[go: up one dir, main page]

WO2013094657A1 - シールリング - Google Patents

シールリング Download PDF

Info

Publication number
WO2013094657A1
WO2013094657A1 PCT/JP2012/082975 JP2012082975W WO2013094657A1 WO 2013094657 A1 WO2013094657 A1 WO 2013094657A1 JP 2012082975 W JP2012082975 W JP 2012082975W WO 2013094657 A1 WO2013094657 A1 WO 2013094657A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
friction
recess
width
shaft
Prior art date
Application number
PCT/JP2012/082975
Other languages
English (en)
French (fr)
Inventor
純也 永井
美香 斉藤
知哉 柴野
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to JP2013521695A priority Critical patent/JP5548312B2/ja
Priority to EP12860561.5A priority patent/EP2765339A4/en
Priority to CN2012800100102A priority patent/CN103415730A/zh
Priority to US14/006,432 priority patent/US9206907B2/en
Priority to KR1020137016775A priority patent/KR101463366B1/ko
Publication of WO2013094657A1 publication Critical patent/WO2013094657A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3436Pressing means
    • F16J15/3448Pressing means the pressing force resulting from fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings
    • F16J15/3272Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring

Definitions

  • the present invention relates to a seal ring, and more particularly to a seal ring used in hydraulic equipment such as an automatic transmission of an automobile.
  • the automatic transmission is provided with a seal ring for the purpose of a hydraulic seal, but the friction loss of the seal ring leads to the drive loss of the automatic transmission. Therefore, reducing the friction of the seal ring has become an important issue. Further, since the capacity of the oil pump of the automatic transmission occupies a large weight in the drive loss, it is desired to reduce the amount of oil leakage from the seal ring and to reduce the capacity of the oil pump. Thus, in order to reduce the driving loss of the automatic transmission and improve the fuel efficiency of the automobile, the seal ring is required to have a low friction and low leak function.
  • the seal ring 1 shows a basic structure of a hydraulic circuit using a seal ring.
  • the seal ring 1 is mounted on shaft grooves (ring grooves) 4 formed on both axial sides of the hydraulic passage 3 on the outer peripheral surface of the shaft 2.
  • the hydraulic oil supplied from the hydraulic passage 3 is received by the pressure receiving side surface 11 and the inner peripheral surface 12 of the seal ring, the outer peripheral surface 13 of the seal ring is in contact with the inner surface of the housing 5, and the contact side surface 14 of the seal ring is the shaft groove 4. Oil pressure is sealed by contacting the side.
  • the shaft 2 rotates and the housing 5 is fixed, but the reverse is also possible.
  • the side taper shape is known as the shape of a seal ring that can significantly reduce the pressure receiving load and has the smallest friction at present.
  • Patent Document 2 as shown in FIG. 2 (A), at least the inner side of the contact side surface is spaced apart in the circumferential direction (pocket) 6 and the column portion disposed between the concave portions 6. A seal ring with 7 is described.
  • the recess 6 includes a deepest inclined portion 51 provided so that the axial width (thickness) of the seal ring becomes thinner toward the inner circumferential direction, and the deepest inclined portion. 51, the converging portions 52 are located on both sides in the circumferential direction and converge toward the innermost point of the adjacent column portion 7.
  • the present invention has been made in view of the above circumstances, and provides a seal ring that has both low friction characteristics and low leakage characteristics, reduces driving loss of an automatic transmission, and can contribute to improvement of fuel efficiency of an automobile. Objective.
  • the present inventors have found that in the seal ring in which a recess is formed in the circumferential direction on the inner peripheral side of the contact side surface, and a column portion is disposed therebetween, both sides in the circumferential direction of the recess It has been found that if the end of this is constituted by a constricted portion having a convex curved surface toward the column portion, the lift generated by the oil constriction is increased and the friction is reduced, and the present invention has been completed.
  • the seal ring of the present invention is a seal ring that is mounted in a shaft groove formed on the outer peripheral surface of the shaft, and is spaced apart in the circumferential direction via a column portion at least on the inner peripheral side of the contact side surface of the seal ring.
  • a plurality of concave portions are formed, and the end portions on both sides in the circumferential direction of the concave portions are configured by a narrowed portion having a convex curved surface toward the column portion.
  • a concave portion spaced in the circumferential direction via a column portion is provided on the inner peripheral side of the contact side surface, and the end portions on both sides in the circumferential direction of the concave portion are constituted by a throttle portion that is convex toward the column portion.
  • the pillar portion and the concave portion are connected in a gentle R shape, the oil squeezing effect is improved and the lift is increased, so that the friction can be effectively reduced.
  • the contact side surface and the ring groove side surface are in contact with each other, so that oil leakage can also be suppressed. As described above, since the seal ring of the present invention has both low friction and low leak characteristics, the drive loss of the automatic transmission can be effectively reduced.
  • FIG. 4 is a perspective view (A) showing an embodiment of the seal ring of the present invention and a linear motion development view (B) in the circumferential direction when the concave shape of the seal ring of (A) is viewed from the inner peripheral surface.
  • FIG. 1 It is a perspective view (A) which shows other modes of a seal ring of the present invention, (B), and a scan image (C) of a contact side of a seal ring of (A). It is a perspective view which shows the one aspect
  • FIG. 3A shows a perspective view of the seal ring of the present invention
  • FIG. 3B shows a linear development view in the circumferential direction as viewed from the inner peripheral surface of the seal ring of FIG.
  • the straight line portion in the developed view is referred to as a plane or a flat surface
  • the curved portion is referred to as a curved surface.
  • both ends of the recess 6 are convex curved surfaces toward the column part 7, that is, a linear motion development view in the circumferential direction viewed from the inner peripheral surface (FIG. 3 (B).
  • the boundary between the slope portion 22 and the throttle portion 20 is also connected with a gentle curved surface.
  • the inclined surface portion 22 of the seal ring of the present invention is not limited to such a configuration including a curved surface, and may be configured as a single plane or a configuration including a plane and a curved surface.
  • the depth h of the deepest portion 21, that is, the axial width of the deepest portion 21 is preferably 2 to 17, more preferably 5 to 10, with the axial width of the seal ring being 100.
  • the deepest portion 21 has a predetermined circumferential length and is formed as a flat surface parallel to the side surface.
  • the deepest portion 21 may be configured without a flat surface. That is, the center of the concave portion 6 includes the deepest portion 21 and is formed of a slope portion 22 formed of one curved surface convex toward the deepest portion 21, that is, downwardly convex in FIG. From the both sides of the part 22 to the column part 7, it can also be set as the recessed part 6 structure which connected with the aperture
  • the deepest portion 21 is constituted by a flat surface parallel to the side surface.
  • the circumferential width b of the deepest portion is preferably 2 to 20, more preferably 8 to 16, with the circumferential width a of one recess 6 being 100.
