WO2012086459A1 - モータ駆動制御装置 - Google Patents
モータ駆動制御装置 Download PDFInfo
- Publication number
- WO2012086459A1 WO2012086459A1 PCT/JP2011/078761 JP2011078761W WO2012086459A1 WO 2012086459 A1 WO2012086459 A1 WO 2012086459A1 JP 2011078761 W JP2011078761 W JP 2011078761W WO 2012086459 A1 WO2012086459 A1 WO 2012086459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- unit
- torque
- vehicle speed
- current
- Prior art date
Links
- 238000012545 processing Methods 0.000 claims abstract description 42
- 238000006243 chemical reaction Methods 0.000 claims description 113
- 238000001514 detection method Methods 0.000 claims description 58
- 238000012937 correction Methods 0.000 claims description 48
- 238000000034 method Methods 0.000 claims description 13
- 230000000295 complement effect Effects 0.000 claims description 12
- 230000007423 decrease Effects 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 description 79
- 230000001172 regenerating effect Effects 0.000 description 69
- 238000010586 diagram Methods 0.000 description 41
- 230000006870 function Effects 0.000 description 19
- 230000008929 regeneration Effects 0.000 description 14
- 238000011069 regeneration method Methods 0.000 description 14
- 238000003708 edge detection Methods 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 230000010354 integration Effects 0.000 description 7
- 238000010200 validation analysis Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 235000014676 Phragmites communis Nutrition 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910000652 nickel hydride Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000009789 rate limiting process Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M6/00—Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
- B62M6/40—Rider propelled cycles with auxiliary electric motor
- B62M6/45—Control or actuating devices therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/20—Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62M—RIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
- B62M23/00—Transmissions characterised by use of other elements; Other transmissions
- B62M23/02—Transmissions characterised by use of other elements; Other transmissions characterised by the use of two or more dissimilar sources of power, e.g. transmissions for hybrid motorcycles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
- H02P6/085—Arrangements for controlling the speed or torque of a single motor in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/06—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current
- H02P7/18—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power
- H02P7/24—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
- H02P7/28—Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the present invention relates to motor drive control.
- Fig. 1 shows a diagram for explaining the basic operation of motor drive.
- the driving state of the motor is controlled by controlling the switching duty ratio of the switches S1 to S4 such as FETs included in such an H-bridge circuit.
- the motor enters a power running state.
- PWM Pulse Width Modulation
- the switch S3 and S4 can be driven in the reverse direction to supply power to the motor.
- Diode drive system and (2) Current constant feedback system are well-known techniques for driving a motor with a battery.
- Diode drive system Using a parasitic diode of FET or a dedicated diode in an H-bridge circuit as shown in FIG. 1, an appropriate PWM duty ratio is given only in the power running direction or braking direction, and a rough feedforward is performed. It is a technology that applies torque. It is often used because it can be controlled in the power running or braking direction easily and reliably without worrying about open loop runaway.
- Japanese Patent Laid-Open No. 10-59262 discloses a method of feeding back a deviation between an assist torque command (input) and a motor torque (output) through a proportional circuit (Proportional) and an integrator (Integral). It is a technique generally called PI control or phase delay compensation.
- an object of the present invention is to provide an efficient and stable motor control technique.
- the motor drive control device should be referred to as a speed tracking torque feedforward system (hereinafter abbreviated as torque feedforward), and (A) a first according to the current speed.
- torque feedforward a speed tracking torque feedforward system
- a speed processing unit that generates a second value by converting the value of the duty ratio into a duty ratio
- B a torque processing unit that generates a fourth value by converting the third value according to the target torque into a duty ratio
- C a motor connected to the complementary switching amplifier by controlling switching by a switch included in the complementary switching amplifier by an average duty ratio corresponding to the sum of the second value and the fourth value.
- a driving unit for driving the motor a speed tracking torque feedforward system
- the target torque can be added to the torque and feed forward after balancing with the back electromotive force equivalent voltage according to the current speed without using the diode, and stable and efficient motor drive control can be achieved. Will be able to do.
- Both the first and second values can be positive or negative values.
- the motor drive control device is configured such that the sixth value obtained by torque conversion of the fifth value corresponding to the drive current of the motor deviates from the third value by a predetermined allowable amount or more.
- the third value may be further modified so as to reduce the drive current in accordance with the degree of deviation. In this way, even when it is detected that the drive current of the motor is increased or increased for some reason, the third value (that is, the target torque) is set so as to decrease the drive current of the motor. It is so safe.
- the motor drive control device further includes an advance angle correction unit that generates a signal for performing phase control of the signal for switching from the first value and the third value. Also good. In order to cause the motor to output an appropriate torque according to the target torque, it is preferable to perform advance angle correction taking into consideration the first value corresponding to the current speed.
- the drive unit of the motor drive control device may correct the sum of the second value and the fourth value according to the power supply voltage. This is because the power supply voltage may change depending on the degree of consumption.
- the torque processing unit of the motor drive control device may correct the third value according to the first value.
- a plurality of types of correction curves may be prepared in advance according to the current speed, and for example, a curve that increases the third value when the current speed is fast may be employed.
- the torque processing unit of the motor drive control device includes a torque limiting unit that limits the range of the third value based on the current limit according to the current duty ratio and the power supply voltage. Also good. In this way, in the torque feedforward control, the third value can be limited so that an appropriate current flows to the motor in accordance with the current limitation that is a limitation of the power source.
- the current limit according to the power supply voltage may be set according to the full charge margin and the remaining charge margin of the battery. This prevents overdischarge and overcharge and protects the storage battery. Further, the torque limiter may limit the third value range based on a current limit based on the temperature of the switch. This protects the switch.
- the motor drive control device may further include a speed prediction unit that predicts the current speed from a plurality of past speed detection results. In this way, an accurate current speed can be obtained, and appropriate torque feedforward control can be performed.
- the torque processing unit described above corresponds to the third value corresponding to the first value and the third value corresponding to the third value corresponding to the first value in accordance with a predetermined correspondence relationship.
- the value may be specified.
- the third value is a value having a polarity opposite to that of the first value.
- the appropriate target torque is adjusted according to the current speed during braking.
- the correspondence described above has a polarity opposite to that of the first value and less than or equal to half of the absolute value of the first value (“less than half” includes, for example, a case where “half” exceeds about “half”). In some cases, the relationship is as follows. In this way, regeneration can be performed with a certain degree of efficiency at any speed.
- the brake instruction described above may include an instruction for the brake amount.
- the correspondence relationship may include a different correspondence relationship corresponding to the brake amount. If it does in this way, it will become possible to perform regeneration with high efficiency according to the amount of brakes.
- the correspondence described above may have a portion in which the absolute value of the corresponding third value decreases as the absolute value of the first value increases.
- various curves can be set, the brake torque is limited at a high speed portion to improve the regeneration efficiency.
- the correspondence described above may include a portion of the correspondence determined based on the current limit corresponding to the power supply voltage. This is because the brake also restricts the current according to the state of the battery when regenerating to the storage battery.
- the motor drive control device modifies the duty ratio conversion coefficient or the duty ratio conversion function in the speed processing unit so that the motor drive current becomes 0 when the third value is 0. You may make it have the correction part to perform. Since current detection and gain errors can be canceled, torque / feedforward control is appropriately performed.
- the correction unit described above detects a state where the third value is 0, the difference between the drive current value when the motor drive is cut off and the drive current value when the motor drive is not cut off is 0.
- the duty ratio conversion coefficient or the duty ratio conversion function in the speed processing unit may be modified. The coefficient or function can be calibrated more accurately.
- the motor drive control device is configured to estimate the vehicle speed for the pedal drive wheels from the rotational frequency of the pedal.
- the comparison unit comparing the current vehicle speed with the vehicle speed for the pedal drive wheel, and the comparison result by the comparison unit indicates that the current vehicle speed is faster than the vehicle speed for the pedal drive wheel and the input torque by the pedal
- a control signal output unit that outputs a control signal for suppressing motor driving when the motor is greater than or equal to a threshold value.
- the motor drive control device when focusing on the pedal drive wheel, includes a vehicle speed estimation unit that estimates the vehicle speed of the pedal drive wheel from the rotation frequency of the pedal drive wheel, and the current vehicle speed and the pedal drive wheel.
- a control signal for suppressing the motor drive is output.
- a control signal output unit may be further included. If it does in this way, it will become possible to detect idling of a motor drive wheel, and it will become possible to control this.
- the motor drive control device is configured to reduce the target torque described above to 0 (including the case of approximately 0, a sufficiently small value from the original value (for example, In some cases, the circuit may be further set to 1/10). In this way, the fourth value described above also becomes 0, and the motor drive is suppressed.
- the motor drive control device further includes a circuit that causes the speed processing unit to process the vehicle speed of the pedal drive wheels estimated by the vehicle speed estimation unit described above instead of the current vehicle speed. May be. Since the vehicle speed for the pedal drive wheel is substantially zero, the first value described above is substantially zero, so the second value described above is also substantially zero, and motor driving is suppressed.
- the vehicle speed estimation unit described above may estimate the vehicle speed of the pedal drive wheel based on the product of the rotation frequency of the pedal, the circumference of the pedal drive wheel, and the gear ratio of the transmission. Note that the gear ratio may be unknown, so the maximum gear ratio is used in that case. Various margins may be incorporated.
- the motor drive control device calculates an index value for determining whether or not the motor drive wheel is idling using the current vehicle speed, the rotation frequency of the pedal, and the circumference of the pedal drive wheel. If the input torque by the pedal is greater than or equal to the threshold value, a circuit for determining whether or not the motor-driven wheel is idling based on the index value, and for determining that the motor-driven wheel is idling and for suppressing motor driving You may make it further have a control signal output part which outputs a control signal. As described below, for example, various index values obtained by modifying the current vehicle speed> (pedal rotational frequency ⁇ peripheral length of pedal drive wheel ⁇ gear ratio (however, may be 1)) can be used.
- the motor drive control device includes (A) a speed processing unit that generates a second value by converting a first value corresponding to a current speed to a duty ratio, and (B) a target torque. Complementary by a torque processing unit that generates a fourth value by converting a third value according to the duty ratio, and (C) an average duty ratio according to the sum of the second value and the fourth value.
- a driving unit that controls switching by a switch included in the type switching amplifier to drive a motor connected to the complementary type switching amplifier, and (D) a reference value of the first duty ratio conversion coefficient in the speed processing unit, The value of the first duty ratio conversion coefficient modified so that the driving current of the motor becomes 0 when the third value is 0, and the second duty ratio in the torque generator Based on the reference value of the calculated coefficients, and a correcting unit for correcting the second duty ratio conversion factor.
- the torque processing unit can perform processing with the appropriately corrected coefficient value.
- a program for causing the microprocessor to perform the processing described above such as a flexible disk, an optical disk such as a CD-ROM, a magneto-optical disk, a semiconductor memory (for example, a ROM).
- a computer-readable storage medium such as a hard disk or a storage device.
- Data in the middle of processing is temporarily stored in a storage device such as a RAM (Random Access Memory).
- FIG. 1 is a diagram for explaining a basic operation of motor driving.
- FIG. 2 is a functional block diagram of the motor drive control device according to the first embodiment.
- FIG. 3 is a diagram for explaining the operation of the motor drive control device according to the first embodiment.
- FIG. 4 is a diagram for explaining a problem according to the second embodiment.
- FIG. 5 is a diagram for explaining the problem according to the second embodiment.
- FIG. 6 is a diagram for explaining the problem according to the second embodiment.
- FIG. 7 is a functional block diagram of the motor drive control device according to the second embodiment.
- FIG. 8 is a diagram illustrating an example of the electrically assisted bicycle according to the third embodiment.
- FIG. 9 is a functional block diagram related to the motor drive controller according to the third embodiment.
- FIGS. 1 is a diagram for explaining a basic operation of motor driving.
- FIG. 2 is a functional block diagram of the motor drive control device according to the first embodiment.
- FIG. 3 is a diagram for explaining the operation of the motor drive
- FIG. 10A to 10L are waveform diagrams for explaining the basic operation of motor driving.
- FIG. 11 is a functional block diagram of a calculation unit according to the third embodiment.
- FIG. 12 is a first functional block diagram of the vehicle speed input unit.
- FIG. 13 is a second functional block diagram of the vehicle speed input unit.
- FIG. 14 is a first functional block diagram of the advance angle correction unit.
- FIG. 15 is a second functional block diagram of the advance angle correction unit.
- FIG. 16 is a diagram illustrating an example of a torque correction function.
- FIG. 17 is a functional block diagram of the current limiting unit.
- FIG. 18 is a diagram illustrating an example of a battery derating curve.
- FIG. 19 is a diagram illustrating the relationship between the FET temperature and the current limit value.
- FIG. 11 is a functional block diagram of a calculation unit according to the third embodiment.
- FIG. 12 is a first functional block diagram of the vehicle speed input unit.
- FIG. 13 is a second functional block
- FIG. 20 is a diagram for explaining calibration of a coefficient for converting the duty ratio from the vehicle speed.
- FIG. 21 is a first functional block diagram of the speed coefficient correction unit.
- FIG. 22 is a second functional block diagram of the speed coefficient correction unit.
- FIG. 23 is a diagram for explaining a regenerative brake target torque calculation unit.
- FIG. 24 is a diagram for explaining a regenerative brake target torque calculation unit.
- FIG. 25 is a diagram for explaining a regenerative brake target torque calculation unit.
- FIG. 26 is a diagram for explaining the regenerative brake target torque calculation unit.
- FIG. 27 is a functional block diagram of the regenerative brake target torque calculation unit.
- FIG. 28 is a first functional block diagram of a torque to duty ratio coefficient correction unit.
- FIG. 29 is a second functional block diagram of a torque-to-duty ratio coefficient correction unit.
- FIG. 30 is a functional block diagram of a calculation unit and the like in the fourth embodiment.
- FIG. 31 is a functional block diagram of a calculation unit and the like in a modification of the fourth embodiment.
- FIG. 2 shows a functional block diagram of motor drive control device 500 according to the present embodiment.
- the motor drive control device 500 includes a first duty ratio conversion unit 520, a second duty ratio conversion unit 510, an addition unit 530, and a drive unit 540.
- the output of the drive unit 540 of the motor drive control device 500 is connected to a complementary switching amplifier 610, and the motor 620 is driven by the switching amplifier 610.
- the motor drive control device 500 includes a first digital value corresponding to the current vehicle speed from a sensor or the like connected to the motor drive control device 500 and an instruction mechanism connected to the motor drive control device 500 or A third digital value corresponding to the target torque is input from a sensor or the like, and processing is performed.
- the second duty ratio conversion unit 510 performs processing such as multiplying the first digital value by a conversion coefficient (duty ratio / coefficient corresponding to the current vehicle speed), and the first digital value is converted into the duty ratio.
- the converted second digital value is output.
- the first duty ratio conversion unit 520 performs processing such as multiplying the third digital value by a conversion coefficient (duty ratio / coefficient corresponding to torque) and the like, and converts the third digital value to the duty ratio.
- the converted fourth digital value is output.
- the addition unit 530 adds the second digital value from the second duty ratio conversion unit 510 and the fourth digital value from the first duty ratio conversion unit 520, and outputs the result to the drive unit 540.
- the drive unit 540 switches the switch of the switching amplifier 610 so that the average duty ratio according to the sum of the second and fourth digital values is obtained. This switching may be performed by PWM, PNM (Pulse Number Modulation), PDM (Pulse Density Modulation), 1-bit amplifier, or other methods.
- the motor 620 is driven with a voltage and current according to the average duty ratio.
- the second digital value is represented as D 0 and the fourth digital value is represented as D T.
- the average duty ratio Duty is changed along the straight line D 0 if the current speed is maintained.
- the target torque is set to a positive value, for example, + D t , so this straight line is shifted upward by D t . If it does so, it will accelerate by the amount of target torque, but an average duty ratio will also be made relatively high.
- the target torque is set to a negative value, for example, ⁇ D t , so that the straight line is shifted downward by D t . Then, the speed is reduced by the target torque, and the average duty ratio is also relatively lowered.
- a positive value and a negative value may be set for the second digital value D 0 corresponding to the current vehicle speed.
- the output torque with respect to the target torque coincides with the target torque as indicated by a straight line a.
- the output torque must be a value in a region that is set according to the target torque and is below the upper limit of the allowable amount indicated by the straight line b from the viewpoint of safety and the like.
- the current flowing through the motor has increased, and as shown by the dotted line c in FIG. 5, an excessive current flows with respect to the target torque, resulting in a straight line b representing the upper limit of the allowable amount.
- the motor is driven by requesting an output torque in a region (with hatching) that exceeds.
- the portion where the output torque corresponding to the target torque exceeds the upper limit of the allowable amount is forcibly corrected to the upper limit of the allowable amount (value on the straight line b), for example, and the thick line d
- the motor is driven so as to obtain a corrected output torque as shown in FIG.
- the motor drive control apparatus 700 includes a torque processing unit 750, a second duty ratio conversion unit 770, an addition unit 780, and a drive unit 790.
- the torque processing unit 750 includes a first absolute value converting unit 751, a margin adding unit 752, a torque converting unit 753, a second absolute value converting unit 754, an adding unit 756, a first clamp unit 757, and an integrating unit. 758, a first LPF (Low Pass Filter) unit 759, an addition unit 760, a second clamp unit 761, a polarity inversion unit 763, and a first duty ratio conversion unit 764.
- the drive unit 790 of the motor drive control device 700 is connected to a complementary type switching amplifier 810. Then, the motor 820 is driven by the switching amplifier 810.
- Second duty ratio conversion unit 770 multiplies the first digital value corresponding to the current vehicle speed by a conversion coefficient (duty ratio / coefficient corresponding to current vehicle speed) from a sensor or the like connected to motor drive control device 700.
- the second digital value obtained by converting the first digital value into the duty ratio is output.
- the first absolute value converting unit 751 of the torque processing unit 750 extracts the sign part from the third digital value corresponding to the target torque received from the instruction mechanism or sensor connected to the motor drive control device 700. In addition to outputting to the polarity inversion unit 763, the value portion (
- Tc) is output to the margin adding unit 752 and the adding unit 760.
- the torque conversion unit 753 performs processing such as multiplying the fifth digital value corresponding to the motor drive current value flowing through the motor 820 by a conversion coefficient (coefficient corresponding to torque / motor drive current value).
- the sixth digital value obtained by torque-converting the fifth digital value is output.
- the second absolute value converting unit 754 removes the sign portion of the sixth digital value and outputs a value portion (
- the margin adding unit 752 adds a margin to the
- in the form of Tm Tc ⁇ 1.15 + a predetermined number ⁇ , for example. Then, the adding unit 756 adds
- the addition result is a negative value, that is, when Tm is larger than the sixth digital value, there is no problem even if the target torque is output as it is. 0 is output.
- Tm is smaller than the
- the integrating unit 758 multiplies the addition result by the current correction follow-up time constant fb and outputs the result.
- the primary LPF unit 759 performs smoothing processing of the primary low-pass filter on the output of the integrating unit 758 and outputs the result. In this way, the correction amount based on the motor current value is calculated.
- the adding unit 760 subtracts the output of the primary LPF unit 759 from the
- the second clamp unit 761 outputs 0 when the output result of the adding unit 760 becomes a negative value, that is, when the correction amount has increased, and the output result of the adding unit 760 is positive. If it becomes a value, it is output as it is.
- the polarity determination unit 763 receives a signal indicating that the target torque is a negative value and the sign portion is negative from the first absolute value conversion unit 751, the output from the second clamp unit 761 When the signal indicating that the sign part is positive is received, the signal is output as it is without performing any processing. In this way, the third digital value is corrected according to the motor current value, and then output to the first duty ratio conversion unit 764.
- the first duty ratio conversion unit 764 performs processing such as multiplying the corrected third digital value by a conversion coefficient (duty ratio / coefficient corresponding to torque), and the like, thereby correcting the third digital value after correction. Is output as a fourth digital value.
- the addition unit 780 adds the second digital value from the second duty ratio conversion unit 770 and the fourth digital value from the first duty ratio conversion unit 764 and outputs the result to the drive unit 790.
- the drive unit 790 switches the switch of the switching amplifier 810 so that the average duty ratio according to the sum of the second and fourth digital values is obtained. This switching may be performed by PWM, PNM (Pulse Number Modulation), PDM (Pulse Density Modulation), 1-bit amplifier, or other methods.
- the motor 820 is driven with a voltage and current according to the average duty ratio.
- FIG. 8 is an external view showing an example of the electrically assisted bicycle according to the third embodiment.
- This electrically assisted bicycle 1 is of a general rear wheel drive type in which a crankshaft and a rear wheel are connected via a chain, and is equipped with a motor drive device.
- the motor drive device includes a secondary battery 101, a motor drive controller 102, a torque sensor 103, a brake sensor 104, a motor 105, and an operation panel 106.
- the secondary battery 101 is, for example, a lithium ion secondary battery having a maximum supply voltage (voltage at full charge) of 24 V, but may be another type of battery, such as a lithium ion polymer secondary battery, a nickel hydride storage battery, or the like. good.
- the torque sensor 103 is provided on a wheel attached to the crankshaft, detects the pedaling force of the pedal by the passenger, and outputs the detection result to the motor drive controller 102.
- the brake sensor 104 is composed of a magnet and a known reed switch.
- the magnet is fixed to a brake wire connected to the brake lever in a housing that fixes the brake lever and through which the brake wire is passed.
- the brake lever turns on the reed switch when it is gripped by hand.
- the reed switch is fixed in the housing.
- the reed switch conduction signal is sent to the motor drive controller 102.
- the motor 105 is, for example, a well-known three-phase DC brushless motor, and is attached to, for example, the front wheel of the electrically assisted bicycle 1.
- the motor 105 rotates the front wheel, and the rotor is connected to the front wheel so that the rotor rotates in accordance with the rotation of the front wheel.
- the motor 105 includes a hall element and the like, and outputs rotor rotation information (that is, a hall signal) to the motor drive controller 102.
- the operation panel 106 receives, for example, an instruction input regarding the presence / absence of assist from the user, and outputs the instruction input to the motor drive controller 102. Note that the operation panel 106 may receive an assist ratio setting input from the user and output the setting input to the motor drive controller 102.
- the motor drive controller 102 includes a controller 1020 and an FET (Field Effect Transistor) bridge 1030.
- the FET bridge 1030 includes a high side FET (S uh ) and a low side FET (S ul ) that perform switching for the U phase of the motor 105, and a high side FET (S vh ) that performs switching for the V phase of the motor 105, and It includes a low-side FET (S vl ), a high-side FET (S wh ) and a low-side FET (S wl ) that perform switching for the W phase of the motor 105.
- This FET bridge 1030 constitutes a part of a complementary switching amplifier.
- the FET bridge 1030 is provided with a thermistor 108 for measuring this temperature.
- the controller 1020 includes a calculation unit 1021, a temperature input unit 1022, a current detection unit 1023, a vehicle speed input unit 1024, a variable delay circuit 1025, a motor drive timing generation unit 1026, a torque input unit 1027, A brake input unit 1028 and an AD input unit 1029 are provided.
- the calculation unit 1021 is input from the operation panel 106 (for example, on / off and operation mode (for example, assist ratio)), input from the temperature input unit 1022, input from the current detection unit 1023, input from the vehicle speed input unit 1024, The following calculation is performed using the input from the torque input unit 1027, the input from the brake input unit 1028, and the input from the AD input unit 1029, and outputs to the motor drive timing generation unit 1026 and the variable delay circuit 1025.
- the calculation unit 1021 includes a memory 10211, and the memory 10211 stores various data used for calculation, data being processed, and the like. Further, the calculation unit 1021 may be realized by executing a program by a processor. In this case, the program may be recorded in the memory 10211.
- the temperature input unit 1022 digitizes the input from the thermistor 108 and outputs it to the arithmetic unit 1021.
- the current detection unit 1023 is a detection resistor 107 that detects a current flowing through the FET in the FET bridge 1030, digitizes a voltage value corresponding to the current, and outputs the digitized value to the calculation unit 1021.
- the vehicle speed input unit 1024 calculates the current vehicle speed from the hall signal output from the motor 105 and outputs the current vehicle speed to the calculation unit 1021.
- the torque input unit 1027 digitizes a signal corresponding to the pedaling force from the torque sensor 103 and outputs the digitized signal to the calculation unit 1021.
- the brake input unit 1028 digitizes a signal corresponding to the braking force from the brake sensor 104 and outputs the signal to the calculation unit 1021.
- An AD (Analog-Digital) input unit 1029 digitizes the output voltage from the secondary battery 101 and outputs the digitized voltage to the calculation unit 1021. Further, the memory 10211 may be provided separately from the calculation unit 1021.
- the calculation unit 1021 outputs the advance value to the variable delay circuit 1025 as the calculation result.
- the variable delay circuit 1025 adjusts the phase of the Hall signal based on the advance value received from the calculation unit 1021 and outputs the adjusted signal to the motor drive timing generation unit 1026.
- the calculation unit 1021 outputs, for example, a PWM code corresponding to the PWM duty ratio to the motor drive timing generation unit 1026 as a calculation result.
- the motor drive timing generation unit 1026 generates and outputs a switching signal for each FET included in the FET bridge 1030 based on the adjusted Hall signal from the variable delay circuit 1025 and the PWM code from the calculation unit 1021.
- FIGS. 10A shows the U-phase hall signal HU output from the motor 105
- FIG. 10B shows the V-phase hall signal HV output from the motor 105
- FIG. 10C shows the output from the motor 105.
- W-phase hall signal HW W-phase hall signal HW.
- the Hall element of the motor 105 is installed so that the Hall signal is output at a slightly advanced phase as shown in FIG. I have to. Therefore, the U-phase adjusted hall signal HU_In as shown in FIG. 10D is output from the variable delay circuit 1025 to the motor drive timing generation unit 1026, and the V-phase adjusted hall signal as shown in FIG.
- the signal HV_In is output from the variable delay circuit 1025 to the motor drive timing generation unit 1026, and the W-phase adjusted hall signal HW_In as illustrated in FIG. 10F is output from the variable delay circuit 1025 to the motor drive timing generation unit 1026.
- one period of the hall signal is divided into six phases with an electrical angle of 360 degrees.
- the counter electromotive force voltage is Motor_U back electromotive force at the U phase terminal, Motor_V back electromotive force at the V phase terminal, and Motor_W back electromotive force at the W phase terminal. Occurs.
- switching signals as shown in FIGS. 10 (j) to 10 (l) are sent to the gates of the FETs of the FET bridge 1030. Output to.
- U_HS represents the gate signal of the U-phase high-side FET (S uh )
- U_LS represents the gate signal of the U-phase low-side FET (S ul ).
- PWM and “/ PWM” indicate a period of ON / OFF with a duty ratio corresponding to the PWM code which is the calculation result of the calculation unit 1021, and since it is a complementary type, / PWM is OFF when PWM is ON. If PWM is off, / PWM is on.
- the “On” section of the low-side FET (S ul ) is always on.
- V_HS represents the gate signal of the V-phase high-side FET (S vh )
- V_LS represents the gate signal of the V-phase low-side FET (S vl ).
- W_HS in FIG. 10L represents the gate signal of the W-phase high-side FET (S wh )
- W_LS represents the gate signal of the W-phase low-side FET (S wl ).
- the meaning of the symbols is the same as in FIG.
- the U-phase FETs (S uh and S ul ) perform PWM switching in phases 1 and 2, and the U-phase low-side FET (S ul ) is turned on in phases 4 and 5.
- the V-phase FETs (S vh and S vl ) perform PWM switching in phases 3 and 4, and the V-phase low-side FET (S vl ) is turned on in phases 6 and 1.
- the W-phase FETs (S wh and S wl ) perform PWM switching in phases 5 and 6, and the W-phase low-side FET (S wl ) is turned on in phases 2 and 3.
- the motor 105 can be driven with a desired torque.
- the calculation unit 1021 includes a regenerative brake target torque calculation unit 1201, a regenerative enablement unit 1202, a drive torque target calculation unit 1203, an assist enablement unit 1204, an addition unit 1206, an advance correction unit 1207, and torque correction.
- Unit 1208, current limiting unit 1209, torque guard unit 1210, first duty ratio conversion unit 1211, torque slew rate limiting unit 1212, second duty ratio conversion unit 1213, speed coefficient correction unit 1214, speed A slew rate limiting unit 1215, an adding unit 1216, and a PWM code generating unit 1217 are included.
- the vehicle speed value from the vehicle speed input unit 1024 and the pedal torque value from the torque input unit 1027 are input to the drive torque target calculation unit 1203, and the assist torque value is calculated.
- the calculation content of the drive torque target calculation unit 1203 is not the gist of the present embodiment and will not be described in detail.
- the drive torque target calculation unit 1203 extracts the ripple component after smoothing the pedal torque value with LPF. Then, an assist torque value corresponding to a value obtained by mixing the smoothed pedal torque value and the ripple component at a predetermined mixing ratio is calculated. In this calculation, there is a case where calculation is performed such as adjusting the mixing ratio according to the vehicle speed or multiplying the smoothed pedal torque value after limiting the assist ratio to be used according to the vehicle speed.
- the regenerative brake target torque calculation unit 1201 calculates a regenerative brake target torque value by performing a calculation described later according to the vehicle speed value from the vehicle speed input unit 1024.
- regenerative enabling unit 1202 when an input signal indicating that there is a brake is input from brake input unit 1028, regenerative enabling unit 1202 outputs the regenerative target torque value from regenerative brake target torque calculating unit 1201 to adding unit 1206. . Otherwise, 0 is output.
- the assist validation unit 1204 when an input signal indicating no brake is input from the brake input unit 1028, the assist validation unit 1204 outputs the assist torque value from the drive torque target calculation unit 1203. Otherwise, 0 is output.
- the addition unit 1206 inverts and outputs the polarity of the regeneration target torque value from the regeneration validation unit 1202 or outputs the assist torque value from the assist validation unit 1204 as it is.
- the assist torque value and the regeneration target torque value are abbreviated as a target torque value.
- the advance angle correction unit 1207 performs calculation according to the vehicle speed value and the target torque value, and outputs the calculation result to the variable delay circuit 1025. Further, the torque correction unit 1208 performs a calculation described later according to the target torque value and the vehicle speed value, and outputs the calculation result to the current limiting unit 1209. Furthermore, the current limiting unit 1209 performs the calculation described later on the output from the torque correction unit 1208 and outputs the calculation result. For example, the torque guard unit 1210 performs an operation on the output from the current limiting unit 1209 with respect to the torque processing unit 750 (excluding the first duty ratio conversion unit 764) in the second embodiment. Subsequently, the calculation result is output to the first duty ratio conversion unit 1211.
- the first duty ratio conversion unit 1211 calculates the torque duty code by multiplying the output from the torque guard unit 1210 by the conversion coefficient d t and outputs the torque duty code to the torque slew rate limiting unit 1212.
- the torque slew rate limiting unit 1212 performs a well-known slew rate limiting process on the output from the first duty ratio conversion unit 1211 and outputs the processing result to the adding unit 1216.
- the speed coefficient correction unit 1214 corrects the conversion coefficient d s according to the target torque value and outputs it to the second duty ratio conversion unit 1213.
- the second duty ratio conversion unit 1213 calculates a vehicle speed duty code by multiplying the vehicle speed value by the corrected conversion coefficient d s , and outputs the vehicle speed duty code to the speed slew rate limiting unit 1215.
- Speed slew rate limiting unit 1215 performs well-known slew rate limiting processing on the output from second duty ratio conversion unit 1213 and outputs the processing result to addition unit 1216.
- the addition unit 1216 adds the torque duty code from the torque slew rate control unit 1212 and the vehicle speed duty code from the speed slew rate limiting unit 1215 to calculate a duty code, and outputs the duty code to the PWM code generation unit 1217.
- the PWM code generation unit 1217 multiplies the duty code by the battery voltage / reference voltage (for example, 24 V) from the AD input unit 1029 to generate a PWM code.
- the PWM code is output to the motor drive timing generation unit 1026.
- Vehicle speed input unit 1024 In the present embodiment, as described above, many calculations based on the vehicle speed are performed. Therefore, obtaining an accurate vehicle speed is important in terms of accuracy.
- the vehicle speed input unit 1024 includes an edge detection unit 3001, a counter 3002, a first register 3003, a second register 3004, a multiplication unit 3005, an addition unit 3006, and an inverse conversion unit 3007.
- the edge detection unit 3001 receives a hall signal, detects the rise of the hall signal, for example, and outputs the detection signal to the counter 3002, the first register 3003, and the second register 3004.
- the counter 3002 resets the current count value in response to the detection signal from the edge detection unit 3001, and starts counting the clock (CLK). Further, the first register 3003 and the second register 3004 output the held numerical values. However, initially, the held value is initialized to 0.
- the counter 3002 In response to the next detection signal from the edge detection unit 3001, the counter 3002 outputs the current count value to the first register 3003, resets the current count value, and restarts counting of the clock CLK. Further, the first register 3003 outputs the value currently held and also stores the output value from the counter 3002. Further, the second register 3004 outputs the value currently held and stores the value from the first register 3003.
- the counter 3002 outputs the current count value to the first register 3003, resets the current count value, and restarts counting of the clock CLK.
- the first register 3003 outputs the value currently held and also stores the output value from the counter 3002.
- the second register 3004 outputs the value currently held and stores the value from the first register 3003.
- the counter 3002 counts a value corresponding to the rising cycle of the Hall signal, and the second register 3004 stores the previous cycle, and the first register 3003 stores the previous cycle. Is done.
- the multiplication unit 3005 doubles the output value from the first register 3003, and the addition unit 3006 performs an operation of subtracting the output value from the second register 3004 from the output value from the multiplication unit 3005. That is, a value obtained by subtracting the previous two cycles from the time obtained by doubling the previous cycle is calculated.
- the reciprocal conversion unit 3007 calculates the reciprocal of the output value of the addition unit 3006, the predicted current vehicle speed can be obtained.
- the vehicle speed input unit 1024 shown in FIG. 12 can be realized by a functional block diagram as shown in FIG.
- the vehicle speed input unit 1024 in FIG. 13 includes an edge detection unit 3011, a counter 3012, a first register 3013, a multiplication unit 3014, an addition unit 3015, a second register 3016, and an inverse conversion unit 3017.
- the basic operation is almost the same as in FIG. 12, but the first register 3013 holds the previous cycle, and the multiplication unit 3014 doubles the value (the current cycle) output by the counter 3012. And output. Then, the adding unit 3015 performs an operation of subtracting the previous cycle from the double value of the current cycle, and outputs the result to the second register 3016.
- the second register 3016 stores the value of the previous predicted cycle.
- the second register 3016 outputs to the reciprocal conversion unit 3017 in accordance with the detection signal from the edge detection unit 3011. The output value of the adder 3015 is saved.
- the reciprocal conversion unit 3017 calculates the reciprocal of the previous predicted cycle, and obtains the predicted current vehicle speed.
- the vehicle speed can be predicted with high accuracy.
- Advance angle correction unit 1207 Due to the armature reaction due to the influence of the self-inductance of the coil of the motor 105 and the mutual inductance with surrounding coils, the reluctance of the iron core, etc. Power transfer, waveform and level may be distorted and target torque may not be produced. In order to correct them, advance angle correction is performed.
- a Hall element is installed in the motor 105 so as to output a Hall signal whose phase is slightly advanced, and the variable delay circuit 1025 responds to an output from the calculation unit 1021.
- the phase of the Hall signal is advanced or retarded.
- the advance angle correction unit 1207 (see FIG. 11) in the present embodiment is realized by a functional block configuration as shown in FIG. In this example, a configuration example is shown in which the advance value is influenced independently by the vehicle speed and the torque.
- the advance angle correction unit 1207 in the example of FIG. 14 includes a first advance angle calculation unit 3021, a second advance angle calculation unit 3022, and addition units 3023 and 3024.
- the first advance angle calculation unit 3021 calculates the first advance angle value by multiplying the target torque value by a preset (advance angle / torque) coefficient.
- the second advance angle calculation unit 3022 calculates a second advance angle value by multiplying the vehicle speed value by a preset (advance angle / vehicle speed) coefficient.
- the adder 3023 adds the second advance value and a preset initial fixed advance value (advance value that the hall signal has in advance), and outputs the addition result to the adder 3024. To do.
- the adder 3024 adds the addition result of the adder 3023 and the first advance value to obtain an advance value.
- the advance correction unit 1207 when the advance value is affected as a synergistic effect between the vehicle speed and the torque is realized by a functional block configuration as shown in FIG. 15, for example.
- the advance angle correction unit 1207 in the example of FIG. 15 includes a multiplication unit 3031, an advance angle calculation unit 3032, and an addition unit 3033.
- the multiplication unit 3031 calculates, for example, the product of the target torque value and the vehicle speed value, and outputs the product to the advance angle calculation unit 3032.
- the advance angle calculation unit 3032 multiplies the output value from the multiplication unit 3031 by a preset advance angle / (torque / vehicle speed) coefficient to calculate an advance value for the fluctuation.
- the adder 3033 calculates an advance value by adding the output value of the advance angle calculator 3032 and a preset initial fixed advance value.
- the advance value can be adjusted by preparing an appropriate conversion coefficient (advance angle / (torque / vehicle speed)) coefficient.
- Torque correction unit 1208 corrects the target torque according to the current vehicle speed.
- a correction function as shown in FIG. 16 is prepared and applied.
- the straight line f 1 represents a function when the input target torque is output as it is as the corrected target torque.
- a curve f 2 represents a function when the vehicle speed is 0, and a curve f 3 represents a function when the vehicle speed is lower than 0 (first vehicle speed range).
- a curve f 4 represents a function when the vehicle speed is medium (second vehicle speed range higher than the first vehicle speed range), and a curve f 5 represents a function when the vehicle speed is high (second vehicle speed).
- 3 represents a function of a third vehicle speed range that is faster than the range.
- the shape of the curve is determined according to the type of motor.
- FIG. 16 shows an example of a motor with brushless current rectification and an iron core.
- a function that outputs a larger target torque value at high speed may be adopted. In this way, a target torque value that maintains or increases the current speed is output.
- the current limiting unit 1209 includes a positive / negative determining unit 3041, a zero determining unit 3042, a continuation determining unit 3043, a sampling unit 3044, and a discharge derating unit 3045.
