WO2012121620A1 - Method for dividing gaseous mixtures - Google Patents
Method for dividing gaseous mixtures Download PDFInfo
- Publication number
- WO2012121620A1 WO2012121620A1 PCT/RU2012/000071 RU2012000071W WO2012121620A1 WO 2012121620 A1 WO2012121620 A1 WO 2012121620A1 RU 2012000071 W RU2012000071 W RU 2012000071W WO 2012121620 A1 WO2012121620 A1 WO 2012121620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclone separator
- channel
- gas
- expansion
- stream
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/24—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by centrifugal force
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/10—Working-up natural gas or synthetic natural gas
- C10L3/101—Removal of contaminants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/0605—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
- F25J3/061—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0635—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/10—Processes or apparatus using other separation and/or other processing means using combined expansion and separation, e.g. in a vortex tube, "Ranque tube" or a "cyclonic fluid separator", i.e. combination of an isentropic nozzle and a cyclonic separator; Centrifugal separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/20—Processes or apparatus using other separation and/or other processing means using solidification of components
Definitions
- the present invention can be used in installations intended for the separation of gas mixtures, including installations for the treatment of natural and associated gases.
- installations for the treatment of natural and associated gases are of particular interest.
- the invention for gas processing complexes in which the components of gas crystallizing at low temperatures are extracted from gas.
- the task to which the claimed technical solution is directed is to expand the range of operability of gas separation units mixtures using gas expansion in cyclone separators, and ensuring their operability under conditions favorable for the solidification of the individual components that make up the gas mixtures.
- the inlet gas is expanded in a rotating stream in the channel of the cyclone separator, with obtaining a purified stream and a stream enriched with target fractions at the outlet of the channel of the cyclone separator, during the expansion process, the part of the gas moving near the walls is heated, the heating is carried out so that the temperature of the inner surfaces of the channel of the cyclone separator is everywhere above the temperature Ia solid phase, the degree of expansion of the flow in the cyclone separator is controlled such that the F I / F 0 h> 1.01 (where P Rin - total pressure of the inlet gas, Pts F - total pressure raffinate stream at the outlet of the channel of the cyclone separator).
- the stream can be subjected to a repeated separation process with the expansion of the stream in the channel of an additional cyclone separator.
- the stream enriched with the desired fractions is separated from the liquid and solid phases, and subjected to a second purification process with expansion of the flow in the channel of the additional cyclone separator.
- figure 1 presents a schematic diagram of an installation for implementing the proposed method for the separation of gas mixtures
- figure 2 is a schematic diagram of an installation in which a stream enriched with water is subjected to a repeated separation process with the expansion of the stream in the channel of an additional cyclone separator;
- FIG.3 is a schematic diagram of the installation in which the separation of the liquid and solid phase is carried out using an additional separator
- Crude gas 1 enters the inlet of the cyclone separator 2, in which the gas is twisted in a swirler 3, and in the channel 4 of the cyclone separator the gas is expanded in a rotating stream to obtain a purified stream 5 at the outlet of the cyclone separator channel and the stream enriched with target fractions 6
- the process of expansion part of the gas moving near the walls is heated, heating is carried out so that the temperature of the inner surfaces of the channel 4 of the cyclone separator is everywhere above the temperature of formation of the solid phase.
- the heat supply is indicated in figure 1 by arrows 7.
- the degree of expansion of the flow in the cyclone separator is maintained such that Pvh / Roch> 1.01 (where P in is the total pressure of the inlet gas, Pch is the total flow pressure at the outlet of the channel of the cyclone separator in order to ensure sufficiently high flow rates in the channel of the cyclone separator providing sufficient heat transfer from the walls to the part of the gas located near the wall of the channel 4.
- the heat flux from the medium to the wall in a wide range of Mach and Reynolds numbers for a turbulent boundary layer can be calculated using the relations of the Spalding-Chi theory.
- the gas flow can be both subsonic and supersonic.
- the heat flux q can be represented as:
- the temperature of formation of the solid phase can be calculated using software systems, such as, for example, HYSYS, etc.
- the walls of the channel of the cyclone separator can be heated using the induction heating method, in this case the metal channel must be surrounded by a coaxially located induction coil, the frequency of change and current in which are selected from the condition of sufficient input power.