  • the sagging length c of the curved surface of the narrowed portion 20, that is, the circumferential width from the tip of the concave portion 6 to the boundary between the narrowed portion 20 and the slope portion 22 is the circumferential width of the inclined portion on one side of the concave portion 6, that is, The sum (c + d) of the widths in the circumferential direction of the narrowed portion 20 and the inclined surface portion 22 is preferably set to 5 to 20, assuming 100.
  • the depth e of the narrowed portion 20, that is, the amount of axial decrease of the boundary point between the narrowed portion 20 and the slope portion 22 is defined as 100 where the depth h (the amount of axial decrease) of the deepest portion of the recess 6 is 100.
  • the number of recesses 6 (the number of recesses formed on one side surface of one seal ring) depends on the size of the seal ring, but for seal rings with an outer diameter (nominal diameter) of about 20 to 70 mm, 16 is preferable, and 6 to 10 is more preferable.
  • the circumferential width of the recess 6 is a factor that greatly affects the friction reduction effect, and the formation of the recess 6 having a larger circumferential width is more effective than the formation of many recesses 6 having a smaller circumferential width. Is recognized.
  • the circumferential width a per recess 6 is preferably 3 to 25, more preferably 5 to 15, with the outer peripheral length of the seal ring being 100.
  • the circumferential width a per recess 6 is preferably 5 to 20 times the circumferential width f of each pillar 7.
  • the effect of the present invention is obtained by forming the recess 6 on the contact side surface of the seal ring.
  • the shape of the recess 6 of this embodiment is symmetrical on both sides with respect to the center in the circumferential direction, considering workability, the recess 6 is provided on both the contact side and pressure receiving side of the seal ring, and both sides are symmetrical. It is preferable that the configuration has no directionality.
  • 4A and 4B show another form of the seal ring of the present invention in which the inner wall 8 is provided at the inner peripheral end of the recess 6. 4A, the inner wall 8 extends from both ends in the circumferential direction of the concave portion 6 toward the center of the concave portion 6 along the inner peripheral end portion, and toward the inner peripheral surface 12 at the center of the concave portion 6.
  • An oil introduction hole 10 is provided.
  • the circumferential length of one inner wall 8 is 100 as the circumferential length of one recess 6. 20 to 45, and the total length of the inner walls 8 on both sides is preferably 40 to 90, with the circumferential length of the entire recess 6 being 100. In this range, a better wedge shape effect is obtained and the friction is further reduced.
  • the effect of the present invention is obtained by forming the recess 6 on the contact side surface of the seal ring.
  • the shape of the recess 6 of this embodiment is symmetrical on both sides with respect to the center in the circumferential direction, considering workability, the recess 6 is provided on both the contact side and pressure receiving side of the seal ring, and both sides are symmetrical. It is preferable that the configuration has no directionality.
  • the inner walls 8 are provided at both ends of the recess 6. However, as shown in FIG. 4B, the inner walls 8 are provided only at the end of the inclined surface (throttle portion 20) opposite to the rotation direction. You can also.
  • the seal ring rotates to the right, oil is squeezed to the tip of the throttle portion 20 on the opposite side (left side) in the rotation direction, and lift is generated (wedge shape effect).
  • the wedge-shaped effect is generated in the throttle portion 20 on the opposite side in the rotation direction, and on the other hand, the oil film on the slope is difficult to form on the rotation direction side, and the lubricating state tends to be hindered.
  • the friction is further reduced.
  • the circumferential length of the inner wall 8 is preferably 5 to 95, preferably 50 to 95, with the circumferential length of the entire recess being 100. Is more preferable. In this range, a better wedge shape effect is obtained and the friction is further reduced.
  • FIG. 4C shows a scanned image of the contact side surface of the seal ring of FIG.
  • the inner wall 8 is inclined at an inclination angle of 4 ° so that the radial width increases from a position approximately 4 mm from the end of the recess 6 toward the tip of the recess, that is, the radial width of the recess decreases.
  • the seal surface on the outer peripheral side of the recess 6 is inclined at an inclination angle of 3 ° toward the tip of the recess 6 such that the radial width increases, that is, the radial width of the recess 6 decreases. ing.
  • the seal ring of the present embodiment having the tapered concave portion 6 whose radial width decreases toward the tip and further decreases in the axial width (shallow depth) further improves the three-dimensional throttling effect. To do. For this reason, the lift increases and the friction further decreases.
  • the tip of the recess 6 is formed with a curved surface. 4A and 4B, the axial height of the inner wall 8 is set to be substantially equal to the height of the side surface, that is, the tip surface of the inner wall 8 is the same as the side surface where the recess 6 is not formed. It is set to be a plane. Then, by discontinuously disposing the inner wall 8 in the circumferential direction, in FIG.
  • an oil introduction hole 10 that opens toward the surface 12 is formed.
  • the configuration of the oil introduction hole 10 is not limited to this, and for example, the inner wall 8 is formed over the entire circumferential direction of the recess 6 so that the axial height of the inner wall 8 is partially lower than the side surface of the seal ring.
  • the oil introduction hole 10 can also be formed by designing to.
  • the seal ring of the present invention is provided with a joint in consideration of the wearability, but the shape of the joint is not particularly limited.
  • a double cut joint and a triple step joint shown in FIG. 5 can be employed.
  • a double angle joint, a double cut joint, and a triple step joint are preferable in order to block the oil flow to the joint gap and improve the sealing performance.
  • the material of the seal ring of the present invention is not particularly limited, and other than polyetheretherketone (PEEK), polyphenylene sulfide (PPS), polyimide (PI), etc., polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene, A fluorine-based resin such as ethylenetetrafluoroethylene (ETFE) is used. Generally, a material obtained by filling these resins with additives such as carbon powder and carbon fiber is used.
  • the manufacturing method of the seal ring of this invention is not specifically limited, When using thermoplastic resins, such as PEEK, PPS, and PI, as a seal ring material, it is preferable to manufacture by injection molding. By using an injection mold, a seal ring having a complicated structure can be easily manufactured. Moreover, when using a fluororesin, it can manufacture by carrying out the machining after compression molding.
  • Example 1 A seal ring having a concave shape with a structure shown in FIG. 3A was produced by injection molding using a PEEK material to which carbon fibers were added.
  • the curvature of the throttle portion is R40
  • eight concave portions having a depth of 0.22 mm at the deepest portion and a width of 24 mm in the circumferential direction are formed on each of the contact side surface and the pressure receiving side surface.
  • the outer diameter (nominal diameter) of the seal ring was 67 mm, the thickness (radial width) was 2.3 mm, the width (axial width) was 2.32 mm, and the joint was a triple step joint shown in FIG.
  • the depth of the deepest part is 9.5 with the axial width of the seal ring being 100, and the circumferential width of the deepest part is 16.9 with the circumferential length of one recess being 100,
  • the sag length of the curved surface of the narrowed portion is 13.9, where the sum of the circumferential widths of the narrowed portion and the slope portion is 100, and the depth of the narrowed portion is 15.0, where the depth of the deepest portion of the concave portion is 100.
  • a seal ring having a concave shape with a structure shown in FIG. 2B was produced by injection molding using a PEEK material to which carbon fibers were added.
  • the slope angle ⁇ of the concave portion was 16 °
  • the depth h of the deepest inclined portion 52 was 0.42 mm
  • eight concave portions were formed on each of the contact side surface and the pressure receiving side surface.
  • the outer diameter (nominal diameter) of the seal ring was 67 mm
  • the thickness (radial width) was 2.3 mm
  • the width (axial width) was 2.32 mm
  • the joint was a triple step joint shown in FIG.
  • Example 1 and Comparative Examples 1 and 2 were mounted on a shaft groove formed on the outer peripheral surface of a fixed shaft (manufactured by S45C) provided with a hydraulic circuit, and installed in a test apparatus. .
  • a housing manufactured by S45C was mounted and rotated at a rotational speed of 2000 rpm, and rotational torque loss was detected from a torque detector attached to the test apparatus.
  • the amount of oil leakage was measured.
  • automatic transmission fluid (ATF) was used as the oil
  • the oil temperature was 80 ° C.
  • the oil pressure was 0.8 MPa.
  • the friction was reduced by 10% or more compared to the seal ring of Comparative Example 1. This is considered to be because in the seal ring of Example 1, the end portions on both sides in the circumferential direction of the concave portion are constituted by the throttle portions that are convex curved surfaces toward the column portion, so that the lift generated by the oil narrowing is increased. It is done. Further, the oil leakage amount of the seal ring of Example 1 is reduced to about 2/3 of the oil leakage amount of Comparative Example 2 as in Comparative Example 1, and the seal ring of the present invention has excellent leakage characteristics. It was confirmed to have.
  • Example 2 a seal ring having a concave shape having a structure shown in FIG. 3A was produced by injection molding using a PEEK material to which carbon fibers were added.
  • the depth h of the deepest portion is 0.03 mm (Example 2), 0.08 mm (Example 3), 0.12 mm (Example 4), and 0. It was set to 41 mm (Example 5).
  • the outer diameter (nominal diameter) of the seal ring was 67 mm
  • the thickness (radial width) was 2.3 mm
  • the width (axial width) was 2.32 mm
  • the joint was a triple step joint shown in FIG.
  • Example 2 The depth of the deepest part of each example is 1.3 (Example 2), 3.4 (Example 3), 5.2 (Example 4), and 17 with the axial width of the seal ring being 100. 7 (Example 5).
  • the friction and oil leakage of the obtained seal ring were measured in the same manner as in Example 1.
  • FIG. 7 shows the result of plotting the relationship between the depth h of the deepest part of the seal rings of Examples 1 to 5 and the friction ( ⁇ ).
  • the vertical axis represents the relative value with the friction of the seal ring of Comparative Example 1 as 100.
  • the horizontal axis represents the depth h of the deepest part of the seal ring as a relative value, where the axial width of the seal ring is 100.
  • Example 6 A seal ring having a concave shape having a structure shown in FIG. 4A was produced by injection molding using a PEEK material to which carbon fibers were added.
  • the depth h of the deepest portion is 0.03 mm (Example 6), 0.08 mm (Example 7), 0.12 mm (Example 8), and 0.22 mm, respectively.
  • Seal rings of (Example 9) and 0.41 mm (Example 10) were produced.
  • the outer diameter (nominal diameter) of the seal ring is 67 mm
  • the thickness (radial width) is 2.3 mm
  • the width (axial width) is 2.32 mm
  • the joint is a triple step joint shown in FIG. .
  • the friction and oil leakage amount of each seal ring were measured in the same manner as in Example 1.
  • FIG. 7 shows the results of measuring the friction of the seal rings of Examples 6 to 10 ( ⁇ ).
  • the vertical axis represents the relative value with the friction of the seal ring of Comparative Example 1 as 100.
  • the horizontal axis represents the depth h of the deepest part of the seal ring as a relative value, where the axial width of the seal ring is 100.
  • FIG. 7 shows that the friction is further reduced by providing the inner wall of the seal ring of the present invention.
  • the seal ring of the present invention in which the end portion of the concave portion is formed by a curved surface convex toward the column portion, and the column portion and the concave portion are connected at a gentle inclination angle, the oil is provided by providing the inner wall. This is probably because the tip is more effectively narrowed down to the tip of the concave portion, the lift increases, an oil film is easily formed on the column portion, the seal surface is lubricated, and the friction coefficient is reduced.
  • Examples 11 to 14 As shown in FIG. 4B, the circumferential lengths are only 14.4 mm (Example 11), 10 mm (Example 12), 6.6 mm (Example 13), and 3.3 mm on the opposite side in the rotational direction.
  • a seal ring having the same configuration as in Example 1 was produced except that the inner wall of (Example 14) was provided.
  • the circumferential direction length of a recessed part is 24 mm here
  • the circumferential direction length of the inner wall of Examples 11, 12, 13 and 14 is 60%, 42%, and 28 of the circumferential direction length of a recessed part, respectively. % And 14%.
  • the friction and oil leakage amount of each seal ring were measured in the same manner as in Example 1.
  • FIG. 8 shows the result of plotting the relationship between the length of the inner wall of the seal ring of Examples 11 to 14 and the friction.
  • the length of the inner wall is expressed by the relative length of each inner wall, with the circumferential length of the recess being 100, and the friction is a relative value with the friction of the first embodiment having no inner wall being 100.
  • the value of Example 9 which provided the inner wall in the both sides of the recessed part is also shown in FIG. 8 ( ⁇ ).
  • Example 9 the friction reducing effect was observed in both Example 9 in which inner walls were provided on both sides and Examples 11 to 14 in which inner walls were provided only on one side (opposite to the rotational direction).
  • the circumferential length of the recess is set to 100, and the circumferential length of the inner wall is set to 5 to 95, preferably 50 to 95. It turns out that an effect is acquired. Normally, the larger the cancel area, that is, the greater the area on which the hydraulic pressure acts, the greater the force to push back as a counter pressure, so the pressure receiving load is reduced and the friction is reduced. However, in the seal ring of the present invention, an excellent friction reduction effect was recognized by lengthening the inner wall, that is, by reducing the canceling area.
  • the friction reduction effect of the seal ring according to the present invention largely depends on the reduction of the friction coefficient by the lubrication of the sliding surface rather than the reduction of the pressing load.
  • the seal ring of the present invention that can reduce friction with a smaller cancel area, it is possible to improve the limit characteristics and reduce the amount of wear compared to the conventional seal ring that greatly depends on the cancel area.
  • Seal ring 2 Shaft 3 Hydraulic passage 4 Shaft groove 5 Housing 6 Recess (Pocket) 7 Column portion 8 Inner wall 10 Oil introduction hole 11 Pressure receiving side surface 12 Inner circumferential surface 14 Contact side surface 20 Restricted portion 21 Deepest portion 22 Slope portion 51 Deepest inclined portion 52 Converging portion 60 Lifting force 61 Canceling pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sealing Devices (AREA)

Abstract

【課題】 低フリクション特性と低リーク特性を併せもち、自動変速機の駆動損失を改善し自動車の燃費向上に貢献し得るシールリングを提供する。 【解決手段】 軸の外周面に形成された軸溝に装着されるシールリングの少なくとも軸溝と接触する側面の内周側に、柱部を介して周方向に離間した複数の凹部を形成する。凹部の周方向両側の端部は、柱部に向かって凸状の曲面からなる絞り部で構成する。また、凹部の軸方向幅の最も大きい最深部の深さhは、シールリングの軸方向幅を100として、2~17の範囲に設定する。

Description

シールリング
 本発明は、シールリングに関し、特に、自動車の自動変速機等の油圧機器に用いられるシールリングに関する。
 近年、自動車の燃費向上を図るため、自動変速機の駆動損失の低減が求められている。自動変速機には、油圧シールを目的としてシールリングが装着されるが、シールリングのフリクションロスは自動変速機の駆動損失につながる。そのため、シールリングのフリクションの低減が重要な課題となっている。また、自動変速機のオイルポンプの容量は、駆動損失の中で大きなウエイトを占めるため、シールリングからのオイル漏れ量を低減し、オイルポンプを小容量化することが望まれている。このように、自動変速機の駆動損失を低減し、自動車の燃費を向上させるため、シールリングには低フリクション及び低リーク機能が要求されている。
 図1にシールリングを用いた油圧回路の基本構造を示す。シールリング1は、軸2の外周面の油圧通路3の軸方向両側に形成された軸溝(リング溝)4に装着される。油圧通路3から供給される作動油をシールリングの受圧側面11と内周面12で受け、シールリングの外周面13がハウジング5の内面と接触し、シールリングの接触側面14が軸溝4の側面と接触することにより、油圧をシールする。一般的には軸2が回転し、ハウジング5が固定されるが、その逆の組み合わせもある。
 シールリングのフリクション(フリクションロス)を低減するためには、通常、摺動主体面となるシールリングの接触側面をリング溝に押し付ける受圧荷重を低減する手法が採用されている。具体的には、シールリングの接触側面とリング溝との間に供給油圧が作用する断面形状を有するシールリングを採用して、キャンセル荷重の作用により受圧荷重を低減させている。
 特許文献1には、シールリングの側面を、外周側から内周側に向かって軸方向幅が小さくなるようなテーパ形状とすることにより、シールリング側面とリング溝との間にキャンセル荷重を発生させて、受圧荷重の低減を図る方法が記載されている。側面テーパ形状は、受圧荷重を大幅に低減することができ、現状で最もフリクションが小さいシールリングの形状として知られている。
 また、特許文献2には、図2(A)に示すように、少なくとも接触側面の内周側に周方向に離間して形成された凹部(ポケット)6と凹部6間に配置された柱部7を有するシールリングが記載されている。図2(B)及び(C)に示すように、凹部6は、内周方向に向かいシールリングの軸方向幅(厚さ)が薄くなるように設けられた最深傾斜部51と、最深傾斜部51の周方向両側に位置し、隣接する柱部7の最も内周側の点に向かって収束する収束部52からなる。この構成では、シールリングの回転により、凹部6内に満たされた油を収束部52の斜面で絞り込むことにより発生する揚力60と、接触側面の凹部6に油圧が作用し、押し付け荷重を低減させる効果(キャンセル圧61)によりフリクションが低減する。さらに、特許文献2のシールリングでは、図2(D)に示すように、シールリングの側面がリング溝と面で摺接するため、合口隙間の漏れ流路が形成されず、低リーク特性が得られる。
 特許文献1のシールリングでは、シールリングの側面とリング溝の摺接が線接触となり、摺動径がシールリングの合口隙間上に位置するため、合口隙間から油の漏れ(リーク)が発生するという問題がある。一方、特許文献2の凹部を採用することにより、フリクションは低減するが、特許文献1のシールリングには及ばず、さらなるフリクションの低減が求められている。
特許第3437312号公報 WO2004/090390
 本発明は、上記事情に鑑みてなされたもので、低フリクション特性と低リーク特性を併せもち、自動変速機の駆動損失を低減し、自動車の燃費向上に貢献し得るシールリングを提供することを目的とする。
 上記目的に鑑み鋭意研究の結果、本発明者らは、接触側面の内周側に周方向に離間して凹部が形成され、その間に柱部が配置されたシールリングにおいて、凹部の周方向両側の端部を柱部に向かって凸状の曲面からなる絞り部で構成すると、油の絞り込みにより発生する揚力が増加しフリクションが低減することを見出し、本発明を完成した。すなわち、本発明のシールリングは、軸の外周面に形成された軸溝に装着されるシールリングであって、少なくともシールリングの接触側面の内周側に、柱部を介して周方向に離間した複数の凹部が形成され、凹部の周方向両側の端部は、柱部に向かって凸状の曲面からなる絞り部で構成されていることを特徴とする。
 本発明では、接触側面の内周側に柱部を介して周方向に離間した凹部を設け、その凹部の周方向両側の端部を柱部に向かって凸状の曲面からなる絞り部で構成する。柱部と凹部が緩やかなR形状で結ばれていることにより、油の絞り効果が向上し、揚力が増加するため、フリクションを効果的に低減することができる。また、本発明のシールリングでは、接触側面とリング溝側面が面で接触するため、油の漏れも抑制できる。このように、本発明のシールリングは、低フリクション及び低リークの両特性を併せもつため、自動変速機の駆動損失を効果的に低減することができる。
シールリングが装着された油圧回路を示す断面図である。 特許文献2に記載のシールリングの構造を示す平面図(A)、斜視図(B)、凹部形状を内周面から見た円周方向の直動展開図(C)、及び特許文献2に記載のシールリングが、リング溝に装着された状態を示す概略図(D)である。 本発明のシールリングの一態様を示す斜視図(A)及び(A)のシールリングの凹部形状を内周面から見た円周方向の直動展開図(B)である。 本発明のシールリングの他の態様を示す斜視図(A),(B)及び(A)のシールリングの接触側面のスキャン画像(C)である。 本発明のシールリングの合口の一態様を示す斜視図である。 フリクション測定装置を示す概略図である。 実施例1~5(●)及び実施例6~10(■)のシールリングの最深部深さとフリクションとの関係を示すグラフである。 内壁の長さとフリクションとの関係を示すグラフである。
 以下に本発明のシールリングについて図面を参照して詳細に説明する。
 図3(A)に本発明のシールリングの斜視図を示し、図3(B)には、(A)のシールリングの内周面から見た円周方向の直動展開図を示す。なお、以下の記載において、上記展開図における直線部を平面又は平坦面といい、曲線部を曲面という。本形態では、図3(B)に示すように、凹部6両端は柱部7に向かって凸状の曲面、すなわち、内周面から見た円周方向の直動展開図(図3(B))において、上に凸状の曲面からなる絞り部20で構成され、柱部7と連結している。このように柱部7と凹部6が緩やかな傾斜曲面で繋がれているため、特許文献2のシールリングの凹部6形状よりさらに絞り効果が向上し、揚力が増加して、フリクションが低減する。また、本形態では、図3(B)に示すように、凹部6の中央に側面に平行な凹部6最深部21が形成され、最深部21の両端から絞り部20に向かい、最深部21に向かって凸状の曲面、すなわち、図3(B)において下に凸状の曲面からなる斜面部22が形成されている。そして、斜面部22と絞り部20との境界も緩やかな曲面で連結されている。斜面部22をこのような構成とすることにより、より優れたフリクション低減効果を得ることができる。しかし、本発明のシールリングの斜面部22は、このような曲面からなる構成に限定されず、平面単独としても、平面と曲面からなる構成としてもよい。
 ここで、最深部21の深さh、すなわち最深部21の軸方向幅は、シールリングの軸方向幅を100として、2~17とするのが好ましく、5~10とするのがより好ましい。最深部21の深さhを、この範囲に設定することにより、より優れたフリクション低減効果が得られる。
 図3では、最深部21は、所定の周方向長さを有し、側面と平行な平坦面で形成されているが、平坦面を設けない構成とすることもできる。すなわち、凹部6の中央は、最深部21を含み、最深部21に向かって凸形状、すなわち、図3(B)において下に凸状の1つの曲面からなる斜面部22で構成され、この斜面部22の両側から柱部7までを、柱部7に向かって凸状、すなわち、図3(B)において上に凸状の曲面からなる絞り部20で連結した凹部6構成とすることもできる。但し、より優れたフリクション低減効果を得るためには、最深部21は、側面と平行な平坦面で構成されるのが好ましい。この場合、最深部の周方向の幅bは、1個の凹部6の周方向幅aを100として2~20とするのが好ましく、8~16とするのがより好ましい。
 また、絞り部20のR曲面のダレ長さc、すなわち、凹部6先端から絞り部20と斜面部22との境界までの周方向幅は、凹部6片側の傾斜部の周方向幅、すなわち、絞り部20と斜面部22の周方向の幅の和(c+d)を100として、5~20とするのが好ましい。また、絞り部20の深さe、すなわち、絞り部20と斜面部22との境界点の軸方向の減退量は、凹部6の最深部の深さh(軸方向の減退量)を100として、0を超え20%以下とするのが好ましい。
 凹部6の数(1本のシールリングの片側の側面に形成される凹部の数)は、シールリングのサイズによるが、外径(呼び径)が20~70mm程度のシールリングでは、4個~16個が好ましく、6個~10個がより好ましい。凹部6の周方向幅は、フリクション低減効果に大きな影響を及ぼす因子であり、周方向幅の小さい凹部6を多数形成するより、周方向幅の大きい凹部6を形成する方が顕著なフリクション低減効果が認められる。凹部6の1個あたりの周方向幅aは、シールリングの外周長さを100として、3~25であるのが好ましく、5~15であるのがより好ましい。また、凹部6の1個あたりの周方向幅aは、柱部7の1個あたりの周方向幅fの5~20倍とするのが好ましい。
 本発明の効果は、凹部6をシールリングの接触側面に形成することにより得られる。しかし、本形態の凹部6形状は、周方向中央に対して両側が対称形状であるため、作業性を考慮すると、シールリングの接触側面及び受圧側面の両方に凹部6を設け、両側面とも対称で方向性のない構成とするのが好ましい。
 図4(A)及び(B)には、凹部6の内周端に内壁8を設けた本発明のシールリングの別の形態を示す。図4(A)の形態では、内壁8は、内周端部に沿って、凹部6の周方向の両端から凹部6の中央に向かって延び、凹部6の中央には内周面12に向かって開口する油導入孔10が備えられている。凹部6の内周側(端部)に内壁8を設けることにより、絞り込まれた油の楔斜面(絞り部)から内周面12への流れが抑制され、楔断面の深さと円周方向の三次元での絞り効果により、さらに大きな揚力が作用する。このため、柱部に油膜が形成され、柱部が浮き上がると同時に、凹部6の外周側に位置する環状のシール面への油の介在が促進され、摩擦係数が低減する。また、接触側面の凹部6に油圧が作用し、押し付け荷重が低減する。これらの相乗効果により、フリクションがさらに低減する。本発明のシールリングでは、柱部7と凹部6が緩やかな傾斜となるR形状で結ばれているため、内壁8を設けることにより絞り効果が著しく向上し、揚力が増加して、フリクションがさらに低減する。本形態のように内壁8を凹部6の両端、すなわち油導入口10の両側に形成する場合には、一方の内壁8の周方向長さは、1個の凹部6の周方向長さを100として、20~45とするのが好ましく、両側の内壁8を合わせた長さは、凹部6全体の周方向長さを100として、40~90とするのが好ましい。この範囲では、より優れた楔形状効果が得られ、フリクションがさらに低減する。
 本発明の効果は、凹部6をシールリングの接触側面に形成することにより得られる。しかし、本形態の凹部6形状は、周方向中央に対して両側が対称形状であるため、作業性を考慮すると、シールリングの接触側面及び受圧側面の両方に凹部6を設け、両側面とも対称で方向性のない構成とするのが好ましい。
 図4(A)では、内壁8を凹部6の両端に設けているが、図4(B)に示すように回転方向反対側の傾斜面(絞り部20)の端部にのみ内壁8を設けることもできる。本構成では、シールリングが右回転することにより、回転方向反対側(左側)の絞り部20先端に油が絞り込まれ、揚力が発生する(楔形状効果)。このように楔形状効果は回転方向反対側の絞り部20で発生し、一方、回転方向側では、斜面の油膜が形成されにくく、潤滑状態が阻害される傾向にあるため、回転方向反対側にのみ内壁8を設けた本形態では、フリクションがさらに低減する。
 ここで、回転方向反対側のみに内壁を設けた場合、内壁8の周方向長さは、凹部全体の周方向長さを100として、5~95とするのが好ましく、50~95とするのがより好ましい。この範囲では、より優れた楔形状効果が得られ、フリクションがさらに低減する。
 図4(C)には、図4(A)のシールリングの接触側面のスキャン画像を示す。ここで、内壁8は、凹部6端部から約4mmの個所から凹部先端に向かって径方向幅が大きくなるように、すなわち、凹部の径方向幅が小さくなるように傾斜角度4°で傾斜している。また、凹部6の外周側のシール面は、凹部6の先端部に向かって、径方向幅が大きくなるように、すなわち、凹部6の径方向幅が小さくなるように傾斜角度3°で傾斜している。このように先端部に向かって径方向幅が小さくなり、さらに軸方向幅が小さく(深さが浅く)なる先細り形状の凹部6を有する本形態のシールリングでは、三次元の絞り効果がさらに向上する。このため、揚力が増加し、フリクションがさらに低減する。なお、本形態では、凹部6の先端は曲面で形成されている。
 図4(A)及び(B)では、内壁8の軸方向の高さは、側面の高さとほぼ等しく設定され、すなわち、内壁8の先端面と、凹部6が形成されていない側面とが同一平面となるように設定されている。そして、内壁8を周方向に不連続に配置することにより、図4(A)では、内壁8、8間に、図4(B)では、内壁8と柱部7との間に、内周面12に向かって開口する油導入孔10が形成されている。しかし、油導入孔10の構成は、これに限定されず、例えば、凹部6の周方向全域にわたって内壁8を形成し、内壁8の軸方向の高さを部分的にシールリング側面より低くなるように設計することにより、油導入孔10を形成することもできる。
 本発明のシールリングは、装着性を考慮して合口を設けるが、合口形状は特に限定されず、直角(ストレート)合口、斜め(アングル)合口、段付き(ステップ)合口の他、ダブルアングル合口、ダブルカット合口、及び図5に示すトリプルステップ合口等を採用することができる。合口隙間部への油の流通を遮断し、シール性を向上させるためには、ダブルアングル合口、ダブルカット合口、及びトリプルステップ合口が好ましい。
 本発明のシールリングの材料は、特に限定されず、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリイミド(PI)等の他、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン(ETFE)等のフッ素系樹脂等が用いられる。一般に、これらの樹脂にカーボン粉末やカーボン繊維等の添加剤を充填した材料が用いられる。
 本発明のシールリングの製造方法は、特に限定されないが、シールリング材料として、PEEK、PPS、PI等の熱可塑性樹脂を用いる場合は、射出成形で製造するのが好ましい。射出成形用金型を用いることにより、複雑な構造を有するシールリングも容易に製造できる。また、フッ素樹脂を用いる場合には、圧縮成型後、機械加工することにより製造することができる。
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
(実施例1)
 カーボン繊維を添加したPEEK材を用いて、射出成形により、図3(A)に示す構造の凹部形状を有するシールリングを作製した。ここで、絞り部の曲率をR40として、最深部の深さ0.22mm、周方向幅24mmの凹部を接触側面及び受圧側面それぞれに8個形成した。シールリングの外径(呼び径)は67mm、厚み(径方向幅)は2.3mm、幅(軸方向幅)は2.32mmとし、合口は図5に示すトリプルステップ合口とした。なお、最深部の深さは、シールリングの軸方向幅を100として9.5で、最深部の周方向の幅は、1個の凹部の周方向長さを100として16.9であり、絞り部のR曲面のダレ長さは、絞り部と斜面部の周方向幅の和を100として13.9で、絞り部の深さは、凹部の最深部の深さを100として15.0であった。
(比較例1)
 カーボン繊維を添加したPEEK材を用いて、射出成形により、図2(B)に示す構造の凹部形状を有するシールリングを作製した。ここで、凹部の斜面角度θは16°、最深傾斜部52の深さhは、0.42mmとし、接触側面及び受圧側面それぞれに8個の凹部を形成した。なお、シールリングの外径(呼び径)は67mm、厚み(径方向幅)は2.3mm、幅(軸方向幅)は2.32mmとし、合口は、図5に示すトリプルステップ合口とした。
(比較例2)
 カーボン繊維を添加したPEEK材を用いて、射出成形により、外周側から内周側に向かい軸方向幅が小さくなるように両側面を傾斜角度5度で傾斜させた断面台形のシールリングを作製した。なお、シールリングの外径(呼び径)は67mm、厚み(径方向幅)は2.3mm、幅(軸方向幅)は2.32mmとし、合口は図5に示すトリプルステップ合口とした。
(フリクション、及び油漏れ量の測定)
 実施例1及び比較例1、2のシールリングを、図6に示すように、油圧回路を設けた固定軸(S45C製)の外周面に形成された軸溝に装着し、試験装置に設置した。次に、ハウジング(S45C製)を装着し、回転数2000rpmで回転させ、試験装置に取付けたトルク検出器から回転トルク・ロスを検出した。また同時に油の漏れ量を測定した。なお、ここで、油はオートマチックトランスミッションフルード(ATF)を用い、油温80℃、油圧0.8MPaとした。
 実施例1のシールリングは、比較例1のシールリングに比べ、フリクションが10%以上低減した。これは、実施例1のシールリングでは、凹部の周方向の両側の端部を柱部に向かって凸状の曲面からなる絞り部で構成したため、油の絞り込みにより発生する揚力が増加したためと考えられる。
 また、実施例1のシールリングの油漏れ量は、比較例1と同様、比較例2の油漏れ量の2/3程度に低減しており、本発明のシールリングは、優れたリーク特性も有することが確認された。
(実施例2~5)
 実施例1と同様に、カーボン繊維を添加したPEEK材を用いて、射出成形により、図3(A)に示す構造の凹部形状を有するシールリングを作製した。ここで、絞り部の曲率を変えて、最深部の深さhが、それぞれ0.03mm(実施例2)、0.08mm(実施例3)、0.12mm(実施例4)、及び0.41mmm(実施例5)となるようにした。なお、シールリングの外径(呼び径)は67mm、厚み(径方向幅)は2.3mm、幅(軸方向幅)は2.32mmとし、合口は、図5に示すトリプルステップ合口とした。それぞれの実施例の最深部の深さは、シールリングの軸方向幅を100として1.3(実施例2)、3.4(実施例3)、5.2(実施例4)、及び17.7(実施例5)であった。得られたシールリングのフリクション及び油漏れ量を実施例1と同様に測定した。
 実施例1~5のシールリングの最深部の深さhとフリクションとの関係をプロットした結果を図7に示す(●)。ここで、縦軸は、比較例1のシールリングのフリクションを100として相対値で表した。また、横軸は、シールリングの最深部の深さhをシールリングの軸方向幅を100として相対値で表した。
 凹部の周方向両側の端部を柱部に向かって凸状の曲面からなる絞り部で構成した本発明の実施例では、従来の凹部形状に比べ、フリクションが低減することが確認された。特に、シールリングの軸方向幅を100として、最深部の深さhが2~17の範囲でフリクションが低減し、5~10の範囲でさらに低減した。
 一方、実施例1~5のシールリングの油漏れ量は、フリクションの低減と反比例して僅かに増加する傾向が認められたが、比較例1と同様、比較例2の油漏れ量の2/3程度であり、本発明のシールリングは優れたシール特性も有することがわかった。
(実施例6~10)
 カーボン繊維を添加したPEEK材を用いて、射出成形により、図4(A)に示す構造の凹部形状を有するシールリングを作製した。それぞれの凹部の両端から中央に向かって内周端に沿って、幅0.3mm、周方向長さが片側10mmの内壁を設け、中央に周方向長さ4mmの油導入孔を形成した。ここで、絞り部の曲率を変えて、最深部の深さhが、それぞれ0.03mm(実施例6)、0.08mm(実施例7)、0.12mm(実施例8)、0.22mm(実施例9)及び0.41mmm(実施例10)のシールリングを作製した。なお、シールリングの外径(呼び径)67mm、厚み(径方向幅)は、2.3mm、幅(軸方向幅)は、2.32mmとし、合口は、図5に示すトリプルステップ合口とした。それぞれのシールリングのフリクション及び油漏れ量を実施例1と同様に測定した。
 実施例6~10のシールリングのフリクションを測定した結果を図7に示す(■)。ここで、縦軸は、比較例1のシールリングのフリクションを100として相対値で表した。また、横軸は、それぞれシールリングの最深部の深さhをシールリングの軸方向幅を100として相対値で表した。図7より、本発明のシールリングに内壁を設けることにより、フリクションがさらに低減することがわかった。これは、凹部の端部が柱部に向かって凸状の曲面で構成され、柱部と凹部が緩やかな傾斜角度で連結されている本発明のシールリングでは、内壁を設けることにより、油がより効果的に凹部の先端に絞り込まれ、揚力が増加し、柱部に油膜が形成されやすくなり、シール面が潤滑化され、摩擦係数が低減したためと考えられる。
(実施例11~14)
 図4(B)に示すように回転方向反対側にのみ周方向長さがそれぞれ、14.4mm(実施例11)、10mm(実施例12)、6.6mm(実施例13)、3.3mm(実施例14)の内壁を設けた以外、実施例1と同様の構成のシールリングを作製した。なお、ここで凹部の周方向長さは、24mmであるので、実施例11、12、13及び14の内壁の周方向長さは、それぞれ凹部の周方向長さの60%、42%、28%及び14%に相当する。それぞれのシールリングのフリクション及び油漏れ量を実施例1と同様に測定した。
 実施例11~14のシールリングの内壁の長さとフリクションの関係をプロットした結果を図8に示す。ここで、内壁の長さは凹部の周方向長さを100として、それぞれの内壁の長さを相対値で表し、フリクションは内壁のない実施例1のフリクションを100として、それぞれのフリクションを相対値で表した。また、凹部の両側に内壁を設けた実施例9の値も同様に図8に示す(■)。内壁のない実施例1に比べ、両側に内壁を設けた実施例9及び片側(回転方向反対側)にのみ内壁を設けた実施例11~14のいずれにおいてもフリクション低減効果が認められた。ここで、凹部の両側に内壁を設けた実施例9に比べ、回転方向反対側にのみ内壁を設けた実施例11~14では、さらにフリクションが低減することが確認された。
 これは、楔形状により作用する揚力が大きい回転方向反対側にのみ内壁を設け、楔形状により作用する揚力が小さく、斜面の油膜が形成されにくく、潤滑状態を阻害する傾向にある回転方向側に内壁を設けないことにより、シール面が潤滑化されたためと考えられる。内壁を回転方向反対側にのみ設けた場合、凹部の周方向長さを100として、内壁の周方向長さを、5~95、好ましくは、50~95とすることにより、より優れたフリクション低減効果が得られることがわかった。
 通常は、キャンセル面積が大きいほど、すなわち、油圧の作用する面積が大きいほど、反圧として押し返す力が大きくなるため、受圧荷重が低減されフリクションは低減する。しかし、本発明のシールリングでは、内壁を長くする、すなわち、キャンセル面積を小さくすることにより、より優れたフリクション低減効果が認められた。これは、内壁を設置したことにより、内周面への油の流出が抑えられ、油が絞り部の傾斜面に効率的に導かれることに起因すると考えられる。そのため、シールリングが回転すると、より大きな揚力が作用し、柱部に油膜が形成されやすくなる。この柱部の油膜形成により、シールリングの内周側が浮き上がり、凹部の外周側に位置する環状のシール面への油の介在も促進され、摺動面が流体潤滑に移行しやすくなり、摩擦係数が減少し、大きなフリクション低減効果が得られたと考えられる。すなわち、本発明のシールリングのフリクション低減効果は、押し付け荷重の低減より、摺動面の潤滑化による摩擦係数の低減に大きく依存していると考えられる。このように、より小さいキャンセル面積でフリクションを低減できる本発明のシールリングでは、キャンセル面積に大きく依存した従来のシールリングより、限界特性を向上させたり、摩耗量を低減させることが可能となる。
1   シールリング
2   軸(シャフト)
3   油圧通路
4   軸溝
5   ハウジング
6   凹部(ポケット)
7   柱部
8   内壁
10  油導入孔
11  受圧側面
12  内周面
14  接触側面
20  絞り部
21  最深部
22  斜面部
51  最深傾斜部
52  収束部
60  揚力
61  キャンセル圧

Claims (5)

  1.  軸の外周面に形成された軸溝に装着されるシールリングであって、少なくとも前記シールリングの接触側面の内周側に、柱部を介して周方向に離間した複数の凹部が形成され、前記凹部の周方向両側の端部は、柱部に向かって凸状の曲面からなる絞り部で構成されていることを特徴とするシールリング。
  2.  前記凹部の軸方向幅の最も大きい最深部の深さhが、シールリングの軸方向幅を100として、2~17であることを特徴とする請求項1に記載のシールリング。
  3.  前記凹部1個の周方向幅が、シールリングの外周長さを100として、3~25であることを特徴とする請求項1又は2に記載のシールリング。
  4.  前記シールリングの軸溝と接触する側面に形成される凹部の数が、4~16個であることを特徴とする請求項1~3のいずれかに記載のシールリング。
  5.  前記凹部の回転方向反対側の内周側に内壁を設けたことを特徴とする請求項1~4のいずれかに記載のシールリング。
PCT/JP2012/082975 2011-12-23 2012-12-19 シールリング WO2013094657A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013521695A JP5548312B2 (ja) 2011-12-23 2012-12-19 シールリング
EP12860561.5A EP2765339A4 (en) 2011-12-23 2012-12-19 SEAL RING
CN2012800100102A CN103415730A (zh) 2011-12-23 2012-12-19 密封环
US14/006,432 US9206907B2 (en) 2011-12-23 2012-12-19 Seal ring
KR1020137016775A KR101463366B1 (ko) 2011-12-23 2012-12-19 시일 링

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011282480 2011-12-23
JP2011-282480 2011-12-23

Publications (1)

Publication Number Publication Date
WO2013094657A1 true WO2013094657A1 (ja) 2013-06-27

Family

ID=48668541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082975 WO2013094657A1 (ja) 2011-12-23 2012-12-19 シールリング

Country Status (6)

Country Link
US (1) US9206907B2 (ja)
EP (1) EP2765339A4 (ja)
JP (2) JP5548312B2 (ja)
KR (1) KR101463366B1 (ja)
CN (1) CN103415730A (ja)
WO (1) WO2013094657A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015002143A1 (ja) * 2013-07-03 2015-01-08 Ntn株式会社 シールリング
WO2015045974A1 (ja) 2013-09-27 2015-04-02 株式会社リケン シールリング
WO2016158848A1 (ja) * 2015-03-31 2016-10-06 株式会社リケン シールリング
JP6081681B1 (ja) * 2016-09-30 2017-02-15 Tpr株式会社 シールリング
JP2017075647A (ja) * 2015-10-15 2017-04-20 株式会社リケン シールリング
KR20170066477A (ko) * 2014-10-01 2017-06-14 에누티에누 가부시키가이샤 시일 링
JP2017172606A (ja) * 2016-03-18 2017-09-28 株式会社リケン シールリング
CN107749295A (zh) * 2017-10-17 2018-03-02 张博强 风力发电机组噪声有源噪声控制方法与有源噪声控制系统
WO2018061222A1 (ja) * 2016-09-30 2018-04-05 Tpr株式会社 シールリング
JP2018169047A (ja) * 2013-07-03 2018-11-01 Ntn株式会社 シールリング
WO2019059341A1 (ja) * 2017-09-21 2019-03-28 Nok株式会社 シールリング
US10865883B2 (en) 2014-01-24 2020-12-15 Nok Corporation Sealing ring

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147042A1 (ja) 2014-03-25 2015-10-01 Ntn株式会社 シールリング
CN107314111B (zh) * 2015-01-14 2020-04-28 Nok株式会社 密封环及密封结构
KR101972253B1 (ko) * 2015-03-16 2019-04-24 엔오케이 가부시키가이샤 실 링
CN104989821A (zh) * 2015-06-04 2015-10-21 霍凤伟 一种浅槽机械密封
CN104930193A (zh) * 2015-06-04 2015-09-23 霍凤伟 一种密封环
JP6498559B2 (ja) * 2015-07-31 2019-04-10 川崎重工業株式会社 遊星歯車装置への給油構造
CN105202194A (zh) * 2015-10-01 2015-12-30 霍凤伟 一种密封环以及带有该密封环的机械密封装置
CN105202190A (zh) * 2015-10-10 2015-12-30 霍凤伟 一种浅槽机械密封
CN108779861B (zh) * 2016-03-21 2020-10-20 圣戈班性能塑料L+S有限公司 非对称密封环
US10464209B2 (en) * 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
USD890310S1 (en) * 2018-02-08 2020-07-14 Nok Corporation Seal
KR102361233B1 (ko) * 2020-03-11 2022-02-10 평화오일씰공업 주식회사 오일 씰 링
KR102360995B1 (ko) * 2020-03-11 2022-02-09 평화오일씰공업 주식회사 오일 씰 링
DE102021209401A1 (de) 2021-08-26 2023-03-02 Rolls-Royce Deutschland Ltd & Co Kg Planetengetriebe mit einem Dichtungssystem und Gasturbinentriebwerk mit einem Planetengetriebe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561566U (ja) * 1992-01-31 1993-08-13 エヌティエヌ株式会社 シールリング
JPH08121603A (ja) * 1994-10-25 1996-05-17 Nok Corp シ−ルリング
JP3437312B2 (ja) 1995-02-16 2003-08-18 株式会社リケン シールリングおよびシール装置
WO2004090390A1 (ja) 2003-04-02 2004-10-21 Kabushiki Kaisha Riken シールリング
WO2011105513A1 (ja) * 2010-02-26 2011-09-01 Nok株式会社 シールリング
WO2011162283A1 (ja) * 2010-06-23 2011-12-29 株式会社リケン シールリング

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524712Y2 (ja) * 1990-11-29 1997-02-05 エヌオーケー株式会社 シールリング
JPH0645172U (ja) 1992-11-30 1994-06-14 エヌオーケー株式会社 シールリング
JPH0996363A (ja) 1995-09-29 1997-04-08 Ntn Corp シールリング
JPH10141512A (ja) * 1996-11-12 1998-05-29 Mitsubishi Heavy Ind Ltd 流体圧駆動装置のシール装置
DE10041802C1 (de) * 2000-08-25 2002-02-28 Federal Mogul Burscheid Gmbh Kompressionskolbenring
US6938879B2 (en) * 2003-08-06 2005-09-06 Victaulic Company Of America Valve seal with pressure relief channels and expansion voids
US7377518B2 (en) 2004-05-28 2008-05-27 John Crane Inc. Mechanical seal ring assembly with hydrodynamic pumping mechanism
JP2007078041A (ja) 2005-09-13 2007-03-29 Ntn Corp 樹脂製シールリング
JP2008275052A (ja) * 2007-04-27 2008-11-13 Nok Corp シールリング
US8002237B2 (en) * 2008-11-12 2011-08-23 Velan Inc. Seat arrangement with cavity pressure relief for a ball valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561566U (ja) * 1992-01-31 1993-08-13 エヌティエヌ株式会社 シールリング
JPH08121603A (ja) * 1994-10-25 1996-05-17 Nok Corp シ−ルリング
JP3437312B2 (ja) 1995-02-16 2003-08-18 株式会社リケン シールリングおよびシール装置
WO2004090390A1 (ja) 2003-04-02 2004-10-21 Kabushiki Kaisha Riken シールリング
WO2011105513A1 (ja) * 2010-02-26 2011-09-01 Nok株式会社 シールリング
WO2011162283A1 (ja) * 2010-06-23 2011-12-29 株式会社リケン シールリング

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2765339A4 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10634253B2 (en) 2013-07-03 2020-04-28 Ntn Corporation Seal ring
JP2015028382A (ja) * 2013-07-03 2015-02-12 Ntn株式会社 シールリング
CN105378351A (zh) * 2013-07-03 2016-03-02 Ntn株式会社 密封环
KR20160027081A (ko) * 2013-07-03 2016-03-09 에누티에누 가부시키가이샤 시일 링
JP2018169047A (ja) * 2013-07-03 2018-11-01 Ntn株式会社 シールリング
WO2015002143A1 (ja) * 2013-07-03 2015-01-08 Ntn株式会社 シールリング
KR102283650B1 (ko) * 2013-07-03 2021-07-30 에누티에누 가부시키가이샤 시일 링
WO2015045974A1 (ja) 2013-09-27 2015-04-02 株式会社リケン シールリング
US10267421B2 (en) 2013-09-27 2019-04-23 Kabushiki Kaisha Riken Seal ring
US10865883B2 (en) 2014-01-24 2020-12-15 Nok Corporation Sealing ring
KR102468516B1 (ko) 2014-10-01 2022-11-18 에누티에누 가부시키가이샤 시일 링
KR20170066477A (ko) * 2014-10-01 2017-06-14 에누티에누 가부시키가이샤 시일 링
JP2017166703A (ja) * 2015-03-31 2017-09-21 株式会社リケン シールリング
JPWO2016158848A1 (ja) * 2015-03-31 2017-04-27 株式会社リケン シールリング
WO2016158848A1 (ja) * 2015-03-31 2016-10-06 株式会社リケン シールリング
US20180100584A1 (en) * 2015-10-15 2018-04-12 Kabushiki Kaisha Riken Seal ring
WO2017065068A1 (ja) * 2015-10-15 2017-04-20 株式会社リケン シールリング
EP3299681A4 (en) * 2015-10-15 2019-02-27 Kabushiki Kaisha Riken WATERTIGHT RING
KR20180008633A (ko) 2015-10-15 2018-01-24 가부시끼가이샤 리켄 실링
JP2017075647A (ja) * 2015-10-15 2017-04-20 株式会社リケン シールリング
US11028925B2 (en) 2015-10-15 2021-06-08 Kabushiki Kaisha Riken Seal ring
JP2017172606A (ja) * 2016-03-18 2017-09-28 株式会社リケン シールリング
JP6081681B1 (ja) * 2016-09-30 2017-02-15 Tpr株式会社 シールリング
CN108884940A (zh) * 2016-09-30 2018-11-23 帝伯爱尔株式会社 密封环
WO2018061222A1 (ja) * 2016-09-30 2018-04-05 Tpr株式会社 シールリング
US10451185B2 (en) 2016-09-30 2019-10-22 Tpr Co., Ltd. Seal ring
CN108884940B (zh) * 2016-09-30 2020-05-05 帝伯爱尔株式会社 密封环
WO2019059341A1 (ja) * 2017-09-21 2019-03-28 Nok株式会社 シールリング
JPWO2019059341A1 (ja) * 2017-09-21 2020-10-15 Nok株式会社 シールリング
CN111108312A (zh) * 2017-09-21 2020-05-05 Nok株式会社 密封环
KR20200044940A (ko) * 2017-09-21 2020-04-29 엔오케이 가부시키가이샤 밀봉 링
KR102387229B1 (ko) * 2017-09-21 2022-04-15 엔오케이 가부시키가이샤 밀봉 링
US11320051B2 (en) 2017-09-21 2022-05-03 Nok Corporation Seal ring
JP7164533B2 (ja) 2017-09-21 2022-11-01 Nok株式会社 シールリング
CN107749295A (zh) * 2017-10-17 2018-03-02 张博强 风力发电机组噪声有源噪声控制方法与有源噪声控制系统

Also Published As

Publication number Publication date
JPWO2013094657A1 (ja) 2015-04-27
JP2014088962A (ja) 2014-05-15
JP5548312B2 (ja) 2014-07-16
KR20130100004A (ko) 2013-09-06
KR101463366B1 (ko) 2014-11-19
US9206907B2 (en) 2015-12-08
US20140008876A1 (en) 2014-01-09
EP2765339A1 (en) 2014-08-13
CN103415730A (zh) 2013-11-27
EP2765339A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
JP5548312B2 (ja) シールリング
JP5352007B2 (ja) シールリング
JP5337926B1 (ja) シールリング
KR101889143B1 (ko) 실 링
KR102468516B1 (ko) 시일 링
CA2881850C (en) Seal ring
JP2008275052A (ja) シールリング
JP5801033B2 (ja) シール構造
US10451185B2 (en) Seal ring
JP5807095B2 (ja) シールリング及びシール装置
JP6872671B2 (ja) シールリング

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013521695

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016775

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012860561

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012860561

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860561

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14006432

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE