[go: up one dir, main page]

WO2012128102A1 - モータ駆動装置 - Google Patents

モータ駆動装置 Download PDF

Info

Publication number
WO2012128102A1
WO2012128102A1 PCT/JP2012/056277 JP2012056277W WO2012128102A1 WO 2012128102 A1 WO2012128102 A1 WO 2012128102A1 JP 2012056277 W JP2012056277 W JP 2012056277W WO 2012128102 A1 WO2012128102 A1 WO 2012128102A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
circuit
short
braking
switching
Prior art date
Application number
PCT/JP2012/056277
Other languages
English (en)
French (fr)
Inventor
岡田浩一
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP12760930.3A priority Critical patent/EP2687396B1/en
Priority to CN201280013735.7A priority patent/CN103442931B/zh
Priority to US14/005,782 priority patent/US20140001987A1/en
Publication of WO2012128102A1 publication Critical patent/WO2012128102A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a DC motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a DC motor by regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/006Dynamic electric braking by reversing current, i.e. plugging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/04Dynamic electric resistor braking for vehicles propelled by DC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/02Dynamic electric resistor braking
    • B60L7/06Dynamic electric resistor braking for vehicles propelled by AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/12Dynamic electric regenerative braking for vehicles propelled by DC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a DC motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a DC motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an AC motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an AC motor by short-circuit or resistive braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a motor driving device that controls driving of a motor that uses a battery such as a motor for running an electric vehicle or a motor used in an industrial machine as a power source.
  • Japanese Patent Application Laid-Open No. 2004-228561 discloses a technique that enables a regenerative braking torque, which is a problem with a permanent magnet motor, to be kept constant in an electric vehicle using a permanent magnet motor as a drive source.
  • This includes a variable resistor that consumes the output output from the permanent magnet motor during regenerative braking, and a variable resistance device that adjusts the variable resistance value so that the regenerative braking torque becomes the required regenerative braking torque. .
  • Patent Document 1 suggests providing a resistor that consumes the power generated by the motor in order to keep the regenerative braking torque constant. Although different from this problem, it is conceivable that by providing the resistance as described above, the generated electric power of the motor is consumed by the resistance instead of being regenerated by the battery, and braking by the motor is possible. However, considering the amount of heat generated by the resistance and the means for releasing the heat, it is difficult to put into practical use a technique for braking by providing a resistance sufficient to obtain a sufficient braking torque by the motor.
  • the object of the present invention is that the motor can be braked even when the battery is fully charged, the mechanical brake can be miniaturized and omitted, and a large resistor and heat dissipation means are provided for consuming generated power.
  • An object is to provide an unnecessary motor driving device.
  • the motor drive device 20 of the present invention can be switched between a drive connection mode for driving the motor 6 with the power of the battery 19 and a regenerative connection mode for charging the battery 19 with the generated power of the motor 6 during regenerative braking.
  • the motor drive device 20 includes a configuration switching circuit (for example, an inverter) 31, and the connection configuration switching circuit 31 is configured to be switchable to a short-circuit connection configuration in which a motor coil is short-circuited to generate a braking force.
  • a short-circuit current control means 26 for controlling a short-circuit current flowing in the short-circuit connection form; and a regenerative braking / short-circuit brake switching control means 25 for performing control for switching the connection form switching circuit 31 between the regenerative connection form and the short-circuit connection form; It is equipped with.
  • the regenerative braking / short-circuit braking switching control means 25 can cause the motor 6 to generate a braking force by switching the connection configuration switching circuit 31 to a short-circuit connection configuration in which the motor coil is short-circuited.
  • the motor 6 generates a large braking force when the coil is short-circuited.
  • the braking torque becomes too large and sudden braking occurs.
  • the short-circuit current control means 26 controls the short-circuit current flowing in the short-circuit connection form by the short-circuit current control means 26, the torque necessary for the motor 6 can be obtained. In addition to sudden braking, a desired braking torque can be generated.
  • the connection mode switching circuit 31 is switched to the regenerative connection mode by the regenerative braking / short-circuit braking switching control means 25, normal regenerative braking can be performed.
  • switching between regenerative braking and short-circuit braking can be performed by the regenerative braking / short-circuit braking switching control means 25 and the short-circuit current control means 26 is provided to enable control of short-circuit braking.
  • the braking by the motor 6 can be performed, and in many cases, the electric vehicle and the motor using device can be braked by the braking force of the motor 6.
  • the mechanical brake 9 may be used supplementarily, for example, at the time of the last reliable stop at the time of braking, or in combination with the braking by the motor 6, and can be reduced in size or omitted. .
  • charge state detection means 27 for detecting whether or not the charge state of the battery 19 is a full charge which is a charge state equal to or greater than a set charge amount, and the regenerative braking / short-circuit braking switching means 25 is In a state where the charge state detection means 27 detects full charge, the connection mode switching circuit 31 may be switched to the short circuit connection mode.
  • the connection mode switching circuit 31 may be switched to the short circuit connection mode.
  • the motor 6 may be a synchronous motor
  • the connection mode switching circuit 31 may be an inverter.
  • a synchronous motor such as an embedded magnet type is often used in an electric vehicle or the like, and is driven by converting DC power of the battery 19 into AC power by an inverter 31.
  • the inverter 31 is configured by a combination of a plurality of switching elements 31a and 31b and a free wheel diode 31d connected in parallel with the elements, and the connection form switching circuit is obtained by a combination of open / close states of the switching elements 31a and 31b. Can be used. By using the inverter 31, it is not necessary to provide a dedicated connection mode switching circuit.
  • the short-circuit current control means 26 may control the current by PWM (pulse width modulation) driving. According to PWM driving, current control can be performed with high accuracy with a simple circuit configuration.
  • PWM pulse width modulation
  • the current control by PWM drive may be controlled as a torque current and a field current using a vector control method.
  • the vector control method for controlling the torque current and the field current the current control can be performed with high accuracy, and the short-circuit braking that provides the desired braking operation can be performed with high accuracy.
  • a power consuming resistor 102 that consumes power generated by the motor 6 to generate a braking force outside the motor 6, and switching means 103 connected in series with the power consuming resistor 102
  • the regenerative braking / short-circuit braking switching control means 25 controls the connection mode switching circuit 31 and the switching means 103 and 104 to provide the resistance consumption braking circuit 101 with the resistance consumption braking circuit 101. It is possible to switch between a resistance consumption mode for flowing the generated current of the motor 6, the regenerative connection mode, and the short circuit connection mode, or a short circuit connection mode and the resistance consumption mode, and a combination mode of these short circuit connection mode and resistance consumption mode. It is good also as changeable to.
  • short-circuit braking since the motor 6 generates heat and consumes generated energy, short-circuit braking may not be performed due to a rise in motor temperature.
  • the power consumption resistor 102 outside the motor 6, when regenerative braking cannot be performed at full charge, and short-circuit braking cannot be performed sufficiently, combined use of short-circuit braking and braking by the power consumption resistor, Alternatively, braking by the motor 6 can be performed only by braking by the power consumption resistor 102. Braking by the power consumption resistor 102 can be freely turned on and off by the switching means 103 and 104.
  • the power consumption resistor 102 can be used as an auxiliary for short-circuit braking, unlike the case where braking is performed by the motor 6 when regenerative braking is impossible with only the power consumption resistor 102 without providing a short-circuit braking function,
  • the power consumption resistor 102 generates a relatively small amount of heat, the heat dissipation means can be simplified, and the motor drive device can be prevented from being enlarged due to the provision of the power consumption resistor 102.
  • the state of charge of the battery 19 is fully charged, which is a state of charge equal to or greater than a set charge amount, and the temperature of the motor 6 is determined.
  • the regenerative braking / short-circuit braking switching means 105 is provided according to the temperature classification of the motor temperature by the motor temperature detecting means 106 when the charging state detecting means 27 detects full charge. It is possible to switch between the short-circuit connection mode and the resistance consumption mode, or to switch between the short-circuit connection mode, the resistance consumption mode, and a combination mode of these short-circuit connection mode and resistance consumption mode.
  • the charging state detection unit 27 and the motor temperature detection unit 106 of the battery 19 are provided, and depending on the detection results, the regenerative braking, the short-circuit braking, and the resistance consumption braking are selectively used and combined, so that the motor 6 and the like are excessive. It is possible to perform appropriate braking without any heavy burden.
  • the motor 6 may be a motor for running an electric vehicle.
  • an electric vehicle it is strongly desired to reduce the weight of the vehicle in order to increase the cruising distance.
  • the battery 19 having a limited capacity is used and is often fully charged so that regenerative braking cannot be performed.
  • the brake 9 can be reduced in size, it leads to weight reduction. Therefore, the effect of the present invention by switching between regenerative braking and short-circuit braking becomes even more effective.
  • the advantage of being able to reduce the load on the mechanical brake 9 and reducing the size of the mechanical brake 9 is effective.
  • the electric vehicle according to the present invention is an electric vehicle including the motor driving device 20 having any one of the above-described configurations according to the present invention. Therefore, the motor drive device 20 of the present invention can perform braking by the motor even when the battery 19 is fully charged, and the mechanical brake 9 can be reduced in size or omitted, and a large resistance for consuming generated power. The effect that it becomes unnecessary to provide the heat dissipation means can be obtained effectively.
  • the motor 6 constitutes an in-wheel motor device 8 including the motor 6, the wheel bearing 4, and the speed reducer 7, partly or entirely disposed in a wheel. Also good.
  • the speed reducer 7 may be a cycloid speed reducer.
  • the in-wheel motor device 8 since the motor 6 is installed for each wheel, the short-circuit braking can be performed by being dispersed by the individual motors 6. Moreover, since a large reduction ratio is obtained, the cycloid reducer can effectively brake the vehicle with the braking force of the motor 6 when performing the short-circuit braking.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG. 8.
  • FIG. 9 is a sectional view taken along line XX in FIG. 8.
  • FIG. 8 is a partial expanded sectional view of FIG.
  • FIG. 9 is a block diagram which shows the conceptual structure of the motor drive device which concerns on 3rd Embodiment of this invention. It is explanatory drawing of the short circuit connection form of the motor drive device.
  • FIG. 1 is a plan view showing a conceptual configuration of an electric vehicle equipped with the motor drive device of this embodiment.
  • This electric vehicle is a four-wheeled vehicle in which the wheels 2 that are the left and right rear wheels of the vehicle body 1 are drive wheels and the wheels 3 that are the left and right front wheels are driven wheels.
  • the front wheel 3 is a steering wheel.
  • the left and right wheels 2 and 2 serving as driving wheels are driven by independent traveling motors 6.
  • the rotation of the motor 6 is transmitted to the wheel 2 via the speed reducer 7 and the wheel bearing 4.
  • the motor 6, the speed reducer 7, and the wheel bearing 4 constitute an in-wheel motor device 8 that is an assembly part. As shown in FIG.
  • the motor 6 in the in-wheel motor device 8, the motor 6 is installed close to the wheel 2, and a part or the whole of the in-wheel motor device 8 is disposed in the wheel 2.
  • the wheel bearing 4 and the speed reducer 7 as well as a part of the motor 6 are overlapped with the drive wheel 2 along the axis C of the drive wheel 2, but the entire in-wheel motor device 8 is overlapped. It may be superposed with the drive wheel 2.
  • Each wheel 2 and 3 is provided with a mechanical brake 9 such as an electric type.
  • the “mechanical type” referred to here is a term for distinguishing from a regenerative brake, and includes a hydraulic brake.
  • a main ECU 21 that is an electric control unit that performs overall control of the entire vehicle, an inverter device 22 (two in the illustrated example) that respectively controls the motors 6 for traveling according to commands of the ECU 21, a brake controller 23, Is mounted on the vehicle body 1.
  • the ECU 21 and the inverter device 22 constitute a motor drive device 20.
  • the ECU 21 includes a computer, a program executed by the computer, various electronic circuits, and the like.
  • the ECU 21 and the weak electric system of each inverter device 22 may be configured by a common computer or an electronic circuit on a common board.
  • the ECU 21 has torque distribution means 48, which distributes the accelerator opening signal output from the accelerator operation means 16, the deceleration command output from the brake operation means 17, and the steering means 15 output. From the turning command, an acceleration / deceleration command to be given to the left and right wheel traveling motors 6, 6 is generated as a torque command value and is output to each inverter device 22.
  • the torque distribution means 48 also provides a braking torque command value for causing the motor 6 to function as a regenerative brake and a brake for operating a mechanical brake (not shown) when there is a deceleration command output from the brake operation means 17. It has a function to distribute to torque command value.
  • the torque command value of the acceleration / deceleration command to be given to each traveling motor 6, 6 is given as a negative command value.
  • the accelerator operating means 16 and the brake operating means 17 are each composed of a pedal such as an accelerator pedal and a brake pedal, and a sensor for detecting the operation amount of the pedal.
  • the steering means 15 includes a steering wheel and a sensor that detects a rotation angle thereof.
  • the battery 19 is a secondary battery, and is used as a drive for the motor 6 and a power source for the electrical system of the entire vehicle.
  • the brake controller 23 comprises a dedicated electric control unit (ECU), and distributes the braking torque command value to the mechanical brake given from the torque distribution means 48 to the mechanical brakes 9 of the wheels 2 and 3.
  • ECU dedicated electric control unit
  • the inverter device 22 includes a power circuit unit 28 that is a power conversion circuit unit provided for each motor 6, and a motor control unit 29 that controls the power circuit unit 28. .
  • the motor control unit 29 has a function of outputting information such as detection values and control values relating to the in-wheel motor device 8 included in the motor control unit 29 to the ECU 21.
  • the power circuit unit 28 includes an inverter 31 that converts the DC power of the battery 19 into three-phase AC power that is used to drive the motor 6, and a PWM driver 32 that is a means for controlling the inverter 31.
  • the motor 6 is a three-phase synchronous motor, for example, an IPM type (embedded magnet type) synchronous motor or the like.
  • the inverter 31 includes a plurality of drive elements 31a and 31b, which are semiconductor switching elements, and drives the three phases (U, V, and W phases) of the motor 6 by a combination of on and off of the drive elements 31a and 31b. Outputs current in a pulse waveform.
  • Two drive elements 31 a and 31 b of the inverter 31 are connected in series to each of the three phase circuit units connected in parallel between the positive voltage side circuit unit and the negative voltage side circuit unit connected to the battery 19.
  • a portion between the two drive elements 31 a and 31 b in each phase circuit section is connected to a coil of each phase of the motor 6.
  • a diode 31d serving as a flywheel diode is connected in parallel to each drive element 31a, 31b.
  • a smoothing circuit 37 using a smoothing capacitor is provided between the positive voltage side circuit portion and the negative voltage side circuit portion.
  • the inverter 31 is composed of the drive elements 31a and 31b and the flywheel diode 31d that are switched as described above.
  • the connection type switching circuit can be switched between a driving connection mode for driving the motor 6 and a regenerative connection mode for charging the battery 19 with the electric power generated by the motor 6 during regenerative braking. That is, when all the drive elements 31a and 31b are turned off, the inverter 31 forms a diode bridge by the flywheel diode 31d, and becomes a regenerative connection configuration for rectifying the AC power of the motor 6.
  • the PWM driver 32 performs pulse width modulation on the input current command and gives an on / off command to each of the drive elements 31a.
  • the pulse width modulation is performed so as to obtain a current output that is sinusoidally driven (PWM) as shown in FIG. 4B, for example.
  • PWM sinusoidally driven
  • the PWM driver 32 that is a weak electric circuit portion of the power circuit portion 28 and the motor control unit 29 constitute an arithmetic unit 33 that is a weak electric circuit portion in the inverter device 22.
  • the calculation unit 33 includes a computer, a program executed on the computer, and an electronic circuit.
  • the motor 6 is provided with an angle sensor 36 as a motor angle detector for detecting the angle of the motor rotor.
  • a highly accurate detector such as a resolver is used.
  • a wheel rotational speed detector 24 that detects the rotational speed of the wheel 2 is provided on a support member such as a wheel bearing 4 or a knuckle (not shown) that supports the wheel bearing 4. It has been.
  • the motor control unit 29 of the inverter device 22 includes a basic drive control unit 38 that performs control according to the magnetic pole position in accordance with the angle detection value of the angle sensor 36 provided in the motor 6.
  • the motor control unit 29 performs vector control.
  • Vector control is a control method that realizes high-speed response and high-precision control by dividing torque current and field current (also referred to as magnetic flux current) and controlling them independently.
  • FIG. 6 shows the basic drive control unit 38.
  • the basic drive control unit 38 includes a current command calculation unit 39, a torque current control unit 40, a field current control unit 41, an ⁇ coordinate conversion unit 42, a two-phase / three-phase coordinate conversion unit 43, and a detection side 3.
  • a phase / two-phase coordinate conversion unit 44 and a rotation coordinate conversion unit 45 are included.
  • the current command calculation unit 39 includes a torque current command unit 39a and a field current setting unit 39b, as shown in the block diagram of the internal configuration.
  • the torque current command unit 39a is a means for outputting a command value Iqref of a torque current having a predetermined phase and AC waveform according to the detected angle of the angle sensor 36 according to the torque command value given from the host control means.
  • the host control means is the ECU 21, and when the ECU 21 has the torque distribution means 48 as shown in FIG.
  • the torque command given from the host control means is a torque command value calculated from the accelerator opening, the braking command of the brake, and the like.
  • the field current setting unit 39b is a means for outputting a command value Idref in which the field current is determined.
  • the field current command value Idref is appropriately set according to the characteristics of the motor 6 or the like, but may be set to “0”, for example.
  • the torque current is hereinafter referred to as “q-axis current”.
  • the field current is hereinafter referred to as “d-axis current”.
  • the torque voltage is referred to as “q-axis voltage”
  • the field voltage is referred to as “d-axis voltage”.
  • the q axis is an axis in the motor rotation direction
  • the d axis is an axis perpendicular to the q axis.
  • the torque current control unit 40 is a three-phase / two-phase coordinate conversion unit based on the detection value of the current detection unit 35 that detects the drive current of the motor 6 with respect to the q-axis current command value Iqref given from the current command calculation unit 39. 44 and a means for controlling the q-axis current detection value Iq obtained via the rotation coordinate conversion unit 45 to follow, and outputs a q-axis voltage command value Vq as an output.
  • the torque current control unit 40 includes a subtraction unit 40b that subtracts the q-axis current detection value Iq, and an arithmetic processing unit 40a that performs a predetermined arithmetic process on the output of the subtraction unit 40b.
  • the arithmetic processing unit 40a performs integration processing in this example.
  • the field current control unit 41 converts the three-phase / two-phase coordinates from the detection value of the current detection unit 35 that detects the drive current of the motor 6 with respect to the d-axis current command value dqref given from the current command calculation unit 39.
  • Is a means for controlling the d-axis current detection value Id obtained via the unit 44 and the rotation coordinate conversion unit 45 to follow, and outputs a d-axis voltage command value Vd as an output.
  • the field current control unit 41a is a subtraction unit 41b that subtracts the detected d-axis current value Id, and an arithmetic processing unit 41a that performs a predetermined arithmetic process on the output of the subtraction unit 41b.
  • the arithmetic processing unit 41a performs integration processing in this example.
  • the three-phase / two-phase coordinate conversion unit 44 includes two or three phase currents of the current flowing through the U phase, V phase, and W phase of the motor 6, for example, the U phase current Iu and the V phase current. This is means for converting the detected value of the current Iv into the detected values I ⁇ and I ⁇ of the actual current (actual current on the ⁇ axis and actual current on the ⁇ axis) of the stationary quadrature two-phase coordinate component.
  • the rotary coordinate conversion unit 45 Based on the motor rotor angle ⁇ a detected by the angle sensor 36, the rotary coordinate conversion unit 45 converts the detected values I ⁇ and I ⁇ of the stationary quadrature two-phase coordinate component into detected values Iq, q on the q axis and d axis, It is means for converting to Id.
  • the ⁇ coordinate conversion unit 42 uses the q-axis voltage command value Vq and the d-axis voltage command value Vd ⁇ based on the motor rotor angle ⁇ detected by the angle sensor 36, that is, the motor rotor phase. It is a means for converting into V ⁇ and V ⁇ .
  • the two-phase / three-phase converter 43 uses the actual voltage command values V ⁇ and V ⁇ output from the ⁇ coordinate converter 42 as the three-phase AC voltage command values Vu for controlling the U phase, V phase, and W phase of the motor 6. , Vv, Vw.
  • the power circuit section 28 converts the voltage command values Vu, Vv, and Vw output from the two-phase / three-phase conversion section 43 of the basic drive control section 38 as described above to convert the motor drive currents Iu, Iv, Iw. Is output.
  • the inverter 31 which is a connection mode switching circuit can be switched to a short circuit connection mode in which a motor coil of the motor 6 is short-circuited to generate a braking force, and the motor
  • the control unit 29 is provided with next regenerative braking / short-circuit braking switching control means 25 and short-circuit current control means 26.
  • the inverter 31 that is the connection mode switching circuit is configured by the six drive elements 31a and 31b as described above, as shown in FIG. 5, three drive elements 31a on the positive voltage side (upper side in the figure) are used. Are turned off and all the three drive elements 31b on the negative voltage side (lower side in the figure) are turned on, whereby the motor coil of the motor 6 is short-circuited.
  • the inverter 31 sequentially changes the combination of ON / OFF of the drive elements 31a and 31b so as to generate a positive torque with respect to the rotation direction, and the drive connection mode in which the motor is driven by AC power, and the rotation direction.
  • the regenerative connection configuration that sequentially changes so as to generate negative torque and the short-circuit connection configuration of the inverter 31 as shown in FIG. 5 can be switched, and the power circuit unit 38 is provided in the PWM driver 32 or the power circuit unit 38.
  • the above three connection modes can be switched by another electronic circuit unit (not shown) in FIG.
  • the regenerative connection form is a connection form when the output power is negative in the drive connection form.
  • the regenerative braking / short-circuit braking switching control means 25 is a means for giving a switching command between the regenerative connection form and the short-circuit connection form to the power circuit unit 38 including the inverter 31.
  • the regenerative braking / short-circuit braking switching control means 25 is fully equipped with a charging state detection means 25 that detects the charging state of the battery 9 when a regenerative braking command, for example, a negative torque command is given to the inverter 31. If it is determined that the battery is not charged, the power circuit unit 38 is given a command for the regenerative connection mode, and if it is determined that the battery is fully charged, the short circuit connection mode is set.
  • the charge state detection means 27 is composed of, for example, a voltmeter that measures the voltage of the battery 9, and determines that the battery is fully charged when the voltage is equal to or higher than the set voltage.
  • the regenerative braking / short-circuit braking switching control means 25 performs switching of the connection form in response to a switching command signal from the ECU 21 serving as the host control means or an input means (not shown) for inputting by a person. Also good.
  • the short-circuit current control means 26 is means for controlling the short-circuit current of the motor 6 when the inverter 31 that is the connection form switching circuit is in the short-circuit connection form.
  • the short-circuit current control means 26 controls the current value so that it becomes a short-circuit current corresponding to the command value of the negative torque command, which is a braking command given from the torque distribution means 48 of the ECU 21, for example.
  • the short-circuit current control means 26 controls current by PWM driving, and controls current control by PWM driving as a torque current and a field current using a vector control method.
  • the short-circuit current is controlled using the basic drive control unit 38 that performs vector control in FIG.
  • connection form of the inverter 31 is the short-circuit connection form of FIG. 5, and the three drive elements 31b on the negative voltage side to be turned on are turned on and off at the same time. This is done by controlling the applied pulse width.
  • this short-circuit current vector control is performed by setting the connection form of the inverter 31 to the short-circuit connection form of FIG. 5, and from the current command calculation unit 39, the command value of the torque current having a magnitude determined according to the braking command. This is performed by outputting Iqref and a command value Idref with a determined field current. For example, the field current command value Idref is set to zero, and the torque current command value Iqref is set to a command value having a magnitude determined according to the braking command. The torque current command value Iqref and the field current command value Idref are set by the short-circuit current control means 26 shown in FIGS.
  • the regenerative braking / short-circuit braking switching control means 25 switches the inverter 31 that is the connection configuration switching circuit to the short-circuit connection configuration that short-circuits the motor coil, so that the braking force is applied to the motor 6. Can be generated.
  • the motor 6 generates a large braking force when the coil is short-circuited. By simply short-circuiting, the braking torque becomes too large and sudden braking occurs.
  • the short-circuit current control means 26 controls the short-circuit current flowing in the short-circuit connection form, so that the motor 6 generates enough torque. In addition to sudden braking, a desired braking torque can be generated.
  • the inverter 31 is switched to the regenerative connection mode by the regenerative braking / short-circuit braking switching control means 25, normal regenerative braking can be performed.
  • the regenerative braking and the short-circuit braking can be switched by the regenerative braking / short-circuit braking switching control means 25 and the short-circuit current control means 26 is provided so that the short-circuit braking can be controlled.
  • braking by the motor 6 can be performed, and in many cases, the braking force of the motor 6 can be used to brake an electric vehicle or a motor using device.
  • the mechanical brake 9 may be used supplementarily, for example, at the time of the last reliable stop at the time of braking, or in combination with the braking by the motor 6, and can be reduced in size or omitted. .
  • the battery 6 is braked by short-circuiting the motor 6 by switching to the short-circuit connection mode when the battery 19 is fully charged and regenerative braking is impossible.
  • the connection mode switching circuit is composed of an inverter 31.
  • a synchronous motor such as an embedded magnet type is driven by converting the DC power of the battery 19 into AC power by the inverter 31.
  • the inverter 31 is constituted by a combination of drive elements 31a and 31b which are switching elements and a free wheel diode 31d connected in parallel with the elements, and the connection form is determined by a combination of open / close states of the drive elements 31a and 31b. It can be used as a switching circuit. By using the inverter 31, it is not necessary to provide a dedicated connection mode switching circuit.
  • the short-circuit current control means 26 performs current control by PWM (pulse width modulation) driving, current control can be performed with high accuracy with a simple circuit configuration.
  • the current control by the PWM drive is controlled as the torque current and the field current using the vector control method, the current control can be performed with high accuracy, and the short-circuit braking that provides the desired braking operation can be performed with high accuracy.
  • the motor 6 constitutes the in-wheel motor device 8, and the motor 6 is installed for each wheel.
  • Short-circuit braking can be performed.
  • the cycloid reducer can effectively brake the vehicle with the braking force of the motor 6 when performing the short-circuit braking.
  • FIG. 7 shows a second embodiment of the present invention.
  • This embodiment is the same as the first embodiment described with reference to FIG. 1 to FIG. 6 except for the particularly described items, and a duplicate description is omitted.
  • a power consuming resistor 102 that consumes power generated by the motor 6 to generate a braking force outside the motor 6, and switching means 103 connected in series with the power consuming resistor 102.
  • 104 has a resistance consumption braking circuit 101.
  • the regenerative braking / short-circuit braking switching control means 25 controls the connection mode switching circuit 101 and the switching means 103, 104, and a resistance consumption mode in which the generated current of the motor 6 is supplied to the resistance consumption braking circuit 101; It is possible to switch between the regenerative connection mode and the short circuit connection mode, or to switch between the short circuit connection mode, the resistance consumption mode, and a combination mode of these short circuit connection mode and resistance consumption mode.
  • short-circuit braking since the motor 6 generates heat and consumes generated energy, short-circuit braking may not be performed due to a rise in motor temperature.
  • the power consumption resistor 102 outside the motor 6, when regenerative braking cannot be performed at full charge, and short-circuit braking cannot be performed sufficiently, combined use of short-circuit braking and braking by the power consumption resistor, Alternatively, braking by the motor 6 can be performed only by braking by the power consumption resistor 102. Braking by the power consumption resistor 102 can be freely turned on and off by the switching means 103 and 104.
  • the power consumption resistor 102 can be used as an auxiliary for short-circuit braking, unlike the case where braking is performed by the motor 6 when regenerative braking is impossible with only the power consumption resistor 102 without providing a short-circuit braking function,
  • the power consumption resistor 102 generates a relatively small amount of heat, the heat dissipation means can be simplified, and the motor drive device can be prevented from being enlarged due to the provision of the power consumption resistor 102.
  • the charge state detection means 27 for detecting whether or not the charge state of the battery 19 is a full charge that is equal to or greater than a set charge amount
  • the motor Motor temperature detecting means 106 for detecting the temperature of 6 and the regenerative braking / short-circuit braking switching means 105 in the state where the charging state detecting means 27 (FIG. 2) detects full charge, the motor temperature detecting means. According to the temperature classification of the motor temperature by 106, it is possible to switch between the short-circuit connection mode and the resistance consumption mode, or to switch between the short-circuit connection mode and the resistance consumption mode, and a combination of these short-circuit connection mode and resistance consumption mode. Good to do.
  • the charging state detection means 27 (FIG. 2) of the battery 19 and the motor temperature detection means 106 are provided, and the motor is obtained by selectively using and combining regenerative braking, short-circuit braking, and resistance consumption braking according to the detection result. Appropriate braking without excessive load on 6 etc. can be performed.
  • the in-wheel motor device 8 has a reduction gear 7 interposed between the wheel bearing 4 and the motor 6, and the hub of the drive wheel 2 supported by the wheel bearing 4 and the rotation output shaft 74 of the motor 6 are coaxial. It is connected in mind.
  • the speed reducer 7 is a cycloid speed reducer, in which eccentric portions 82a and 82b are formed on a rotational input shaft 82 that is coaxially connected to a rotational output shaft 74 of the motor 6, and bearings 85 are respectively provided on the eccentric portions 82a and 82b.
  • the curved plates 84a and 84b are mounted, and the eccentric motion of the curved plates 84a and 84b is transmitted to the wheel bearing 4 as rotational motion.
  • the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
  • the wheel bearing 4 includes an outer member 51 in which a double row rolling surface 53 is formed on the inner periphery, an inner member 52 in which a rolling surface 54 facing each of the rolling surfaces 53 is formed on the outer periphery, and these
  • the outer member 51 and the inner member 52 are composed of double-row rolling elements 55 interposed between the rolling surfaces 53 and 54 of the inner member 52.
  • the inner member 52 also serves as a hub for attaching the drive wheels.
  • the wheel bearing 4 is a double-row angular ball bearing, and the rolling elements 55 are made of balls and are held by a cage 56 for each row.
  • the rolling surfaces 53 and 54 have a circular arc cross section, and the rolling surfaces 53 and 54 are formed so that the contact angles are aligned with the back surface.
  • An end on the outboard side of the bearing space between the outer member 51 and the inner member 52 is sealed with a seal member 57.
  • the outer member 51 is a stationary raceway, has a flange 51a attached to the housing 83b on the outboard side of the speed reducer 7, and is formed as an integral part as a whole.
  • the flange 51a is provided with bolt insertion holes 64 at a plurality of locations in the circumferential direction.
  • the housing 83b is provided with a bolt screw hole 94 whose inner periphery is threaded at a position corresponding to the bolt insertion hole 64.
  • the outer member 51 is attached to the housing 83b by screwing the mounting bolt 65 inserted into the bolt insertion hole 94 into the bolt screwing hole 94.
  • the inner member 52 is a rotating raceway, and the outboard side member 59 having a hub flange 59a for wheel mounting and the outboard side member 59 are fitted to the inner periphery of the outboard side member 59.
  • the inboard side material 60 is integrated with the outboard side material 59 by fastening.
  • the rolling surface 54 of each row is formed in each of the outboard side material 59 and the inboard side material 60.
  • a through hole 61 is provided in the center of the inboard side member 60.
  • the hub flange 59a is provided with press-fit holes 67 for hub bolts 66 at a plurality of locations in the circumferential direction.
  • a cylindrical pilot portion 63 that guides driving wheels and braking components (not shown) protrudes toward the outboard side.
  • a cap 68 that closes the outboard side end of the through hole 61 is attached to the inner periphery of the pilot portion 63.
  • the speed reducer 7 is a cycloid speed reducer, and two curved plates 84a and 84b formed with a wavy trochoidal curve having a gentle outer shape as shown in FIG.
  • the shaft 82 is attached to each eccentric part 82a, 82b.
  • a plurality of outer pins 86 for guiding the eccentric movements of the curved plates 84a and 84b on the outer peripheral side are provided across the housing 83b, and a plurality of inner pins 88 attached to the inboard side member 60 of the inner member 2 are provided.
  • the curved plates 84a and 84b are engaged with a plurality of circular through holes 89 provided in the inserted state.
  • the rotation input shaft 82 is spline-coupled with the rotation output shaft 74 of the motor 6 and rotates integrally.
  • the rotary input shaft 82 is supported at both ends by two bearings 90 on the inboard side housing 83a and the inner diameter surface of the inboard side member 60 of the inner member 52.
  • the curved plates 84a and 84b attached to the rotation input shaft 82 that rotates together with the motor 6 perform an eccentric motion.
  • the eccentric motions of the curved plates 84 a and 84 b are transmitted to the inner member 52 as rotational motion by the engagement of the inner pins 88 and the through holes 89.
  • the rotation of the inner member 52 is decelerated with respect to the rotation of the rotation output shaft 74. For example, a reduction ratio of 1/10 or more can be obtained with a single-stage cycloid reducer.
  • the two curved plates 84a and 84b are attached to the eccentric portions 82a and 82b of the rotary input shaft 82 so as to cancel out the eccentric motion with each other, and are mounted on both sides of the eccentric portions 82a and 82b.
  • a counterweight 91 that is eccentric in the direction opposite to the eccentric direction of the eccentric portions 82a and 82b is mounted so as to cancel the vibration caused by the eccentric movement of the curved plates 84a and 84b.
  • bearings 92 and 93 are mounted on the outer pins 86 and the inner pins 88, and outer rings 92a and 93a of the bearings 92 and 93 are respectively connected to the curved plates 84a and 84b. It comes into rolling contact with the outer periphery and the inner periphery of each through-hole 89. Therefore, the contact resistance between the outer pin 86 and the outer periphery of each curved plate 84a, 84b and the contact resistance between the inner pin 88 and the inner periphery of each through hole 89 are reduced, and the eccentric motion of each curved plate 84a, 84b is smooth. Can be transmitted to the inner member 52 as a rotational motion.
  • the motor 6 is a radial gap type IPM motor in which a radial gap is provided between a motor stator 73 fixed to a cylindrical motor housing 72 and a motor rotor 75 attached to the rotation output shaft 74.
  • the rotation output shaft 74 is cantilevered by two bearings 76 on the cylindrical portion of the housing 83 a on the inboard side of the speed reducer 7.
  • the motor stator 73 includes a stator core portion 77 and a coil 78 made of a soft magnetic material.
  • the stator core portion 77 is held by the motor housing 72 with its outer peripheral surface fitted into the inner peripheral surface of the motor housing 72.
  • the motor rotor 75 includes a rotor core portion 79 that is fitted on the rotation output shaft 74 concentrically with the motor stator 73, and a plurality of permanent magnets 80 that are built in the rotor core portion 79.
  • the permanent magnet 80 is arranged in a V shape.
  • the motor 6 is provided with an angle sensor 36 that detects a relative rotation angle between the motor stator 73 and the motor rotor 75.
  • the angle sensor 36 detects and outputs a signal representing a relative rotation angle between the motor stator 73 and the motor rotor 75, and an angle calculation circuit 71 that calculates an angle from the signal output from the angle sensor body 70.
  • the angle sensor main body 70 includes a detected portion 70a provided on the outer peripheral surface of the rotation output shaft 74, and a detecting portion 70b provided in the motor housing 72 and disposed in close proximity to the detected portion 70a, for example, in the radial direction. Become.
  • the detected portion 70a and the detecting portion 70b may be arranged close to each other in the axial direction.
  • each angle sensor 36 a magnetic encoder or a resolver is used as each angle sensor 36.
  • the rotation control of the motor 6 is performed by the motor control unit 29 (FIGS. 2, 5, and 7).
  • the motor current wiring of the in-wheel motor device 8 and various sensor system and command system wiring are collectively performed by a connector 99 provided in the motor housing 72 or the like.
  • the connection configuration switching circuit 31A includes four drive elements 31Aa and 31Ab and a diode 31Ad, which are switching elements. In the case of this configuration, in the regenerative connection mode, all the drive elements 31Aa and 31Ab are turned off. In the short-circuit braking connection mode, as shown in FIG. 13, the two drive elements 31Aa on the positive voltage side are turned off and the two drive elements 31Ab on the negative voltage side are turned on. This switching is performed by regenerative braking / short-circuit braking switching control means 25. The short-circuit current control means 26 adjusts the current by adjusting the duty ratio of the two drive elements 31Ab on the negative voltage side. Other configurations and effects are the same as those of the first embodiment.
  • the present invention is applied to a four-wheel electric vehicle in which two rear wheels are individually driven by a motor.
  • the electric vehicle to which the present invention is applied has two front wheels.
  • the present invention can also be applied to a motor driven individually, a motor driven individually for all four wheels, or a motor driven by a single motor.
  • the motor drive device of the present invention can be applied to industrial machines and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

 電気自動車等におけるモータ等のバッテリを電源とするモータ(6)の駆動を制御する手段に関し、バッテリの電力でモータ(6)を駆動する駆動用接続形態と、回生用接続形態とに切換可能なインバータ(31)等の接続形態切換回路を備えたモータ駆動装置(20)に適用する。インバータ(31)を、モータコイルを短絡させて制動力を発生させる短絡接続形態に切換可能な構成とし、さらに、この短絡接続形態で流れる短絡電流を制御する短絡電流制御手段(26)と、インバータ(31)を回生用接続形態と短絡接続形態とに切り換える回生制動・短絡制動切換制御手段(25)とを設ける。

Description

モータ駆動装置 関連出願
 本出願は、2011年3月18日出願の特願2011-060068の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、電気自動車の走行用のモータや、産業機械に用いられるモータ等のバッテリを電源とするモータの駆動を制御するモータ駆動装置に関する。
 電気自動車のモータ等のように、バッテリを電源とするモータでは、制動時に回生制動を用い、運動エネルギを回収することが行われる。特許文献1には、永久磁石モータを駆動源とする電気自動車において、永久磁石モータで課題となる回生制動トルクを一定に保つことを可能とする技術が開示されている。これは、回生制動時に、永久磁石モータから出力される出力を消費する可変抵抗と、回生制動トルクが要求回生制動トルクとなるように、可変抵抗値を調整する抵抗可変装置とを備えるものである。
特開平5-161208号公報
 バッテリが満充電状態では、モータによる回生制動を行うことができず、機械ブレーキのみで制動を行わなければならない。このため、電気自動車では、長い下り坂で機械式ブレーキの発熱が懸念されたり、ブレーキが大型化することになる。
 特許文献1では、回生制動トルクを一定に保つ課題で、モータの発電電力を消費する抵抗を設けることが示唆されている。この課題とは異なるが、上記のような抵抗を設けることで、モータの発電電力をバッテリで回生する代わりに抵抗で消費し、モータによる制動を可能とすることが考えられる。しかし、抵抗での発熱量や、その熱の逃がし手段を考えると、モータで十分な制動トルクが得られるだけの抵抗を設けて制動する技術の実用化は難しい。
 この発明の目的は、バッテリが満充電状態でもモータによる制動を行うことができて、機械式ブレーキの小型化や省略が可能となり、また発電電力の消費用に大きな抵抗や放熱手段を設けることが不要なモータ駆動装置を提供することである。以下、この発明の概要について、実施形態を示す図面中の符号を用いて説明する。
 この発明のモータ駆動装置20は、バッテリ19の電力でモータ6を駆動する駆動用接続形態と、回生制動時のモータ6の発電電力をバッテリ19に充電させる回生用接続形態とに切換可能な接続形態切換回路(例えばインバータ)31を備えたモータ駆動装置20であって、前記接続形態切換回路31を、モータコイルを短絡させて制動力を発生させる短絡接続形態に切換可能な構成とし、さらに、前記短絡接続形態で流れる短絡電流を制御する短絡電流制御手段26と、前記接続形態切換回路31を前記回生用接続形態と短絡接続形態とに切り換える制御を行う回生制動・短絡制動切換制御手段25とを備えたものである。
 この構成によると、回生制動・短絡制動切換制御手段25により、前記接続形態切換回路31を、モータコイルを短絡させる短絡接続形態に切換えることで、モータ6に制動力を発生させることができる。モータ6は、コイルが短絡すると大きな制動力を発生する。しかし、単に短絡させただけでは、制動トルクが大きくなり過ぎ、急制動となるが、短絡接続形態で流れる短絡電流を短絡電流制御手段26により制御することで、モータ6に必要なだけのトルクを発生させ、急制動だけでなく、所望の制動トルクを生じさせることができる。また、回生制動・短絡制動切換制御手段25により、前記接続形態切換回路31を回生用接続形態に切り換えると、通常の回生制動が行える。
 このように、回生制動と短絡制動とに、回生制動・短絡制動切換制御手段25によって切換可能とし、かつ短絡電流制御手段26を設けて短絡制動の制御を可能としたため、バッテリが満充電状態でもモータ6による制動を行うことができて、多くの場合にモータ6の制動力で電気自動車やモータ使用機器を制動することができる。そのため、機械式ブレーキ9は、例えば、制動時の最後の確実な停止時の使用や、モータ6による制動との併用など、補助的に使用されるもので済み、小型化や省略が可能となる。電気自動車に適用した場合に、長い下り坂であって、また満充電であっても、モータ6による短絡制動とすることで、機械式ブレーキ9の制動負担が小さくなり、摩擦式制動による機械式ブレーキ9の発熱や摩耗の問題が回避できる。なお、短絡制動では、モータ6が発熱して発電エネルギを消費することになるが、過熱となるまでに十分に余裕がある場合が多く、短絡制動の実用化が可能である。
 この発明において、前記バッテリ19の充電状態が設定充電量以上の充電状態である満充電であるか否かを検出する充電状態検出手段27を設け、前記回生制動・短絡制動切換手段25は、前記充電状態検出手段27が満充電を検出した状態では、前記接続形態切換回路31を、前記短絡接続形態に切り換えるようにしても良い。このようにバッテリ19が満充電で回生制動が不能な場合に、その満充電の検出により、短絡接続形態に切り換えることで、モータ6の短絡による制動を行うことができる。また短絡制動への自動切換により、満充電による不測の制動力不足が回避される。
 この発明において、前記モータ6が同期モータであり、前記接続形態切換回路31がインバータであっても良い。埋込磁石型等の同期モータは、電気自動車等に多く使用されており、バッテリ19の直流電力をインバータ31で交流電力に変換して駆動される。インバータ31は複数のスイッチング素子31a,31bやこの素子と並列接続されたフリーホイールダイオード31dの組み合わせ等で構成されており、各スイッチング素子31a,31bの開閉状態の組み合わせにより、前記接続形態切換回路としての使用が可能である。インバータ31を利用することで、専用の接続形態切換回路を設けることが不要となる。
 前記短絡電流制御手段26が、PWM(パルス幅変調)駆動により電流制御するものであっても良い。PWM駆動によると、電流制御が簡単な回路構成で精度良く行える。
 短絡電流制御手段26が、PWM駆動により電流制御するものである場合に、そのPWM駆動による電流制御を、ベクトル制御法を用いてトルク電流と界磁電流として制御するものとしても良い。トルク電流と界磁電流とを制御するベクトル制御法によると、電流制御が精度良く行え、所望の制動動作となる短絡制動が精度良く行える。
 この発明において、前記モータ6の外部に、このモータ6の発電電力を消費してモータに制動力を発生させる電力消費用抵抗102、およびこの電力消費用抵抗102と直列接されたスイッチング手段103,104を有する抵抗消費制動用回路101を設け、前記回生制動・短絡制動切換制御手段25は、前記接続形態切換回路31および前記スイッチング手段103,104を制御して、前記抵抗消費制動用回路101にモータ6の発電電流を流す抵抗消費形態と、前記回生用接続形態と、前記短絡接続形態とに切換可能とし、または短絡接続形態と前記抵抗消費形態とこれら短絡接続形態および抵抗消費形態の併用形態とに切換可能としても良い。
 短絡制動では、モータ6が発熱して発電エネルギを消費することになるため、モータ温度の上昇により短絡制動が行えなくなることがある。しかし、モータ6外に電力消費用抵抗102を設けることで、満充電で回生制動が行えず、また短絡制動も十分に行えない場合に、短絡制動と電力消費用抵抗による制動との併用で、あるいは電力消費用抵抗102による制動のみで、モータ6による制動を行うことができる。電力消費用抵抗102による制動は、前記スイッチング手段103,104で自由にオンオフできる。電力消費用抵抗102は、短絡制動の補助として用いることができるため、短絡制動の機能を設けずに電力消費用抵抗102だけで、回生制動不能時のモータ6による制動を行わせる場合と異なり、電力消費用抵抗102の発熱は比較的に少なくて済み、その放熱手段も簡素にでき、電力消費用抵抗102を設けることによるモータ駆動装置の大型化が回避できる。
 電力消費用抵抗102を設けた場合に、前記バッテリ19の充電状態が設定充電量以上の充電状態である満充電であるか否かを検出する充電状態検出手段27と、前記モータ6の温度を検出するモータ温度検出手段106とを設け、前記回生制動・短絡制動切換手段105は、前記充電状態検出手段27が満充電を検出した状態では、前記モータ温度検出手段106によるモータ温度の温度区分によって、前記短絡接続形態と前記抵抗消費形態とに切換可能とし、または短絡接続形態と前記抵抗消費形態とこれら短絡接続形態および抵抗消費形態の併用形態とに切換可能としても良い。このように、バッテリ19の充電状態検出手段27とモータ温度検出手段106とを設け、その検出結果によって、回生制動、短絡制動、抵抗消費制動の使い分けや組み合わせを行うことで、モータ6等に過剰な負担がかからない適切な制動が行える。
 この発明のモータ駆動装置において、前記モータ6が、電気自動車の走行用のモータであっても良い。電気自動車では、航続距離を長くする目的で車両の軽量化が強く望まれる。そのため、限られた容量のバッテリ19が用いられ、満充電とされて回生制動が行えない場合が多い。また、ブレーキ9が小型化できると、軽量化につながる。そのため、回生制動と短絡制動とを切り換えて行えることによるこの発明の効果が、より一層効果的となる。特に、長い坂道で、かつ満充電で回生制動が行えない場合に、機械式ブレーキ9の負担を少なくできて、機械式ブレーキ9の小型化が図れることによる利点が効果的である。
 この発明の電気自動車は、この発明の上記いずれかの構成のモータ駆動装置20を備えた電気自動車である。そのため、この発明のモータ駆動装置20による、バッテリ19が満充電状態でもモータによる制動を行うことができて、機械式ブレーキ9の小型化や省略が可能となり、また発電電力の消費用に大きな抵抗や放熱手段を設けることが不要となる効果が、効果的に得られる。
 この発明の電気自動車は、前記モータ6が、一部または全体が車輪内に配置されて前記モータ6と車輪用軸受4と減速機7とを含むインホイールモータ装置8を構成するものであっても良い。また、前記減速機7はサイクロイド減速機であっても良い。インホイールモータ装置8の場合、車輪個別にモータ6が設置されるため、個々のモータ6で分散して上記短絡制動が行える。また、サイクロイド減速機は、大きな減速比が得られるため、上記短絡制動を行う場合のモータ6の制動力で効果的に車両を制動することができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1実施形態に係るモータ駆動装置を搭載した電気自動車を平面図で示す概念構成のブロック図である。 同電気自動車のインバータ装置の概念構成を示すブロック図である。 図3のブロック図にインバータの電気回路を付加したブロック図である。 (A)は同インバータ装置のインバータの電気回路図を示し、(B)は出力波形を示す波形図である。 同インバータ装置のインバータの短絡接続形態の説明図である。 同インバータ装置におけるベクトル制御を行う基本駆動制御部のブロック図である。 この発明の第2実施形態に係るモータ駆動装置の概念構成を示すブロック図である。 この発明のモータ駆動装置を装備した電気自動車のインホイールモータ装置の一例を示す縦断面図である。 図8のIX-IX線断面図である。 図8のX-X線断面図である。 図10の部分拡大断面図である。 この発明の第3実施形態に係るモータ駆動装置の概念構成を示すブロック図である。 同モータ駆動装置の短絡接続形態の説明図である。
 この発明の第1実施形態を図1ないし図6と共に説明する。図1は、この実施形態のモータ駆動装置を装備した電気自動車の概念構成を示す平面図である。この電気自動車は、車体1の左右の後輪となる車輪2が駆動輪とされ、左右の前輪となる車輪3が従動輪とされた4輪の自動車である。前輪となる車輪3は操舵輪とされている。駆動輪となる左右の車輪2,2は、それぞれ独立の走行用のモータ6により駆動される。モータ6の回転は、減速機7および車輪用軸受4を介して車輪2に伝達される。これらモータ6、減速機7、および車輪用軸受4は、互いに一つの組立部品であるインホイールモータ装置8を構成している。図2に示すように、インホイールモータ装置8は、モータ6が車輪2に近接して設置されており、一部または全体が車輪2内に配置される。この実施形態では、駆動輪2の軸心Cに沿って、車輪用軸受4および減速機7全体ならびにモータ6の一部分を、駆動輪2と重合させているが、インホイールモータ装置8の全体を駆動輪2と重合させても良い。各車輪2,3には、電動式等の機械式のブレーキ9がそれぞれ設けられている。なお、ここで言う「機械式」とは、回生ブレーキとの区別のための用語であり、油圧ブレーキも含まれる。
 制御系を説明する。自動車全般の統括制御を行う電気制御ユニットであるメインのECU21と、このECU21の指令に従って各走行用のモータ6の制御をそれぞれ行うインバータ装置22(図示の例では2つ)と、ブレーキコントローラ23とが、車体1に搭載されている。ECU21とインバータ装置22とで、モータ駆動装置20が構成される。ECU21は、コンピュータとこれに実行されるプログラム、並びに各種の電子回路等で構成される。なお、ECU21と各インバータ装置22の弱電系とは、互いに共通のコンピュータや共通の基板上の電子回路で構成されていても良い。
