[go: up one dir, main page]

WO2013039212A1 - 精製された活性珪酸液及びシリカゾルの製造方法 - Google Patents

精製された活性珪酸液及びシリカゾルの製造方法 Download PDF

Info

Publication number
WO2013039212A1
WO2013039212A1 PCT/JP2012/073651 JP2012073651W WO2013039212A1 WO 2013039212 A1 WO2013039212 A1 WO 2013039212A1 JP 2012073651 W JP2012073651 W JP 2012073651W WO 2013039212 A1 WO2013039212 A1 WO 2013039212A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicic acid
acid solution
active silicic
filter
producing
Prior art date
Application number
PCT/JP2012/073651
Other languages
English (en)
French (fr)
Inventor
希代巳 江間
高熊 紀之
西村 透
直紀 河下
山口 浩司
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020147006051A priority Critical patent/KR20140071356A/ko
Priority to KR1020197023582A priority patent/KR102150400B1/ko
Priority to JP2013533735A priority patent/JP5920604B2/ja
Priority to CN201280038840.6A priority patent/CN103748037B/zh
Priority to EP12831701.3A priority patent/EP2757070B1/en
Publication of WO2013039212A1 publication Critical patent/WO2013039212A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/1412Preparation of hydrosols or aqueous dispersions by oxidation of silicon in basic medium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/142Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates
    • C01B33/143Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates
    • C01B33/1435Preparation of hydrosols or aqueous dispersions by acidic treatment of silicates of aqueous solutions of silicates using ion exchangers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • C01B33/148Concentration; Drying; Dehydration; Stabilisation; Purification
    • C01B33/1485Stabilisation, e.g. prevention of gelling; Purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid

Definitions

  • the present invention relates to a method for producing an active silicic acid solution in which the amount of foreign matters in flat microparticles is reduced, and to a method for producing a silica sol using an active silicic acid solution in which the foreign matter is reduced.
  • a surface polishing step is indispensable in the manufacturing process of a magnetic disk substrate, and surface polishing is performed with an abrasive containing colloidal silica.
  • abrasives are required not to cause surface defects such as scratches and pits.
  • an alkali silicate aqueous solution used as a raw material for a silica sol used as a raw material for an abrasive is purified by adding a filter aid such as diatomaceous earth to a crude alkaline silicate aqueous solution immediately after the raw material cullet is heated and dissolved. ing.
  • the viscosity of the aqueous alkali silicate solution is adjusted in advance to 1 mPa ⁇ s to 50 mPa ⁇ s, and this is limited to a molecular weight cut-off of 15000 or less.
  • a method of passing through an outer filtration membrane is disclosed (Patent Document 1).
  • the miniaturization of wiring is progressing as the circuit is highly integrated and the operating frequency is increased.
  • further smoothing of the pattern forming surface is desired.
  • colloidal silica and fine particles which are abrasive grains, are removed by washing following the polishing process using an abrasive containing colloidal silica.
  • an aqueous solution of acidic or alkaline chemicals is used.
  • acidic chemicals include compounds containing fluorine ions such as hydrofluoric acid, ammonium fluoride, ammonium monohydrogen difluoride, borohydrofluoric acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, citric acid, malic acid, Acid, perchloric acid, etc. are used.
  • alkaline chemicals that can be used include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, and amines.
  • surfactants such as sodium alkylbenzene sulfonate, polyoxyethylene alkyl ether sulfate, dioctyl sulfosuccinate, etc.
  • chelates such as sodium tripolyphosphate, sodium pyrophosphate, zeolite, sodium ethylenediaminetetraacetate, etc.
  • an agent or the like is added as a component.
  • Colloidal silica used in the above abrasives is spherical or nearly spherical and can be removed by conventional cleaning methods. Recently, however, there are tabular fine particles that cannot be easily removed by conventional cleaning. I know that
  • the present inventor confirmed that the tabular microparticles were tabular grains having a side length of 0.2 ⁇ m to 4.0 ⁇ m and a thickness of 1 nm to 100 nm by observation with a scanning electron microscope, and These flat microparticles are believed to be derived from silica sol used as a raw material for the abrasive.
  • the method described in Patent Document 1 in which particles having a size of 1 nm or more are not present by ultrafiltration is extremely slow in filtration rate and is not suitable for mass production.
  • the object of the present invention is to provide a method for producing such a silica sol in which the abundance of tabular fine particles having a side length of 0.2 to 4.0 ⁇ m and a thickness of 1 to 100 nm is reduced. Therefore, for the active silicic acid solution obtained by removing the alkali component of the alkali silicate aqueous solution that is the raw material of the silica sol by cation exchange, a method for reducing the abundance of tabular microparticles contained therein It is an object of the present invention to provide a method particularly suitable for mass production.
  • the present inventors have found a method for solving the problem by filtering an active silicic acid solution obtained by removing an alkali component from an alkali silicate aqueous solution by cation exchange under specific conditions.
  • an active silicic acid solution is prepared by removing an alkali component from an alkali silicate aqueous solution having a silica concentration adjusted to 0.5 mass% to 10.0 mass% by cation exchange.
  • Measurement method A A membrane type filter (filtration area: 4.90 cm 2 ) having a silica concentration of 4% by mass and an absolute pore size of 0.4 ⁇ m that was passed through 30 ml of a liquid to be observed at 25 ° C. was magnified 5000 times with a scanning electron microscope.
  • a rectangular observation area having a length of 15 ⁇ m and a width of 20 ⁇ m is defined as one field of view, and when one or more of the above plate-like microparticles are present within the field of view, one field is counted, and the field areas do not overlap each other.
  • the method for producing a purified active silicic acid solution according to the first aspect wherein the removal rate is 80% or more
  • the filter is at least selected from the group consisting of a membrane type filter, a pleated type filter, a depth type filter, a thread wound type filter, a surface type filter, a roll type filter, a depth type filter, and a diatomaceous earth containing type filter.
  • a method for producing a purified active silicic acid solution according to any one of the first to fifth aspects As a seventh aspect, the method for producing a purified active silicic acid solution according to any one of the first aspect to the fifth aspect, wherein the filter is a membrane type filter having an absolute pore diameter of 0.3 ⁇ m to 3.0 ⁇ m, As an eighth aspect, any one of the first to seventh aspects, wherein the alkali component of the alkali silicate aqueous solution is at least one selected from the group consisting of sodium ions, potassium ions, lithium ions, rubidium ions, and cesium ions.
  • the method for producing a silica sol according to the ninth aspect wherein the alkaline component of the alkaline aqueous solution is at least one selected from the group consisting of alkali metal ions, ammonium ions, amines and quaternary ammonium ions, It is.
  • the length of the one side remaining by the filtration of an aqueous alkali silicate solution and the passing of a cation exchange resin, which has been conventionally performed is 0.2 to 4. It is possible to efficiently remove tabular fine particles having a thickness of 0.0 ⁇ m and a thickness of 1 to 100 nm. For this reason, in the silica sol manufactured using the active silicic acid solution obtained by the present invention, the particles are reduced as compared with the conventional silica sol.
  • the method of the present invention not only effectively removes the tabular grains, but also has the same shape as the tabular grains, for example, plate-like grains whose peripheral edges do not have straight sides (the peripheral edges are rounded). Plate-like particles) and plate-like particles that form protrusions on part of the particle surface are also effectively removed.
  • the particles effectively removed by the present invention are tabular fine particles having a side length of 0.2 to 4.0 ⁇ m and a thickness of 1 to 100 nm.
  • the SiO 2 / M 2 O molar ratio (M represents.
  • An alkali metal element) is not limited to, it may be a commercially available alkali silicate solution, typically SiO 2
  • the molar ratio of / M 2 O is 2-4.
  • the alkali component of the alkali silicate aqueous solution is an alkali metal ion, and is at least one selected from the group consisting of sodium ion, potassium ion, lithium ion, rubidium ion, and cesium ion.
  • alkali silicate aqueous solutions of sodium ions, potassium ions, and lithium ions are commercially available and can be obtained at low cost.
  • Sodium silicate aqueous solution is the most versatile and can be preferably used.
  • the commercially available sodium silicate aqueous solution has a silica concentration of 19% by mass to 38% by mass.
  • the active silicic acid in which the abundance of tabular microparticles having a side length of 0.2 to 4.0 ⁇ m and a thickness of 1 to 100 nm measured according to the measuring method A of the present invention is 0% to 30%
  • an alkali silicate aqueous solution is adjusted to a silica concentration of 0.5 mass% to 10.0 mass% using water.
  • an alkali component of the alkali silicate aqueous solution whose concentration is adjusted is removed by cation exchange to prepare an active silicate solution, and this active silicate solution is a filter having a removal rate of particles having a primary particle diameter of 1.0 ⁇ m of 50% or more. It filters by.
  • the active silicic acid solution is an aqueous solution in which silicic acid and a polymer of silicic acid having a particle diameter of less than 3 nm coexist.
  • a conventional general method can be adopted.
  • a hydrogen cation exchange resin for example, Amberlite (registered trademark) 120B
  • an alkali silicate aqueous solution having a silica concentration of 0.5 mass% to 10.0 mass%, preferably 2.0 mass% to 5.0 mass%.
  • the silica concentration of the alkali silicate aqueous solution to be ion-exchanged may be selected from the range of 0.1% by mass to 10.0% by mass, but the range in which the stability of the obtained active silicic acid solution is good is the silica concentration of 0.1 It is at least mass%, preferably at least 2.0 mass%, more preferably at least 3.0 mass%, preferably at most 5.0 mass%.
  • the removal rate of particles having a primary particle diameter of 1.0 ⁇ m is 50% or more.
  • the removal rate is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, and most preferably 90% or more.
  • the removal rate of particles having a primary particle diameter of 1.0 ⁇ m or more is calculated from the number of latex particles before and after filtration when an aqueous dispersion of monodisperse polystyrene latex particles having a diameter of 1.0 ⁇ m is filtered.
  • monodisperse polystyrene latex particles having a diameter of 1.0 ⁇ m for example, STANDEX-SC-103-S manufactured by JSR Corporation, standard particles 4009A manufactured by Thermo Fisher Scientific, Inc. can be used.
  • the material of the filter used in the present invention is polyester, polyethylene, polypropylene, polytetrafluoroethylene, polyethylene terephthalate, cellulose acetate, cellulose / epoxy resin, glass fiber / acrylic resin, cotton, polysulfone, nylon, polyethersulfone, and At least one selected from the group consisting of polycarbonates is used alone, in combination or in combination.
  • a filter when a filter is manufactured using these materials, a filter that is woven with a filter aid such as diatomaceous earth, silica / alumina, or a mixture of zeolite and silica / alumina can be used.
  • the filter in which the filter aid is woven is effective for removing colloidal suspended substances, has an effect of adsorbing organic fatty acids and polyphenols which are the cause substances of starch, Fine particles can also be captured efficiently.
  • the filter used in the present invention captures solid particles not only on the surface of the filter medium but also inside the filter medium, depending on the manufacturing method, a membrane filter (porous membrane filter), a pleated filter (pleated filter), and a depth filter (not only on the filter medium surface) Filter), roll type filter (roll wound filter), spool type filter (pincushion), surface type filter (type of filter that captures particulate matter mainly on the primary side of the filter, not inside the filter), They are classified into diatomite-containing filters (filters using filter media containing diatomaceous earth), depths filters (pleated filters that capture solid particles not only on the filter media surface but also inside the filter media).
  • the production method of the filter used in the present invention is not particularly limited, and any of the above methods can be adopted.
  • the membrane type filter is effective for microfiltration, and particularly has an absolute pore size of 0.3 ⁇ m to 3 ⁇ m.
  • a membrane filter of 0 ⁇ m can very effectively remove tabular fine particles having a side length of 0.2 to 4.0 ⁇ m and a thickness of 1 to 100 nm.
  • these filters use a filter with a removal rate of particles having a primary particle size of 1.0 ⁇ m less than 50% as a pretreatment filter, and then a removal rate of particles having a primary particle size of 1.0 ⁇ m. It is also possible to filter with a filter having a ratio of 50% or more.
  • the temperature when the active silicic acid solution is filtered using a filter having a removal rate of particles having a primary particle diameter of 1.0 ⁇ m of 50% or more may be room temperature, and is usually 0 ° C. or more and 50 ° C. or less.
  • the filtration rate when the active silicic acid solution is filtered using a filter having a primary particle diameter 1.0 ⁇ m removal rate of 50% or more varies depending on the silica concentration and viscosity of the active silicic acid solution and the filter used. is 13 liters / min to 400 l / min filtration area 1 m 2 per filter used.
  • the length of one side contained in the purified active silicic acid solution filtered by a filter having a removal rate of particles having a primary particle size of 1.0 ⁇ m of 50% or more is 0.2 to 4.0 ⁇ m, and the thickness is
  • the measuring method A for tabular fine particles of 1 to 100 nm is as follows. [Measurement method A] When a membrane type filter (filtration area: 4.90 cm 2 ) having a silica concentration of 4% by mass and an absolute pore size of 0.4 ⁇ m that has been passed through 30 mL of a liquid to be observed at 25 ° C. is observed with a scanning electron microscope at a magnification of 5000 times.
  • a rectangular observation area having a length of 15 ⁇ m and a width of 20 ⁇ m is defined as one field of view, and when one or more of the above-mentioned tabular microparticles are present in the field of view, one field is counted. Whether the count is present or not is determined, and the total number of counts obtained is defined as the abundance (%) of the tabular fine particles.
  • a polycarbonate filter can be used.
  • a filter having a filtration area of 4.90 cm 2 and a diameter of 25 mm can be used.
  • Isopore HTTP-02500 manufactured by Nihon Millipore Corporation can be used.
  • the observed liquid is an active silicic acid liquid filtered by a filter having a removal rate of particles having a primary particle diameter of 1.0 ⁇ m of 50% or more.
  • the abundance of tabular microparticles having a side length of 0.2 to 4.0 ⁇ m and a thickness of 1 to 100 nm is 0%.
  • a purified active silicic acid solution of up to 30% is obtained.
  • the present invention also provides a measurement method A obtained by filtration through a filter having a removal rate of particles having a primary particle diameter of 1.0 ⁇ m of 50% or more, and the length of one side is 0.2 to 4.
  • the following conditions (2) are characterized in that a purified active silicic acid solution having 0 ⁇ m and a thickness of 1 to 100 nm of tabular fine particles in an amount of 0% to 30% is polymerized in an alkaline aqueous solution:
  • Method for producing silica sol satisfying: (2)
  • the abundance of particles, which are tabular microparticles having a side length of 0.2 to 4.0 ⁇ m and a thickness of 1 to 100 nm, measured according to measurement method A above, is 0% to 30%. It is.
  • the liquid to be observed is the silica sol.
  • the active silicic acid solution obtained by the method of the present invention is added to an alkaline aqueous solution and heated to polymerize the active silicic acid. Colloidal silica particles are produced by the polymerization of the active silicic acid to obtain a silica sol.
  • the silica concentration of the active silicic acid solution added to the alkaline aqueous solution is in the range of 0.1% by mass to 10.0% by mass, 0.1% by mass or more, preferably 2.0% by mass or more, more preferably 3. It is 0 mass% or more, preferably 5.0 mass% or less.
  • the alkaline component of the alkaline aqueous solution is at least one selected from the group consisting of alkali metal ions, ammonium ions, amines and quaternary ammonium ions.
  • alkali metal ion examples include sodium ion, potassium ion, lithium ion, rubidium ion, cesium ion and the like, and sodium ion and potassium ion are preferable.
  • the amine is preferably a water-soluble amine such as monoethanolamine, diethanolamine, triethanolamine, N, N-dimethylethanolamine, N- ( ⁇ -aminomethyl) ethanolamine, N-methylethanolamine, monopropanol.
  • water-soluble amine such as monoethanolamine, diethanolamine, triethanolamine, N, N-dimethylethanolamine, N- ( ⁇ -aminomethyl) ethanolamine, N-methylethanolamine, monopropanol.
  • Examples thereof include amines and morpholines.
  • Examples of the quaternary ammonium ion include tetraethanolammonium ion, monomethyltriethanolammonium ion, and tetramethylammonium ion.
  • the appropriate amount ratio between the added active silicic acid solution and the alkaline aqueous solution can be described by the ratio between the number of moles of silica in the total amount of the added active silicic acid solution and the number of moles of the alkaline component in the aqueous alkaline solution.
  • the ratio of the number / number of moles of alkali component is preferably in the range of 25 to 100.
  • the temperature of the alkaline aqueous solution when the active silicic acid is polymerized can be selected in the range of 20 ° C to 300 ° C. If the temperature at the time of polymerization is low, the particle diameter of the resulting colloidal silica particles will be small, and if it is high, the particle diameter of the resulting colloidal silica will be large.
  • the particle diameter of the resulting colloidal silica particles varies depending on the polymerization conditions of the active silicic acid, but is in the range of 3 nm to 1000 nm as the primary particle diameter observed with a transmission electron microscope.
  • the diluted silica sol containing colloidal silica particles obtained by polymerization of active silicic acid can be concentrated by a conventionally known method such as an evaporation concentration method or an ultrafiltration method.
  • the concentration of the silica sol can be usually performed to a silica concentration of about 50% by mass.
  • the removal rate of particles having a primary particle size of 1.0 ⁇ m was measured by the following method.
  • An aqueous dispersion in which 0.5 ml of monodisperse polystyrene latex particles having a diameter of 1.0 ⁇ m (manufactured by JSR, STADEX SC-103-S) is dispersed in 5000 ml of pure water is prepared, and the particle sensor KS-42C in the liquid (Rion stock)
  • the number of particles (a) having a primary particle diameter of 1.0 ⁇ m was measured using In addition, the number of pure water particles (b) used in the aqueous dispersion was measured to obtain a blank 1.
  • the aqueous dispersion was filtered with a filter to be used, and the number (c) of particles having a primary particle diameter of 1.0 ⁇ m in the aqueous dispersion after filtration was measured. Moreover, the filter to be used was preliminarily filtered only with pure water, and the number of particles (d) in the filtered pure water was measured to obtain a blank 2.
  • Example 1 Commercially available aqueous solution of sodium silicate (No. JIS3, SiO 2 29.3 wt%, Na 2 O9.5% by weight) of pure water was added to dilute 6325g to 1000 g.
  • the diluted sodium silicate aqueous solution had physical properties of SiO 2 4.0 mass%, Na 2 O 1.3 mass% and specific gravity 1.038.
  • This sodium silicate aqueous solution was passed through an ion exchange column packed with 500 mL of a cation exchange resin (Amberlite (registered trademark) 120B: manufactured by Dow Chemical Co., Ltd.) at a rate of 2500 g / hr to obtain about 7200 g of an active silicic acid solution. .
  • a cation exchange resin Amberlite (registered trademark) 120B: manufactured by Dow Chemical Co., Ltd.
  • Example 2 As a filter used for filtration, a depth-type filter of polypropylene nonwoven fabric having a nominal pore size of 0.5 ⁇ m (SL-005 manufactured by Loki Techno Co., Ltd .: removal rate of particles having a primary particle size of 1.0 ⁇ m is 90%, filtration area is 0.3 m 2 , filter A total of about 7200 g of an active silicic acid solution containing 4.0% by mass of SiO 2 was filtered in the same manner as in Example 1 except that one was used and the flow rate was 3 liters / minute. As a result of measuring the active silicic acid solution after filtration by the measuring method A, the abundance of the tabular fine particles was 17%.
  • Example 3 Commercially available aqueous solution of sodium silicate (No. JIS3, SiO 2 29.3 wt%, Na 2 O9.5% by weight) of pure water was added to dilute 6325g to 1000 g.
  • the diluted sodium silicate aqueous solution had physical properties of SiO 2 4.0 mass%, Na 2 O 1.3 mass% and specific gravity 1.038.
  • This sodium silicate aqueous solution was passed through an ion exchange column packed with 500 mL of a cation exchange resin (Amberlite (registered trademark) 120B: manufactured by Dow Chemical Co., Ltd.) at a rate of 2500 g / hr to obtain about 7200 g of an active silicic acid solution. .
  • a cation exchange resin Amberlite (registered trademark) 120B: manufactured by Dow Chemical Co., Ltd.
  • Example 4 To a glass separable flask having a volume of 3 L, 4.55 g of a 32 mass% NaOH aqueous solution and 379 g of pure water were added and heated to 85 ° C. with stirring. After adding 723 g of the filtered active silicic acid solution obtained in Example 1 to the heated aqueous NaOH solution at a rate of 430 g / min, the temperature of the solution was raised to 100 ° C., and the filtration obtained in Example 1 was further performed. The later active silicic acid solution 1879 was added at a rate of 430 g / min. After completion of the addition, stirring was continued for 6 hours while maintaining the liquid temperature at 100 ° C.
  • silica sol After heating, the mixture was cooled and concentrated with an ultrafiltration membrane having a molecular weight cut off of 50000 to obtain a silica sol.
  • the physical properties of this silica sol were a specific gravity of 1.212, a pH of 10.0, a viscosity of 3.0, a silica concentration of 30.6% by weight, and a primary particle diameter of 10 nm to 40 nm as observed with a transmission electron microscope.
  • the obtained silica sol was measured by the measuring method A, the abundance of the tabular fine particles was 1%.
  • Comparative Example 1 Commercially available aqueous solution of sodium silicate (No. JIS3, SiO 2 29.3 wt%, Na 2 O9.5% by weight) of pure water was added to dilute 6325g to 1000 g.
  • the diluted sodium silicate had physical properties of SiO 2 4.0 mass%, Na 2 O 1.3 mass% and specific gravity 1.038.
  • 4000 g of the obtained sodium silicate aqueous solution was passed through an ion exchange tower filled with 500 mL of a cation exchange resin (Amberlite (registered trademark) 120B, manufactured by Dow Chemical Co., Ltd.) at a rate of 2500 g / hr to obtain an active silicic acid solution. It was.
  • a cation exchange resin Amberlite (registered trademark) 120B, manufactured by Dow Chemical Co., Ltd.
  • the obtained active silicic acid solution was a colorless and transparent liquid having a specific gravity of 1.020, pH of 2.88, and SiO 2 of 3.55% by mass.
  • the amount of the tabular microparticles contained in the active silicic acid solution as measured by the measuring method A was 78%.
  • a silica sol was produced by the method described in Example 4 except that this active silicic acid solution was used.
  • the physical properties of this silica sol were a specific gravity of 1.212, a pH of 9.9, a viscosity of 4.6, a silica concentration of 30.5% by weight, and a primary particle diameter of 10 nm to 40 nm as observed with a transmission electron microscope.
  • the obtained silica sol was measured by the measuring method A, the abundance of the tabular fine particles was 80%.
  • Comparative Example 2 As a filter used for the filtration of the active silicic acid solution, a depth-type filter of polypropylene nonwoven fabric having a nominal pore size of 20 ⁇ m (SL-200 manufactured by Loki Techno Co., Ltd .: the removal rate of particles having a primary particle size of 1.0 ⁇ m is 20%, and the filtration area is 0.3 m 2. This was carried out in the same manner as in Example 1 except that one filter was used. As a result of measuring the active silicic acid solution after filtration by the measuring method A, the abundance of the tabular fine particles was 70%. A silica sol was produced by the method described in Example 4 except that this active silicic acid solution was used.
  • the physical properties of this silica sol were a specific gravity of 1.211, pH of 10.0, a viscosity of 4.0, a silica concentration of 30.4% by weight, and a primary particle diameter of 10 nm to 40 nm as observed with a transmission electron microscope.
  • the abundance of the tabular fine particles was 75%.
  • Comparative Example 3 The active silicic acid solution obtained by the same method as in Example 1 was filtered using a polysulfone ultrafiltration membrane (filtration area: 45 cm 2 , diameter: 76 mm) having a molecular weight cut off of 10,000. The first average flow of 5 minutes of filtration was 0.5 l / min per filtering area 1 m 2. Further, the filtration rate after 100 minutes from the start of filtration decreased to 0.2 liter / minute per 1 m 2 .
  • Silica sol produced using the active silicic acid solution obtained in the present invention as a raw material has few flat microparticles, so in the surface processing of a substrate such as metal, alloy, glass, etc. It can prevent defects such as wiring defects and surface roughness due to foreign matter, and can be used for manufacturing a substrate with high surface accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】 平板状の微小粒子の異物の存在量が低減された活性珪酸液の製造方法と該異物が低減されたシリカゾルの製造方法を提供する。 【解決手段】 シリカ濃度を0.5質量%乃至10.0質量%に調整した珪酸アルカリ水溶液を陽イオン交換によってアルカリ成分を除去して活性珪酸液を調製し、この活性珪酸液を1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターで濾過することを特徴とする、以下の条件を満たす活性珪酸液の製造方法: (1)測定方法Aに従い計測された、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%。

Description

精製された活性珪酸液及びシリカゾルの製造方法
 本発明は、平板状の微小粒子の異物の存在量が低減された活性珪酸液の製造方法に係わり、そして、該異物が低減された活性珪酸液を用いたシリカゾルの製造方法に係わる。
 近年、メモリー磁気ディスクの記録密度を増加させるために磁気ヘッドの浮上厚さは極めて低く、10nm以下になってきている。磁気ディスク基板の製造工程には、表面研磨工程が欠かせず、コロイダルシリカを含んだ研磨剤等により表面研磨が行われている。
 研磨剤には表面平滑性(例えば、表面粗さ〔Ra〕及びうねり〔wa〕)が良好であることの他に、スクラッチ、ピット等の表面欠陥を引き起こさないことが求められている。
 研磨剤の原料として用いられるシリカゾルの原料となる珪酸アルカリ水溶液は、従来、原料カレットを加熱溶解した直後の粗珪酸アルカリ水溶液に珪藻土等の濾過助剤を加えて濾過して精製することが行われている。また、1nm以上の大きさの粒子が実質的に存在しない珪酸アルカリ水溶液を得る方法として、珪酸アルカリ水溶液の粘度を予め1mPa・s乃至50mPa・sに調節し、これを分画分子量15000以下の限外濾過膜を通過させる方法が開示されている(特許文献1)。
 一方、半導体分野においても、回路の高集積化、動作周波数の高速化に伴って配線の微細化が進んでいる。半導体デバイスの製造工程においても、パターン形成面のより一層の平滑化が望まれている。
 これら磁気ディスク基板や半導体基板の平坦化工程では、コロイダルシリカを含む研磨剤による研磨工程に続いて、砥粒であるコロイダルシリカ及び微小なパーティクルを洗浄により除去することが行われている。
 洗浄には、酸性又はアルカリ性の薬品の水溶液が用いられる。酸性の薬品としては、例えばフッ化水素酸、フッ化アンモニウム、一水素二フッ化アンモニウム、ホウフッ化水素酸等のフッ素イオンを含む化合物、硫酸、硝酸、塩酸、酢酸、クエン酸、リンゴ酸、シュウ酸、過塩素酸等が用いられる。アルカリ性の薬品としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、アミン類等が用いられる。また、これらの酸性又はアルカリ性の薬品にアルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル硫酸塩、ジオクチルスルホサクシネート等の界面活性剤やトリポリリン酸ナトリウム、ピロリン酸ナトリウム、ゼオライト、エチレンジアミン四酢酸ナトリウム等のキレート剤等を成分として添加することも行われる場合がある。
 上記の研磨剤に用いられるコロイダルシリカは、球状又はほぼ球状であるため、従来行われてきた洗浄方法により除去可能であるが、最近、従来の洗浄では容易に除去できない平板状の微小粒子が存在することが判ってきた。
特開2001-294420号公報
 本発明者は、この平板状の微小粒子は走査型電子顕微鏡観察により、一辺の長さが0.2μm乃至4.0μm、厚さ1nm乃至100nmの平板状の粒子であることを確認し、そしてこの平板状の微小粒子は、研磨剤の原料として用いられるシリカゾルに由来するものであると思われる。
 限外濾過により1nm以上の大きさの粒子が存在しないようにする特許文献1記載の方法は濾過速度が著しく遅く、大量生産には不向きであった。
 本発明の目的は、斯様な一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量を低減させたシリカゾルを製造する方法を提供することにあり、そのために、シリカゾルの原料となる珪酸アルカリ水溶液を陽イオン交換によってアルカリ成分を除去して得られるところの活性珪酸液について、それに含有される平板状の微小粒子の存在量を低減させる方法、特に量産向きの方法を提供することを課題とする。
 本発明者らは鋭意検討の結果、珪酸アルカリ水溶液を陽イオン交換によってアルカリ成分を除去して得られる活性珪酸液を特定の条件で濾過することにより、課題を解決する方法を見出した。
 即ち、第1観点として、シリカ濃度を0.5質量%乃至10.0質量%に調整した珪酸アルカリ水溶液を陽イオン交換によってアルカリ成分を除去して活性珪酸液を調製し、この活性珪酸液を1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターで濾過することを特徴とする、次の条件(1)を満たす精製された活性珪酸液の製造方法:
(1)下記測定方法Aに従い計測された、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%。
測定方法A:シリカ濃度4質量%で且つ25℃の被観察液30mlを通過させた絶対孔径0.4μmのメンブレン型フィルター(濾過面積4.90cm2)を走査型電子顕微鏡で5000倍に拡大して観察したとき、縦15μm、横20μmの長方形の観察域を1視野とし、該1視野内において上記平板状の微小粒子が1個以上存在したときを1カウントとし、そして視野域が互いに重ならない100視野の総てについて該カウントの有無を決定し、得られたカウント総数を該平板状の微小粒子の存在量(%)とする方法、
 第2観点として、前記除去率が60%以上である第1観点に記載の精製された活性珪酸液の製造方法、
 第3観点として、前記除去率が70%以上である第1観点に記載の精製された活性珪酸液の製造方法。
 第4観点として、前記除去率が80%以上である第1観点に記載の精製された活性珪酸液の製造方法、
 第5観点として、前記除去率が90%以上である第1観点に記載の精製された活性珪酸液の製造方法、
 第6観点として、前記フィルターが、メンブレン型フィルター、プリーツ型フィルター、デプス型フィルター、糸巻き型フィルター、サーフェース型フィルター、ロール型フィルター、デプスプリーツ型フィルター、珪藻土含有型フィルターからなる群から選ばれる少なくとも1種である第1観点乃至第5観点のいずれか一つに記載の精製された活性珪酸液の製造方法、
 第7観点として、前記フィルターが、絶対孔径0.3μm乃至3.0μmのメンブレン型フィルターである1観点乃至第5観点のいずれか一つに記載の精製された活性珪酸液の製造方法、
 第8観点として、前記珪酸アルカリ水溶液のアルカリ成分が、ナトリウムイオン、カリウムイオン、リチウムイオン、ルビジウムイオン及びセシウムイオンからなる群から選ばれる少なくとも1種である第1観点乃至第7観点のいずれか一つに記載の精製された活性珪酸液の製造方法、
 第9観点として、第1観点乃至第8観点のいずれか一項に記載の精製された活性珪酸液をアルカリ性水溶液中に添加し、加熱して、活性珪酸を重合することを特徴とする、以下の条件(2)を満たすシリカゾルの製造方法:
(2)第1観点に記載の測定方法Aに従い計測された、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%、
 第10観点として、前記アルカリ性水溶液のアルカリ成分が、アルカリ金属イオン、アンモニウムイオン、アミン及び第4級アンモニウムイオンからなる群から選ばれる少なくとも1種である第9観点に記載のシリカゾルの製造方法、
である。
 濾過助剤を加え濾過精製する従来の方法では、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子を低減させることはできず、陽イオン交換樹脂を通過させて得られる活性珪酸液を用いた場合にも前記粒子を十分低減させることはできないという問題があったが、本発明の方法はこの問題を解決するものである。
 すなわち、本発明の活性珪酸液の製造方法は、従来行われていた珪酸アルカリ水溶液の濾過及び陽イオン交換樹脂を通液させることでは残留していた前記の一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子を効率よく除去することができる。このため、本発明により得られた活性珪酸液を用いて製造したシリカゾルにおいて、前記粒子は従来のシリカゾルに比べて低減される。
 さらに、斯様に平板状の粒子の存在量が低減されたシリカゾルを用いた研磨剤を磁気ディスク基板や半導体基板の平坦化工程に用いた場合に、洗浄工程の後にこれら基板上に前記粒子は残留しないか、ほとんど残留しないのである。
 本発明の方法により、平板形の粒子が効果的に除去されるだけでなく、平板形と同様の形状をなす粒子、例えば周縁が直線の辺を有しない板状の粒子(周縁が丸みを帯びた板状の粒子)や、粒子表面の一部に突出部を形成する板状粒子なども効果的に除去される。
 本発明により有効に除去される粒子は、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子である。
 本発明に用いられる珪酸アルカリ水溶液は、そのSiO2/M2Oモル比(Mはアルカリ金属元素を表す。)に制限はなく、市販の珪酸アルカリ水溶液を用いることができるが、一般にはSiO2/M2Oモル比は2乃至4である。
 珪酸アルカリ水溶液のアルカリ成分は、アルカリ金属イオンであり、ナトリウムイオン、カリウムイオン、リチウムイオン、ルビジウムイオン、セシウムイオンからなる群から選ばれる少なくとも1種である。中でも、ナトリウムイオン、カリウムイオン、リチウムイオンの珪酸アルカリ水溶液は市販されており、安価に入手可能である。珪酸ナトリウム水溶液は最も汎用であり、好ましく用いることができる。市販の珪酸ナトリウム水溶液のシリカ濃度は、19質量%乃至38質量%である。
 本発明の、測定方法Aに従い計測された、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%である活性珪酸液の製造方法では、まず珪酸アルカリ水溶液を水を用いてシリカ濃度0.5質量%乃至10.0質量%に調整する。次いで濃度調整された珪酸アルカリ水溶液を陽イオン交換によってアルカリ成分を除去して活性珪酸液を調製し、この活性珪酸液を1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターにより濾過するのである。ここで活性珪酸液とは、珪酸及び粒子径3nm未満の珪酸の重合体が共存する水溶液のことである。
 珪酸アルカリ水溶液を陽イオン交換して活性珪酸液を得る方法は、従来の一般的な方法を採用することができる。例えば、シリカ濃度0.5質量%乃至10.0質量%、好ましくは2.0質量%乃至5.0質量%の珪酸アルカリ水溶液に水素型陽イオン交換樹脂(例えばアンバーライト(登録商標)120B:ダウ・ケミカル社製)を投入し、該水溶液のpHが酸性、好ましくはpH2乃至pH4になったところで陽イオン交換樹脂を分離する方法、水素型陽イオン交換樹脂を充填したカラムに充填し、シリカ濃度0.5質量%乃至10.0質量%、好ましくは2.0質量%乃至5.0質量%の珪酸アルカリ水溶液を通過させる方法などが採用できる。イオン交換する珪酸アルカリ水溶液のシリカ濃度は、0.1質量%乃至10.0質量%の範囲から選択してよいが、得られる活性珪酸液の安定性が良好な範囲は、シリカ濃度0.1質量%以上、好ましくは2.0質量%以上、より好ましくは3.0質量%以上であり、好ましくは5.0質量%以下である。
 本発明において用いられるフィルターについて、1次粒子径1.0μmの粒子の除去率は50%以上である。また前記除去率は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることが更に好ましく、90%以上であることが最も好ましい。ここで1次粒子径1.0μm以上の粒子の除去率は、直径1.0μmの単分散ポリスチレンラテックス粒子の水分散液を濾過した際の濾過前後の該ラテックス粒子の個数から算出される。直径1.0μmの単分散ポリスチレンラテックス粒子は、例えばJSR株式会社製STANDEX-SC-103-S、Thermo Fisher Scientific社製標準粒子4009A等を用いることができる。
 本発明において用いられるフィルターの材質は、ポリエステル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、ポリエチレンテレフタレート、セルロースアセテート、セルロース・エポキシ樹脂、ガラス繊維・アクリル樹脂、コットン、ポリスルフォン、ナイロン、ポリエーテルスルフォン、及びポリカーボネートからなる群から選ばれるすくなくとも1種であり、これらは単独で又は複合して若しくは重ね合わせて使用される。
 また、これらの材質でフィルターが製作されるときに、珪藻土、シリカ・アルミナ、ゼオライトとシリカ・アルミナとの混合物などの濾過助剤をフィルターに織り込んだものを使用することもできる。前記の濾過助剤が織り込まれたフィルターは、コロイド状の懸濁物質の除去に有効であるほか、澱の原因物質である有機脂肪酸やポリフェノール類などを吸着する効果があり、また、サブミクロンの微粒子も効率的に補足できる。
 本発明において用いられるフィルターは、その製作方法によって、メンブレン型フィルター(多孔質膜フィルター)、プリーツ型フィルター(ひだ加工したフィルター)、デプスフィルター(濾材表面だけでなく、濾材内部でも固体粒子を捕捉するフィルター)、ロール型フィルター(ロール巻きにしたフィルター)、糸巻きタイプフィルター(糸巻き)、サーフェスタイプフィルター(粒子状物質をフィルター内部でなく、主にフィルターの一次側の面で捕捉するタイプのフィルター)、珪藻土含有型フィルター(珪藻土を配合した濾材を使用したフィルター)、デプスプリーツ型フィルター(濾材表面だけでなく、濾材内部でも固体粒子を補足するひだ加工したフィルター)などに分類される。本発明に用いられるフィルターの製作方法は特に限定されず、上記の方法のいずれも採用することができるが、中でもメンブレン型フィルターは精密濾過に効果的であり、特に絶対孔径0.3μm乃至3.0μmのメンブレン型フィルターは一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子を極めて効果的に除去可能である。
 これらのフィルターは、使用可能時間を延ばすために1次粒子径1.0μmの粒子の除去率が50%未満のフィルターを前処理フィルターとして用い、次いで1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターで濾過することもできる。
 前記1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターを用いて活性珪酸液を濾過する際の温度は常温でよく、通常0℃以上50℃以下である。
 前記1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターを用いて活性珪酸液を濾過する際の濾過速度は、活性珪酸液のシリカ濃度、粘度及び用いられるフィルターにより異なるが、用いるフィルターの濾過面積1m2当たり13リットル/分乃至400リットル/分である。
 前記1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターにより濾過された精製された活性珪酸液中に含まれる一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の測定方法Aは以下の通りである。
〔測定方法A〕
 シリカ濃度4質量%で且つ25℃の被観察液30mLを通過させた絶対孔径0.4μmのメンブレン型フィルター(濾過面積4.90cm2)を走査型電子顕微鏡で5000倍に拡大して観察したとき、縦15μm、横20μmの長方形の観察域を1視野とし、該1視野内において上記平板状の微小粒子が1個以上存在したときを1カウントとし、そして視野域が互いに重ならない100視野の総てについて該カウントの有無を決定し、得られたカウント総数を該平板状の微小粒子の存在量(%)とする。前記メンブレン型フィルターとしては例えばポリカーボネート製のものを使用することができ、例えば濾過面積4.90cm2、直径25mmのものを使用することができる。例えば日本ミリポア(株)社製アイソポアHTTP-02500を使用することができる。
 この場合、前記被観察液は1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターにより濾過された活性珪酸液である。
 本発明の方法で活性珪酸液を濾過することにより、測定方法Aにおいて、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%である精製された活性珪酸液が得られる。
 本発明はまた、前記の1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターにより濾過して得られた、測定方法Aにおいて、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%である精製された活性珪酸液をアルカリ性水溶液中で重合することを特徴とする、以下の条件(2)を満たすシリカゾルの製造方法:
(2)上記の測定方法Aに従い計測された、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子である粒子の存在量が0%乃至30%である。この場合、被観察液は前記シリカゾルである。
 本発明の方法により得られる活性珪酸液は、アルカリ性水溶液中に添加され、加熱されて、活性珪酸が重合される。該活性珪酸の重合によりコロイダルシリカ粒子が生成して、シリカゾルが得られる。アルカリ性水溶液に添加される活性珪酸液のシリカ濃度は0.1質量%乃至10.0質量%の範囲であり、0.1質量%以上、好ましくは2.0質量%以上、より好ましくは3.0質量%以上であり、好ましくは5.0質量%以下である。
 前記アルカリ性水溶液のアルカリ成分は、アルカリ金属イオン、アンモニウムイオン、アミン及び第4級アンモニウムイオンからなる群から選ばれる少なくとも1種である。
 アルカリ金属イオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオン、ルビジウムイオン、セシウムイオン等が挙げられ、ナトリウムイオン、カリウムイオンが好ましい。
 アミンとしては、水溶性のアミンが好ましく、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N-(β-アミノメチル)エタノールアミン、N-メチルエタノールアミン、モノプロパノールアミン、モルホリン等が挙げられる。
 第4級アンモニウムイオンとしては、テトラエタノールアンモニウムイオン、モノメチルトリエタノールアンモニウムイオン、テトラメチルアンモニウムイオン等が挙げられる。
 添加される活性珪酸液とアルカリ性水溶液との適切な量比は、添加される活性珪酸液の全量中のシリカモル数とアルカリ性水溶液中のアルカリ成分のモル数との比により記述することができ、シリカモル数/アルカリ成分モル数の比として25乃至100の範囲が好ましい。
 前記活性珪酸が重合される際のアルカリ水溶液の温度は、20℃乃至300℃の範囲で選択することができる。重合の際の温度が低ければ、得られるコロイダルシリカ粒子の粒子径は小さくなり、高ければ、得られるコロイダルシリカの粒子径は大きくなる。得られるコロイダルシリカ粒子の粒子径は、活性珪酸の重合条件により異なるが、透過型電子顕微鏡で観察される一次粒子径として3nm乃至1000nmの範囲である。
 活性珪酸の重合により得られたコロイダルシリカ粒子を含む希薄シリカゾルは、蒸発濃縮法、限外濾過法等の従来より知られた方法により、濃縮することができる。シリカゾルの濃縮は、通常、シリカ濃度50質量%程度まで行うことができる。
〔1次粒子径1.0μmの粒子の除去率測定方法〕
 用いるフィルターについて、1次粒子径1.0μmの粒子の除去率は以降の方法により測定した。直径1.0μmの単分散ポリスチレンラテックス粒子(JSR社製、STADEX SC-103-S)0.5mlを純水5000mlに分散させた水分散液を準備し、液中パーティクルセンサKS-42C(リオン株式会社製)を用いて1次粒子径1.0μmの粒子数(a)を測定した。また、前記水分散液に使用した純水の粒子数(b)を測定し、ブランク1とした。用いるフィルターで前記水分散液を濾過し、濾過後の水分散液中の1次粒子径1.0μmの粒子数(c)を測定した。また、用いるフィルターは純水のみを予め濾過し、濾過した純水中の粒子数(d)を測定し、ブランク2とした。用いるフィルターの1次粒子径1.0μmの除去率は、下記の式(I)から算出した。
式(I)・・・除去率(%)=[1-[(c-d)/(a-b)]]×100
〔測定方法A〕
 シリカ濃度4質量%で且つ25℃の被観察液30mlを通過させた絶対孔径0.4μmのポリカーボネート製メンブレン型フィルター(日本ミリポア(株)社製アイソポアHTTP-02500、濾過面積4.90cm2、直径25mm)を走査型電子顕微鏡を用いて5000倍に拡大して観察したとき、縦15μm、横20μmの長方形の観察域を1視野とし、該1視野内において一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子が1個以上存在したときを1カウントとし、そして視野域が互いに重ならない100視野の総てについて該カウントの有無を決定し、得られたカウント総数を該平板状の微小粒子の存在量(%)とした。
実施例1
 市販の珪酸ナトリウム水溶液(JIS3号、SiO229.3質量%、Na2O9.5質量%)1000gに純水6325gを添加して希釈した。希釈した珪酸ナトリウム水溶液はSiO24.0質量%、Na2O1.3質量%、比重1.038の物性であった。この珪酸ナトリウム水溶液を陽イオン交換樹脂(アンバーライト(登録商標)120B:ダウ・ケミカル社製)500mLを充填したイオン交換塔に2500g/時の速度で通液し、活性珪酸液を約7200g得た。得られた活性珪酸液の測定条件Aで測定したときの走査型電子顕微鏡で観察される一辺の長さが0.2μm乃至4.0μm、厚さが1nm乃至100nmの平板状の微小粒子の存在量は73%であった。この活性珪酸液について、グラスファイバーと珪藻土を混抄させたポリプロピレン不織布の公称孔径0.5μmのプリーツ型フィルター(ロキテクノ社製PEH-005:1次粒子径1.0μmの粒子の除去率は99.9%、濾過面積0.2m2、フィルター全長250mm)1本を用いて、流量3リットル/分で濾過を行った。濾過後の活性珪酸液を測定方法Aで測定した結果、前記平板状の微小粒子の存在量は1%であった。
実施例2
 濾過に用いるフィルターとして、ポリプロピレン不織布の公称孔径0.5μmのデプス型フィルター(ロキテクノ社製SL-005:1次粒子径1.0μmの粒子の除去率は90%、濾過面積0.3m2、フィルター全長250mm)1本を用いて、流量3リットル/分とした他は、実施例1と同様にしてSiO24.0質量%の活性珪酸液約7200gの濾過を行った。濾過後の活性珪酸液を測定方法Aで測定した結果、前記平板状の微小粒子の存在量は17%であった。
実施例3
 市販の珪酸ナトリウム水溶液(JIS3号、SiO229.3質量%、Na2O9.5質量%)1000gに純水6325gを添加して希釈した。希釈した珪酸ナトリウム水溶液はSiO24.0質量%、Na2O1.3質量%、比重1.038の物性であった。この珪酸ナトリウム水溶液を陽イオン交換樹脂(アンバーライト(登録商標)120B:ダウ・ケミカル社製)500mLを充填したイオン交換塔に2500g/時の速度で通液し、活性珪酸液を約7200g得た。得られた活性珪酸液の測定条件Aで測定したときの走査型電子顕微鏡で観察される一辺の長さが0.2μm乃至4.0μm、厚さが1nm乃至100nmの平板状の微小粒子の存在量は75%であった。この活性珪酸液について、ポリエーテルスルフォン製の絶対孔径0.45μmのメンブレン型フィルター(ロキテクノ社製CES-005:1次粒子径1.0μmの粒子の除去率は100%、濾過面積0.75m2、フィルター全長250mm)1本を用いて、流量3リットル/分で濾過を行った。濾過後の活性珪酸液を測定方法Aで測定した結果、前記平板状の微小粒子の存在量は4%であった。
実施例4
 容積3Lのガラス製セパラブルフラスコに32質量%NaOH水溶液を4.55gと純水379gを添加し、攪拌しながら85℃に加熱した。この加熱されたNaOH水溶液に実施例1で得られた濾過後の活性珪酸液723gを430g/分の速度で添加した後、液温を100℃まで上げ、更に前記実施例1で得られた濾過後の活性珪酸液1879を430g/分の速度で添加した。添加終了後、液温を100℃に保ちながら6時間攪拌を続けた。加熱終了後、冷却し、分画分子量50000の限外濾過膜にて濃縮してシリカゾルを得た。このシリカゾルの物性は比重1.212、pH10.0、粘度3.0、シリカ濃度30.6重量%、透過型電子顕微鏡観察による一次粒子径は10nm乃至40nmであった。得られたシリカゾルを測定方法Aで測定したところ、前記平板状の微小粒子の存在量は1%であった。
比較例1
 市販の珪酸ナトリウム水溶液(JIS3号、SiO229.3質量%、Na2O9.5質量%)1000gに純水6325gを添加して希釈した。希釈した珪酸ナトリウムはSiO24.0質量%、Na2O1.3質量%、比重1.038の物性であった。得られた珪酸ナトリウム水溶液4000gを陽イオン交換樹脂(アンバーライト(登録商標)120B、ダウ・ケミカル社製)500mLを充填したイオン交換塔に2500g/時の速度で通液し、活性珪酸液を得た。得られた活性珪酸液は比重1.020、pH2.88、SiO23.55質量%で無色透明の液体であった。この活性珪酸液中に含まれる、測定方法Aで測定したときの前記平板状の微小粒子の存在量は78%であった。この活性珪酸液を用いた以外は実施例4に記載の方法でシリカゾルを製造した。このシリカゾルの物性は比重1.212、pH9.9、粘度4.6、シリカ濃度30.5重量%、透過型電子顕微鏡観察による一次粒子径は10nm乃至40nmであった。得られたシリカゾルを測定方法Aで測定したときの前記平板状の微小粒子の存在量は80%であった。
比較例2
 活性珪酸液の濾過に用いるフィルターとして、ポリプロピレン不織布の公称孔径20μmのデプス型フィルター(ロキテクノ社製SL-200:1次粒子径1.0μmの粒子の除去率は20%、濾過面積0.3m2、フィルター全長250mm)1本を用いた以外は実施例1と同様にして行った。濾過後の活性珪酸液を測定方法Aで測定した結果、前記平板状の微小粒子の存在量は70%であった。この活性珪酸液を用いた以外は実施例4に記載の方法でシリカゾルを製造した。このシリカゾルの物性は比重1.211、pH10.0、粘度4.0、シリカ濃度30.4重量%、透過型電子顕微鏡観察による一次粒子径は10nm乃至40nmであった。得られたシリカゾルを測定方法Aで測定したときの前記平板状の微小粒子の存在量は75%であった。
比較例3
 実施例1と同様の方法により得られた活性珪酸液を分画分子量10000のポリスルフォン製限外濾過膜(濾過面積45cm2、直径76mm)を用いて濾過を行った。濾過の最初の5分間の平均流量は濾過面積1m2あたり0.5リットル/分であった。また、濾過開始から100分後の濾過速度は1m2あたり0.2リットル/分に低下した。
 本発明で得られる活性珪酸液を原料として製造されたシリカゾルは、平板状の微小粒子が少ないため、金属、合金、ガラスなどの基材の表面加工において、微小な異物を残留させることがなく、異物による配線不良、表面荒れなどの欠陥を防止し、表面精度の高い基板の製造に利用することができる。

Claims (10)

  1.  シリカ濃度を0.5質量%乃至10.0質量%に調整した珪酸アルカリ水溶液を陽イオン交換によってアルカリ成分を除去して活性珪酸液を調製し、この活性珪酸液を1次粒子径1.0μmの粒子の除去率が50%以上であるフィルターで濾過することを特徴とする、次の条件(1)を満たす精製された活性珪酸液の製造方法:
    (1)下記測定方法Aに従い計測された、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%。
     測定方法A:シリカ濃度4質量%で且つ25℃の被観察液30mlを通過させた絶対孔径0.4μmのメンブレン型フィルター(濾過面積4.90cm2)を走査型電子顕微鏡で5000倍に拡大して観察したとき、縦15μm、横20μmの長方形の観察域を1視野とし、該1視野内において上記平板状の微小粒子が1個以上存在したときを1カウントとし、そして視野域が互いに重ならない100視野の総てについて該カウントの有無を決定し、得られたカウント総数を該平板状の微小粒子の存在量(%)とする方法。
  2.  前記除去率が60%以上である請求項1に記載の精製された活性珪酸液の製造方法。
  3.  前記除去率が70%以上である請求項1に記載の精製された活性珪酸液の製造方法。
  4.  前記除去率が80%以上である請求項1に記載の精製された活性珪酸液の製造方法。
  5.  前記除去率が90%以上である請求項1に記載の精製された活性珪酸液の製造方法。
  6.  前記フィルターが、メンブレン型フィルター、プリーツ型フィルター、デプス型フィルター、糸巻き型フィルター、サーフェース型フィルター、ロール型フィルター、デプスプリーツ型フィルター、及び珪藻土含有型フィルターからなる群から選ばれる少なくとも1種である請求項1乃至請求項5のいずれか一項に記載の精製された活性珪酸液の製造方法。
  7.  前記フィルターが、絶対孔径0.3μm乃至3.0μmのメンブレン型フィルターである請求項1乃至請求項5のいずれか一項に記載の精製された活性珪酸液の製造方法。
  8.  前記珪酸アルカリ水溶液のアルカリ成分が、ナトリウムイオン、カリウムイオン、リチウムイオン、ルビジウムイオン及びセシウムイオンからなる群から選ばれる少なくとも1種である請求項1乃至請求項7のいずれか一項に記載の精製された活性珪酸液の製造方法。
  9.  請求項1乃至請求項8のいずれか一項に記載の精製された活性珪酸液をアルカリ性水溶液に添加し、加熱して、活性珪酸を重合することを特徴とする、以下の条件(2)を満たすシリカゾルの製造方法:
    (2)請求項1に記載の測定方法Aに従い計測された、一辺の長さが0.2乃至4.0μm、厚さが1乃至100nmの平板状の微小粒子の存在量が0%乃至30%。
  10.  前記アルカリ性水溶液のアルカリ成分が、アルカリ金属イオン、アンモニウムイオン、アミン及び第4級アンモニウムイオンからなる群から選ばれる少なくとも1種である請求項9に記載のシリカゾルの製造方法。
PCT/JP2012/073651 2011-09-16 2012-09-14 精製された活性珪酸液及びシリカゾルの製造方法 WO2013039212A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020147006051A KR20140071356A (ko) 2011-09-16 2012-09-14 정제된 활성규산액 및 실리카졸의 제조방법
KR1020197023582A KR102150400B1 (ko) 2011-09-16 2012-09-14 정제된 활성규산액 및 실리카졸의 제조방법
JP2013533735A JP5920604B2 (ja) 2011-09-16 2012-09-14 精製された活性珪酸液及びシリカゾルの製造方法
CN201280038840.6A CN103748037B (zh) 2011-09-16 2012-09-14 被纯化了的活性硅酸液和硅溶胶的制造方法
EP12831701.3A EP2757070B1 (en) 2011-09-16 2012-09-14 Methods for producing purified active silicic acid solution and silica sol

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011203170 2011-09-16
JP2011-203170 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013039212A1 true WO2013039212A1 (ja) 2013-03-21

Family

ID=47883428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073651 WO2013039212A1 (ja) 2011-09-16 2012-09-14 精製された活性珪酸液及びシリカゾルの製造方法

Country Status (7)

Country Link
US (2) US10400147B2 (ja)
EP (2) EP3168191B1 (ja)
JP (2) JP5920604B2 (ja)
KR (2) KR20140071356A (ja)
CN (2) CN103748037B (ja)
TW (2) TWI579237B (ja)
WO (1) WO2013039212A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213313A (ja) * 2013-04-30 2014-11-17 独立行政法人日本原子力研究開発機構 濾過用基布
JP2019172853A (ja) * 2018-03-29 2019-10-10 株式会社フジミインコーポレーテッド 砥粒分散液、研磨用組成物キットおよび磁気ディスク基板の研磨方法
WO2024043115A1 (ja) * 2022-08-24 2024-02-29 学校法人早稲田大学 アモルファスシリカ粒子分散液及びその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035742A1 (ja) 2011-09-05 2013-03-14 日産化学工業株式会社 精製された珪酸アルカリ水溶液及びシリカゾルの製造方法
CN115888975B (zh) * 2021-09-30 2024-11-05 深圳市考拉生态科技有限公司 二次钨尾矿提纯石英的制备方法与设备
CN118183759A (zh) * 2024-01-31 2024-06-14 山东大学 一种单分散、粒径可控硅溶胶的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158810A (ja) * 1984-12-28 1986-07-18 Shokubai Kasei Kogyo Kk 高純度シリカゾルの製造法
JP2001294420A (ja) 2000-04-12 2001-10-23 Nippon Chem Ind Co Ltd 珪酸アルカリ水溶液の精製方法
JP2006104354A (ja) * 2004-10-06 2006-04-20 Nippon Chem Ind Co Ltd 研磨用組成物、その製造方法及び該研磨用組成物を用いる研磨方法
JP2006136996A (ja) * 2004-10-12 2006-06-01 Kao Corp 研磨液組成物の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5100581A (en) * 1990-02-22 1992-03-31 Nissan Chemical Industries Ltd. Method of preparing high-purity aqueous silica sol
US6132618A (en) 1998-04-16 2000-10-17 Pq Corporation System and method for waking a computer having a plurality of power resources from a system state using a data structure
TW498054B (en) * 1998-09-10 2002-08-11 Nissan Chemical Ind Ltd Moniliform silica sol and process for producing the same, and coating composition for ink receiving layer and ink jet recording medium having ink receiving layer
JP2001294417A (ja) * 2000-04-12 2001-10-23 Nippon Chem Ind Co Ltd コロイダルシリカの製造方法
US6747065B1 (en) * 2000-09-01 2004-06-08 Chemical Products Corporation System and method for producing high purity colloidal silica and potassium hydroxide
JP5127452B2 (ja) 2005-08-10 2013-01-23 日揮触媒化成株式会社 異形シリカゾルの製造方法
CN101077946A (zh) * 2006-05-28 2007-11-28 浙江宏达化学制品有限公司 一种二氧化硅磨料的制备方法
JP4907317B2 (ja) * 2006-11-30 2012-03-28 日揮触媒化成株式会社 金平糖状無機酸化物ゾル、その製造方法および前記ゾルを含む研磨剤
CN101547860B (zh) * 2006-12-12 2014-05-28 扶桑化学工业股份有限公司 硅胶的制造方法
CN101585540B (zh) * 2009-06-25 2011-01-05 福建省漳平市正盛化工有限公司 一种高孔容二氧化硅的制备方法
US20110210060A1 (en) * 2010-02-26 2011-09-01 Clarcor Inc. Expanded composite filter media including nanofiber matrix and method
WO2013035742A1 (ja) * 2011-09-05 2013-03-14 日産化学工業株式会社 精製された珪酸アルカリ水溶液及びシリカゾルの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61158810A (ja) * 1984-12-28 1986-07-18 Shokubai Kasei Kogyo Kk 高純度シリカゾルの製造法
JP2001294420A (ja) 2000-04-12 2001-10-23 Nippon Chem Ind Co Ltd 珪酸アルカリ水溶液の精製方法
JP2006104354A (ja) * 2004-10-06 2006-04-20 Nippon Chem Ind Co Ltd 研磨用組成物、その製造方法及び該研磨用組成物を用いる研磨方法
JP2006136996A (ja) * 2004-10-12 2006-06-01 Kao Corp 研磨液組成物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757070A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014213313A (ja) * 2013-04-30 2014-11-17 独立行政法人日本原子力研究開発機構 濾過用基布
JP2019172853A (ja) * 2018-03-29 2019-10-10 株式会社フジミインコーポレーテッド 砥粒分散液、研磨用組成物キットおよび磁気ディスク基板の研磨方法
JP7066480B2 (ja) 2018-03-29 2022-05-13 株式会社フジミインコーポレーテッド 砥粒分散液、研磨用組成物キットおよび磁気ディスク基板の研磨方法
WO2024043115A1 (ja) * 2022-08-24 2024-02-29 学校法人早稲田大学 アモルファスシリカ粒子分散液及びその製造方法

Also Published As

Publication number Publication date
US20130075651A1 (en) 2013-03-28
TW201704151A (zh) 2017-02-01
TWI579237B (zh) 2017-04-21
US20160319173A1 (en) 2016-11-03
KR20190097307A (ko) 2019-08-20
JP2016216344A (ja) 2016-12-22
JPWO2013039212A1 (ja) 2015-03-26
JP6150087B2 (ja) 2017-06-21
JP5920604B2 (ja) 2016-05-18
US10400147B2 (en) 2019-09-03
EP3168191A1 (en) 2017-05-17
KR20140071356A (ko) 2014-06-11
TW201325702A (zh) 2013-07-01
KR102150400B1 (ko) 2020-09-01
EP2757070A1 (en) 2014-07-23
EP2757070B1 (en) 2018-07-04
CN105800622B (zh) 2019-07-05
CN105800622A (zh) 2016-07-27
EP2757070A4 (en) 2015-06-03
CN103748037A (zh) 2014-04-23
EP3168191B1 (en) 2018-06-20
US10550300B2 (en) 2020-02-04
TWI576146B (zh) 2017-04-01
CN103748037B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
JP6150087B2 (ja) 精製された活性珪酸液及びシリカゾルの製造方法
JP6103285B2 (ja) 精製された珪酸アルカリ水溶液及びシリカゾルの製造方法
WO2012086698A1 (ja) 研磨液組成物の製造方法
TW202112433A (zh) 含有研磨用添加劑的液體之過濾方法、含有研磨用添加劑的液體、研磨用組成物、研磨用組成物之製造方法及過濾器
JP6304995B2 (ja) 研磨用組成物の製造方法および研磨物の製造方法
KR20190141132A (ko) 양성 계면활성제를 포함하는 연마용 조성물
DE10304894A1 (de) Poliermittel und Polierverfahren mit diesem Poliermittel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831701

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012831701

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013533735

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147006051

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE