating for 870 seconds.
  • the productivity of the laminated core 9 can be improved by shortening the heating time.
  • the number of the first heaters 1 and the second heaters 11 used for heating the laminated core 9 is not limited.
  • the number of the 1st heater 1 and the 2nd heater 11 is suitably set according to the dimension, shape, etc. of the lamination
  • the 1st heater 1 and the 2nd heater 11 are not limited to the structure formed in linear form.
  • the structure formed in a U shape may be sufficient.
  • the configuration in which the two laminated cores 9 are stacked in the central axis direction and heated simultaneously is shown, but the number of the laminated cores 9 that are heated simultaneously is not limited.
  • the laminated core 9 formed by laminating a plurality of electromagnetic steel sheets is used as the metal member.
  • the metal member is not limited to the laminated core, and has a hollow cylindrical shape. Any metal member may be used.
  • the present invention can be applied to annealing for removing strain of a laminated core formed by laminating electromagnetic steel sheets. Moreover, it is not limited to the laminated core comprised by laminating
  • first heater 11 second heater 2a: first partition member 2b: second partition member 3: chamber 9: laminated core 9a: inner circumferential surface 9b of laminated core: outer circumferential surface 90 of laminated core: punched electromagnetic Steel plate 91: teeth formed on the inner peripheral surface of the laminated core

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Heat Treatment Of Articles (AREA)
  • Resistance Heating (AREA)

Abstract

 この金属部材の焼鈍方法は、内周面に中心方向に向かって突出する複数の歯が形成された中空円筒形状の金属部材の内部空間に、この金属部材の中心軸方向と平行に延在するように、赤外線を放射する第1ヒーターを配設し、前記第1ヒーターによって前記金属部材を前記内部空間から加熱し、加熱後の前記金属部材を徐冷する。