- the positive / negative determination unit 3041 determines the sign of the input target torque value (target torque value before current limitation) and outputs a signal representing positive or negative to the torque clip unit 3053 and the selection unit 3049.
- the zero determination unit 3042 determines whether or not the input target torque value is 0. If the target torque value is 0, the zero determination unit 3042 does not output because the process is unnecessary. On the other hand, if the target torque value is not 0, it is output to the continuation determination unit 3043.
- the continuation determination unit 3043 outputs a sampling instruction to the sampling unit 3044 after confirming whether a value exceeding, for example, four unit periods 0 continues.
- the sampling unit 3044 outputs the power supply voltage value from the AD input unit 1029 to the discharge derating unit 3045 and the charge derating unit 3046 while receiving the sampling instruction from the continuation determination unit 3043.
- a derating curve g 1 for discharging and a derating curve g 2 for charging are set in advance according to the secondary battery 101.
- the discharge derating unit 3045 outputs a value that monotonically increases stepwise or continuously with respect to the power supply voltage between 0 and 1 when the power supply voltage is between 18V and 22V, and is less than 18V. If so, "0" is output to prevent overdischarge when the charged amount is small.
- the discharge derating unit 3045 outputs “1” if the power supply voltage is 22 V or higher.
- the charge derating unit 3046 outputs “0” if the power supply voltage is 31 V or higher, and is between 0 and 1 between 27 V and 31 V, stepwise or continuously with respect to the power supply voltage. Outputs a monotonically decreasing value to prevent overcharging. Further, when the power supply voltage is 27 V or less, the charging derating unit 3046 outputs “1”.
- the selection unit 3049 outputs the output from the first current conversion unit 3047 to the current conversion unit 3050 when the output from the positive / negative determination unit 3041 represents positive. On the other hand, when the output from the positive / negative determination unit 3041 indicates negative, the selection unit 3049 outputs the current limit value from the second current conversion unit 3048 to the current conversion unit 3050.
- the current conversion unit 3050 converts the current limit value output from the selection unit 3049 into the current limit value of the motor drive current by dividing the current limit value by the PWM code one unit time ago.
- the switching amplifier as shown in FIG. 2 can be regarded as a DC transformer, and the following formula is established as long as there is no loss in the switching element or the like.
- Battery voltage ⁇ Duty ratio Motor drive voltage Since the switching amplifier is constant power conversion, the voltage and current are inversely proportional, so the following equation is obtained.
- Battery current / duty ratio motor drive current
- the current conversion unit 3050 calculates the current limit value of the motor drive current from the current limit value / PWM code obtained from the battery voltage.
- the PWM code may be “0”, in order to avoid dividing by “0”, for example, a lower limit value is set, and when it is less than or equal to the lower limit value, it is divided by the lower limit value.
- the FET current limit value setting unit 3054 outputs the FET current limit value according to the temperature from the temperature input unit 1022, for example, from the relationship shown in FIG. In the example of FIG. 19, the FET current limit value is a constant value until the FET temperature is 85 ° C., but gradually decreases when the FET temperature is 85 ° C. or higher, and when the FET temperature reaches 125 ° C., the FET current limit value becomes zero.
- the FET current limit value setting unit 3054 specifies the FET current limit value according to such a curve and outputs it to the minimum value output unit 3051.
- FET current limit value (rated temperature (125 ° C.) ⁇ FET temperature) * FET current limit value / (rated temperature (125 ° C.) ⁇ Derating start temperature (85 ° C.))
- the minimum value output unit 3051 specifies the smaller value of the output from the current conversion unit 3050 (current limit value of the motor drive current) and the output from the FET current limit value setting unit 3054 (FET current limit value). And output to the torque conversion unit 3052.
- the torque conversion unit 3052 calculates a converted torque value by multiplying the output value from the minimum value output unit 3051 by a conversion factor (torque / current) set in advance, and outputs it to the torque clip unit 3053.
- the torque clip unit 3053 outputs the target torque value before limitation as the target torque value after limitation if the target torque value before limitation is equal to or less than the conversion torque value from the torque conversion unit 3052.
- the target torque value before the limit exceeds the converted torque value from the torque conversion unit 3052, the converted torque value is output as the target torque value after the limit.
- the torque feedforward control satisfies the current limitation such as (1) limitations on the discharge current and charging current of the secondary battery 101 and (2) current limitation due to the temperature of the FET bridge 1030.
- the current limitation such as (1) limitations on the discharge current and charging current of the secondary battery 101 and (2) current limitation due to the temperature of the FET bridge 1030.
- Such a target torque value can be generated.
- the torque duty code is output to the adding unit 1216 via the torque slew rate limiting unit 1212.
- This conversion coefficient d s is a conversion coefficient for calculating a duty ratio when the motor 105 generates a counter electromotive force according to its speed, and is uniquely obtained from the basic characteristics of the motor 105.
- the speed duty The code may become too large or too small.
- the motor characteristics are as indicated by the dotted line p 2 in FIG. 20, and the duty ratio Duty corresponds to the vehicle speed.
- the value of the conversion coefficient d s is large, the motor characteristics as indicated by the solid line p 1 in FIG. 20 are assumed, so that the duty ratio Duty with respect to the vehicle speed always increases, and control is performed.
- the intention of zero torque becomes a power running state.
- the value of the conversion coefficient d s is small, the intention of zero torque in the control becomes a braking state.
- the conversion coefficient d s is dynamically corrected by the calculation described below.
- the motor driving current is zero.
- the motor drive current should be 0 because the back electromotive force of the motor 105 and the supply voltage supplied by the switching amplifier coincide with each other.
- the conversion coefficient d s is deviated, torque is generated even if the target torque value is 0, and the motor drive current flows. Therefore, the motor drive current at this time is measured and no current flows. The conversion coefficient d s is corrected in such a direction.
- the speed coefficient correction unit 1214 is realized by the function shown in the functional block diagram of FIG.
- the speed coefficient correction unit 1214 includes a zero detection unit 3061, a torque conversion unit 3062, a multiplexer (MUX) 3063, an integrator 3064, and an addition unit 3065.
- MUX multiplexer
- the torque conversion unit 3062 multiplies the current value from the current detection unit 1023 by a conversion factor (torque / current) set in advance to calculate a torque value corresponding to the motor drive current. Further, the zero detection unit 3061 determines whether the target torque value is 0, and outputs a detection signal to the multiplexer 3063 when it detects 0. The multiplexer 3063 outputs the output value from the torque conversion unit 3062 to the integrator 3064 when the detection signal from the zero detection unit 3061 is output, and 0 when the detection signal is not output. Output to the integrator 3064.
- a conversion factor torque / current
- the integrator 3064 integrates the output value from the multiplexer 3063 for a predetermined time, and outputs the integration result to the adder 3065.
- the adding unit 3065 calculates the conversion coefficient D sa to be used this time by subtracting the integration result from the preset conversion coefficient D ss , and outputs it to the second duty ratio conversion unit 1213.
- the speed coefficient correction unit 1214 may be realized by a function as shown in the functional block diagram of FIG. 22, for example.
- the speed coefficient correction unit 1214 includes a zero detection unit 3061, an intermittent interruption control unit 3072, a first selection unit 3073, a second selection unit 3074, an addition unit 3075, an integrator 3076, and an addition unit 3077. And a reversing unit 3078.
- the zero detection unit 3061 determines whether the target torque value is 0. When the zero detection unit 3061 detects 0, the zero detection unit 3061 outputs a detection signal to the intermittent cutoff control unit 3072, the first selection unit 3073, and the second selection unit 3074. When receiving the detection signal from the zero detection unit 3061, the intermittent cutoff unit 3072 intermittently outputs a cutoff signal for stopping the switching of the switch of the FET bridge 1030 to the motor drive timing generation unit 1026.
- the first selection unit 3073 selects and outputs the current value from the current detection unit 1023 when the zero detection unit 3061 outputs a detection signal and the intermittent cutoff control unit 3072 outputs a cutoff signal.
- the second selection unit 3074 the zero detection unit 3061 outputs a detection signal and the intermittent cutoff control unit 3072 does not output a cutoff signal (that is, the inversion unit 3078 cuts off from the intermittent cutoff control unit 3072).
- the signal is off, the current value from the current detection unit 1023 is selected and output.
- the adding unit 3075 calculates an error by subtracting the output value from the second selection unit 3074 from the output value from the first selection unit 3073.
- Integrator 3076 integrates the output value from adder 3075 for a predetermined time, and outputs the integration result to adder 3077.
- the adding unit 3077 calculates the conversion coefficient D sa to be used this time by subtracting the integration result from the preset conversion coefficient D ss , and outputs it to the second duty ratio conversion unit 1213.
- the time until the next calculation is several minutes. Change the control time interval, such as changing it later.
- Second duty ratio conversion unit 1213 Although described above, the second duty ratio conversion unit 1213, the current vehicle speed value, by multiplying the conversion factor D sa, calculates the vehicle speed duty code. The vehicle speed duty code is output to the adding unit 1216 via the speed slew rate limiting unit 1215.
- PWM code generator 1217 The PWM code generation unit 1217 multiplies the duty code, which is the addition result of the torque duty code and the vehicle speed duty code by the addition unit 1216, by the battery voltage / reference voltage (for example, 24V) from the AD input unit 1029, thereby obtaining the final result.
- a typical PWM code is calculated and output to the motor drive timing generation unit 1026.
- Regenerative brake target torque calculation unit 1201 When the user inputs a brake instruction by the brake lever and the brake sensor 104 detects this brake instruction, a signal indicating that there is a brake (a signal indicating the strength of the brake in some cases) is output to the brake input unit 1028. In response to this signal, the brake input unit 1028 performs an operation as described below to calculate an appropriate regenerative brake torque value.
- the horizontal axis in FIG. 23 represents the set value of the regenerative brake torque
- the vertical axis represents the corresponding torque value, efficiency, or power.
- the regenerative efficiency is 0 when the set value of the regenerative brake torque becomes a value corresponding to the current vehicle speed
- the regenerative efficiency is 100% when the regenerative brake torque value is 0.
- the brake torque value is 0
- the brake torque value is 0
- the set value of the regenerative brake torque is a value corresponding to the vehicle speed
- the brake torque value corresponds to the vehicle speed. Value.
- the regenerative power becomes a curve r 3 , and the set value of the regenerative brake torque is 1 ⁇ 2 of the vehicle speed equivalent value.
- the regenerative power is maximized at a regenerative efficiency of 50%.
- the regenerative power can be maximized by setting the regenerative brake torque to 1/2 of the vehicle speed equivalent value.
- the horizontal axis in FIG. 24 represents the vehicle speed, and the vertical axis represents the regenerative brake target torque value.
- the dotted straight line q 1 represents the vehicle speed-torque relationship when the regenerative brake target torque value corresponding to the vehicle speed is output, and has a regenerative efficiency of 0% (short brake) as described with reference to FIG. In the region above the straight line q 1 , an electric power takeout brake is provided.
- the dotted straight line q 2 represents the vehicle speed-torque relationship when a regenerative brake target torque value that is 1/2 of the vehicle speed equivalent value is output. As described with reference to FIG.
- the regenerative efficiency is 50%.
- the maximum regenerative power can be obtained.
- the region above the straight line q 2 is a region where it is more advantageous to use the mechanical brake together. Therefore, an appropriate curve is adopted in a region below the straight line q 2 while taking into account the constraint conditions.
- the instantaneous regeneration efficiency at each speed is determined by the ratio of the instantaneous regenerative brake voltage to the counter electromotive force voltage at the instantaneous speed.
- a curve with a constant regeneration efficiency that is, a proportional straight line passing through the origin. The straight line q 10 approaches the X axis if the required stop distance is sufficiently long, and the regeneration efficiency approaches 100%.
- the straight line q 10 becomes the same as the straight line q 2 from which the maximum instantaneous regenerative power can be obtained, and the total regenerative efficiency at that time is 50%.
- the regenerative torque curve remains the same as the straight line q 2 from which the maximum instantaneous regenerative power can be obtained, and it is necessary to use a mechanical brake together. If the torque of the regenerative brake is increased further, the instantaneous regenerative electric power will be reduced, so it is better to turn it to the mechanical brake.
- a group of dotted lines q 7 representing the maximum constant braking line in the high speed range and parallel to the horizontal axis, and a dotted line representing the minimum constant braking line in the low speed range and parallel to the horizontal axis There is a straight line group q 6 .
- deceleration curve becomes a curve which exponentially decaying with time, with even stopping distance is constant, since the stop time becomes infinite, in the expense of some regeneration efficiency at low-speed
- a straight line q 6 that maintains a large torque is adopted.
- the maximum charging current also varies depending on the battery voltage, that is, the derating based on the remaining battery level and the battery temperature, and the constant regenerative power itself is proportional to the battery voltage according to the above formula, it is expressed as a plurality of hyperbolic curves.
- the superiority or inferiority of the regenerative brake is better when the total regenerative power is large when the regenerative brake is stopped at a constant speed or less than the required constant distance (not a constant time). At this time, if it cannot be stopped within a predetermined distance, the mechanical brake is used together until it stops. If there is no restriction of a certain distance or less, regenerative efficiency is more advantageous for light regenerative braking that is less effective and does not stop within a range where mechanical loss does not become a problem. Therefore, the evaluation is performed in a state where the mechanical brake is used together to the extent that it can be stopped within a predetermined distance so as to act as a brake function.
- the curve q 11 in FIG. 24 is an example, and a curve q 13 as shown in FIG. 25 may be adopted.
- the curve q 13 has a shape along the curve q 2 described above in the low frequency range, and the regenerative brake target torque value becomes constant as the speed increases, and is limited by the battery charging current limiting line group q 8 in the high speed range. ing.
- the dotted straight line q 12 represents a 25% braking line (regeneration efficiency 75%). In the high-speed region, the straight line becomes less than the straight line q 12 in the vicinity of being limited by the battery charging current limiting line group q 8 .
- FIG. 26 shows an example when the required brake strength is received from the brake input unit 1028.
- it employs a curve q 14 if required braking intensity is small, employs a curve q 15 in the case in the required braking intensity, employs a curve q 16 if required braking intensity is large To do.
- the curve q 16 is limited by one of the battery charging current limiting line group q 8 . Even in such a case, it is along the straight line q 2 at a low speed and does not exceed this straight line.
- FIG. 27 shows a functional block diagram of the regenerative brake target torque calculation unit 1201 for realizing the curve q 11 shown in FIG. 27 includes a conversion unit 3081, a multiplication unit 3086, a multiplication unit 3082, a minimum value output unit 3083, a maximum value output unit 3084, and a minimum value output unit 3085.
- the conversion unit 3081 torque-converts the current vehicle speed by multiplying the current vehicle speed from the vehicle speed input unit 1024 by a conversion factor set in advance. This conversion coefficient is obtained by dividing the conversion coefficient (duty ratio / vehicle speed coefficient) for converting the vehicle speed into the duty ratio by the conversion coefficient (duty ratio / torque coefficient) for converting the torque into the duty ratio.
- Multiplier 3082 multiplies the output value of conversion unit 3081 by 1 ⁇ 2. Thereby, the corresponding points on the straight line q 2 in FIG. 24 are obtained. Then, the minimum value output unit 3083 compares the preset minimum regenerative torque set value (straight line group q 6 in FIG. 24) with a value that is 1 ⁇ 2 of the output value of the conversion unit 3081, whichever is smaller. The value of is output. Multiplying unit 3086 multiplies the output value of conversion unit 3081 by a preset regenerative braking rate setting value rb in the medium speed range, and outputs the result to maximum value output unit 3084.
- the maximum value output unit 3084 compares the output value of the minimum value output unit 3083 with the corresponding value among the straight lines q 3 to q 5 in FIG. 24, and outputs the larger value. Further, the minimum value output unit 3085 compares the output value from the maximum value output unit 3084 with a preset maximum regenerative torque set value (straight line group q 7 in FIG. 24), and determines the smaller one as the regenerative brake. Output as target torque value.
- the influence of the variation is reduced without performing automatic calibration of a conversion coefficient (also referred to as a torque-to-duty ratio coefficient) for calculating a torque duty code from the target torque value.
- a conversion coefficient also referred to as a torque-to-duty ratio coefficient
- the torque to duty ratio coefficient is Dt
- Variation factors are coil length, resistance, and magnetic flux density. Among these, the resistance of the coil is less likely to vary depending on the material as long as it is a copper wire, and is caused by variations in mechanical dimensions.
- Vs Kv ⁇ B ⁇ L ⁇ S (Kv is a fixed proportional constant)
- B ⁇ L is commonly included in the expressions of the torque-to-duty ratio coefficient Dt and the speed-to-duty ratio coefficient Ds, which are in an inversely proportional relationship and a proportional relationship, respectively. That is, Dt and Ds vary in inverse proportion to the variation caused by B ⁇ L.
- the torque to duty ratio coefficient correction unit includes a zero detection unit 3061, a torque conversion unit 3062, a multiplexer 3063, an integrator 3064, and an addition.
- the torque conversion unit 3062 multiplies the current value from the current detection unit 1023 by a conversion factor (torque / current) set in advance to calculate a torque value corresponding to the motor drive current. Further, the zero detection unit 3061 determines whether the target torque value is 0, and outputs a detection signal to the multiplexer 3063 when it detects 0. The multiplexer 3063 outputs the output value from the torque conversion unit 3062 to the integrator 3064 when the detection signal from the zero detection unit 3061 is output, and 0 when the detection signal is not output. Output to the integrator 3064.
- a conversion factor torque / current
- the integrator 3064 integrates the output value from the multiplexer 3063 for a predetermined time, and outputs the integration result to the adder 3065.
- Adder 3065 subtracts the output value of integrator 3064 from preset Dss and outputs calculation result Dsa to divider 13066.
- Division unit 13066 performs an operation of dividing preset Dss by calculation result Dsa of addition unit 3065, and outputs the result to multiplication unit 13067. Then, the multiplication unit 13067 calculates Dta, which is a product of preset Dts and the division unit 13066. This Dta is the torque to duty ratio coefficient Dta.
- torque-to-duty ratio coefficient correction unit may be realized by the function shown in the functional block diagram of FIG. 29, for example.
- the torque-to-duty ratio coefficient correction unit includes a zero detection unit 3061, an intermittent cutoff control unit 3072, a first selection unit 3073, a second selection unit 3074, an addition unit 3075, an integrator 3076, and an addition.
- the zero detection unit 3061 determines whether the target torque value is 0. When the zero detection unit 3061 detects 0, the zero detection unit 3061 outputs a detection signal to the intermittent cutoff control unit 3072, the first selection unit 3073, and the second selection unit 3074. When receiving the detection signal from the zero detection unit 3061, the intermittent cutoff control unit 3072 intermittently outputs a cutoff signal for stopping the switching of the switch of the FET bridge 1030 to the motor drive timing generation unit 1026.
- the first selection unit 3073 selects and outputs the current value from the current detection unit 1023 when the zero detection unit 3061 outputs a detection signal and the intermittent cutoff control unit 3072 outputs a cutoff signal.
- the second selection unit 3074 the zero detection unit 3061 outputs a detection signal and the intermittent cutoff control unit 3072 does not output a cutoff signal (that is, the inversion unit 3078 cuts off from the intermittent cutoff control unit 3072).
- the signal is off, the current value from the current detection unit 1023 is selected and output.
- the adding unit 3075 calculates an error by subtracting the output value from the second selection unit 3074 from the output value from the first selection unit 3073.
- the integrator 3076 integrates the output value from the adder 3075 for a predetermined time, and outputs the integration result to the adder 3077.
- Adder 3077 subtracts the output value of integrator 3076 from preset Dss and outputs calculation result Dsa to divider 13078.
- Division unit 13078 performs an operation of dividing preset Dss by calculation result Dsa of addition unit 3077, and outputs the result to multiplication unit 13079.
- the multiplication unit 13079 calculates Dta, which is a product of preset Dts and the division unit 13078. This Dta is the torque to duty ratio coefficient Dta.
- the above-described phenomenon is prevented by modifying the third embodiment as shown in FIG. Since the components after the advance angle correction unit 1207 shown in FIG. 11 are the same as those in FIG. 11, the illustration is omitted, but the configuration is the same and the operation is the same for that portion. Description is omitted.
- a pedal rotation sensor 109 is added, and a gear ratio (also referred to as a gear ratio) of the transmission is set via the operation panel 106, for example. It is assumed that a signal indicating the gear ratio can be obtained from However, even when a signal indicating the gear ratio cannot be obtained from the operation panel 106, it can be dealt with as described below.
- controller 1020 further includes a vehicle speed estimation unit 1031.
- the vehicle speed estimation unit 1031 estimates the vehicle speed for the pedal drive wheels from the pedal rotation frequency obtained from the pedal rotation sensor 109, the gear ratio, and other parameters, and outputs the estimated vehicle speed to the calculation unit 1021.
- the calculation unit 1021 further includes a margin addition unit 1261, a comparison unit 1262, a pedal torque presence determination unit 1263, a logical product unit 1264, and a multiplexer (MUX) 1265.
- the calculation unit 1021 operates the assist validation unit 1204 when there is no brake input, and invalidates the assist validation unit 1204 when there is a brake input.
- the assist is effective when there is no brake input and the output from the logical product unit 1264 is “0” (that is, there is no idling) (when both inputs of the negative logical input logical product unit 1266 are negative logic).
- Activating unit 1204 is operated.
- the assist validation unit 1204 is invalidated (controlled to output 0). Yes.
- the vehicle speed estimation unit 1031 calculates the product of the pedal rotation frequency obtained from the pedal rotation sensor 109, the gear ratio obtained from the operation panel 106, and the circumference of the pedal drive wheel as an estimated vehicle speed, and sends it to the margin addition unit 1261. Output. If a gear ratio cannot be obtained from the operation panel 106 or the like, a predetermined maximum gear ratio is used. Note that the maximum gear ratio itself may be “1”.
- the margin adding unit 1261 multiplies the estimated vehicle speed by the margin ratio, adds the overall margin, and outputs the estimated vehicle speed after adding the margin.
- the margin ratio is, for example, about 1.06, but takes into consideration a tire individual difference margin, a wheel diameter margin when the air pressure decreases, a steering angle margin, and the like.
- the overall margin is, for example, about 1 km / hour, but takes into account the speed at which the pedal rotation frequency can be detected stably.
- the output of the margin addition unit 1261 is input to the comparison unit 1262, and the comparison unit 1262 compares the current vehicle speed A from the vehicle speed input unit 1024 with the estimated vehicle speed B after the margin addition from the margin addition unit 1261. In this comparison, it is determined whether A> B is satisfied, that is, whether the vehicle speed of the motor-driven wheels> the vehicle speed of the pedal-driven wheels.
- the comparison unit 1262 outputs “1” to the logical product unit 1264 when the vehicle speed of the motor drive wheel> the vehicle speed of the pedal drive wheel is established, and the vehicle speed of the motor drive wheel> the vehicle speed of the pedal drive wheel is established. If not, “0” is output to the logical product unit 1264.
- the pedal torque presence determination unit 1263 determines whether the input torque from the torque sensor 103 is equal to or greater than a predetermined threshold.
- the predetermined threshold is set as an upper limit value at which the input torque can be regarded as “0”.
- the pedal torque presence determination unit 1263 outputs “1” when the input torque is equal to or greater than the predetermined threshold, and outputs “0” when the input torque is less than the predetermined threshold.
- the logical product unit 1264 calculates the logical product of the output from the pedal torque presence determination unit 1263 and the output from the comparison unit 1262. Specifically, when the input torque is not 0 (greater than or equal to a predetermined threshold) and the vehicle speed of the motor driving wheel> the vehicle speed of the pedal driving wheel is satisfied, “1” is output, and the input torque is almost 0 (the predetermined threshold value). If the vehicle speed of the motor-driven wheels> the vehicle speed of the pedal-driven wheels is not established, “0” is output. That is, in the case of “1”, the motor driving wheel can be regarded as idling, and in the case of “0”, the motor driving wheel can be regarded as not idling.
- the multiplexer 1265 outputs the output of the margin adding unit 1261 (the estimated vehicle speed after adding the margin) to the second duty ratio converting unit 1213.
- the current vehicle speed is output to the second duty ratio conversion unit 1213. That is, when it is considered that the motor drive wheel is idling, control is performed based on the vehicle speed estimated from the output of the pedal rotation sensor 109. When the pedal drive wheels are prevented from moving, the estimated vehicle speed for the pedal drive wheels is almost zero, so that the motor drive is suppressed.
- the assist validating unit 1204 is also invalidated (the output is set to 0) when the motor driving wheel is considered to be idling, so that it depends on the input torque. The motor is no longer driven. In this way, it is possible to avoid a situation where the front wheels are idling.
- the output of the logical product unit 1264 is a control signal that suppresses motor drive when the motor drive wheel is idling.
- vehicle speed estimation unit 1031 and the margin adding unit 1261 can be integrated to change the margin adding method.
- the margin may be changed so as to be added to the gear ratio.
- Other components may also be integrated.
- a determination is made such that the current vehicle speed> (pedal rotation frequency ⁇ peripheral length of pedal drive wheel ⁇ gear ratio). Therefore, for example, when the gear ratio current vehicle speed / (pedal rotation frequency ⁇ peripheral length of the pedal drive wheel) is calculated and the gear ratio exceeds the maximum gear ratio, the comparison unit 1262 determines that A The same signal as that determined when> B may be output.
- the rotation speed of the pedal drive wheel can be obtained directly, the rotation speed of the pedal drive wheel can be used instead of the pedal rotation speed.
- a pedal drive wheel rotation sensor 1267 is introduced instead of the pedal rotation sensor 109.
