[go: up one dir, main page]

WO2013047076A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2013047076A1
WO2013047076A1 PCT/JP2012/071981 JP2012071981W WO2013047076A1 WO 2013047076 A1 WO2013047076 A1 WO 2013047076A1 JP 2012071981 W JP2012071981 W JP 2012071981W WO 2013047076 A1 WO2013047076 A1 WO 2013047076A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
core teeth
phase
winding
pole
Prior art date
Application number
PCT/JP2012/071981
Other languages
English (en)
French (fr)
Inventor
朝賀崇
加藤秀彰
鈴木勝巳
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Publication of WO2013047076A1 publication Critical patent/WO2013047076A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • H02K21/222Flywheel magnetos

Definitions

  • the present invention relates to a double stator type rotating electrical machine including one rotor and two stators arranged so as to sandwich the rotor.
  • Patent Document 1 discloses a double stator brushless motor. This includes a casing that covers the outer periphery, a bearing that is incorporated in the casing, a shaft that is incorporated in the bearing and that rotates uniaxially with respect to the casing, a rotor that is attached to the shaft, and an outer stator that is disposed outside the rotor. And an inner stator disposed inside the rotor.
  • the rotor is provided with a field magnet (permanent magnet) that is polarized in the radial direction to the N pole and the S pole and that the polarization directions of adjacent poles are opposite to each other.
  • the outer stator has an outer periphery attached to the casing, and has a plurality of core teeth protruding toward the rotor so as to face the field magnet.
  • the inner stator has a plurality of core teeth that are attached to the casing and project toward the rotor so as to face the field magnet.
  • the number of core teeth of the outer stator and the number of core teeth of the inner stator are the same, and are arranged at positions facing each other across the rotor.
  • Patent Document 2 also discloses a double stator type rotating electric machine. This rotating electrical machine is arranged so as to be opposed to each stator with a predetermined gap between the one side stator and the other side stator, which are two stators fixed to a casing, and both stators. And a single rotor.
  • Both stators are provided with a plurality of core teeth so as to protrude toward the rotor, and a stator winding is wound around each core tooth.
  • Each stator winding is provided with concentrated winding in which windings of different phases are wound between adjacent core teeth.
  • the stator windings of the same phase in the one-side stator and the other-side stator are arranged such that the direction of generation of magnetic flux by the windings is opposite to the rotor and is deviated by 180 degrees in electrical angle.
  • the rotor includes a disk-shaped rotor conductor and permanent magnets provided at equally spaced positions in a plurality of circumferential directions of the rotor conductor.
  • An object of the present invention is to provide a rotating electrical machine that reduces the torque ripple by increasing the number of poles of a permanent magnet without increasing the number of core teeth.
  • the characteristic configuration of the rotating electrical machine according to the present invention includes a rotating shaft and a plurality of magnetic pole pairs that rotate concentrically and integrally with the rotating shaft, and in which positive and negative magnetic poles are alternately formed in the circumferential direction.
  • a rotor including an annular magnet body; a plurality of first stator core teeth disposed concentrically with the rotating shaft and radially outward of the rotor; and projecting toward the rotor;
  • a first stator including a first winding wound so as to generate a rotating magnetic field in each of the stator core teeth, and disposed concentrically with the rotating shaft and radially inward of the rotor
  • a plurality of second stator core teeth projecting toward the rotor and a second winding wound to generate a rotating magnetic field in each of the second stator core teeth;
  • a second stator including The number of the stator core teeth and the number of the second stator core teeth are the same, and a three-phase alternating current is applied to the first winding and the second winding, and the first winding
  • the first stator core teeth and the second stator core teeth are arranged such that the phase when the current is applied to the second winding and the second winding is shifted by an integral multiple of 360 degrees in electrical angle and the in
  • the number of poles of the permanent magnet can be increased while maintaining the number of stator core teeth as compared with the rotating electrical machines of Patent Documents 1 and 2. Thereby, torque ripple can be reduced.
  • the number of stator core teeth can be halved, so that the winding cross-sectional area of the first and second stators can be increased and torque ripple can be increased while increasing the torque. Can be suppressed.
  • the second stator core teeth are arranged so as to face each other between the adjacent first stator core teeth.
  • the distal end portion of the first stator core teeth and the distal end portion of the second stator core teeth closest to the first stator core teeth overlap in the radial direction. It is preferable to do so. With such a configuration, leakage of magnetic flux from the stator core teeth is reduced, and it is possible to prevent a reduction in torque characteristics of the rotating electrical machine.
  • the direction of the radial magnetic flux generated in the first winding and the direction of the radial magnetic flux generated in the second winding when energized in the same phase are the same. It is preferable.
  • the phase of the first winding and the second winding when energized in phase is shifted by an integral multiple of 360 degrees in electrical angle so that the stator core teeth in phase do not face each other.
  • the suction repulsive force between the rotor and the first and second stators so as to rotate the rotor in the same direction. Therefore, the rotating electrical machine can be smoothly rotated.
  • first stator core teeth and the second stator core teeth are arranged 30 degrees apart from each other in the circumferential direction.
  • the rotating electrical machine according to the present invention includes an end portion adjacent in the circumferential direction at the tip end portion of the adjacent first stator core teeth, and the tip end of the second stator core teeth facing the end portion. It is preferable that the end portions on both sides in the circumferential direction of the portion overlap when viewed radially outward from the center of the rotating shaft.
  • the second winding having the same phase as each phase of the first winding of the first stator is connected in series, and 360 degrees in electrical direction in the circumferential direction. It is suitable that it is wound so as to deviate.
  • the rotating electrical machine according to the present invention includes an outer periphery of the magnet body and a front end portion of the first stator core teeth, and an inner periphery of the magnet body and a front end portion of the second stator core teeth. It is preferable that the gaps are opposed to each other via a gap in the radial direction.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • FIG. 3 is an enlarged view of a region III in FIG. 2.
  • FIG. 3 is an enlarged view of a region III in FIG. 2.
  • FIG. 1 is a schematic cross-sectional view showing a rotating electrical machine 10 according to the present embodiment.
  • FIG. 2 is a sectional view taken along line II-II in FIG.
  • a rotating electrical machine 10 shown in FIG. 1 rotates integrally with a case 15, an outer stator 13 and an inner stator 14 accommodated in the case 15, a rotary shaft 11 that is rotatable relative to the case 15, and the rotary shaft 11.
  • a bearing 16 a and 16 b for pivotally supporting the rotating shaft 11 on the case 15 and the end cover 17.
  • the case 15 has a bottomed cylindrical shape, and the opening side is closed by a disc-shaped end cover 17.
  • Bearings 16a and 16b are attached to the center of the bottom of the case 15 and the center of the end cover 17, respectively.
  • an annular outer stator 13 and an inner stator 14 that are disposed opposite to each other in the radial direction are accommodated inside the case 15, and both of their central axes are rotating shafts. 11 coincides with the central axis.
  • the outer stator 13 is composed of an outer stator core 13a and an outer stator winding 13b, and the outer stator core 13a has a structure in which a plurality of electromagnetic steel plates are laminated.
  • the outer stator core 13a has an outer peripheral surface fixed to the inner peripheral surface of the case 15, and six outer stator core teeth 13c protrude radially inward.
  • Each of the outer stator core teeth 13c has a substantially T shape with a distal end extending in the circumferential direction (hereinafter, the distal end is referred to as a distal facing portion 13d).
  • the six outer stator core teeth 13c are provided at equal angular intervals of 60 degrees in the circumferential direction, and an outer stator winding 13b is wound around each outer stator core tooth 13c. There is a gap (slot opening) in the circumferential direction between adjacent tip facing portions 13d.
  • the inner stator 14 includes an inner stator core 14a and an inner stator winding 14b, and the inner stator core 14a has a configuration in which a plurality of electromagnetic steel plates are laminated.
  • the inner stator core 14a is fixed to a substantially cylindrical fixing member 18 disposed in the case 15, and six inner stator core teeth 14c protrude outward in the radial direction.
  • Each of the inner stator core teeth 14c has a substantially T shape with a distal end portion extending in the circumferential direction (hereinafter, the distal end portion is referred to as a distal end facing portion 14d).
  • the six inner stator core teeth 14c are provided at equal angular intervals of 60 degrees in the circumferential direction, and an inner stator winding 14b is wound around each inner stator core tooth 14c. There is a gap (slot opening) in the circumferential direction between adjacent tip facing portions 14d.
  • the outer stator 13 and the inner stator 14 have the same axial height, and the inner stator core teeth 14c are arranged in the middle of the outer stator core teeth 13c in the circumferential direction. That is, the outer stator core teeth 13c and the inner stator core teeth 14c are arranged 30 degrees apart from each other in the circumferential direction. With this configuration, the inner stator core teeth 14c face the slot openings of the adjacent outer stator core teeth 13c, so that the outer stator 13 and the inner stator are always in rotation when the rotor 12 is rotating. An attractive repulsive force is generated between the permanent magnet 14 and the permanent magnet 12a, and the torque ripple is reduced.
  • each tip facing portion 13 d and the end in the circumferential direction of the tip facing portion 14 d facing each other overlap when viewed from the center of the rotating shaft 11 in the radial direction. Visible (overlapping). Thereby, the leakage of the magnetic flux at the time of rotation decreases and there exists an effect which reduces a torque ripple.
  • the outer stator windings 13b wound around the outer stator core teeth 13c are classified into three phases of U phase, V phase, and W phase, and every two in the circumferential direction (that is, every 180 degrees) have the same phase. It has become. As shown in FIG. 4, a three-phase alternating current having a phase difference of 120 degrees is supplied to each phase. Similarly, the inner stator windings 14b wound around the inner stator core teeth 14c are also classified into three phases of U phase, V phase, and W phase, and the same in every other circumferential direction (that is, every 180 degrees). It is in phase. As shown in FIG. 4, a three-phase alternating current having a phase difference of 120 degrees is supplied to each phase.
  • the inner stator winding 14b having the same phase as each phase of the outer stator winding 13b is connected in series, and is wound around the electrical angle by 360 degrees in the circumferential direction. In the present embodiment, this corresponds to a mechanical angle of 90 degrees.
  • the outer stator winding 13b and the inner stator winding 14b are wound so that a magnetic flux in the same direction is generated in the radial direction when an alternating current is applied.
  • all the outer stator windings 13b and the inner stator windings 14b having the same phase are connected in series.
  • each outer stator winding 13b is connected in series.
  • the winding 13b may be connected in parallel.
  • the inner stator windings 14b may be connected in parallel.
  • the outer stator winding 13b and the inner stator winding 14b having the same phase are preferably connected in series because they have the same current value to be energized from the viewpoint of balance, but may be connected in parallel.
  • the rotary shaft 11 is press-fitted into the inner rings of the bearings 16 a and 16 b and is rotatable with respect to the case 15.
  • the rotor 12 has a bottomed cylindrical rotor conductor 12b that is press-fitted and fixed to the rotating shaft 11, and is attached to the rotor conductor 12b and has eight poles so that N and S poles are alternately arranged in the circumferential direction. It consists of a permanent magnet 12a magnetized in a quadrupole pair) and rotates integrally with the rotary shaft 11.
  • the rotor conductor 12 b has an outer diameter of the bottom 12 c that is slightly smaller than the innermost circumference of the outer stator 13, and its central axis coincides with the central axis of the rotary shaft 11.
  • the permanent magnet 12 a has a substantially annular shape, and its central axis coincides with the central axis of the rotary shaft 11. Further, the outer periphery and the inner periphery of the permanent magnet 12a are opposed to each other with a radial gap between the tip facing portion 13d of the outer stator 13 and the tip facing portion 14d of the inner stator 14.
  • the thickness of the permanent magnet 12a is equal to the axial thickness of the outer stator core 13a and the inner stator core 14a, and one end face of the permanent magnet 12a is the end of the cylindrical portion 12d of the rotor conductor 12b. It is fixed by bonding or the like to the part.
  • FIG. 4 shows the direction and magnitude of the alternating current that is passed through the U, V, and W phases while the electrical angle is 360 degrees, that is, the rotor 12 is rotated 90 degrees. , Current flowing in each phase of W.
  • FIG. 4 when the direction of the magnetic flux generated when the outer stator winding 13b and the inner stator winding 14b are energized is positive in the radial direction, the current direction is positive, The current direction is negative.
  • 5A to 5F show states of energization to the outer stator winding 13b and the inner stator winding 14b of each phase between electrical angles of 360 degrees.
  • 6A to 6F show the attractive repulsion force generated between the permanent magnet 12a, each outer stator core tooth 13c, and each inner stator core tooth 14c during an electrical angle of 360 degrees.
  • FIG. 4A and FIG. 5A and FIG. 6A show that the same reference numerals A in FIG. 4 to FIG. 6F correspond to the region A in FIG. That is, when energized as in the area A of FIG. 4, current flows through the outer stator winding 13b and the inner stator winding 14b as shown in FIG. 5A.
  • FIG. 6A shows a state at the moment of switching to the region A of FIG. 4, and an attractive repulsive force is generated between the permanent magnet 12 a and each outer stator core tooth 13 c and each inner stator core tooth 14 c. Yes.
  • the codes B to F correspond to the code A as well.
  • the method of connecting the phases in the present embodiment is Y connection, but may be delta connection.
  • FIG. 6A shows a state when a positive current is supplied to the U phase and a negative current is supplied to the V phase.
  • the arrow drawn on the stator core teeth indicates the direction of the generated magnetic flux.
  • a magnetic flux is generated radially outward in the U-phase outer stator core teeth 13c, and the tip facing portion 13d is magnetized to the S pole and the radially outer side as viewed from the tip facing portion 13d is magnetized to the N pole.
  • the permanent magnet 12a faces the tip facing portion 13d in a state where the clockwise half is S-pole and the counterclockwise half is N-pole.
  • the U-phase inner stator core teeth 14c connected in series with the U-phase outer stator core teeth 13c are 360 degrees in electrical angle with respect to the outer stator core teeth 13c, that is, 90 degrees clockwise in mechanical angle. It is arranged at a deviated degree.
  • the U-phase inner stator core teeth 14c also generate a magnetic flux radially outward, and the tip facing portion 14d is magnetized to the N pole, and the radially inner side as viewed from the tip facing portion 14d is magnetized to the S pole. Since the permanent magnet 12a is magnetized to 8 poles, the angle formed by one pole pair is 90 degrees.
  • the N pole and the S pole of the permanent magnet 12a are also opposed to the tip facing portion 14d by half, and the clockwise half of the permanent magnet 12a is the N pole and the counterclockwise half is the S pole.
  • An attractive repulsive force that rotates the permanent magnet 12a in the clockwise direction is also generated between the tip facing portion 14d and the permanent magnet 12a.
  • V-phase outer stator core teeth 13c magnetic flux is generated inward in the radial direction, and the tip facing portion 13d is magnetized to the N pole, and the radially outer side as viewed from the tip facing portion 13d is magnetized to the S pole.
  • the V-phase outer stator core teeth 13c are offset by a mechanical angle of 60 degrees in the clockwise direction with respect to the U-phase outer stator core teeth 13c, and the N pole of the permanent magnet 12a faces the V-phase tip facing portion 13d.
  • Repulsive force is generated. This repulsive force acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • the V-phase inner stator core teeth 14c connected in series with the V-phase outer stator core teeth 13c are 360 degrees in electrical angle with respect to the outer stator core teeth 13c, that is, 90 degrees clockwise in mechanical angle. It is arranged at a position shifted by degrees.
  • the V-phase inner stator core teeth 14c also generate a magnetic flux radially inward, and the tip facing portion 14d is magnetized to the S pole and the radially inner side as viewed from the tip facing portion 14d is magnetized to the N pole. Since one pole pair of the permanent magnet 12a is 90 degrees, the south pole of the permanent magnet 12a faces the tip facing portion 14d of the V phase and a repulsive force is generated. This repulsive force also acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • FIG. 6B shows a state when energization is switched and a positive current is applied to the W phase and a negative current is applied to the V phase.
  • the V-phase outer stator core teeth 13c are continuously magnetized with the N-pole at the tip facing portion 13d and the S-pole at the radially outer side as viewed from the tip facing portion 13d.
  • the permanent magnet 12a is rotated 15 degrees clockwise from the state of FIG. 6A, and faces the tip facing portion 13d in a state where the clockwise half is N pole and the counterclockwise half is S pole. Therefore, an attractive repulsion force that rotates the permanent magnet 12a in the clockwise direction is generated between the V-phase tip facing portion 13d and the permanent magnet 12a.
  • the tip facing portion 14d is continuously magnetized to the S pole, and the radially inner side as viewed from the tip facing portion 14d is magnetized to the N pole.
  • the permanent magnet 12a faces the tip facing portion 14d in a state where the clockwise half is the south pole and the counterclockwise half is the north pole. Therefore, an attractive repulsion force that rotates the permanent magnet 12a in the clockwise direction is generated between the V-phase tip facing portion 14d and the permanent magnet 12a.
  • the tip facing portion 13d is magnetized to the S pole, and the radially outer side as viewed from the tip facing portion 13d is magnetized to the N pole.
  • the outer stator core teeth 13c of the W phase are offset by 60 degrees in the clockwise direction with respect to the outer stator core teeth 13c of the V phase, and the south pole of the permanent magnet 12a faces the tip facing portion 13d of the W phase.
  • Repulsive force is generated. This repulsive force acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • the W-phase inner stator core teeth 14c connected in series with the W-phase outer stator core teeth 13c are 360 degrees in electrical angle with respect to the outer stator core teeth 13c, that is, 90 degrees clockwise in mechanical angle. It is arranged at a position shifted by degrees.
  • the W-phase inner stator core teeth 14c also generate magnetic fluxes radially outward, and the tip facing portion 14d is magnetized to the N pole, and the radially inner side as viewed from the tip facing portion 14d is magnetized to the S pole. Since one pole pair of the permanent magnet 12a is 90 degrees, the N pole of the permanent magnet 12a faces the tip facing portion 14d of the W phase and a repulsive force is generated. This repulsive force also acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • FIG. 6C shows a state in which energization is switched, and a positive current is applied to the W phase and a negative current is applied to the U phase.
  • the W-phase outer stator core teeth 13c are continuously magnetized with the S-pole at the tip facing portion 13d and the N-pole at the radially outer side as viewed from the tip facing portion 13d.
  • the permanent magnet 12a is further rotated by 15 degrees in the clockwise direction, and faces the tip facing portion 13d with the clockwise half on the S pole and the counterclockwise half on the N pole. Therefore, an attractive repulsion force that rotates the permanent magnet 12a in the clockwise direction is generated between the W-phase tip facing portion 13d and the permanent magnet 12a.
  • the tip facing portion 14d is continuously magnetized to the N pole, and the radially inner side as viewed from the tip facing portion 14d is magnetized to the S pole.
  • the permanent magnet 12a has an N-pole on the clockwise side and an S-pole on the counterclockwise half, an attractive repulsive force that rotates the permanent magnet 12a in the clockwise direction also between the W-phase tip facing portion 14d and the permanent magnet 12a. appear.
  • the U-phase outer stator core teeth 13c In the U-phase outer stator core teeth 13c, a magnetic flux is generated inward in the radial direction, and the tip facing portion 13d is magnetized to the N pole, and the radially outer side as viewed from the tip facing portion 13d is magnetized to the S pole.
  • the U-phase outer stator core teeth 13c are offset by 60 degrees in the clockwise direction with respect to the W-phase outer stator core teeth 13c, and the N pole of the permanent magnet 12a faces the U-phase tip facing portion 13d.
  • Repulsive force is generated. This repulsive force acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • the U-phase inner stator core teeth 14c connected in series with the U-phase outer stator core teeth 13c are 360 degrees in electrical angle with respect to the outer stator core teeth 13c, that is, 90 degrees clockwise in mechanical angle. It is arranged at a position shifted by degrees.
  • the U-phase inner stator core teeth 14c also generate a magnetic flux radially inward, and the tip facing portion 14d is magnetized to the S pole, and the radially inner side as viewed from the tip facing portion 14d is magnetized to the N pole. Since one pole pair of the permanent magnet 12a is 90 degrees, the south pole of the permanent magnet 12a faces the tip facing portion 14d of the U phase and a repulsive force is generated. This repulsive force also acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • FIG. 6D shows a state when energization is switched and a positive current is applied to the V phase and a negative current is applied to the U phase.
  • the U-phase outer stator core teeth 13c are continuously magnetized with the N-pole at the tip facing portion 13d and the S-pole at the radially outer side as viewed from the tip facing portion 13d.
  • the permanent magnet 12a is rotated 15 degrees clockwise from the state of FIG. 6C, and faces the tip facing portion 13d in a state where the clockwise half is N pole and the counterclockwise half is S pole. Therefore, an attractive repulsion force that rotates the permanent magnet 12a in the clockwise direction is generated between the U-phase tip facing portion 13d and the permanent magnet 12a.
  • the tip facing portion 14d is continuously magnetized to the S pole, and the radially inner side as viewed from the tip facing portion 14d is magnetized to the N pole.
  • the permanent magnet 12a faces the tip facing portion 14d in a state where the clockwise half is the south pole and the counterclockwise half is the north pole. Therefore, an attractive repulsion force that rotates the permanent magnet 12a in the clockwise direction is generated between the U-phase tip facing portion 14d and the permanent magnet 12a.
  • V-phase outer stator core teeth 13c In the V-phase outer stator core teeth 13c, a magnetic flux is generated radially outward, and the tip facing portion 13d is magnetized to the S pole, and the radially outer side as viewed from the tip facing portion 13d is magnetized to the N pole.
  • the V-phase outer stator core teeth 13c are offset by a mechanical angle of 60 degrees in the clockwise direction with respect to the U-phase outer stator core teeth 13c, and the S pole of the permanent magnet 12a faces the V-phase tip facing portion 13d.
  • Repulsive force is generated. This repulsive force acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • the V-phase inner stator core teeth 14c connected in series with the V-phase outer stator core teeth 13c also generate a magnetic flux outward in the radial direction, and the tip facing portion 14d has an N pole and the tip facing portion 14d.
  • the inner side in the radial direction is magnetized to the south pole. Since one pole pair of the permanent magnet 12a is 90 degrees, the N pole of the permanent magnet 12a faces the V-phase tip facing portion 14d and a repulsive force is generated. This repulsive force also acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • FIG. 6E shows a state in which energization is switched and a positive current is applied to the V phase and a negative current is applied to the W phase.
  • the tip facing portion 13d is continuously magnetized to the S pole, and the radially outer side as viewed from the tip facing portion 13d is magnetized to the N pole.
  • the permanent magnet 12a is further rotated 15 degrees clockwise, and faces the tip facing portion 13d in a state where the clockwise half is the S pole and the counterclockwise half is the N pole. Therefore, an attractive repulsive force that rotates the permanent magnet 12a in the clockwise direction is generated between the V-phase tip facing portion 13d and the permanent magnet 12a.
  • the tip facing portion 14d is continuously magnetized to the N pole, and the radially inner side as viewed from the tip facing portion 14d is magnetized to the S pole.
  • the permanent magnet 12a has an N pole on the clockwise side and an S pole on the counterclockwise half, the attractive repulsive force that rotates the permanent magnet 12a in the clockwise direction is also between the V-phase tip facing portion 14d and the permanent magnet 12a. appear.
  • the W-phase outer stator core teeth 13c a magnetic flux is generated inward in the radial direction, and the tip facing portion 13d is magnetized to the N pole, and the radially outer side as viewed from the tip facing portion 13d is magnetized to the S pole.
  • the U-phase outer stator core teeth 13c are offset by 60 degrees in the clockwise direction with respect to the W-phase outer stator core teeth 13c, and the N pole of the permanent magnet 12a faces the U-phase tip facing portion 13d.
  • Repulsive force is generated. This repulsive force acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • the W-phase inner stator core teeth 14c connected in series with the W-phase outer stator core teeth 13c also generate a magnetic flux inward in the radial direction, and the tip facing portion 14d has an S pole and the tip facing portion 14d.
  • the inner side in the radial direction is magnetized to the N pole. Since one pole pair of the permanent magnet 12a is 90 degrees, the south pole of the permanent magnet 12a faces the tip facing portion 14d of the U phase and a repulsive force is generated. This repulsive force also acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • FIG. 6F shows a state when energization is switched and a positive current is applied to the U phase and a negative current is applied to the W phase.
  • the W-phase outer stator core teeth 13c are continuously magnetized with the N-pole at the tip facing portion 13d and the S-pole at the radially outer side as viewed from the tip facing portion 13d.
  • the permanent magnet 12a is rotated 15 degrees clockwise from the state of FIG. 6E, and faces the tip facing portion 13d in a state where the clockwise half is N pole and the counterclockwise half is S pole. Therefore, an attractive repulsive force that rotates the permanent magnet 12a in the clockwise direction is generated between the W-phase tip facing portion 13d and the permanent magnet 12a.
  • the tip facing portion 14d continues to be magnetized to the S pole and the radially inner side as viewed from the tip facing portion 14d is magnetized to the N pole.
  • the permanent magnet 12a faces the tip facing portion 14d in a state where the clockwise half is the south pole and the counterclockwise half is the north pole. Therefore, an attractive repulsive force that rotates the permanent magnet 12a in the clockwise direction is generated between the W-phase tip facing portion 14d and the permanent magnet 12a.
  • the U-phase outer stator core teeth 13c In the U-phase outer stator core teeth 13c, a magnetic flux is generated radially outward, and the tip facing portion 13d is magnetized to the S pole, and the radially outer side as viewed from the tip facing portion 13d is magnetized to the N pole.
  • the U-phase outer stator core teeth 13c are offset by a mechanical angle of 60 degrees clockwise with respect to the W-phase outer stator core teeth 13c, and the south pole of the permanent magnet 12a faces the tip facing portion 13d of the V-phase.
  • Repulsive force is generated. This repulsive force acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • the U-phase inner stator core teeth 14c connected in series with the U-phase outer stator core teeth 13c also generate a magnetic flux outward in the radial direction, and the tip facing portion 14d has an N pole and the tip facing portion 14d.
  • the inner side in the radial direction is magnetized to the south pole. Since one pole pair of the permanent magnet 12a is 90 degrees, the N pole of the permanent magnet 12a faces the V-phase tip facing portion 14d and a repulsive force is generated. This repulsive force also acts in the direction of rotating the permanent magnet 12a in the clockwise direction.
  • the rotor 12 of the rotating electrical machine 10 continuously rotates in the clockwise direction by repeating the operations of FIGS. 6A to 6F.
  • the rotary electric machine 10 is a radial gap type, but is not limited to this and may be an axial gap type.
  • the number of outer stator core teeth 13c and inner stator core teeth 14c is not limited to six, and the number of poles in the circumferential direction of the permanent magnet 12a is not limited to eight. However, it is preferable that the outer stator core teeth 13c and the inner stator core teeth 14c have the same number, and the sum of the numbers is three times the number of pole pairs of the permanent magnet 12a.
  • the outer stator winding 13b and the inner stator winding 14b are arranged to be shifted by 360 degrees in electrical angle in the circumferential direction, but may be shifted by an odd multiple of 360 degrees such as 1080 degrees. If it does in this way, since it arrange
  • the present invention can be used for a double stator type rotating electric machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

 コアティースの数を増やすことなく永久磁石の極数を増やしてトルクリプルを低減した回転電機を提供する。該回転電機は、回転軸と、周方向に正負の磁極が交互に形成された円環状の永久磁石を含む回転子と、回転子の外周に配置され複数の外側固定子コアティースと外側固定子巻線とを含む外側固定子と、回転子の内周に配置され複数の内側固定子コアティースと内側固定子巻線とを含む内側固定子とを備えている。外側固定子コアティースと内側固定子コアティースは同数であり、外側固定子巻線及び内側固定子巻線には3相交流が通電され、外側固定子巻線と内側固定子巻線への同相の通電時には電気角で360度ずれており、かつ隣り合う外側固定子コアティースのスロット開口に内側固定子コアティースが対向するように配置されている。

Description

回転電機
 本発明は、1個のロータとそのロータを挟むように配置された2個のステータを備えたダブルステータ型の回転電機に関する。
 従来より1個のロータを挟むように配置された2個のステータを備えたダブルステータ型の回転電機が知られている。例えば、特許文献1にはダブルステータ型ブラシレスモータが開示されている。これは、外周を覆うケーシングと、このケーシングに組み込まれた軸受と、軸受に組み込まれケーシングに対して一軸回転運動するシャフトと、シャフトに取り付けられたロータと、ロータの外側に配されたアウタステータと、ロータの内側に配されたインナステータを有している。
 ロータには、その半径方向でN極とS極とに分極しかつ隣り合う極の分極方向が互いに逆向きとなるように着磁された界磁磁石(永久磁石)が配置されている。アウタステータは、その外周がケーシングに取り付けられており、界磁磁石と対向するようにロータに向けて突出した複数のコアティースを有している。インナステータは、その内周がケーシングに取り付けられており、界磁磁石と対向するようにロータに向けて突出した複数のコアティースを有している。アウタステータのコアティース数とインナステータのコアティース数とは同数であり、ロータを挟んで互いに対向する位置に配置されている。
 特許文献2にもダブルステータ型の回転電機が開示されている。この回転電機は、ケーシングに固定された2個のステータである片側ステータ及び他側ステータと、両ステータの間に所定の空隙を空けて各ステータと対向配置され、各ステータに対し回転可能な1個のロータとを備えている。
 両ステータともロータに向けて突出するように複数のコアティースを備えており、各コアティースにはステータ巻線が巻回されている。各ステータ巻線は隣り合うコアティース同士で異なる相の巻線が巻回されている集中巻巻線が施されている。片側ステータ及び他側ステータ同士で同じ相のステータ巻線は、巻線による磁束の発生方向はロータに対して逆向きであり、かつ互いに電気角で180度ずれるように配置されている。
 ロータは、円板状のロータ導電体と、ロータ導電体の周方向複数箇所の等間隔位置に設けられた永久磁石を備えている。このような構成をとることにより、回転時に2個のステータで発生する磁束に含まれる空間高調波磁束をロータで互いに相殺することができ、起磁力高調波を低減させることができる。
特開平3-139156号公報 特開2009-247046号公報
 このようにダブルステータ型の回転電機では、ロータの両側にステータを配置することにより巻線スロットの全断面積を増大させることが可能となり、シングルステータ型の回転電機と比較してトルクが増大する。しかしながら、特許文献1に記載のブラシレスモータは、アウタステータとインナステータとが対向しているため、アウタロータの隣接するコアティース先端部のスロット開口にはインナロータの隣接するコアティース先端部のスロット開口が対向する。スロット開口ではトルクが発生しないため、トルクが増大してもその波形は歪んでしまいトルクリプルも増大する。トルクリプルを低減させるためには永久磁石の極数を増やすか、コアティース先端部のスロット開口幅を狭める必要がある。
 しかし、永久磁石の極数を増やすとコアティースの数もそれに伴い増えるため巻線スペースが減ってしまい巻線スロットの総断面積が減少してしまう。またスロット開口幅を狭めるとコアティースに巻線を巻回ためのノズルあるいは巻線自体を通すことができず、巻回するためにはステータコアを分割することなどが必要となり、生産性が悪化しコストアップにつながってしまう。
 また、特許文献2に記載の回転電機では起磁力高調波を低減させることはできるが、コアティースを増やさずに永久磁石の極数を増やすとトルクが打ち消されて回転しなくなるため、永久磁石の極数を増加させることができず、トルクリプルを低減させることができない。
 本発明の目的は、上記問題に鑑み、回転電機において、コアティースの数を増やすことなく永久磁石の極数を増やしてトルクリプルを低減した回転電機を提供することにある。
 上記目的を達成するための本発明に係る回転電機の特徴構成は、回転軸と、前記回転軸と同心かつ一体で回転し、周方向に正負の磁極が交互に形成された磁極対を複数有する円環状の磁石体を含む回転子と、前記回転軸と同心かつ前記回転子の半径方向外側に配置されており、前記回転子に向かって突出した複数の第1の固定子コアティースと前記第1の固定子コアティースのそれぞれに回転磁界を発生させるように巻回された第1の巻線とを含む第1の固定子と、前記回転軸と同心かつ前記回転子の半径方向内側に配置されており、前記回転子に向かって突出した複数の第2の固定子コアティースと前記第2の固定子コアティースのそれぞれに回転磁界を発生させるように巻回された第2の巻線とを含む第2の固定子と、を備え、前記第1の固定子コアティースの数と前記第2の固定子コアティースの数は同じであり、前記第1の巻線と前記第2の巻線には3相交流が通電され、前記第1の巻線と前記第2の巻線への同相の通電時の位相が電気角で360度の整数倍ずれかつ同相の固定子コアティース同士が対向しないように前記第1の固定子コアティースと前記第2の固定子コアティースが配置されている点にある。
 このような構成にすれば、特許文献1、2の回転電機と比較して、固定子コアティースの数を保ったまま永久磁石の極数を増やすことができる。それにより、トルクリプルを低減させることができる。永久磁石の極数が同じ場合には、固定子コアティースの数を半減することができるので、第1、第2の固定子の巻線断面積を増やすことができ、トルクを増大させながらトルクリプルの増大を抑えることができる。
 また、本発明による回転電機は、隣り合う前記第1の固定子コアティースの間に対向するように前記第2の固定子コアティースが配置されていると好適である。このような構成にすれば、隣り合う第1の固定子コアティースのスロット開口には第2の固定子コアティースが対向するので、回転子が回転しているときには常に第1及び第2の固定子との間で吸引反発力が発生し、トルクリプルが低減される。
 また、本発明による回転電機は、前記第1の固定子コアティースの先端部と当該第1の固定子コアティースに最も近い前記第2の固定子コアティースの先端部とが半径方向でオーバーラップしていると好適である。このような構成にすれば、固定子コアティースからの磁束の漏れが減り、回転電機のトルク特性が低下することを防ぐことができる。
 また、本発明による回転電機は、同相に通電したときに前記第1の巻線で発生する半径方向の磁束の方向と前記第2の巻線で発生する半径方向の磁束の方向とは同じであると好適である。このような構成にすれば、第1の巻線と第2の巻線への同相の通電時の位相が電気角で360度の整数倍ずれかつ同相の固定子コアティース同士が対向しないように第1の固定子コアティースと第2の固定子コアティースが配置された場合に、回転子を同じ方向に回転させるように回転子と第1及び第2の固定子との間で吸引反発力が発生するので、回転電機をスムーズに回転させることが可能になる。
 また、本発明による回転電機は、前記第1の固定子コアティースと前記第2の固定子コアティースとが周方向に30度ずれて配置されていると好適である。
 また、本発明による回転電機は、隣接する前記第1の固定子コアティースの前記先端部における周方向で隣り合う端部と、該端部と対向する前記第2の固定子コアティースの前記先端部における周方向の両側の端部とは、前記回転軸の中心から半径方向外側を見たときにオーバーラップしていると好適である。
 また、本発明による回転電機は、前記第1の固定子の前記第1の巻線の各相と同じ相の前記第2の巻線とは直列に接続され、それぞれ周方向に電気角で360度ずれるように巻回されていると好適である。
 また、本発明による回転電機は、前記磁石体の外周と前記第1の固定子コアティースの先端部との間、及び前記磁石体の内周と前記第2の固定子コアティースの先端部との間は、それぞれ半径方向においてギャップを介して対向すると好適である。
は、本発明の実施形態における回転電機の構造を表す断面図である。 は、図1のII-II線断面図である。 は、図2の領域IIIの拡大図である。 は、3相交流の波形を示す図である。 は、本発明の実施形態におけるU相、V相、W相の各固定子巻線への通電状態を示す図である。 は、本発明の実施形態におけるU相、V相、W相の各固定子巻線への通電状態を示す図である。 は、本発明の実施形態におけるU相、V相、W相の各固定子巻線への通電状態を示す図である。 は、本発明の実施形態におけるU相、V相、W相の各固定子巻線への通電状態を示す図である。 は、本発明の実施形態におけるU相、V相、W相の各固定子巻線への通電状態を示す図である。 は、本発明の実施形態におけるU相、V相、W相の各固定子巻線への通電状態を示す図である。 は、本発明の実施形態における回転電機の動作を説明する図である。 は、本発明の実施形態における回転電機の動作を説明する図である。 は、本発明の実施形態における回転電機の動作を説明する図である。 は、本発明の実施形態における回転電機の動作を説明する図である。 は、本発明の実施形態における回転電機の動作を説明する図である。 は、本発明の実施形態における回転電機の動作を説明する図である。
 以下、本発明の実施の形態について、図面を用いて説明する。図1は本実施形態に係る回転電機10を示す略断面図である。図2は同じく図1のII-II線断面図である。図1に示す回転電機10は、ケース15と、ケース15に収容された外側固定子13と内側固定子14、ケース15に対して回転自在な回転軸11、回転軸11と一体となって回転する回転子12、ケース15を閉塞するエンドカバー17、回転軸11をケース15及びエンドカバー17に軸支する軸受16a、16bを備えている。
 ケース15は有底円筒形状をしており、開口側は円板状のエンドカバー17により閉塞されている。ケース15の底部中央及びエンドカバー17の中央にはそれぞれ軸受16a、16bが取り付けられている。図2に示すように、ケース15の内部には、径方向に離間して対向配置された円環状の外側固定子13と内側固定子14が収容されており、それらの中心軸線は共に回転軸11の中心軸線に一致している。
 外側固定子13は外側固定子コア13aと外側固定子巻線13bから構成されており、外側固定子コア13aは電磁鋼板が複数枚積層された構成となっている。外側固定子コア13aはその外周面がケース15の内周面に固定されており、径方向内側に向かって6本の外側固定子コアティース13cが突出している。各外側固定子コアティース13cは先端部が周方向に広がる略T字形状を有している(以下この先端部を先端対向部13dと称する)。6本の外側固定子コアティース13cは周方向に60度の等角度間隔で設けられており、各外側固定子コアティース13cには外側固定子巻線13bが巻回されている。隣り合う先端対向部13dの間は周方向で空隙(スロット開口)を有する。
 内側固定子14は内側固定子コア14aと内側固定子巻線14bから構成されており、内側固定子コア14aは電磁鋼板が複数枚積層された構成となっている。内側固定子コア14aはケース15内に配置された略円筒状の固定部材18に固定されており、径方向外側に向かって6本の内側固定子コアティース14cが突出している。各内側固定子コアティース14cは先端部が周方向に広がる略T字形状を有している(以下この先端部を先端対向部14dと称する)。6本の内側固定子コアティース14cは周方向に60度の等角度間隔で設けられており、各内側固定子コアティース14cには内側固定子巻線14bが巻回されている。隣り合う先端対向部14dの間は周方向で空隙(スロット開口)を有する。このように外側固定子13と内側固定子14の2つの固定子を有することにより、固定子が1つの場合と比較してより多くの巻線を施して巻線断面積を増やすことができるので、トルクを増大させることができると共にトルクリプルの増大を抑えることができる。
 外側固定子13と内側固定子14とは軸心方向の高さが等しく、かつ各外側固定子コアティース13cの周方向の中間に各内側固定子コアティース14cが配置されている。すなわち各外側固定子コアティース13cと各内側固定子コアティース14cとは周方向に30度ずれて配置されている。このような構成にすることにより、隣り合う外側固定子コアティース13cのスロット開口に内側固定子コアティース14cが対向するので、回転子12が回転しているときには常に外側固定子13及び内側固定子14と永久磁石12aとの間で吸引反発力が発生し、トルクリプルが低減される効果がある。
 図3に示すように、各先端対向部13dの周方向の端部と、それと対向する先端対向部14dの周方向端部とは回転軸11の中心から径方向外側を見たときに重なって見える(オーバーラップしている)。これにより、回転時の磁束の漏れが少なくなり、トルクリプルを低減させる効果がある。
 各外側固定子コアティース13cに巻回された外側固定子巻線13bはU相、V相、W相の3相に分類され、周方向に2つおき(すなわち180度おき)に同じ相になっている。図4に示すように、各相には位相差120度の3相交流電流が供給される。各内側固定子コアティース14cに巻回された内側固定子巻線14bも同様にU相、V相、W相の3相に分類され、周方向に2つおき(すなわち180度おき)に同じ相になっている。図4に示すように、各相には位相差120度の3相交流電流が供給される。
 外側固定子巻線13bの各相と同じ相の内側固定子巻線14bとは直列に接続され、それぞれ周方向に電気角で360度ずれて巻回されている。これは本実施形態においては機械角90度に相当する。交流電流通電時に外側固定子巻線13bと内側固定子巻線14bは径方向に同方向の磁束が発生するよう巻回されている。
 本実施形態では同相の全ての外側固定子巻線13bと内側固定子巻線14bは直列に接続されているが、同相の外側固定子巻線13bが複数存在する場合には各々の外側固定子巻線13bは並列に接続されても良い。また同相の内側固定子巻線14bが複数存在する場合には各々の内側固定子巻線14bは並列に接続されても良い。同相の外側固定子巻線13bと内側固定子巻線14bは直列に接続されるほうが通電される電流値が同じなのでバランスの観点から好適であるが、並列に接続されていても良い。並列接続されることにより巻線全体の電気抵抗が下がり、巻線に流れる電流が増大するので発生トルクを増大させることができる。
 回転軸11は軸受16a、16bの内輪に圧入されており、ケース15に対して回転自在になっている。回転子12は回転軸11に圧入固定されている有底円筒状の回転子導電体12bと、回転子導電体12bに取り付けられ周方向にN極とS極が交互になるように8極(4極対)に着磁された永久磁石12aからなり、回転軸11と一体となって回転する。回転子導電体12bは底部12cの外径が外側固定子13の最内周よりやや小さく、その中心軸線は回転軸11の中心軸線に一致している。
 永久磁石12aは略円環状であり、その中心軸線は回転軸11の中心軸線に一致している。また、永久磁石12aの外周と内周は外側固定子13の先端対向部13d、内側固定子14の先端対向部14dとの間でそれぞれ径方向のギャップを有して対向している。永久磁石12aの厚さは外側固定子コア13aと内側固定子コア14aの軸方向の厚さと同等であり、永久磁石12aは軸方向の一方の端面が回転子導電体12bの円筒部12dの端部に接着等されることにより固定されている。
 次に本実施形態に係る回転電機10に3相交流電流を通電したときの回転子12の回転について図4から図6Fを用いて説明する。図4は、電気角360度すなわち回転子12が90度回転する間にU、V、Wの各相に通電される交流電流の向きと大きさを示しており、実線が現実にU、V、Wの各相に流れる電流を示している。図4においては、外側固定子巻線13b及び内側固定子巻線14bに通電したときに発生する磁束の向きが径方向外側になるときの電流の向きを正とし、径方向内側になるときの電流の向きを負としている。図5Aから図5Fは電気角360度の間の各相の外側固定子巻線13b及び内側固定子巻線14bへの通電状態を示している。図6Aから図6Fは、電気角360度の間に永久磁石12aと各外側固定子コアティース13c、各内側固定子コアティース14cとの間に発生する吸引反発力を示している。
 図4のAの領域と図5Aと図6Aのように、図4から図6Fにおいて同じ符号Aが付されている図は対応していることを示している。すなわち、図4のAの領域のように通電されているときは、図5Aのように各外側固定子巻線13b、内側固定子巻線14bに電流が流れる。図6Aは図4のAの領域に切り替わった瞬間の状態を示しており、永久磁石12aと各外側固定子コアティース13c、各内側固定子コアティース14cとの間に吸引反発力が発生している。符号BからFについても符号Aと同様に対応していることを示している。本実施形態における各相を接続する方式はY結線であるが、デルタ結線であっても良い。
 図6Aは、U相に正方向の電流、V相に負方向の電流が通電されたときの状態を示す。図中、固定子コアティース上に描かれている矢印は発生する磁束の向きを示している。このときU相の外側固定子コアティース13cには径方向外側に向かって磁束が発生し、先端対向部13dがS極、先端対向部13dからみて径方向外側がN極に磁化される。永久磁石12aはその時計方向側半分がS極で反時計側半分がN極の状態で先端対向部13dと対向している。よって、U相の先端対向部13dと永久磁石12aの間では、時計方向側半分で反発力、反時計側半分で吸引力が発生し、永久磁石12aを時計方向に回転させる力が作用する。
 上記のU相の外側固定子コアティース13cと直列に接続されたU相の内側固定子コアティース14cは外側固定子コアティース13cに対して電気角で360度、すなわち機械角で時計方向に90度ずれて配置されている。このU相内側固定子コアティース14cも径方向外側に向かって磁束が発生し、先端対向部14dがN極、先端対向部14dからみて径方向内側がS極に磁化される。永久磁石12aは8極に着磁されているので1極対のなす角度は90度である。よって、先端対向部14dに対しても永久磁石12aのN極とS極が半分ずつ対向し、永久磁石12aの時計側半分がN極で反時計側半分がS極となるので、U相の先端対向部14dと永久磁石12aの間でも、永久磁石12aを時計方向に回転させる吸引反発力が発生する。
 V相の外側固定子コアティース13cには径方向内側に向かって磁束が発生し、先端対向部13dがN極、先端対向部13dからみて径方向外側がS極に磁化されている。U相の外側固定子コアティース13cに対してV相の外側固定子コアティース13cは時計方向に機械角で60度ずれており、永久磁石12aのN極がV相の先端対向部13dと対向し反発力が発生する。この反発力は永久磁石12aを時計方向に回転させる方向に作用する。
 上記のV相の外側固定子コアティース13cと直列に接続されたV相の内側固定子コアティース14cは外側固定子コアティース13cに対して電気角で360度、すなわち機械角で時計方向に90度ずれた位置に配置されている。このV相内側固定子コアティース14cも径方向内側に向かって磁束が発生し、先端対向部14dがS極、先端対向部14dからみて径方向内側がN極に磁化される。永久磁石12aの1極対は90度なので、永久磁石12aのS極がV相の先端対向部14dと対向し反発力が発生する。この反発力も永久磁石12aを時計方向に回転させる方向に作用する。
 図6Bは、通電が切り替わり、W相に正方向の電流、V相に負方向の電流が通電されたときの状態を示す。このときV相の外側固定子コアティース13cは引き続き先端対向部13dがN極、先端対向部13dからみて径方向外側がS極に磁化されている。図6Aの状態から永久磁石12aは時計方向に15度回転しており、時計方向側半分がN極で反時計側半分がS極の状態で先端対向部13dと対向している。よって、V相の先端対向部13dと永久磁石12aの間では、永久磁石12aを時計方向に回転させるような吸引反発力が発生する。
 上記のV相の外側固定子コアティース13cと直列に接続されたV相の内側固定子コアティース14cは引き続き先端対向部14dがS極、先端対向部14dからみて径方向内側がN極に磁化されている。永久磁石12aは時計方向側半分がS極で反時計側半分がN極の状態で先端対向部14dと対向している。よって、V相の先端対向部14dと永久磁石12aの間では、永久磁石12aを時計方向に回転させるような吸引反発力が発生する。
 W相の外側固定子コアティース13cには径方向外側に向かって磁束が発生し、先端対向部13dがS極、先端対向部13dからみて径方向外側がN極に磁化される。V相の外側固定子コアティース13cに対してW相の外側固定子コアティース13cは時計方向に機械角で60度ずれており、永久磁石12aのS極がW相の先端対向部13dと対向し反発力が発生する。この反発力は永久磁石12aを時計方向に回転させる方向に作用する。
 上記のW相の外側固定子コアティース13cと直列に接続されたW相の内側固定子コアティース14cは外側固定子コアティース13cに対して電気角で360度、すなわち機械角で時計方向に90度ずれた位置に配置されている。このW相内側固定子コアティース14cも径方向外側に向かって磁束が発生し、先端対向部14dがN極、先端対向部14dからみて径方向内側がS極に磁化される。永久磁石12aの1極対は90度なので、永久磁石12aのN極がW相の先端対向部14dと対向し反発力が発生する。この反発力も永久磁石12aを時計方向に回転させる方向に作用する。
 図6Cは、通電が切り替わり、W相に正方向の電流、U相に負方向の電流が通電されたときの状態を示す。このときW相の外側固定子コアティース13cは引き続き先端対向部13dがS極、先端対向部13dからみて径方向外側がN極に磁化されている。図6Bの状態から永久磁石12aはさらに時計方向に15度回転しており、時計方向側半分がS極で反時計側半分がN極の状態で先端対向部13dと対向している。よって、W相の先端対向部13dと永久磁石12aの間では、永久磁石12aを時計方向に回転させる吸引反発力が発生する。
 上記のW相の外側固定子コアティース13cと直列に接続されたW相の内側固定子コアティース14cは引き続き先端対向部14dがN極、先端対向部14dからみて径方向内側がS極に磁化されている。永久磁石12aは時計側半分がN極で反時計側半分がS極となるので、W相の先端対向部14dと永久磁石12aの間でも、永久磁石12aを時計方向に回転させる吸引反発力が発生する。
 U相の外側固定子コアティース13cには径方向内側に向かって磁束が発生し、先端対向部13dがN極、先端対向部13dからみて径方向外側がS極に磁化される。W相の外側固定子コアティース13cに対してU相の外側固定子コアティース13cは時計方向に機械角で60度ずれており、永久磁石12aのN極がU相の先端対向部13dと対向し反発力が発生する。この反発力は永久磁石12aを時計方向に回転させる方向に作用する。
 上記のU相の外側固定子コアティース13cと直列に接続されたU相の内側固定子コアティース14cは外側固定子コアティース13cに対して電気角で360度、すなわち機械角で時計方向に90度ずれた位置に配置されている。このU相内側固定子コアティース14cも径方向内側に向かって磁束が発生し、先端対向部14dがS極、先端対向部14dからみて径方向内側がN極に磁化される。永久磁石12aの1極対は90度なので、永久磁石12aのS極がU相の先端対向部14dと対向し反発力が発生する。この反発力も永久磁石12aを時計方向に回転させる方向に作用する。
 図6Dは、通電が切り替わり、V相に正方向の電流、U相に負方向の電流が通電されたときの状態を示す。このときU相の外側固定子コアティース13cは引き続き先端対向部13dがN極、先端対向部13dからみて径方向外側がS極に磁化されている。図6Cの状態から永久磁石12aは時計方向に15度回転しており、時計方向側半分がN極で反時計側半分がS極の状態で先端対向部13dと対向している。よって、U相の先端対向部13dと永久磁石12aの間では、永久磁石12aを時計方向に回転させるような吸引反発力が発生する。
 上記のU相の外側固定子コアティース13cと直列に接続されたU相の内側固定子コアティース14cは引き続き先端対向部14dがS極、先端対向部14dからみて径方向内側がN極に磁化されている。永久磁石12aは時計方向側半分がS極で反時計側半分がN極の状態で先端対向部14dと対向している。よって、U相の先端対向部14dと永久磁石12aの間では、永久磁石12aを時計方向に回転させるような吸引反発力が発生する。
 V相の外側固定子コアティース13cには径方向外側に向かって磁束が発生し、先端対向部13dがS極、先端対向部13dからみて径方向外側がN極に磁化される。U相の外側固定子コアティース13cに対してV相の外側固定子コアティース13cは時計方向に機械角で60度ずれており、永久磁石12aのS極がV相の先端対向部13dと対向し反発力が発生する。この反発力は永久磁石12aを時計方向に回転させる方向に作用する。
 上記のV相の外側固定子コアティース13cと直列に接続されたV相の内側固定子コアティース14cも径方向外側に向かって磁束が発生し、先端対向部14dがN極、先端対向部14dからみて径方向内側がS極に磁化される。永久磁石12aの1極対は90度なので、永久磁石12aのN極がV相の先端対向部14dと対向し反発力が発生する。この反発力も永久磁石12aを時計方向に回転させる方向に作用する。
 図6Eは、通電が切り替わり、V相に正方向の電流、W相に負方向の電流が通電されたときの状態を示す。このときV相の外側固定子コアティース13cは引き続き先端対向部13dがS極、先端対向部13dからみて径方向外側がN極に磁化されている。図6Dの状態から永久磁石12aはさらに時計方向に15度回転しており、時計方向側半分がS極で反時計側半分がN極の状態で先端対向部13dと対向している。よって、V相の先端対向部13dと永久磁石12aの間では、永久磁石12aを時計方向に回転させる吸引反発力が発生する。
 上記のV相の外側固定子コアティース13cと直列に接続されたV相の内側固定子コアティース14cは引き続き先端対向部14dがN極、先端対向部14dからみて径方向内側がS極に磁化されている。永久磁石12aは時計側半分がN極で反時計側半分がS極となるので、V相の先端対向部14dと永久磁石12aの間でも、永久磁石12aを時計方向に回転させる吸引反発力が発生する。
 W相の外側固定子コアティース13cには径方向内側に向かって磁束が発生し、先端対向部13dがN極、先端対向部13dからみて径方向外側がS極に磁化される。W相の外側固定子コアティース13cに対してU相の外側固定子コアティース13cは時計方向に機械角で60度ずれており、永久磁石12aのN極がU相の先端対向部13dと対向し反発力が発生する。この反発力は永久磁石12aを時計方向に回転させる方向に作用する。
 上記のW相の外側固定子コアティース13cと直列に接続されたW相の内側固定子コアティース14cも径方向内側に向かって磁束が発生し、先端対向部14dがS極、先端対向部14dからみて径方向内側がN極に磁化される。永久磁石12aの1極対は90度なので、永久磁石12aのS極がU相の先端対向部14dと対向し反発力が発生する。この反発力も永久磁石12aを時計方向に回転させる方向に作用する。
 図6Fは、通電が切り替わり、U相に正方向の電流、W相に負方向の電流が通電されたときの状態を示す。このときW相の外側固定子コアティース13cは引き続き先端対向部13dがN極、先端対向部13dからみて径方向外側がS極に磁化されている。図6Eの状態から永久磁石12aは時計方向に15度回転しており、時計方向側半分がN極で反時計側半分がS極の状態で先端対向部13dと対向している。よって、W相の先端対向部13dと永久磁石12aの間では、永久磁石12aを時計方向に回転させるような吸引反発力が発生する。
 上記のW相の外側固定子コアティース13cと直列に接続されたW相の内側固定子コアティース14cは引き続き先端対向部14dがS極、先端対向部14dからみて径方向内側がN極に磁化されている。永久磁石12aは時計方向側半分がS極で反時計側半分がN極の状態で先端対向部14dと対向している。よって、W相の先端対向部14dと永久磁石12aの間では、永久磁石12aを時計方向に回転させるような吸引反発力が発生する。
 U相の外側固定子コアティース13cには径方向外側に向かって磁束が発生し、先端対向部13dがS極、先端対向部13dからみて径方向外側がN極に磁化される。W相の外側固定子コアティース13cに対してU相の外側固定子コアティース13cは時計方向に機械角で60度ずれており、永久磁石12aのS極がV相の先端対向部13dと対向し反発力が発生する。この反発力は永久磁石12aを時計方向に回転させる方向に作用する。
 上記のU相の外側固定子コアティース13cと直列に接続されたU相の内側固定子コアティース14cも径方向外側に向かって磁束が発生し、先端対向部14dがN極、先端対向部14dからみて径方向内側がS極に磁化される。永久磁石12aの1極対は90度なので、永久磁石12aのN極がV相の先端対向部14dと対向し反発力が発生する。この反発力も永久磁石12aを時計方向に回転させる方向に作用する。
 本実施形態に係る回転電機10の回転子12は上記図6Aから図6Fの動作を繰り返して時計方向に連続して回転する。
 本実施形態に係る回転電機10はラジアルギャップ型であるが、これに限定されずアキシャルギャップ型でもよい。また外側固定子コアティース13c、内側固定子コアティース14cの本数は6本に限定されず、永久磁石12aの周方向の極数も8極に限定されない。ただし、外側固定子コアティース13cと内側固定子コアティース14cの本数が同数であり、その本数の和が永久磁石12aの極対数の3倍となる関係を保つことが好適である。
 本実施形態では、外側固定子巻線13bと内側固定子巻線14bは周方向に電気角で360度ずらして配置されていたが、1080度など360度の奇数倍ずれるようにしてもよい。このようにすると、隣り合う外側固定子コアティース13cのスロット開口に内側固定子コアティース14cが対向するように配置されるので、トルクリプルが低減される効果がある。
 本発明は、ダブルステータ型の回転電機に用いることが可能である。
 10   回転電機
 11   回転軸
 12   回転子
 12a  永久磁石
 12b  回転子導電体
 13   外側固定子
 13a  外側固定子コア
 13b  外側固定子巻線
 14   内側固定子
 14a  内側固定子コア
 14b  内側固定子巻線
 15   ケース
 16a,16b  軸受
 17   エンドカバー
 18   固定部材
 

Claims (8)

  1.  回転軸と、
     前記回転軸と同心かつ一体で回転し、周方向に正負の磁極が交互に形成された磁極対を複数有する円環状の磁石体を含む回転子と、
     前記回転軸と同心かつ前記回転子の半径方向外側に配置されており、前記回転子に向かって突出した複数の第1の固定子コアティースと前記第1の固定子コアティースのそれぞれに回転磁界を発生させるように巻回された第1の巻線とを含む第1の固定子と、
     前記回転軸と同心かつ前記回転子の半径方向内側に配置されており、前記回転子に向かって突出した複数の第2の固定子コアティースと前記第2の固定子コアティースのそれぞれに回転磁界を発生させるように巻回された第2の巻線とを含む第2の固定子と、を備え、
     前記第1の固定子コアティースの数と前記第2の固定子コアティースの数は同じであり、
     前記第1の巻線と前記第2の巻線には3相交流が通電され、前記第1の巻線と前記第2の巻線への同相の通電時の位相が電気角で360度の整数倍ずれかつ同相の固定子コアティース同士が対向しないように前記第1の固定子コアティースと前記第2の固定子コアティースが配置されている回転電機。
  2.  隣り合う前記第1の固定子コアティースの間に対向するように前記第2の固定子コアティースが配置されている請求項1に記載の回転電機。
  3.  前記第1の固定子コアティースの先端部と当該第1の固定子コアティースに最も近い前記第2の固定子コアティースの先端部とが半径方向でオーバーラップしている請求項2に記載の回転電機。
  4.  同相に通電したときに前記第1の巻線で発生する半径方向の磁束の方向と前記第2の巻線で発生する半径方向の磁束の方向とは同じである請求項1に記載の回転電機。
  5.  前記第1の固定子コアティースと前記第2の固定子コアティースとは周方向に30度ずれて配置されている請求項1に記載の回転電機。
  6.  隣接する前記第1の固定子コアティースの前記先端部における周方向で隣り合う端部と、該端部と対向する前記第2の固定子コアティースの前記先端部における周方向の両側の端部とは、前記回転軸の中心から半径方向外側を見たときにオーバーラップしている請求項3に記載の回転電機。
  7.  前記第1の固定子の前記第1の巻線の各相と同じ相の前記第2の巻線とは直列に接続され、それぞれ周方向に電気角で360度ずれるように巻回されている請求項1に記載の回転電機。
  8.  前記磁石体の外周と前記第1の固定子コアティースの先端部との間、及び前記磁石体の内周と前記第2の固定子コアティースの先端部との間は、それぞれ半径方向においてギャップを介して対向する請求項1に記載の回転電機。
     
PCT/JP2012/071981 2011-09-28 2012-08-30 回転電機 WO2013047076A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011212693A JP2013074743A (ja) 2011-09-28 2011-09-28 回転電機
JP2011-212693 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013047076A1 true WO2013047076A1 (ja) 2013-04-04

Family

ID=47995124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071981 WO2013047076A1 (ja) 2011-09-28 2012-08-30 回転電機

Country Status (2)

Country Link
JP (1) JP2013074743A (ja)
WO (1) WO2013047076A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647381A (zh) * 2013-12-24 2014-03-19 哈尔滨工业大学 无铁心永磁式有限转角电机
JP2014220884A (ja) * 2013-05-07 2014-11-20 株式会社ジェイテクト 回転電機
WO2016001495A3 (fr) * 2014-07-04 2016-04-14 Whylot Sas Moteur électromagnétique aux entrefers radials a rotor encadre par deux stators reductant le couple de détente
CN105576918A (zh) * 2015-06-03 2016-05-11 华侨大学 一种具有三层永磁体励磁的永磁电机
CN107222075A (zh) * 2017-07-24 2017-09-29 江苏大学 一种具有t型铁心内定子的双定子混合励磁电机
CN109962594A (zh) * 2019-05-05 2019-07-02 大国重器自动化设备(山东)股份有限公司 用于机器人的双输出轴伺服电机
EP3681031A1 (en) * 2019-01-11 2020-07-15 ABB Schweiz AG Double-stator pm machine with 3rd order current harmonic injection
CN113783390A (zh) * 2021-08-04 2021-12-10 华中科技大学 一种双定子非均匀齿结构的永磁磁阻电机
RU2775062C1 (ru) * 2021-10-05 2022-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Ставропольский государственный аграрный университет» Синхронный генератор

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6393916B2 (ja) 2014-02-20 2018-09-26 北田回転機関合同会社 電気回転機
JP6269818B2 (ja) * 2014-04-02 2018-01-31 株式会社Ihi ダブルステータ型スイッチトリラクタンス回転機
CN104022609B (zh) * 2014-06-11 2016-08-10 嘉兴学院 新型双定子低脉动转矩步进电动机
CN107078617B (zh) 2014-10-17 2019-03-19 株式会社Ihi 双定子型旋转器
CN104917344A (zh) * 2015-06-25 2015-09-16 高屋电磁技术(深圳)有限公司 径向双定子永磁发电机
UA108499U (uk) * 2015-12-03 2016-07-25 Павло Євгенійович Лемещук Безколекторний електродвигун
TWI554008B (zh) * 2015-12-31 2016-10-11 Hollow Rotor of DC Motor and Its Winding Structure
TWI559651B (zh) * 2015-12-31 2016-11-21 DC motor inner and outer ring stator structure
CN106059225B (zh) * 2016-05-19 2018-06-01 江苏大学 多模式永磁电机及其最优功率分配控制方法
JP7200585B2 (ja) * 2018-10-09 2023-01-10 株式会社デンソー 回転電機
CN111064332A (zh) * 2020-01-08 2020-04-24 武汉理工大学 双边Halbach交替极式永磁游标电机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015547A1 (en) * 1992-01-29 1993-08-05 Stridsberg Innovation Ab Brushless dc motors/generators
WO2005112230A1 (ja) * 2004-05-18 2005-11-24 Seiko Epson Corporation 電動機
JP2008172918A (ja) * 2007-01-11 2008-07-24 Daikin Ind Ltd アキシャルギャップ型モータおよび圧縮機
JP2008236835A (ja) * 2007-03-16 2008-10-02 Daikin Ind Ltd 回転子の着磁方法
JP2009247046A (ja) * 2008-03-28 2009-10-22 Toyota Central R&D Labs Inc 回転電機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002335658A (ja) * 2001-05-08 2002-11-22 Nsk Ltd モータ
JP4158024B2 (ja) * 2002-04-30 2008-10-01 株式会社富士通ゼネラル 誘導電動機
JP4654756B2 (ja) * 2005-04-28 2011-03-23 株式会社デンソー 交流モータ
JP4848670B2 (ja) * 2005-05-23 2011-12-28 ダイキン工業株式会社 回転子、電動機、圧縮機、送風機、及び空気調和機
JP5011719B2 (ja) * 2005-12-14 2012-08-29 ダイキン工業株式会社 回転電機及びその制御方法、圧縮機、送風機、並びに空気調和機
JP2008263681A (ja) * 2007-04-10 2008-10-30 Denso Corp 交流モータ
JP2011050186A (ja) * 2009-08-27 2011-03-10 Kura Gijutsu Kenkyusho:Kk 磁束量可変回転電機システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015547A1 (en) * 1992-01-29 1993-08-05 Stridsberg Innovation Ab Brushless dc motors/generators
WO2005112230A1 (ja) * 2004-05-18 2005-11-24 Seiko Epson Corporation 電動機
WO2005112231A1 (ja) * 2004-05-18 2005-11-24 Seiko Epson Corporation 電動機
JP2008172918A (ja) * 2007-01-11 2008-07-24 Daikin Ind Ltd アキシャルギャップ型モータおよび圧縮機
JP2008236835A (ja) * 2007-03-16 2008-10-02 Daikin Ind Ltd 回転子の着磁方法
JP2009247046A (ja) * 2008-03-28 2009-10-22 Toyota Central R&D Labs Inc 回転電機

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220884A (ja) * 2013-05-07 2014-11-20 株式会社ジェイテクト 回転電機
CN103647381A (zh) * 2013-12-24 2014-03-19 哈尔滨工业大学 无铁心永磁式有限转角电机
WO2016001495A3 (fr) * 2014-07-04 2016-04-14 Whylot Sas Moteur électromagnétique aux entrefers radials a rotor encadre par deux stators reductant le couple de détente
CN105576918A (zh) * 2015-06-03 2016-05-11 华侨大学 一种具有三层永磁体励磁的永磁电机
CN105576918B (zh) * 2015-06-03 2018-02-23 华侨大学 一种具有三层永磁体励磁的永磁电机
CN107222075A (zh) * 2017-07-24 2017-09-29 江苏大学 一种具有t型铁心内定子的双定子混合励磁电机
US11316463B2 (en) 2019-01-11 2022-04-26 Abb Schweiz Ag Double-stator PM machine with 3rd order current harmonic injection
EP3681031A1 (en) * 2019-01-11 2020-07-15 ABB Schweiz AG Double-stator pm machine with 3rd order current harmonic injection
CN111435813A (zh) * 2019-01-11 2020-07-21 Abb瑞士股份有限公司 具有三次电流谐波注入的双定子pm机器
CN111435813B (zh) * 2019-01-11 2022-06-28 Abb瑞士股份有限公司 具有三次电流谐波注入的双定子pm机器
CN109962594A (zh) * 2019-05-05 2019-07-02 大国重器自动化设备(山东)股份有限公司 用于机器人的双输出轴伺服电机
CN109962594B (zh) * 2019-05-05 2024-01-26 大国重器自动化设备(山东)股份有限公司 用于机器人的双输出轴伺服电机
CN113783390A (zh) * 2021-08-04 2021-12-10 华中科技大学 一种双定子非均匀齿结构的永磁磁阻电机
CN113783390B (zh) * 2021-08-04 2022-07-19 华中科技大学 一种双定子非均匀齿结构的永磁磁阻电机
RU2775062C1 (ru) * 2021-10-05 2022-06-28 Федеральное государственное бюджетное образовательное учреждение высшего образования «Ставропольский государственный аграрный университет» Синхронный генератор

Also Published As

Publication number Publication date
JP2013074743A (ja) 2013-04-22

Similar Documents

Publication Publication Date Title
WO2013047076A1 (ja) 回転電機
US10110076B2 (en) Single-phase brushless motor
CN101779366B (zh) 轴向间隙型电动机
JP5141030B2 (ja) 回転電機
WO2009081766A1 (ja) 電動機および回転電機用ロータ
WO2014188737A1 (ja) 永久磁石型同期電動機
JP6589624B2 (ja) モータ
JP6595443B2 (ja) 回転電機
JP2008283785A (ja) スイッチドリラクタンスモータ
JP2016174521A (ja) 単相ブラシレスモータ
JP2018082600A (ja) ダブルロータ型の回転電機
JP4264433B2 (ja) ブラシレス直流モーター
JP2008252979A (ja) アキシャルギャップ型回転機
JP6316714B2 (ja) ステッピングモータ
JP6201405B2 (ja) 回転電機
JP5290726B2 (ja) モータ
JP6675139B2 (ja) スイッチトリラクタンスモータ
WO2011036723A1 (ja) 同期発電機
JP2017063594A (ja) ブラシレスモータ
JP6451990B2 (ja) 回転電機
JP5897939B2 (ja) ロータ及びモータ
JP2004289963A (ja) スロットレスブラシレスモータ
JP4767997B2 (ja) 回転電機用ロータおよび電動機
JP2019140789A (ja) 回転電機
JP6897614B2 (ja) モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837293

Country of ref document: EP

Kind code of ref document: A1