Description

金属部材の焼鈍方法
 本発明は、中空円筒形状の金属部材の焼鈍方法に関する。より具体的には、電磁鋼板などが積層されて構成される積層コアの焼鈍に好適な金属部材の焼鈍方法であって、ひずみを除去して鉄損を減少させるための焼鈍方法に関する。 本願は、2012年1月25日に、日本に出願された特願2012-013403号に基づき優先権を主張し、その内容をここに援用する。
 電動機に適用される一般的な積層コアは、電磁鋼板を所定の形状に打ち抜いて積層させ、溶接やカシメなどによって接合することによって形成される。ところで、打ち抜き加工の際に、電磁鋼板にひずみが生じることがある。電磁鋼板にひずみが生じると、鉄損が増加して電動機のエネルギー効率が低下する。このため、たとえば特許文献1~3に記載のように、打ち抜いた電磁鋼板を積層して接合した後に、ひずみを除去するために焼鈍が実施されることがある。
日本国特開昭54-1803号公報 日本国特開平11-332183号公報 日本国特開昭59-123719号公報
 電磁鋼板により形成される積層コアの焼鈍方法の例として、たとえば、加熱炉を用いて750℃以上に加熱し、さらに均熱化のために2時間程度にわたって加熱を継続し、その後徐冷するという方法が用いられる。このように、積層コアの焼鈍においては、積層コアを長時間にわたって加熱する必要がある。このため、積層コアの焼鈍は生産性が低いという問題点があった。そこで、生産性の向上を図るために、加熱時間を短縮したいという要請がある。加熱時間を短縮するため、たとえば特許文献3には、積層コアを誘導加熱する構成が開示されている。しかしながら、特許文献3には、具体的な加熱方法は開示されていない。また、短時間で加熱する方法としては、積層コアに通電してジュール熱によって加熱する方法が考えられる。しかしながら、通電によって加熱する方法では、積層コアの寸法が大きいと、電極を均一に接触させることが困難である。このため、積層コアを短時間で均一に加熱することが困難である。
 本発明は、以上のような問題点に鑑みてなされたものであり、中空円筒形状の金属部材、例えば電磁鋼板が積層されて構成される積層コアの焼鈍において、加熱時間を短縮して生産性の向上を図ることを目的とする。
 本発明の概要は下記の通りである。
(1)本発明の一態様は、内周面に中心方向に向かって突出する複数の歯が形成された中空円筒形状の金属部材の内部空間に、この金属部材の中心軸方向と平行に延在するように、赤外線を放射する第1ヒーターを配設し、前記第1ヒーターによって前記金属部材を前記内部空間から加熱し、加熱後の前記金属部材を徐冷する、金属部材の焼鈍方法である。
(2)上記(1)に記載の金属部材の焼鈍方法では、前記第1ヒーターを、円周方向に均等な間隔で複数配設してもよい。
(3)上記(2)に記載の金属部材の焼鈍方法では、前記金属部材の前記中心軸に沿って、前記複数の第1ヒーター間を遮る第1隔壁部材を配設してもよい。
(4)上記(3)に記載の金属部材の焼鈍方法では、前記第1隔壁部材が、白色セラミック及びアルミニウムの少なくとも1種により形成されてもよい。
(5)上記(2)に記載の金属部材の焼鈍方法では、前記複数の第1ヒーターのそれぞれを、前記複数の歯の間に配設してもよい。
(6)上記(5)に記載の金属部材の焼鈍方法では、前記金属部材の前記内部空間に、前記金属部材の前記中心軸方向に沿って延在する第2隔壁部材を配設してもよい。
(7)上記(6)に記載の金属部材の焼鈍方法では、前記第2隔壁部材が、白色セラミック及びアルミニウムの少なくとも1種により形成されてもよい。
(8)上記(1)~(7)のいずれか一項に記載の金属部材の焼鈍方法では、前記金属部材を前記中心軸方向に複数重ねて配設するとともに、前記第1ヒーターを複数の前記金属部材の前記内部空間に挿入し、複数の前記金属部材を同時に加熱してもよい。
(9)上記(8)に記載の金属部材の焼鈍方法では、前記第1ヒーターは、ハロゲンヒーターであってもよい。
(10)上記(1)~(9)のいずれか一項に記載の金属部材の焼鈍方法では、前記金属部材の外周側に、前記金属部材の前記中心軸方向と平行に延在するように第2ヒーターを更に配設し、前記第2ヒーターによって前記金属部材を前記外周側からも加熱してもよい。
(11)上記(10)に記載の金属部材の焼鈍方法では、前記第2ヒーターは、赤外線を放射するヒーターであってもよい。
(12)上記(11)に記載の金属部材の焼鈍方法では、前記第2ヒーターは、ハロゲンヒーターであってもよい。
(13)上記(1)~(12)のいずれか一項に記載の金属部材の焼鈍方法では、前記金属部材が、複数の電磁鋼板が積層されて形成される積層コアであってもよい。
 本発明によれば、金属部材の中心軸方向と平行に延在するように配設された第1ヒーターから放射される赤外線によって金属部材を内部空間から加熱できる。さらに、第1ヒーターを、金属部材の内周面に形成される複数の歯の中心軸方向の全長にわたって、均一な距離に接近させることができる。このため、加熱炉によって金属部材を加熱する構成と比較すると、加熱時間の短縮を図ることができる。したがって、金属部材の焼鈍における生産性の向上を図ることができる。さらに、金属部材の内周面に形成される複数の歯を加熱できるため、歯に生じるひずみを除去する効果の維持や向上を図り、鉄損の減少を図ることができる。このように、本発明によれば、焼鈍による鉄損の減少の効果が低下することを防止しつつ、加熱時間の短縮を図って生産性の向上を図ることができる。
本発明の第一実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。 本発明の第一実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。 本発明の第一実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。 本発明の第一実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。 本発明の第一実施形態にかかる積層コアの焼鈍方法を模式的に示す断面図である。 本発明の第二実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。 本発明の第二実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。 本発明の第三実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。 本発明の第三実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。 本発明の第四実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。 本発明の第四実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。 本発明の第五実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。 本発明の第五実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。 本発明の実施例において使用した積層コアの構成と、温度の測定点を模式的に示す斜視図である。 本発明の実施例における積層コアの温度の時間変化を示すグラフである。 本発明の実施例における積層コアの各測定点の最高温度を示す表である。