- the pedal torque presence determination unit 1263 and the logical product unit 1264 used in the case of FIG. 30 are unnecessary, and the output of the comparison unit 1262 is directly supplied to the multiplexer 1265 and the negative logical input logical product unit 1266.
- the pedal drive wheel rotation sensor 1267 is a rear wheel drive and is provided on the axle of the rear wheel.
- this embodiment is effective in terms of safety because the motor drive is suppressed even in a situation where, for example, a bicycle that is hardly moving at the time of starting out, torque is excessively applied to the pedal.
- the present invention is not limited to this. There are a plurality of specific calculation methods for realizing the functions described above, and any of them may be adopted.
- a part of the arithmetic unit 1021 may be realized by a dedicated circuit, or the function as described above may be realized by the microprocessor executing a program.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
Description
図1に示したようなHブリッジ回路におけるFETの寄生ダイオード又は専用のダイオードを利用して、力行方向又は制動方向のみに適当なPWMデューティー比を与え、大まかなフィードフォワードでトルクをかける技術である。オープンループ暴走の心配が無く、簡単確実に力行又は制動方向に制御できるためよく使用される。
モータ電流をリアルタイムに検出し、希望トルクに応じたモータ電流になるように、その時の速度に関係なく常時フィードバックして制御する方式である。
図2に、本実施の形態に係るモータ駆動制御装置500の機能ブロック図を示す。モータ駆動制御装置500は、第1デューティー比換算部520と、第2デューティー比換算部510と、加算部530と、駆動部540とを有する。なお、モータ駆動制御装置500の駆動部540の出力は、コンプリメンタリ型のスイッチングアンプ610に接続されており、このスイッチングアンプ610によりモータ620が駆動されるようになっている。
Duty=D0+DT
第1の実施の形態において目標トルクに応じた出力トルクが得られる場合には問題はないが、部品ばらつきなどによってモータに流れる電流が多くなってしまって、結果として目標トルクよりも大きなトルクが発生する場合もある。
本発明の第3の実施の形態を図8乃至図26を用いて説明する。ここでは、モータが自転車に搭載される、いわゆる電動アシスト自転車を一例として説明する。
本実施の形態では上で述べたように車速に基づく演算が多く行われているので、正確な車速を得ることが精度上重要となる。
モータ105のコイル自身の自己インダクタンスや周囲のコイルとの相互インダクタンスなどの影響による電機子反作用や、鉄芯のレラクタンスなどにより、その時の速度や電流によって自分のコイルから出た磁界の影響で逆起電力の移送や波形やレベルが歪み、目標トルクが出せないことがある。それらを補正するために、進角補正を実施する。
トルク補正部1208は、現在車速に応じて目標トルクを補正する。例えば、図16に示すような補正関数を用意して適用する。図16の例では、直線f1は、入力された目標トルクをそのまま補正後の目標トルクとして出力する場合の関数を表している。曲線f2は、車速が0の場合の関数を表しており、また、曲線f3は、車速が0を超える低速時(第1の車速範囲)の関数を表している。曲線f4は、車速が中速時(第1の車速範囲より高速の第2の車速範囲)の関数を表しており、さらに、曲線f5は、車速が高速時の関数(第2の車速範囲より高速の第3の車速範囲)の関数を表している。なお、カーブの形はモータの種類に応じて決定される。図16では、ブラシレス電流整流且つ鉄心コア付きモータの一例を示している。
図9に示したような回路においては、(A)二次電池101の放電電流及び蓄電電流の制限、(B)FETブリッジ1030の温度による電流制限といった電流制限を行うことになる。しかし、全体としてトルク・フィードフォワード制御を行っているため、モータ駆動電流のフィードバック制御は行わずに、電池電圧、1単位時間前のPWMコード及びFETブリッジ1030の温度から、目標トルク値に制限を加える。
(1)電池電圧×デューティー比=モータ駆動電圧
スイッチングアンプは定電力変換なので、電圧と電流は反比例するため以下の式が得られる。
(2)電池電流/デューティー比=モータ駆動電流
FET電流制限値=(定格温度(125℃)-FET温度)*FET電流制限値/(定格温度(125℃)-ディレーティング開始温度(85℃))
第1デューティー比換算部1211は、トルクガード部1210からの出力に対して、予め設定されている換算係数(デューティー比/トルク=dt)を乗じて、トルクデューティーコードを算出する。なお、このトルクデューティーコードは、トルクスルーレート制限部1212を介して加算部1216に出力される。
車速デューティーコードは、第2デューティー比換算部1213が、現在車速値に対して換算係数(デューティー比/車速=ds)を乗じて算出するようになっている。
上でも述べたが、第2デューティー比換算部1213は、現在車速値に対して、換算係数Dsaを乗ずることによって、車速デューティーコードを算出する。なお、この車速デューティーコードは、速度スルーレート制限部1215を介して加算部1216に出力される。
PWMコード生成部1217は、加算部1216によるトルクデューティーコード及び車速デューティーコードの加算結果であるデューティーコードに対して、AD入力部1029からの電池電圧/基準電圧(例えば24V)を乗ずることによって、最終的なPWMコードを算出して、モータ駆動タイミング生成部1026に出力する。
ブレーキレバーによってユーザがブレーキ指示を入力して、ブレーキセンサ104がこのブレーキ指示を検出すると、ブレーキ入力部1028にブレーキありを表す信号(場合によってはブレーキの強弱を表す信号)を出力する。ブレーキ入力部1028は、この信号に応じて、以下で述べるような演算を行って、適切な回生ブレーキトルク値を算出する。
瞬時回生効率=1-(回生ブレーキ電圧/逆起電力電圧)
=1-(回生トルク/車速相当トルク値)
任意の速度から任意の停止要求距離において、停止距離以外の他の制約が一切無い状態では、その停止距離で最大回生効率、すなわちトータルで最大回生電力量を得るには、どの速度でも均等な、回生効率一定のカーブ、すなわち原点を通る比例直線となる。直線q10は、停止要求距離が十分に長ければX軸に近づき、回生効率は100%に近づく。一方、停止要求距離がある程度短くなると直線q10は、最大瞬時回生電力が得られる直線q2と同じになり、その時のトータルの回生効率は50%となる。さらに、それより停止要求距離が短い場合、回生トルクカーブは最大瞬時回生電力が得られる直線q2と同じままで機械ブレーキの併用が必要となる。それ以上回生ブレーキのトルクを大きくすると、瞬時回生電力が逆に減ってしまうので、それ以上は機械ブレーキに回した方が得だからである。
実際に直線q10を採用すると、時間に対する減速カーブは指数関数的に減衰するカーブとなり、停止距離は一定でも、停止時間が無限大となってしまうため、低速側では回生効率を多少犠牲にしても大きなトルクを維持する直線q6を採用する。さらに低速で直線q6が直線q2を上回る領域になると回生効率の悪化のみならず、瞬間回生電力も逆に減少することになるため、各速度での瞬間回生電力が最大となる直線q2に移行させ、機械ブレーキを併用して停止に至らせる。
一方、逆に速度が大きい場合には、定率の高効率回生直線である直線q4のままではブレーキトルクが大きくなりすぎて危険なため、一定の最大トルク制限をかけるための直線q7に移行させる。
電池電圧を一定とすると、電池の最大充電電流制限により回生電力が一定となる。
電池電圧×電池充電電流 = 一定回生電力 = モータ逆起電力×モータ電流
モータ逆起電力は速度に比例、モータトルクはモータ電流に比例するため、その積が一定なのでモータ電流は速度に反比例する。そのため曲線群q8は速度に反比例した双曲線カーブとなる。電池電圧、すなわち電池残量や電池温度によるディレーティングにより最大充電電流も可変し、上で示した式により一定回生電力自身も電池電圧に比例するため、複数の双曲線カーブとして表されている。
本実施の形態では、目標トルク値からトルクデューティーコードを算出するための換算係数(トルク対デューティー比係数とも呼ぶ)の自動較正をせずにそのばらつきの影響を軽減する。
磁束密度Bの中の長さLに電流Iを流した時に発生する力Fはフレミングの左手法則より、F=B×L×Iとなり、自転車の車輪におけるトルクTはこのFに一定比率Ktで比例し、トルクデューティー比に比例した電圧をVt、コイルの抵抗をRとすると、以下のような式が成り立つ。
Kt×T=B×L×I=B×L(Vt/R) (Ktは固定比例定数)
Dt=Vt/T=Kt×R/(B×L)
と変形でき、ばらつき要因はコイルの長さ、抵抗、磁束密度となる。
そのうち、コイルの抵抗は銅線である限り材料による差は少なく機械的寸法のばらつきに起因する。磁束密度Bは磁石の起磁力と磁路抵抗によって決まり、磁石の材料、磁路の材料により大きくばらつく。また、磁束密度Bの中を長さLの導体が速度vで横切るときに発生する起電力Eはフレミングの右手法則より、E=BLvとなる。すなわち、起電力Eはモータにおける起電力、すなわち速度デューティー比に一定比率で比例し、自転車の車速Sはコイル速度vに一定比率で比例するため、速度デューティー比に比例した電圧をVsとすると、以下のように表される。
Vs=Kv×B×L×S (Kvは固定比例定数)
Ds=Vs/S=Kv×B×L
と変形でき、ばらつき要因はコイルの長さ、磁束密度となる。
このとき、トルク対デューティー比係数Dtと速度対デューティー比係数Dsの式には共通してB×Lが入っていて、それぞれ反比例関係と比例関係にある。つまりB×Lに起因するばらつきに対して、DtとDsは反比例連動してばらつくことになる。
Dta=Dts×(Dss/Dsa)
例えば鍵でロックした場合などペダル駆動輪(図8の場合には後輪)を動かないようにした場合にペダルを踏むと、例えば第3の実施の形態においては、トルクセンサ103によりトルク入力が検出されて、演算部1021により入力トルクに応じたモータ駆動が行われる。すなわち、ペダル駆動輪を動かないようにしているので、モータ駆動輪(図8の場合には前輪)が空転するという現象が生ずる。
Claims (23)
- 現在速度に応じた第1の値をデューティー比換算することで第2の値を生成する速度処理部と、
目標トルクに応じた第3の値をデューティー比換算することで第4の値を生成するトルク処理部と、
前記第2の値と前記第4の値との和に応じた平均デューティー比により、コンプリメンタリ型スイッチングアンプに含まれるスイッチによるスイッチングを制御して、前記コンプリメンタリ型スイッチングアンプに接続されているモータを駆動する駆動部と、
を有するモータ駆動制御装置。 - 前記モータの駆動電流に応じた第5の値をトルク換算した第6の値が前記第3の値から所定の許容量以上乖離している場合に、前記第3の値を乖離度合いに応じて駆動電流を減少させるように修正する修正部
をさらに有する請求項1に記載のモータ駆動制御装置。 - 前記駆動部が、
前記第2の値と前記第4の値との和を、電源電圧に応じて補正する
請求項1又は2に記載のモータ駆動制御装置。 - 前記第1の値及び前記第3の値から、前記スイッチングのための信号の位相制御を行う信号を生成する進角補正部
をさらに有する請求項1乃至3のいずれか1つに記載のモータ駆動制御装置。 - 前記トルク処理部が、
前記第3の値を前記第1の値に応じて補正する
請求項1乃至4のいずれか1つに記載のモータ駆動制御装置。 - 前記トルク処理部が、
現在のデューティー比及び電源電圧に応じた電流制限に基づき前記第3の値の範囲に制限を加えるトルク制限部
を有する請求項1乃至5のいずれか1つに記載のモータ駆動制御装置。 - 電源が充電可能な電池である場合、前記電源電圧に応じた電流制限が、前記電池の満充電余裕及び残量余裕に応じて設定される
請求項6に記載のモータ駆動制御装置。 - 前記トルク制限部が、
前記スイッチの温度に基づく電流制限にさらに基づき前記第3の値の範囲に制限を加える
請求項6に記載のモータ駆動制御装置。 - 過去の複数の速度検出結果から前記現在速度を予測する速度予測部
をさらに有する請求項1乃至8のいずれか1つに記載のモータ駆動制御装置。 - 前記トルク処理部が、
ブレーキ指示に応じて、前記第1の値と対応する前記第3の値とについて予め定められた対応関係に従い、現在の第1の値から対応する第3の値を特定し、
前記対応関係において、前記第4の値が前記第2の値とは逆極性の値である
請求項1乃至9のいずれか1つに記載のモータ駆動制御装置。 - 前記対応関係が、
前記第2の値とは逆極性で且つ前記第2の値の絶対値の半分以下となるような関係である
請求項10に記載のモータ駆動制御装置。 - 前記ブレーキ指示が、ブレーキ量の指示を含み、
前記対応関係が、前記ブレーキ量に対応して異なる対応関係を含む
請求項11に記載のモータ駆動制御装置。 - 前記対応関係が、
前記第1の値の絶対値が大きくなると対応する前記第3の値の絶対値が小さくなる
請求項10に記載のモータ駆動制御装置。 - 前記対応関係が、電源電圧に応じた電流制限に基づき決定される対応関係の部分を含む
請求項10に記載のモータ駆動制御装置。 - 前記第3の値が0であるときに前記モータの駆動電流が0となるように、前記速度処理部におけるデューティー比換算係数又はデューティー比換算関数を修正する修正部
をさらに有する請求項1乃至14のいずれか1つに記載のモータ駆動制御装置。 - 前記修正部が、
前記第3の値が0である状態を検出すると、前記モータの駆動の遮断時の前記駆動電流値と前記モータの駆動の非遮断時の前記駆動電流値との差が0となるように、前記速度処理部におけるデューティー比換算係数又はデューティー比換算関数を修正する
請求項15に記載のモータ駆動制御装置。 - 前記現在車速が、モータ駆動輪についての車速であり、
ペダルの回転周波数からペダル駆動輪についての車速を推定する車速推定部と、
前記現在車速と前記ペダル駆動輪についての車速とを比較する比較部と、
前記比較部による比較結果が、前記現在車速の方が前記ペダル駆動輪についての車速よりも速いことを表しており且つペダルによる入力トルクが閾値以上である場合に、モータ駆動を抑制するための制御信号を出力する制御信号出力部と、
をさらに有する請求項1乃至16のいずれか1つに記載のモータ駆動制御装置。 - 前記現在車速とペダルの回転周波数とペダル駆動輪の周長とを用いて、モータ駆動輪の空転の有無を判断するための指標値を算出し、ペダルによる入力トルクが閾値以上であれば当該指標値に基づき前記モータ駆動輪の空転の有無を判断する回路と、
前記モータ駆動輪の空転があると判断された場合に、モータ駆動を抑制するための制御信号を出力する制御信号出力部と、
をさらに有する請求項1乃至16のいずれか1つに記載のモータ駆動制御装置。 - 前記現在車速が、モータ駆動輪についての車速であり、ペダル駆動輪の回転周波数からペダル駆動輪についての車速を推定する車速推定部と、
前記現在車速と前記ペダル駆動輪についての車速とを比較する比較部と、
前記比較部による比較結果が、前記現在車速の方が前記ペダル駆動輪についての車速よりも速いことを表している場合に、モータ駆動を抑制するための制御信号を出力する制御信号出力部と、
をさらに有する請求項1乃至16のいずれか1つに記載のモータ駆動制御装置。 - 前記制御信号により、前記目標トルクを0に設定する回路
をさらに有する請求項17乃至19のいずれか1つに記載のモータ駆動制御装置。 - 前記車速推定部により推定された前記ペダル駆動輪についての車速を前記現在車速の代わりに前記速度処理部に処理させる回路
をさらに有する請求項17乃至19のいずれか1つ記載のモータ駆動制御装置。 - 前記車速推定部が、