 ECU21は、トルク配分手段48を有していて、トルク配分手段48は、アクセル操作手段16の出力するアクセル開度の信号と、ブレーキ操作手段17の出力する減速指令と、操舵手段15の出力する旋回指令とから、左右輪の走行用モータ6,6に与える加速・減速指令をトルク指令値として生成し、各インバータ装置22へ出力する。また、トルク配分手段48は、ブレーキ操作手段17の出力する減速指令があったときに、モータ6を回生ブレーキとして機能させる制動トルク指令値と、機械式のブレーキ(図示せず)を動作させる制動トルク指令値とに配分する機能を持つ。回生ブレーキとして機能させる制動トルク指令値は、例えば、各走行用のモータ6,6に与える加速・減速指令のトルク指令値を負の指令値として与える。アクセル操作手段16およびブレーキ操作手段17は、それぞれアクセルペダルおよびブレーキペダル等のペダルと、そのペダルの動作量を検出するセンサとでなる。操舵手段15は、ステアリングホイールとその回転角度を検出するセンサとでなる。バッテリ19は、二次電池であって、モータ6の駆動および車両全体の電気系統の電源として用いられる。
 ブレーキコントローラ23は、専用の電気制御ユニット(ECU)からなり、トルク配分手段48から与えられた機械式のブレーキへの制動トルク指令値を、各輪2,3の機械式ブレーキ9に分配する。
 図2に示すように、インバータ装置22は、各モータ6に対して設けられた電力変換回路部であるパワー回路部28と、このパワー回路部28を制御するモータコントロール部29とで構成される。モータコントロール部29は、このモータコントロール部29が持つインホイールモータ装置8に関する各検出値や制御値等の情報をECU21に出力する機能を有する。パワー回路部28は、バッテリ19の直流電力をモータ6の駆動に用いる3相の交流電力に変換するインバータ31と、このインバータ31を制御する手段であるPWMドライバ32とで構成される。
 図3において、モータ6は、3相の同期モータ、例えばIPM型(埋込磁石型)同期モータ等からなる。インバータ31は、半導体スイッチング素子である複数の駆動素子31a,31bで構成され、これら駆動素子31a,31bのオンオフの組み合わせにより、モータ6の3相(U,V,W相)の各相の駆動電流をパルス波形で出力する。インバータ31の各駆動素子31a,31bは、バッテリ19に接続された正電圧側回路部と負電圧側回路部間に並列に接続された3本の各相回路部に、2個ずつ直列に接続されており、各相回路部における2個の駆動素子31a,31b間の部分が、モータ6の各相のコイルに接続される。各駆動素子31a,31bにはフライホイールダイオードとなるダイオード31dが並列に接続されている。なお、前記正電圧側回路部と負電圧側回路部間には、平滑用のコンデンサによる平滑回路37が設けられている。
 図3の電気回路を拡大した図4(A)に示すように、インバータ31は、上記のようにスイッチングからなる駆動素子31a,31bとフライホイールダイオード31dとで構成されており、バッテリ19の電力でモータ6を駆動する駆動用接続形態と、回生制動時のモータ6の発電電力をバッテリ19に充電させる回生用接続形態とに切換可能な接続形態切換回路となる。すなわち、全ての駆動素子31a,31bをオフとすると、インバータ31はフライホイールダイオード31dによるダイオードブリッジを構成し、モータ6の交流電力を整流する回生用接続形態となる。
 PWMドライバ32は、入力された電流指令をパルス幅変調し、前記各駆動素子31aにオンオフ指令を与える。上記パルス幅変調は、例えば図4(B)に示すように正弦波駆動(PWM)する電流出力が得られるように行う。図3において、パワー回路部28の弱電回路部であるPWMドライバ32と前記モータコントロール部29とで、インバータ装置22における弱電回路部分である演算部33が構成される。演算部33は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。
 モータ6には、モータロータの角度を検出するモータ角度検出器として角度センサ36が設けられている。角度センサ36は、レゾルバ等の高精度の検出器が用いられる。また、図2に示すように、車輪用軸受4またはこの車輪用軸受4を支持するナックル(図示せず)等の支持部材に、車輪2の回転速度を検出する車輪回転数検出器24が設けられている。
 図2,図3において、インバータ装置22のモータコントロール部29は、モータ6に設けられた角度センサ36の角度検出値に従い、磁極位置に応じた制御を行う基本駆動制御部38を有しており、モータコントロール部29はベクトル制御を行う。ベクトル制御は、トルク電流と界磁電流(磁束電流とも言う)とに分け、各々を独立に制御することで、高速応答および高精度制御を実現する制御方式である。図6は、基本駆動制御部38を示す。
 図6において、基本駆動制御部38は、電流指令演算部39、トルク電流制御部40、界磁電流制御部41、αβ座標変換部42、2相/3相座標変換部43、検出側の3相/2相座標変換部44、および回転座標変換部45を有する。
 電流指令演算部39は、同図中に内部構成をブロックで示すように、トルク電流指令部39aおよび界磁電流設定部39bを有する。トルク電流指令部39aは、上位制御手段から与えられたトルク指令値に従い、角度センサ36の検出角度に応じて、定められた位相および交流波形のトルク電流の指令値Iqrefを出力する手段である。上位制御手段は、ECU21であり、図1のようにECU21がトルク配分手段48を有する場合は、トルク配分手段48である。この上位制御手段から与えられるトルク指令は、アクセル開度およびブレーキの制動指令等により演算されるトルク指令値である。界磁電流設定部39bは、界磁電流の定められた指令値Idrefを出力する手段である。界磁電流の指令値Idrefは、モータ6の特性等に応じて適宜設定されるが、例えば「0」としても良い。トルク電流は、以下「q軸電流」と称す。また、界磁電流は、以下「d軸電流」と称す。電圧についても、トルク電圧は「q軸電圧」と、界磁電圧は「d軸電圧」と称す。なお、q軸とはモータ回転方向の軸であり、d軸はq軸に直交する方向の軸である。
 トルク電流制御部40は、電流指令演算部39から与えられるq軸電流指令値Iqrefに対して、モータ6の駆動電流を検出する電流検出手段35の検出値から、3相/2相座標変換部44および回転座標変換部45を介して得られるq軸電流検出値Iqが追随するように制御する手段であり、出力としてq軸電圧指令値Vqを出力する。トルク電流制御部40は、q軸電流検出値Iqを減算する減算部40bと、減算部40bの出力に対して定められた演算処理を行う演算処理部40aとでなる。演算処理部40aは、この例では積分処理を行う。
 界磁電流制御部41は、電流指令演算部39から与えられるd軸電流指令値dqrefに対して、モータ6の駆動電流を検出する電流検出手段35の検出値から、3相/2相座標変換部44および回転座標変換部45を介して得られるd軸電流検出値Idが追随するように制御する手段であり、出力としてd軸電圧指令値Vdを出力する。界磁電流制御部41aは、d軸電流検出値Idを減算する減算部41bと、減算部41bの出力に対して定められた演算処理を行う演算処理部41aとなる。演算処理部41aは、この例では積分処理を行う。
 前記3相/2相座標変換部44は、モータ6のU相,V相,W相を流れる電流のうち、2つ、または3つの相の電流、例えばU相の電流Iuと、V相の電流Ivの検出値を、静止直交2相座標成分の実電流(α軸上の実電流、およびβ軸上の実電流)の検出値Iα,Iβに変換する手段である。回転座標変換部45は、角度センサ36で検出されたモータロータ角度θaに基づき、前記静止直交2相座標成分の実電流の検出値Iα,Iβを、q軸上,d軸上の検出値Iq ,Id に変換する手段である。
 αβ座標変換部42は、q軸電圧指令値Vq およびd軸電圧指令値Vd を、角度センサ36で検出されたモータロータ角度θ、つまりモータロータ位相に基づき、固定2層座標成分の実電圧の指令値Vα,Vβに変換する手段である。2相/3相変換部43は、αβ座標変換部42の出力する実電圧の指令値Vα,Vβを、モータ6のU相,V相,W相を制御する3相交流の電圧指令値Vu,Vv,Vwに変換する手段である。
 パワー回路部28は、上記のようにして基本駆動制御部38の2相/3相変換部43から出力される電圧指令値Vu,Vv,Vwを電力変換してモータ駆動電流Iu,Iv,Iwを出力する。
 この実施形態は、上記構成のモータ駆動装置20において、接続形態切換回路であるインバータ31を、モータ6のモータコイルを短絡させて制動力を発生させる短絡接続形態に切換可能な構成とし、かつモータコントロール部29に、次の回生制動・短絡制動切換制御手段25および短絡電流制御手段26を設けたものである。
 接続形態切換回路であるインバータ31が、上記のような6つの駆動素子31a,31bで構成されたものである場合、図5のように、正電圧側(図の上側)の3つの駆動素子31aを全てオフとし、負電圧側(図の下側)の3つの駆動素子31bを全てオンとすることで、モータ6のモータコイルが短絡した状態となる。
 インバータ31は、上記のように駆動素子31a,31bのオンオフの組み合わせを回転方向に対して正のトルクを発生するように順次変えて交流電力でモータ駆動する駆動用接続形態と、回転方向に対して負のトルクを発生するように順次変える回生接続形態と、図5に示すようなインバータ31の短絡接続形態とに切換可能であり、パワー回路部38は、PWMドライバ32またはパワー回路部38内における他の電子回路部(図示せず)により、パワー回路部38の外部からの切換信号に応答して、上記3つの接続形態の切換が可能とされる。なお、回生接続形態は、駆動用接続形態において出力電力を負とする場合の接続形態となる。
 なお、駆動時はバッテリ19からモータ6に電力を供給する正の出力状態となり、回生時はモータ6(発電機として動作)からバッテリ19に電力を供給する負の出力状態となり、短絡時はモータ6(発電機として動作)からの電力をモータ6(発電機の自己損失)とインバータで消費する。全ての駆動素子31a,31bをOFFした場合は、電力の入出は無く、モータ6はフリーの状態である。
 回生制動・短絡制動切換制御手段25は、インバータ31を含むパワー回路部38に対して、前記回生接続形態と短絡接続形態との切換の指令を与える手段である。回生制動・短絡制動切換制御手段25は、この実施形態では、インバータ31に回生制動指令、例えば負のトルク指令が与えられたときに、バッテリ9の充電状態を検出する充電状態検出手段25が満充電ではないと判定している場合は回生接続形態に、満充電であると判定している場合は、短絡接続形態にする指令を、パワー回路部38に与える。充電状態検出手段27は、例えばバッテリ9の電圧を測定する電圧計からなり、設定電圧以上であると、満充電と判定する。なお、回生制動・短絡制動切換制御手段25は、上位制御手段となるECU21や、人による入力を行う入力手段(図示せず)からの切換指令の信号によって上記接続形態の切換を行うようにしても良い。
 短絡電流制御手段26は、接続形態切換回路であるインバータ31が短絡接続形態になっている場合の、モータ6の短絡電流を制御する手段である。短絡電流制御手段26は、例えば、ECU21のトルク配分手段48から与えられる制動指令である負のトルク指令の指令値に応じた短絡電流となるように、定められた電流値に制御する。短絡電流制御手段26は、実施形態では、PWM駆動により電流制御し、またそのPWM駆動による電流制御を、ベクトル制御法を用いてトルク電流と界磁電流として制御するものとしており、具体的には、図6のベクトル制御を行う基本駆動制御部38を用いて上記短絡電流の制御を行う。
 この短絡電流のPWM駆動による電流制御は、インバータ31の接続形態を、図5の短絡接続形態とし、オン状態とする負電圧側の3つの駆動素子31bを同時にオンオフするようにし、そのオン時間を与えるパルス幅を制御することで行う。
 また、この短絡電流のベクトル制御は、インバータ31の接続形態を図5の短絡接続形態とした上で、電流指令演算部39から、制動指令に応じて定められた大きさのトルク電流の指令値Iqrefおよび界磁電流の定められた指令値Idrefを出力ことで行う。例えば、界磁電流の指令値Idrefは零とし、トルク電流の指令値Iqrefを、制動指令に応じて定められた大きさの指令値とする。このようなトルク電流の指令値Iqref,界磁電流の指令値Idrefを、図2,3の短絡電流制御手段26によって行う。
 上記構成のモータ駆動装置20によると、回生制動・短絡制動切換制御手段25により、接続形態切換回路であるインバータ31を、モータコイルを短絡させる短絡接続形態に切換えることで、モータ6に制動力を発生させることができる。モータ6は、コイルが短絡すると大きな制動力を発生する。単に短絡させただけでは、制動トルクが大きくなり過ぎ、急制動となるが、短絡接続形態で流れる短絡電流を短絡電流制御手段26により制御することで、モータ6に必要なだけのトルクを発生させ、急制動だけでなく、所望の制動トルクを生じさせることができる。また、回生制動・短絡制動切換制御手段25により、前記インバータ31を回生用接続形態に切り換えると、通常の回生制動が行える。
 このように、回生制動と短絡制動とに、回生制動・短絡制動切換制御手段25によって切換可能とし、かつ短絡電流制御手段26を設けて短絡制動の制御を可能としたため、バッテリ19が満充電状態でもモータ6による制動を行うことができて、多くの場合にモータ6の制動力で電気自動車やモータ使用機器を制動することができる。そのため、機械式ブレーキ9は、例えば、制動時の最後の確実な停止時の使用や、モータ6による制動との併用など、補助的に使用されるもので済み、小型化や省略が可能となる。電気自動車に適用した場合に、長い下り坂であって、また満充電であっても、モータ6による短絡制動とすることで、機械式ブレーキ9の制動負担が小さくなり、摩擦式制動による機械式ブレーキ9の発熱の問題が回避できる。なお、短絡制動では、モータ6が発熱して発電エネルギを消費することになるが、過熱となるまでに十分に余裕がある場合が多く、短絡制動の実用化が可能である。
 また、充電状態検出手段27を設け、バッテリ19が満充電で回生制動が不能な場合に、その満充電の検出により、短絡接続形態に切り換えることで、モータ6の短絡による制動を行うようにしたため、その自動切換により、満充電による不測の制動力不足が回避される。
 前記接続形態切換回路はインバータ31からなるが、埋込磁石型等の同期モータは、バッテリ19の直流電力をインバータ31で交流電力に変換して駆動される。インバータ31は、スイッチング素子である駆動素子31a,31bやこの素子と並列接続されたフリーホイールダイオード31dの組み合わせ等で構成されており、各駆動素子31a,31bの開閉状態の組み合わせにより、前記接続形態切換回路としての使用が可能である。インバータ31を利用することで、専用の接続形態切換回路を設けることが不要となる。
 前記短絡電流制御手段26は、PWM(パルス幅変調)駆動により電流制御するものであるため、電流制御が簡単な回路構成で精度良く行える。また、そのPWM駆動による電流制御を、ベクトル制御法を用いてトルク電流と界磁電流として制御するものとしたため、電流制御が精度良く行え、所望の制動動作となる短絡制動が精度良く行える。
 また、このモータ駆動装置20を適用した電気自動車は、前記モータ6がインホイールモータ装置8を構成するものであり、車輪個別にモータ6が設置されるため、個々のモータ6で分散して上記短絡制動が行える。また、サイクロイド減速機は、大きな減速比が得られるため、上記短絡制動を行う場合のモータ6の制動力で効果的に車両を制動することができる。
 図7は、この発明の第2実施形態を示す。この実施形態は、特に説明した事項の他の構成は、図1~図6と共に説明した第1実施形態と同様であり、重複する説明を省略する。この実施形態では、前記モータ6の外部に、このモータ6の発電電力を消費してモータに制動力を発生させる電力消費用抵抗102、およびこの電力消費用抵抗102と直列接されたスイッチング手段103,104を有する抵抗消費制動用回路101を設けている。前記回生制動・短絡制動切換制御手段25は、前記接続形態切換回路101および前記スイッチング手段103,104を制御して、前記抵抗消費制動用回路101にモータ6の発電電流を流す抵抗消費形態と、前記回生用接続形態と、前記短絡接続形態とに切換可能とし、または短絡接続形態と前記抵抗消費形態とこれら短絡接続形態および抵抗消費形態の併用形態とに切換可能としてある。
 短絡制動では、モータ6が発熱して発電エネルギを消費することになるため、モータ温度の上昇により短絡制動が行えなくなることがある。しかし、モータ6外に電力消費用抵抗102を設けることで、満充電で回生制動が行えず、また短絡制動も十分に行えない場合に、短絡制動と電力消費用抵抗による制動との併用で、あるいは電力消費用抵抗102による制動のみで、モータ6による制動を行うことができる。電力消費用抵抗102による制動は、前記スイッチング手段103,104で自由にオンオフできる。電力消費用抵抗102は、短絡制動の補助として用いることができるため、短絡制動の機能を設けずに電力消費用抵抗102だけで、回生制動不能時のモータ6による制動を行わせる場合と異なり、電力消費用抵抗102の発熱は比較的に少なくて済み、その放熱手段も簡素にでき、電力消費用抵抗102を設けることによるモータ駆動装置の大型化が回避できる。
 電力消費用抵抗102を設けた場合に、前記バッテリ19の充電状態が設定充電量以上の充電状態である満充電であるか否かを検出する充電状態検出手段27(図2)と、前記モータ6の温度を検出するモータ温度検出手段106とを設け、前記回生制動・短絡制動切換手段105は、前記充電状態検出手段27(図2)が満充電を検出した状態では、前記モータ温度検出手段106によるモータ温度の温度区分によって、前記短絡接続形態と前記抵抗消費形態とに切換可能とし、または短絡接続形態と前記抵抗消費形態とこれら短絡接続形態および抵抗消費形態の併用形態とに切換可能とするのが良い。このように、バッテリ19の充電状態検出手段27(図2)とモータ温度検出手段106とを設け、その検出結果によって、回生制動、短絡制動、抵抗消費制動の使い分けや組み合わせを行うことで、モータ6等に過剰な負担がかからない適切な制動が行える。
 次に、図8~図11と共に、前記各実施形態におけるインホイールモータ装置8の具体例を示す。このインホイールモータ装置8は、車輪用軸受4とモータ6との間に減速機7を介在させ、車輪用軸受4で支持される駆動輪2のハブとモータ6の回転出力軸74とを同軸心上で連結してある。減速機7は、サイクロイド減速機であって、モータ6の回転出力軸74に同軸に連結される回転入力軸82に偏心部82a,82bを形成し、偏心部82a,82bにそれぞれ軸受85を介して曲線板84a,84bを装着し、曲線板84a,84bの偏心運動を車輪用軸受4へ回転運動として伝達する構成である。なお、この明細書において、車両に取り付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
 車輪用軸受4は、内周に複列の転走面53を形成した外方部材51と、これら各転走面53に対向する転走面54を外周に形成した内方部材52と、これら外方部材51および内方部材52の転走面53,54間に介在した複列の転動体55とで構成される。内方部材52は、駆動輪を取り付けるハブを兼用する。この車輪用軸受4は、複列のアンギュラ玉軸受とされていて、転動体55はボールからなり、各列毎に保持器56で保持されている。上記転走面53,54は断面円弧状であり、各転走面53,54は接触角が背面合わせとなるように形成されている。外方部材51と内方部材52との間の軸受空間のアウトボード側端は、シール部材57でシールされている。
 外方部材51は静止側軌道輪となるものであって、減速機7のアウトボード側のハウジング83bに取り付けるフランジ51aを有し、全体が一体の部品とされている。フランジ51aには、周方向の複数箇所にボルト挿通孔64が設けられている。また、ハウジング83bには,ボルト挿通孔64に対応する位置に、内周にねじが切られたボルト螺着孔94が設けられている。ボルト挿通孔94に挿通した取付ボルト65をボルト螺着孔94に螺着させることにより、外方部材51がハウジング83bに取り付けられる。
 内方部材52は回転側軌道輪となるものであって、車輪取付用のハブフランジ59aを有するアウトボード側材59と、このアウトボード側材59の内周にアウトボード側が嵌合して加締めによってアウトボード側材59に一体化されたインボード側材60とでなる。これらアウトボード側材59およびインボード側材60に、前記各列の転走面54が形成されている。インボード側材60の中心には貫通孔61が設けられている。ハブフランジ59aには、周方向複数箇所にハブボルト66の圧入孔67が設けられている。アウトボード側材59のハブフランジ59aの根元部付近には、駆動輪および制動部品(図示せず)を案内する円筒状のパイロット部63がアウトボード側に突出している。このパイロット部63の内周には、前記貫通孔61のアウトボード側端を塞ぐキャップ68が取り付けられている。
 減速機7は、上記したようにサイクロイド減速機であり、図10のように外形がなだらかな波状のトロコイド曲線で形成された2枚の曲線板84a,84bが、それぞれ軸受85を介して回転入力軸82の各偏心部82a,82bに装着してある。これら各曲線板84a,84bの偏心運動を外周側で案内する複数の外ピン86を、それぞれハウジング83bに差し渡して設け、内方部材2のインボード側材60に取り付けた複数の内ピン88を、各曲線板84a,84bの内部に設けられた複数の円形の貫通孔89に挿入状態に係合させてある。回転入力軸82は、モータ6の回転出力軸74とスプライン結合されて一体に回転する。なお、回転入力軸82はインボード側のハウジング83aと内方部材52のインボード側材60の内径面とに2つの軸受90で両持ち支持されている。
 モータ6の回転出力軸74が回転すると、これと一体回転する回転入力軸82に取り付けられた各曲線板84a,84bが偏心運動を行う。この各曲線板84a,84bの偏心運動が、内ピン88と貫通孔89との係合によって、内方部材52に回転運動として伝達される。回転出力軸74の回転に対して内方部材52の回転は減速されたものとなる。例えば、1段のサイクロイド減速機で1/10以上の減速比を得ることができる。
 前記2枚の曲線板84a,84bは、互いに偏心運動が打ち消されるように180°位相をずらして回転入力軸82の各偏心部82a,82bに装着され、各偏心部82a,82bの両側には、各曲線板84a,84bの偏心運動による振動を打ち消すように、各偏心部82a,82bの偏心方向と逆方向へ偏心させたカウンターウエイト91が装着されている。
 図11に拡大して示すように、前記各外ピン86と内ピン88には軸受92,93が装着され、これらの軸受92,93の外輪92a,93aが、それぞれ各曲線板84a,84bの外周と各貫通孔89の内周とに転接するようになっている。したがって、外ピン86と各曲線板84a,84bの外周との接触抵抗、および内ピン88と各貫通孔89の内周との接触抵抗を低減し、各曲線板84a,84bの偏心運動をスムーズに内方部材52に回転運動として伝達することができる。
 図9において、モータ6は、円筒状のモータハウジング72に固定したモータステータ73と、回転出力軸74に取り付けたモータロータ75との間にラジアルギャップを設けたラジアルギャップ型のIPMモータである。回転出力軸74は、減速機7のインボード側のハウジング83aの筒部に2つの軸受76で片持ち支持されている。
 モータステータ73は、軟質磁性体からなるステータコア部77とコイル78とでなる。ステータコア部77は、その外周面がモータハウジング72の内周面に嵌合して、モータハウジング72に保持されている。モータロータ75は、モータステータ73と同心に回転出力軸74に外嵌するロータコア部79と、このロータコア部79に内蔵される複数の永久磁石80とでなる。永久磁石80はV字状に配置されている。
 モータ6には、モータステータ73とモータロータ75の間の相対回転角度を検出する角度センサ36が設けられる。角度センサ36は、モータステータ73とモータロータ75の間の相対回転角度を表す信号を検出して出力する角度センサ本体70と、この角度センサ本体70の出力する信号から角度を演算する角度演算回路71とを有する。角度センサ本体70は、回転出力軸74の外周面に設けられる被検出部70aと、モータハウジング72に設けられ前記被検出部70aに例えば径方向に対向して近接配置される検出部70bとでなる。被検出部70aと検出部70bは軸方向に対向して近接配置されるものであっても良い。ここでは、各角度センサ36として、磁気エンコーダまたはレゾルバが用いられる。モータ6の回転制御は上記モータコントロール部29(図2,5,7)により行われる。なお、インホイールモータ装置8のモータ電流の配線や各種センサ系,指令系の配線は、モータハウジング72等に設けられたコネクタ99により纏めて行われる。
 図12,図13は、この発明の第3実施形態を示す。この実施形態は、モータ6が直流モータである場合の例を示す。図12に示すように、接続形態切換回路31Aは、それぞれスイッチング素子である4つの駆動素子31Aa,31Ab,およびダイオード31Adにより構成される。この構成の場合、回生用接続形態では、全ての駆動素子31Aa,31Abをオフとする。短絡制動用接続形態では、図13に示すように、正電圧側の2つの駆動素子31Aaをオフとし、負電圧側の2つの駆動素子31Abをオンにする。この切換を回生制動・短絡制動切換制御手段25により行う。短絡電流制御手段26は、この負電圧側の2つの駆動素子31Abのデューティー比の調整で電流調整を行う。その他の構成,効果は、第1実施形態と同様である。
 なお、上記実施形態では、後輪の2輪を個別にモータ駆動する駆動輪とした4輪の電気自動車に適用した場合につき説明したが、この発明の適用する電気自動車は、前輪の2輪をそれぞれ個別にモータ駆動するものや、4輪とも個別にモータ駆動するもの、あるいは1台のモータで駆動するものにも適用することができる。さらにこの発明のモータ駆動装置は、産業機械等にも適用することができる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…車体
2,3…車輪
4…車輪用軸受
6…モータ
7…減速機
8…インホイールモータ装置
19…バッテリ
20…モータ駆動装置
21…ECU
22…インバータ装置
25…回生制動・短絡制動切換制御手段
26…短絡電流制御手段
27…充電状態検出手段
28…パワー回路部
29…モータコントロール部
31…インバータ(接続形態切換回路)
32…PWMドライバ
35…電流検出手段
36…角度センサ
102…電力消費用抵抗
103,104…スイッチング手段
101…抵抗消費制動用回路
106…モータ温度検出手段

Claims (11)

  1.  バッテリの電力でモータを駆動する駆動用接続形態と、回生制動時のモータの発電電力をバッテリに充電させる回生用接続形態とに切換可能な接続形態切換回路を備えたモータ駆動装置であって、
     前記接続形態切換回路を、モータコイルを短絡させて制動力を発生させる短絡接続形態に切換可能な構成とし、さらに、
     前記短絡接続形態で流れる短絡電流を制御する短絡電流制御手段と、
     前記接続形態切換回路を前記回生用接続形態と短絡接続形態とに切り換える制御を行う回生制動・短絡制動切換制御手段とを備えたモータ駆動装置。
  2.  請求項1において、前記バッテリの充電状態が設定充電量以上の充電状態である満充電であるか否かを検出する充電状態検出手段を設け、前記回生制動・短絡制動切換手段は、前記充電状態検出手段が満充電を検出した状態では、前記接続形態切換回路を、前記短絡接続形態に切り換えるモータ駆動装置。
  3.  請求項1において、前記モータが同期モータであり、前記接続形態切換回路がインバータであるモータ駆動装置。
  4.  請求項1において、前記短絡電流制御手段が、PWM駆動により電流制御するものであるモータ駆動装置。
  5.  請求項4において、前記短絡電流制御手段は、PWM駆動による電流制御を、ベクトル制御法を用いてトルク電流と界磁電流として制御するモータ駆動装置。
  6.  請求項1において、前記モータの外部に、このモータの発電電力を消費してモータに制動力を発生させる電力消費用抵抗、およびこの電力消費用抵抗と直列接されたスイッチング手段を有する抵抗消費制動用回路を設け、前記回生制動・短絡制動切換制御手段は、前記接続形態切換回路および前記スイッチング手段を制御して、前記抵抗消費制動用回路にモータの発電電流を流す抵抗消費形態と、前記回生用接続形態と、前記短絡接続形態とに切換可能とし、または短絡接続形態と前記抵抗消費形態とこれら短絡接続形態および抵抗消費形態の併用形態とに切換可能としたモータ駆動装置。
  7.  請求項6において、前記バッテリの充電状態が設定充電量以上の充電状態である満充電であるか否かを検出する充電状態検出手段と、前記モータの温度を検出するモータ温度検出手段とを設け、前記回生制動・短絡制動切換手段は、前記充電状態検出手段が満充電を検出した状態では、前記モータ温度検出手段によるモータ温度の温度区分によって、前記短絡接続形態と前記抵抗消費形態とに切換可能とし、または短絡接続形態と前記抵抗消費形態とこれら短絡接続形態および抵抗消費形態の併用形態とに切換可能としたモータ駆動装置。
  8.  請求項1において、前記モータが、電気自動車の走行用のモータであるモータ駆動装置。
  9.  請求項1に記載のモータ駆動装置を備えた電気自動車。
  10.  請求項9において、前記モータは、一部または全体が車輪内に配置されて前記モータと車輪用軸受と減速機とを含むインホイールモータ装置を構成する電気自動車。
  11.  請求項10において、前記減速機はサイクロイド減速機であるモータ駆動装置。
PCT/JP2012/056277 2011-03-18 2012-03-12 モータ駆動装置 WO2012128102A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12760930.3A EP2687396B1 (en) 2011-03-18 2012-03-12 Motor driving device
CN201280013735.7A CN103442931B (zh) 2011-03-18 2012-03-12 电动机驱动装置
US14/005,782 US20140001987A1 (en) 2011-03-18 2012-03-12 Motor driving device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011060068A JP5808923B2 (ja) 2011-03-18 2011-03-18 モータ駆動装置及び電気自動車
JP2011-060068 2011-03-18

Publications (1)

Publication Number Publication Date
WO2012128102A1 true WO2012128102A1 (ja) 2012-09-27

Family

ID=46879255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056277 WO2012128102A1 (ja) 2011-03-18 2012-03-12 モータ駆動装置

Country Status (5)

Country Link
US (1) US20140001987A1 (ja)
EP (1) EP2687396B1 (ja)
JP (1) JP5808923B2 (ja)
CN (1) CN103442931B (ja)
WO (1) WO2012128102A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057838A1 (ja) * 2012-10-11 2014-04-17 Ntn株式会社 モータ搭載自動車のアンチロックブレーキ制御システム
CN108625712A (zh) * 2017-03-22 2018-10-09 爱信精机株式会社 车辆用开闭体控制装置和马达控制装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657426B2 (ja) * 2011-02-25 2015-01-21 Ntn株式会社 電気自動車
US8950528B2 (en) 2011-02-25 2015-02-10 Ntn Corporation Electric automobile
JP5923822B2 (ja) * 2012-02-09 2016-05-25 ミネベア株式会社 ブラシレスモータの駆動制御装置
JP2014223897A (ja) * 2013-05-17 2014-12-04 Ntn株式会社 電動ブレーキ装置
CN105473485B (zh) * 2013-08-13 2019-02-12 奥的斯电梯公司 电池供电的电梯系统的电梯制动
KR101500148B1 (ko) * 2013-09-24 2015-03-06 현대자동차주식회사 구동 모터 연계형 파킹락 장치 및 이를 적용한 차량
JP5661166B1 (ja) 2013-10-30 2015-01-28 三菱電機株式会社 車両用充電システム
CN103909587B (zh) * 2014-03-16 2017-01-04 上海新时达电气股份有限公司 密炼机变频装置
EP3040232A1 (de) * 2014-12-29 2016-07-06 Siemens Aktiengesellschaft Sichere elektrische Bremse für einen Synchronmotor
DE102015200122B4 (de) * 2015-01-08 2016-11-03 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Kraftfahrzeugs mit einer Sicherheitseinrichtung zur Kompensation fehlerhafter Drehmomente
DE102015201543A1 (de) * 2015-01-29 2016-08-04 Zf Friedrichshafen Ag Ansteuerungsverfahren zur Stillstandssicherung einer elektrischen Maschine
JP6314863B2 (ja) * 2015-02-03 2018-04-25 株式会社デンソー 電子制御装置
JP6107865B2 (ja) * 2015-03-27 2017-04-05 マツダ株式会社 電動車両用駆動装置
WO2016162892A1 (en) * 2015-04-08 2016-10-13 Ihimer S.P.A. Gearmotor
CN104953898B (zh) * 2015-07-13 2017-12-15 北京工业大学 一种应用单电流传感器的无刷直流电机回馈制动系统
US11040625B2 (en) * 2015-11-11 2021-06-22 Texas Instruments Incorporated Optimized regenerative braking control of electric motors using look-up tables
JP2019054559A (ja) * 2016-01-20 2019-04-04 ヤマハ発動機株式会社 ビークル
CN105486356A (zh) * 2016-02-02 2016-04-13 北京至感传感器技术研究院有限公司 电机传感器
JP6169203B1 (ja) 2016-02-16 2017-07-26 三菱電機株式会社 電動機制御装置および電動機制御方法
CN115411993A (zh) * 2016-05-17 2022-11-29 微空间株式会社 电动机驱动控制装置及电动装置
JP2017225213A (ja) 2016-06-13 2017-12-21 本田技研工業株式会社 電動芝刈り機の制御装置
KR102417517B1 (ko) * 2016-11-24 2022-07-05 현대자동차주식회사 친환경 차량의 모터시스템 제어 방법
JP6921374B2 (ja) * 2016-12-20 2021-08-18 株式会社島津製作所 真空バルブ
CN106671789A (zh) * 2017-01-05 2017-05-17 北京摩拜科技有限公司 电子刹车控制器和车辆
IT201700038501A1 (it) * 2017-04-07 2018-10-07 Freni Brembo Spa Metodo e sistema per il controllo della coppia frenante rigenerativa di un veicolo
DE102017216698A1 (de) * 2017-09-21 2019-03-21 Robert Bosch Gmbh Werkzeugmaschinenvorrichtung
US11482360B2 (en) * 2017-12-12 2022-10-25 The Boeing Company Stator secondary windings to modify a permanent magnet (PM) field
CN108128171A (zh) * 2017-12-21 2018-06-08 成都客车股份有限公司 电动汽车的制动能量回馈系统与电缓速方法
EP3522360B1 (en) * 2018-02-05 2023-07-05 GE Energy Power Conversion Technology Ltd Power systems
JP7028676B2 (ja) * 2018-02-28 2022-03-02 ミネベアミツミ株式会社 モータの駆動制御装置およびモータの駆動制御方法
JP6881350B2 (ja) * 2018-02-28 2021-06-02 トヨタ自動車株式会社 スイッチトリラクタンスモータの制御装置
EP3611837A1 (en) 2018-08-17 2020-02-19 Goodrich Actuation Systems Limited Electric motor
TWI694015B (zh) * 2019-07-08 2020-05-21 國立中興大學 可抑制煞車反電動勢產生之湧浪電壓及電流之電動載具驅動系統
CN113346805B (zh) * 2020-03-02 2022-05-20 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
US12155337B2 (en) * 2020-03-05 2024-11-26 Schaeffler Technologies AG & Co. KG Electric motor device and method for controlling a motor braking procedure for an electric motor
JP2021164377A (ja) * 2020-04-03 2021-10-11 株式会社豊田自動織機 電動機の制御装置
CN112532116B (zh) * 2020-12-09 2024-07-19 金华市科欣医疗科技有限公司 一种电机电磁刹车的控制电路
CN112693327B (zh) * 2021-01-21 2023-05-12 中国重汽集团济南动力有限公司 一种降低非工作损耗的新能源永磁整车控制子系统、方法及车辆
EP4292211A4 (en) * 2021-02-10 2024-10-23 Techtronic Cordless GP DEVICE AND METHOD FOR ENGINE BRAKING
US11760210B2 (en) 2021-03-12 2023-09-19 Dana Tm4 Inc. Modulated active short circuit braking
CN113644844A (zh) * 2021-08-27 2021-11-12 江苏银河数字技术有限公司 一种电机反电动势高压抑制方法
CN115871481B (zh) * 2021-09-29 2025-05-02 本田技研工业株式会社 电动发电机控制系统及混合动力车辆
IT202200008750A1 (it) * 2022-05-02 2023-11-02 St Microelectronics Srl Procedimento di funzionamento di un motore elettrico, dispositivo e disco rigido corrispondenti
CN115085610B (zh) * 2022-08-22 2022-12-09 深圳市好盈科技股份有限公司 应用于竞赛级遥控模型车的线性刹车控制方法和装置
GB2633581A (en) 2023-09-13 2025-03-19 Yasa Ltd A braking system for a vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161208A (ja) 1991-12-06 1993-06-25 Toyota Motor Corp 電気自動車の回生制動力調整装置
JP2003024686A (ja) * 2001-07-19 2003-01-28 Matsushita Electric Ind Co Ltd 洗濯機のモータ駆動装置
JP2003164002A (ja) * 2001-11-28 2003-06-06 Nissan Motor Co Ltd 電気自動車の回生制動装置
JP2004216997A (ja) * 2003-01-10 2004-08-05 Nissan Motor Co Ltd 車両のブレーキ制御装置
JP2004278315A (ja) * 2003-03-12 2004-10-07 Nissan Motor Co Ltd エンジン始動制御装置
JP2006258289A (ja) * 2005-02-16 2006-09-28 Ntn Corp インホイールモータ駆動装置
JP2009055781A (ja) * 2007-08-02 2009-03-12 Mitsubishi Electric Corp モータ駆動制御装置並びに空気調和機、換気扇及びヒートポンプタイプの給湯機
JP2010187820A (ja) * 2009-02-17 2010-09-02 Shimadzu Corp 回診用x線撮影装置
JP2010207053A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 電動車両のモータ制御装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170105A (en) * 1991-03-08 1992-12-08 General Electric Company Method for determining operability of an electrical dynamic braking system
JPH06105405A (ja) * 1992-09-18 1994-04-15 Hitachi Ltd 電気自動車の制動制御装置
US5361022A (en) * 1993-03-23 1994-11-01 E. F. Bavis & Associates, Inc. Method and apparatus for electrical dynamic braking
DE59605777D1 (de) * 1995-05-11 2000-09-28 Siemens Ag Einrichtung zur numerischen Steuerung einer Werkzeugmaschine oder eines Roboters
US6118241A (en) * 1997-11-25 2000-09-12 Kollmorgen Corporation Dynamic braking system for electric motors
US6737828B2 (en) * 2001-07-19 2004-05-18 Matsushita Electric Industrial Co., Ltd. Washing machine motor drive device
US7075257B2 (en) * 2002-10-18 2006-07-11 Black & Decker Inc. Method and device for braking a motor
KR100534709B1 (ko) * 2003-12-30 2005-12-07 현대자동차주식회사 전기자동차의 회생제동 제어 방법 및 장치
KR100904133B1 (ko) * 2005-04-11 2009-06-24 후지텍크가부시키가이샤 승강기의 제어 장치
JP2007037382A (ja) * 2005-07-29 2007-02-08 Yaskawa Electric Corp モータ制御装置およびその制御方法
KR100981119B1 (ko) * 2006-02-28 2010-09-08 도요타 지도샤(주) 차량 구동 장치 및 차량 구동 장치의 제어 방법
JP2007245966A (ja) * 2006-03-16 2007-09-27 Nissan Motor Co Ltd 車両用駆動制御装置
DE102006047692A1 (de) * 2006-10-09 2008-04-10 Siemens Ag Verfahren zum Abbremsen eines über einen Stromrichter gespeisten elektrischen Motors und Vorrichtung zur Durchführung des Verfahrens
EP2112760B1 (en) * 2008-04-24 2011-06-29 ABB Oy Method and arrangement in connection with a brake chopper
US8154228B2 (en) * 2009-06-10 2012-04-10 Kollmorgen Corporation Dynamic braking for electric motors
FI121882B (fi) * 2009-11-02 2011-05-31 Kone Corp Jarrutuslaitteisto, sähkökäyttö sekä hissijärjestelmä

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05161208A (ja) 1991-12-06 1993-06-25 Toyota Motor Corp 電気自動車の回生制動力調整装置
JP2003024686A (ja) * 2001-07-19 2003-01-28 Matsushita Electric Ind Co Ltd 洗濯機のモータ駆動装置
JP2003164002A (ja) * 2001-11-28 2003-06-06 Nissan Motor Co Ltd 電気自動車の回生制動装置
JP2004216997A (ja) * 2003-01-10 2004-08-05 Nissan Motor Co Ltd 車両のブレーキ制御装置
JP2004278315A (ja) * 2003-03-12 2004-10-07 Nissan Motor Co Ltd エンジン始動制御装置
JP2006258289A (ja) * 2005-02-16 2006-09-28 Ntn Corp インホイールモータ駆動装置
JP2009055781A (ja) * 2007-08-02 2009-03-12 Mitsubishi Electric Corp モータ駆動制御装置並びに空気調和機、換気扇及びヒートポンプタイプの給湯機
JP2010187820A (ja) * 2009-02-17 2010-09-02 Shimadzu Corp 回診用x線撮影装置
JP2010207053A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 電動車両のモータ制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2687396A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014057838A1 (ja) * 2012-10-11 2014-04-17 Ntn株式会社 モータ搭載自動車のアンチロックブレーキ制御システム
CN108625712A (zh) * 2017-03-22 2018-10-09 爱信精机株式会社 车辆用开闭体控制装置和马达控制装置
CN108625712B (zh) * 2017-03-22 2021-06-08 爱信精机株式会社 车辆用开闭体控制装置

Also Published As

Publication number Publication date
EP2687396B1 (en) 2022-07-20
JP2012196104A (ja) 2012-10-11
CN103442931A (zh) 2013-12-11
EP2687396A4 (en) 2014-11-05
CN103442931B (zh) 2016-01-13
US20140001987A1 (en) 2014-01-02
JP5808923B2 (ja) 2015-11-10
EP2687396A1 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5808923B2 (ja) モータ駆動装置及び電気自動車
JP5985178B2 (ja) モータの制御装置
JP5705585B2 (ja) 電気自動車
EP2679433B1 (en) Electric automobile
JP5886008B2 (ja) 電気自動車のモータ制御装置
JP5702237B2 (ja) モータ駆動装置
JP5731233B2 (ja) 電気自動車
JP5785004B2 (ja) モータ駆動装置
JP6199454B2 (ja) モータの制御装置
US9184583B2 (en) Electric automobile
JP5731593B2 (ja) 電気自動車
JP5731234B2 (ja) 電気自動車
JP5781326B2 (ja) 電気自動車
JP5731594B2 (ja) 電気自動車
JP6873643B2 (ja) 電動ブレーキ装置
JP6087399B2 (ja) モータ駆動装置
JP2012176650A (ja) インホイールモータ駆動装置およびモータの制御方法
JP2019041503A (ja) 電動式直動アクチュエータおよび電動ブレーキ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14005782

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012760930

Country of ref document: EP