 以下に、本発明の各実施形態および実施例について、図面を参照して詳細に説明する。ここでは、金属部材の一例として積層コアを用いて説明するが、本発明の金属部材は積層コアに限定されるものではない。
(第一実施形態)
 図1A、図2Aは、第一実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。図1B、図2Bは、第一実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。
 第一実施形態にかかる積層コアの焼鈍方法は、従来一般の構成の積層コア9を焼鈍できる。積層コア9の構成について簡単に説明すると、次のとおりである。積層コア9は、所定の形状に打ち抜き加工された複数の電磁鋼板90が積層されており、全体として中空円筒状の構成を有する。積層コア9の内周面9aには、複数の歯91が形成される。複数の歯91は、半径方向の中心側に向かって突出する構成を有し、円周方向に互いに所定の距離をおいて離れて並ぶように形成される。
 図1A、図1B、図2A、図2Bに示すように、第一実施形態にかかる積層コアの焼鈍方法においては、積層コア9の加熱のために、赤外線を発する単数または複数の第1ヒーター1を用いる。第1ヒーター1は、積層コア9の中心軸方向と平行に延在するように配設される。第1ヒーター1は、具体的には、たとえば、近赤外線(0.78~2.0μmの波長帯域の赤外線)または近赤外の波長帯域を含む赤外線を発する棒状のハロゲンヒーター(ハロゲンランプヒーターとも称する)が適用される。ハロゲンヒーターは、たとえば、筒状の石英ガラス管の内部にタングステンフィラメントが配設されるとともに、不活性ガスおよびハロゲン物質が封入されるという構成を有する。そして、タングステンフィラメントが通電によって赤外線を放射する。なお、第一実施形態の第1ヒーター1には、公知の各種ハロゲンヒーターが適用できる。したがって詳細な説明は省略する。
 単数または複数の第1ヒーター1が積層コア9の内部空間に挿入され、歯91の表面に直接に赤外線を照射できるように配設される。たとえば、図1A、図1Bに示すように、単数の第1ヒーター1が用いられる構成においては、円周の全方向に赤外線を照射できる第1ヒーター1が、積層コア9の内部空間の中心に配設される。また、図2A、図2Bに示すように、複数の第1ヒーター1が用いられる構成においては、第1ヒーター1が積層コア9の内周面9aに形成される複数の歯91に近接した位置(すなわち、積層コア9の内部空間の中心から半径方向外側に偏倚した位置)に配設される。
 さらに、歯91の中心軸方向の全長にわたって均一に加熱できるように、棒状の第1ヒーター1の軸線が積層コア9の中心軸方向と平行であることが好ましい。このような構成によれば、歯91の全長にわたって、第1ヒーター1を均一な距離に接近させて配設することができる。したがって、第1ヒーター1は、歯91の中心軸方向の全長にわたって、均一な強度の赤外線を直接的に照射できる。さらに、それぞれの第1ヒーター1と積層コア9の内周面9aまたは歯91の表面までの距離は、均一に設定される。また、複数の第1ヒーター1は、円周方向に均等な間隔で配列される。
 そして、第1ヒーター1によって、積層コア9を目標温度に到達するまで加熱する。第1ヒーター1は積層コア9の内部空間に配設されるので、積層コア9は内部空間(すなわち、歯91が形成される内周面9a)から加熱される。なお、目標温度は、700℃以上であることが好ましい。また、目標温度は、従来の積層コアの焼鈍方法における加熱温度と同じ750℃であってもよい。
 積層コア9が目標温度に到達した後、第1ヒーター1による加熱を停止する。その後、積層コア9を徐冷する。徐冷の条件(たとえば方法や温度履歴)は、従来の積層コアの焼鈍方法と同じでよい。たとえば、従来一般の炉冷や空冷などが適用できる。このため、説明は省略する。
 第一実施形態においては、積層コア9が目標温度に到達した後、直ちに徐冷を開始する。すなわち、加熱炉を用いて加熱する従来の積層コアの焼鈍方法においては、積層コア9が目標温度に到達した後においても、均熱化のために所定の時間にわたって(たとえば2時間程度)加熱を継続していた。このため従来の積層コアの焼鈍方法においては、加熱時間として、「積層コア9が目標温度に到達するまでの時間」と「均熱化のための時間」が必要であった。これに対して、第一実施形態にかかる積層コアの焼鈍方法においては、加熱時間として「積層コア9が目標温度に到達するまでの時間」のみが必要となり、「均熱化のための時間」は必要ではない。
 積層コア9の加熱および徐冷は、積層コア9を構成する電磁鋼板90の酸化を防止するため、非酸化性の雰囲気中で実施されることが好ましい。たとえば、図3に示すように、チャンバー3に非酸化性のガスを充填し、その内部で積層コア9の加熱および徐冷を実施する構成が適用できる。なお、チャンバー3の構成は特に限定されるものではなく、従来公知の各種チャンバーが適用できる。要は、内部を非酸化性の雰囲気に保持できる構成であればよい。また、第一実施形態においては、第1ヒーター1を用いて積層コア9を加熱するため、チャンバー3はヒーターを備えなくてよい。
 第一実施形態によれば、第1ヒーター1が放射する赤外線によって、積層コア9を内部空間から加熱する。筒状の積層コア9の内部空間に第1ヒーター1が配設される構成であるため、積層コア9の内周面9aに形成される歯91の表面の全体にわたって、赤外線をほぼ均一に照射できる。また、従来の加熱炉を用いる積層コアの焼鈍方法と比較すると、本第1実施形態では、熱源(赤外線源)を歯91の表面に近接させることができるため、短時間で均一に積層コア9を加熱することができる。これにより、「積層コア9が目標温度に到達するまでの時間」を短縮することができる。特に、近赤外線を放射する第1ヒーター1が適用される構成であると、昇温の応答性を高めることができる。このため、積層コア9を短時間で昇温させることができる。
 さらに、第一実施形態によれば、積層コア9が目標温度に到達した後、均熱化のために加熱を継続することなく直ちに徐冷を開始できる。したがって、「均熱化のための時間」を省略することができ、加熱時間の短縮を図ることができる。
 以上のとおりであるから、第一実施形態によれば、焼鈍において加熱時間の短縮を図ることができ、積層コア9の生産性の向上を図ることができる。
 そして、第一実施形態によれば、積層コア9の加熱時間を短縮しつつ、鉄損を減少させることができる。すなわち、打ち抜き加工された電磁鋼板90は、外周面9bがほぼ単純な円形であるのに対して、内周面9aは歯91が形成されているため凹凸を有する。このため、積層コア9の内周面9aは外周面9bに比較して切口が長く、ひずみが大きい。したがって、鉄損を減少させるためには、特に内周面9aについて焼鈍の効果を高くしてひずみを除去する必要がある。第一実施形態においては、第1ヒーター1が積層コア9の内部空間に配設される。そして、積層コア9の内周面9aに形成される歯91の表面に赤外線を直接照射することによって、積層コア9を内部空間から加熱する。このため、積層コア9の内周面9aを確実に目標温度に到達させることができる。さらに、内周面9aは外周面9bよりも早く目標温度に到達するから、内周面9aが目標温度に維持される時間を外周面9bに比較して長くできる。したがって、内周面9aの焼鈍の効果を高めることができ、鉄損を減少させることができる。このように、第一実施形態によれば、加熱時間を短縮しつつ、鉄損を減少させることができる。
 複数の積層コア9を焼鈍する場合には、複数の積層コア9を中心軸方向に重ねて(または並べて)配設し、単数または複数の第1ヒーター1を、重ねられた複数の積層コア9の内部空間をまとめて貫通するように配設する。このような構成によれば、複数の積層コア9を同時に加熱することができるため、積層コア9の生産性の向上を図ることができる。なお、図1A、図1B、図2A、図2Bにおいては、2個の積層コア9が重ねられる構成を示すが、重ねられる積層コア9の数は限定されない。
 また、図1A、図1B、図2A、図2Bにおいては、第1ヒーター1が直線状に形成される構成を示すが、第1ヒーター1の形状は限定されない。たとえば、第1ヒーター1はU字状であってもよい。さらに、図2A、図2Bにおいては、4本の第1ヒーター1が用いられる構成を示すが、第1ヒーター1の数は限定されない。
(第二実施形態)
 次に、本発明の第二実施形態について説明する。なお、第一実施形態と共通の構成については説明を省略する。図4Aは、第二実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。図4Bは、第二実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。
 図4A、図4Bに示すように、複数の第1ヒーター1が積層コア9の内部空間に挿入され、歯91に近接するように配設される。さらに、複数の第1ヒーター1どうしの間には第1隔壁部材2aが配設される。第1隔壁部材2aは、複数の第1ヒーター1が相互に直接的に赤外線を照射しないように、隣接する第1ヒーター1からの赤外線を遮断する機能を有する。さらに、第1隔壁部材2aは、それぞれの第1ヒーター1が放射する赤外線を、歯91の表面に向けて反射する機能も有する。このため、第1隔壁部材2aは、赤外線を遮断および反射する材料により形成される。たとえば、第1隔壁部材2aは白色セラミック、アルミニウムなどにより形成される。
 第1隔壁部材2aは、複数の第1ヒーター1どうしの間に介在する部分を有する。たとえば、図4A、図4Bに示すように、半径方向外側に延出する複数の板状の部分を有し、これらの複数の板状の部分のそれぞれが、複数の第1ヒーター1どうしの間に介在する。別の表現をすると、第1隔壁部材2aは、その外周に積層コア9の中心軸方向に沿って延伸する複数の凹部が形成される構成を有する。そして、複数の凹部のそれぞれに、複数の第1ヒーター1のそれぞれが収容される。
 このほか、複数の別個独立した第1隔壁部材2aが、互いに隣接する第1ヒーター1どうしの間に配設される構成であってもよい。要は、第1隔壁部材2aは、複数の第1ヒーター1どうしの間に介在する部分を有し、複数の第1ヒーター1が相互に直接的に赤外線を照射することを防止できる構成であればよい。
 第二実施形態によれば、第一実施形態と同様の作用効果が得られる。さらに第二実施形態によれば、第1隔壁部材2aによって、複数の第1ヒーター1どうしで相互に直接的に赤外線を照射することを防止できる。このため、第1ヒーター1どうしで相互に直接的に加熱することを防止して第1ヒーター1の保護を図ることができる。
 また、第1隔壁部材2aは、第1ヒーター1が放射する赤外線を、歯91に向けて反射する。したがって、第2実施形態によれば、熱効率の向上を図ることができ、積層コア9の加熱時間のさらなる短縮を図ることができる。
(第三実施形態)
 次に、本発明の第三実施形態について説明する。なお、第一実施形態と共通する構成については説明を省略する。図5Aは、第三実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。図5Bは、第三実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。
 図5A、図5Bに示すように、第三実施形態においては、複数の第1ヒーター1が積層コア9の内部空間に挿入され、積層コア9の内周面9aに形成される複数の歯91どうしの間に配設される。そして、歯91どうしの間に配設される複数の第1ヒーター1によって、積層コア9を内部空間から加熱する。
 第三実施形態によれば、複数の第1ヒーター1を、積層コア9の内周面9aに形成される複数の歯91の表面に接近させることができる。特に、複数の第1ヒーター1が歯91よりも半径方向内側(すなわち、積層コア9の中心寄り)に配設される構成と比較すると、歯91の円周方向の端面(すなわち、隣接する歯91に対向する面)に対して、より強い赤外線を照射できる。このため、熱効率のさらなる向上を図ることができ、加熱時間のさらなる短縮を図ることができる。
 さらに第三実施形態によれば、積層コア9の内周面9aに形成される複数の歯91によって、複数の第1ヒーター1が相互に直接的に赤外線を照射することを防止できる。すなわち、積層コア9の内周面9aに形成される複数の歯91を、第二実施形態における第1隔壁部材2aとして機能させることができる。したがって、第1ヒーター1の保護を図ることができる。
(第四実施形態)
 次に、本発明の第四実施形態について説明する。第四実施形態は、第三実施形態に隔壁部材を適用する形態である。このため、第三実施形態と共通する構成については説明を省略する。図6Aは、第三実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。図6Bは、第三実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。