前記ペダルの回転周波数と、前記ペダル駆動輪の周長と、変速機のギア比との積に基づき前記ペダル駆動輪についての車速を推定する
請求項17記載のモータ駆動制御装置。 - 現在速度に応じた第1の値をデューティー比換算することで第2の値を生成する速度処理部と、
目標トルクに応じた第3の値をデューティー比換算することで第4の値を生成するトルク処理部と、
前記第2の値と前記第4の値との和に応じた平均デューティー比により、コンプリメンタリ型スイッチングアンプに含まれるスイッチによるスイッチングを制御して、前記コンプリメンタリ型スイッチングアンプに接続されているモータを駆動する駆動部と、
前記速度処理部における第1のデューティー比換算係数の基準値と、前記第3の値が0であるときに前記モータの駆動電流が0となるように修正された前記第1のデューティー比換算係数の値と、前記トルク生成部における第2のデューティー比換算係数の基準値とに基づき、前記第2のデューティー比換算係数を補正する補正部と、
を有するモータ駆動制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11850787.0A EP2658114B1 (en) | 2010-12-22 | 2011-12-13 | Motor drive control device |
US13/996,418 US9162730B2 (en) | 2010-12-22 | 2011-12-13 | Motor driving control apparatus |
CN201180061868.7A CN103270693B (zh) | 2010-12-22 | 2011-12-13 | 电动机驱动控制装置 |
JP2012549736A JP5732475B2 (ja) | 2010-12-22 | 2011-12-13 | モータ駆動制御装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010285553 | 2010-12-22 | ||
JP2010-285668 | 2010-12-22 | ||
JP2010285668 | 2010-12-22 | ||
JP2010-285553 | 2010-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012086459A1 true WO2012086459A1 (ja) | 2012-06-28 |
Family
ID=46313738
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078762 WO2012086460A1 (ja) | 2010-12-22 | 2011-12-13 | モータ駆動制御装置 |
PCT/JP2011/078761 WO2012086459A1 (ja) | 2010-12-22 | 2011-12-13 | モータ駆動制御装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/078762 WO2012086460A1 (ja) | 2010-12-22 | 2011-12-13 | モータ駆動制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9162730B2 (ja) |
EP (1) | EP2658114B1 (ja) |
JP (2) | JP5922586B2 (ja) |
CN (2) | CN103430446B (ja) |
TW (2) | TWI570019B (ja) |
WO (2) | WO2012086460A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103978909A (zh) * | 2013-01-22 | 2014-08-13 | 通用汽车环球科技运作有限责任公司 | 用于评估和控制电池系统的系统和方法 |
WO2014200081A1 (ja) | 2013-06-14 | 2014-12-18 | マイクロスペース株式会社 | モータ駆動制御装置 |
EP3165399A1 (en) | 2015-11-09 | 2017-05-10 | Taiyo Yuden Co., Ltd. | Regenerative controller for electric motor, regenerative driver for electric motor, and power-assisted vehicle |
JP2017195720A (ja) * | 2016-04-21 | 2017-10-26 | 株式会社デンソー | 回転電機の制御装置 |
JP2017195719A (ja) * | 2016-04-21 | 2017-10-26 | 株式会社デンソー | 回転電機の制御装置 |
WO2017199661A1 (ja) | 2016-05-17 | 2017-11-23 | マイクロスペース株式会社 | モータ駆動制御装置及び電動装置 |
EP3536539A1 (en) | 2018-03-06 | 2019-09-11 | Taiyo Yuden Co., Ltd. | Motor driving control apparatus and motor-assisted vehicle |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101366557B1 (ko) * | 2012-09-19 | 2014-02-26 | 주식회사 만도 | 전기 자전거 구동 장치 |
JP5620527B2 (ja) * | 2013-02-05 | 2014-11-05 | 山洋電気株式会社 | モータ制御装置 |
JP5666639B2 (ja) * | 2013-02-28 | 2015-02-12 | 太陽誘電株式会社 | モータ駆動制御装置及び電動アシスト車 |
CN104760516A (zh) * | 2013-07-29 | 2015-07-08 | 彭国智 | 具有自动波功能的电动车控制器和语音喇叭装置 |
DE102013215287A1 (de) * | 2013-08-02 | 2015-02-05 | Robert Bosch Gmbh | Adaptive Motordrehmomenteinstellung bei elektrischen Zweirädern |
JP2015044526A (ja) * | 2013-08-29 | 2015-03-12 | 太陽誘電株式会社 | モータ駆動制御装置及び電動アシスト車 |
TWI484747B (zh) * | 2013-12-05 | 2015-05-11 | Metal Ind Res & Dev Ct | 以電池殘電量調整輸出功率的驅動系統及其方法 |
CN104135193B (zh) * | 2014-08-20 | 2016-08-24 | 成都宽和科技有限责任公司 | 输出双路差分电压信号受总控制的差分控制器 |
CN104149656B (zh) * | 2014-08-20 | 2016-03-30 | 成都宽和科技有限责任公司 | 速度信号加入模型处理器的电压差分控制助力系统 |
CN104149654B (zh) * | 2014-08-20 | 2016-03-30 | 成都宽和科技有限责任公司 | 速度信号加入比较器的数字差分控制助力车系统 |
CN104135192B (zh) * | 2014-08-20 | 2016-08-24 | 成都宽和科技有限责任公司 | 输出双路差分电压信号的差分控制器 |
TWI619638B (zh) * | 2014-08-20 | 2018-04-01 | 太陽誘電股份有限公司 | Motor drive control device and electric auxiliary vehicle |
TWI646014B (zh) * | 2014-08-20 | 2019-01-01 | 日商太陽誘電股份有限公司 | Control device and electric auxiliary vehicle |
US10286953B2 (en) | 2014-09-17 | 2019-05-14 | Ford Global Technologies, Llc | Autopark steering wheel snap reduction |
US9902462B2 (en) | 2014-10-15 | 2018-02-27 | Taiyo Yuden Co., Ltd. | Controller for driving a motor, and electric power assisted vehicle |
JP6427433B2 (ja) | 2015-02-03 | 2018-11-21 | マイクロスペース株式会社 | モータ駆動装置 |
DE102015202015B3 (de) * | 2015-02-05 | 2016-05-04 | Robert Bosch Gmbh | Verarbeitungseinheit und Verfahren zur Erzeugung von Ansteuersignalen für den elektrischen Antrieb eines Zweirads |
US10322769B2 (en) * | 2015-02-06 | 2019-06-18 | Yamaha Hatsudoki Kabushiki Kaisha | Saddle riding vehicle |
CN107128428B (zh) * | 2016-02-29 | 2020-11-17 | 株式会社岛野 | 自行车用控制装置及自行车用驱动装置 |
JP6583124B2 (ja) * | 2016-04-26 | 2019-10-02 | 株式会社デンソー | シフトレンジ制御装置 |
JP6565783B2 (ja) * | 2016-04-26 | 2019-08-28 | 株式会社デンソー | シフトレンジ制御装置 |
JP6536465B2 (ja) * | 2016-04-26 | 2019-07-03 | 株式会社デンソー | シフトレンジ制御装置 |
IT201600080244A1 (it) * | 2016-07-29 | 2018-01-29 | Campagnolo Srl | Metodo di controllo di un motore di un deragliatore di un cambio elettronico di bicicletta e componente atto ad eseguire tale metodo |
JP6761696B2 (ja) * | 2016-08-18 | 2020-09-30 | 株式会社シマノ | 自転車用制御装置および自転車の制御方法 |
FR3055440B1 (fr) | 2016-08-25 | 2018-09-28 | Institut Polytechnique De Grenoble | Procede et dispositif d'estimation de force |
US10076942B2 (en) * | 2016-09-06 | 2018-09-18 | Toyota Jidosha Kabushiki Kaisha | Suspension device |
KR101988088B1 (ko) * | 2016-10-31 | 2019-06-12 | 현대자동차주식회사 | 모터 구동 제어 방법, 시스템 및 이를 적용한 연료전지 시스템의 압축기 구동 제어 방법 |
WO2018123161A1 (ja) * | 2016-12-28 | 2018-07-05 | ヤマハ発動機株式会社 | 電動補助システムおよび電動補助車両 |
JP6712580B2 (ja) * | 2017-09-25 | 2020-06-24 | 太陽誘電株式会社 | モータ駆動制御装置及び電動アシスト車 |
JP7343266B2 (ja) * | 2017-10-27 | 2023-09-12 | 株式会社シマノ | 人力駆動車両用制御装置 |
EP3501961A1 (en) | 2017-12-20 | 2019-06-26 | Specialized Bicycle Components, Inc. | Bicycle pedaling torque sensing systems, methods, and devices |
WO2019155756A1 (ja) * | 2018-02-08 | 2019-08-15 | 三菱電機株式会社 | 多群多相回転電機の制御装置および多群多相回転電機の駆動装置 |
US10518775B1 (en) * | 2018-09-13 | 2019-12-31 | Ford Global Technologies, Llc | Regenerative braking of vehicle with primary and secondary drive axles |
JP6738400B2 (ja) * | 2018-12-12 | 2020-08-12 | ブリヂストンサイクル株式会社 | 電動機付自転車 |
JP7620905B2 (ja) * | 2019-01-23 | 2025-01-24 | パナソニックIpマネジメント株式会社 | 自転車用制御装置、モータユニット、ドライブユニット、電動自転車、及びプログラム |
DE102020200198A1 (de) * | 2019-02-01 | 2020-08-06 | Robert Bosch Gesellschaft mit beschränkter Haftung | Betriebsverfahren und Steuereinheit für einen Antrieb eines Fahrzeugs und Fahrzeug |
JP7514605B2 (ja) * | 2019-05-17 | 2024-07-11 | 株式会社シマノ | 人力駆動車用の制御装置 |
DE102019115312B3 (de) * | 2019-06-06 | 2020-11-05 | Tq-Systems Gmbh | Vorrichtung zur Geschwindigkeitsregelung und Manipulationserkennung für ein Elektrofahrrad |
US12103625B2 (en) | 2019-09-13 | 2024-10-01 | Shimano Inc. | Human-powered vehicle control device |
JP7324694B2 (ja) | 2019-11-25 | 2023-08-10 | 株式会社シマノ | 人力駆動車用の判別装置および人力駆動車用の制御装置 |
TW202220895A (zh) | 2020-11-27 | 2022-06-01 | 法商法雷奧離合器公司 | 用於行動機械之傳動組件 |
CN116215733B (zh) * | 2023-05-10 | 2023-07-21 | 苏州拓氪科技有限公司 | 电助力自行车助力控制方法和系统 |
TWI855715B (zh) * | 2023-06-01 | 2024-09-11 | 台達電子工業股份有限公司 | 電動輔助自行車的控制系統及控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63314018A (ja) * | 1987-06-17 | 1988-12-22 | Matsushita Electric Ind Co Ltd | Pwm信号出力回路 |
JPH0960547A (ja) * | 1995-08-22 | 1997-03-04 | Denso Corp | 内燃機関のスロットル制御装置 |
JPH1059262A (ja) | 1996-08-20 | 1998-03-03 | Sanyo Electric Co Ltd | 電気自転車用モータの出力制御方式 |
JPH11227438A (ja) * | 1998-02-16 | 1999-08-24 | Calsonic Corp | 車両空調システムのファンモータ駆動制御装置 |
JP2007282300A (ja) * | 2006-04-03 | 2007-10-25 | Nissan Motor Co Ltd | モーター制御装置 |
JP2008236906A (ja) * | 2007-03-20 | 2008-10-02 | Mitsuba Corp | モータの制御装置及びモータの制御方法並びに電動車両 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2634121B2 (ja) | 1992-03-06 | 1997-07-23 | ヤマハ発動機株式会社 | 電動モータ付き自転車およびそのモータ制御方法 |
JP3301811B2 (ja) | 1993-03-05 | 2002-07-15 | 株式会社モリック | 電動モータ付き自転車 |
JP3276781B2 (ja) * | 1994-08-18 | 2002-04-22 | 本田技研工業株式会社 | 電動補助自転車 |
JP3350236B2 (ja) | 1994-08-18 | 2002-11-25 | 本田技研工業株式会社 | 電動補助自転車 |
JPH0880891A (ja) | 1994-09-13 | 1996-03-26 | Yamaha Motor Co Ltd | 補助動力付き人力車両 |
JPH08163887A (ja) * | 1994-12-02 | 1996-06-21 | Fujitsu General Ltd | モータの制御方法 |
JP3499948B2 (ja) * | 1995-02-28 | 2004-02-23 | 三洋電機株式会社 | 電動自転車 |
JP3528996B2 (ja) * | 1995-04-17 | 2004-05-24 | 本田技研工業株式会社 | 電動補助自転車 |
JP3655350B2 (ja) | 1995-04-28 | 2005-06-02 | ヤマハ発動機株式会社 | パワーアシスト車両の駆動装置 |
JPH0937417A (ja) * | 1995-07-19 | 1997-02-07 | Tokyo R & D:Kk | 電気自転車用モータ・スリップ防止装置 |
US5662187A (en) | 1995-07-27 | 1997-09-02 | Mc Govern; James Robert | Electrically assisted pedalled bicycle |
US5937962A (en) | 1995-08-08 | 1999-08-17 | Yamaha Hatsudoki Kabushiki Kaisha | Bicycle with assist engine |
JP3315872B2 (ja) | 1996-08-20 | 2002-08-19 | 三洋電機株式会社 | 電動車用モータのトルク制限装置 |
JPH10114292A (ja) | 1996-10-11 | 1998-05-06 | Tec Corp | 電動補助動力装置付自転車 |
JP3351278B2 (ja) * | 1997-02-24 | 2002-11-25 | 株式会社日立製作所 | 電気車の制御方法およびそれを用いた制御装置 |
JPH1179062A (ja) | 1997-08-29 | 1999-03-23 | Toshiba Tec Kk | 電動補助動力装置付自転車 |
US5922035A (en) | 1997-12-03 | 1999-07-13 | Winston Hsu | Fuzzy logic control system for electrical aided vehicle |
JP3955152B2 (ja) | 1998-06-08 | 2007-08-08 | 松下電器産業株式会社 | 補助動力装置付き車輌及びその制御装置 |
JP2000118479A (ja) | 1998-10-12 | 2000-04-25 | Sony Corp | 助力機能付き自転車 |
JP3736157B2 (ja) * | 1998-12-04 | 2006-01-18 | スズキ株式会社 | 電動補助自転車 |
CN2391804Y (zh) * | 1999-07-15 | 2000-08-16 | 杉浦忠雄 | 自行车辅助动力装置 |
IT1310144B1 (it) | 1999-08-24 | 2002-02-11 | Ferrero Spa | Sistema e procedimento per il controllo di trasmissioni a rapportovariabile |
FR2811824B1 (fr) * | 2000-07-17 | 2002-10-18 | Sagem | Moteur electrique a deux modes de communication d'alimentation |
JP3432486B2 (ja) * | 2000-07-18 | 2003-08-04 | シャープ株式会社 | モータの制御方法 |
JP2004114933A (ja) * | 2002-09-27 | 2004-04-15 | Honda Motor Co Ltd | 電動補助自転車 |
JP3985766B2 (ja) * | 2003-10-15 | 2007-10-03 | 日産自動車株式会社 | 車両の駆動力制御装置 |
JP4350531B2 (ja) | 2004-01-08 | 2009-10-21 | 本田技研工業株式会社 | 電動車両 |
WO2007120819A2 (en) | 2006-04-15 | 2007-10-25 | The Board Of Regents Of The Leland Stanford Junior University | Systems and methods for estimating surface electromyography |
JP2008261244A (ja) * | 2007-04-10 | 2008-10-30 | Toyota Motor Corp | 可変バルブタイミング機構の制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体 |
JP5450960B2 (ja) * | 2008-01-23 | 2014-03-26 | ローム株式会社 | モータ駆動装置およびそれを用いた冷却装置 |
JP5035641B2 (ja) * | 2009-11-30 | 2012-09-26 | アイシン・エィ・ダブリュ株式会社 | 電動機駆動装置の制御装置 |
CN101819442B (zh) * | 2010-04-19 | 2011-12-21 | 鲍文光 | 一种纯电动汽车动力性仿真系统 |
-
2011
- 2011-12-13 CN CN201180061837.1A patent/CN103430446B/zh active Active
- 2011-12-13 WO PCT/JP2011/078762 patent/WO2012086460A1/ja active Application Filing
- 2011-12-13 WO PCT/JP2011/078761 patent/WO2012086459A1/ja active Application Filing
- 2011-12-13 US US13/996,418 patent/US9162730B2/en active Active
- 2011-12-13 EP EP11850787.0A patent/EP2658114B1/en active Active
- 2011-12-13 JP JP2012549737A patent/JP5922586B2/ja active Active
- 2011-12-13 JP JP2012549736A patent/JP5732475B2/ja active Active
- 2011-12-13 CN CN201180061868.7A patent/CN103270693B/zh active Active
- 2011-12-22 TW TW100148108A patent/TWI570019B/zh active
- 2011-12-22 TW TW100148123A patent/TWI531506B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63314018A (ja) * | 1987-06-17 | 1988-12-22 | Matsushita Electric Ind Co Ltd | Pwm信号出力回路 |
JPH0960547A (ja) * | 1995-08-22 | 1997-03-04 | Denso Corp | 内燃機関のスロットル制御装置 |
JPH1059262A (ja) | 1996-08-20 | 1998-03-03 | Sanyo Electric Co Ltd | 電気自転車用モータの出力制御方式 |
JPH11227438A (ja) * | 1998-02-16 | 1999-08-24 | Calsonic Corp | 車両空調システムのファンモータ駆動制御装置 |
JP2007282300A (ja) * | 2006-04-03 | 2007-10-25 | Nissan Motor Co Ltd | モーター制御装置 |
JP2008236906A (ja) * | 2007-03-20 | 2008-10-02 | Mitsuba Corp | モータの制御装置及びモータの制御方法並びに電動車両 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2658114A4 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103978909B (zh) * | 2013-01-22 | 2016-08-17 | 通用汽车环球科技运作有限责任公司 | 用于评估和控制电池系统的系统和方法 |
CN103978909A (zh) * | 2013-01-22 | 2014-08-13 | 通用汽车环球科技运作有限责任公司 | 用于评估和控制电池系统的系统和方法 |
US9896153B2 (en) | 2013-06-14 | 2018-02-20 | Microspace Corporation | Motor driving control apparatus |
WO2014200081A1 (ja) | 2013-06-14 | 2014-12-18 | マイクロスペース株式会社 | モータ駆動制御装置 |
JPWO2014200081A1 (ja) * | 2013-06-14 | 2017-02-23 | マイクロスペース株式会社 | モータ駆動制御装置 |
US10040508B2 (en) | 2013-06-14 | 2018-08-07 | Microspace Corporation | Motor driving control apparatus |
EP3009295A4 (en) * | 2013-06-14 | 2017-07-05 | Microspace Corporation | Motor drive control device |
CN105377619A (zh) * | 2013-06-14 | 2016-03-02 | 微空间株式会社 | 马达驱动控制装置 |
EP3165399A1 (en) | 2015-11-09 | 2017-05-10 | Taiyo Yuden Co., Ltd. | Regenerative controller for electric motor, regenerative driver for electric motor, and power-assisted vehicle |
WO2017183699A1 (ja) * | 2016-04-21 | 2017-10-26 | 株式会社デンソー | 回転電機の制御装置 |
JP2017195719A (ja) * | 2016-04-21 | 2017-10-26 | 株式会社デンソー | 回転電機の制御装置 |
WO2017183698A1 (ja) * | 2016-04-21 | 2017-10-26 | 株式会社デンソー | 回転電機の制御装置 |
JP2017195720A (ja) * | 2016-04-21 | 2017-10-26 | 株式会社デンソー | 回転電機の制御装置 |
WO2017199661A1 (ja) | 2016-05-17 | 2017-11-23 | マイクロスペース株式会社 | モータ駆動制御装置及び電動装置 |
TWI697195B (zh) * | 2016-05-17 | 2020-06-21 | 日商微空間股份有限公司 | 馬達驅動控制裝置 |
US10870355B2 (en) | 2016-05-17 | 2020-12-22 | Microspace Corporation | Motor driving control apparatus and electric apparatus |
EP3536539A1 (en) | 2018-03-06 | 2019-09-11 | Taiyo Yuden Co., Ltd. | Motor driving control apparatus and motor-assisted vehicle |
Also Published As
Publication number | Publication date |
---|---|
US20140039742A1 (en) | 2014-02-06 |
JPWO2012086460A1 (ja) | 2014-05-22 |
TW201231349A (en) | 2012-08-01 |
CN103270693A (zh) | 2013-08-28 |
JP5732475B2 (ja) | 2015-06-10 |
TWI570019B (zh) | 2017-02-11 |
EP2658114A1 (en) | 2013-10-30 |
US9162730B2 (en) | 2015-10-20 |
EP2658114B1 (en) | 2020-09-02 |
CN103430446A (zh) | 2013-12-04 |
JPWO2012086459A1 (ja) | 2014-05-22 |
JP5922586B2 (ja) | 2016-05-24 |
CN103270693B (zh) | 2017-02-08 |
EP2658114A4 (en) | 2018-03-07 |
CN103430446B (zh) | 2016-09-07 |
TWI531506B (zh) | 2016-05-01 |
TW201231350A (en) | 2012-08-01 |
WO2012086460A1 (ja) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5732475B2 (ja) | モータ駆動制御装置 | |
US10040508B2 (en) | Motor driving control apparatus | |
JP5602186B2 (ja) | モータ駆動制御装置 | |
CN109247055B (zh) | 电动机驱动控制装置及电动装置 | |
US8975857B2 (en) | Inverter apparatus and inverter control method | |
JP2019118161A (ja) | コンバータ装置 | |
WO2012086458A1 (ja) | モータ駆動制御装置 | |
WO2010137128A1 (ja) | コンバータの制御装置およびそれを備える電動車両 | |
CN105915093B (zh) | 用于逆变器的控制系统 | |
US9136780B2 (en) | Controller for driving a motor and electric power-assisted vehicle | |
JP5965517B2 (ja) | モータ制御装置及び制御装置 | |
CA2654277A1 (en) | Vector control device of induction motor, vector control method of induction motor, and drive control device of induction motor | |
US20170110994A1 (en) | Motor driving control apparatus | |
CN113261199B (zh) | 马达控制装置 | |
JP6983305B2 (ja) | 車両制御装置 | |
JP2003259509A (ja) | 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム | |
JP2000197204A (ja) | 電動車両の回生制動制御方法 | |
JP2001078479A (ja) | 電動二輪車 | |
WO2025004660A1 (ja) | 電力変換器の制御装置、及びプログラム | |
JP2010226780A (ja) | 交流電動機の制御システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11850787 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012549736 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011850787 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13996418 Country of ref document: US |