- an electric heater located in the cavity surrounding the channel can be used.
- the cavity may be filled with heat-conducting material.
- the water-enriched stream is subjected to a repeated separation process with the expansion of the stream in the channel of the additional cyclone separator.
- the water-enriched stream 6 is directed to the cyclone separator 8, in the channel 9 of the cyclone separator, the gas is expanded in a rotating stream, to obtain a purified stream 10 at the outlet of the channel of the cyclone separator, and the stream enriched with target fractions 11.
- the part of the gas located near the walls can be heated, if necessary, as, for example, shown in Fig.Z, Heat flow in an additional cyclone separator is indicated by the number 12.
- the liquid and solid phases 13 can be separated, as shown in FIG.
- the separation of the liquid and solid phases can be carried out, for example, using an additional separator 14.
- the gas phase 15 from the separator 14 is sent to an additional cyclone separator 8.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Cyclones (AREA)
Abstract
The invention can be used in installations intended for dividing gaseous mixtures, including installations for processing natural and casing-head gases. The invention is of special interest for gas-processing systems in which components crystallizing at low temperatures of a gas are extracted from the gas. The technical result, to the achieving of which the claimed invention is directed, is an expansion in the efficiency range of installations for dividing gaseous mixtures, which installations use gas expansion in cyclone separators, and ensuring the efficiency of said installations in conditions favourable for solidifying individual components included in the composition of the gaseous mixtures. The above-mentioned technical result is achieved by the fact that, in the proposed method for dividing gaseous mixtures comprising a solid phase, the input gas is expanded in a rotating flow in a channel of the cyclone separator, producing a purified flow and a flow enriched with specific fractions at the outlet from the channel of the cyclone separator, wherein, in the expansion process, some of the gas moving near the walls is heated, and the heating is carried out in such a manner that the temperature of the internal surfaces of the channel of the cyclone separator is higher throughout than the temperature for forming the solid phase, wherein the degree of expansion of the flow in the cyclone separator is maintained such that Рin/Рpu> 1.01 (where Рin is the full pressure of the input gas, Рpu is the full pressure of the purified flow at the outlet from the channel of the cyclone separator).
Description
СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВЫХ СМЕСЕЙ METHOD FOR SEPARATING GAS MIXTURES
Область техники Technical field
Настоящее изобретение может быть использовано в установках, предназначенных для разделения газовых смесей, включая установки для обработки природных и попутных газов. Особый интерес изобретение представляет для газоперерабатывающих комплексов, в которых осуществляется извлечение из газа компонент кристаллизующихся при низких температурах газа. The present invention can be used in installations intended for the separation of gas mixtures, including installations for the treatment of natural and associated gases. Of particular interest is the invention for gas processing complexes in which the components of gas crystallizing at low temperatures are extracted from gas.
Предшествующий уровень техники State of the art
Известен способ разделения газовых смесей, содержащих твердую фазу, описанный в патенте GB 898732, опубликованном 14.06.1962, в котором входной газ расширяют во вращающемся потоке в канале циклонного сепаратора с получением на выходе из канала циклонного сепаратора очищенного потока и потока, обогащенного целевыми фракциями. A known method for the separation of gas mixtures containing a solid phase is described in GB 898732, published 06/14/1962, in which the inlet gas is expanded in a rotating stream in the channel of the cyclone separator to obtain a purified stream and the stream enriched with target fractions at the outlet of the channel of the cyclone separator.
Также известны способы низкотемпературного разделения газов, в которых входной газ расширяют во вращающемся потоке в канале прямоточного циклонного сепаратора, с получением на выходе из канала циклонного сепаратора очищенного потока и потока, обогащенного целевыми фракциями. При этом при расширении газа в канале циклонного сепаратора реализуются низкие температуры, при которых происходит отверждение некоторых компонентов газа, таких например как углекислый газ или сероводород. Пример такого способа приведен в заявке С А 2710915, опубликованной 09.07.2009. Also known are methods of low-temperature gas separation, in which the inlet gas is expanded in a rotating stream in a straight-through cyclone separator channel to obtain a purified stream and a stream enriched with target fractions at the outlet of the cyclone separator channel. In this case, when the gas expands in the channel of the cyclone separator, low temperatures are realized at which certain components of the gas solidify, such as carbon dioxide or hydrogen sulfide. An example of such a method is given in application C A 2710915 published on July 9, 2009.