 図6A、図6Bに示すように、第四実施形態においては、複数の第1ヒーター1が積層コア9の内部空間に挿入され、積層コア9の内周面9aに形成される複数の歯91どうしの間に配設される。さらに、歯91よりも半径方向の中心側(すなわち、内部空間)には、第2隔壁部材2bが積層コア9の中心軸方向に沿って延在するように配設される。第2隔壁部材2bは、それぞれの第1ヒーター1から半径方向の中心側に向かって照射される赤外線を、半径方向外側に向かって反射する機能を有する。第2隔壁部材2bには、たとえば積層コア9の内部空間に挿入可能な円筒状または円柱状の構成が適用できる。
 また、第2隔壁部材2bは、赤外線を遮断および反射する材料により形成される。たとえば、第2隔壁部材2bは白色セラミック、アルミニウムなどにより形成される。
 第四実施形態によれば、第三実施形態と同様の作用効果が得られる。さらに第四実施形態においては、それぞれの第1ヒーター1から半径方向の中心側に向かって放射された赤外線が、第2隔壁部材2bによって、半径方向外側に向かって(すなわち、歯91の内周面9aに向かって)反射する。したがって、熱効率のさらなる向上を図ることができ、加熱時間のさらなる短縮を図ることができる。
(第五実施形態)
 次に、第五実施形態について説明する。図7Aは、第五実施形態にかかる積層コアの焼鈍方法を模式的に示す斜視図である。図7Bは、第五実施形態にかかる積層コアの焼鈍方法を模式的に示す平面図である。図7A、図7Bに示すように、第五実施形態においては、積層コア9の内部空間に第1ヒーター1を挿入して加熱するとともに、積層コア9の外周側にも積層コア9の中心軸方向に沿って延在する第2ヒーター11を配設して加熱する。なお、図7A、図7Bにおいては、積層コア9の内部空間に挿入される第1ヒーター1に第一実施形態が適用される構成を示すが、第二~第四実施形態のいずれが適用される構成であってもよい。
 第五実施形態によれば、前記各実施形態と同様の作用効果が得られる。さらに、第五実施形態によれば、積層コア9を外周側からも加熱するため、積層コア9に与える単位時間当たりの熱量を大きくすることができる。また、積層コア9を外周側からも加熱する構成を採用することで、内周側面9aから与えられた熱が外周面9bに移動して外周面9bから外部に放散されることを防止できる。したがって、積層コア9の加熱時間のさらなる短縮を図ることができる。
(実施例)
 次に、本発明の実施例について説明する。本発明者は、第1ヒーター1を用いて加熱してその後冷却する方法によって、積層コア9を焼鈍した。そして、加熱中における積層コア9の温度を測定するとともに、焼鈍による鉄損の減少の効果を測定した。
 図8は、実施例において使用した積層コア9の構成と、温度の測定点の位置を模式的に示す斜視図である。図8に示すように、積層コア9は全体として円筒状の構成を有する。そしてその内周面9aには、半径方法中心側に向かって突出する複数の歯91が形成される。積層コア9の外径(最大)DOは約180mmであり、内径(最小)DIは約115mmであり、中心軸方向長さLは約55mmである。温度の測定点はA~Hの8カ所とした。測定点A,Eは、歯91の内周面9aにおける中心軸方向の一端に位置する。測定点B,Fは、歯91の内周面9aにおける中心軸方向の中心に位置する。測定点C,Gは、外周面における中心軸方向の一端に位置する。測定点D,Hは、外周面における中心軸方向の中心に位置する。なお、測定点A,B,C,Dは、円周方向の位置が同一である。同様に、測定点E,F,G,Hは、円周方向の位置が同一である。そして、測定点A,B,C,Dと測定点E,F,G,Hとは、円周方向に互いに90°ずれた位置にある。
 図8に示すように、4本の棒状のハロゲンヒーターを、積層コア9の内部空間に挿入して、円周方向に均等な間隔になるように配設した。積層コア9の歯部91の内周面9aからそれぞれの第1ヒーター1までの距離は、25mmとした。
 以上の条件で、積層コア9を870秒間にわたって加熱し、その後直ちに徐冷(空冷)した。加熱において第1ヒーター1に供給される電力は、約2,550Wとした。供給電力のうち、赤外線に変換されるのは約86%であり、発光長は150mmとしたので、第1ヒーター1から放出される熱量は約15W/mmとなる。図9は、各測定点の温度変化を示すグラフである。図10は、各測定点における最高温度を示す表である。図9と図10に示すように、870秒間の加熱で、全ての測定点が目標温度である700℃以上に到達した。そして、このようにして焼鈍した積層コア9は、焼鈍を施さない場合と比較すると、鉄損が約15%低減するという結果が得られた。
 以上のように、本実施例によれば、870秒間の加熱によって、焼鈍による鉄損の減少の効果が得られることが確認された。加熱炉を用いる従来の積層コアの焼鈍方法においては数時間の加熱時間が必要であったことに比較すると、本発明の実施例によれば、加熱時間の大幅な短縮が可能であることが確認された。また、本発明の実施例によれば、積層コア9が目標温度に到達した後、均熱化のために加熱を継続しなくても、焼鈍による鉄損の減少の効果が得られることが確認された。以上のとおり、本発明の実施例によれば、加熱時間の短縮によって、積層コア9の生産性の向上を図ることが可能であることが確認された。
 以上、本発明の各実施形態を、図面を参照して詳細に説明したが、前記各実施形態および実施例は、本発明の実施にあたっての具体例を示したに過ぎない。本発明の技術的範囲は、前記実施形態および実施例に限定されるものではない。本発明は、その趣旨を逸脱しない範囲において、種々の変更が可能であり、それらも本発明の技術的範囲に含まれる。
 たとえば、積層コア9の加熱に用いられる第1ヒーター1や第2ヒーター11の数は限定されるものではない。第1ヒーター1や第2ヒーター11の数は、加熱対象である積層コア9の寸法や形状などに応じて適宜設定される。また、第1ヒーター1や第2ヒーター11は、直線状に形成される構成に限定されない。たとえば、U字形状に形成される構成であってもよい。このほか、前記各実施形態においては、2個の積層コア9を中心軸方向に重ねて同時に加熱する構成を示したが、同時に加熱する積層コア9の数は限定されるものではない。1個の積層コア9のみを加熱する構成であってもよく、3個以上の積層コア9を重ねて同時に加熱する構成であってもよい。
 また、上述の説明においては複数の電磁鋼板が積層されて形成される積層コア9を金属部材として用いているが、本発明において金属部材は積層コアに限定されるものではなく、中空円筒形状を有する金属部材であればよい。
 本発明は、電磁鋼板が積層されて構成される積層コアのひずみを除去するための焼鈍に適用できる。また、電磁鋼板が積層されて構成される積層コアに限定されず、他の種々の積層コアの焼鈍に適用できる。
1:第1ヒーター
11:第2ヒーター
2a:第1隔壁部材
2b:第2隔壁部材
3:チャンバー
9:積層コア
9a:積層コアの内周面
9b:積層コアの外周面
90:打ち抜かれた電磁鋼板
91:積層コアの内周面に形成される歯

Claims (13)

  1.  内周面に中心方向に向かって突出する複数の歯が形成された中空円筒形状の金属部材の内部空間に、この金属部材の中心軸方向と平行に延在するように、赤外線を放射する第1ヒーターを配設し、
     前記第1ヒーターによって前記金属部材を前記内部空間から加熱し、
     加熱後の前記金属部材を徐冷する
    ことを特徴とする金属部材の焼鈍方法。
  2.  前記第1ヒーターを、円周方向に均等な間隔で複数配設する
    ことを特徴とする金属部材の焼鈍方法。
  3.  前記金属部材の前記中心軸に沿って、前記複数の第1ヒーター間を遮る第1隔壁部材を配設する
    ことを特徴とする請求項2に記載の金属部材の焼鈍方法。
  4.  前記第1隔壁部材が、白色セラミック及びアルミニウムの少なくとも1種により形成される
    ことを特徴とする請求項3に記載の金属部材の焼鈍方法。
  5.  前記複数の第1ヒーターのそれぞれを、前記複数の歯の間に配設する
    ことを特徴とする請求項2に記載の金属部材の焼鈍方法。
  6.  前記金属部材の前記内部空間に、前記金属部材の前記中心軸方向に沿って延在する第2隔壁部材を配設する
    ことを特徴とする請求項5に記載の金属部材の焼鈍方法。
  7.  前記第2隔壁部材が、白色セラミック及びアルミニウムの少なくとも1種により形成される
    ことを特徴とする請求項6に記載の金属部材の焼鈍方法。
  8.  前記金属部材を前記中心軸方向に複数重ねて配設するとともに、前記第1ヒーターを複数の前記金属部材の前記内部空間に挿入し、複数の前記金属部材を同時に加熱する
    ことを特徴とする請求項1から7のいずれか1項に記載の金属部材の焼鈍方法。
  9.  前記第1ヒーターは、ハロゲンヒーターである
    ことを特徴とする請求項8に記載の金属部材の焼鈍方法。
  10.  前記金属部材の外周側に、前記金属部材の前記中心軸方向と平行に延在するように第2ヒーターを更に配設し、
     前記第2ヒーターによって前記金属部材を前記外周側からも加熱する
    ことを特徴とする請求項1から7のいずれか1項に記載の金属部材の焼鈍方法。
  11.  前記第2ヒーターは、赤外線を放射するヒーターである
    ことを特徴とする請求項10に記載の金属部材の焼鈍方法。
  12.  前記第2ヒーターは、ハロゲンヒーターである
    ことを特徴とする請求項11に記載の金属部材の焼鈍方法。
  13.  前記金属部材は、複数の電磁鋼板が積層されて形成される積層コアである
    ことを特徴とする請求項1から7のいずれか1項に記載の金属部材の焼鈍方法。
PCT/JP2013/051149 2012-01-25 2013-01-22 金属部材の焼鈍方法 WO2013111726A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13741187.2A EP2713485B1 (en) 2012-01-25 2013-01-22 Metal member annealing method
CN201380001827.8A CN103620926B (zh) 2012-01-25 2013-01-22 金属部件的退火方法
PL13741187T PL2713485T3 (pl) 2012-01-25 2013-01-22 Sposób wyżarzania elementu metalowego
US14/124,131 US10370733B2 (en) 2012-01-25 2013-01-22 Method of annealing metal member
JP2013555257A JP6021270B2 (ja) 2012-01-25 2013-01-22 金属部材の焼鈍方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-013403 2012-01-25
JP2012013403 2012-01-25

Publications (1)

Publication Number Publication Date
WO2013111726A1 true WO2013111726A1 (ja) 2013-08-01

Family

ID=48873446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051149 WO2013111726A1 (ja) 2012-01-25 2013-01-22 金属部材の焼鈍方法

Country Status (6)

Country Link
US (1) US10370733B2 (ja)
EP (1) EP2713485B1 (ja)
JP (1) JP6021270B2 (ja)
CN (1) CN103620926B (ja)
PL (1) PL2713485T3 (ja)
WO (1) WO2013111726A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015126624A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 積層コアの焼鈍装置
JP2015126623A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 積層コアの焼鈍方法
JP2015126625A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 積層コアの焼鈍方法
JP2016183366A (ja) * 2015-03-25 2016-10-20 新日鐵住金株式会社 モータ用高強度部材およびモータ用高強度部材の製造方法
JP2019115113A (ja) * 2017-12-21 2019-07-11 日本製鉄株式会社 コアの焼鈍方法、コア焼鈍システム、およびステータコア
JP2019115107A (ja) * 2017-12-21 2019-07-11 日本製鉄株式会社 コアの焼鈍方法、コア焼鈍システム、およびステータコア
JP2020080596A (ja) * 2018-11-12 2020-05-28 株式会社豊田中央研究所 回転電機ステータコアの焼鈍方法
WO2022224342A1 (ja) * 2021-04-20 2022-10-27 株式会社九州日昌 加熱装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658471B2 (ja) * 2016-11-25 2020-03-04 トヨタ自動車株式会社 ロータコアの製造方法およびモータコアの製造方法
CN109347274A (zh) * 2018-11-26 2019-02-15 宁国井田机电有限公司 一种用以降低定子叠片铁损的热处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541803A (en) 1977-06-06 1979-01-09 Sanyo Electric Co Ltd Manufacture of motor core
JPS59123719A (ja) 1982-12-02 1984-07-17 Matsushita Electric Ind Co Ltd 電気機器用鉄心の焼鈍方法
JPH11332183A (ja) 1998-05-19 1999-11-30 Nippon Steel Corp 積層コアの歪み取り焼鈍方法
JP2001192728A (ja) * 1999-12-28 2001-07-17 Nippon Steel Corp 円筒状金属コイルの加熱装置、及び加熱方法
JP2003342637A (ja) * 2002-05-29 2003-12-03 Toyo Tetsushin Kogyo Kk モータ用コアの磁場焼鈍方法および磁場焼鈍装置
JP2007059819A (ja) * 2005-08-26 2007-03-08 Kuroda Precision Ind Ltd 金属薄板積層体の製造装置
JP2008285746A (ja) * 2007-04-20 2008-11-27 Hitachi Industrial Equipment Systems Co Ltd 鉄心焼鈍炉

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3633891A (en) * 1970-05-06 1972-01-11 Robert F Heran Method and apparatus for heating annular workpieces
US4477306A (en) * 1980-09-02 1984-10-16 General Electric Company Laminated core, apparatus and methods
JPS57164935A (en) * 1981-04-04 1982-10-09 Nippon Steel Corp Unidirectionally inclined heating method for metallic strip or metallic plate
US4621794A (en) * 1981-04-04 1986-11-11 Nippon Steel Corporation Apparatus for producing a grain-oriented electromagnetic steel strip or sheet
JPS61214746A (ja) * 1985-03-15 1986-09-24 Toshiba Corp 電気機器鉄心の焼鈍方法
JPS62195892A (ja) * 1986-02-21 1987-08-28 株式会社豊田中央研究所 セラミツクスの加熱制御装置
US5038019A (en) * 1990-02-06 1991-08-06 Thermtec, Inc. High temperature diffusion furnace
GB2278722A (en) * 1993-05-21 1994-12-07 Ea Tech Ltd Improvements relating to infra-red radiation sources
US6174388B1 (en) 1999-03-15 2001-01-16 Lockheed Martin Energy Research Corp. Rapid infrared heating of a surface
US6800833B2 (en) * 2002-03-29 2004-10-05 Mariusch Gregor Electromagnetically levitated substrate support
JP4558478B2 (ja) 2004-12-28 2010-10-06 日立オートモティブシステムズ株式会社 回転機のロータ,その製造方法及び電動パワーステアリング用モータ
EP2078444A4 (en) * 2006-11-01 2013-02-20 Acepower Logistics Inc INFRARED RADIATOR SYSTEM
JP4940088B2 (ja) * 2007-10-12 2012-05-30 株式会社 日立ディスプレイズ バックライト装置及び液晶表示装置
JP5408974B2 (ja) * 2008-11-28 2014-02-05 富士電子工業株式会社 ボールハウジングの誘導加熱装置
US8674274B2 (en) * 2009-03-02 2014-03-18 Harris Corporation Apparatus and method for heating material by adjustable mode RF heating antenna array

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS541803A (en) 1977-06-06 1979-01-09 Sanyo Electric Co Ltd Manufacture of motor core
JPS59123719A (ja) 1982-12-02 1984-07-17 Matsushita Electric Ind Co Ltd 電気機器用鉄心の焼鈍方法
JPH11332183A (ja) 1998-05-19 1999-11-30 Nippon Steel Corp 積層コアの歪み取り焼鈍方法
JP2001192728A (ja) * 1999-12-28 2001-07-17 Nippon Steel Corp 円筒状金属コイルの加熱装置、及び加熱方法
JP2003342637A (ja) * 2002-05-29 2003-12-03 Toyo Tetsushin Kogyo Kk モータ用コアの磁場焼鈍方法および磁場焼鈍装置
JP2007059819A (ja) * 2005-08-26 2007-03-08 Kuroda Precision Ind Ltd 金属薄板積層体の製造装置
JP2008285746A (ja) * 2007-04-20 2008-11-27 Hitachi Industrial Equipment Systems Co Ltd 鉄心焼鈍炉

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2713485A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015126624A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 積層コアの焼鈍装置
JP2015126623A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 積層コアの焼鈍方法
JP2015126625A (ja) * 2013-12-26 2015-07-06 新日鐵住金株式会社 積層コアの焼鈍方法
JP2016183366A (ja) * 2015-03-25 2016-10-20 新日鐵住金株式会社 モータ用高強度部材およびモータ用高強度部材の製造方法
JP2019115113A (ja) * 2017-12-21 2019-07-11 日本製鉄株式会社 コアの焼鈍方法、コア焼鈍システム、およびステータコア
JP2019115107A (ja) * 2017-12-21 2019-07-11 日本製鉄株式会社 コアの焼鈍方法、コア焼鈍システム、およびステータコア
JP7003634B2 (ja) 2017-12-21 2022-01-20 日本製鉄株式会社 コアの焼鈍方法、およびコア焼鈍システム
JP7106856B2 (ja) 2017-12-21 2022-07-27 日本製鉄株式会社 コアの焼鈍方法、およびコア焼鈍システム
JP2020080596A (ja) * 2018-11-12 2020-05-28 株式会社豊田中央研究所 回転電機ステータコアの焼鈍方法
WO2022224342A1 (ja) * 2021-04-20 2022-10-27 株式会社九州日昌 加熱装置
JP7236174B1 (ja) * 2021-04-20 2023-03-09 株式会社九州日昌 加熱装置
US11646647B2 (en) 2021-04-20 2023-05-09 Kyushu Nissho Co., Ltd. Heating apparatus

Also Published As

Publication number Publication date
US20140126894A1 (en) 2014-05-08
US10370733B2 (en) 2019-08-06
JP6021270B2 (ja) 2016-11-09
CN103620926B (zh) 2016-09-28
PL2713485T3 (pl) 2019-07-31
EP2713485A4 (en) 2015-08-19
JPWO2013111726A1 (ja) 2015-05-11
CN103620926A (zh) 2014-03-05
EP2713485B1 (en) 2019-01-09
EP2713485A1 (en) 2014-04-02

Similar Documents

Publication Publication Date Title
JP6021270B2 (ja) 金属部材の焼鈍方法
JP6102731B2 (ja) 積層コアの焼鈍方法
JP6201747B2 (ja) 積層コアの焼鈍方法
JP6674588B1 (ja) 銅を含む部材の溶接方法、および回転電機の製造方法
JP5322358B2 (ja) 基板を熱処理する装置及び方法
TWI443198B (zh) Annealing method of amorphous core
US20220072786A1 (en) Heating device with infrared radiating elements
JP2019500996A5 (ja)
JP5267765B2 (ja) フィラメントランプおよび光照射式加熱処理装置
WO2014045976A1 (ja) 高周波誘導加熱装置、加工装置
CN118829509A (zh) 激光焊接方法及旋转电机的制造方法
JP7562194B2 (ja) 加熱装置
AU2015206075A1 (en) A wire tray for a microwave oven or a cooking appliance with microwave heating function
CN112769304A (zh) 一种步进电机转子铁芯高力矩分隔工艺
WO2018101436A1 (ja) 熱処理された金属板の製造方法、及び、熱処理装置
JP5998461B2 (ja) 加熱装置
JP6102732B2 (ja) 積層コアの焼鈍装置
JP7003634B2 (ja) コアの焼鈍方法、およびコア焼鈍システム
JP4572039B2 (ja) 高周波誘導加熱装置
JP2018074749A (ja) 電機子の加熱方法、製造方法及び加熱装置
WO2012132077A1 (ja) 誘導加熱装置
WO2012132078A1 (ja) 誘導加熱装置
JP5804739B2 (ja) プレート型ヒーター
JP2008075109A (ja) 肉厚に変動のある筒状部材の焼戻し加熱用支持治具
JP2018073676A (ja) 加熱装置、加熱ランプ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013555257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741187

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013741187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14124131

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE