WO2013046864A1 - 過酸化水素水溶液の製造方法 - Google Patents
過酸化水素水溶液の製造方法 Download PDFInfo
- Publication number
- WO2013046864A1 WO2013046864A1 PCT/JP2012/067822 JP2012067822W WO2013046864A1 WO 2013046864 A1 WO2013046864 A1 WO 2013046864A1 JP 2012067822 W JP2012067822 W JP 2012067822W WO 2013046864 A1 WO2013046864 A1 WO 2013046864A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hydrogen peroxide
- peroxide solution
- aqueous hydrogen
- exchange resin
- aqueous
- Prior art date
Links
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 title claims abstract description 289
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 239000003729 cation exchange resin Substances 0.000 claims abstract description 107
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 103
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 63
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 61
- 239000008213 purified water Substances 0.000 claims abstract description 42
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims abstract description 17
- 125000000542 sulfonic acid group Chemical group 0.000 claims abstract description 7
- 230000002378 acidificating effect Effects 0.000 claims abstract description 5
- 239000003957 anion exchange resin Substances 0.000 claims description 65
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 40
- 239000003463 adsorbent Substances 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 34
- 239000007864 aqueous solution Substances 0.000 claims description 30
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 19
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 13
- -1 pyrophosphate ions Chemical class 0.000 claims description 10
- 235000011180 diphosphates Nutrition 0.000 claims description 9
- 229940048084 pyrophosphate Drugs 0.000 claims description 9
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 claims description 8
- 150000004056 anthraquinones Chemical class 0.000 claims description 8
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 claims description 8
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 229940005657 pyrophosphoric acid Drugs 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 239000010452 phosphate Substances 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims 1
- 239000012535 impurity Substances 0.000 abstract description 14
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 abstract description 7
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 33
- 239000010703 silicon Substances 0.000 description 33
- 229910052710 silicon Inorganic materials 0.000 description 33
- 239000004813 Perfluoroalkoxy alkane Substances 0.000 description 18
- 229920011301 perfluoro alkoxyl alkane Polymers 0.000 description 18
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 16
- 238000005342 ion exchange Methods 0.000 description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 239000011575 calcium Substances 0.000 description 13
- 229910052791 calcium Inorganic materials 0.000 description 13
- 229910052708 sodium Inorganic materials 0.000 description 13
- 239000011734 sodium Substances 0.000 description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 12
- 239000011777 magnesium Substances 0.000 description 12
- 229910052749 magnesium Inorganic materials 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 150000001450 anions Chemical class 0.000 description 8
- 229920001429 chelating resin Polymers 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 5
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229940085991 phosphate ion Drugs 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 229940023913 cation exchange resins Drugs 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 229910001415 sodium ion Inorganic materials 0.000 description 4
- 239000012086 standard solution Substances 0.000 description 4
- 238000000108 ultra-filtration Methods 0.000 description 4
- PCFMUWBCZZUMRX-UHFFFAOYSA-N 9,10-Dihydroxyanthracene Chemical compound C1=CC=C2C(O)=C(C=CC=C3)C3=C(O)C2=C1 PCFMUWBCZZUMRX-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 239000004111 Potassium silicate Substances 0.000 description 3
- 239000004115 Sodium Silicate Substances 0.000 description 3
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 description 3
- 229910052913 potassium silicate Inorganic materials 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 229910052911 sodium silicate Inorganic materials 0.000 description 3
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 150000003512 tertiary amines Chemical class 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920006222 acrylic ester polymer Polymers 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- ZRIUUUJAJJNDSS-UHFFFAOYSA-N ammonium phosphates Chemical compound [NH4+].[NH4+].[NH4+].[O-]P([O-])([O-])=O ZRIUUUJAJJNDSS-UHFFFAOYSA-N 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 235000019820 disodium diphosphate Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical compound [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- VKFFEYLSKIYTSJ-UHFFFAOYSA-N tetraazanium;phosphonato phosphate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])(=O)OP([O-])([O-])=O VKFFEYLSKIYTSJ-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229910000404 tripotassium phosphate Inorganic materials 0.000 description 1
- 235000019798 tripotassium phosphate Nutrition 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 229910000406 trisodium phosphate Inorganic materials 0.000 description 1
- 235000019801 trisodium phosphate Nutrition 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000003799 water insoluble solvent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/01—Hydrogen peroxide
- C01B15/013—Separation; Purification; Concentration
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B15/00—Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
- C01B15/01—Hydrogen peroxide
- C01B15/013—Separation; Purification; Concentration
- C01B15/0135—Purification by solid ion-exchangers or solid chelating agents
Definitions
- the present invention relates to a method for producing an aqueous hydrogen peroxide solution.
- the aqueous hydrogen peroxide solution is used for paper, pulp bleach, chemical polishing liquid, silicon wafer cleaner, and the like.
- the amount of aqueous hydrogen peroxide used in the electronics industry has increased.
- An aqueous hydrogen peroxide solution used in the electronics industry is required to have a very low impurity concentration.
- Anthrahydroquinone is produced by hydrogenating an anthraquinone derivative such as 2-alkylanthraquinone in a water-insoluble solvent in the presence of a hydrogenation catalyst. After the catalyst is separated by filtration, anthrahydroquinone and oxygen in the air are contacted to oxidize the anthrahydroquinone to produce 2-alkylanthraquinone and hydrogen peroxide. The produced hydrogen peroxide is extracted with water and separated.
- the aqueous hydrogen peroxide solution extracted with water contains impurities such as silicic acid and silicate (for example, potassium silicate, sodium silicate, aluminum silicate). These silicon components are mainly mixed from air to be contacted in the oxidation process, water used in the extraction process, or the like.
- impurities such as silicic acid and silicate (for example, potassium silicate, sodium silicate, aluminum silicate). These silicon components are mainly mixed from air to be contacted in the oxidation process, water used in the extraction process, or the like.
- Patent Document 1 discloses a method of removing a silicon component by bringing an aqueous hydrogen peroxide solution into contact with a fluoride ion type anion exchange resin.
- Patent Document 2 discloses a method in which an aqueous hydrogen peroxide solution to which a fluorine compound is added is brought into contact with a hydrogen ion cation exchange resin having a sulfonic acid group and then brought into contact with an anion exchange resin.
- Patent Document 3 when purifying an aqueous hydrogen peroxide solution, 0.05 milliequivalent or more hydrogen fluoride per liter of the aqueous hydrogen peroxide solution is added to the aqueous hydrogen peroxide solution, and then the aqueous hydrogen peroxide solution is converted into a hydroxide.
- a method of contacting an ionic strong basic anion exchange resin is disclosed.
- Patent Document 4 a hydrogen peroxide aqueous solution containing the silicon component, an aggregating agent was added, After filtration the solid impurities contained in the aqueous hydrogen peroxide solution with a precision filter, the content of SiF 6 is 0.
- a method in which it is brought into contact with an anion exchange resin made into a fluoride ion type with at least one fluorine compound selected from the group consisting of sodium fluoride, potassium fluoride and ammonium fluoride which is not more than 05% by weight.
- Patent Documents 1 to 4 are methods using fluorine, there is a problem that the load on the environment is large and the treatment of waste water is expensive.
- Patent Document 5 discloses a method of removing a silicon component by filtering an aqueous hydrogen peroxide solution through an ultrafiltration membrane. However, this method has a problem that it is difficult to remove the silicon component dissolved in the aqueous solution.
- Patent Document 6 discloses a method for adsorbing and removing impurities by bringing the aqueous hydrogen peroxide solution into contact with activated alumina for 1 to 5 minutes in order to remove impurities such as metals and organic substances in the aqueous hydrogen peroxide solution. Yes. However, Patent Document 6 does not disclose a method for removing the silicon component contained in the aqueous hydrogen peroxide solution.
- An object of the present invention is to provide a method for producing an aqueous hydrogen peroxide solution that can effectively remove impurities such as silicic acid and silicate contained in the aqueous hydrogen peroxide solution.
- the present invention is as follows. ⁇ 1> a first step of bringing an aqueous hydrogen peroxide solution into contact with activated alumina washed with purified water; A second step of bringing the aqueous hydrogen peroxide solution into contact with a cation exchange resin after the first step; A method for producing an aqueous hydrogen peroxide solution, comprising: ⁇ 2> The method for producing an aqueous hydrogen peroxide solution according to ⁇ 1>, wherein the cation exchange resin is a hydrogen ion type strongly acidic cation exchange resin having a sulfonic acid group.
- ⁇ 3> The method for producing an aqueous hydrogen peroxide solution according to the above ⁇ 1> or ⁇ 2>, wherein the temperature of the aqueous hydrogen peroxide solution brought into contact with the activated alumina and the cation exchange resin is 30 ° C. or less.
- aqueous hydrogen peroxide solution is passed through the activated alumina continuously
- the space velocity (SV) when the aqueous hydrogen peroxide solution is passed through the activated alumina is 0.5 to 50 Hr ⁇ 1 .
- SV space velocity
- ⁇ 6> The hydrogen peroxide according to any one of ⁇ 1> to ⁇ 5>, further comprising a third step of filtering the aqueous hydrogen peroxide solution using a filter having an average pore diameter of 1 ⁇ m or less after the first step.
- a fourth step of adding one or more substances selected from phosphoric acid, pyrophosphoric acid, phosphate, and pyrophosphate to the aqueous hydrogen peroxide solution;
- a fifth step of bringing the aqueous hydrogen peroxide solution into contact with an anion exchange resin and / or a mixed bed of an anion exchange resin and a cation exchange resin, and the above ⁇ 1> to ⁇ 6 The manufacturing method of the hydrogen peroxide aqueous solution in any one of>.
- phosphoric acid and pyrophosphoric acid are added to the hydrogen peroxide solution so that the total concentration of phosphate ions and pyrophosphate ions contained in the hydrogen peroxide solution is 0.01 to 100 ppm.
- the manufacturing method of the hydrogen peroxide aqueous solution as described in said ⁇ 7> which adds 1 or more types of substances chosen from a phosphate and pyrophosphate.
- the temperature of the aqueous hydrogen peroxide solution brought into contact with the mixed bed of anion exchange resin and / or anion exchange resin and cation exchange resin is 30 ° C. or less, ⁇ 7> or ⁇ 8.
- the aqueous hydrogen peroxide solution is contacted with an anion exchange resin and / or a mixed bed of an anion exchange resin and a cation exchange resin in a continuous manner, according to the above ⁇ 7> to ⁇ 9>
- the space velocity (SV) when the aqueous hydrogen peroxide solution is brought into contact with the anion exchange resin and / or the mixed bed of the anion exchange resin and the cation exchange resin is 1 to 300 Hr ⁇ 1.
- ⁇ 12> The method for producing an aqueous hydrogen peroxide solution according to any one of ⁇ 1> to ⁇ 11>, further comprising a sixth step of bringing the aqueous hydrogen peroxide solution into contact with the synthetic adsorbent.
- ⁇ 15> The method for producing an aqueous hydrogen peroxide solution according to any one of ⁇ 1> to ⁇ 14>, wherein the aqueous hydrogen peroxide solution is an aqueous hydrogen peroxide solution produced by an anthraquinone method.
- aqueous hydrogen peroxide solution capable of effectively removing impurities such as silicic acid and silicate contained in the aqueous hydrogen peroxide solution.
- the flow sheet of Example 1 The flow sheet of Example 2. The flow sheet of Example 3. The flow sheet of Example 4. The flow sheet of comparative example 1.
- ppm, ppb, and ppt represent weight ppm, weight ppb, and weight ppt, respectively.
- the method for producing an aqueous hydrogen peroxide solution according to the present invention includes a first step of bringing the aqueous hydrogen peroxide solution into contact with activated alumina, and a second step of bringing the aqueous hydrogen peroxide solution into contact with a cation exchange resin after the first step. And having.
- the activated alumina used in the present invention contains alumina (Al 2 O 3 ) preferably 90% by weight or more, more preferably 95% by weight or more, and further preferably 99% by weight or more.
- the alumina is preferably ⁇ -alumina.
- the specific surface area of the activated alumina used in the present invention is preferably 100 to 600 m 2 / g, more preferably 120 to 500 m 2 / g.
- the central particle size of activated alumina is preferably 0.001 to 10 mm, more preferably 0.1 to 6 mm.
- the central particle size means a 50% cumulative weight equivalent diameter (d50) in the particle size distribution.
- the particle size distribution of activated alumina can be measured by, for example, a laser diffraction particle size distribution measuring apparatus.
- an aqueous hydrogen peroxide solution containing impurities such as silicic acid and silicate for example, potassium silicate, sodium silicate, aluminum silicate
- purified water for washing activated alumina water purified by a known method can be used.
- water purified by ion exchange, distillation, activated carbon, reverse osmosis membrane, ultrafiltration membrane, microfiltration membrane, or a combination of these methods can be used.
- the purified water used for cleaning the activated alumina preferably has a silicon concentration of 5 ppb or less, more preferably 1 ppb or less.
- the silicon concentration of purified water can be measured using, for example, an atomic absorption photometer spectroAA 880Z (manufactured by Varian).
- purified water for washing activated alumina for example, ultrapure water obtained by purifying ion-exchanged water with Mini Pure TW-300RU (manufactured by Nomura Micro Science Co., Ltd.) can be used.
- the cleaning treatment of the activated alumina is performed until the silicon concentration in the purified water after contacting the activated alumina is preferably 5 ppb or less, more preferably 1 ppb or less.
- the activated alumina may be washed with an inorganic acid aqueous solution such as nitric acid, hydrochloric acid, sulfuric acid or phosphoric acid and then washed with purified water.
- the silicon component in the aqueous hydrogen peroxide solution can be effectively removed by bringing the aqueous hydrogen peroxide solution into contact with the activated alumina.
- the first step of bringing the aqueous hydrogen peroxide solution into contact with activated alumina can be carried out continuously or batchwise.
- an aqueous hydrogen peroxide solution is continuously supplied to the activated alumina layer packed in the column.
- the activated alumina and the aqueous hydrogen peroxide solution are stirred and mixed in the tank for a predetermined time, then the activated alumina is separated, and the aqueous hydrogen peroxide solution is extracted from the inside of the tank.
- the continuous type and the batch type the continuous type is preferable because the production efficiency of the aqueous hydrogen peroxide solution is high.
- the space velocity (SV) when the aqueous hydrogen peroxide solution is passed through the activated alumina layer is preferably 0.5 to 50 Hr ⁇ 1 .
- the temperature of the aqueous hydrogen peroxide solution is preferably 0 to 50 ° C., more preferably 5 to 40 ° C., and further preferably 5 to 30 ° C.
- the space velocity (SV) here is represented by the following formula (1).
- Space velocity (SV) [Hr ⁇ 1 ] amount of hydrogen peroxide aqueous solution supplied [LHr ⁇ 1 ] / volume of activated alumina layer [L] (1)
- the column packed with activated alumina is preferably installed vertically.
- the aqueous hydrogen peroxide solution may flow from the upper part to the lower part of the column, or may flow from the lower part to the upper part.
- the aqueous hydrogen peroxide solution after contact with the activated alumina contains metals such as aluminum, calcium, magnesium and sodium eluted from the activated alumina.
- Such an aqueous hydrogen peroxide solution is not preferable for use in sterilization of beverage containers and food containers, or in the field of electronics industry.
- a 2nd process can also be implemented by a continuous type and can also be implemented by a batch type.
- an aqueous hydrogen peroxide solution is continuously supplied to the layer of the cation exchange resin packed in the column.
- the cation exchange resin and the hydrogen peroxide aqueous solution are stirred and mixed in the tank for a predetermined time, and then the cation exchange resin is separated and the hydrogen peroxide aqueous solution is extracted from the tank interior.
- the continuous type and the batch type the continuous type is preferable because the production efficiency of the aqueous hydrogen peroxide solution is high.
- the space velocity (SV) when the aqueous hydrogen peroxide solution is passed through the cation exchange resin layer is preferably 1 to 300 Hr ⁇ 1 .
- the temperature of the aqueous hydrogen peroxide solution is preferably 30 ° C. or less, more preferably ⁇ 10 to 20 ° C. If the temperature of the aqueous hydrogen peroxide solution exceeds 30 ° C., the proportion of sulfonic acid groups in the cation exchange resin eluting increases, which is not preferable.
- the space velocity (SV) here is expressed by the following equation (2).
- Space velocity (SV) [Hr ⁇ 1 ] amount of hydrogen peroxide aqueous solution supplied [LHr ⁇ 1 ] / volume of cation exchange resin layer [L] (2)
- the column filled with the cation exchange resin is preferably installed vertically.
- the aqueous hydrogen peroxide solution may flow from the upper part to the lower part of the column, or may flow from the lower part to the upper part.
- the cation exchange resin used in the second step is preferably a strongly acidic cation exchange resin having a sulfonic acid group (—SO 3 H) as an ion exchange group.
- a strongly acidic cation exchange resin having a sulfonic acid group (—SO 3 H) as an ion exchange group examples include Amberlite 200CT, 252 (Rohm and Haas), Diaion PK224, and PK228 (Mitsubishi Chemical Corporation).
- cation exchange resins There are two types of cation exchange resins: sodium ion type and hydrogen ion type. In general, commercially available cation exchange resins are of the sodium ion type. In the second step of the present invention, it is preferable to use a cation exchange resin converted into a hydrogen ion type.
- aqueous solution of sulfuric acid or hydrochloric acid is supplied to the cation exchange resin layer packed in the column.
- water is supplied to the cation exchange resin layer to sufficiently wash the cation exchange resin.
- the washing water it is preferable to use the purified water described above.
- the cation exchange resin is a hydrogen ion type (for example, Amberlite 200CTH), it can be used as it is in the second step.
- the concentration of the silicon component contained in the aqueous hydrogen peroxide solution can be reduced to preferably 5 ppb or less, more preferably 1 ppb or less.
- the concentration of metal components such as aluminum, calcium, magnesium, and sodium eluted from the activated alumina contained in the aqueous hydrogen peroxide solution is reduced to a level that does not cause any practical problems. can do.
- the aqueous hydrogen peroxide solution can be produced by a known method such as an anthraquinone method or a direct synthesis method.
- the direct synthesis method is a method of synthesizing hydrogen peroxide by directly reacting hydrogen and oxygen.
- the aqueous hydrogen peroxide solution before contacting with activated alumina contains silicon components such as silicic acid and silicate (for example, potassium silicate, sodium silicate, aluminum silicate) as impurities.
- silicon components such as silicic acid and silicate (for example, potassium silicate, sodium silicate, aluminum silicate) as impurities.
- the concentration of the silicon component contained in the aqueous hydrogen peroxide solution before contact with the activated alumina is preferably 1 ppm or less, more preferably 200 ppb or less, and even more preferably 50 ppb or less.
- concentration of the silicon component contained in the hydrogen peroxide solution exceeds 1 ppm, the life of the activated alumina is remarkably shortened and the purification cost of the hydrogen peroxide solution is increased.
- the concentration of the metal (iron, manganese, chromium, sodium, calcium, aluminum, etc.) or its ions contained in the aqueous hydrogen peroxide solution before contact with the cation exchange resin is preferably 10 ppm or less, more preferably 1 ppm or less.
- the concentration of organic impurities contained in the aqueous hydrogen peroxide solution before contacting with activated alumina is preferably 300 ppm or less, more preferably 100 ppm or less, as the total carbon concentration (hereinafter sometimes referred to as TC concentration).
- the concentration of hydrogen peroxide in the aqueous hydrogen peroxide solution is not particularly limited, but is preferably 5 to 70% by weight.
- the silicon component adheres to the activated alumina after contact with the hydrogen peroxide solution.
- an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide
- the silicon component adhering to the activated alumina can be removed.
- the activated alumina washed with an aqueous alkali metal hydroxide solution can be used again for removing the silicon component in the first step.
- the temperature of the alkali metal hydroxide aqueous solution used for cleaning the activated alumina is preferably 0 to 100 ° C., more preferably 0 to 50 ° C.
- the concentration of the alkali metal hydroxide aqueous solution used for cleaning the activated alumina is preferably 0.5 to 20% by weight, more preferably 1 to 10% by weight.
- the aqueous hydrogen peroxide solution may be filtered using a filter having an average pore size of 1 ⁇ m or less (third step).
- third step solids such as alumina in the aqueous hydrogen peroxide solution can be removed.
- the third step may be performed before the second step or may be performed after the second step.
- the filter used in the third step is preferably one that is not easily degraded by the aqueous hydrogen peroxide solution and does not elute impurities in the aqueous hydrogen peroxide solution.
- the material of the filter used in the third step is preferably, for example, a fluororesin, a polyolefin resin, a polysulfone resin, or a polycarbonate resin.
- PTFE polytetrafluoroethylene
- the filter used in the third step is not particularly limited, but for example, a flat membrane, pleated, spiral, or hollow fiber filter is preferable.
- the average pore size of the filter used in the third step is preferably 1.0 ⁇ m or less, more preferably 0.01 to 1.0 ⁇ m, and still more preferably 0.01 to 0.5 ⁇ m.
- the temperature of the aqueous hydrogen peroxide solution when passing through the filter is not particularly limited, but is preferably 0 to 50 ° C., more preferably 5 to 40 ° C., and further preferably 5 to 30 ° C.
- the speed of the aqueous hydrogen peroxide solution when passing through the filter is not particularly limited.
- the aqueous hydrogen peroxide solution can be passed through the filter multiple times.
- phosphoric acid After the second step, one or more substances among phosphoric acid, pyrophosphoric acid, phosphate, and pyrophosphate may be added to the aqueous hydrogen peroxide solution (fourth step).
- the fourth step may be performed before the third step or may be performed after the third step.
- phosphoric acid, pyrophosphoric acid, phosphate, and pyrophosphate are referred to as “phosphoric acid and the like”.
- the aqueous hydrogen peroxide solution may be brought into contact with the anion exchange resin and / or the mixed bed of the anion exchange resin and the cation exchange resin (fifth step).
- the concentration of the metal contained in the aqueous hydrogen peroxide solution can be reduced to the ppt level.
- the fifth step can be carried out in a continuous manner or in a batch manner.
- an aqueous hydrogen peroxide solution is continuously applied to the layer of anion exchange resin packed in the column and / or the mixed bed of anion exchange resin and cation exchange resin packed in the column. Supply.
- the anion exchange resin and the hydrogen peroxide aqueous solution are stirred and mixed in the tank for a predetermined time, then the anion exchange resin is separated, and the hydrogen peroxide aqueous solution is extracted from the tank interior.
- the anion exchange resin, the cation exchange resin, and the aqueous hydrogen peroxide solution are stirred and mixed in the tank for a predetermined time, and then the anion exchange resin and the cation exchange resin are separated, and the aqueous hydrogen peroxide solution is extracted from the inside of the tank.
- the continuous type and the batch type the continuous type is preferable because the production efficiency of the aqueous hydrogen peroxide solution is high.
- Examples of phosphoric acid added to the aqueous hydrogen peroxide solution in the fourth step include phosphoric acid, triammonium phosphate, tripotassium phosphate, trisodium phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, phosphoric acid List sodium ammonium hydrogen, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, sodium pyrophosphate, potassium pyrophosphate, ammonium pyrophosphate, disodium dihydrogen pyrophosphate, etc. Can do. Among these, phosphoric acid is preferable.
- the fourth step and the fifth step can be performed, for example, by the following method (1) or (2).
- a substance such as phosphoric acid is added to an aqueous hydrogen peroxide solution to adjust to a predetermined concentration.
- the aqueous hydrogen peroxide solution is brought into contact with the anion exchange resin and / or the mixed bed of the anion exchange resin and the cation exchange resin.
- the fourth step at least one substance selected from phosphoric acid and the like is added to the aqueous hydrogen peroxide solution.
- the total concentration of phosphate ions (PO 4 3 ⁇ ) and pyrophosphate ions (P 2 O 7 4 ⁇ ) in the aqueous hydrogen peroxide solution is preferably 0.01 to 100 ppm, more It is preferably 0.1 to 20 ppm, more preferably 0.1 to 10 ppm, and particularly preferably 0.1 to 1 ppm. If the concentration of phosphoric acid or the like in the aqueous hydrogen peroxide solution exceeds these preferred ranges, the resin used for purification of the aqueous hydrogen peroxide solution may be damaged.
- metal impurities such as iron and chromium may be eluted from materials such as storage containers and piping (for example, austenitic stainless steel).
- the concentration of pyrophosphate ion (P 2 O 7 4 ⁇ ) in the aqueous hydrogen peroxide solution can be measured by the same method as that for phosphate ion (PO 4 3 ⁇ ).
- concentration of pyrophosphate ion (P 2 O 7 4 ⁇ ) in an aqueous hydrogen peroxide solution can be measured using ion chromatography DX-500 (manufactured by DIONEX).
- Ionpac AG17-C (manufactured by DIONEX) can be used as the concentration column
- Ionpac AG11 (manufactured by DIONEX) as the guard column
- Ionpac AS-11 (manufactured by DIONEX) as the separation column
- 2 ml as the loop.
- the standard solution can be prepared by dissolving a special grade reagent (manufactured by Kanto Chemical) with purified water.
- the eluent can be prepared by dissolving precision analytical grade sodium hydroxide (manufactured by Kanto Chemical) with purified water.
- anion exchange resins that can be used in the fifth step include strongly basic resins having quaternary ammonium groups as ion exchange groups based on styrene-divinylbenzene crosslinked copolymers, and styrene-divinylbenzene crosslinked copolymers.
- anion exchange resin having a quaternary ammonium group as an ion exchange group is preferable.
- anion exchange resins having a quaternary ammonium group as an ion exchange group are commercially available.
- examples of anion exchange resins having quaternary ammonium groups as ion exchange groups include Diaion PA316, 318L (Mitsubishi Chemical Corporation), Diaion SA10A (Mitsubishi Chemical Corporation), Amberlite IRA900J, IRA904 (Rohm and Haas). Manufactured).
- Commercially available anion exchange resins are generally of the chloride ion type.
- an anion exchange resin converted into a carbonate ion type or bicarbonate ion type is used.
- an aqueous solution of carbonate or bicarbonate is supplied to the anion exchange resin layer packed in the column, and then purified water is supplied. . More specifically, for example, an aqueous solution of sodium carbonate or sodium bicarbonate is supplied to the anion exchange resin layer packed in the column.
- water is supplied to the anion exchange resin layer to sufficiently wash the anion exchange resin. As the washing water, it is preferable to use the purified water described above.
- the cation exchange resin used in the fifth step is preferably a strongly acidic cation exchange resin having a sulfonic acid group as an ion exchange group.
- the cation exchange resin include Amberlite 200CT, 252 (Rohm and Haas) and Diaion PK224 and PK228 (Mitsubishi Chemical Corporation).
- cation exchange resins There are two types of cation exchange resins: sodium ion type and hydrogen ion type. In general, commercially available cation exchange resins are of the sodium ion type. In the fifth step of the present invention, it is preferable to use a cation exchange resin converted into a hydrogen ion type.
- aqueous solution of sulfuric acid or hydrochloric acid is supplied to the cation exchange resin layer packed in the column.
- water is supplied to the cation exchange resin layer to sufficiently wash the cation exchange resin.
- the washing water it is preferable to use the purified water described above.
- the cation exchange resin is a hydrogen ion type (for example, Amberlite 200CTH), it can be used as it is in the fifth step.
- a preferable volume ratio is 0.3 to 3 with respect to the anion exchange resin 1, and more preferably with respect to the anion exchange resin 1.
- the cation exchange resin is 0.5-2.
- the anion exchange resin and the cation exchange resin are preferably mixed uniformly.
- the temperature of the aqueous hydrogen peroxide solution is preferably 30 ° C. or less, more preferably ⁇ 10 to 20 ° C.
- the temperature of the aqueous hydrogen peroxide solution exceeds 30 ° C., the hydrogen peroxide is decomposed and bubbles are easily formed in the resin layer, which is not preferable because the purity of the aqueous hydrogen peroxide solution decreases.
- Space velocity (SV) here is expressed by the following formula (3).
- Space velocity (SV) [Hr -1 ] Supply amount of aqueous hydrogen peroxide solution [LHr -1 ] / Volume of layer consisting of anion exchange resin and / or mixed bed of anion exchange resin and cation exchange resin [L] ... (3)
- the column packed with the anion exchange resin and / or the mixed bed of the anion exchange resin and the cation exchange resin is preferably installed vertically.
- the aqueous hydrogen peroxide solution may flow from the upper part to the lower part of the column, or may flow from the lower part to the upper part.
- an aqueous hydrogen peroxide solution may be brought into contact with the synthetic adsorbent (sixth step).
- organic impurities contained in the aqueous hydrogen peroxide solution can be removed.
- the sixth step may be performed before the first step or may be performed after the first step.
- the sixth step can be carried out continuously or batchwise.
- an aqueous hydrogen peroxide solution is continuously supplied to the synthetic adsorbent layer packed in the column.
- the synthetic adsorbent and the aqueous hydrogen peroxide solution are stirred and mixed in the tank for a predetermined time, and then the synthetic adsorbent is separated and the aqueous hydrogen peroxide solution is extracted from the inside of the tank.
- the continuous type and the batch type the continuous type is preferable because the production efficiency of the aqueous hydrogen peroxide solution is high.
- a resin having a network molecular structure and having no ion exchange group can be mentioned.
- the synthetic adsorbent include styrene-divinylbenzene copolymer and acrylic ester polymer.
- a synthetic adsorbent obtained by halogenating or halogenmethylating these resins can also be used.
- a synthetic adsorbent having a modified network molecular structure can also be used.
- Examples of such synthetic adsorbents include Sepabeads SP207, SP206, SP825, SP850, SP70, SP700 (manufactured by Mitsubishi Chemical Corporation), Amberlite XAD2, XAD4, XAD7HP, XAD1180N, XAD2000 (manufactured by Rohm and Haas). .
- the space velocity (SV) when the aqueous hydrogen peroxide solution is passed through the synthetic adsorbent layer is preferably 1 to 50 Hr ⁇ 1 .
- the temperature of the aqueous hydrogen peroxide solution is preferably 40 ° C. or less, more preferably ⁇ 10 to 30 ° C., and further preferably ⁇ 10 to 20 ° C.
- the space velocity (SV) here is expressed by the following equation (4).
- Space velocity (SV) [Hr -1 ] Supply amount of aqueous hydrogen peroxide solution [LHr -1 ] / Volume of synthetic adsorbent layer [L] (4)
- FIG. 1 is a flow sheet of Example 1.
- a synthetic adsorbent packed column, an activated alumina packed column, and a cation exchange resin packed column were prepared.
- the manufacturing procedure of each column is as follows.
- ⁇ Synthetic adsorbent packed column> A synthetic adsorbent 300 ml and methanol 600 ml were placed in a 1000 ml capacity polyethylene container and allowed to stand for 24 hours. Next, the methanol was separated by suction filtration, and at the same time, the synthetic adsorbent was washed with 1000 ml of ion-exchanged water, and the synthetic adsorbent was transferred to a glass beaker having a capacity of 1000 ml. After putting 700 ml of ion exchange water into the beaker, the operation of removing the supernatant by decantation was performed 4 times.
- PFA perfluoroalkoxyalkane
- ⁇ Cation exchange resin packed column 300 ml of cation exchange resin was packed into a column made of perfluoroalkoxyalkane (PFA) having an inner diameter of 40 mm.
- PFA perfluoroalkoxyalkane
- an aqueous sulfuric acid solution having a concentration of 1 mol / L is passed through the column at 3000 ml / Hr for 2 hours from the top to the bottom of the column, and then purified water is supplied at 3000 ml / L. It was allowed to pass through for 3 hours with Hr.
- a synthetic adsorbent packed column, an activated alumina packed column, and a cation exchange resin packed column were connected in series in this order. In this way, an apparatus for purifying an aqueous hydrogen peroxide solution was created.
- Purified water was allowed to flow through the three columns from the column side packed with the synthetic adsorbent. Purified water flowed from the bottom to the top of the column. Purified water was allowed to flow for 28 hours at a rate of 1400 ml / Hr. This confirmed that the silicon concentration in the purified water after passing through the three columns was 1 ppb or less.
- As the purified water ultrapure water obtained by purifying ion-exchanged water with Mini Pure TW-300RU (manufactured by Nomura Micro Science Co., Ltd.) was used. The silicon concentration of this ultrapure water is less than 1 ppb. Three methods of ion exchange, reverse osmosis membrane, and ultrafiltration membrane were used for purification of ion exchange water.
- aqueous hydrogen peroxide solution was passed through the three columns immersed in an 8 ° C. water bath. The aqueous hydrogen peroxide solution was flowed from the synthetic adsorbent packed column side. The aqueous hydrogen peroxide solution flowed from the bottom to the top of the column. The aqueous hydrogen peroxide solution was allowed to flow for 6 hours at a rate of 1400 ml / Hr.
- the space velocity when the aqueous hydrogen peroxide solution was passed through the synthetic adsorbent packed column was 10 Hr ⁇ 1 .
- the space velocity when the aqueous hydrogen peroxide solution was passed through the activated alumina packed column was 10 Hr ⁇ 1 .
- the space velocity when the aqueous hydrogen peroxide solution was passed through the cation exchange resin packed column was 10 Hr ⁇ 1 .
- the aqueous hydrogen peroxide solution after passing through the above three columns is sampled every hour, and the hydrogen peroxide concentration, total carbon concentration (TC concentration), silicon concentration, aluminum concentration, calcium concentration of the aqueous hydrogen peroxide solution are sampled. Magnesium concentration and sodium concentration were measured. Table 1 below shows the measurement results. In Table 1, the leftmost column indicates the total amount of the aqueous hydrogen peroxide solution.
- the concentration of hydrogen peroxide was measured using a density meter DA-310 (manufactured by Kyoto Electronics Co., Ltd.).
- the total carbon concentration (TC concentration) was measured using a total organic carbon meter multi N / C 3100 (manufactured by Analytic Jena).
- As the standard solution a commercially available 1000 mg / L solution (manufactured by Accu Standard) was used.
- the silicon concentration was measured using an atomic absorption photometer spectroAA 880Z (manufactured by Varian).
- a commercially available 1000 mg / L solution manufactured by Kanto Chemical Co., Inc. was used.
- Aluminum, calcium, magnesium, and sodium concentrations were measured using an inductively coupled plasma emission spectrometer iCAP6000 (manufactured by Thermo SCIENTIFIC).
- FIG. 2 is a flow sheet of Example 2.
- Example 2 was the same as Example 1 except that a polytetrafluoroethylene filter (small capsule filter DFA, manufactured by Nippon Pole Co., Ltd.) having an average pore size of 0.1 ⁇ m was connected downstream of the cation exchange resin packed column. A test was conducted.
- a polytetrafluoroethylene filter small capsule filter DFA, manufactured by Nippon Pole Co., Ltd.
- Example 2 The specifications of the aqueous hydrogen peroxide solution used in Example 2 are as follows. Production method: Anthraquinone method Hydrogen peroxide concentration: 32.9% by weight Total carbon concentration (TC concentration): 98.7 ppm Silicon concentration: 9.8 ppb Aluminum concentration: 145ppb Calcium concentration: 3ppb Magnesium concentration: 1 ppb Sodium concentration: 130ppb
- the aqueous hydrogen peroxide solution after passing through the above three columns and filters is sampled every hour, and the hydrogen peroxide concentration, total carbon concentration (TC concentration), silicon concentration, aluminum concentration of the aqueous hydrogen peroxide solution, The calcium concentration, magnesium concentration, and sodium concentration were measured. Table 2 below shows the measurement results. In Table 2, the leftmost column indicates the total flow rate of the aqueous hydrogen peroxide solution.
- the space velocity when the aqueous hydrogen peroxide solution was passed through the synthetic adsorbent packed column was 10 Hr ⁇ 1 .
- the space velocity when the aqueous hydrogen peroxide solution was passed through the activated alumina packed column was 10 Hr ⁇ 1 .
- the space velocity when the aqueous hydrogen peroxide solution was passed through the cation exchange resin packed column was 10 Hr ⁇ 1 .
- FIG. 3 is a flow sheet of Example 3.
- the aqueous hydrogen peroxide solution purified in Example 1 was further passed through a cation exchange resin packed column and an anion / cation exchange resin mixed bed column.
- the production procedure of the cation exchange resin packed column and the anion / cation exchange resin mixed bed column is as follows.
- ⁇ Cation exchange resin packed column 300 ml of cation exchange resin was packed into a column made of perfluoroalkoxyalkane (PFA) having an inner diameter of 40 mm.
- PFA perfluoroalkoxyalkane
- an aqueous sulfuric acid solution having a concentration of 1 mol / L is passed through the column at 3000 ml / Hr for 2 hours from the top to the bottom of the column, and then purified water is supplied at 3000 ml / L. It was allowed to pass through for 3 hours with Hr.
- ⁇ Anion / cation exchange resin mixed bed column 300 ml of anion exchange resin was packed into a column made of perfluoroalkoxyalkane (PFA) having an inner diameter of 40 mm.
- PFA perfluoroalkoxyalkane
- a sulfuric acid aqueous solution having a concentration of 1 mol / L, purified water, and an aqueous sodium bicarbonate solution having a concentration of 0.5 mol / L are provided from the top to the bottom of the column.
- the solution was passed for 2 hours at a rate of 3000 ml / Hr.
- Diaion PA316 manufactured by Mitsubishi Chemical Corporation was used as the anion exchange resin.
- cation exchange resin 300 ml of cation exchange resin was packed into a column made of perfluoroalkoxyalkane (PFA) having an inner diameter of 40 mm.
- PFA perfluoroalkoxyalkane
- an aqueous sulfuric acid solution having a concentration of 1 mol / L is passed through the column at 3000 ml / Hr for 2 hours from the top to the bottom of the column, and then purified water is supplied at 3000 ml / L. It was allowed to pass through for 3 hours with Hr.
- Diaion PK228 manufactured by Mitsubishi Chemical Corporation was used as the cation exchange resin.
- Purified water at 15 ° C. was passed through the two columns from the cation exchange resin packed column side. Purified water flowed from the top to the bottom of the column. Purified water was allowed to flow for 30 minutes at a rate of 1440 ml / Hr. This confirmed that the silicon concentration in the purified water after passing through the two columns was 1 ppb or less.
- As the purified water ultrapure water obtained by purifying ion-exchanged water with Mini Pure TW-300RU (manufactured by Nomura Micro Science Co., Ltd.) was used. The silicon concentration of this ultrapure water is less than 1 ppb. Three methods of ion exchange, reverse osmosis membrane, and ultrafiltration membrane were used for purification of ion exchange water.
- ⁇ Purification of aqueous hydrogen peroxide solution The aqueous hydrogen peroxide solution purified in Example 1 was cooled to 15 ° C. Next, this aqueous hydrogen peroxide solution was passed through the cation exchange resin packed column and the anion / cation exchange resin mixed bed column prepared in Example 3. The aqueous hydrogen peroxide solution was flowed from the cation exchange resin packed column side. The aqueous hydrogen peroxide solution was allowed to flow for 1 hour at a rate of 4200 ml / Hr. The phosphate ion concentration in the aqueous hydrogen peroxide solution was less than 10 ppb.
- the space velocity when the aqueous hydrogen peroxide solution was passed through the cation exchange resin packed column was 140 Hr ⁇ 1 .
- the space velocity when the aqueous hydrogen peroxide solution was passed through the anion / cation exchange resin mixed bed column was 140 Hr ⁇ 1 .
- the aqueous hydrogen peroxide solution after passing through the two columns was sampled every 30 minutes, and the silicon concentration, aluminum concentration, calcium concentration, magnesium concentration and sodium concentration of the aqueous hydrogen peroxide solution were measured.
- an inductively coupled plasma mass spectrometer 7500cs manufactured by Agilent was used. Table 3 below shows the measurement results. In Table 3, the leftmost column indicates the total amount of hydrogen peroxide aqueous solution.
- FIG. 4 is a flow sheet of Example 4.
- phosphoric acid was added to the aqueous hydrogen peroxide solution purified in Example 2 to prepare an aqueous hydrogen peroxide solution having a phosphate ion concentration of 176 ppb.
- this aqueous hydrogen peroxide solution was cooled to 15 ° C., and then passed through a cation exchange resin packed column and an anion / cation exchange resin mixed bed column prepared in the same procedure as in Example 3.
- the aqueous hydrogen peroxide solution was flowed from the cation exchange resin packed column side.
- the aqueous hydrogen peroxide solution was allowed to flow for 1 hour at a rate of 4200 ml / Hr.
- the phosphate ion concentration in the aqueous hydrogen peroxide solution after passing was less than 0.5 ppb.
- the space velocity when the aqueous hydrogen peroxide solution was passed through the cation exchange resin packed column was 140 Hr ⁇ 1 .
- the space velocity when the aqueous hydrogen peroxide solution was passed through the anion / cation exchange resin mixed bed column was 140 Hr ⁇ 1 .
- Example 3 and Example 4 the phosphate ion (PO 4 3 ⁇ ) concentration was measured using ion chromatography DX-500 (manufactured by DIONEX).
- the concentration column was Ionpac AG17-C (DIONEX)
- the guard column was Ionpac AG11 (DIONEX)
- the separation column was Ionpac AS-11 (DIONEX)
- the loop was 2 ml.
- a commercially available 1000 mg / L solution manufactured by Kanto Chemical Co., Inc.
- the eluent was prepared by dissolving precision analytical grade sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) with purified water.
- the aqueous hydrogen peroxide solution after passing through the two columns was sampled every 30 minutes, and the silicon concentration, aluminum concentration, calcium concentration, magnesium concentration and sodium concentration of the aqueous hydrogen peroxide solution were measured.
- an inductively coupled plasma mass spectrometer 7500cs manufactured by Agilent was used. Table 4 below shows the measurement results. In Table 4, the leftmost column indicates the total amount of the aqueous hydrogen peroxide solution.
- FIG. 5 is a flow sheet of Comparative Example 1.
- Comparative Example 1 first, a synthetic adsorbent packed column and an activated alumina packed column were prepared. The manufacturing procedure for each column is the same as in Example 1.
- a synthetic adsorbent packed column and an activated alumina packed column were connected in series in this order. In this way, an apparatus for purifying an aqueous hydrogen peroxide solution was created.
- purified water was passed through two columns. Purified water flowed from the bottom to the top of the column. Purified water was allowed to flow for 28 hours at a rate of 1400 ml / Hr. This confirmed that the silicon concentration in the purified water after passing through the two columns was 1 ppb or less.
- the purified water used was the same as in Example 1 above.
- aqueous hydrogen peroxide solution was allowed to flow through the two columns immersed in an 8 ° C. water bath. The aqueous hydrogen peroxide solution was flowed from the synthetic adsorbent packed column side. The aqueous hydrogen peroxide solution flowed from the bottom to the top of the column. The aqueous hydrogen peroxide solution was allowed to flow for 3 hours at a rate of 1400 ml / Hr.
- the space velocity when the aqueous hydrogen peroxide solution was passed through the synthetic adsorbent packed column was 10 Hr ⁇ 1 .
- the space velocity when the aqueous hydrogen peroxide solution was passed through the activated alumina packed column was 10 Hr ⁇ 1 .
- the aqueous hydrogen peroxide solution after passing through the two columns is sampled every hour, and the hydrogen peroxide concentration, total carbon concentration (TC concentration), silicon concentration, aluminum concentration, calcium concentration of the aqueous hydrogen peroxide solution are sampled. Magnesium concentration and sodium concentration were measured. These components were measured in the same manner as in Example 1 above. Table 5 below shows the measurement results. In Table 5, the leftmost column indicates the total amount of the aqueous hydrogen peroxide solution.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Detergent Compositions (AREA)
Abstract
Description
水素化触媒の存在下、水不溶性の溶媒中で、2-アルキルアントラキノン等のアントラキノン誘導体を水素化させてアントラヒドロキノンを生成させる。
触媒をろ過によって分離した後、アントラヒドロキノンと空気中の酸素を接触させ、アントラヒドロキノンを酸化させて2-アルキルアントラキノン及び過酸化水素を生成させる。
生成した過酸化水素を水で抽出して分離する。
特許文献1には、過酸化水素水溶液をフッ化物イオン型のアニオン交換樹脂と接触させてケイ素成分を除去する方法が開示されている。
特許文献2には、フッ素化合物を添加した過酸化水素水溶液を、スルホン酸基を有する水素イオン型カチオン交換樹脂と接触させた後、アニオン交換樹脂と接触させる方法が開示されている。
特許文献4には、ケイ素成分を含有する過酸化水素水溶液に、凝集化剤を添加し、過酸化水素水溶液に含まれる固形分不純物を精密フィルターで濾過したのち、SiF6の含有量が0.05重量%以下である、フッ化ナトリウム、フッ化カリウムおよびフッ化アンモニウムからなる群から選ばれる少なくとも一種のフッ素化合物でフッ化物イオン型にしたアニオン交換樹脂と接触させる方法が開示されている。
<1> 過酸化水素水溶液を精製水により洗浄した活性アルミナに接触させる第1工程と、
前記第1工程の後、前記過酸化水素水溶液をカチオン交換樹脂に接触させる第2工程と、
を有することを特徴とする過酸化水素水溶液の製造方法。
<2> 前記カチオン交換樹脂は、スルホン酸基を有する水素イオン型の強酸性カチオン交換樹脂である、上記<1>に記載の過酸化水素水溶液の製造方法。
<3> 前記活性アルミナ及び前記カチオン交換樹脂に接触させる前記過酸化水素水溶液の温度が30℃以下である、上記<1>又は<2>に記載の過酸化水素水溶液の製造方法。
前記第2工程において、前記過酸化水素水溶液を連続式により前記カチオン交換樹脂に通液させる、上記<1>~<3>のいずれかに記載の過酸化水素水溶液の製造方法。
<5> 前記過酸化水素水溶液を前記活性アルミナに通液させるときの空間速度(SV)が0.5~50Hr-1であり、
前記過酸化水素水溶液を前記カチオン交換樹脂に通液させるときの空間速度(SV)が1~300Hr-1である、上記<4>に記載の過酸化水素水溶液の製造方法。
<6> 前記第1工程の後、前記過酸化水素水溶液を平均孔径1μm以下のフィルターを用いて濾過する第3工程を有する、上記<1>~<5>のいずれかに記載の過酸化水素水溶液の製造方法。
前記第4工程の後、前記過酸化水素水溶液をアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させる第5工程と、を有する、上記<1>~<6>のいずれかに記載の過酸化水素水溶液の製造方法。
<8> 前記第4工程において、前記過酸化水素水溶液に含まれるリン酸イオン及びピロリン酸イオンの合計の濃度が0.01~100ppmとなるように、前記過酸化水素水溶液にリン酸、ピロリン酸、リン酸塩、及びピロリン酸塩から選ばれる一種以上の物質を添加する、上記<7>に記載の過酸化水素水溶液の製造方法。
<9> 前記第5工程において、アニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させる過酸化水素水溶液の温度が30℃以下である、上記<7>又は<8>に記載の過酸化水素水溶液の製造方法。
<11> 前記第5工程において、前記過酸化水素水溶液をアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させるときの空間速度(SV)が1~300Hr-1である、上記<10>に記載の過酸化水素水溶液の製造方法。
<12> 前記過酸化水素水溶液と合成吸着剤とを接触させる第6工程を有する、上記<1>~<11>のいずれかに記載の過酸化水素水溶液の製造方法。
<14> 前記第6工程において、前記過酸化水素水溶液を前記合成吸着剤に通液させるときの空間速度(SV)が1~300Hr-1である、上記<13>に記載の過酸化水素水溶液の製造方法。
<15> 前記過酸化水素水溶液は、アントラキノン法で製造された過酸化水素水溶液である、上記<1>~<14>のいずれかに記載の過酸化水素水溶液の製造方法。
第1工程では、ケイ酸やケイ酸塩(例えば、ケイ酸カリウム、ケイ酸ナトリウム、ケイ酸アルミニウム)などの不純物が含まれている過酸化水素水溶液を、精製水により洗浄した活性アルミナに接触させる。
活性アルミナを洗浄するための精製水としては、公知の方法で精製された水を用いることができる。例えば、イオン交換、蒸留、活性炭、逆浸透膜、限外濾過膜、精密濾過膜、もしくはこれらの方法の組み合わせで精製した水を用いることができる。第1工程では、特に、イオン交換及び/又は逆浸透膜で精製した水を用いるのが好ましい。
活性アルミナを硝酸、塩酸、硫酸、リン酸等の無機酸水溶液を用いて洗浄した後、精製水を用いて洗浄してもよい。
連続式で実施する場合には、例えば、カラムに充填した活性アルミナの層に過酸化水素水溶液を連続的に供給する。
バッチ式で実施する場合には、例えば、槽の内部で活性アルミナと過酸化水素水溶液を所定時間撹拌混合した後、活性アルミナを分離し、槽の内部から過酸化水素水溶液を抜き出す。
連続式とバッチ式とでは、連続式の方が過酸化水素水溶液の生産効率が高いため好ましい。
なお、ここでいう空間速度(SV)は、以下の式(1)で表される。
空間速度(SV)[Hr-1] = 過酸化水素水溶液の供給量[LHr-1]/活性アルミナ層の容積[L] …(1)
本発明の方法では、上記第1工程を実施した後、過酸化水素水溶液をカチオン交換樹脂に接触させる(第2工程)。これにより、過酸化水素水溶液に含まれるアルミニウム、カルシウム、マグネシウム、ナトリウム等の金属を効果的に除去することができる。
連続式で実施する場合には、例えば、カラムに充填したカチオン交換樹脂の層に過酸化水素水溶液を連続的に供給する。
バッチ式で実施する場合には、例えば、槽の内部でカチオン交換樹脂と過酸化水素水溶液を所定時間撹拌混合した後、カチオン交換樹脂を分離し、槽の内部から過酸化水素水溶液を抜き出す。
連続式とバッチ式とでは、連続式の方が過酸化水素水溶液の生産効率が高いため好ましい。
なお、ここでいう空間速度(SV)は、以下の式(2)で表される。
空間速度(SV)[Hr-1] = 過酸化水素水溶液の供給量[LHr-1]/カチオン交換樹脂層の容積[L] …(2)
なお、市販されているカチオン交換樹脂を用いる場合、そのカチオン交換樹脂が水素イオン型(例えば、アンバーライト200CTH)であれば、第2工程でそのまま使用することができる。
活性アルミナの洗浄に用いるアルカリ金属水酸化物水溶液の濃度は、好ましくは0.5~20重量%、より好ましくは1~10重量%である。
活性アルミナをアルカリ金属水酸化物水溶液で洗浄した後、さらに、精製水、及び/又は、硝酸、塩酸、硫酸、リン酸等の無機酸の水溶液で洗浄してもよい。
第1工程の後、過酸化水素水溶液を平均孔径1μm以下のフィルターを用いて濾過してもよい(第3工程)。
第3工程を実施することにより、過酸化水素水溶液中のアルミナ等の固形物を除去することができる。第3工程は、第2工程の前に実施してもよく、第2工程の後に実施してもよい。
第3工程において用いるフィルターの材質は、例えば、フッ素樹脂、ポリオレフィン樹脂、ポリスルホン樹脂、ポリカーボネート樹脂等が好ましい。特に、ポリテトラフルオロエチレン(PTFE)が好ましい。
フィルターを通過させる際の過酸化水素水溶液の速度は、特に制限されない。
過酸化水素水溶液は、フィルターに複数回通過させることもできる。
第2工程の後、過酸化水素水溶液にリン酸、ピロリン酸、リン酸塩、及びピロリン酸塩のうち一種以上の物質を添加してもよい(第4工程)。第4工程は、第3工程の前に実施してもよく、第3工程の後に実施してもよい。
以下、リン酸、ピロリン酸、リン酸塩、及びピロリン酸塩のことを、「リン酸等」と呼ぶ。
第4工程の後、過酸化水素水溶液をアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させてもよい(第5工程)。
連続式で実施する場合には、例えば、カラムに充填したアニオン交換樹脂の層、及び/又は、カラムに充填したアニオン交換樹脂とカチオン交換樹脂との混合床に、過酸化水素水溶液を連続的に供給する。
バッチ式で実施する場合には、例えば、槽の内部でアニオン交換樹脂と過酸化水素水溶液を所定時間撹拌混合した後、アニオン交換樹脂を分離し、槽の内部から過酸化水素水溶液を抜き出す。あるいは、槽の内部でアニオン交換樹脂とカチオン交換樹脂と過酸化水素水溶液を所定時間撹拌混合した後、アニオン交換樹脂とカチオン交換樹脂を分離し、槽の内部から過酸化水素水溶液を抜き出す。
連続式とバッチ式とでは、連続式の方が過酸化水素水溶液の生産効率が高いため好ましい。
(1)過酸化水素水溶液にリン酸等の物質を添加して所定の濃度となるように調整する。次に、過酸化水素水溶液をアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させる。
(2)配管中を流れる過酸化水素水溶液中に上記のリン酸等を連続的に供給して、その過酸化水素水溶液をアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に連続的に供給する。
過酸化水素水溶液中のリン酸等の濃度がこれらの好ましい範囲を超えた場合、過酸化水素水溶液の精製に使用する樹脂にダメージを与える恐れがある。また、貯蔵容器や配管などの材料(例えば、オーステナイト系ステンレス材)から鉄やクロムなどの金属不純物を溶出させる恐れがある。
例えば、過酸化水素水溶液中のピロリン酸イオン(P2O7 4-)の濃度は、イオンクロマトグラフィーDX-500(DIONEX製)を用いて測定することができる。この場合、濃縮カラムはIonpac AG17-C(DIONEX製)、ガードカラムはIonpac AG11(DIONEX製)、分離カラムはIonpac AS-11(DIONEX製)、ループは2mlを用いることができる。標準液は、特級試薬(関東化学製)を精製水で溶解させて調製することができる。溶離液は、精密分析用グレードの水酸化ナトリウム(関東化学製)を精製水で溶解させて調製することができる。
より具体的には、例えば、カラムに充填したアニオン交換樹脂の層に、炭酸ナトリウム又は重炭酸ナトリウムの水溶液を供給する。つぎに、アニオン交換樹脂の層に水を供給して、アニオン交換樹脂を十分に洗浄する。洗浄水としては、上記で説明した精製水を使用することが好ましい。
なお、市販されているカチオン交換樹脂を用いる場合、そのカチオン交換樹脂が水素イオン型(例えば、アンバーライト200CTH)であれば、第5工程でそのまま使用することができる。
なお、ここでいう空間速度(SV)は、以下の式(3)で表される。
空間速度(SV)[Hr-1] = 過酸化水素水溶液の供給量[LHr-1]/アニオン交換樹脂及び/又はアニオン交換樹脂とカチオン交換樹脂との混合床からなる層の容積[L] …(3)
さらに、過酸化水素水溶液を合成吸着剤に接触させてもよい(第6工程)。
過酸化水素水溶液を合成吸着剤に接触させることによって、過酸化水素水溶液に含まれる有機不純物を除去することができる。
第6工程は、連続式で実施することもできるし、バッチ式で実施することもできる。
連続式で実施する場合には、例えば、カラムに充填した合成吸着剤の層に、過酸化水素水溶液を連続的に供給する。
バッチ式で実施する場合には、例えば、槽の内部で合成吸着剤と過酸化水素水溶液を所定時間撹拌混合した後、合成吸着剤を分離し、槽の内部から過酸化水素水溶液を抜き出す。
連続式とバッチ式とでは、連続式の方が過酸化水素水溶液の生産効率が高いため好ましい。
合成吸着剤の例として、スチレン-ジビニルベンゼン共重合体、アクリルエステル重合体が挙げられる。また、合成吸着剤として、これらの樹脂をハロゲン化又はハロゲンメチル化したものを用いることもできる。また、網目状分子構造を修飾した合成吸着剤を用いることもできる。このような合成吸着剤の例として、セパビーズSP207、SP206、SP825、SP850、SP70、SP700(三菱化学株式会社製)、アンバーライトXAD2、XAD4、XAD7HP、XAD1180N、XAD2000(Rohm and Haas製)が挙げられる。
なお、ここでいう空間速度(SV)は、以下の式(4)で表される。
空間速度(SV)[Hr-1] = 過酸化水素水溶液の供給量[LHr-1]/合成吸着剤の層の容積[L] …(4)
図1は、実施例1のフローシートである。
実施例1では、合成吸着剤充填カラム、活性アルミナ充填カラム、及び、カチオン交換樹脂充填カラムを準備した。各カラムの製造手順は、以下の通りである。
容量1000mlのポリエチレン製容器に、合成吸着剤300ml及びメタノール600mlを入れて24時間静置した。つぎに、吸引濾過によってメタノールを分離するのと同時に、イオン交換水1000mlを用いて合成吸着剤を洗浄し、その合成吸着剤を容量1000mlのガラス製ビーカーに移した。そのビーカーにイオン交換水700mlを入れた後に、デカンテーションによって上澄みを取り除く操作を4回行った。
このようにして洗浄した合成吸着剤140mlを、内径25mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した。合成吸着剤は、セパビーズSP70(三菱化学株式会社製)を用いた。吸引濾過には、孔径10μmのポリテトラフルオロエチレン(PTFE)製のメンブレンフィルター(アドバンテック東洋株式会社製)を用いた。
容量1000mlのポリエチレン製容器に、活性アルミナ300mlを入れた。つぎに、この容器内に精製水600mlを添加してデカンテーションによって上澄みを取り除く操作を4回繰り返した。さらに、この容器内に、精製水を150ml/minで4時間流した。
このようにして精製水に接触させた活性アルミナ140mlを、内径25mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した。活性アルミナは、AC-12R(住友化学株式会社製)を用いた。
カチオン交換樹脂300mlを、内径40mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した。つぎに、カチオン交換樹脂を水素イオン型に変換するために、カラムの上方から下方に向けて、濃度1mol/Lの硫酸水溶液を3000ml/Hrで2時間通液させた後、精製水を3000ml/Hrで3時間通液させた。
このようにして水素イオン型に変換したカチオン交換樹脂140mlを、内径25mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した。カチオン交換樹脂は、アンバーライト200CTH(オルガノ株式会社製)を用いた。
なお、精製水は、イオン交換水をミニピュアーTW-300RU(野村マイクロ・サイエンス株式会社製)で精製した超純水を使用した。この超純水のケイ素濃度は、1ppb未満である。イオン交換水の精製には、イオン交換、逆浸透膜、及び限外濾過膜の3つの手法を用いた。
つぎに、過酸化水素水溶液を準備した。
準備した過酸化水素水溶液の仕様は、以下の通りである。
製造方法:アントラキノン法
過酸化水素濃度:32.8重量%
全炭素濃度(TC濃度):74.4ppm
ケイ素濃度:8.6ppb
アルミニウム濃度:145ppb
カルシウム濃度:2ppb
マグネシウム濃度:1ppb
ナトリウム濃度:95ppb
8℃の水浴に浸漬させた上記3つのカラムに、過酸化水素水溶液を流した。
過酸化水素水溶液は、合成吸着剤充填カラム側から流した。
過酸化水素水溶液は、カラムの下方から上方に向かって流した。
過酸化水素水溶液は、1400ml/Hrの速度で、6時間流した。
過酸化水素水溶液を活性アルミナ充填カラムに通液させたときの空間速度は、10Hr-1であった。
過酸化水素水溶液をカチオン交換樹脂充填カラムに通液させたときの空間速度は、10Hr-1であった。
全炭素濃度(TC濃度)は、全有機炭素計multi N/C 3100(Analytik Jena製)を用いて測定した。標準液は、市販の1000mg/L溶液(Accu Standard製)を希釈したものを使用した。
図2は、実施例2のフローシートである。
実施例2では、カチオン交換樹脂充填カラムの下流に平均孔径0.1μmのポリテトラフルオロエチレン製のフィルター(小型カプセルフィルターDFA、日本ポール株式会社製)を接続した以外は、実施例1と同様の試験を行った。
製造方法:アントラキノン法
過酸化水素濃度:32.9重量%
全炭素濃度(TC濃度):98.7ppm
ケイ素濃度:9.8ppb
アルミニウム濃度:145ppb
カルシウム濃度:3ppb
マグネシウム濃度:1ppb
ナトリウム濃度:130ppb
過酸化水素水溶液を活性アルミナ充填カラムに通液させたときの空間速度は、10Hr-1であった。
過酸化水素水溶液をカチオン交換樹脂充填カラムに通液させたときの空間速度は、10Hr-1であった。
図3は、実施例3のフローシートである。
実施例3では、実施例1で精製した過酸化水素水溶液を、さらに、カチオン交換樹脂充填カラム、及び、アニオン/カチオン交換樹脂混合床カラムに通液させた。カチオン交換樹脂充填カラム、及び、アニオン/カチオン交換樹脂混合床カラムの製造手順は、以下の通りである。
カチオン交換樹脂300mlを、内径40mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した。つぎに、カチオン交換樹脂を水素イオン型に変換するために、カラムの上方から下方に向けて、濃度1mol/Lの硫酸水溶液を3000ml/Hrで2時間通液させた後、精製水を3000ml/Hrで3時間通液させた。
このようにして水素イオン型に変換したカチオン交換樹脂30mlを、内径13mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した後、このカラムの上方から下方に向かって精製水を1440ml/Hrの速度で1時間流した。カチオン交換樹脂は、アンバーライト200CTH(オルガノ株式会社製)を用いた。
アニオン交換樹脂300mlを、内径40mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した。つぎに、アニオン交換樹脂を重炭酸イオン型に変換するために、カラムの上方から下方に向けて、濃度1mol/Lの硫酸水溶液、精製水、及び濃度0.5mol/Lの重炭酸ナトリウム水溶液を、3000ml/Hrの速度で、それぞれ2時間通液させた。アニオン交換樹脂は、ダイヤイオンPA316(三菱化学株式会社製)を用いた。
カチオン交換樹脂300mlを、内径40mmのパーフルオロアルコキシアルカン(PFA)製カラムへ充填した。つぎに、カチオン交換樹脂を水素イオン型に変換するために、カラムの上方から下方に向けて、濃度1mol/Lの硫酸水溶液を3000ml/Hrで2時間通液させた後、精製水を3000ml/Hrで3時間通液させた。カチオン交換樹脂は、ダイヤイオンPK228(三菱化学株式会社製)を用いた。
アニオン交換樹脂及びカチオン交換樹脂を1:1の容量比で混合した後、この混合物を内径13mmのパーフルオロアルコキシアルカン(PFA)製カラムへ30ml充填した。
このようにして製造したアニオン/カチオン交換樹脂混合床カラムを、カチオン交換樹脂充填カラムの下流に接続した。
なお、精製水は、イオン交換水をミニピュアーTW-300RU(野村マイクロ・サイエンス株式会社製)で精製した超純水を使用した。この超純水のケイ素濃度は、1ppb未満である。イオン交換水の精製には、イオン交換、逆浸透膜、及び限外濾過膜の3つの手法を用いた。
実施例1において精製された過酸化水素水溶液を、15℃に冷却した。つぎに、この過酸化水素水溶液を、実施例3で準備したカチオン交換樹脂充填カラム、及び、アニオン/カチオン交換樹脂混合床カラムに通液させた。
過酸化水素水溶液は、カチオン交換樹脂充填カラム側から流した。
過酸化水素水溶液は、4200ml/Hrの速度で、1時間流した。
過酸化水素水溶液中のリン酸イオン濃度は、10ppb未満であった。
過酸化水素水溶液をアニオン/カチオン交換樹脂混合床カラムに通液させたときの空間速度は、140Hr-1であった。
図4は、実施例4のフローシートである。
実施例4では、実施例2で精製した過酸化水素水溶液にリン酸を添加して、リン酸イオン濃度が176ppbの過酸化水素水溶液を調製した。つぎに、この過酸化水素水溶液を15℃に冷却した後、実施例3と同様の手順で作成したカチオン交換樹脂充填カラム、及び、アニオン/カチオン交換樹脂混合床カラムに通液させた。
過酸化水素水溶液は、カチオン交換樹脂充填カラム側から流した。
過酸化水素水溶液は、4200ml/Hrの速度で、1時間流した。
通液後の過酸化水素水溶液中のリン酸イオン濃度は、0.5ppb未満であった。
過酸化水素水溶液をアニオン/カチオン交換樹脂混合床カラムに通液させたときの空間速度は、140Hr-1であった。
図5は、比較例1のフローシートである。
比較例1では、まず、合成吸着剤充填カラム、及び、活性アルミナ充填カラムを準備した。各カラムの製造手順は、上記実施例1と同様である。
つぎに、過酸化水素水溶液を準備した。
準備した過酸化水素水溶液の仕様は、以下の通りである。
製造方法:アントラキノン法
過酸化水素濃度:32.5重量%
全炭素濃度(TC濃度):78.6ppm
ケイ素濃度:7.6ppb
アルミニウム濃度:125ppb
カルシウム濃度:2ppb
マグネシウム濃度:1ppb
ナトリウム濃度:104ppb
8℃の水浴に浸漬させた上記2つのカラムに、過酸化水素水溶液を流した。
過酸化水素水溶液は、合成吸着剤充填カラム側から流した。
過酸化水素水溶液は、カラムの下方から上方に向かって流した。
過酸化水素水溶液は、1400ml/Hrの速度で、3時間流した。
過酸化水素水溶液を活性アルミナ充填カラムに通液させたときの空間速度は、10Hr-1であった。
Claims (15)
- 過酸化水素水溶液を精製水により洗浄した活性アルミナに接触させる第1工程と、
前記第1工程の後、前記過酸化水素水溶液をカチオン交換樹脂に接触させる第2工程と、
を有することを特徴とする過酸化水素水溶液の製造方法。 - 前記カチオン交換樹脂は、スルホン酸基を有する水素イオン型の強酸性カチオン交換樹脂である、請求項1に記載の過酸化水素水溶液の製造方法。
- 前記活性アルミナ及び前記カチオン交換樹脂に接触させる前記過酸化水素水溶液の温度が30℃以下である、請求項1又は請求項2に記載の過酸化水素水溶液の製造方法。
- 前記第1工程において、前記過酸化水素水溶液を連続式により前記活性アルミナに通液させ、
前記第2工程において、前記過酸化水素水溶液を連続式により前記カチオン交換樹脂に通液させる、請求項1から請求項3のうちいずれか1項に記載の過酸化水素水溶液の製造方法。 - 前記過酸化水素水溶液を前記活性アルミナに通液させるときの空間速度(SV)が0.5~50Hr-1であり、
前記過酸化水素水溶液を前記カチオン交換樹脂に通液させるときの空間速度(SV)が1~300Hr-1である、請求項4に記載の過酸化水素水溶液の製造方法。 - 前記第1工程の後、前記過酸化水素水溶液を平均孔径1μm以下のフィルターを用いて濾過する第3工程を有する、請求項1から請求項5のうちいずれか1項に記載の過酸化水素水溶液の製造方法。
- 前記第2工程の後、前記過酸化水素水溶液にリン酸、ピロリン酸、リン酸塩、及びピロリン酸塩から選ばれる一種以上の物質を添加する第4工程と、
前記第4工程の後、前記過酸化水素水溶液をアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させる第5工程と、を有する、請求項1から請求項6のうちいずれか1項に記載の過酸化水素水溶液の製造方法。 - 前記第4工程において、前記過酸化水素水溶液に含まれるリン酸イオン及びピロリン酸イオンの合計の濃度が0.01~100ppmとなるように、前記過酸化水素水溶液にリン酸、ピロリン酸、リン酸塩、及びピロリン酸塩から選ばれる一種以上の物質を添加する、請求項7に記載の過酸化水素水溶液の製造方法。
- 前記第5工程において、アニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させる過酸化水素水溶液の温度が30℃以下である、請求項7又は請求項8に記載の過酸化水素水溶液の製造方法。
- 前記第5工程において、前記過酸化水素水溶液を連続式によりアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させる、請求項7から請求項9のうちいずれか1項に記載の過酸化水素水溶液の製造方法。
- 前記第5工程において、前記過酸化水素水溶液をアニオン交換樹脂、及び/又は、アニオン交換樹脂とカチオン交換樹脂との混合床に接触させるときの空間速度(SV)が1~300Hr-1である、請求項10に記載の過酸化水素水溶液の製造方法。
- 前記過酸化水素水溶液と合成吸着剤とを接触させる第6工程を有する、請求項1から請求項11のうちいずれか1項に記載の過酸化水素水溶液の製造方法。
- 前記第6工程において、前記過酸化水素水溶液を連続式により前記合成吸着剤に通液させる、請求項12に記載の過酸化水素水溶液の製造方法。
- 前記第6工程において、前記過酸化水素水溶液を前記合成吸着剤に通液させるときの空間速度(SV)が1~300Hr-1である、請求項13に記載の過酸化水素水溶液の製造方法。
- 前記過酸化水素水溶液は、アントラキノン法で製造された過酸化水素水溶液である、請求項1から請求項14のうちいずれか1項に記載の過酸化水素水溶液の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12834896.8A EP2762443A4 (en) | 2011-09-30 | 2012-07-12 | PROCESS FOR PREPARING AN AQUEOUS HYDROGEN PEROXIDE SOLUTION |
JP2013536003A JP5967095B2 (ja) | 2011-09-30 | 2012-07-12 | 過酸化水素水溶液の製造方法 |
US14/344,542 US20140341800A1 (en) | 2011-09-30 | 2012-07-12 | Method for producing aqueous hydrogen peroxide solution |
SG11201401048WA SG11201401048WA (en) | 2011-09-30 | 2012-07-12 | Method for producing aqueous hydrogen peroxide solution |
KR1020147010186A KR101918709B1 (ko) | 2011-09-30 | 2012-07-12 | 과산화수소 수용액의 제조방법 |
CN201280047919.5A CN103842288A (zh) | 2011-09-30 | 2012-07-12 | 过氧化氢水溶液的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011216637 | 2011-09-30 | ||
JP2011-216637 | 2011-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013046864A1 true WO2013046864A1 (ja) | 2013-04-04 |
Family
ID=47994920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/067822 WO2013046864A1 (ja) | 2011-09-30 | 2012-07-12 | 過酸化水素水溶液の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20140341800A1 (ja) |
EP (1) | EP2762443A4 (ja) |
JP (1) | JP5967095B2 (ja) |
KR (1) | KR101918709B1 (ja) |
CN (2) | CN107265409A (ja) |
SG (1) | SG11201401048WA (ja) |
TW (1) | TWI522309B (ja) |
WO (1) | WO2013046864A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018517658A (ja) * | 2015-04-06 | 2018-07-05 | ラシルク, インコーポレイテッドRasirc, Inc. | 過酸化水素溶液の精製のための方法およびシステム |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017104848A (ja) * | 2015-12-04 | 2017-06-15 | 小林 光 | シリコン微細ナノ粒子及び/又はその凝集体及び生体用水素発生材及びその製造方法並びに水素水とその製造方法及び製造装置 |
PL3380459T3 (pl) | 2015-11-26 | 2020-06-01 | Evonik Operations Gmbh | Sposób epoksydowania olefiny |
CN106241746A (zh) * | 2016-08-18 | 2016-12-21 | 黎明化工研究设计院有限责任公司 | 一种纯化工业过氧化氢溶液的方法 |
CN109850851B (zh) * | 2019-02-26 | 2020-11-24 | 苏州晶瑞化学股份有限公司 | 一种超高纯过氧化氢中颗粒的控制方法 |
CN115501679B (zh) * | 2021-06-23 | 2024-10-29 | 中国石油化工股份有限公司 | 蒽醌法制备双氧水的工作液再生装置 |
CN114735655A (zh) * | 2022-04-16 | 2022-07-12 | 镇江润晶高纯化工科技股份有限公司 | 一种低toc超高纯双氧水的生产方法 |
CN115650178A (zh) * | 2022-11-17 | 2023-01-31 | 安徽金禾实业股份有限公司 | 一种精制电子级双氧水的方法 |
KR102639039B1 (ko) * | 2022-12-29 | 2024-02-22 | 오씨아이 주식회사 | 과산화수소의 정제 방법 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841158B1 (ja) | 1965-05-05 | 1973-12-05 | ||
JPH1179717A (ja) | 1997-08-29 | 1999-03-23 | Mitsubishi Gas Chem Co Inc | 精製過酸化水素水の製造方法 |
JP2003002619A (ja) * | 2001-06-15 | 2003-01-08 | Santoku Kagaku Kogyo Kk | 精製過酸化水素水の製造方法 |
JP3797390B2 (ja) | 1995-11-15 | 2006-07-19 | 三菱瓦斯化学株式会社 | 精製過酸化水素の製造方法 |
JP3818323B2 (ja) | 1996-03-01 | 2006-09-06 | 三菱瓦斯化学株式会社 | 精製過酸化水素の製造方法 |
JP3849724B2 (ja) | 1996-02-14 | 2006-11-22 | 三菱瓦斯化学株式会社 | 高純度過酸化水素水の製造方法 |
JP3895540B2 (ja) | 2000-06-21 | 2007-03-22 | 三徳化学工業株式会社 | 精製過酸化水素水の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3185539A (en) * | 1961-02-03 | 1965-05-25 | American Cyanamid Co | Process of treating cellulose textiles with certain alkylenebis(n-carboxamides) and products produced therefrom |
US3306946A (en) * | 1964-04-07 | 1967-02-28 | Gulf Research Development Co | Process for purifying a normal alpha olefin mixture of its vinylidene content |
FI924124L (fi) * | 1991-09-19 | 1993-03-20 | Ube Industries | Foerfarande foer rening av vaeteperoxidvattenloesning |
JP3874036B2 (ja) * | 1996-10-09 | 2007-01-31 | 三菱瓦斯化学株式会社 | 精製過酸化水素水溶液の製造方法 |
CN1101334C (zh) * | 1998-12-21 | 2003-02-12 | 黎明化工研究院 | 一种蒽醌法过氧化氢的精制及浓缩方法 |
DE10026363A1 (de) * | 2000-05-27 | 2001-11-29 | Merck Patent Gmbh | Verfahren zur Aufreinigung von Wasserstoffperoxidlösungen |
JP4056695B2 (ja) * | 2000-06-21 | 2008-03-05 | 三徳化学工業株式会社 | 精製過酸化水素水の製造方法 |
US20050065052A1 (en) * | 2002-02-11 | 2005-03-24 | Wegner Paul C. | Hydrogen peroxide stabilizer and resulting product and applications |
JP2004067402A (ja) * | 2002-08-01 | 2004-03-04 | Asahi Denka Kogyo Kk | 過酸化水素水の精製方法 |
WO2005094986A1 (ja) * | 2004-03-30 | 2005-10-13 | Taiyo Nippon Sanso Corporation | 空気液化分離装置の前処理精製装置、炭化水素吸着剤、及び原料空気の前処理方法 |
JP5031334B2 (ja) * | 2006-11-17 | 2012-09-19 | 三徳化学工業株式会社 | 過酸化水素水の精製方法及び精製装置 |
US7687268B2 (en) * | 2007-07-25 | 2010-03-30 | Medtronic Minimed, Inc. | Apparatuses and media for drug elution and methods for making and using them |
JP5305165B2 (ja) * | 2009-09-28 | 2013-10-02 | 三徳化学工業株式会社 | 精製過酸化水素水の製造方法 |
-
2012
- 2012-07-12 US US14/344,542 patent/US20140341800A1/en not_active Abandoned
- 2012-07-12 EP EP12834896.8A patent/EP2762443A4/en not_active Withdrawn
- 2012-07-12 CN CN201710607955.7A patent/CN107265409A/zh active Pending
- 2012-07-12 KR KR1020147010186A patent/KR101918709B1/ko active Active
- 2012-07-12 WO PCT/JP2012/067822 patent/WO2013046864A1/ja active Application Filing
- 2012-07-12 CN CN201280047919.5A patent/CN103842288A/zh active Pending
- 2012-07-12 SG SG11201401048WA patent/SG11201401048WA/en unknown
- 2012-07-12 JP JP2013536003A patent/JP5967095B2/ja active Active
- 2012-08-24 TW TW101130815A patent/TWI522309B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4841158B1 (ja) | 1965-05-05 | 1973-12-05 | ||
JP3797390B2 (ja) | 1995-11-15 | 2006-07-19 | 三菱瓦斯化学株式会社 | 精製過酸化水素の製造方法 |
JP3849724B2 (ja) | 1996-02-14 | 2006-11-22 | 三菱瓦斯化学株式会社 | 高純度過酸化水素水の製造方法 |
JP3818323B2 (ja) | 1996-03-01 | 2006-09-06 | 三菱瓦斯化学株式会社 | 精製過酸化水素の製造方法 |
JPH1179717A (ja) | 1997-08-29 | 1999-03-23 | Mitsubishi Gas Chem Co Inc | 精製過酸化水素水の製造方法 |
JP3895540B2 (ja) | 2000-06-21 | 2007-03-22 | 三徳化学工業株式会社 | 精製過酸化水素水の製造方法 |
JP2003002619A (ja) * | 2001-06-15 | 2003-01-08 | Santoku Kagaku Kogyo Kk | 精製過酸化水素水の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2762443A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018517658A (ja) * | 2015-04-06 | 2018-07-05 | ラシルク, インコーポレイテッドRasirc, Inc. | 過酸化水素溶液の精製のための方法およびシステム |
Also Published As
Publication number | Publication date |
---|---|
US20140341800A1 (en) | 2014-11-20 |
JP5967095B2 (ja) | 2016-08-10 |
CN103842288A (zh) | 2014-06-04 |
SG11201401048WA (en) | 2014-10-30 |
EP2762443A1 (en) | 2014-08-06 |
TWI522309B (zh) | 2016-02-21 |
EP2762443A4 (en) | 2015-07-01 |
KR20140078667A (ko) | 2014-06-25 |
KR101918709B1 (ko) | 2018-11-15 |
JPWO2013046864A1 (ja) | 2015-03-26 |
TW201318965A (zh) | 2013-05-16 |
CN107265409A (zh) | 2017-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5967095B2 (ja) | 過酸化水素水溶液の製造方法 | |
KR100426437B1 (ko) | 정제된 과산화수소 수용액의 제조방법 및 장치 | |
KR950014206B1 (ko) | 과산화수소 수용액의 정제법 | |
CN101239704B (zh) | 一种过氧化氢溶液提纯方法 | |
KR100450558B1 (ko) | 정제과산화수소수용액의 제조방법 | |
WO2013011870A1 (ja) | アルコールの精製方法及び装置 | |
CN103466557A (zh) | 一种超纯过氧化氢水溶液的制备方法 | |
JP3895540B2 (ja) | 精製過酸化水素水の製造方法 | |
KR20160054493A (ko) | 음이온 교환체, 음이온 교환체와 양이온 교환체의 혼합물, 음이온 교환체와 양이온 교환체로 이루어진 혼합상, 그들의 제조 방법, 및 과산화수소수의 정제 방법 | |
US6939527B2 (en) | Method for the purification of hydrogen peroxide solutions | |
KR102346921B1 (ko) | 음이온 교환수지와 양이온 교환수지를 포함하는 혼상형 이온 교환수지, 이의 제조 방법 및 이를 이용한 과산화수소수의 정제 방법 | |
JP4013646B2 (ja) | アニオン交換樹脂及びその製造方法、並びにこれを用いた精製過酸化水素水の製造方法 | |
JP2003119008A (ja) | 精製過酸化水素水の製造方法 | |
CN104326864A (zh) | 一种光伏材料用高纯级二碘甲烷的纯化方法 | |
JP4051507B2 (ja) | 高純度過酸化水素水の製造方法 | |
JP3861932B2 (ja) | 精製過酸化水素の製造方法 | |
JP2007254168A (ja) | 過酸化水素水の精製方法 | |
JPH0142753B2 (ja) | ||
JP2003020214A (ja) | 精製過酸化水素水の製造方法 | |
JP2000203812A (ja) | 過酸化水素水の精製方法 | |
JP2001080910A (ja) | 過酸化水素水の精製方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12834896 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013536003 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012834896 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14344542 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20147010186 Country of ref document: KR Kind code of ref document: A |