Недостатком описанных способов является то, что они неприемлемы для промышленного применения в условиях непрерывной работы установки в течение многих месяцев, т.к. на стенках сепараторов происходит постепенное образование отложений затвердевающих компонентов, что, в конечном счете, приводит к нарушению структуры потока внутри циклонного сепаратора и соответственно к ухудшению эффективности процесса сепарации. The disadvantage of the described methods is that they are unacceptable for industrial use in the conditions of continuous operation of the installation for many months, because on the walls of the separators there is a gradual formation of deposits of hardening components, which, ultimately, leads to disruption of the flow structure inside the cyclone separator and, accordingly, to a deterioration in the efficiency of the separation process.
Раскрытие изобретения Disclosure of invention
Задачей, на решение которой направлено заявленное техническое решение, является расширение диапазона работоспособности установок разделения газовых
смесей использующих расширение газа в циклонных сепараторах, и обеспечения их работоспособности при условиях, благоприятных для затвердевания отдельных компонентов, входящих в состав газовых смесей. The task to which the claimed technical solution is directed is to expand the range of operability of gas separation units mixtures using gas expansion in cyclone separators, and ensuring their operability under conditions favorable for the solidification of the individual components that make up the gas mixtures.
Поставленная задача достигается за счет того, что в предлагаемом способе разделения газовых смесей, содержащих твердую фазу, входной газ расширяют во вращающемся потоке в канале циклонного сепаратора, с получением на выходе из канала циклонного сепаратора очищенного потока и потока, обогащенного целевыми фракциями, при этом в процессе расширения часть газа, движущуюся возле стенок, подогревают, подогрев проводят таким образом, чтобы температура внутренних поверхностей канала циклонного сепаратора была всюду выше температуры образования твердой фазы, при этом степень расширения потока в циклонном сепараторе поддерживают таким, что Рвх/Р0ч>1.01 (где Рвх - полное давление входного газа, Роч - полное давление очищенного потока на выходе из канала циклонного сепаратора). The problem is achieved due to the fact that in the proposed method for the separation of gas mixtures containing a solid phase, the inlet gas is expanded in a rotating stream in the channel of the cyclone separator, with obtaining a purified stream and a stream enriched with target fractions at the outlet of the channel of the cyclone separator, during the expansion process, the part of the gas moving near the walls is heated, the heating is carried out so that the temperature of the inner surfaces of the channel of the cyclone separator is everywhere above the temperature Ia solid phase, the degree of expansion of the flow in the cyclone separator is controlled such that the F I / F 0 h> 1.01 (where P Rin - total pressure of the inlet gas, Pts F - total pressure raffinate stream at the outlet of the channel of the cyclone separator).
Обогащенный целевыми фракциями поток можно подвергнуть повторному процессу разделения с расширением потока в канале дополнительного циклонного сепаратора. Enriched with target fractions, the stream can be subjected to a repeated separation process with the expansion of the stream in the channel of an additional cyclone separator.
При необходимости обогащенный целевыми фракциями поток сепарируют от жидкой и твердой фазы, и подвергают повторному процессу очистки с расширением потока в канале дополнительного циклонного сепаратора. If necessary, the stream enriched with the desired fractions is separated from the liquid and solid phases, and subjected to a second purification process with expansion of the flow in the channel of the additional cyclone separator.
Краткое описание чертежей Brief Description of the Drawings
Сущность изобретения поясняется чертежами, где: The invention is illustrated by drawings, where:
на фиг.1 представлена принципиальная схема установки для осуществления предлагаемого способа разделения газовых смесей; figure 1 presents a schematic diagram of an installation for implementing the proposed method for the separation of gas mixtures;
на фиг.2 - принципиальная схема установки, в которой обогащенный водой поток, подвергают повторному процессу разделения с расширением потока в канале дополнительного циклонного сепаратора; figure 2 is a schematic diagram of an installation in which a stream enriched with water is subjected to a repeated separation process with the expansion of the stream in the channel of an additional cyclone separator;
на фиг.З - принципиальная схема установки, в которой сепарацию жидкой и твердой фазы проводят с помощью дополнительного сепаратора in Fig.3 is a schematic diagram of the installation in which the separation of the liquid and solid phase is carried out using an additional separator
Вариант осуществления изобретения An embodiment of the invention
Установка работает следующим образом.
Сырой газ 1 , поступает на вход циклонного сепаратора 2, в котором газ закручивают в завихрителе 3, а в канале 4 циклонного сепаратора газ расширяют во вращающемся потоке, с получением на выходе из канала циклонного сепаратора очищенного потока 5, и потока, обогащенного целевыми фракциями 6. В процессе расширения часть газа, движущуюся возле стенок подогревают, подогрев проводят таким образом, чтобы температура внутренних поверхностей канала 4 циклонного сепаратора была всюду выше температуры образования твердой фазы. Подвод тепла обозначен на Фиг.1 стрелками 7. Installation works as follows. Crude gas 1 enters the inlet of the cyclone separator 2, in which the gas is twisted in a swirler 3, and in the channel 4 of the cyclone separator the gas is expanded in a rotating stream to obtain a purified stream 5 at the outlet of the cyclone separator channel and the stream enriched with target fractions 6 In the process of expansion, part of the gas moving near the walls is heated, heating is carried out so that the temperature of the inner surfaces of the channel 4 of the cyclone separator is everywhere above the temperature of formation of the solid phase. The heat supply is indicated in figure 1 by arrows 7.
Степень расширения потока в циклонном сепараторе поддерживают таким, что Рвх/Роч>1.01 (где Рвх - полное давление входного газа, Роч - полное давление потока на выходе из канала циклонного сепаратора, для того чтобы обеспечить достаточно высокие скорости потока в канале циклонного сепаратора, обеспечивающие достаточный перенос тепла от стенок к части газа, находящегося возле стенки канала 4. The degree of expansion of the flow in the cyclone separator is maintained such that Pvh / Roch> 1.01 (where P in is the total pressure of the inlet gas, Pch is the total flow pressure at the outlet of the channel of the cyclone separator in order to ensure sufficiently high flow rates in the channel of the cyclone separator providing sufficient heat transfer from the walls to the part of the gas located near the wall of the channel 4.
С целью оценки температуры теплоносителя и его расхода, достаточных для предотвращения образования твердой фазы, на внутренних поверхностях циклонного сепаратора необходимо проводить расчет тепловых потоков к его поверхностям. In order to assess the temperature of the coolant and its flow rate sufficient to prevent the formation of a solid phase, it is necessary to calculate the heat fluxes to its surfaces on the inner surfaces of the cyclone separator.
Тепловой поток от среды к стенке в широком диапазоне чисел Маха и Рейнольдса для турбулентного пограничного слоя может быть рассчитан по соотношениям теории Сполдинга-Чи. При этом течение газа может быть как дозвуковым, так и сверхзвуковым. В этом случае тепловой поток q можно представить виде: The heat flux from the medium to the wall in a wide range of Mach and Reynolds numbers for a turbulent boundary layer can be calculated using the relations of the Spalding-Chi theory. In this case, the gas flow can be both subsonic and supersonic. In this case, the heat flux q can be represented as:
q = StVp{Hw - Hr), где St - число Стантона, V— скорость потока, р - плотность потока Нг -q = StVp (H w - H r ), where St is the Stanton number, V is the flow velocity, p is the flux density H g -
. V2 . V 2
энтальпия восстановления, равная Нг = \ + г*— , г* - коэффициент восстановления, г, the enthalpy of recovery equal to H g = \ + g * -, g * is the recovery coefficient, g,
- энтальпия определяемая по термодинамическим параметрам на внешней границе пограничного слоя. - enthalpy determined by thermodynamic parameters at the outer boundary of the boundary layer.
С другой стороны величина теплового потока будет: On the other hand, the heat flux will be:
q » X(Tw2 - Tw )/S , где δ - толщина стенки, λ - коэффициент теплопроводности материала стенки, Twl , Tw2 - температура стенки на внутренней и внешней поверхностях стенки.
Приведенные соотношения позволяют определить необходимую температуру на внешней поверхности стенки (и тем самым выбрать параметры теплоносителя) для обеспечения необходимой температуры газа на внутренней поверхности стенки циклонного сепаратора. q »X (T w2 - T w ) / S, where δ is the wall thickness, λ is the thermal conductivity coefficient of the wall material, T wl , T w2 is the wall temperature on the inner and outer surfaces of the wall. The above ratios make it possible to determine the necessary temperature on the outer wall surface (and thereby choose the coolant parameters) to ensure the necessary gas temperature on the inner wall surface of the cyclone separator.
Температура образования твердой фазы может быть рассчитана с помощью программных комплексов, таких например как HYSYS и т.п. The temperature of formation of the solid phase can be calculated using software systems, such as, for example, HYSYS, etc.
В тех случаях, когда для нагрева потока используется более сложная система нагрева, необходимо использовать специальные расчетные комплексы, позволяющие рассчитывать тепловые потоки для сложных конструкций. Примерами таких комплексов являются программы CFX, FLUENT, и др. In cases where a more complex heating system is used to heat the flow, it is necessary to use special calculation systems that allow calculating heat fluxes for complex structures. Examples of such complexes are CFX, FLUENT, etc.
Нагрев стенок канала циклонного сепаратора может быть проведен с использованием индукционного метода нагрева, в этом случае металлический канал должен быть окружен коаксиально расположенной индукционной катушкой, частота изменения и сила тока в которой выбираются из условия достаточной подводимой мощности. The walls of the channel of the cyclone separator can be heated using the induction heating method, in this case the metal channel must be surrounded by a coaxially located induction coil, the frequency of change and current in which are selected from the condition of sufficient input power.
При небольших мощностях нагрева может быть использован электронагреватель, расположенный в полости, окружающей канал. При этом полость может быть заполнена теплопроводным материалом. At low heating capacities, an electric heater located in the cavity surrounding the channel can be used. In this case, the cavity may be filled with heat-conducting material.
В процессе расширения газа в канале циклонного сепаратора может происходить конденсация отдельных компонентов газа, образование капель жидкости, образование твердой фазы в потоке и сепарация их к стенкам циклонного сепаратора. В этих случаях для правильного расчета тепловых потоков необходимо использовать специальные программные комплексы, такие как например CFX ANSYS, позволяющие рассчитывать тепловые потоки в двухфазных потоках. In the process of gas expansion in the channel of the cyclone separator, condensation of individual gas components, the formation of droplets of liquid, the formation of a solid phase in the stream and their separation to the walls of the cyclone separator can occur. In these cases, for the correct calculation of heat fluxes, it is necessary to use special software systems, such as, for example, CFX ANSYS, which allow calculating heat fluxes in two-phase flows.
В тех случаях, когда необходимо обеспечить более глубокое разделение газовой смеси, обогащенный водой поток, подвергают повторному процессу разделения с расширением потока в канале дополнительного циклонного сепаратора. В этом случае, как показано на фиг.2, обогащенный водой поток 6 направляется в циклонный сепаратор 8, в канале 9 циклонного сепаратора газ расширяют во вращающемся потоке, с получением на выходе из канала циклонного сепаратора очищенного потока 10, и потока, обогащенного целевыми фракциями 11. В процессе расширения часть газа, находящуюся возле стенок, при необходимости можно подогревать, как, например, это
показано на Фиг.З, Поток тепла в дополнительном циклонном сепараторе указан цифрой 12. In cases where it is necessary to provide a deeper separation of the gas mixture, the water-enriched stream is subjected to a repeated separation process with the expansion of the stream in the channel of the additional cyclone separator. In this case, as shown in Fig. 2, the water-enriched stream 6 is directed to the cyclone separator 8, in the channel 9 of the cyclone separator, the gas is expanded in a rotating stream, to obtain a purified stream 10 at the outlet of the channel of the cyclone separator, and the stream enriched with target fractions 11. During the expansion process, the part of the gas located near the walls can be heated, if necessary, as, for example, shown in Fig.Z, Heat flow in an additional cyclone separator is indicated by the number 12.
Для увеличения степени разделения газовой смеси, из обогащенного целевыми фракциями потока 6 можно отсепарировать жидкую и твердую фазы 13, как это показано на фиг.З. Сепарацию жидкой и твердой фазы можно проводить, например, с помощью дополнительного сепаратора 14. Газовая фаза 15 из сепаратора 14 направляется в дополнительный циклонный сепаратор 8. To increase the degree of separation of the gas mixture from the stream 6 enriched with the target fractions, the liquid and solid phases 13 can be separated, as shown in FIG. The separation of the liquid and solid phases can be carried out, for example, using an additional separator 14. The gas phase 15 from the separator 14 is sent to an additional cyclone separator 8.
При необходимости, для предотвращения отложения твердой фазы на стенках сепаратора 14, его стенки могут быть тоже подвергнуты нагреву.
If necessary, to prevent the deposition of a solid phase on the walls of the separator 14, its walls can also be subjected to heat.
Claims
ФОРМУЛА ИЗОБРЕТЕНИЯ CLAIM
Пункт 1. Способ разделения газовых смесей, содержащих твердую фазу, в котором входной газ расширяют во вращающемся потоке в канале циклонного сепаратора, с получением на выходе из канала циклонного сепаратора очищенного потока и потока, обогащенного целевыми фракциями, отличающийся тем, что в процессе расширения часть газа, движущуюся возле стенок канала, подогревают, подогрев проводят таким образом, чтобы температура внутренних поверхностей канала циклонного сепаратора бьша всюду выше температуры образования твердой фазы, при этом степень расширения потока в циклонном сепараторе поддерживают таким, что РвХ/Роч>1 -01 (где Рвх - полное давление входного газа, Роч - полное давление очищенного потока на выходе из канала циклонного сепаратора). Item 1. The method of separation of gas mixtures containing a solid phase, in which the inlet gas is expanded in a rotating stream in the channel of the cyclone separator, with obtaining a purified stream and a stream enriched with target fractions at the outlet of the channel of the cyclone separator, characterized in that in the process of expansion the gas moving near the channel walls is heated, the heating is carried out in such a way that the temperature of the inner surfaces of the channel of the cyclone separator is everywhere above the temperature of formation of the solid phase, while the expansion stump of the flow in the cyclone separator is maintained such that Pv X / Roch > 1 -01 (where P in is the total pressure of the inlet gas, P Pch is the total pressure of the purified stream at the outlet of the cyclone separator channel).
Пункт 2. Способ по п.1 , отличающийся тем, что обогащенный целевыми фракциями поток подвергают повторному процессу разделения с расширением потока в канале дополнительного циклонного сепаратора. Clause 2. The method according to claim 1, characterized in that the stream enriched with the desired fractions is subjected to a repeated separation process with the expansion of the stream in the channel of the additional cyclone separator.
Пункт 3. Способ по п.1 , отличающийся тем, что обогащенный целевыми фракциями поток сепарируют жидкую и твердую фазы, и подвергают повторному процессу очистки с расширением потока в канале дополнительного циклонного сепаратора.
Clause 3. The method according to claim 1, characterized in that the stream enriched with the desired fractions is separated from the liquid and solid phases, and subjected to a second purification process with the expansion of the stream in the channel of an additional cyclone separator.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011108934/06A RU2458297C1 (en) | 2011-03-10 | 2011-03-10 | Gas mixture separation method |
RU2011108934 | 2011-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012121620A1 true WO2012121620A1 (en) | 2012-09-13 |
Family
ID=46798424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2012/000071 WO2012121620A1 (en) | 2011-03-10 | 2012-02-07 | Method for dividing gaseous mixtures |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2458297C1 (en) |
WO (1) | WO2012121620A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB898732A (en) * | 1960-03-09 | 1962-06-14 | Conch Int Methane Ltd | Process for the cold separation of gas mixtures |
RU2035950C1 (en) * | 1991-06-13 | 1995-05-27 | Научно-производственное предприятие "Ярсинтез" | Device for drying of hydrocarbon gas |
US5586998A (en) * | 1991-12-05 | 1996-12-24 | Institut Francais Du Petrole | Co-current cyclone separation extractor |
RU2301250C1 (en) * | 2006-01-24 | 2007-06-20 | Юрий Владимирович Фещенко | Hydrocarbon feedstock distillation process and plant |
RU2302590C1 (en) * | 2006-01-26 | 2007-07-10 | Открытое акционерное общество Научно-производственное объединение "Искра" | Supersonic tube for preparing gas transporting |
RU2353764C2 (en) * | 2007-03-15 | 2009-04-27 | Рауф Раисович Юнусов | Thermo-dynamic separator and method of preparation of natural gas |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2336932C1 (en) * | 2006-12-20 | 2008-10-27 | Виталий Васильевич Гузеев | Plant to prepare natural and associated oil gas for transportation |
-
2011
- 2011-03-10 RU RU2011108934/06A patent/RU2458297C1/en not_active IP Right Cessation
-
2012
- 2012-02-07 WO PCT/RU2012/000071 patent/WO2012121620A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB898732A (en) * | 1960-03-09 | 1962-06-14 | Conch Int Methane Ltd | Process for the cold separation of gas mixtures |
RU2035950C1 (en) * | 1991-06-13 | 1995-05-27 | Научно-производственное предприятие "Ярсинтез" | Device for drying of hydrocarbon gas |
US5586998A (en) * | 1991-12-05 | 1996-12-24 | Institut Francais Du Petrole | Co-current cyclone separation extractor |
RU2301250C1 (en) * | 2006-01-24 | 2007-06-20 | Юрий Владимирович Фещенко | Hydrocarbon feedstock distillation process and plant |
RU2302590C1 (en) * | 2006-01-26 | 2007-07-10 | Открытое акционерное общество Научно-производственное объединение "Искра" | Supersonic tube for preparing gas transporting |
RU2353764C2 (en) * | 2007-03-15 | 2009-04-27 | Рауф Раисович Юнусов | Thermo-dynamic separator and method of preparation of natural gas |
Also Published As
Publication number | Publication date |
---|---|
RU2458297C1 (en) | 2012-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2022522970A (en) | Use of intermittent energy in the production of chemicals | |
US20220080470A1 (en) | Pipe assembly, cooling system with pipe assembly and method of cooling a fluid | |
BR112013008047B1 (en) | turbine, process and power generation system | |
Gao et al. | Influence of PGMD module design on the water productivity and energy efficiency in desalination | |
Wen et al. | Thermodynamics analysis of CO2 condensation in supersonic flows for the potential of clean offshore natural gas processing | |
WO2012061546A1 (en) | Vaporization chambers and associated methods | |
Wang et al. | Research activities on supercritical carbon dioxide power conversion technology in China | |
CN101149028A (en) | A cooling heat exchange channel for a scramjet engine and a rocket engine | |
Kotowicz et al. | Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations study | |
Imaev et al. | New low temperature process of CO2 recovery from natural gases | |
RU2458298C1 (en) | Gas mixture separation method | |
WO2012121620A1 (en) | Method for dividing gaseous mixtures | |
US10551120B2 (en) | Method for condensing a CO2 vapor stream beyond the frost point | |
Al-bahou et al. | Desalination experience in Kuwait | |
Younis et al. | Heat input-response in cooling tower-zeroth moments of temperature variations | |
RU2013154550A (en) | HEAT EXCHANGE SYSTEM | |
Schneider et al. | Using parallel packed bed within a High Temperature Thermal Energy Storage System for CSP-plants | |
RU2468309C1 (en) | Pipe of temperature lamination | |
RU2656309C2 (en) | Regenerated basic oil gaseous fraction separation device with the heating boiler smoke removal | |
Kalashnikov et al. | Numerical analysis of the influence of the coolant pressure increase and the shell-and-tube heat exchanger outer surface isolation degree on the external heat losses value | |
CN102155613B (en) | Carbon dioxide refrigeration capacity recycling system and method | |
Chong et al. | Calculation of conditions at which dryout occurs in the serpentine channels of fired reboilers | |
Yang et al. | Numerical investigation of ammonia boiling heat transfer in rectangular microchannel under high pressure | |
CN203677969U (en) | Evaporating separator for chemical production | |
Denney | Fast and Efficient Numerical-Simulation Method for Supersonic-Gas Processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12754608 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12754608 Country of ref document: EP Kind code of ref document: A1 |