WO2012026441A1 - 車体振動推定装置およびこれを用いた車体制振制御装置 - Google Patents
車体振動推定装置およびこれを用いた車体制振制御装置 Download PDFInfo
- Publication number
- WO2012026441A1 WO2012026441A1 PCT/JP2011/068910 JP2011068910W WO2012026441A1 WO 2012026441 A1 WO2012026441 A1 WO 2012026441A1 JP 2011068910 W JP2011068910 W JP 2011068910W WO 2012026441 A1 WO2012026441 A1 WO 2012026441A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle body
- body vibration
- vibration
- braking
- vehicle
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 claims abstract description 132
- 239000000725 suspension Substances 0.000 claims abstract description 39
- 238000001914 filtration Methods 0.000 claims abstract description 13
- 238000012937 correction Methods 0.000 claims description 120
- 230000033001 locomotion Effects 0.000 claims description 67
- 238000012545 processing Methods 0.000 claims description 30
- 230000001133 acceleration Effects 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 21
- 230000001629 suppression Effects 0.000 claims description 20
- 230000010354 integration Effects 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- 238000001514 detection method Methods 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 15
- 230000007423 decrease Effects 0.000 description 12
- 230000006866 deterioration Effects 0.000 description 8
- 230000005484 gravity Effects 0.000 description 8
- 230000008859 change Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000013016 damping Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001502 supplementing effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/171—Detecting parameters used in the regulation; Measuring values used in the regulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/10—Indicating wheel slip ; Correction of wheel slip
- B60L3/102—Indicating wheel slip ; Correction of wheel slip of individual wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/1755—Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/18—Conjoint control of vehicle sub-units of different type or different function including control of braking systems
- B60W10/184—Conjoint control of vehicle sub-units of different type or different function including control of braking systems with wheel brakes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
- B60W30/025—Control of vehicle driving stability related to comfort of drivers or passengers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/20—Reducing vibrations in the driveline
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/10—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
- B60W40/11—Pitch movement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/16—Pitch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/26—Wheel slip
- B60W2520/263—Slip values between front and rear axle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2520/00—Input parameters relating to overall vehicle dynamics
- B60W2520/28—Wheel speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0666—Engine torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/18—Braking system
- B60W2710/182—Brake pressure, e.g. of fluid or between pad and disc
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
Definitions
- the present invention relates to a vehicle body vibration estimation device for estimating vibration of a vehicle body, for example, pitching vibration and vertical vibration, which is a sprung mass of a vehicle in which wheels are suspended via a suspension device, and vehicle system vibration control using the same. It relates to the device.
- the vehicle body vibration estimation device is useful for vehicle system vibration control using a suspension device and vehicle system vibration control using a braking / driving force. Conventionally, for example, those shown in Patent Documents 1 to 3 are known.
- the vehicle body vibration estimation technology described in Patent Document 1 uses a vehicle body motion model (vehicle model) to estimate the pitching motion and vertical motion of the vehicle body from the braking / driving force based on the operation by the driver.
- vehicle model vehicle model
- the vehicle body vibration estimation technology described in Patent Documents 2 and 3 estimates the vehicle body vibration from the braking / driving force based on the operation by the driver using the vehicle body motion model as in Patent Document 1, but in addition to that, The purpose is to estimate the body vibration more accurately while eliminating the influence of the disturbance by estimating the disturbance torque input to the vehicle body from the wheel speed fluctuation and inputting this disturbance torque to the vehicle body motion model. It is.
- the conventional vehicle body vibration estimation technique described above causes the following problems.
- vehicle body vibration estimation technology described in Patent Document 1 when vehicle body vibration is estimated using a vehicle body motion model (vehicle model) from the braking / driving force based on the operation by the driver, If there is a disturbance input due to road surface unevenness, the vehicle body vibration may not be estimated accurately.
- the torque applied to the wheel is calculated from the product of the wheel load and the wheel rotational angular velocity, but since the wheel load and the wheel mass are different, The calculation result of such torque is not necessarily correct, The actual situation is that the original aim of accurately estimating the vehicle body vibration while eliminating the influence of disturbances cannot be achieved.
- the above-mentioned two problems related to the prior art are parameters that change according to deterioration with time, increase / decrease in the number of passengers, such as spring constant and vehicle mass, that is, torque and force such as braking / driving force and disturbance torque. From the viewpoint that it is caused by the fact that the vehicle body vibration is estimated from the above, it is intended that the vehicle body vibration can be estimated from the wheel speed information based on the following logic without using these torques and forces.
- the vibration of the vehicle body causes the wheel to move in the front-rear direction under the geometric constraint condition (suspension geometry) of the suspension device (suspension link structure).
- the wheel moves in the front-rear direction, it has a predetermined relationship determined by the suspension geometry (suspension link structure), that is, a correlation between the amount of displacement of the wheel in the front-rear direction and the amount of vertical displacement with respect to the vehicle body. Also move.
- the present invention recognizes that vehicle body vibration can be estimated from the above correlation and wheel speed information based on such logic, and embodies this idea so that vehicle body vibration can be estimated without using torque or force. It is an object of the present invention to provide a vehicle body vibration control apparatus using the vehicle body vibration estimation apparatus, and to solve all the problems of the prior art described above.
- the vehicle body vibration estimation apparatus is configured as follows. First, to explain the vehicle body vibration estimation device that is the premise of the present invention, This is to estimate the vibration of the vehicle body, which is the sprung mass of the vehicle with the wheels suspended via the suspension device.
- the present invention is directed to such a vehicle body vibration estimation device.
- Wheel speed physical quantity detecting means for detecting a physical quantity related to the wheel speed which is the peripheral speed of the wheel;
- Vibration estimation means for estimating the vibration of the vehicle body from the physical relationship between the wheel speed physical quantity detected by the means and the correlation between the longitudinal displacement amount and the vertical displacement amount of the wheel with respect to the vehicle body is provided. It is what.
- the vehicle system vibration control device of the present invention comprises the vehicle body vibration estimation device described above, Braking / driving force correction amount calculating means for calculating a braking / driving force correction amount necessary for reducing the vehicle body vibration estimated by the vibration estimating means; There is provided braking / driving force correcting means for correcting the braking / driving force of the vehicle by the braking / driving force correction amount obtained by the means.
- the vehicle body vibration estimation device of the present invention in order to estimate the vehicle body vibration from the wheel speed physical quantity based on the correlation between the longitudinal displacement amount and the vertical displacement amount of the wheel relative to the vehicle body, Without using torque and force that change according to deterioration over time or increase / decrease in the number of passengers, such as spring constant and vehicle mass, the vehicle body vibration is estimated from the wheel speed physical quantity, and the estimation accuracy of the vehicle body vibration can be improved. The influence of disturbances can be avoided.
- the vehicle system vibration control device includes the vehicle body vibration estimation device described above, calculates a braking / driving force correction amount necessary to reduce the estimated vehicle body vibration, and performs this braking / driving force correction. To correct the braking / driving force of the vehicle by the amount, Since the vehicle body vibration estimated as described above is highly accurate with excellent disturbance robustness, the vehicle body vibration can always be reduced as intended.
- FIG. 1 is a schematic system diagram showing a vehicle body vibration control system for a vehicle including a vehicle body vibration estimation device and a vehicle body vibration control device according to a first embodiment of the present invention.
- FIG. 2 is a functional block diagram of the motor controller in FIG.
- FIG. 3 is a functional block diagram of the vehicle system vibration control calculation unit in FIG.
- FIG. 4 is a flowchart showing a control program executed by the vehicle body vibration estimator in FIGS. 2 and 3 to estimate vehicle body vibration.
- FIG. 5 is a vehicle specification explanatory diagram showing a relationship between a vertical bounce motion Zv and a pitching motion ⁇ p at the center of gravity of the vehicle body, a vertical displacement Zf at a position above the front axis of the vehicle body, and a vertical displacement Zr at a position above the rear axis of the vehicle body.
- FIG. 6 is a characteristic diagram relating to the front wheel suspension geometry characteristic showing the relationship between the longitudinal displacement amount and the vertical displacement amount relating to the front wheel of the vehicle in FIG.
- FIG. 6 is a characteristic diagram relating to a rear wheel suspension geometry characteristic showing a relationship between a longitudinal displacement amount and a vertical displacement amount relating to a rear wheel of the vehicle in FIG.
- FIG. 4 is a functional block diagram of a vehicle body vibration control calculation unit corresponding to FIG. 3, showing a vehicle body vibration estimation apparatus according to a second embodiment of the present invention.
- FIG. 9 is a flowchart showing a control program executed by the vehicle body vibration estimator in FIG. 8 to estimate vehicle body vibration.
- FIG. 6 is an operation time chart of the second embodiment showing the vehicle body vibration estimated value of the vehicle body vibration estimating apparatus according to the second embodiment of the present invention in comparison with the vehicle body vibration actual measurement value.
- FIG. 4 is a functional block diagram of a vehicle system vibration control calculation unit corresponding to FIG. 3, showing a vehicle body vibration estimation device and a vehicle system vibration control device according to a third embodiment of the present invention.
- FIG. 12 is a flowchart showing a control program executed by the vehicle body vibration estimation unit and the braking / driving torque correction amount calculation unit in FIG. 11 to calculate the torque correction amount for estimating the vibration of the vehicle body and suppressing the vehicle body vibration. It is explanatory drawing for demonstrating the motion model of a vehicle.
- FIG. 6 is a schematic system diagram showing a vehicle body vibration estimation process and a vehicle system vibration control process according to a third embodiment of the present invention.
- FIG. 12 is a functional block diagram of a vehicle system vibration control calculation unit corresponding to FIG. 11, showing a vehicle body vibration estimation device and a vehicle system vibration control device according to a fourth embodiment of the present invention.
- FIG. 15 executes a control program for estimating the vehicle body vibration and calculating the braking / driving torque correction amount necessary for suppressing the vehicle body vibration.
- FIG. 13 is a flowchart corresponding to FIG.
- FIG. 10 is a functional block diagram of a motor controller corresponding to FIG. 2, showing a vehicle body vibration estimation device and a vehicle system vibration control device according to a fifth embodiment of the present invention.
- FIG. 18 is a functional block diagram of the vehicle system vibration control calculation unit in FIG.
- the vehicle body vibration estimation unit, the vehicle body vibration state amount complementing unit, and the braking / driving torque correction amount calculation unit in FIGS. 17 and 18 are executed to calculate the torque correction amount for estimating the vehicle body vibration and suppressing the vehicle body vibration. It is a flowchart which shows a control program.
- FIG. 20 is a schematic system diagram showing a vehicle body vibration estimation process and a vehicle system vibration control process according to the fifth embodiment shown in FIGS. 17 to 19;
- FIG. 20 is a schematic system diagram showing a vehicle body vibration estimation process and a vehicle body vibration control process according to a modification of the vehicle body vibration estimation device and the vehicle body vibration control system shown in FIGS.
- FIG. 1 is a schematic system diagram showing a vehicle body vibration control system for a vehicle including a vehicle body vibration estimation apparatus according to a first embodiment of the present invention.
- 1FL and 1FR indicate left and right front wheels, respectively
- 1RL and 1RR indicate left and right rear wheels, respectively.
- the left and right front wheels 1FL and 1FR are steered wheels steered by the steering wheel 2.
- the left and right front wheels 1FL and 1FR and the left and right rear wheels 1RL and 1RR are respectively suspended from the vehicle body 3 by a suspension device (not shown), and the vehicle body 3 is positioned above the suspension device and constitutes a sprung mass.
- the vehicle in FIG. 1 is a front-wheel drive electric vehicle that can travel by driving left and right front wheels 1FL and 1FR via a transmission 5 including a differential gear device by a motor 4 as a rotating electric machine.
- the motor controller 6 converts the electric power of the battery (capacitor) 7 from DC to AC by the inverter 8 and supplies the AC power to the motor 4 under the control of the inverter 8. It is assumed that the motor 4 is controlled so that the torque of 4 matches the motor torque command value tTm.
- the motor controller 6 applies a power generation load to the motor 4 via the inverter 8 so that the battery 7 is not overcharged.
- the power generated by the motor 4 due to the regenerative braking action is AC-DC converted by the inverter 8 to charge the battery 7.
- the motor controller 6 performs vehicle body vibration estimation calculation, which will be described in detail later, and performs vehicle body vibration control calculation for determining the motor torque command value tTm so as to suppress the vehicle body vibration that is the estimation result.
- the motor controller 6 Wheel speed sensors 11FL, 11FR that individually detect front wheel speeds VwFL, VwFR, which are the peripheral speeds of left and right front wheels 1FL, 1FR, and rear wheel speeds VwRL, VwRR, which are peripheral speeds of left and right rear wheels 1RL, 1RR, are detected individually.
- the wheel speed sensors 11RL and 11RR A signal from the accelerator opening sensor 13 for detecting the accelerator opening APO (accelerator pedal depression amount); A signal from the brake pedal depression force sensor 14 for detecting the brake pedal depression force BRP, The gear ratio information from the transmission 5 is input.
- the front wheel speeds VwFL and VwFR themselves are used as physical quantities representing the peripheral speeds of the left and right front wheels 1FL and 1FR
- the rear wheel speeds VwRL and VwRR themselves are used as physical quantities representing the peripheral speeds of the left and right rear wheels 1RL and 1RR.
- the peripheral speed of the corresponding wheel may be obtained from the rotational speed of any part that rotates together with the left and right front wheels 1FL and 1FR and the left and right rear wheels 1RL and 1RR.
- the wheel speed corresponds to the wheel speed physical quantity in the present invention
- the front wheel speed and the rear wheel speed correspond to the front wheel speed physical quantity and the rear wheel speed physical quantity in the present invention, respectively.
- the wheel speed sensors 11FL, 11FR, 11RL, and 11RR constitute wheel speed physical quantity detection means in the present invention.
- the motor controller 6 estimates the vibration of the vehicle body 3 based on the above input information, and corrects the driver's required torque (described later with the sign of rTd) so as to suppress the estimated vibration of the vehicle body 3. Then, the motor torque command value tTm is determined.
- the motor controller 6 is generally composed of a vehicle speed calculation unit 20, a required torque calculation unit 21, a vehicle system vibration control calculation unit 22, a motor torque command value calculation unit 23, as generally shown in the block diagram of FIG. , And an adder 24.
- the vehicle speed calculation unit 20 includes front wheel speeds VwFL, VwFR and rear wheel speeds VwRL, VwRR detected by wheel speed sensors 11FL, 11FR, 11RL, 11RR (shown as wheel speed sensor group 11 in FIG. 2).
- the vehicle speed VSP is obtained based on the wheel speed Vw).
- the requested torque calculation unit 21 drives the driver at the current vehicle speed VSP from the vehicle speed VSP obtained by the calculation unit 20 and the accelerator opening APO and the brake pedal depression force BRP detected by the sensors 13 and 14, respectively.
- the requested torque rTd positive is driving torque, negative is braking torque
- the requested torque rTd requested by the operation (accelerator opening APO and brake pedal depression force BRP) is calculated by map search or the like.
- the vehicle system vibration control calculation unit 22 includes a vehicle body vibration estimator 25 and a braking / driving torque correction amount calculation unit 26.
- the vibration of the vehicle body 3 is estimated from the wheel speed Vw as detailed later,
- the braking / driving torque correction amount calculation unit 26 calculates a braking / driving torque correction amount ⁇ Td necessary for suppressing the estimated vehicle body vibration. Accordingly, the vehicle body vibration estimator 25 constitutes vibration estimation means in the present invention.
- the adder 24 corrects the driver's required torque rTd obtained by the computing unit 21 by adding the braking / driving torque correction amount ⁇ Td for suppressing vehicle body vibration obtained by the braking / driving torque correction amount computing unit 26, thereby correcting the vehicle body vibration.
- a target torque tTd that satisfies the driver's request is obtained while suppressing.
- the motor torque command value calculation unit 23 is supplied from other systems 27 such as a behavior control device (VDC) for controlling vehicle behavior and a traction control device (TCS) for preventing drive slip of the drive wheels (front wheels) 1FL and 1FR.
- VDC behavior control device
- TCS traction control device
- the target torque tTd is limited or adjusted so as to satisfy the request, thereby obtaining a final motor torque command value tTm for realizing this.
- the motor controller 6 supplies the electric power from the battery 7 to the motor 4 under the control of the inverter 8 according to the motor torque command value tTm obtained as described above, so that the torque of the motor 4 becomes the motor torque command value tTm.
- the motor 4 is driven and controlled to match.
- the vehicle body vibration estimator 25 inside the vehicle body vibration control calculation unit 22 is configured as shown in the block diagram of FIG. 3, and executes the control program of FIG.
- the angular velocity d ⁇ p and the bounce velocity dZv, which is the vertical displacement velocity, are estimated.
- step S41 of FIG. 4 the vehicle body vibration estimator 25 reads the left and right front wheel speeds VwFL and VwFR and the left and right rear wheel speeds VwRL and VwRR as shown in FIG.
- the average rear wheel speed VwR (VwRL + VwRR) / 2 is calculated from the left and right rear wheel speeds VwRL and VwRR.
- step S43 in FIG. 4 components in the vicinity of the vehicle body resonance frequency from the average front wheel speed VwF and the average rear wheel speed VwR in the front wheel band pass filter processing unit 33 and the rear wheel band pass filter processing unit 34 (step S43 in FIG. 4) in FIG.
- the average front wheel speed VwF and the average rear wheel speed VwR are respectively passed through a bandpass filter for extracting and extracting only the vehicle body resonance frequency fVwF and the average rear wheel speed VwR vehicle body resonance frequency of the average front wheel speed VwF. Acquires the nearby vibration component fVwR.
- the vehicle body having the vibration component fVwF near the vehicle body resonance frequency of the average front wheel speed VwF and the vehicle body having the average rear wheel speed VwR as follows. From the vibration component fVwR near the resonance frequency, the vibration of the vehicle body 3 (the bounce speed dZv that is the vertical displacement speed and the pitch angular speed d ⁇ p) is obtained.
- FIG. 5 shows the vertical bounce motion Zv and pitching motion ⁇ p at the center of gravity of the vehicle body 3 in the vehicle having the center-of-gravity point-front axis distance Lf and the center-of-gravity point-rear axis distance Lr.
- 4 schematically shows the relationship between a vertical displacement Zf at a location above the front axis and a vertical displacement Zr at a location above the rear axis of the vehicle body 3.
- the vehicle body 3 and the rear wheels 1RL and 1RR are relatively moved in the vertical direction indicated by Zr, the vehicle body 3 and the rear wheels 1RL and 1RR are also relatively displaced in the longitudinal direction indicated by Xtr, for example, with the relationship shown in FIG.
- the front wheels 1FL, 1FR representing the vehicle vibration are derived from the front wheel speed vehicle body resonance frequency vicinity vibration component fVwF and the rear wheel speed vehicle body resonance frequency vicinity vibration component fVwR obtained by extracting only the wheel speed component representing the vehicle body vibration as described above. If the front-rear direction displacement Xtf and the front-rear direction displacement Xtr of the rear wheels 1RL, 1RR representing the vehicle body vibration are obtained and monitored, the relationship between FIGS.
- the vertical displacements Zf and Zr can be predicted, respectively.
- the bounce behavior calculator 35 and the pitching behavior calculator 36 (step S44 in FIG. 4) for predicting the vertical displacements Zf and Zr correspond to the front wheel vertical motion estimator and the rear wheel vertical motion estimator in the present invention. To do.
- front wheel suspension geometry characteristics of FIG. 6 and the rear wheel suspension geometry characteristics of FIG. 7 are mapped and stored as they are, or modeled in advance, and based on this, the front wheel longitudinal displacement Xtf and the rear wheel
- the vertical displacements Zf and Zr at the location above the front axis of the vehicle body 3 and the location above the rear axis of the vehicle body 3 are predicted from the longitudinal displacement Xtr of the vehicle body 3, respectively.
- the gradient KgeoF near the balance point (the origin of FIGS. 6 and 7) when the vehicle is stationary on a flat ground and 1G acceleration is applied (in the case of FIG. 6)
- KgeoR in the case of FIG. 7
- KgeoF and KgeoR are used as proportional coefficients.
- the front wheel speed vehicle body resonance frequency vicinity vibration component fVwF and the rear wheel speed obtained by extracting only the wheel speed component representing the vehicle body vibration as described above in the band pass filter processing units 33 and 34 (step S43 in FIG. 4) of FIG. From the vibration component fVwR near the vehicle body resonance frequency, the longitudinal displacement Xtf of the front wheels 1FL, 1FR representing the vehicle body vibration and the longitudinal displacement Xtr of the rear wheels 1RL, 1RR representing the vehicle body vibration are respectively obtained.
- the braking / driving torque correction amount calculation unit 26 in FIG. 3 suppresses these vehicle body vibrations (vertical bounce speed dZv and pitch angular speed d ⁇ p) based on the body vibrations estimated above (vertical bounce speed dZv and pitch angular speed d ⁇ p).
- the braking / driving torque correction amount ⁇ Td necessary for this is calculated and output, and this is sent to the adder 24 as shown in FIG.
- the adder 24 in FIG. 2 corrects the driver's required torque rTd obtained by the calculation unit 21 as described above by the above-described vehicle vibration suppression braking / driving torque correction amount ⁇ Td, thereby suppressing the vehicle vibration.
- the target torque tTd that satisfies the user's request is obtained.
- the motor torque command value calculation unit 23 in FIG. 2 limits the above target torque tTd so as to meet the torque request from the other system 27, or increases or decreases the final motor torque command value for realizing this.
- tTm is obtained and contributes to drive control of the motor 4 via the inverter 8.
- the motor 4 is driven and controlled to satisfy the driver's required torque rTd while suppressing the vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p), so that the vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is satisfied.
- the posture of the vehicle when turning the vehicle can be stabilized, and the steering stability can be improved.
- Vehicle body vibration (vertical bounce speed dZv and pitch angular velocity d ⁇ p) from the vehicle body resonance frequency vibration component fVwR of the average front wheel speed VwF and the vehicle vibration frequency vicinity vibration frequency component fVwR of the average rear wheel speed VwR )
- Vehicle vibration can be estimated without adding new parts such as a suspension stroke sensor, which is advantageous in terms of cost.
- the vehicle body of the average front wheel speed VwF near the vehicle body resonance frequency fVwF and the average rear wheel speed VwR Since the vehicle body vibration is estimated from the vibration component fVwR near the resonance frequency, that is, the information related to the wheel speed, the estimation accuracy of the vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) can be improved and the influence of disturbances should not be intervened. obtain.
- front wheel suspension geometry characteristics in FIG. 6 and the rear wheel suspension geometry characteristics in FIG. 7 are mapped and stored as they are, or modeled in advance, and these maps or models are used to change the front wheel longitudinal displacement Xtf. It is advantageous in terms of the prediction accuracy of the vertical displacements Zf and Zr to predict the vertical displacements Zf and Zr at the front shaft upper part and the rear shaft upper part of the vehicle body 3 from the longitudinal displacement Xtr of the rear wheel and the rear wheel, respectively. , It becomes disadvantageous in terms of cost.
- the front wheel suspension geometry characteristics of FIG. 6 and the rear wheel suspension geometry characteristics of FIG. 7 are used separately, and the front axle of the vehicle body 3 is determined from the front wheel longitudinal displacement Xtf and the rear wheel longitudinal displacement Xtr. Since the vertical displacements Zf and Zr at the upper part and the rear shaft upper part are individually predicted, the vertical displacements Zf and Zr are accurately predicted, and the vehicle body vibration (vertical bounce velocity dZv and pitch angular velocity d ⁇ p) Estimation can be performed with high accuracy.
- the vehicle body resonance frequency vicinity vibration component fVwF extracted from the average front wheel speed VwF and the vehicle body resonance frequency vicinity vibration component fVwR extracted from the average rear wheel speed VwR are used.
- the vehicle body vibration is estimated using only the wheel speed information associated with the vehicle body vibration that does not include the wheel speed fluctuation and noise components due to the acceleration and deceleration of the entire vehicle, and the estimation can be performed with high accuracy.
- FIG. 8 and 9 show a vehicle body vibration estimation apparatus according to a second embodiment of the present invention
- FIG. 8 is a block diagram corresponding to FIG. 3
- FIG. 9 is a vehicle body vibration estimation program corresponding to FIG. .
- the vehicle system vibration control system is the same as in FIG. 1, and the motor controller 6 is the same as in FIG.
- the description of FIG. 6 is omitted here, and only differences from the first embodiment will be described below with reference to FIGS.
- the vehicle body vibration estimator 25 in the vehicle body vibration control calculation unit 22 is configured as shown in the block diagram of FIG. 8, and the vehicle body vibration estimator 25 executes the control program of FIG.
- the vibration of the vehicle body 3 (the pitch angular velocity d ⁇ p and the vertical bounce velocity dZv) is estimated as in the first embodiment.
- step S61 of FIG. 9 the vehicle body vibration estimator 25 reads the left and right front wheel speeds VwFL and VwFR and the left and right rear wheel speeds VwRL and VwRR as shown in FIG.
- the average rear wheel speed VwR (VwRL + VwRR) / 2 is calculated from the left and right rear wheel speeds VwRL and VwRR.
- the average front wheel speed VwF and the average rear wheel are as follows. From the speed VwR, the vibration of the vehicle body 3 (the bounce speed dZv which is the vertical displacement speed and the pitch angular speed d ⁇ p) is obtained.
- the longitudinal displacement Xtf of the front wheels 1FL, 1FR relative to the vehicle body and the rear wheels 1RL, 1RR are calculated from the average front wheel speed VwF and the average rear wheel speed VwR.
- the longitudinal displacement Xtr is obtained, and the pitching motion ⁇ p of the vehicle body 3 is obtained by the calculation of the equation (5) using the longitudinal displacements Xtf and Xtr of the front and rear wheels, and this is time differentiated to obtain the pitch angular velocity f ⁇ p of the vehicle body 3.
- the pitch angular velocity f ⁇ p is passed through a band-pass filter for extracting and extracting only components near the vehicle body resonance frequency from the pitch angular velocity f ⁇ p of the vehicle body 3. Then, the final pitch angular velocity d ⁇ p, which is a vibration component near the vehicle body resonance frequency of the pitch angular velocity f ⁇ p, is obtained.
- the reason for extracting and extracting only the component near the vehicle body resonance frequency by filtering from the pitch angular velocity f ⁇ p of the vehicle body 3 in this way is that the pitch angular velocity f ⁇ p includes wheel speed fluctuations and noise components due to acceleration and deceleration of the entire vehicle, This is because it is necessary to exclude these from the pitch angular velocity f ⁇ p to obtain the final pitch angular velocity d ⁇ p representing only the vehicle body vibration.
- the final pitch angular velocity d ⁇ p is returned to the pitching behavior calculation unit 54 as shown in FIG. 8, and the average front wheel speed VwF and the average rear wheel speed VwR are calculated in this calculation unit 54 (step S65 in FIG. 9).
- the final pitch angular velocity d ⁇ p is also supplied to the bounce behavior calculating unit 53, and the average front wheel speed VwF and the average rear wheel speed VwR used here are the same in step S65 of FIG. Correction will be performed.
- the front-rear direction displacement Xtf of the front wheels 1FL and 1FR relative to the vehicle body and the rear wheel 1RL are calculated from the average front wheel speed VwF and the average rear wheel speed VwR corrected as described above.
- 1RR longitudinal displacement Xtr is obtained
- the vertical bounce motion Zv of the vehicle body 3 is obtained by the calculation of the above equation (6) using the longitudinal displacements Xtf, Xtr of these front and rear wheels, and this is time differentiated to obtain the vehicle body 3 Calculate the vertical bounce speed fZv.
- the vertical bounce speed fZv is used as a band pass filter for extracting and extracting only the component near the vehicle body resonance frequency from the vertical bounce speed fZv of the vehicle body 3.
- the final vertical bounce speed dZv which is a vibration component near the vehicle body resonance frequency of the vertical bounce speed fZv.
- the reason why only the component near the vehicle body resonance frequency is extracted and extracted from the vertical bounce speed fZv of the vehicle body 3 by the filtering process is that the vertical bounce speed fZv includes wheel speed fluctuation and noise components due to acceleration / deceleration of the entire vehicle. This is because it is necessary to exclude these from the vertical bounce speed fZv so as to obtain the final vertical bounce speed dZv representing only the vehicle body vibration.
- the braking / driving torque correction amount calculation unit 26 in FIG. 8 calculates these vehicle body vibrations (vertical bounce speed dZv and pitch angular speed d ⁇ p).
- the braking / driving torque correction amount ⁇ Td necessary for suppression is calculated and output, and this is sent to the adder 24 as shown in FIG.
- the adder 24 in FIG. 2 corrects the driver's required torque rTd obtained by the arithmetic unit 21 as described above by the braking / driving torque correction amount ⁇ Td for suppressing vehicle body vibration, thereby suppressing the vehicle body vibration.
- a target torque tTd that satisfies the above is obtained.
- the motor torque command value calculation unit 23 in FIG. 2 limits the above target torque tTd so as to meet the torque request from the other system 27, or increases or decreases the final motor torque command value for realizing this.
- tTm is obtained and contributes to drive control of the motor 4 via the inverter 8.
- the motor 4 is controlled so as to satisfy the driver's required torque rTd while suppressing the vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p).
- the ride comfort can be improved by suppressing dZv and the pitch angular velocity d ⁇ p), as well as the vehicle posture at the time of turning of the vehicle and the steering stability can be improved.
- the expected correlation (suspension geometry) between the longitudinal displacements Xtf, Xtr and the vertical displacements Zf, Zr of the front wheels 1FL, 1FR and rear wheels 1RL, 1RR with respect to the vehicle body 3 is illustrated in FIGS. Characteristics) and calculating the vehicle body vibration (vertical bounce speed fZv and pitch angular speed f ⁇ p) from the average front wheel speed VwF and average rear wheel speed VwR, From the estimation results fZv and f ⁇ p, the bandpass filter processing units 55 and 56 (steps S67 and S64) extract only the components near the vehicle body resonance frequency, and obtain the final vertical bounce velocity dZv and the final pitch angular velocity d ⁇ p.
- the first-order differential value is represented by a broken line.
- the average front wheel speed VwF and the average rear wheel speed VwR used for estimating the vehicle body vibration are subtracted by the pitch angular velocity d ⁇ p, thereby causing an error corresponding to the pitch angular velocity. Since the correction is made so that the influence is eliminated and it contributes to the estimation of the vehicle body vibration, the influence of the error due to the pitch angular velocity can be eliminated and the estimation accuracy of the vehicle body vibration can be improved.
- the wheel speed information used for estimating the body vibration is not limited to the average front wheel speed VwF and the average rear wheel speed VwR as shown in the figure, but based on the four-wheel model using the wheel speeds VwFL, VwER, VwRL, and VwRR individually.
- Car body vibration can also be estimated.
- the estimated vehicle body vibration is not limited to the pitch angular velocity d ⁇ p and the vertical bounce velocity dZv in the illustrated example, and can be easily estimated even for other vibrations such as a roll motion of the vehicle body.
- the vehicle body when the frequency component representing the vehicle body vibration (the longitudinal movement component of the wheel with respect to the vehicle body 3) is extracted from the average front wheel speed VwF and the average rear wheel speed VwR, the vehicle body is derived from the average front wheel speed VwF and the average rear wheel speed VwR.
- the vibration component fVwF near the vehicle body resonance frequency of the average front wheel speed VwF and the vibration component fVwR near the vehicle body resonance frequency of the average rear wheel speed VwR are obtained, and these are obtained from the vehicle vibration.
- the following wheel speed information may be used.
- a means for accurately detecting or estimating the vehicle speed which is the ground speed of the vehicle body 3, is provided, and the deviations of the vehicle body velocity from the average front wheel speed VwF and the average rear wheel speed VwR are respectively determined by the vehicle body resonance of the average front wheel speed VwF.
- the vehicle body resonance frequency vicinity vibration component fVwR may be used to estimate the body vibration.
- this method is disadvantageous in terms of estimation accuracy of vehicle body vibration considering the slip ratio difference between the driving wheel and the driven wheel, and the average front wheel speed VwF obtained using the bandpass filter as in the first embodiment. It is more practical to use the vehicle body resonance frequency vicinity vibration component fVwF and the vehicle body resonance frequency vicinity vibration component fVwR of the average rear wheel speed VwR.
- the second embodiment only the component near the vehicle body resonance frequency is extracted from the vertical bounce speed fZv and the pitch angular velocity f ⁇ p of the vehicle body 3 obtained from the average front wheel speed VwF and the average rear wheel speed VwR by bandpass filter processing, and the vehicle body vibration.
- the final vertical bounce velocity dZv and pitch angular velocity d ⁇ p representing only Instead, the final bounce velocity fZv and the pitch angular velocity f ⁇ p are filtered by removing drift components or by removing low frequency components below the frequency component near the vehicle body resonance frequency.
- the vertical bounce velocity dZv and the pitch angular velocity d ⁇ p may be obtained.
- a differentiator is provided that differentiates average front wheel speed VwF and average rear wheel speed VwR into wheel acceleration information. Based on the information, the vertical bounce velocity dZv and the pitch angular velocity d ⁇ p may be estimated.
- FIG. 11 is a functional block diagram of the vehicle structure vibration control calculation unit 22 corresponding to FIG. 3, showing the vehicle body vibration estimation device and the vehicle structure vibration control device according to the third embodiment of the present invention.
- FIG. 12 is a flowchart showing a control program executed by the vehicle system vibration control calculation unit 22 in FIG. 11 to calculate the torque correction amount for estimating the vibration of the vehicle body and suppressing the vibration of the vehicle body.
- the vehicle system vibration control system is the same as in FIG. 1, and the motor controller 6 is the same as in FIG. Description of 6 is omitted here, and only differences from the first embodiment will be described below with reference to FIGS.
- the vehicle body vibration estimator 25 and the braking / driving torque correction amount calculation unit 26 inside the vehicle system vibration control calculation unit 22 are configured as shown in the block diagram of FIG. 11, and execute the control program of FIG. 3 (in this embodiment, the pitch angle f ⁇ p, the pitch angular velocity df ⁇ p, the bounce amount fZv that is the vertical displacement amount, and the bounce velocity dfZv that is the vertical displacement velocity) are estimated, and the estimated vehicle body vibration (f ⁇ p, The braking / driving torque correction amount ⁇ Td necessary to suppress (df ⁇ p, fZv, dfZv) is calculated.
- the vehicle body vibration estimator 25 includes a wheel speed reference vehicle body vibration estimator 25a (wheel speed physical quantity reference vehicle body vibration estimation means in the present invention) and a braking / driving force reference vehicle body vibration estimator 25b (control system in the present invention).
- Driving force reference vehicle body vibration estimation means First, in step S41 of FIG. 12, and as shown in FIG. 11, the wheel speed reference vehicle body vibration estimator 25a reads the left and right front wheel speeds VwFL, VwFR and the left and right rear wheel speeds VwRL, VwRR.
- the wheel speed reference vehicle body vibration estimator 25a is similar to the vehicle body vibration estimator 25 in FIG. 3, and includes an average front wheel speed calculation unit 31, an average rear wheel speed calculation unit 32, and a front wheel bandpass filter.
- the processing unit 33, the rear wheel bandpass filter processing unit 34, the bounce behavior calculation unit 35, and the pitching behavior calculation unit 36 are configured.
- the average rear wheel speed VwR (VwRL + VwRR) / 2 is calculated from the wheel speeds VwRL and VwRR.
- the average front wheel speed VwF and the average rear wheel speed VwR are respectively passed through a bandpass filter for extracting and extracting only the vibration component fVwF of the average front wheel speed VwF and the vehicle body resonance frequency of the average rear wheel speed VwR. Get the vibration component fVwR.
- the vehicle body having the vibration component fVwF near the vehicle body resonance frequency of the average front wheel speed VwF and the vehicle body having the average rear wheel speed VwR as follows. From the vibration component fVwR near the resonance frequency, the vertical bounce speed dZv and the pitch angular speed d ⁇ p of the vehicle body 3, which are wheel speed reference vehicle body vibrations, are obtained.
- the wheel speed reference vehicle body vibration (the bounce speed dZv and the pitch angular speed d ⁇ p of the vehicle body 3) is obtained from the wheel speed vibration components fVwF and fVwR.
- the method is the same as described above for FIGS.
- the front wheel speed vehicle body resonance frequency vicinity vibration component fVwF obtained by extracting only the wheel speed component representing the vehicle body vibration as described above by the bandpass filter processing units 33 and 34 (step S43 in FIG. 12) in FIG.
- the longitudinal displacement Xtf of the front wheels 1FL and 1FR representing the vehicle body vibration and the longitudinal displacement Xtr of the rear wheels 1RL and 1RR representing the body vibration are obtained from the vibration component fVwR in the vicinity of the wheel speed vehicle body resonance frequency, and these longitudinal displacements Xtf are obtained.
- the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular velocity d ⁇ p) is calculated and estimated, respectively. Can do.
- the braking / driving force reference vehicle body vibration estimator 25b shown in FIG. 11 performs step S45 of FIG.
- the required torque rTd obtained by the calculation unit 21 is read as the braking / driving torque of the vehicle.
- the braking / driving force reference vehicle body vibration estimator 25b includes a vehicle model 37 as shown in FIG. 11.
- the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is used as an observer input.
- the braking / driving force reference vehicle body vibration (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch (Angular velocity df ⁇ p) is calculated and estimated.
- FIG. 13 shows a basic vehicle model 37 constituting the observer. As described above with reference to FIG. 5, the distance between the center of gravity of the wheel base L and the front axis is Lf, and the distance between the center of gravity and the rear axis is shown.
- the spring constant and vibration damping coefficient of the front wheel suspension device are Ksf and Cf, respectively
- the spring constant and vibration damping coefficient of the rear wheel suspension device are Ksr and Cr, respectively
- the mass of the vehicle body 3 is M
- the pitching motion (pitch angle f ⁇ p and pitch angular velocity df ⁇ p) and vertical bounce motion (vertical motion)
- the bounce amount fZv and the vertical bounce speed dfZv) can be calculated and estimated.
- the estimation accuracy is low due to modeling errors, disturbances (road surface unevenness), and the like.
- the braking / driving force reference vehicle body vibration estimator 25b in FIG. 11 is in the state by the observer using the vehicle model 37 from the required torque rTd (vehicle braking / driving torque) in step S46 in FIG.
- the vehicle model 37 is used from the required torque rTd (braking / driving torque of the vehicle), with the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) from the calculation units 35 and 36 as observer inputs.
- the braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch angular speed df ⁇ p) is calculated.
- the braking / driving force reference vehicle body vibration estimator 25b in FIG. 11 uses the vehicle speed model body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) as an observer input, and the vehicle model from the required torque rTd (vehicle braking / driving torque).
- vehicle speed model body vibration vertical bounce speed dZv and pitch angular speed d ⁇ p
- vehicle model from the required torque rTd
- the braking / driving force reference vehicle body vibration x is estimated from the required torque rTd (vehicle braking / driving torque) that is the cause of the vehicle body vibration, the braking / driving force reference vehicle body vibration is generated not before the vehicle body vibration occurs but before it occurs.
- x vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch angular speed df ⁇ p
- x can be estimated in a feed-forward manner as the final vehicle body vibration.
- step S47 of FIG. 12 the braking / driving torque correction amount calculation unit 26 of FIG. 11 performs braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p,
- the braking / driving torque correction amount ⁇ Td necessary for suppressing the pitch angular velocity (df ⁇ p) is calculated as follows. In other words, braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch angular speed df ⁇ p) is multiplied by a regulator gain Kr indicated by the sign “38” in FIG. Then, the linear sum of the multiplication values as a result is set as the braking / driving torque correction amount ⁇ Td.
- the regulator gain Kr is determined by weighting the degree of suppression (reduction) for each of the final body vibrations, the vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p. It is preferable in the sense of increasing the degree.
- the regulator gain Kr is a plurality of regulators set by changing the weighting pattern of the suppression (reduction) degree for each vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p, that is, for each type of vehicle body vibration. Composed of gain, The sum of integrated values of the plurality of regulator gains, the vertical bounce amount fZv, the vertical bounce velocity dfZv, the pitch angle f ⁇ p, and the pitch angular velocity df ⁇ p may be set as the braking / driving torque correction amount ⁇ Td.
- the tuning gain for the multiple regulator gains is set, and the sum of the integrated values of the vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch angular speed df ⁇ p, multiple regulator gains, and tuning gain is controlled.
- the drive torque correction amount ⁇ Td may be used.
- the braking / driving torque correction amount ⁇ Td obtained as described above by the braking / driving torque correction amount calculation unit 26 (step S47 in FIG. 12) in FIG. 11 is supplied to the adder 24 in FIG.
- the adder 24 corrects the driver's required torque rTd obtained by the calculation unit 21 as described above by the braking / driving torque correction amount ⁇ Td for suppressing vehicle body vibration to satisfy the driver's request while suppressing vehicle body vibration.
- a target torque tTd is obtained.
- the motor torque command value calculation unit 23 in FIG. 2 limits the above target torque tTd so as to meet the torque request from the other system 27, or increases or decreases the final motor torque command value for realizing this.
- tTm is obtained and contributes to drive control of the motor 4 via the inverter 8.
- FIG. A, B, C, and D in FIG. 14 indicate A, B, C, and D matrices when the vehicle model shown in FIG. 13 is expressed by a state equation, and Ko is an observer input (dZv, d ⁇ p, dfZv, This represents the observer gain for df ⁇ p).
- the motor 4 suppresses the vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p) while requiring the driver's torque.
- Drive control is performed to satisfy rTd.
- Control of vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p) can improve riding comfort as well as control the vehicle body posture when turning the vehicle. Stability can also be improved.
- the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is estimated.
- This wheel speed reference body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is used as an observer input, and braking / driving force reference body vibration x (vertical bounce) using the vehicle model 37 from the required drive torque rTd (vehicle braking / driving force).
- the vehicle body of the average front wheel speed VwF near the vehicle body resonance frequency fVwF and the average rear wheel speed VwR Since the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is estimated from the vibration component fVwR in the vicinity of the resonance frequency, that is, information related to the wheel speed, the estimation accuracy can be improved.
- the wheel speed reference body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is used as the final body vibration
- the wheel speed reference body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is Therefore, when the vehicle system vibration control is feedforward control, the estimation of the final vehicle body vibration is too slow to be suitable.
- the vehicle speed is estimated using the vehicle model 37 from the braking / driving force rTd of the vehicle before the vehicle body vibration is generated, while the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is input as an observer.
- the vehicle body vibration control is fed as in this embodiment in order to set the braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angle speed df ⁇ p) as the final vehicle body vibration. Even in the case of forward control, the estimation of the final vehicle body vibration is not too late.
- the braking / driving force correction amount ⁇ Td necessary for reducing the final vehicle body vibration x estimated as described above is calculated, and this braking / driving force correction amount is calculated.
- the vehicle body vibration can always be reduced as intended.
- FIG. 15 and 16 show a vehicle body vibration estimation device and a vehicle system vibration control device according to a fourth embodiment of the present invention
- FIG. 15 is a block diagram of a vehicle system vibration control calculation unit 22 corresponding to FIG.
- FIG. 16 is a flowchart corresponding to FIG. 12 showing the vehicle body vibration estimation and vehicle body vibration control program executed by the vehicle body vibration control calculation unit 22.
- the vehicle system vibration control system is the same as in FIG. 1, and the motor controller 6 is the same as in FIG. Description of the vehicle system vibration control system and the motor controller 6 is omitted here, and only differences from the third embodiment will be described below with reference to FIGS.
- the vehicle body vibration estimator 25 in the vehicle body vibration control calculation unit 22 is configured as shown in the block diagram of FIG. 15, and this vehicle body vibration estimator 25 executes the control program of FIG.
- the vibration of the vehicle body 3 (the pitch angle f ⁇ p, the pitch angular velocity df ⁇ p, the vertical bounce amount fZv, and the vertical bounce velocity dfZv) is estimated as in the third embodiment.
- the average rear wheel speed VwR (VwRL + VwRR) / 2 is calculated from the left and right rear wheel speeds VwRL and VwRR.
- step S63 in FIG. 16 the longitudinal displacement Xtf of the front wheels 1FL, 1FR relative to the vehicle body from the average front wheel speed VwF and the average rear wheel speed VwR (see FIG. 5), and Then, the longitudinal displacement Xtr (see FIG. 5) of the rear wheels 1RL and 1RR is obtained, and the vertical bounce amount Zv of the vehicle body 3 is calculated by the above formula (6) using the longitudinal displacements Xtf and Xtr of these front and rear wheels (see FIG. 5). (Refer to Fig. 4), and time differential of this to obtain the vertical bounce speed aZv of the vehicle body 3.
- the longitudinal displacement Xtf (see FIG. 5) of the front wheels 1FL and 1FR relative to the vehicle body from the average front wheel speed VwF and the average rear wheel speed VwR, and the rear wheels
- the longitudinal displacement Xtr of 1RL and 1RR (see Fig. 5) is obtained
- the pitching motion ⁇ p (see Fig. 5) of the vehicle body 3 is obtained by the calculation of the above formula (5) using the longitudinal displacements Xtf and Xtr of these front and rear wheels. This is time differentiated to determine the pitch angular velocity a ⁇ p of the vehicle body 3.
- the vehicle body 3 near the vehicle body resonance frequency is calculated from the vertical bounce speed aZv of the vehicle body 3 obtained by the bounce behavior calculation unit 53 (step S63 in FIG. 16).
- the vertical bounce speed aZv is passed through a bandpass filter for extracting and extracting only the components, and the vertical bounce speed dZv (wheel speed reference vehicle body vibration) that is a vibration component near the vehicle body resonance frequency of the vertical bounce speed aZv is obtained.
- the reason why only the component near the vehicle body resonance frequency is extracted from the vertical bounce speed aZv of the vehicle body 3 by filtering and is extracted is that the wheel speed reference vertical bounce speed aZv is a wheel speed fluctuation or noise component due to acceleration / deceleration of the entire vehicle. This is because it is necessary to exclude these from the vertical bounce speed aZv and to obtain a wheel speed reference vertical bounce speed dZv that represents only vehicle body vibration.
- This pitch angular velocity a ⁇ p is passed through a bandpass filter for extracting and extracting only the pitch angular velocity d ⁇ p (wheel speed reference vehicle body vibration), which is a vibration component near the vehicle body resonance frequency of the pitch angular velocity a ⁇ p.
- the reason for extracting and extracting only the component near the vehicle body resonance frequency by filtering from the pitch angular velocity a ⁇ p of the vehicle body 3 as described above is that the pitch angular velocity a ⁇ p includes wheel speed fluctuation and noise components due to acceleration and deceleration of the entire vehicle, This is because it is necessary to exclude these from the pitch angular velocity a ⁇ p to be the wheel speed reference pitch angular velocity d ⁇ p that represents only the vehicle body vibration.
- the braking / driving force reference vehicle body vibration estimator 25b in FIG. 15 performs step S65 in FIG.
- the required torque rTd obtained by the calculation unit 21 is read as the braking / driving torque of the vehicle.
- the braking / driving force reference vehicle body vibration estimator 25b is similar to that shown in FIG. 11, and includes a vehicle model 37.
- the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) described above is used. Is used as an observer input, and the vehicle model 37 is used to estimate the state from the required torque rTd (vehicle braking / driving torque), so that the vehicle body vibration (vertical bounce amount fZv, vertical bounce speed dfZv, pitch)
- the angle f ⁇ p and the pitch angular velocity df ⁇ p are calculated and estimated.
- the estimation accuracy is low due to modeling errors, disturbances (road surface unevenness), and the like.
- the vehicle model is calculated from the required torque rTd (vehicle braking / driving torque) in the braking / driving force reference vehicle body vibration estimator 25b (step S66 in FIG. 16) in FIG.
- rTd vehicle braking / driving torque
- the braking / driving force reference vehicle body vibration estimator 25b step S66 in FIG. 16
- estimating and estimating the braking / driving force reference vehicle body vibration x vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch angular speed df ⁇ p
- the vehicle model 37 is used from the required torque rTd (braking / driving torque of the vehicle) while the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) from the calculation units 55 and 56 is also input as an observer.
- the braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch angular speed df ⁇ p) is calculated.
- the braking / driving force reference vehicle body vibration estimator 25b in FIG. 15 uses the vehicle speed model body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) as an observer input from the required torque rTd (vehicle braking / driving torque).
- vehicle speed model body vibration vertical bounce speed dZv and pitch angular speed d ⁇ p
- rTd vehicle braking / driving torque
- the braking / driving force reference vehicle body vibration x is estimated from the required torque rTd (vehicle braking / driving torque) that is the cause of the vehicle body vibration, the braking / driving force reference vehicle body vibration is generated not before the vehicle body vibration occurs but before it occurs.
- x vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, pitch angular speed df ⁇ p
- x can be estimated in a feed-forward manner as the final vehicle body vibration.
- step S67 of FIG. 16 the braking / driving torque correction amount calculation unit 26 of FIG. 15 performs braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p,
- the braking / driving torque correction amount ⁇ Td necessary for suppressing the pitch angular velocity (df ⁇ p) is calculated as follows.
- the braking / driving torque correction amount ⁇ Td obtained as described above by the braking / driving torque correction amount calculation unit 26 (step S67 in FIG. 16) in FIG. 15 is supplied to the adder 24 in FIG.
- the adder 24 corrects the driver's required torque rTd obtained by the calculation unit 21 as described above by the braking / driving torque correction amount ⁇ Td for suppressing vehicle body vibration to satisfy the driver's request while suppressing vehicle body vibration.
- a target torque tTd is obtained.
- the motor torque command value calculation unit 23 in FIG. 2 limits the above target torque tTd so as to meet the torque request from the other system 27, or increases or decreases the final motor torque command value for realizing this.
- tTm is obtained and contributes to drive control of the motor 4 via the inverter 8.
- the motor 4 reduces the vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p) while reducing the driver's required torque rTd.
- the drive will be controlled to satisfy, Control of vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p) can improve riding comfort as well as control the vehicle body posture when turning the vehicle. Stability can also be improved.
- This wheel speed reference body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is used as an observer input, and braking / driving force reference body vibration x (vertical bounce) using the vehicle model 37 from the required drive torque rTd (vehicle braking / driving force).
- the amount fZv, the vertical bounce speed dfZv, the pitch angle f ⁇ p, and the pitch angular speed df ⁇ p) are determined to obtain the final vehicle body vibration, and the following effects can be obtained.
- the final vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p) without adding a suspension stroke sensor as in the prior art. Is advantageous.
- wheels can be obtained from average front wheel speed VwF and average rear wheel speed VwR, that is, from wheel speed information. Since the speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular speed d ⁇ p) is estimated, the estimation accuracy can be improved.
- the vehicle model 37 is determined from the braking / driving force rTd of the vehicle before the occurrence of the vehicle body vibration while the wheel speed reference vehicle body vibration (vertical bounce speed dZv and pitch angular velocity d ⁇ p) is not used as the final vehicle body vibration as it is as an observer input.
- the braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular speed df ⁇ p) estimated by using the vehicle body vibration, even when the vehicle system vibration control is feedforward control. Further, there is no problem that the estimation of the vehicle body vibration is delayed and the vehicle system vibration control cannot be performed as intended.
- the vehicle body vibration estimation device is used for vehicle system vibration control via the braking / driving force operation of an electric vehicle using only the motor 4 as a power source. It can be used in the same way for a vehicle system vibration control device through engine control of a vehicle equipped with an engine such as an internal combustion engine as a power source, and the suspension device can be operated instead of the braking / driving force operation of the motor or engine. Needless to say, the present invention can be similarly applied to the vehicle system vibration control device via the.
- the wheel speed information used for estimating the body vibration is not limited to the average front wheel speed VwF and the average rear wheel speed VwR as shown in the figure, but based on the four-wheel model using the wheel speeds VwFL, VwER, VwRL, and VwRR individually.
- Car body vibration can also be estimated.
- the wheel speed reference vehicle body vibration that is an observer input to the vehicle model 37 is not limited to the pitch angular velocity d ⁇ p and the vertical bounce velocity dZv of the third and fourth embodiments, and may be other vibrations such as a roll motion of the vehicle body. These can be estimated easily.
- the vehicle body when the frequency component representing the vehicle body vibration (the longitudinal movement component of the wheel relative to the vehicle body 3) is extracted from the average front wheel speed VwF and the average rear wheel speed VwR, the vehicle body is calculated from the average front wheel speed VwF and the average rear wheel speed VwR.
- the vehicle body resonance frequency vicinity vibration component fVwF of the average front wheel speed VwF and the vehicle body resonance frequency vicinity vibration component fVwR of the average rear wheel speed VwR are obtained, and these are obtained as wheel speeds.
- the reference vehicle body vibration pitch angular velocity d ⁇ p and vertical bounce velocity dZv
- a means for accurately detecting or estimating the vehicle speed which is the ground speed of the vehicle body 3, is provided, and the deviations of the vehicle body velocity from the average front wheel speed VwF and the average rear wheel speed VwR are respectively determined by the vehicle body resonance of the average front wheel speed VwF.
- the near-frequency vibration component fVwF and the vehicle body resonance frequency vicinity vibration component fVwR of the average rear wheel speed VwR it may be used to estimate the wheel speed reference vehicle body vibration (pitch angular velocity d ⁇ p and vertical bounce velocity dZv).
- this method is disadvantageous in terms of the estimation accuracy of the vehicle body vibration considering the slip ratio difference between the driving wheel and the driven wheel, and the average front wheel speed VwF obtained using the bandpass filter as in the third embodiment. It is more practical to use the vehicle body resonance frequency vicinity vibration component fVwF and the vehicle body resonance frequency vicinity vibration component fVwR of the average rear wheel speed VwR.
- the braking / driving force used for estimating the braking / driving force reference vehicle body vibration x (vertical bounce amount fZv, vertical bounce speed dfZv, pitch angle f ⁇ p, and pitch angular velocity df ⁇ p) is shown in FIG.
- the required torque rTd obtained by the calculation unit 21 is used, the present invention is not limited to this, and any state quantity that represents the braking / driving force of the vehicle can be used.
- the vehicle has an actuator that automatically adjusts the braking / driving force, it is necessary to calculate the required torque of the vehicle from the operation of the actuator and use the required torque as the braking / driving force of the vehicle. Needless to say.
- FIG. 17 is a functional block diagram of the motor controller 6 corresponding to FIG. 2, showing a vehicle body vibration estimation device and a vehicle system vibration control device according to a fifth embodiment of the present invention.
- 18 is a functional block diagram corresponding to FIG. 3, showing details of the vehicle system vibration control calculation unit 22 in FIG.
- FIG. 19 is a flowchart showing a control program executed by the vehicle body vibration control calculation unit 22 in FIGS. 17 and 18 to calculate the torque correction amount for estimating the vibration of the vehicle body and suppressing the vehicle body vibration.
- the motor controller 6 estimates the vibration of the vehicle body 3 and corrects the driver's required torque rTd so as to suppress the estimated vibration of the vehicle body 3 to determine the motor torque command value tTm.
- the front wheel speed VwFL, VwFR front wheel speed physical quantity
- VwRR rear wheel speed physical quantity
- the physical quantity representing the vehicle body vibration is not limited to these, and may be the rotational speed of any part that rotates together with the left and right front wheels 1FL and 1FR and the left and right rear wheels 1RL and 1RR, or other speed information may be used. Needless to say, it is good.
- the wheel speeds VwFL, VwFR, VwRL, and VwRR correspond to the vehicle body vibration physical quantity in the present invention
- the wheel speed sensors 11FL, 11FR, 11RL, and 11RR constitute the vehicle body vibration physical quantity detection means in the present invention.
- the motor controller 6 basically has the same vehicle speed calculation unit 20, required torque calculation unit 21, vehicle system vibration control calculation unit 22, motor torque command value calculation unit 23 as in FIG. , And an adder 24.
- a vehicle body vibration state quantity complementing unit 29 is interposed between the vehicle body vibration estimator 25 and the braking / driving torque correction amount calculating unit 26 in the vehicle body vibration control calculating unit 22, and these vehicle body vibration estimator 25, braking / driving torque correction amount
- the vehicle system vibration control calculation unit 22 is configured by the calculation unit 26 and the vehicle body vibration state amount complementing unit 29.
- the vehicle speed calculation unit 20 includes front wheel speeds VwFL, VwFR and rear wheel speeds VwRL, VwRR detected by wheel speed sensors 11FL, 11FR, 11RL, 11RR (shown as wheel speed sensor group 11 in FIG. 17) (in FIG. 17, The vehicle speed VSP is obtained based on the wheel speed Vw).
- the requested torque calculation unit 21 drives the driver at the current vehicle speed VSP from the vehicle speed VSP obtained by the calculation unit 20 and the accelerator opening APO and the brake pedal depression force BRP detected by the sensors 13 and 14, respectively.
- the requested torque rTd positive is driving torque, negative is braking torque
- the requested torque rTd requested by the operation (accelerator opening APO and brake pedal depression force BRP) is calculated by map search or the like.
- the vehicle body vibration estimator 25 estimates the vibration of the vehicle body 3 (a certain vehicle body vibration state quantity) from the wheel speed Vw, as will be described in detail later.
- the vehicle body vibration state amount complementing unit 29 calculates another vehicle body vibration (another vehicle body vibration state amount) as will be described later from the vehicle body vibration (a certain vehicle body vibration state amount) estimated by the estimator 25. Accordingly, the vehicle body vibration estimator 25 corresponds to the vehicle body vibration state quantity calculating means in the present invention, and the vehicle body vibration state quantity complementing unit 29 corresponds to the vehicle body vibration state quantity complementing means in the present invention.
- the vehicle body vibration state amount complementing unit 29 calculates the braking / driving torque correction amount calculation unit for the calculated other body vibration (another body vibration state amount) together with the body vibration (a certain body vibration state amount) from the estimator 25. Supply to 26.
- the braking / driving torque correction amount calculation unit 26 receives the vehicle body vibration (a certain body vibration state amount) supplied from the vehicle body vibration estimator 25 via the vehicle body vibration state amount complementing unit 29, and the vehicle vibration state amount supplementing unit 29.
- the braking / driving torque correction amount ⁇ Td necessary to suppress the vehicle body vibration (another vehicle body vibration state amount) is calculated. Therefore, the braking / driving torque correction amount calculation unit 26 corresponds to the braking / driving force correction amount calculation means in the present invention.
- the adder 24 corrects the driver's required torque rTd obtained by the computing unit 21 by adding the braking / driving torque correction amount ⁇ Td for suppressing vehicle body vibration obtained by the braking / driving torque correction amount computing unit 26, thereby correcting the vehicle body vibration.
- a target torque tTd that satisfies the driver's request is obtained while suppressing. Therefore, the adder 24 constitutes the braking / driving force correcting means in the present invention.
- the motor torque command value calculation unit 23 is supplied from other systems 27 such as a behavior control device (VDC) for controlling vehicle behavior and a traction control device (TCS) for preventing drive slip of the drive wheels (front wheels) 1FL and 1FR.
- VDC behavior control device
- TCS traction control device
- the target torque tTd is limited or adjusted so as to satisfy the request, thereby obtaining a final motor torque command value tTm for realizing this.
- the motor controller 6 supplies the electric power from the battery 7 to the motor 4 under the control of the inverter 8 according to the motor torque command value tTm obtained as described above, so that the torque of the motor 4 becomes the motor torque command value tTm.
- the motor 4 is driven and controlled to match.
- the vehicle body vibration estimator 25, the vehicle body vibration state amount complementing unit 29, and the braking / driving torque correction amount calculating unit 26 inside the vehicle system vibration control calculating unit 22 are each configured as shown in the block diagram of FIG. Is executed to estimate the vibration of the vehicle body 3 (in this embodiment, the pitch angle ⁇ p, the pitch angular velocity d ⁇ p, the bounce amount Zv that is the vertical displacement amount, and the bounce velocity dZv that is the vertical displacement velocity), A braking / driving torque correction amount ⁇ Td necessary to suppress the estimated vehicle body vibration ( ⁇ p, d ⁇ p, Zv, dZv) is calculated.
- the vehicle body vibration estimator 25 includes an average front wheel speed calculation unit 51, an average front wheel speed calculation unit 52, a bounce speed calculation unit 53, a pitch angular speed calculation unit 54, and bandpass filter processing units 55 and 56.
- the average front wheel speed calculation unit 51 and the average front wheel speed calculation unit 52 read the left and right front wheel speeds VwFL and VwFR and the left and right rear wheel speeds VwRL and VwRR, respectively.
- VwF (VwFL + VwFR) / 2 from the left and right front wheel speeds VwFL and VwFR, and calculates the left and right rear wheels in the average front wheel speed calculation unit 51 and the average rear wheel speed calculation unit 52 (step S62 in FIG. 19).
- the average rear wheel speed VwR (VwRL + VwRR) / 2 is calculated from the wheel speeds VwRL and VwRR.
- the vertical direction of the vehicle body 3 that is a certain vehicle body vibration state quantity is calculated from the average front wheel speed VwF and the average rear wheel speed VwR.
- the method for obtaining the bounce velocity dZv (F) and the pitch angular velocity d ⁇ p (F) is the same as described above with reference to FIGS.
- the longitudinal displacement Xtf of the front wheels 1FL and 1FR including the vehicle body vibration is calculated from the average front wheel speed VwF and the average rear wheel speed VwR obtained as described above by the calculation units 51 and 52 in FIG. 18 (step S62 in FIG. 19).
- the longitudinal displacement Xtr of the rear wheels 1RL and 1RR By substituting the time differential values dXtf and dXtr of these longitudinal displacements Xtf and Xtr into the above equations (7) and (8), the vertical bounce velocity dZv (F) and pitch angular velocity which are certain vehicle body vibration state quantities Each d ⁇ p (F) can be calculated and estimated.
- the vehicle body resonance is calculated from the vertical bounce speed dZv (F) of the vehicle body 3 obtained by the bounce speed calculation unit 53 (step S63 in FIG. 19) in FIG.
- the vertical bounce speed dZv (F) is passed through a bandpass filter for extracting and extracting only the components near the frequency, and the vertical bounce speed dZv (a certain vibration component near the vehicle body resonance frequency of the vertical bounce speed dZv (F)) Body vibration state quantity).
- the reason why only the component near the vehicle body resonance frequency is extracted and extracted from the vertical bounce speed dZv (F) of the vehicle body 3 by the filtering process is that the vertical bounce speed dZv (F) changes the wheel speed due to acceleration / deceleration of the entire vehicle. This is because it is necessary to exclude the noise component from the vertical bounce speed dZv (F) to obtain the vertical bounce speed dZv representing only the vehicle body vibration.
- the vehicle body resonance frequency is calculated from the pitch angular velocity d ⁇ p (F) of the vehicle body 3 obtained by the pitch angular velocity calculation unit 54 in FIG. 18 (step S63 in FIG. 19).
- This pitch angular velocity d ⁇ p (F) is passed through a bandpass filter for extracting and extracting only nearby components, and a pitch angular velocity d ⁇ p (a certain vehicle body vibration state quantity) which is a vibration component near the vehicle body resonance frequency of the pitch angular velocity d ⁇ p (F).
- the reason for extracting and extracting only the component near the vehicle body resonance frequency from the pitch angular velocity d ⁇ p (F) of the vehicle body 3 by filtering is that the pitch angular velocity d ⁇ p (F) is caused by wheel speed fluctuations and noise due to acceleration / deceleration of the entire vehicle. This is because it is necessary to exclude these components from the pitch angular velocity d ⁇ p (F) to obtain a pitch angular velocity d ⁇ p representing only the vehicle body vibration.
- the vehicle model illustrated in FIG. 20 is used which dynamically summarizes the relationship between the braking / driving torque of the vehicle and the vehicle body vibration.
- the distance between the center of gravity and the front axis of the wheel base L is Lf
- the distance between the center of gravity and the rear axis is Lr
- the front wheel suspension is the same as described above with reference to FIG.
- the spring constant and vibration damping coefficient of the device are Ksf and Cf, respectively
- the spring constant and vibration damping coefficient of the rear wheel suspension device are Ksr and Cr, respectively
- the mass of the vehicle body 3 is M
- the pitching inertia moment of the vehicle body 3 Is Ip When the required torque rTd obtained by the calculation unit 21 in FIG.
- the body 3 pitching motion (pitch angle ⁇ p and pitch angular velocity d ⁇ p) and vertical bounce motion (vertical bounce amount Zv and vertical bounce velocity dZv) )
- these four types of body vibration state quantities ( ⁇ p, d ⁇ p, Zv, dZv) are weighted, and regulators for suppressing the body vibration state quantities ( ⁇ p, d ⁇ p, Zv, dZv) based on these weightings.
- the gain is designed and used for vehicle system vibration control.
- the pitch angular velocity d ⁇ p and the vertical bounce among the above four types of vehicle body vibration state quantities pitch angle ⁇ p, pitch angular velocity d ⁇ p, vertical bounce amount Zv, vertical bounce velocity dZv. Only two types of speed dZv (a certain vehicle body vibration state quantity) can be estimated, and vibration suppression control that actively suppresses the other pitch angle ⁇ p and vertical bounce quantity Zv cannot be expected.
- the pitch angle ⁇ p and the vertical bounce which are other vehicle vibration state quantities, are determined from the pitch angular velocity d ⁇ p and the vertical bounce velocity dZv.
- Car body vibration state amount supplement processing for obtaining and supplementing the amount Zv is performed.
- integrators 26a and 26b are provided in the vehicle body vibration state quantity complementing unit 29 in FIG. 18, the vertical bounce speed dZv is integrated by the integrator 26a to obtain the vertical bounce quantity Zv, and the pitch angular speed d ⁇ p is integrated by the integrator 26b.
- the pitch angle ⁇ p is obtained.
- the vehicle body vibration state amount complementing unit 29 applies the vertical bounce speed dZv and pitch angular velocity d ⁇ p from the vehicle body vibration estimator 25 to the braking / driving torque correction amount calculation unit 26 as they are in step S66 of FIG.
- the vertical bounce amount Zv and the pitch angle ⁇ p obtained by integrating them are directed to the braking / driving torque correction amount calculating unit 26, and the braking / driving torque correction amount calculating unit 26 is set to four types of vehicle body vibration x ( ⁇ p, d ⁇ p). , Zv, dZv).
- step S67 of FIG. 19 the braking / driving torque correction amount calculation unit 26 of FIG. 18 calculates the braking / driving torque correction amount ⁇ Td necessary for suppressing these four types of vehicle body vibration x ( ⁇ p, d ⁇ p, Zv, dZv). Calculate as follows. That is, the vehicle body vibration x (vertical bounce amount Zv, vertical bounce speed dZv, pitch angle ⁇ p, pitch angular speed d ⁇ p) is multiplied by the regulator gain Kr indicated by the sign “38” in FIG. The linear sum of the multiplication values is set as the braking / driving torque correction amount ⁇ Td.
- the regulator gain Kr is determined by weighting the degree of suppression (reduction) for each of the vertical bounce amount Zv, the vertical bounce speed dZv, the pitch angle ⁇ p, and the pitch angular speed d ⁇ p.
- the regulator gain Kr is a plurality of regulators set by changing the weighting pattern of the suppression (reduction) degree for each vertical bounce amount Zv, vertical bounce speed dZv, pitch angle ⁇ p, and pitch angular speed d ⁇ p, that is, for each type of vehicle body vibration. Composed of gain, The sum of the integrated values of the plurality of regulator gains, the vertical bounce amount Zv, the vertical bounce velocity dZv, the pitch angle ⁇ p, and the pitch angular velocity d ⁇ p may be set as the braking / driving torque correction amount ⁇ Td.
- the braking / driving torque correction amount ⁇ Td obtained as described above by the braking / driving torque correction amount calculation unit 26 (step S67 in FIG. 19) in FIG. 18 is supplied to the adder 24 in FIG.
- the adder 24 corrects the driver's required torque rTd obtained by the calculation unit 21 as described above by the braking / driving torque correction amount ⁇ Td for suppressing vehicle body vibration to satisfy the driver's request while suppressing vehicle body vibration.
- a target torque tTd is obtained.
- the motor torque command value calculation unit 23 in FIG. 17 limits the above target torque tTd so as to meet the torque request from the other system 27, or increases or decreases the final motor torque command value for realizing this.
- tTm is obtained and contributes to drive control of the motor 4 via the inverter 8.
- a signal measured or estimated on an actual vehicle usually has an offset (0 point deviation) or a noise component, and if such a signal is inadvertently integrated, an integration error may accumulate and control may diverge.
- an integration error may accumulate and control may diverge.
- old information is deleted as needed during quasi-integration based on the time constant. The amount can be avoided from diverging.
- the steady state component of vibration (mainly the speed component) to be controlled is basically zero, so there is no fear that the integration result will deviate from the true value even when used for a long time.
- the integration time is extremely shortened, the influence cannot be ignored, so at least the integration time constant T is set to a value greater than or equal to the vehicle body resonance period, and at least the information for the resonance period can be reliably accumulated. It is desirable to do.
- a plurality of regulator gains Kr1 and Kr2 are obtained as shown in FIG.
- the sum of the integrated values with the tuning gains G1 and G2 may be set as the braking / driving torque correction amount ⁇ Td.
- each body vibration state quantity also affects other body vibration state quantities, so finding the optimum value by hand tuning It is very difficult.
- a plurality of regulator gains for example, gain Kr1 that suppresses bounce behavior and gain Kr2 that suppresses pitch behavior
- the gains Kr1 and Kr2 can be weighted by the tuning gains G1 and G2, effective gain tuning can be realized.
- the motor 4 suppresses the vehicle body vibration x (vertical bounce amount Zv, vertical bounce speed dZv, pitch angle ⁇ p, and pitch angular speed d ⁇ p).
- Drive control will be performed to satisfy the torque rTd.
- Control of vehicle body vibration x (vertical bounce amount Zv, vertical bounce speed dZv, pitch angle ⁇ p, and pitch angular velocity d ⁇ p) can improve riding comfort and can also stabilize the vehicle body posture when turning the vehicle. Stability can also be improved.
- the vehicle body vibration estimator 25 used in this embodiment is deteriorated with time or increased or decreased in number of passengers instead of braking / driving force or disturbance torque that changes according to deterioration with time or increased or decreased number of passengers. Since the vehicle body vibration is estimated from the speed information such as the wheel speed that does not change due to, for example, only two types of vehicle body vibrations, the vertical bounce speed dZv and the pitch angular speed d ⁇ p, can be estimated, If only the estimation result from the vehicle body vibration estimator 25 is used for the vehicle system vibration control, predetermined vibration suppression is performed with respect to the vertical bounce amount Zv and the pitch angle ⁇ p which are vehicle body vibrations other than the vertical bounce speed dZv and the pitch angular speed d ⁇ p. I cannot expect the effect.
- the vehicle body vibration state amount complementing unit 29 is provided to obtain and complement the vertical bounce amount Zv by integrating the vertical bounce velocity dZv, and the pitch angle ⁇ p is integrated by integrating the pitch angular velocity d ⁇ p.
- the four types of vehicle body vibrations namely the vertical bounce speed dZv, vertical bounce amount Zv, pitch angular velocity d ⁇ p, and pitch angle ⁇ p, contribute to the above-mentioned vehicle system vibration control.
- the vibration suppression effect can be expected.
- the integrators 26a and 26b for the integration are pseudo-integrators having a predetermined time constant T and having a transfer function G (s) expressed by the above equation (13). Old information corresponding to the predetermined time constant T is deleted at any time, and accumulation of integration errors and divergence due to this are prevented, so that the vertical bounce amount Zv and the vertical bounce amount Zv can be accurately calculated.
- the pseudo-integration there is a problem that if there is an input that continues for a long time that is equal to or longer than the set time constant T, there is a problem that the integration result shifts. Since the speed information used for estimation basically has no steady component, there is no such concern.
- the integration time constant T is set to a value equal to or greater than the vehicle body resonance period. For this reason, at least the information corresponding to the resonance period can be reliably accumulated, and there is no possibility that the vertical bounce amount Zv and the vertical bounce amount Zv cannot be calculated due to insufficient information.
- the vehicle body vibration estimator 25 estimates the vertical bounce velocity dZv and the pitch angular velocity d ⁇ p.
- the vertical bounce speed dZv (F) and the pitch angular speed d ⁇ p (F) are estimated, and these are passed through the bandpass filter processing units 55 and 56 to detect only the vehicle body vibration. Since the vertical bounce velocity dZv and the pitch angular velocity d ⁇ p to be expressed are extracted, the following effects can be obtained.
- the vertical bounce speed dZv and the pitch angular speed d ⁇ p are estimated from the average front wheel speed VwF and average rear wheel speed VwR, which do not change due to deterioration over time or increase or decrease in the number of passengers.
- the estimation accuracy can be improved without being influenced by the above, and the effect of the vibration suppression control can be made remarkable.
- the pseudo-integral represented by the transfer function G (s) of the above-described equation (13) provided with a predetermined time constant T.
- the calculation load is not increased unlike the normal integration calculation, and the calculated pitch angle ⁇ p and the vertical bounce amount Zv do not diverge.
- the integration time constant T is set to a value that is at least equal to or greater than the vehicle body resonance period, information for at least the resonance period can be reliably accumulated, and the pitch angle ⁇ p and the vertical bounce amount Zv cannot be calculated due to insufficient information. The situation can be avoided.
- the braking / driving torque correction amount calculating unit 26 of FIG. 18 obtains the braking / driving torque correction amount ⁇ Td for suppressing the vehicle body vibration, as shown in FIG. 21, the vehicle body vibration x (vertical bounce amount Zv, vertical bounce Speed dZv, pitch angle ⁇ p, pitch angular velocity d ⁇ p) is multiplied by giving a regulator gain Kr, and the resulting linear sum of multiplication values is used as the braking / driving torque correction amount ⁇ Td.
- the braking / driving torque correction amount ⁇ Td can be easily obtained and the calculation load can be reduced.
- the regulator gain Kr is determined by weighting the degree of suppression (reduction) for each of the vertical bounce amount Zv, vertical bounce speed dZv, pitch angle ⁇ p, and pitch angular speed d ⁇ p. As the degree of freedom in design increases, each vibration state quantity can be balanced as the regulator gain Kr, which is very useful in practice.
- the regulator gain Kr is composed of a plurality of regulator gains set by changing the weighting pattern of the suppression (reduction) degree for each of the vertical bounce amount Zv, the vertical bounce speed dZv, the pitch angle ⁇ p, and the pitch angular speed d ⁇ p, The same effect can be achieved even if the sum of the integrated values of these regulator gains, the vertical bounce amount Zv, the vertical bounce velocity dZv, the pitch angle ⁇ p, and the pitch angular velocity d ⁇ p is the braking / driving torque correction amount ⁇ Td. be able to.
- the braking / driving torque correction amount calculation unit 26 in FIG. 18 obtains the braking / driving torque correction amount ⁇ Td for suppressing vehicle body vibration, a plurality of regulator gains (gain Kr1 for suppressing bounce behavior, and pitch behavior as shown in FIG. 22).
- Gain Kr2 tuning gains G1 and G2 for these regulator gains Kr1 and Kr2, set up and down bounce amount Zv, up and down bounce speed dZv, pitch angle ⁇ p, and pitch angular speed d ⁇ p, and multiple regulators
- the sum of the integrated values of gains Kr1, Kr2 and tuning gains G1, G2 is set to the braking / driving torque correction amount ⁇ Td
- the regulator gains Kr1 and Kr2 can be weighted with the tuning gains G1 and G2, which is advantageous in that effective gain tuning can be realized.
- Example 5 ⁇ Modification of Example 5>
- the vehicle body vibration state amount complementing unit 29 obtains and complements the vertical bounce amount Zv and the pitch angle ⁇ p by integrating the vertical bounce velocity dZv and the pitch angular velocity d ⁇ p of the vehicle body 3 has been described.
- the vehicle system vibration control device suppresses the vertical bounce acceleration ddZv and the pitch angular acceleration dd ⁇ p
- the vehicle body vibration state amount complementing unit 29 includes a differentiator, and the differential of the vertical bounce velocity dZv and the pitch angular velocity d ⁇ p of the vehicle body 3 is provided.
- the vertical bounce acceleration ddZv and the pitch angular acceleration dd ⁇ p may be obtained and used for calculating the braking / driving torque correction amount ⁇ Td.
- the vertical bounce speed dZv and pitch angular speed d ⁇ p of the vehicle body 3 and the vertical bounce amount Zv and pitch angle ⁇ p obtained by integrating them are directly used for the calculation of the braking / driving torque correction amount ⁇ Td.
- These vertical bounce velocity dZv, pitch angular velocity d ⁇ p, vertical bounce amount Zv, and pitch angle ⁇ p are subjected to filter processing to remove steady or low frequency components, or filter processing to remove high frequency components, and braking / driving torque It is preferable to use the calculation of the correction amount ⁇ Td.
- the pitch angular velocity d ⁇ p and the vertical bounce velocity dZv which are certain vehicle body vibration state quantities, are calculated from the average front wheel speed VwF and the average rear wheel speed VwR as the vehicle body vibration physical quantities.
- a vehicle body vibration state quantity detecting means for directly or indirectly detecting the pitch angular velocity d ⁇ p and the vertical bounce speed dZv may be provided, and a detection result by the means may be a certain vehicle body vibration state quantity.
- the braking / driving torque correction amount calculation unit 26 multiplies the vehicle body vibration x (vertical bounce speed dZv, pitch angular speed d ⁇ p, vertical bounce amount Zv and pitch angle ⁇ p) by the regulator gain Kr (Kr1, Kr2) as in this embodiment.
- Kr Kr1, Kr2
- Convert body vibration x (vertical bounce speed dZv, pitch angular speed d ⁇ p, vertical bounce amount Zv, and pitch angle ⁇ p) into vertical motion physical quantities at any two points on the body 3 (for example, the upper part of the front axis and the upper part of the rear axis).
- the braking / driving torque correction amount required to reduce at least one of the vehicle vertical movement physical quantities at these two points may be obtained and used for vehicle system vibration control.
- the vehicle body vibration x (vertical bounce velocity dZv, pitch angular velocity d ⁇ p, vertical bounce amount Zv and pitch angle ⁇ p) is converted into the relative vertical movement physical quantities of the front wheels 1FL, 1FR and rear wheels 1RL, 1RR with respect to the vehicle body 3, and these front wheels and A braking / driving force correction amount required to reduce at least one of the vertical physical movements of the rear wheels may be obtained and used for vehicle system vibration control.
Landscapes
- Engineering & Computer Science (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Mathematical Physics (AREA)
- Sustainable Development (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
演算部31,32で平均前輪速VwF=(VwFL+VwFR)/2および平均後輪速VwR=(VwRL+VwRR)/2を演算し、これらVwF, VwRをバンドパスフィルタ処理部33,34に通して、車体共振周波数付近の成分のみを抽出して取り出し、車体振動を表す前輪速VwFの車体共振周波数近傍振動成分fVwFおよび後輪速VwRの車体共振周波数近傍振動成分fVwRを取得する。演算部35,36では、fVwF, fVwRから車体振動を表す前輪の前後方向変位Xtfおよび後輪の前後方向変位Xtrを求め、サスペンションジオメトリで決まる前輪および後輪の前後変位および上下変位間における固有の関係を基に、Xtf, Xtrから、車体の振動に起因した前軸上方部の上下変位および後軸上方部の上下変位を求め、これら車体前後の上下変位から車体振動(上下バウンス速度dZv、ピッチ角速度dθp)を推定し、この車体振動を軽減するのに必要な制駆動力補正量ΔTdを求める。
Description
本発明は、サスペンション装置を介して車輪を懸架された車両のバネ上質量である車体の振動、例えばピッチング振動や上下振動を推定するための車体振動推定装置、およびこれを用いた車体制振制御装置に関するものである。
車体振動推定装置は、サスペンション装置を用いた車体制振制御や、制駆動力による車体制振制御に有用であり、従来例えば特許文献1~3に示すようなものが知られている。
特許文献1所載の車体振動推定技術は、車体の運動モデル(車両モデル)を用いて、運転者による操作に基づく制駆動力から車体のピッチング運動や上下運動を推定するものである。
また特許文献2,3に記載された車体振動推定技術は、特許文献1におけると同様に車体の運動モデルを用いて、運転者による操作に基づく制駆動力から車体振動を推定するが、それに加え、車体に入力される外乱トルクを車輪速変動から推定し、この外乱トルクをも車体運動モデルへ入力することで、外乱による影響を排除しつつ車体振動を一層正確に推定することを狙ったものである。
しかし上記した従来の車体振動推定技術では、以下のような問題を生ずる。
特許文献1に記載の車体振動推定技術におけるように、運転者による操作に基づく制駆動力から車体運動モデル(車両モデル)を用いて車体振動を推定する場合、
路面の凹凸などにより外乱入力があると車体振動を正確に推定することができない可能性がある。
特許文献1に記載の車体振動推定技術におけるように、運転者による操作に基づく制駆動力から車体運動モデル(車両モデル)を用いて車体振動を推定する場合、
路面の凹凸などにより外乱入力があると車体振動を正確に推定することができない可能性がある。
更に特許文献2,3に記載された車体振動推定技術におけるように、車体運動モデルを用いて制駆動力から車体振動を推定するに際し、車輪速変動から外乱トルクの大きさを予測し、この外乱トルクを車体運動モデルへ入力することで、外乱による影響を排除しつつ車体振動を一層正確に推定しようとしても、
各車輪速変動が必ずしもその車輪に加わる外乱トルクの大きさを表しておらず、結果として、当該車輪速変動から予測した外乱トルクの大きさも不正確で、これに基づく車体振動の推定精度も低いという問題を生ずる。
各車輪速変動が必ずしもその車輪に加わる外乱トルクの大きさを表しておらず、結果として、当該車輪速変動から予測した外乱トルクの大きさも不正確で、これに基づく車体振動の推定精度も低いという問題を生ずる。
例えば、特許文献3に記載の車体振動推定技術では、輪荷重と車輪回転角速度の積から車輪にかかるトルクを算出しているが、輪荷重と車輪質量とが別のものであるため、車輪にかかるトルクの算出結果が必ずしも正しいとは言えず、
外乱による影響を排除しつつ車体振動を正確に推定するという上記本来の狙いを達成し得ないのが実情である。
外乱による影響を排除しつつ車体振動を正確に推定するという上記本来の狙いを達成し得ないのが実情である。
本発明は、従来技術に係わる上記した後二者の問題が、バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するパラメータ、つまり制駆動力や外乱トルクなどトルクや力から車体振動を推定する事実に起因するとの観点から、これらトルクや力を用いないで、以下の論理に基づき車輪速情報から車体振動を推定し得るようになすことを趣旨とするものである。
つまり、車体の振動はサスペンション装置(サスペンションリンク構造)の幾何学的拘束条件(サスペンションジオメトリ)のもと、車輪に前後方向への移動をもたらし、かかる車輪の前後方向移動は車輪速変動となって現れる。
一方で車輪は、前後方向へ移動するとき、サスペンションジオメトリ(サスペンションリンク構造)で決まる所定の関係、つまり車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係をもって、上下方向へも移動する。
一方で車輪は、前後方向へ移動するとき、サスペンションジオメトリ(サスペンションリンク構造)で決まる所定の関係、つまり車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係をもって、上下方向へも移動する。
本発明は、かかる論理に基づき、上記の相関関係および車輪速情報から車体振動を推定し得ると認識し、この着想を具体化して、トルクや力を用いることなく、車体振動を推定し得るようにした車体振動推定装置を提供すると共に、これを用いた車体制振制御装置を提供し、もって前記した従来技術の諸問題をことごとく解消することを目的とする。
この目的のため、本発明による車体振動推定装置は、以下のごとくにこれを構成する。
先ず、本発明の前提となる車体振動推定装置を説明するに、これは、
サスペンション装置を介して車輪を懸架された車両のバネ上質量である車体の振動を推定するものである。
先ず、本発明の前提となる車体振動推定装置を説明するに、これは、
サスペンション装置を介して車輪を懸架された車両のバネ上質量である車体の振動を推定するものである。
本発明は、かかる車体振動推定装置に対し、
前記車輪の周速である車輪速に関した物理量を検出する車輪速物理量検出手段と、
該手段で検出した車輪速物理量、および、前記車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係から、前記車体の振動を推定する振動推定手段とを設けたことを特徴とするものである。
前記車輪の周速である車輪速に関した物理量を検出する車輪速物理量検出手段と、
該手段で検出した車輪速物理量、および、前記車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係から、前記車体の振動を推定する振動推定手段とを設けたことを特徴とするものである。
本発明の車体制振制御装置は、上記の車体振動推定装置を具え、
前記振動推定手段で推定した車体振動を軽減するのに必要な制駆動力補正量を演算する制駆動力補正量演算手段と、
該手段で求めた制駆動力補正量だけ前記車両の制駆動力を補正する制駆動力補正手段とを設けたことを特徴とするものである。
前記振動推定手段で推定した車体振動を軽減するのに必要な制駆動力補正量を演算する制駆動力補正量演算手段と、
該手段で求めた制駆動力補正量だけ前記車両の制駆動力を補正する制駆動力補正手段とを設けたことを特徴とするものである。
上記した本発明の車体振動推定装置によれば、車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係に基づき車輪速物理量から車体振動を推定するため、
バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、車輪速物理量から車体振動を推定することとなり、車体振動の推定精度を高め得ると共に、外乱による影響も介入しないようにし得る。
バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、車輪速物理量から車体振動を推定することとなり、車体振動の推定精度を高め得ると共に、外乱による影響も介入しないようにし得る。
そして本発明の車体制振制御装置にあっては、上記の車体振動推定装置を具え、これにより推定した車体振動を軽減するのに必要な制駆動力補正量を演算し、この制駆動力補正量だけ車両の制駆動力を補正するため、
上記のように推定した車体振動が、外乱ロバスト性にも優れた高精度なものであることによって、車体振動を常に狙い通りに軽減することができる。
上記のように推定した車体振動が、外乱ロバスト性にも優れた高精度なものであることによって、車体振動を常に狙い通りに軽減することができる。
1FL,1FR 左右前輪
1RL,1RR 左右後輪
2 ステアリングホイール
3 車体(バネ上質量)
4 モータ
5 変速機
6 モータコントローラ
7 バッテリ(蓄電器)
8 インバータ
11FL,11FR,11RL,11RR 車輪速センサ(車輪速物理量検出手段:車体振動物理量検出手段)
13 アクセル開度センサ
14 ブレーキペダル踏力センサ
20 車速演算部
21 要求トルク演算部(制駆動力検出手段)
22 車体制振制御演算部
23 モータトルク指令値演算部
24 加算器(制駆動力補正手段)
25 車体振動推定器(振動推定手段:車体振動状態量演算手段)
25a 車輪速基準車体振動推定器(車輪速基準車体振動推定手段)
25b 制駆動力基準車体振動推定器(制駆動力基準車体振動推定手段)
26 制駆動トルク補正量演算部(制駆動力補正量演算手段)
26a,26b 積分器
27 制駆動トルク補正量演算部(制駆動力補正量演算手段)
29 車体振動状態量補完部(車体振動状態量補完手段)
31 平均前輪速演算部
32 平均後輪速演算部
33 前輪用バンドパスフィルタ処理部
34 後輪用バンドパスフィルタ処理部
35 バウンス挙動演算部(前輪上下運動推定部:後輪上下運動推定部)
36 ピッチング挙動演算部(前輪上下運動推定部:後輪上下運動推定部)
37 車両モデル
38 レギュレータゲイン
51 平均前輪速演算部
52 平均後輪速演算部
53 バウンス挙動演算部(バウンス速度演算部:前輪上下運動推定部、後輪上下運動推定部)
54 ピッチング挙動演算部(ピッチ角速度演算部:前輪上下運動推定部、後輪上下運動推定部)
55,56 バンドパスフィルタ処理部
1RL,1RR 左右後輪
2 ステアリングホイール
3 車体(バネ上質量)
4 モータ
5 変速機
6 モータコントローラ
7 バッテリ(蓄電器)
8 インバータ
11FL,11FR,11RL,11RR 車輪速センサ(車輪速物理量検出手段:車体振動物理量検出手段)
13 アクセル開度センサ
14 ブレーキペダル踏力センサ
20 車速演算部
21 要求トルク演算部(制駆動力検出手段)
22 車体制振制御演算部
23 モータトルク指令値演算部
24 加算器(制駆動力補正手段)
25 車体振動推定器(振動推定手段:車体振動状態量演算手段)
25a 車輪速基準車体振動推定器(車輪速基準車体振動推定手段)
25b 制駆動力基準車体振動推定器(制駆動力基準車体振動推定手段)
26 制駆動トルク補正量演算部(制駆動力補正量演算手段)
26a,26b 積分器
27 制駆動トルク補正量演算部(制駆動力補正量演算手段)
29 車体振動状態量補完部(車体振動状態量補完手段)
31 平均前輪速演算部
32 平均後輪速演算部
33 前輪用バンドパスフィルタ処理部
34 後輪用バンドパスフィルタ処理部
35 バウンス挙動演算部(前輪上下運動推定部:後輪上下運動推定部)
36 ピッチング挙動演算部(前輪上下運動推定部:後輪上下運動推定部)
37 車両モデル
38 レギュレータゲイン
51 平均前輪速演算部
52 平均後輪速演算部
53 バウンス挙動演算部(バウンス速度演算部:前輪上下運動推定部、後輪上下運動推定部)
54 ピッチング挙動演算部(ピッチ角速度演算部:前輪上下運動推定部、後輪上下運動推定部)
55,56 バンドパスフィルタ処理部
以下、この発明の実施例を添付の図面に基づいて説明する。
<構成>
図1は、本発明の第1実施例になる車体振動推定装置を具えた車両の車体制振制御システムを示す概略系統図である。
図1において、1FL,1FRはそれぞれ左右前輪を示し、また1RL,1RRはそれぞれ左右後輪を示す。
左右前輪1FL,1FRはステアリングホイール2により転舵される操舵輪である。
また左右前輪1FL,1FRおよび左右後輪1RL,1RRはそれぞれ、図示せざるサスペンション装置により車体3に懸架され、この車体3は、サスペンション装置よりも上方に位置してバネ上質量を構成する。
図1は、本発明の第1実施例になる車体振動推定装置を具えた車両の車体制振制御システムを示す概略系統図である。
図1において、1FL,1FRはそれぞれ左右前輪を示し、また1RL,1RRはそれぞれ左右後輪を示す。
左右前輪1FL,1FRはステアリングホイール2により転舵される操舵輪である。
また左右前輪1FL,1FRおよび左右後輪1RL,1RRはそれぞれ、図示せざるサスペンション装置により車体3に懸架され、この車体3は、サスペンション装置よりも上方に位置してバネ上質量を構成する。
図1における車両は、回転電機としてのモータ4により、ディファレンシャルギヤ装置を含む変速機5を介し左右前輪1FL,1FRを駆動することで走行可能な、前輪駆動式の電気自動車とする。
モータ4の制御に際しては、モータコントローラ6が、バッテリ(蓄電器)7の電力をインバータ8により直流-交流変換して、またこの交流電力をインバータ8による制御下にモータ4へ供給することで、モータ4のトルクがモータトルク指令値tTmに一致するよう、当該モータ4の制御を行うものとする。
モータ4の制御に際しては、モータコントローラ6が、バッテリ(蓄電器)7の電力をインバータ8により直流-交流変換して、またこの交流電力をインバータ8による制御下にモータ4へ供給することで、モータ4のトルクがモータトルク指令値tTmに一致するよう、当該モータ4の制御を行うものとする。
なお、モータトルク指令値tTmが、モータ4に回生制動作用を要求する負極性のものである場合、モータコントローラ6はインバータ8を介し、バッテリ7が過充電とならないような発電負荷をモータ4に与え、
この時モータ4が回生制動作用により発電した電力を、インバータ8により交流-直流変換してバッテリ7に充電する。
この時モータ4が回生制動作用により発電した電力を、インバータ8により交流-直流変換してバッテリ7に充電する。
モータコントローラ6は、後で詳述する車体振動推定演算を行うと共に、その推定結果である車体振動を抑制するようモータトルク指令値tTmを決定する車体制振制御演算を行うものである。
これらの演算のためモータコントローラ6には、
左右前輪1FL,1FRの周速である前輪速VwFL,VwFRを個々に検出する車輪速センサ11FL,11FR、および、左右後輪1RL,1RRの周速である後輪速VwRL,VwRRを個々に検出する車輪速センサ11RL,11RRからの信号と、
アクセル開度APO(アクセルペダル踏み込み量)を検出するアクセル開度センサ13からの信号と、
ブレーキペダル踏力BRPを検出するブレーキペダル踏力センサ14からの信号と、
変速機5からのギヤ比情報とを入力する。
これらの演算のためモータコントローラ6には、
左右前輪1FL,1FRの周速である前輪速VwFL,VwFRを個々に検出する車輪速センサ11FL,11FR、および、左右後輪1RL,1RRの周速である後輪速VwRL,VwRRを個々に検出する車輪速センサ11RL,11RRからの信号と、
アクセル開度APO(アクセルペダル踏み込み量)を検出するアクセル開度センサ13からの信号と、
ブレーキペダル踏力BRPを検出するブレーキペダル踏力センサ14からの信号と、
変速機5からのギヤ比情報とを入力する。
なお本実施例では、左右前輪1FL,1FRの周速を表す物理量として前輪速VwFL,VwFRそのものを用い、また左右後輪1RL,1RRの周速を表す物理量として後輪速VwRL,VwRRそのものを用いることとしたが、
これらに限られるものではなく、左右前輪1FL,1FRおよび左右後輪1RL,1RRと共に回転する任意の箇所の回転速度から対応車輪の周速を求めるようにしても良いのは言うまでもない。
これらに限られるものではなく、左右前輪1FL,1FRおよび左右後輪1RL,1RRと共に回転する任意の箇所の回転速度から対応車輪の周速を求めるようにしても良いのは言うまでもない。
従って、車輪速は本発明における車輪速物理量に相当し、また前輪速および後輪速はそれぞれ本発明における前輪速物理量および後輪速物理量に相当し、
車輪速センサ11FL,11FR,11RL,11RRはそれぞれ、本発明における車輪速物理量検出手段を構成する。
車輪速センサ11FL,11FR,11RL,11RRはそれぞれ、本発明における車輪速物理量検出手段を構成する。
モータコントローラ6は、上記の入力情報を基に、車体3の振動を推定すると共に、推定した車体3の振動を抑制するよう運転者の要求トルク(rTdの符号を付して後述する)を補正してモータトルク指令値tTmを決定する。
そこでモータコントローラ6は、全体を概ね図2のブロック線図で示すように、車速演算部20と、要求トルク演算部21と、車体制振制御演算部22と、モータトルク指令値演算部23と、加算器24とで構成する。
車速演算部20は、車輪速センサ11FL,11FR,11RL,11RR(図2では、車輪速センサ群11として示した)で検出した前輪速VwFL,VwFRおよび後輪速VwRL,VwRR(図2では、車輪速Vwとして示した)を基に車速VSPを求める。
車速演算部20は、車輪速センサ11FL,11FR,11RL,11RR(図2では、車輪速センサ群11として示した)で検出した前輪速VwFL,VwFRおよび後輪速VwRL,VwRR(図2では、車輪速Vwとして示した)を基に車速VSPを求める。
要求トルク演算部21は、上記演算部20で求めた車速VSPと、センサ13,14でそれぞれ検出したアクセル開度APOおよびブレーキペダル踏力BRPとから、運転者が現在の車速VSPのもとで運転操作(アクセル開度APOおよびブレーキペダル踏力BRP)により要求している要求トルクrTd(正が駆動トルク、負が制動トルク)を、マップ検索などにより演算する。
車体制振制御演算部22は、車体振動推定器25および制駆動トルク補正量演算部26よりなり、
車体振動推定器25において、車輪速Vwから後で詳述するごとくに車体3の振動を推定し、
制駆動トルク補正量演算部26において、当該推定した車体振動を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
従って車体振動推定器25は、本発明における振動推定手段を構成する。
車体振動推定器25において、車輪速Vwから後で詳述するごとくに車体3の振動を推定し、
制駆動トルク補正量演算部26において、当該推定した車体振動を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
従って車体振動推定器25は、本発明における振動推定手段を構成する。
加算器24は、演算部21で求めた運転者の要求トルクrTdを、制駆動トルク補正量演算部26で求めた車体振動抑制用制駆動トルク補正量ΔTdの加算により補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
モータトルク指令値演算部23は、車両挙動を制御する挙動制御装置(VDC)や、駆動輪(前輪)1FL,1FRの駆動スリップを防止するトランクションコントロール装置(TCS)のような他システム27からのトルク要求を受けて、この要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求める。
モータトルク指令値演算部23は、車両挙動を制御する挙動制御装置(VDC)や、駆動輪(前輪)1FL,1FRの駆動スリップを防止するトランクションコントロール装置(TCS)のような他システム27からのトルク要求を受けて、この要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求める。
モータコントローラ6は、上記のようにして求めたモータトルク指令値tTmに応じ、インバータ8による制御下にバッテリ7からモータ4へ電力を供給することで、モータ4のトルクがモータトルク指令値tTmに一致するよう、当該モータ4を駆動制御する。
<車体振動の推定および車体制振制御>
車体制振制御演算部22の内部における車体振動推定器25は、図3のブロック線図で示すように構成し、図4の制御プログラムを実行して車体3の振動(本実施例では、ピッチ角速度dθp、および、上下変位速度であるバウンス速度dZv)を推定する。
車体制振制御演算部22の内部における車体振動推定器25は、図3のブロック線図で示すように構成し、図4の制御プログラムを実行して車体3の振動(本実施例では、ピッチ角速度dθp、および、上下変位速度であるバウンス速度dZv)を推定する。
車体振動推定器25は、先ず図4のステップS41において、図3に示すごとくに左右前輪速VwFL,VwFRおよび左右後輪速VwRL,VwRRを読み込む。
次いで、図3の平均前輪速演算部31および平均後輪速演算部32(図4のステップS42)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次いで、図3の平均前輪速演算部31および平均後輪速演算部32(図4のステップS42)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次に、図3の前輪用バンドパスフィルタ処理部33および後輪用バンドパスフィルタ処理部34(図4のステップS43)において、平均前輪速VwFおよび平均後輪速VwRから車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタに、これら平均前輪速VwFおよび平均後輪速VwRをそれぞれ通し、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを取得する。
かように平均前輪速VwFおよび平均後輪速VwRからフィルタ処理により車体共振周波数近傍振動成分fVwFおよびfVwRのみを抽出する理由は、車両全体の加減速による車輪速変動やノイズ成分を平均前輪速VwFおよび平均後輪速VwRから除去し、車体振動を表す車輪速成分のみを抽出するためである。
次に、図3のバウンス挙動演算部35およびピッチング挙動演算部36(図4のステップS44)において、以下のごとくに平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRから、車体3の振動(上下変位速度であるバウンス速度dZvと、ピッチ角速度dθpと)を求める。
車輪速振動成分fVwFおよびfVwRから車体3のバウンス速度dZvおよびピッチ角速度dθpを求める方法を以下に説明する。
図5は、重心点-前軸間距離がLfであり、重心点-後軸間距離がLrである車両において、車体3の重心点における上下方向バウンス運動Zvおよびピッチング運動θpと、車体3の前軸上方箇所における上下変位Zfおよび車体3の後軸上方箇所における上下変位Zrとの関係を略示したものである。
図5は、重心点-前軸間距離がLfであり、重心点-後軸間距離がLrである車両において、車体3の重心点における上下方向バウンス運動Zvおよびピッチング運動θpと、車体3の前軸上方箇所における上下変位Zfおよび車体3の後軸上方箇所における上下変位Zrとの関係を略示したものである。
この図に示す通り、車体3に上下変位Zvおよびピッチ角θpが発生すると、車体3の前軸上方箇所および後軸上方箇所にもそれぞれ上下変位ZfおよびZrが発生し、これらZv,θp,Zf,Zr間には次式の関係が成立する。
Zf=Zv+θp・Lf ・・・(1)
Zr=Zv-θp・Lr ・・・(2)
Zf=Zv+θp・Lf ・・・(1)
Zr=Zv-θp・Lr ・・・(2)
ここで、車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの上下方向および前後方向における可動域を考察するに、これらの可動域は、それぞれのサスペンション装置を構成するリンク構造、つまりそれぞれのサスペンションジオメトリに応じた幾何学的拘束条件によって決まる。
従って、車体3と前輪1FL,1FRとがZfで示す上下方向に相対運動すると、車体3と前輪1FL,1FRとはXtfで示す前後方向へも、例えば図6の関係を持って相対変位し、また、
車体3と後輪1RL,1RRとがZrで示す上下方向に相対運動すると、車体3と後輪1RL,1RRとはXtrで示す前後方向へも、例えば図7の関係を持って相対変位する。
従って、車体3と前輪1FL,1FRとがZfで示す上下方向に相対運動すると、車体3と前輪1FL,1FRとはXtfで示す前後方向へも、例えば図6の関係を持って相対変位し、また、
車体3と後輪1RL,1RRとがZrで示す上下方向に相対運動すると、車体3と後輪1RL,1RRとはXtrで示す前後方向へも、例えば図7の関係を持って相対変位する。
つまり、上記のごとく車体振動を表す車輪速成分のみを抽出して得られた前輪速車体共振周波数近傍振動成分fVwFおよび後輪速車体共振周波数近傍振動成分fVwRから、車体振動を表す前輪1FL,1FRの前後方向変位Xtf、および、車体振動を表す後輪1RL,1RRの前後方向変位Xtrを求めて監視すれば、図6,7の関係から、車体3の前軸上方箇所および後軸上方箇所における上下変位ZfおよびZrをそれぞれ予測することができる。
これら上下変位ZfおよびZrの予測を行う図3のバウンス挙動演算部35およびピッチング挙動演算部36(図4のステップS44)は、本発明における前輪上下運動推定部および後輪上下運動推定部に相当する。
これら上下変位ZfおよびZrの予測を行う図3のバウンス挙動演算部35およびピッチング挙動演算部36(図4のステップS44)は、本発明における前輪上下運動推定部および後輪上下運動推定部に相当する。
なお、図6の前輪サスペンションジオメトリ特性および図7の後輪サスペンションジオメトリ特性はそれぞれ、そのままマップ化してメモリしておいたり、予めモデル化しておき、これを基に前輪の前後方向変位Xtfおよび後輪の前後方向変位Xtrから、車体3の前軸上方箇所および後軸上方箇所における上下変位ZfおよびZrをそれぞれ予測するのに用いるのが、これら上下変位Zf,Zrの予測が正確になって良い。
しかし本実施例ではコスト上の観点から、簡易的に、車両が平地に静止し、1Gの加速度が作用した状態での釣り合い点(図6,7の原点)付近における勾配KgeoF(図6の場合)およびKgeoR(図7の場合)で線形近似させ、これらKgeoF, KgeoRを比例係数として用いることとする。
これら比例係数KgeoF, KgeoRを用いる場合、前輪に係わる前後方向変位Xtfと上下変位Zfとの間、および、後輪に係わる前後方向変位Xtrと上下変位Zrとの間には、それぞれ次式の関係が成立する。
Zf=KgeoF・Xtf ・・・(3)
Zr=KgeoR・Xtr ・・・(4)
Zf=KgeoF・Xtf ・・・(3)
Zr=KgeoR・Xtr ・・・(4)
上記した4式の連立方程式を解くと、前輪の前後方向変位Xtfおよび後輪の前後方向変位Xtrから、車体振動(上下バウンス速度dZv、ピッチ角速度dθp)の基となる車体3の上下方向バウンス運動Zvおよびピッチング運動θpを求めるのに使用可能な次式を得ることができる。
θp=(KgeoF・Xtf-KgeoR・Xtr)/(Lf+Lr) ・・・(5)
Zv=(KgeoF・Xtf・Lf+KgeoR・Xtr・Lr)/(Lf+Lr) ・・・(6)
θp=(KgeoF・Xtf-KgeoR・Xtr)/(Lf+Lr) ・・・(5)
Zv=(KgeoF・Xtf・Lf+KgeoR・Xtr・Lr)/(Lf+Lr) ・・・(6)
そして、上式の両辺を時間微分することで、車体3の振動(上下バウンス速度dZvおよびピッチ角速度dθp)を求めるのに使用可能な次式を得ることができる。
ただし、「d」は簡易的に用いた微分演算子である。
dθp=(KgeoF・dXtf-KgeoR・dXtr)/(Lf+Lr) ・・・(7)
dZv=(KgeoF・dXtf・Lf+KgeoR・dXtr・Lr)/(Lf+Lr) ・・・(8)
ただし、「d」は簡易的に用いた微分演算子である。
dθp=(KgeoF・dXtf-KgeoR・dXtr)/(Lf+Lr) ・・・(7)
dZv=(KgeoF・dXtf・Lf+KgeoR・dXtr・Lr)/(Lf+Lr) ・・・(8)
これらの式から車体3の上下バウンス速度dZvおよびピッチ角速度dθpを求めるに当たっては、
図3のバンドパスフィルタ処理部33,34(図4のステップS43)で前述したごとく車体振動を表す車輪速成分のみを抽出して得られた前輪速車体共振周波数近傍振動成分fVwFおよび後輪速車体共振周波数近傍振動成分fVwRから、車体振動を表す前輪1FL,1FRの前後方向変位Xtf、および、車体振動を表す後輪1RL,1RRの前後方向変位Xtrをそれぞれ求め、
これら前後方向変位Xtf, Xtrの時間微分値dXtf, dXtrを上記の(7)式および(8)式に代入することで、車体3の振動(上下バウンス速度dZvおよびピッチ角速度dθp)をそれぞれ演算して推定することができる。
図3のバンドパスフィルタ処理部33,34(図4のステップS43)で前述したごとく車体振動を表す車輪速成分のみを抽出して得られた前輪速車体共振周波数近傍振動成分fVwFおよび後輪速車体共振周波数近傍振動成分fVwRから、車体振動を表す前輪1FL,1FRの前後方向変位Xtf、および、車体振動を表す後輪1RL,1RRの前後方向変位Xtrをそれぞれ求め、
これら前後方向変位Xtf, Xtrの時間微分値dXtf, dXtrを上記の(7)式および(8)式に代入することで、車体3の振動(上下バウンス速度dZvおよびピッチ角速度dθp)をそれぞれ演算して推定することができる。
以上のように推定された車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を基に図3の制駆動トルク補正量演算部26は、これら車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を抑制するのに必要な制駆動トルク補正量ΔTdを演算して出力し、これを図2のごとく加算器24に向かわせる。
図2の加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを、上記の車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
<効果>
以上によりモータ4は、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
以上によりモータ4は、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
しかも本実施例によれば、車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRから、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を演算して推定するため、
サスペンションストロークセンサなど新たな部品の追加なしに車体振動の推定が可能であって、コスト的に有利である。
サスペンションストロークセンサなど新たな部品の追加なしに車体振動の推定が可能であって、コスト的に有利である。
また、バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRから、つまり車輪速に係わる情報から車体振動を推定するため、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の推定精度を高め得ると共に、外乱による影響も介入しないようにし得る。
なお、図6の前輪サスペンションジオメトリ特性および図7の後輪サスペンションジオメトリ特性は、そのままマップ化してメモリしておいたり、予めモデル化しておき、これらマップまたはモデルを用いて、前輪の前後方向変位Xtfおよび後輪の前後方向変位Xtrから、車体3の前軸上方箇所および後軸上方箇所における上下変位ZfおよびZrをそれぞれ予測するのが、上下変位Zf,Zrの予測精度の点では有利であるものの、コスト的に不利になる。
しかし本実施例においては、一般的な走行を考えるとサスペンションストローク全域をカバーする必要がないとの観点から簡易的に、車両が平地に静止し、1Gの加速度が作用した状態での釣り合い点(図6,7の原点)付近における勾配KgeoF(図6の場合)およびKgeoR(図7の場合)で線形近似させ、これらKgeoF, KgeoRを比例係数として用い、これらと、前輪の前後方向変位Xtfおよび後輪の前後方向変位Xtrとから、車体3の前軸上方箇所および後軸上方箇所における上下変位ZfおよびZrをそれぞれ予測することとしたから、コスト的に大いに有利である。
また本実施例では、図6の前輪サスペンションジオメトリ特性と、図7の後輪サスペンションジオメトリ特性とを個別に用い、前輪の前後方向変位Xtfおよび後輪の前後方向変位Xtrから、車体3の前軸上方箇所および後軸上方箇所における上下変位ZfおよびZrを個々に予測することとしたから、これら上下変位Zf,Zrの予測が正確になって、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の推定を高精度に行うことができる。
更に本実施例では、車体振動の推定に際し、平均前輪速VwFから抽出した車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRから抽出した車体共振周波数近傍振動成分fVwRを用いることから、
車両全体の加減速による車輪速変動やノイズ成分を含まない、車体振動に伴う車輪速情報のみを用いて車体振動の推定が行われることとなり、当該推定を高精度に行うことができる。
車両全体の加減速による車輪速変動やノイズ成分を含まない、車体振動に伴う車輪速情報のみを用いて車体振動の推定が行われることとなり、当該推定を高精度に行うことができる。
<構成>
図8,9は、本発明の第2実施例になる車体振動推定装置を示し、図8は、図3に対応するブロック線図、図9は、図4に対応する車体振動推定プログラムである。
本実施例においても、車体制振制御システムは図1におけると同様なものとし、また、モータコントローラ6は図2におけると同様なものとするため、これら図に基づく車体制振制御システムやモータコントローラ6の説明をここでは省略し、以下に第1実施例との相違点のみを図8,9に基づき説明する。
図8,9は、本発明の第2実施例になる車体振動推定装置を示し、図8は、図3に対応するブロック線図、図9は、図4に対応する車体振動推定プログラムである。
本実施例においても、車体制振制御システムは図1におけると同様なものとし、また、モータコントローラ6は図2におけると同様なものとするため、これら図に基づく車体制振制御システムやモータコントローラ6の説明をここでは省略し、以下に第1実施例との相違点のみを図8,9に基づき説明する。
<車体振動の推定および車体制振制御>
本実施例においては、車体制振制御演算部22内の車体振動推定器25を図8のブロック線図で示すように構成し、この車体振動推定器25は図9の制御プログラムを実行して車体3の振動(本実施例でも第1実施例と同様に、ピッチ角速度dθpおよび上下バウンス速度dZv)を推定する。
本実施例においては、車体制振制御演算部22内の車体振動推定器25を図8のブロック線図で示すように構成し、この車体振動推定器25は図9の制御プログラムを実行して車体3の振動(本実施例でも第1実施例と同様に、ピッチ角速度dθpおよび上下バウンス速度dZv)を推定する。
車体振動推定器25は、先ず図9のステップS61において、図8に示すごとくに左右前輪速VwFL,VwFRおよび左右後輪速VwRL,VwRRを読み込む。
次いで、図8の平均前輪速演算部51および平均後輪速演算部52(図9のステップS62)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次いで、図8の平均前輪速演算部51および平均後輪速演算部52(図9のステップS62)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次に、図8のバウンス挙動演算部53およびピッチング挙動演算部54並びにバンドパスフィルタ処理部55および56(図9のステップS63~ステップS67)において、以下のごとくに平均前輪速VwFおよび平均後輪速VwRから、車体3の振動(上下変位速度であるバウンス速度dZvと、ピッチ角速度dθpと)を求める。
先ず図8のピッチング挙動演算部54(図9のステップS63)において、平均前輪速VwFおよび平均後輪速VwRから、車体に対する前輪1FL,1FRの前後方向変位Xtf、および、後輪1RL,1RRの前後方向変位Xtrを求め、これら前後輪の前後方向変位Xtf, Xtrを用いた前記(5)式の演算により車体3のピッチング運動θpを求め、これを時間微分して車体3のピッチ角速度fθpを求める。
次いで図8のバンドパスフィルタ処理部56(図9のステップS64)において、車体3のピッチ角速度fθpから車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタにこのピッチ角速度fθpを通し、ピッチ角速度fθpの車体共振周波数近傍振動成分である最終的なピッチ角速度dθpを求める。
かように車体3のピッチ角速度fθpからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該ピッチ角速度fθpが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらをピッチ角速度fθpから除外して、車体振動のみを表す最終的なピッチ角速度dθpとなす必要があるためである。
かように車体3のピッチ角速度fθpからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該ピッチ角速度fθpが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらをピッチ角速度fθpから除外して、車体振動のみを表す最終的なピッチ角速度dθpとなす必要があるためである。
ところで、車体3にピッチ角速度が発生すると、実車輪速VwF,VwRに変化がない場合でも、車体3と車輪1FL,1FR,1RL,1RRとの間に相対的な速度差が発生してしまい、車輪速センサ11FL,11FR,11RL,11RRで検出した車輪速VwFL,VwFR,VwRL,VwRRにピッチ角速度分の誤差が乗って、上記のごとくこれら車輪速VwFL,VwFR,VwRL,VwRRを用いて求めたピッチ角速度fθp(最終的なピッチ角速度dθp)が不正確になる。
そのため本実施例においては、最終的なピッチ角速度dθpを図8のごとくピッチング挙動演算部54に戻し、この演算部54(図9のステップS65)において、平均前輪速VwFおよび平均後輪速VwRをピッチ角速度dθpだけ減算することにより、ピッチ角速度分の誤差による影響が排除されるよう補正してピッチ角速度fθpの演算に資することとする。
なお、最終的なピッチ角速度dθpは図8のごとく、バウンス挙動演算部53にも供給し、ここで用いる平均前輪速VwFおよび平均後輪速VwRに対しても、図9のステップS65において同様な補正を行うこととする。
なお、最終的なピッチ角速度dθpは図8のごとく、バウンス挙動演算部53にも供給し、ここで用いる平均前輪速VwFおよび平均後輪速VwRに対しても、図9のステップS65において同様な補正を行うこととする。
このバウンス挙動演算部53(図9のステップS66)においては、上記の通り補正した平均前輪速VwFおよび平均後輪速VwRから、車体に対する前輪1FL,1FRの前後方向変位Xtf、および、後輪1RL,1RRの前後方向変位Xtrを求め、これら前後輪の前後方向変位Xtf, Xtrを用いた前記(6)式の演算により車体3の上下バウンス運動Zvを求め、これを時間微分して車体3の上下バウンス速度fZvを求める。
次いで図8のバンドパスフィルタ処理部55(図9のステップS67)において、車体3の上下バウンス速度fZvから車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタにこの上下バウンス速度fZvを通し、上下バウンス速度fZvの車体共振周波数近傍振動成分である最終的な上下バウンス速度dZvを求める。
かように車体3の上下バウンス速度fZvからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該上下バウンス速度fZvが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらを上下バウンス速度fZvから除外して、車体振動のみを表す最終的な上下バウンス速度dZvとなす必要があるためである。
かように車体3の上下バウンス速度fZvからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該上下バウンス速度fZvが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらを上下バウンス速度fZvから除外して、車体振動のみを表す最終的な上下バウンス速度dZvとなす必要があるためである。
以上のように車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の推定が行われると、図8の制駆動トルク補正量演算部26は、これら車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を抑制するのに必要な制駆動トルク補正量ΔTdを演算して出力し、これを図2のごとく加算器24に向かわせる。
図2の加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
<効果>
以上により本実施例においてもモータ4は、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
以上により本実施例においてもモータ4は、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
しかも、車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFおよび平均後輪速VwRから、車体振動(上下バウンス速度fZvおよびピッチ角速度fθp)を演算して推定し、
この推定結果fZv,fθpからバンドパスフィルタ処理部55,56(ステップS67およびステップS64)において車体共振周波数付近の成分のみを抽出し、最終的な上下バウンス速度dZvおよび最終的なピッチ角速度dθpを取得するようにしたため、
バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、つまり車輪速に係わる情報から車体振動を推定するため、推定精度を高め得ると共に外乱による影響も介入しなくさせ得る。
この推定結果fZv,fθpからバンドパスフィルタ処理部55,56(ステップS67およびステップS64)において車体共振周波数付近の成分のみを抽出し、最終的な上下バウンス速度dZvおよび最終的なピッチ角速度dθpを取得するようにしたため、
バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、つまり車輪速に係わる情報から車体振動を推定するため、推定精度を高め得ると共に外乱による影響も介入しなくさせ得る。
ちなみに図10は、車速VSP=100Km/hで操舵角δを図示のごとくに変化させたダブルレーンチェンジ走行時における、本実施例の推定結果であるピッチ角速度dθpおよび上下バウンス加速度(上下バウンス速度dZvの1階微分値)の時系列変化をそれぞれ破線で示し、
実線で示すピッチ角速度および上下バウンス加速度との比較から明らかなように、本実施例においては、車体3の振動(ピッチ角速度dθpおよび上下バウンス速度dZv)を高精度に推定することができる。
実線で示すピッチ角速度および上下バウンス加速度との比較から明らかなように、本実施例においては、車体3の振動(ピッチ角速度dθpおよび上下バウンス速度dZv)を高精度に推定することができる。
また本実施例においては、車体振動(ピッチ角速度dθpおよび上下バウンス速度dZv)の推定に用いる平均前輪速VwFおよび平均後輪速VwRを、ピッチ角速度dθpだけ減算することにより、ピッチ角速度分の誤差による影響が排除されるよう補正して車体振動の推定に資するため、ピッチ角速度による誤差の影響を排除して、車体振動の推定精度を高めることができる。
<実施例1,2の変形>
なお、上記した第1実施例および第2実施例においては何れも車体振動推定装置を、モータ4のみを動力源とする電気自動車の制駆動力操作を介した車体制振制御に用いる場合について説明したが、
内燃機関などのエンジンを動力源として搭載する車両の、エンジン制御を介した車体制振制御装置に対しても同様に用いることができるし、モータやエンジンの制駆動力操作に代え、サスペンション装置の操作を介した車体制振制御装置に対しても同様に用いることができるのは言うまでもない。
なお、上記した第1実施例および第2実施例においては何れも車体振動推定装置を、モータ4のみを動力源とする電気自動車の制駆動力操作を介した車体制振制御に用いる場合について説明したが、
内燃機関などのエンジンを動力源として搭載する車両の、エンジン制御を介した車体制振制御装置に対しても同様に用いることができるし、モータやエンジンの制駆動力操作に代え、サスペンション装置の操作を介した車体制振制御装置に対しても同様に用いることができるのは言うまでもない。
また、車体振動の推定に用いる車輪速情報は、図示のごとく平均前輪速VwFおよび平均後輪速VwRに限られず、車輪速VwFL,VwER,VwRL,VwRRを個々に用いて四輪モデルを基に車体振動を推定することもできる。
この場合、推定する車体振動は、図示例のピッチ角速度dθpおよび上下バウンス速度dZvに限られず、車体のロール運動など他の振動であっても容易に推定することができる。
この場合、推定する車体振動は、図示例のピッチ角速度dθpおよび上下バウンス速度dZvに限られず、車体のロール運動など他の振動であっても容易に推定することができる。
なお第1実施例では、平均前輪速VwFおよび平均後輪速VwRから車体振動を表す周波数成分(車体3に対する車輪の前後運動成分)を取り出すに際し、平均前輪速VwFおよび平均後輪速VwRから車体共振周波数付近の成分のみを抽出するバンドパスフィルタを用いて、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを取得し、これらを車体振動の推定に資することとしたが、これに代えて以下のような車輪速情報を用いるようにしてもよい。
つまり、車体3の対地速度である車体速を正確に検出、若しくは推定する手段を設け、この車体速と平均前輪速VwFおよび平均後輪速VwRとの偏差をそれぞれ、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRの代わりに車体振動の推定に用いるようにしてもよい。
ただしこの手法は、駆動輪と従動輪のスリップ率差なども考慮すると、車体振動の推定精度の点で不利であり、第1実施例のようにバンドパスフィルタを用いて取得した平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを用いる方が実用的である。
ただしこの手法は、駆動輪と従動輪のスリップ率差なども考慮すると、車体振動の推定精度の点で不利であり、第1実施例のようにバンドパスフィルタを用いて取得した平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを用いる方が実用的である。
また、第1実施例のようにバンドパスフィルタを用いて平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを取得する代わりに、簡易的に平均前輪速VwFおよび平均後輪速VwRから低周波数成分を除去して得られたものを車体振動の推定に用いることもできる。
更に第2実施例では、平均前輪速VwFおよび平均後輪速VwRから求めた車体3の上下バウンス速度fZvおよびピッチ角速度fθpからバンドパスフィルタ処理により車体共振周波数付近の成分のみを取り出して、車体振動のみを表す最終的な上下バウンス速度dZvおよびピッチ角速度dθpとなしたが、
その代わりに、上下バウンス速度fZvおよびピッチ角速度fθpに対し、ドリフト成分を除去するフィルタ処理を行って、または車体共振周波数近傍の周波数成分以下の低周波成分を除去するフィルタ処理を行って、最終的な上下バウンス速度dZvおよびピッチ角速度dθpを求めるようにしてもよい。
その代わりに、上下バウンス速度fZvおよびピッチ角速度fθpに対し、ドリフト成分を除去するフィルタ処理を行って、または車体共振周波数近傍の周波数成分以下の低周波成分を除去するフィルタ処理を行って、最終的な上下バウンス速度dZvおよびピッチ角速度dθpを求めるようにしてもよい。
また車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の推定に当たっては、平均前輪速VwFおよび平均後輪速VwRを微分して車輪加速度情報に変換する微分器を設け、該微分器からの車輪加速度情報を基に当該上下バウンス速度dZvおよびピッチ角速度dθpの推定を行ってもよい。
最後に、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の推定に当たっては、車両への制駆動トルクから車体振動を推定する状態方程式を付加し、推定結果である車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を当該状態方程式へのオブザーバ入力として、車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定するようにすることもできる。
この場合、車体振動の推定精度や対外乱ロバスト性を維持したまま、駆動トルクによるフィードフォワード的な推定や、制御に使いやすい状態方程式の形式に容易に落とし込むことができる。
この場合、車体振動の推定精度や対外乱ロバスト性を維持したまま、駆動トルクによるフィードフォワード的な推定や、制御に使いやすい状態方程式の形式に容易に落とし込むことができる。
<構成>
図11は、本発明の第3実施例になる車体振動推定装置および車体制振制御装置を示す、図3に対応する車体制振制御演算部22の機能別ブロック線図であり、
図12は、図11における車体制振制御演算部22が実行して、車体の振動を推定すると共にこの車体振動を抑制するトルク補正量を演算するための制御プログラムを示すフローチャートである。
図11は、本発明の第3実施例になる車体振動推定装置および車体制振制御装置を示す、図3に対応する車体制振制御演算部22の機能別ブロック線図であり、
図12は、図11における車体制振制御演算部22が実行して、車体の振動を推定すると共にこの車体振動を抑制するトルク補正量を演算するための制御プログラムを示すフローチャートである。
本実施例においても、車体制振制御システムは図1におけると同様なものとし、また、モータコントローラ6は図2におけると同様なものとするため、これら図に基づく車体制振制御システムやモータコントローラ6の説明をここでは省略し、以下に第1実施例との相違点のみを図11,12に基づき説明する。
<車体振動推定および車体制振制御>
車体制振制御演算部22の内部における車体振動推定器25および制駆動トルク補正量演算部26はそれぞれ、図11のブロック線図で示すように構成し、図12の制御プログラムを実行して車体3の振動(本実施例では、ピッチ角fθp、ピッチ角速度dfθp、および、上下変位量であるバウンス量fZv、上下変位速度であるバウンス速度dfZv)を推定すると共に、この推定した車体振動(fθp,dfθp,fZv,dfZv)を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
車体制振制御演算部22の内部における車体振動推定器25および制駆動トルク補正量演算部26はそれぞれ、図11のブロック線図で示すように構成し、図12の制御プログラムを実行して車体3の振動(本実施例では、ピッチ角fθp、ピッチ角速度dfθp、および、上下変位量であるバウンス量fZv、上下変位速度であるバウンス速度dfZv)を推定すると共に、この推定した車体振動(fθp,dfθp,fZv,dfZv)を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
車体振動推定器25は、図11に明示するごとく車輪速基準車体振動推定器25a(本発明における車輪速物理量基準車体振動推定手段)と、制駆動力基準車体振動推定器25b(本発明における制駆動力基準車体振動推定手段)とで構成し、
先ず図12のステップS41において、そして図11に示すごとく車輪速基準車体振動推定器25aで左右前輪速VwFL,VwFRおよび左右後輪速VwRL,VwRRを読み込む。
先ず図12のステップS41において、そして図11に示すごとく車輪速基準車体振動推定器25aで左右前輪速VwFL,VwFRおよび左右後輪速VwRL,VwRRを読み込む。
車輪速基準車体振動推定器25aは図11に示すごとく、図3における車体振動推定器25と同様なもので、平均前輪速演算部31および平均後輪速演算部32と、前輪用バンドパスフィルタ処理部33および後輪用バンドパスフィルタ処理部34と、バウンス挙動演算部35およびピッチング挙動演算部36とにより構成する。
図11の平均前輪速演算部31および平均後輪速演算部32(図12のステップS42)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
図11の平均前輪速演算部31および平均後輪速演算部32(図12のステップS42)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次に、図11の前輪用バンドパスフィルタ処理部33および後輪用バンドパスフィルタ処理部34(図12のステップS43)において、平均前輪速VwFおよび平均後輪速VwRから車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタにこれら平均前輪速VwFおよび平均後輪速VwRをそれぞれ通し、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを取得する。
次に、図11のバウンス挙動演算部35およびピッチング挙動演算部36(図12のステップS44)において、以下のごとくに平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRから、車輪速基準車体振動である車体3の上下バウンス速度dZvと、ピッチ角速度dθpとを求める。
図11のバウンス挙動演算部35およびピッチング挙動演算部36(図12のステップS44)において、車輪速振動成分fVwFおよびfVwRから車輪速基準車体振動(車体3のバウンス速度dZvおよびピッチ角速度dθp)を求める方法は、図5~7につき前述したと同じである。
つまり、図11のバンドパスフィルタ処理部33,34(図12のステップS43)で上述したごとく車体振動を表す車輪速成分のみを抽出して得られた前輪速車体共振周波数近傍振動成分fVwFおよび後輪速車体共振周波数近傍振動成分fVwRから、車体振動を表す前輪1FL,1FRの前後方向変位Xtf、および、車体振動を表す後輪1RL,1RRの前後方向変位Xtrをそれぞれ求め、これら前後方向変位Xtf, Xtrの時間微分値dXtf, dXtrを前記の(7)式および(8)式に代入することで、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をそれぞれ演算して推定することができる。
以上のように車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の推定が行われる間に、図11の制駆動力基準車体振動推定器25bでは図12のステップS45において、図2の演算部21で求めた要求トルクrTdを車両の制駆動トルクとして読み込む。
制駆動力基準車体振動推定器25bは図11に示すように車両モデル37を具え、図12のステップS46において、上記の車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求トルクrTd(車両の制駆動トルク)から車両モデル37を用いてオブザーバによる状態推定を行うことにより、制駆動力基準車体振動(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出して推定する。
図13は、オブザーバを構成する基本的な車両モデル37を示し、図5につき前述したと同じく、ホイールベースLのうちの重心点-前軸間距離がLfであり、重心点-後軸間距離がLrであり、また、前輪サスペンション装置のバネ定数および振動減衰係数がそれぞれKsf,Cfであり、後輪サスペンション装置のバネ定数および振動減衰係数がそれぞれKsr,Crであり、車体3の質量がMであり、車体3のピッチング慣性モーメントがIpである車両に制駆動トルクrTdが与えられた場合において、
車体3の重心点における制駆動力基準車体振動(上下バウンス量fZvおよびピッチ角fθp)を、車体3の前軸上方箇所における上下変位Zfおよび車体3の後軸上方箇所における上下変位Zrと共に示したものである。
車体3の重心点における制駆動力基準車体振動(上下バウンス量fZvおよびピッチ角fθp)を、車体3の前軸上方箇所における上下変位Zfおよび車体3の後軸上方箇所における上下変位Zrと共に示したものである。
図13の車両モデルにおいて、制駆動力基準車体振動(上下バウンス量fZvおよびピッチ角fθp)に関する運動方程式は、微分演算子を簡易的に「d」で表記すると、それぞれ次式のようになる。
M・ddfZv=-2Ksf(fZv+Lf・fθp)-2Cf(dfZv+Lf・dfθp)
-2Ksr(fZv-Lr・fθp)-2Cr(dfZv-Lr・dfθp) ・・・(9)
Ip・ddfθp=-2Lf{Ksf(fZv+Lf・fθp)+Cf(dfZv+Lf・dfθp)}
+2Lr{Ksr(fZv-Lr・fθp)+Cr(dfZv-Lr・dfθp)}+rTd ・・・(10)
M・ddfZv=-2Ksf(fZv+Lf・fθp)-2Cf(dfZv+Lf・dfθp)
-2Ksr(fZv-Lr・fθp)-2Cr(dfZv-Lr・dfθp) ・・・(9)
Ip・ddfθp=-2Lf{Ksf(fZv+Lf・fθp)+Cf(dfZv+Lf・dfθp)}
+2Lr{Ksr(fZv-Lr・fθp)+Cr(dfZv-Lr・dfθp)}+rTd ・・・(10)
これらの運動方程式を状態方程式に変換し、制駆動トルクrTdを入力として与えることにより、制駆動力基準車体振動である車体3のピッチング運動(ピッチ角fθpおよびピッチ角速度dfθp)および上下バウンス運動(上下バウンス量fZvおよび上下バウンス速度dfZv)を計算して推定することができる。
ただし、このままではモデル化誤差や外乱(路面凹凸)などに起因して、推定精度が低い。
ただし、このままではモデル化誤差や外乱(路面凹凸)などに起因して、推定精度が低い。
そこで本実施例においては、図11の制駆動力基準車体振動推定器25bが、図12のステップS46において、要求トルクrTd(車両の制駆動トルク)から上記の車両モデル37を用いたオブザーバによる状態推定を行って、制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出して推定するに際し、
図11に示すごとく演算部35,36からの車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をもオブザーバ入力としつつ、要求トルクrTd(車両の制駆動トルク)から車両モデル37を用いて、制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出することとする。
図11に示すごとく演算部35,36からの車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をもオブザーバ入力としつつ、要求トルクrTd(車両の制駆動トルク)から車両モデル37を用いて、制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出することとする。
かように図11の制駆動力基準車体振動推定器25bが車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をもオブザーバ入力として、要求トルクrTd(車両の制駆動トルク)から車両モデル37を基に制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出することで、
制駆動力基準車体振動推定器25b(車両モデル37)の外乱ロバスト性と安定性とを両立させることができる。
制駆動力基準車体振動推定器25b(車両モデル37)の外乱ロバスト性と安定性とを両立させることができる。
また、車体振動の原因である要求トルクrTd(車両の制駆動トルク)から制駆動力基準車体振動xを推定するため、車体振動が発生した後ではなく、発生する前から制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を最終的な車体振動として、フィードフォワード的に推定することができる。
図11の制駆動トルク補正量演算部26は、図12のステップS47において、これら最終的な車体振動である制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を抑制するのに必要な制駆動トルク補正量ΔTdを以下のように演算する。
つまり制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)に対し、図11に「38」の符号を付して示すレギュレータゲインKrを与えて乗算し、その結果である乗算値の線形和を制駆動トルク補正量ΔTdとする。
つまり制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)に対し、図11に「38」の符号を付して示すレギュレータゲインKrを与えて乗算し、その結果である乗算値の線形和を制駆動トルク補正量ΔTdとする。
その際レギュレータゲインKrは、最終的な車体振動である上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθpごとに抑制(軽減)度合いを重み付けして定めるのが、設計の自由度が高まる意味合いにおいて好ましい。
またレギュレータゲインKrは、上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθpごとに、つまり車体振動の種類ごとに抑制(軽減)度合いの重み付けパターンを変えて設定した複数のレギュレータゲインで構成し、
これら複数のレギュレータゲインと、上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθpとの積算値の総和を制駆動トルク補正量ΔTdとするようにしても良い。
これら複数のレギュレータゲインと、上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθpとの積算値の総和を制駆動トルク補正量ΔTdとするようにしても良い。
更に、上記複数のレギュレータゲインに対するチューニングゲインを設定し、上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθpと、複数のレギュレータゲインと、チューニングゲインとの積算値の総和を制駆動トルク補正量ΔTdとするようにしても良い。
図11の制駆動トルク補正量演算部26(図12のステップS47)で上記のごとくに求めた制駆動トルク補正量ΔTdは図2の加算器24に供給され、
この加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
この加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
上記した本実施例の車体振動推定および車体制振制御の流れは、図14に示すごときものとなる。
なお図14におけるA,B,C,Dは、図13に示す車両モデルを状態方程式で表記したときのA,B,C,D行列を示し、Koは、オブザーバ入力(dZv,dθp, dfZv,dfθp)に対するオブザーバゲインを表す。
なお図14におけるA,B,C,Dは、図13に示す車両モデルを状態方程式で表記したときのA,B,C,D行列を示し、Koは、オブザーバ入力(dZv,dθp, dfZv,dfθp)に対するオブザーバゲインを表す。
<効果>
以上により本実施例の車体制振制御によれば、モータ4が、車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、
車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
以上により本実施例の車体制振制御によれば、モータ4が、車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、
車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
しかも本実施例によれば、上記の車体制振制御用に車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を推定するに際し、
車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRから、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定し、
この車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求駆動トルクrTd(車両の制駆動力)から車両モデル37を用いて制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を推定して最終的な車体振動とするため、以下の作用効果を奏し得る。
車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRから、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定し、
この車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求駆動トルクrTd(車両の制駆動力)から車両モデル37を用いて制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を推定して最終的な車体振動とするため、以下の作用効果を奏し得る。
先ず、従来のようにサスペンションストロークセンサを追加することなしに最終的な車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)の推定が可能であって、コスト的に有利である。
また、バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRから、つまり車輪速に係わる情報から車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定するため、その推定精度を高め得る。
更に、この高精度な車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求駆動トルクrTd(車両の制駆動力)から車両モデル37を用いて、最終的な車体振動である制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を推定するため、
この制駆動力基準車体振動(最終的な車体振動)xを、外乱ロバスト性にも優れた高精度なものとなし得て、上記制振制御による効果を顕著なものにすることができる。
この制駆動力基準車体振動(最終的な車体振動)xを、外乱ロバスト性にも優れた高精度なものとなし得て、上記制振制御による効果を顕著なものにすることができる。
また、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をそのまま最終的な車体振動とするのでは、この車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)が車体振動発生後のものであることから、車体制振制御がフィードフォワード制御であるとき、最終的な車体振動の推定が遅すぎて不向きであるが、
本実施例の車体振動推定装置では、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、車体振動発生前における車両の制駆動力rTdから車両モデル37を用いて推定した制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を最終的な車体振動とするため、本実施例のように車体制振制御がフィードフォワード制御である場合でも、最終的な車体振動の推定が遅すぎることはない。
本実施例の車体振動推定装置では、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、車体振動発生前における車両の制駆動力rTdから車両モデル37を用いて推定した制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を最終的な車体振動とするため、本実施例のように車体制振制御がフィードフォワード制御である場合でも、最終的な車体振動の推定が遅すぎることはない。
そして本実施例の車体制振制御装置にあっては、上記のように推定した最終的な車体振動xを軽減するのに必要な制駆動力補正量ΔTdを演算し、この制駆動力補正量ΔTdだけ車両の制駆動力rTdを補正するため、
推定した最終的な車体振動xが、前記した理由により外乱ロバスト性にも優れた高精度なものであることとも相まって、車体振動を常に狙い通りに軽減することができる。
推定した最終的な車体振動xが、前記した理由により外乱ロバスト性にも優れた高精度なものであることとも相まって、車体振動を常に狙い通りに軽減することができる。
<構成>
図15,16は、本発明の第4実施例になる車体振動推定装置および車体制振制御装置を示し、図15は、図11に対応する車体制振制御演算部22のブロック線図、図16は、この車体制振制御演算部22が実行する車体振動推定および車体制振制御プログラムを示す、図12に対応するフローチャートである。
本実施例においても第3実施例の場合と同じく、車体制振制御システムは図1におけると同様なものとし、また、モータコントローラ6は図2におけると同様なものとするため、これら図に基づく車体制振制御システムやモータコントローラ6の説明をここでは省略し、以下に第3実施例との相違点のみを図15,16に基づき説明する。
図15,16は、本発明の第4実施例になる車体振動推定装置および車体制振制御装置を示し、図15は、図11に対応する車体制振制御演算部22のブロック線図、図16は、この車体制振制御演算部22が実行する車体振動推定および車体制振制御プログラムを示す、図12に対応するフローチャートである。
本実施例においても第3実施例の場合と同じく、車体制振制御システムは図1におけると同様なものとし、また、モータコントローラ6は図2におけると同様なものとするため、これら図に基づく車体制振制御システムやモータコントローラ6の説明をここでは省略し、以下に第3実施例との相違点のみを図15,16に基づき説明する。
<車体振動の推定および車体制振制御>
本実施例においては、車体制振制御演算部22内の車体振動推定器25を図15のブロック線図で示すように構成し、この車体振動推定器25は図16の制御プログラムを実行して車体3の振動(本実施例でも第3実施例と同様に、ピッチ角fθp、ピッチ角速度dfθp、上下バウンス量fZv、および上下バウンス速度dfZv)を推定する。
本実施例においては、車体制振制御演算部22内の車体振動推定器25を図15のブロック線図で示すように構成し、この車体振動推定器25は図16の制御プログラムを実行して車体3の振動(本実施例でも第3実施例と同様に、ピッチ角fθp、ピッチ角速度dfθp、上下バウンス量fZv、および上下バウンス速度dfZv)を推定する。
車体振動推定器25内の車輪速基準車体振動推定器25aは、先ず図16のステップS61において、図15に示すごとくに左右前輪速VwFL,VwFRおよび左右後輪速VwRL,VwRRを読み込む。
次いで、図15の平均前輪速演算部51および平均後輪速演算部52(図16のステップS62)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次いで、図15の平均前輪速演算部51および平均後輪速演算部52(図16のステップS62)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次に、図15のバウンス挙動演算部53(図16のステップS63)において、平均前輪速VwFおよび平均後輪速VwRから、車体に対する前輪1FL,1FRの前後方向変位Xtf(図5参照)、および、後輪1RL,1RRの前後方向変位Xtr(図5参照)を求め、これら前後輪の前後方向変位Xtf, Xtrを用いた前記(6)式の演算により車体3の上下バウンス量Zv(図5参照)を求め、これを時間微分して車体3の上下バウンス速度aZvを求める。
図15のピッチング挙動演算部54(図16のステップS63)において、平均前輪速VwFおよび平均後輪速VwRから、車体に対する前輪1FL,1FRの前後方向変位Xtf(図5参照)、および、後輪1RL,1RRの前後方向変位Xtr(図5参照)を求め、これら前後輪の前後方向変位Xtf, Xtrを用いた前記(5)式の演算により車体3のピッチング運動θp(図5参照)を求め、これを時間微分して車体3のピッチ角速度aθpを求める。
次いで図15のバンドパスフィルタ処理部55(図16のステップS64)において、図15のバウンス挙動演算部53(図16のステップS63)で求めた車体3の上下バウンス速度aZvから車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタにこの上下バウンス速度aZvを通し、上下バウンス速度aZvの車体共振周波数近傍振動成分である上下バウンス速度dZv(車輪速基準車体振動)を求める。
かように車体3の上下バウンス速度aZvからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該車輪速基準上下バウンス速度aZvが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらを上下バウンス速度aZvから除外して、車体振動のみを表す車輪速基準上下バウンス速度dZvとなす必要があるためである。
かように車体3の上下バウンス速度aZvからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該車輪速基準上下バウンス速度aZvが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらを上下バウンス速度aZvから除外して、車体振動のみを表す車輪速基準上下バウンス速度dZvとなす必要があるためである。
また図15のバンドパスフィルタ処理部56(図16のステップS64)において、図15のピッチング挙動演算部54(図16のステップS63)で求めた車体3のピッチ角速度aθpから車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタにこのピッチ角速度aθpを通し、ピッチ角速度aθpの車体共振周波数近傍振動成分であるピッチ角速度dθp(車輪速基準車体振動)を求める。
かように車体3のピッチ角速度aθpからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該ピッチ角速度aθpが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらをピッチ角速度aθpから除外して、車体振動のみを表す車輪速基準ピッチ角速度dθpとなす必要があるためである。
かように車体3のピッチ角速度aθpからフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該ピッチ角速度aθpが車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらをピッチ角速度aθpから除外して、車体振動のみを表す車輪速基準ピッチ角速度dθpとなす必要があるためである。
以上のように車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)の推定が行われる間に、図15の制駆動力基準車体振動推定器25bでは図16のステップS65において、図2の演算部21で求めた要求トルクrTdを車両の制駆動トルクとして読み込む。
制駆動力基準車体振動推定器25bは、図11に示すと同様なもので車両モデル37を具え、図16のステップS66において、上記の車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求トルクrTd(車両の制駆動トルク)から車両モデル37を用いてオブザーバによる状態推定を行うことにより、制駆動力基準車体振動(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出して推定する。
ただし、このままではモデル化誤差や外乱(路面凹凸)などに起因して、推定精度が低い。
ただし、このままではモデル化誤差や外乱(路面凹凸)などに起因して、推定精度が低い。
そこで本実施例においても、前記した第3実施例と同様、図15の制駆動力基準車体振動推定器25b(図16のステップS66)において、要求トルクrTd(車両の制駆動トルク)から車両モデル37を用いたオブザーバによる状態推定を行って、制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出して推定するに際し、
図15に示すごとく演算部55,56からの車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をもオブザーバ入力としつつ、要求トルクrTd(車両の制駆動トルク)から車両モデル37を用いて、制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出することとする。
図15に示すごとく演算部55,56からの車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をもオブザーバ入力としつつ、要求トルクrTd(車両の制駆動トルク)から車両モデル37を用いて、制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出することとする。
かように図15の制駆動力基準車体振動推定器25bが車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をもオブザーバ入力として、要求トルクrTd(車両の制駆動トルク)から車両モデル37を基に制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を算出することで、
制駆動力基準車体振動推定器25b(車両モデル37)の外乱ロバスト性と安定性とを両立させることができる。
また、車体振動の原因である要求トルクrTd(車両の制駆動トルク)から制駆動力基準車体振動xを推定するため、車体振動が発生した後ではなく、発生する前から制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を最終的な車体振動として、フィードフォワード的に推定することができる。
制駆動力基準車体振動推定器25b(車両モデル37)の外乱ロバスト性と安定性とを両立させることができる。
また、車体振動の原因である要求トルクrTd(車両の制駆動トルク)から制駆動力基準車体振動xを推定するため、車体振動が発生した後ではなく、発生する前から制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を最終的な車体振動として、フィードフォワード的に推定することができる。
図15の制駆動トルク補正量演算部26は、図16のステップS67において、これら最終的な車体振動である制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)を抑制するのに必要な制駆動トルク補正量ΔTdを以下のように演算する。
つまり制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)に対し、図15に「38」の符号を付して示すレギュレータゲインKr(第3実施例と同様に設定)を与えて乗算し、その結果である乗算値の線形和を制駆動トルク補正量ΔTdとする。
つまり制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、ピッチ角速度dfθp)に対し、図15に「38」の符号を付して示すレギュレータゲインKr(第3実施例と同様に設定)を与えて乗算し、その結果である乗算値の線形和を制駆動トルク補正量ΔTdとする。
図15の制駆動トルク補正量演算部26(図16のステップS67)で上記のごとくに求めた制駆動トルク補正量ΔTdは図2の加算器24に供給され、
この加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
この加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図2のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
<効果>
以上により本実施例の車体制振制御においてもモータ4が、車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、
車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
以上により本実施例の車体制振制御においてもモータ4が、車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、
車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
しかも本実施例によれば、上記の車体制振制御用に車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を推定するに際し、
車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFおよび平均後輪速VwRから、車輪速基準車体振動(上下バウンス速度aZvおよびピッチ角速度aθp)を推定し、
この推定結果aZv,aθpからバンドパスフィルタ処理部55,56(ステップS64)において車体共振周波数付近の成分のみを抽出し、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定し、
この車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求駆動トルクrTd(車両の制駆動力)から車両モデル37を用いて制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を求めて最終的な車体振動とするため、以下の効果が奏し得られる。
車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFおよび平均後輪速VwRから、車輪速基準車体振動(上下バウンス速度aZvおよびピッチ角速度aθp)を推定し、
この推定結果aZv,aθpからバンドパスフィルタ処理部55,56(ステップS64)において車体共振周波数付近の成分のみを抽出し、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定し、
この車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求駆動トルクrTd(車両の制駆動力)から車両モデル37を用いて制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を求めて最終的な車体振動とするため、以下の効果が奏し得られる。
つまり、従来のようにサスペンションストロークセンサを追加することなしに最終的な車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)の推定が可能であって、コスト的に有利である。
また、バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、平均前輪速VwFおよび平均後輪速VwRから、つまり車輪速に係わる情報から車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定するため、その推定精度を高め得る。
また、バネ定数や車両質量など、経時劣化や乗員数の増減などに応じて変化するトルクや力を用いることなく、平均前輪速VwFおよび平均後輪速VwRから、つまり車輪速に係わる情報から車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)を推定するため、その推定精度を高め得る。
更に、この高精度な車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をオブザーバ入力としつつ、要求駆動トルクrTd(車両の制駆動力)から車両モデル37を用いて、最終的な車体振動である制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を推定するため、
この制駆動力基準車体振動(最終的な車体振動)xを、外乱ロバスト性にも優れた高精度なものとなし得て、上記制振制御による効果を顕著なものにすることができる。
この制駆動力基準車体振動(最終的な車体振動)xを、外乱ロバスト性にも優れた高精度なものとなし得て、上記制振制御による効果を顕著なものにすることができる。
また、車輪速基準車体振動(上下バウンス速度dZvおよびピッチ角速度dθp)をそのまま最終的な車体振動とせず、これをオブザーバ入力としつつ、車体振動発生前における車両の制駆動力rTdから車両モデル37を用いて推定した制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)を車体振動とするため、車体制振制御がフィードフォワード制御である場合でも、車体振動の推定が遅れて、車体制振制御を狙い通りに遂行し得なくなるという問題を生ずることもない。
<実施例3,4の変形>
なお、上記した第3,4実施例においては何れも車体振動推定装置を、モータ4のみを動力源とする電気自動車の制駆動力操作を介した車体制振制御に用いる場合について説明したが、
内燃機関などのエンジンを動力源として搭載する車両のエンジン制御を介した車体制振制御装置に対しても同様に用いることができるし、モータやエンジンの制駆動力操作に代え、サスペンション装置の操作を介した車体制振制御装置に対しても同様に用いることができるのは言うまでもない。
なお、上記した第3,4実施例においては何れも車体振動推定装置を、モータ4のみを動力源とする電気自動車の制駆動力操作を介した車体制振制御に用いる場合について説明したが、
内燃機関などのエンジンを動力源として搭載する車両のエンジン制御を介した車体制振制御装置に対しても同様に用いることができるし、モータやエンジンの制駆動力操作に代え、サスペンション装置の操作を介した車体制振制御装置に対しても同様に用いることができるのは言うまでもない。
また、車体振動の推定に用いる車輪速情報は、図示のごとく平均前輪速VwFおよび平均後輪速VwRに限られず、車輪速VwFL,VwER,VwRL,VwRRを個々に用いて四輪モデルを基に車体振動を推定することもできる。
この場合、車両モデル37へのオブザーバ入力である車輪速基準車体振動は、第3,4実施例のピッチ角速度dθpおよび上下バウンス速度dZvに限られず、車体のロール運動など他の振動であっても、これらを容易に推定することができる。
この場合、車両モデル37へのオブザーバ入力である車輪速基準車体振動は、第3,4実施例のピッチ角速度dθpおよび上下バウンス速度dZvに限られず、車体のロール運動など他の振動であっても、これらを容易に推定することができる。
なお第3実施例では、平均前輪速VwFおよび平均後輪速VwRから車体振動を表す周波数成分(車体3に対する車輪の前後運動成分)を取り出すに際し、平均前輪速VwFおよび平均後輪速VwRから車体共振周波数付近の成分のみを抽出するバンドパスフィルタを用いて、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを取得し、これらを車輪速基準車体振動(ピッチ角速度dθpおよび上下バウンス速度dZv)の推定に資することとしたが、これに代えて以下のような車輪速情報を用いるようにしてもよい。
つまり、車体3の対地速度である車体速を正確に検出、若しくは推定する手段を設け、この車体速と平均前輪速VwFおよび平均後輪速VwRとの偏差をそれぞれ、平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRの代わりに、車輪速基準車体振動(ピッチ角速度dθpおよび上下バウンス速度dZv)の推定に用いるようにしてもよい。
ただしこの手法は、駆動輪と従動輪のスリップ率差なども考慮すると、車体振動の推定精度の点で不利であり、第3実施例のようにバンドパスフィルタを用いて取得した平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを用いる方が実用的である。
ただしこの手法は、駆動輪と従動輪のスリップ率差なども考慮すると、車体振動の推定精度の点で不利であり、第3実施例のようにバンドパスフィルタを用いて取得した平均前輪速VwFの車体共振周波数近傍振動成分fVwFおよび平均後輪速VwRの車体共振周波数近傍振動成分fVwRを用いる方が実用的である。
更に第4実施例では、平均前輪速VwFおよび平均後輪速VwRから直接求めた車体3の上下バウンス速度aZvおよびピッチ角速度aθpからバンドパスフィルタ処理により車体共振周波数付近の成分のみを取り出して、車体振動のみを表す車輪速基準車体振動(ピッチ角速度dθpおよび上下バウンス速度dZv)となしたが、
その代わりに、上下バウンス速度aZvおよびピッチ角速度aθpに対し、ドリフト成分を除去するフィルタ処理を行って、または車体共振周波数近傍の周波数成分以下の低周波成分を除去するフィルタ処理を行って、車輪速基準車体振動(ピッチ角速度dθpおよび上下バウンス速度dZv)を求めるようにしてもよい。
その代わりに、上下バウンス速度aZvおよびピッチ角速度aθpに対し、ドリフト成分を除去するフィルタ処理を行って、または車体共振周波数近傍の周波数成分以下の低周波成分を除去するフィルタ処理を行って、車輪速基準車体振動(ピッチ角速度dθpおよび上下バウンス速度dZv)を求めるようにしてもよい。
なお第3,4実施例ではいずれも、制駆動力基準車体振動x(上下バウンス量fZv、上下バウンス速度dfZv、ピッチ角fθp、およびピッチ角速度dfθp)の推定に際し用いる制駆動力として、図2の演算部21で求めた要求トルクrTdを用いたが、これに限られず、車両の制駆動力を表す状態量であれば、任意のものを用いることができる。
また、車両が制駆動力を自動的に加減するアクチュエータを具えたものである場合は、当該アクチュエータの動作から車両の要求トルクを演算し、該要求トルクを車両の制駆動力として用いる必要があるのは言うまでもない。
また、車両が制駆動力を自動的に加減するアクチュエータを具えたものである場合は、当該アクチュエータの動作から車両の要求トルクを演算し、該要求トルクを車両の制駆動力として用いる必要があるのは言うまでもない。
<構成>
図17は、本発明の第5実施例になる車体振動推定装置および車体制振制御装置を示す、図2に対応するモータコントローラ6の機能別ブロック線図であり、
図18は、図17における車体制振制御演算部22の詳細を示す、図3に対応する機能別ブロック線図であり、
図19は、図17,18における車体制振制御演算部22が実行して、車体の振動を推定すると共にこの車体振動を抑制するトルク補正量を演算するための制御プログラムを示すフローチャートである。
図17は、本発明の第5実施例になる車体振動推定装置および車体制振制御装置を示す、図2に対応するモータコントローラ6の機能別ブロック線図であり、
図18は、図17における車体制振制御演算部22の詳細を示す、図3に対応する機能別ブロック線図であり、
図19は、図17,18における車体制振制御演算部22が実行して、車体の振動を推定すると共にこの車体振動を抑制するトルク補正量を演算するための制御プログラムを示すフローチャートである。
本実施例においても、車体制振制御システムを図1におけると同様なものとするため、この図に基づく車体制振制御システムの説明をここでは省略し、以下に第1実施例との相違点のみを図17~19に基づき説明する。
モータコントローラ6は、車体3の振動を推定すると共に、推定した車体3の振動を抑制するよう運転者の要求トルクrTdを補正してモータトルク指令値tTmを決定するもので、そのためにアクセル開度APOおよびブレーキペダル踏力BRPを入力するほか、車体振動を表す物理量として、左右前輪1FL,1FRの周速である前輪速VwFL,VwFR(前輪速物理量)、および左右後輪1RL,1RRの周速である後輪速VwRL,VwRR(後輪速物理量)を入力する。
しかし車体振動を表す物理量は、これらに限られるものではなく、左右前輪1FL,1FRおよび左右後輪1RL,1RRと共に回転する任意の箇所の回転速度でもよいし、これら以外の速度情報を用いてもよいのは言うまでもない。
しかし車体振動を表す物理量は、これらに限られるものではなく、左右前輪1FL,1FRおよび左右後輪1RL,1RRと共に回転する任意の箇所の回転速度でもよいし、これら以外の速度情報を用いてもよいのは言うまでもない。
従って、車輪速VwFL,VwFR,VwRL,VwRRは本発明における車体振動物理量に相当し、車輪速センサ11FL,11FR,11RL,11RRはそれぞれ、本発明における車体振動物理量検出手段を構成する。
モータコントローラ6は図17に示すごとく、基本的には図2におけると同様、車速演算部20と、要求トルク演算部21と、車体制振制御演算部22と、モータトルク指令値演算部23と、加算器24とで構成する。
しかし、車体制振制御演算部22内の車体振動推定器25および制駆動トルク補正量演算部26間に車体振動状態量補完部29を介在させ、これら車体振動推定器25、制駆動トルク補正量演算部26、および車体振動状態量補完部29で車体制振制御演算部22を構成する。
しかし、車体制振制御演算部22内の車体振動推定器25および制駆動トルク補正量演算部26間に車体振動状態量補完部29を介在させ、これら車体振動推定器25、制駆動トルク補正量演算部26、および車体振動状態量補完部29で車体制振制御演算部22を構成する。
車速演算部20は、車輪速センサ11FL,11FR,11RL,11RR(図17では、車輪速センサ群11として示した)により検出した前輪速VwFL,VwFRおよび後輪速VwRL,VwRR(図17では、車輪速Vwとして示した)を基に車速VSPを求める。
要求トルク演算部21は、上記演算部20で求めた車速VSPと、センサ13,14でそれぞれ検出したアクセル開度APOおよびブレーキペダル踏力BRPとから、運転者が現在の車速VSPのもとで運転操作(アクセル開度APOおよびブレーキペダル踏力BRP)により要求している要求トルクrTd(正が駆動トルク、負が制動トルク)を、マップ検索などにより演算する。
車体制振制御演算部22を構成する車体振動推定器25、車体振動状態量補完部29および制駆動トルク補正量演算部26のうち、
車体振動推定器25においては、車輪速Vwから後で詳述するごとくに車体3の振動(或る車体振動状態量)を推定し、
車体振動状態量補完部29においては、推定器25で推定した車体振動(或る車体振動状態量)から、後述するごとくに別の車体振動(別の車体振動状態量)を算出する。
従って車体振動推定器25は、本発明における車体振動状態量演算手段に相当し、車体振動状態量補完部29は、本発明における車体振動状態量補完手段に相当する。
車体振動推定器25においては、車輪速Vwから後で詳述するごとくに車体3の振動(或る車体振動状態量)を推定し、
車体振動状態量補完部29においては、推定器25で推定した車体振動(或る車体振動状態量)から、後述するごとくに別の車体振動(別の車体振動状態量)を算出する。
従って車体振動推定器25は、本発明における車体振動状態量演算手段に相当し、車体振動状態量補完部29は、本発明における車体振動状態量補完手段に相当する。
車体振動状態量補完部29は、当該算出した別の車体振動(別の車体振動状態量)を、推定器25からの車体振動(或る車体振動状態量)と共に、制駆動トルク補正量演算部26へ供給する。
制駆動トルク補正量演算部26は、車体振動推定器25から車体振動状態量補完部29を経て供給される車体振動(或る車体振動状態量)、および車体振動状態量補完部29からの別の車体振動(別の車体振動状態量)を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
従って制駆動トルク補正量演算部26は、本発明における制駆動力補正量演算手段に相当する。
制駆動トルク補正量演算部26は、車体振動推定器25から車体振動状態量補完部29を経て供給される車体振動(或る車体振動状態量)、および車体振動状態量補完部29からの別の車体振動(別の車体振動状態量)を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
従って制駆動トルク補正量演算部26は、本発明における制駆動力補正量演算手段に相当する。
加算器24は、演算部21で求めた運転者の要求トルクrTdを、制駆動トルク補正量演算部26で求めた車体振動抑制用制駆動トルク補正量ΔTdの加算により補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
従って加算器24は、本発明における制駆動力補正手段を構成する。
従って加算器24は、本発明における制駆動力補正手段を構成する。
モータトルク指令値演算部23は、車両挙動を制御する挙動制御装置(VDC)や、駆動輪(前輪)1FL,1FRの駆動スリップを防止するトランクションコントロール装置(TCS)のような他システム27からのトルク要求を受けて、この要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求める。
モータコントローラ6は、上記のようにして求めたモータトルク指令値tTmに応じ、インバータ8による制御下でバッテリ7からモータ4へ電力を供給することで、モータ4のトルクがモータトルク指令値tTmに一致するよう、当該モータ4を駆動制御する。
<車体振動推定および車体制振制御>
車体制振制御演算部22の内部における車体振動推定器25、車体振動状態量補完部29および制駆動トルク補正量演算部26はそれぞれ、図18のブロック線図で示すように構成し、図19の制御プログラムを実行して車体3の振動(本実施例では、ピッチ角θp、ピッチ角速度dθp、および、上下変位量であるバウンス量Zv、上下変位速度であるバウンス速度dZv)を推定すると共に、この推定した車体振動(θp,dθp,Zv,dZv)を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
車体制振制御演算部22の内部における車体振動推定器25、車体振動状態量補完部29および制駆動トルク補正量演算部26はそれぞれ、図18のブロック線図で示すように構成し、図19の制御プログラムを実行して車体3の振動(本実施例では、ピッチ角θp、ピッチ角速度dθp、および、上下変位量であるバウンス量Zv、上下変位速度であるバウンス速度dZv)を推定すると共に、この推定した車体振動(θp,dθp,Zv,dZv)を抑制するのに必要な制駆動トルク補正量ΔTdを演算する。
車体振動推定器25は、図18に明示するごとく平均前輪速演算部51および平均前輪速演算部52と、バウンス速度演算部53と、ピッチ角速度演算部54と、バンドパスフィルタ処理部55,56とで構成し、
先ず図19のステップS61において、そして図18に示すごとく平均前輪速演算部51および平均前輪速演算部52で左右前輪速VwFL,VwFRおよび左右後輪速VwRL,VwRRをそれぞれ読み込む。
先ず図19のステップS61において、そして図18に示すごとく平均前輪速演算部51および平均前輪速演算部52で左右前輪速VwFL,VwFRおよび左右後輪速VwRL,VwRRをそれぞれ読み込む。
図18の平均前輪速演算部51および平均後輪速演算部52(図19のステップS62)において、左右前輪速VwFL,VwFRから平均前輪速VwF=(VwFL+VwFR)/2を演算すると共に、左右後輪速VwRL,VwRRから平均後輪速VwR=(VwRL+VwRR)/2を演算する。
次に、図18のバウンス速度演算部53およびピッチ角速度演算部54(図19のステップS63)において、平均前輪速VwFおよび平均後輪速VwRから、或る車体振動状態量である車体3の上下バウンス速度dZv(F)およびピッチ角速度dθp(F)を求める方法は、図5~7につき前述したと同様である。
つまり、図18の演算部51,52(図19のステップS62)で上記のごとくに求めた平均前輪速VwFおよび平均後輪速VwRから、車体振動を内包する前輪1FL,1FRの前後方向変位Xtfおよび後輪1RL,1RRの前後方向変位Xtrをそれぞれ求め、
これら前後方向変位Xtf, Xtrの時間微分値dXtf, dXtrを上記の(7)式および(8)式に代入することで、或る車体振動状態量である上下バウンス速度dZv(F)およびピッチ角速度dθp(F)をそれぞれ演算して推定することができる。
これら前後方向変位Xtf, Xtrの時間微分値dXtf, dXtrを上記の(7)式および(8)式に代入することで、或る車体振動状態量である上下バウンス速度dZv(F)およびピッチ角速度dθp(F)をそれぞれ演算して推定することができる。
次いで図18のバンドパスフィルタ処理部55(図19のステップS64)において、図18のバウンス速度演算部53(図19のステップS63)で求めた車体3の上下バウンス速度dZv(F)から車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタにこの上下バウンス速度dZv(F)を通し、上下バウンス速度dZv(F)の車体共振周波数近傍振動成分である上下バウンス速度dZv(或る車体振動状態量)を求める。
かように車体3の上下バウンス速度dZv(F)からフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該上下バウンス速度dZv(F)が車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらを上下バウンス速度dZv(F)から除外して、車体振動のみを表す上下バウンス速度dZvとなす必要があるためである。
また図18のバンドパスフィルタ処理部56(図19のステップS64)において、図18のピッチ角速度演算部54(図19のステップS63)で求めた車体3のピッチ角速度dθp(F)から車体共振周波数付近の成分のみを抽出して取り出すためのバンドパスフィルタにこのピッチ角速度dθp(F)を通し、ピッチ角速度dθp(F)の車体共振周波数近傍振動成分であるピッチ角速度dθp(或る車体振動状態量)を求める。
かように車体3のピッチ角速度dθp(F)からフィルタ処理により車体共振周波数付近の成分のみを抽出して取り出す理由は、当該ピッチ角速度dθp(F)が車両全体の加減速による車輪速変動やノイズ成分を含んでおり、これらをピッチ角速度dθp(F)から除外して、車体振動のみを表すピッチ角速度dθpとなす必要があるためである。
ここで、車体振動を抑制する車体制振制御について考察するに、車体振動抑制のための制駆動トルク補正量は、車体振動に対しゲインを乗じて求めるのが有利であり、車体振動抑制用のゲインを設定する必要がある。
そのため、車両の制駆動トルクと車体振動との関係を力学的にまとめた図20に例示する車両モデルを用いる。
そのため、車両の制駆動トルクと車体振動との関係を力学的にまとめた図20に例示する車両モデルを用いる。
図20の車両モデル37は、図5につき前述したと同じく、ホイールベースLのうちの重心点-前軸間距離がLfであり、重心点-後軸間距離がLrであり、また、前輪サスペンション装置のバネ定数および振動減衰係数がそれぞれKsf,Cfであり、後輪サスペンション装置のバネ定数および振動減衰係数がそれぞれKsr,Crであり、車体3の質量がMであり、車体3のピッチング慣性モーメントがIpであり、
左右前輪1FL,1FRに、図17の演算部21で求めた要求トルクrTdが制駆動トルクとして与えられた場合において、
車体3の重心点における上下バウンス量Zvおよびピッチ角θpを、車体3の前軸上方箇所における上下変位Zfおよび車体3の後軸上方箇所における上下変位Zrと共に示したものである。
左右前輪1FL,1FRに、図17の演算部21で求めた要求トルクrTdが制駆動トルクとして与えられた場合において、
車体3の重心点における上下バウンス量Zvおよびピッチ角θpを、車体3の前軸上方箇所における上下変位Zfおよび車体3の後軸上方箇所における上下変位Zrと共に示したものである。
図20の車両モデルにおいて、上下バウンス量Zvおよびピッチ角θpに関する運動方程式は、微分演算子を簡易的に「d」で表記すると、それぞれ次式のようになる。
M・ddZv=-2Ksf(Zv+Lf・θp)-2Cf(dZv+Lf・dθp)
-2Ksr(Zv-Lr・θp)-2Cr(dZv-Lr・dθp) ・・・(11)
Ip・ddθp=-2Lf{Ksf(Zv+Lf・θp)+Cf(dZv+Lf・dθp)}
+2Lr{Ksr(Zv-Lr・θp)+Cr(dZv-Lr・dθp)}+rTd ・・・(12)
M・ddZv=-2Ksf(Zv+Lf・θp)-2Cf(dZv+Lf・dθp)
-2Ksr(Zv-Lr・θp)-2Cr(dZv-Lr・dθp) ・・・(11)
Ip・ddθp=-2Lf{Ksf(Zv+Lf・θp)+Cf(dZv+Lf・dθp)}
+2Lr{Ksr(Zv-Lr・θp)+Cr(dZv-Lr・dθp)}+rTd ・・・(12)
これらの運動方程式を状態方程式に変換し、制駆動トルクrTdを入力として与えることにより、車体3のピッチング運動(ピッチ角θpおよびピッチ角速度dθp)および上下バウンス運動(上下バウンス量Zvおよび上下バウンス速度dZv)を計算して推定することができる。
従って、これら4種類の車体振動状態量(θp,dθp,Zv,dZv)に対し重み付けを行い、この重み付けに基づいて車体振動状態量(θp,dθp,Zv,dZv)をそれぞれ抑制するためのレギュレータゲインを設計しておき、車体制振制御に用いる。
従って、これら4種類の車体振動状態量(θp,dθp,Zv,dZv)に対し重み付けを行い、この重み付けに基づいて車体振動状態量(θp,dθp,Zv,dZv)をそれぞれ抑制するためのレギュレータゲインを設計しておき、車体制振制御に用いる。
しかし図17,18の車体振動推定器25では、上記した4種類の車体振動状態量(ピッチ角θp、ピッチ角速度dθp、上下バウンス量Zv、上下バウンス速度dZv)のうち、ピッチ角速度dθpおよび上下バウンス速度dZvの2種類(或る車体振動状態量)しか推定することができず、他のピッチ角θpおよび上下バウンス量Zvについて、これらを能動的に抑制する制振制御を期待できない。
そこで本実施例においては、図18の車体振動状態量補完部29(図19のステップS65)において、ピッチ角速度dθpおよび上下バウンス速度dZvから、別の車体振動状態量であるピッチ角θpおよび上下バウンス量Zvを求めて補完する車体振動状態量補完処理を行う。
そのために図18の車体振動状態量補完部29に積分器26aおよび26bを設け、積分器26aで上下バウンス速度dZvを積分することにより上下バウンス量Zvを求め、積分器26bでピッチ角速度dθpを積分することによりピッチ角θpを求める。
そのために図18の車体振動状態量補完部29に積分器26aおよび26bを設け、積分器26aで上下バウンス速度dZvを積分することにより上下バウンス量Zvを求め、積分器26bでピッチ角速度dθpを積分することによりピッチ角θpを求める。
車体振動状態量補完部29は図18に示すように、また図19のステップS66において、車体振動推定器25からの上下バウンス速度dZvおよびピッチ角速度dθpをそのまま制駆動トルク補正量演算部26に向かわせるほか、これらを積分して求めた上下バウンス量Zvおよびピッチ角θpを制駆動トルク補正量演算部26に向かわせ、制駆動トルク補正量演算部26に4種類の車体振動x(θp,dθp,Zv,dZv)を供給する。
図18の制駆動トルク補正量演算部26は、図19のステップS67において、これら4種類の車体振動x(θp,dθp,Zv,dZv)を抑制するのに必要な制駆動トルク補正量ΔTdを以下のように演算する。
つまり車体振動x(上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、ピッチ角速度dθp)に対し、図18に「38」の符号を付して示すレギュレータゲインKrを与えて乗算し、その結果である乗算値の線形和を制駆動トルク補正量ΔTdとする。
つまり車体振動x(上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、ピッチ角速度dθp)に対し、図18に「38」の符号を付して示すレギュレータゲインKrを与えて乗算し、その結果である乗算値の線形和を制駆動トルク補正量ΔTdとする。
その際レギュレータゲインKrは、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpごとに抑制(軽減)度合いを重み付けして定めるのが、設計の自由度が高まって良い。
またレギュレータゲインKrは、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpごとに、つまり車体振動の種類ごとに抑制(軽減)度合いの重み付けパターンを変えて設定した複数のレギュレータゲインで構成し、
これら複数のレギュレータゲインと、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpとの積算値の総和を制駆動トルク補正量ΔTdとするようにしても良い。
これら複数のレギュレータゲインと、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpとの積算値の総和を制駆動トルク補正量ΔTdとするようにしても良い。
図18の制駆動トルク補正量演算部26(図19のステップS67)で上記のごとくに求めた制駆動トルク補正量ΔTdは図17の加算器24に供給され、
この加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図17のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
この加算器24は、演算部21で前記のごとくに求めた運転者の要求トルクrTdを車体振動抑制用制駆動トルク補正量ΔTdだけ補正して、車体振動を抑制しつつ運転者の要求を満たす目標トルクtTdを求める。
図17のモータトルク指令値演算部23は、他システム27からのトルク要求に叶うよう上記の目標トルクtTdを制限したり、加減することにより、これを実現するための最終的なモータトルク指令値tTmを求め、インバータ8を介したモータ4の駆動制御に資する。
上記した本実施例の車体振動推定および車体制振制御の流れは、図21に示すごときものとなる。
なお、図18の車体振動状態量補完部29(図19のステップS65)でピッチ角速度dθpおよび上下バウンス速度dZvを積分してピッチ角θpおよび上下バウンス量Zvを求めるに際し、通常の積分演算では演算負荷が大きくなって実際的でないし、算出した状態量が発散することから、
実用に際しては、図18における積分器26a,26bとして、時定数Tを設けた以下の伝達関数G(s)で表される擬似積分器を用いるのがよい。
G(s)=T/(Ts+1) ・・・(13)
実用に際しては、図18における積分器26a,26bとして、時定数Tを設けた以下の伝達関数G(s)で表される擬似積分器を用いるのがよい。
G(s)=T/(Ts+1) ・・・(13)
実車上で計測ないし推定した信号は、通常オフセット(0点ずれ)やノイズ成分を持ち、そのような信号に対し不用意に積分を行うと、積分誤差がたまって制御が発散する場合がある。
しかし上記のように時定数Tを設けた擬似積分器を用いる場合は、時定数に基づく擬似積分時に古い情報が随時削除されることから、積分誤差の累積を防止することができ、算出した状態量が発散することを回避することができる。
しかし上記のように時定数Tを設けた擬似積分器を用いる場合は、時定数に基づく擬似積分時に古い情報が随時削除されることから、積分誤差の累積を防止することができ、算出した状態量が発散することを回避することができる。
なお、擬似積分では設定した時定数T以上の長時間に亘って継続する入力があった場合は、その積分結果がずれてしまうという問題がある。
しかし車体制振制御システムにおいて、制御対象である振動(主に速度成分)は基本的に定常成分が0であるため、長時間使用しても積分結果が真値とずれてくる心配はない。
ただし、積分時間を極端に短くしてしまうと影響を無視できなくなってくるので、少なくとも積分時定数Tは車体共振周期以上の値とし、少なくとも共振周期分の情報はこれを確実に累積できるようにするのが望ましい。
しかし車体制振制御システムにおいて、制御対象である振動(主に速度成分)は基本的に定常成分が0であるため、長時間使用しても積分結果が真値とずれてくる心配はない。
ただし、積分時間を極端に短くしてしまうと影響を無視できなくなってくるので、少なくとも積分時定数Tは車体共振周期以上の値とし、少なくとも共振周期分の情報はこれを確実に累積できるようにするのが望ましい。
また、図18の制駆動トルク補正量演算部26(図19のステップS67)で車体振動抑制用の制駆動トルク補正量ΔTdを求めるに際しては、図22に示すごとく複数のレギュレータゲインKr1,Kr2を用意しておき、これらレギュレータゲインKr1,Kr2に対するチューニングゲインG1,G2を設定し、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpと、複数のレギュレータゲインKr1,Kr2と、チューニングゲインG1,G2との積算値の総和を制駆動トルク補正量ΔTdとするようにしてもよい。
この場合、以下のような利点がある。
つまり、各車体振動状態量に対しチューニングゲインを設けて合わせこみを行おうとすると、各車体振動状態量がその他の車体振動状態量にも影響を及ぼしあうため、ハンドチューニングで最適値を見つけることはとても困難である。
ところで図22に示すごとく、ある程度バランスを持たせた複数個のレギュレータゲイン (例えば、バウンス挙動を抑えるゲインKr1、およびピッチ挙動を抑えるゲインKr2)を用意しておき、実車でのチューニング時は、レギュレータゲインKr1,Kr2ごとにチューニングゲインG1,G2で重み付けすることができることから、効果的なゲインチューニングが実現可能となる。
つまり、各車体振動状態量に対しチューニングゲインを設けて合わせこみを行おうとすると、各車体振動状態量がその他の車体振動状態量にも影響を及ぼしあうため、ハンドチューニングで最適値を見つけることはとても困難である。
ところで図22に示すごとく、ある程度バランスを持たせた複数個のレギュレータゲイン (例えば、バウンス挙動を抑えるゲインKr1、およびピッチ挙動を抑えるゲインKr2)を用意しておき、実車でのチューニング時は、レギュレータゲインKr1,Kr2ごとにチューニングゲインG1,G2で重み付けすることができることから、効果的なゲインチューニングが実現可能となる。
<効果>
以上により本実施例の車体制振制御装置によれば、モータ4が、車体振動x(上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、
車体振動x(上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
以上により本実施例の車体制振制御装置によれば、モータ4が、車体振動x(上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθp)を抑制しつつ運転者の要求トルクrTdを満足させるよう駆動制御されることとなり、
車体振動x(上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθp)の抑制により乗り心地を向上させ得るのは勿論のこと、車両旋回時の車体姿勢も安定させ得て操縦安定性も向上させることができる。
ところで上記の車体制振制御に際しては、車体振動xとして上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpの4種類の車体振動を推定する必要がある。
しかし本実施例で用いる車体振動推定器25は推定精度のため前記した通り、経時劣化や乗員数の増減などに応じて変化する制駆動力や外乱トルクの代わりに、経時劣化や乗員数の増減などによっても変化することのない車輪速などの速度情報から車体振動を推定することから、上下バウンス速度dZvおよびピッチ角速度dθpの2種類の車体振動しか推定することができず、
車体振動推定器25からの推定結果のみを車体制振制御に用いたのでは、これら上下バウンス速度dZvおよびピッチ角速度dθp以外の車体振動である上下バウンス量Zvおよびピッチ角θpに関して、所定の振動抑制効果を期待できない。
車体振動推定器25からの推定結果のみを車体制振制御に用いたのでは、これら上下バウンス速度dZvおよびピッチ角速度dθp以外の車体振動である上下バウンス量Zvおよびピッチ角θpに関して、所定の振動抑制効果を期待できない。
しかるに本実施例の車体振動推定装置においては、車体振動状態量補完部29を設け、上下バウンス速度dZvの積分により上下バウンス量Zvを求めて補完すると共に、ピッチ角速度dθpの積分によりピッチ角θpを求めて補完し、上下バウンス速度dZv、上下バウンス量Zv、ピッチ角速度dθpおよびピッチ角θpの4種類の車体振動を上記の車体制振制御に資することから、これら4種類の全ての車体振動に関して予定通りに振動抑制効果を期待することができる。
また上記積分のための積分器26a,26bが、所定の時定数Tを具え、前記(13)式で表される伝達関数G(s)を持つ擬似積分器であることから、
該所定の時定数Tに応じた古い情報が随時削除されることとなり、積分誤差の累積およびこれによる発散を防止して、上下バウンス量Zvおよび上下バウンス量Zvを正確に算出することができる。
なお、擬似積分では設定した時定数T以上の長時間継続した入力があった場合は、その積分結果がずれてしまうという問題があるが、本実施例の車体振動推定装置においては、車体振動の推定に際して用いる速度情報が基本的に定常成分を持たないため、上記の懸念はない。
該所定の時定数Tに応じた古い情報が随時削除されることとなり、積分誤差の累積およびこれによる発散を防止して、上下バウンス量Zvおよび上下バウンス量Zvを正確に算出することができる。
なお、擬似積分では設定した時定数T以上の長時間継続した入力があった場合は、その積分結果がずれてしまうという問題があるが、本実施例の車体振動推定装置においては、車体振動の推定に際して用いる速度情報が基本的に定常成分を持たないため、上記の懸念はない。
ただし、時定数T(積分時間)を極端に短くしてしまうと影響を無視できなくなるため、少なくとも積分時定数Tは車体共振周期以上の値とした。
このため、少なくとも共振周期分の情報はこれを確実に累積できることとなり、情報不足から上下バウンス量Zvおよび上下バウンス量Zvを算出することができなくなるということがない。
このため、少なくとも共振周期分の情報はこれを確実に累積できることとなり、情報不足から上下バウンス量Zvおよび上下バウンス量Zvを算出することができなくなるということがない。
また本実施例では、車体振動推定器25で上下バウンス速度dZvおよびピッチ角速度dθpを推定するに際し、
車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFおよび平均後輪速VwRから上下バウンス速度dZv(F)およびピッチ角速度dθp(F)を推定し、これらをバンドパスフィルタ処理部55,56に通して、車体振動のみを表す上下バウンス速度dZvおよびピッチ角速度dθpを抽出するため、以下の作用効果が奏し得られる。
車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの前後方向変位量Xtf,Xtrと上下方向変位量Zf,Zrとの間の図6,7に例示される予定の相関関係(サスペンションジオメトリ特性)に基づき、平均前輪速VwFおよび平均後輪速VwRから上下バウンス速度dZv(F)およびピッチ角速度dθp(F)を推定し、これらをバンドパスフィルタ処理部55,56に通して、車体振動のみを表す上下バウンス速度dZvおよびピッチ角速度dθpを抽出するため、以下の作用効果が奏し得られる。
つまり、経時劣化や乗員数の増減などによっても変化することのない平均前輪速VwFおよび平均後輪速VwRから、上下バウンス速度dZvおよびピッチ角速度dθpを推定するため、経時劣化や乗員数の増減などによる影響を受けることなくその推定精度を高め得て、上記制振制御による効果を顕著なものにすることができる。
更に本実施例では、図18の車体振動状態量補完部29における積分器26a,26bとして、所定の時定数Tを設けた前記(13)式の伝達関数G(s)で表される擬似積分器を用い、ピッチ角速度dθpおよび上下バウンス速度dZvを疑似積分してピッチ角θpおよび上下バウンス量Zvを求めるため、
通常の積分演算のように演算負荷が大きくなったり、算出したピッチ角θpおよび上下バウンス量Zvが発散することがない。
通常の積分演算のように演算負荷が大きくなったり、算出したピッチ角θpおよび上下バウンス量Zvが発散することがない。
また本実施例のように擬似積分器を用いる場合は、時定数Tに基づく擬似積分時に古い情報が随時削除されることから、積分誤差の累積を防止することができ、算出したピッチ角θpおよび上下バウンス量Zvが発散することを回避することができる。
更に、積分時定数Tを少なくとも車体共振周期以上の値としたため、少なくとも共振周期分の情報はこれを確実に累積できることとなり、情報不足によりピッチ角θpおよび上下バウンス量Zvを算出することができなくなる事態を回避することができる。
更に、積分時定数Tを少なくとも車体共振周期以上の値としたため、少なくとも共振周期分の情報はこれを確実に累積できることとなり、情報不足によりピッチ角θpおよび上下バウンス量Zvを算出することができなくなる事態を回避することができる。
更に本実施例においては、図18の制駆動トルク補正量演算部26で車体振動抑制用の制駆動トルク補正量ΔTdを求めるに際し、図21に示すごとく車体振動x(上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、ピッチ角速度dθp)に対し、レギュレータゲインKrを与えて乗算し、その結果である乗算値の線形和を制駆動トルク補正量ΔTdとするため、
制駆動トルク補正量ΔTdを簡単に求め得て、その演算負荷を低下させることができる。
制駆動トルク補正量ΔTdを簡単に求め得て、その演算負荷を低下させることができる。
その際レギュレータゲインKrは、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpごとに抑制(軽減)度合いを重み付けして定めたため、
設計の自由度が高まると共に、レギュレータゲインKrとして各振動状態量のバランスをとることができ、実用上大いに有益である。
設計の自由度が高まると共に、レギュレータゲインKrとして各振動状態量のバランスをとることができ、実用上大いに有益である。
なおレギュレータゲインKrは、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpごとに、抑制(軽減)度合いの重み付けパターンを変えて設定した複数のレギュレータゲインで構成し、
これら複数のレギュレータゲインと、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpとの積算値の総和を制駆動トルク補正量ΔTdとするようにしても同様な効果を達成することができる。
これら複数のレギュレータゲインと、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpとの積算値の総和を制駆動トルク補正量ΔTdとするようにしても同様な効果を達成することができる。
更に、図18の制駆動トルク補正量演算部26で車体振動抑制用の制駆動トルク補正量ΔTdを求めるに際し、図22に示すごとく複数個のレギュレータゲイン (バウンス挙動を抑えるゲインKr1、およびピッチ挙動を抑えるゲインKr2)を用意しておき、これらレギュレータゲインKr1,Kr2に対するチューニングゲインG1,G2を設定し、上下バウンス量Zv、上下バウンス速度dZv、ピッチ角θp、およびピッチ角速度dθpと、複数のレギュレータゲインKr1,Kr2と、チューニングゲインG1,G2との積算値の総和を制駆動トルク補正量ΔTdとするようになす場合、
実車でのチューニングに際し、レギュレータゲインKr1,Kr2ごとにチューニングゲインG1,G2で重み付けを行うことができて、効果的なゲインチューニングが実現可能となって好都合である。
実車でのチューニングに際し、レギュレータゲインKr1,Kr2ごとにチューニングゲインG1,G2で重み付けを行うことができて、効果的なゲインチューニングが実現可能となって好都合である。
<実施例5の変形>
なお本実施例では、車体振動状態量補完部29が車体3の上下バウンス速度dZvおよびピッチ角速度dθpの積分により上下バウンス量Zvおよびピッチ角θpを求めて補完する場合について説明したが、
車体制振制御装置が上下バウンス加速度ddZvおよびピッチ角加速度ddθpを抑制するものである場合は、車体振動状態量補完部29が微分器を具え、車体3の上下バウンス速度dZvおよびピッチ角速度dθpの微分により上下バウンス加速度ddZvおよびピッチ角加速度ddθpを求めて、制駆動トルク補正量ΔTdの演算に供するようにしてもよい。
なお本実施例では、車体振動状態量補完部29が車体3の上下バウンス速度dZvおよびピッチ角速度dθpの積分により上下バウンス量Zvおよびピッチ角θpを求めて補完する場合について説明したが、
車体制振制御装置が上下バウンス加速度ddZvおよびピッチ角加速度ddθpを抑制するものである場合は、車体振動状態量補完部29が微分器を具え、車体3の上下バウンス速度dZvおよびピッチ角速度dθpの微分により上下バウンス加速度ddZvおよびピッチ角加速度ddθpを求めて、制駆動トルク補正量ΔTdの演算に供するようにしてもよい。
また本実施例では、車体3の上下バウンス速度dZvおよびピッチ角速度dθp、およびこれらを積分して求めた上下バウンス量Zvおよびピッチ角θpを、そのまま制駆動トルク補正量ΔTdの演算に資するようにしたが、
これら上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θpに対し、定常成分または低周波成分を除去するフィルタ処理を施したり、高周波成分を除去するフィルタ処理を施して、制駆動トルク補正量ΔTdの演算に供するのがよい。
これら上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θpに対し、定常成分または低周波成分を除去するフィルタ処理を施したり、高周波成分を除去するフィルタ処理を施して、制駆動トルク補正量ΔTdの演算に供するのがよい。
かかるフィルタ処理を施すことで、上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θp中のノイズやオフセットが除去され、その後の処理中にこれらノイズやオフセットが増幅されて、車体制振制御に悪影響が及ぶのを回避することができる。
また本実施例では、車体振動物理量としての平均前輪速VwFおよび平均後輪速VwRから、或る車体振動状態量であるピッチ角速度dθpおよび上下バウンス速度dZvを算出することとしたが、
これらピッチ角速度dθpおよび上下バウンス速度dZvを直接的に若しくは間接的に検出する車体振動状態量検出手段を設け、当該手段による検出結果を或る車体振動状態量とするものであってもよい。
これらピッチ角速度dθpおよび上下バウンス速度dZvを直接的に若しくは間接的に検出する車体振動状態量検出手段を設け、当該手段による検出結果を或る車体振動状態量とするものであってもよい。
更に制駆動トルク補正量演算部26は、本実施例のようにレギュレータゲインKr(Kr1,Kr2)を車体振動x(上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θp)に乗じて制駆動トルク補正量を求めるものに限られず、
車体振動x(上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θp)を車体3上の任意の2点(例えば前軸上方箇所および後軸上方箇所)における上下運動物理量に変換し、これら2点における車体上下運動物理量の少なくとも一方を軽減するのに必要な制駆動トルク補正量を求めて、車体制振制御に用いるようにしてもよいし、
車体振動x(上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θp)を車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの相対的な上下運動物理量に変換し、これら前輪および後輪の上下運動物理量の少なくとも一方を軽減するのに必要な制駆動力補正量を求めて、車体制振制御に用いるようにしてもよい。
車体振動x(上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θp)を車体3上の任意の2点(例えば前軸上方箇所および後軸上方箇所)における上下運動物理量に変換し、これら2点における車体上下運動物理量の少なくとも一方を軽減するのに必要な制駆動トルク補正量を求めて、車体制振制御に用いるようにしてもよいし、
車体振動x(上下バウンス速度dZv、ピッチ角速度dθp、上下バウンス量Zvおよびピッチ角θp)を車体3に対する前輪1FL,1FRおよび後輪1RL,1RRの相対的な上下運動物理量に変換し、これら前輪および後輪の上下運動物理量の少なくとも一方を軽減するのに必要な制駆動力補正量を求めて、車体制振制御に用いるようにしてもよい。
Claims (56)
- サスペンション装置を介して車輪を懸架された車両のバネ上質量である車体の振動を推定するための装置において、
前記車輪の周速である車輪速に関した物理量を検出する車輪速物理量検出手段と、
該手段で検出した車輪速物理量、および、前記車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係から、前記車体の振動を推定する振動推定手段とを具備してなることを特徴とする車体振動推定装置。 - 請求項1に記載の車体振動推定装置において、
前記車輪速物理量検出手段は、前記車輪のうち、前輪の車輪速である前輪速に関した前輪速物理量および後輪の車輪速である後輪速に関した後輪速物理量を検出するものであり、
前記振動推定手段は、前記前輪速物理量、および、前記車体に対する前輪の前後方向変位量と上下方向変位量との間における相関関係、並びに、前記後輪速物理量、および、前記車体に対する後輪の前後方向変位量と上下方向変位量との間における相関関係から、前記車体の振動を推定するものであることを特徴とする車体振動推定装置。 - 請求項1または2に記載の車体振動推定装置において、
前記車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係は、前記サスペンション装置のリンク構造に応じ決まる幾何学的拘束条件であって、予めマップ化したものであることを特徴とする車体振動推定装置。 - 請求項1または2に記載の車体振動推定装置において、
前記車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係は、前記サスペンション装置のリンク構造に応じ決まる幾何学的拘束条件であって、予めモデル化したものであることを特徴とする車体振動推定装置。 - 請求項1または2に記載の車体振動推定装置において、
前記車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係は、前記サスペンション装置のリンク構造に応じ決まる幾何学的拘束条件に線形近似させた比例係数を持つものであることを特徴とする車体振動推定装置。 - 請求項1~5のいずれか1項に記載の車体振動推定装置において、
前記車体に対する車輪の前後方向変位量と上下方向変位量との間における相関関係は、少なくとも前輪用の相関関係と後輪用の相関関係とが個別のものであることを特徴とする車体振動推定装置。 - 請求項1~6のいずれか1項に記載の車体振動推定装置において、
前記推定する車体の振動は、ピッチング振動および/または上下振動であることを特徴とする車体振動推定装置。 - 請求項2~7のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記前輪速物理量から前輪の前後方向変位量を演算し、該前輪の前後方向変位量、および、前記車体に対する前輪の前後方向変位量と上下方向変位量との間における相関関係から、前輪の上下方向変位量を推定する前輪上下運動推定部と、
前記後輪速物理量から後輪の前後方向変位量を演算し、該後輪の前後方向変位量、および、前記車体に対する後輪の前後方向変位量と上下方向変位量との間における相関関係から、後輪の上下方向変位量を推定する後輪上下運動推定部とを有し、
これら推定した前輪の上下方向変位量および後輪の上下方向変位量から、前記車体の振動を推定するものであることを特徴とする車体振動推定装置。 - 請求項2~7のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記前輪速物理量から前輪の上下方向変位量を算出する第1の運動方程式と、前記後輪速物理量から後輪の上下方向変位量を算出する第2の運動方程式と、前輪の上下方向変位量および後輪の上下方向変位量から車体のピッチング運動を算出する第3の運動方程式と、前輪の上下方向変位量および後輪の上下方向変位量から車体の上下運動を算出する第4の運動方程式との連立方程式を解いて、車体のピッチング運動および上下運動を求めることにより、前記車体の振動を推定するものであることを特徴とする車体振動推定装置。 - 請求項1~9のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記車輪速物理量のうち、前記車体の前後振動に伴う車輪速物理量振動成分を、前記車体振動の推定に資するものであることを特徴とする車体振動推定装置。 - 請求項10に記載の車体振動推定装置において、
前記振動推定手段は、前記車輪速物理量と車体速との偏差を前記車輪速物理量振動成分として、前記車体振動の推定に資するものであることを特徴とする車体振動推定装置。 - 請求項10に記載の車体振動推定装置において、
前記振動推定手段は、前記車輪速物理量から車体共振周波数付近の成分のみを抽出して得られたフィルタ処理後の信号を前記車輪速物理量振動成分として、前記車体振動の推定に資するものであることを特徴とする車体振動推定装置。 - 請求項10に記載の車体振動推定装置において、
前記振動推定手段は、前記車輪速物理量から低周波成分を除去したフィルタ処理後の信号を前記車輪速物理量振動成分として、前記車体振動の推定に資するものであることを特徴とする車体振動推定装置。 - 請求項13に記載の車体振動推定装置において、
前記フィルタ処理で前記車輪速物理量から除去する周波数成分は、車体共振周波数近傍の周波数成分、または車体共振周波数近傍よりも低い所定の低周波成分であることを特徴とする車体振動推定装置。 - 請求項1~9のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記推定した車体振動に対し、ドリフト成分を除去するフィルタ処理を行って、最終的な車体振動推定値とするものであることを特徴とする車体振動推定装置。 - 請求項1~9のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記推定した車体振動に対し、車体共振周波数付近の成分のみ抽出するフィルタ処理を行って、最終的な車体振動推定値とするものであることを特徴とする車体振動推定装置。 - 請求項1~9のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記推定した車体振動に対し、低周波成分を除去するフィルタ処理を行って、最終的な車体振動推定値とするものであることを特徴とする車体振動推定装置。 - 請求項17に記載の車体振動推定装置において、
前記フィルタ処理で除去する周波数成分は、車体共振周波数近傍の周波数成分、または該車体共振周波数近傍の周波数よりも低い所定の低周波数成分であることを特徴とする車体振動推定装置。 - 請求項1~18のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、車体ピッチング運動のピッチ角速度を車体振動として推定するものであることを特徴とする車体振動推定装置。 - 請求項1~19のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、車体上下運動の上下速度を車体振動として推定するものであることを特徴とする車体振動推定装置。 - 請求項1~18のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記車輪速物理量を微分して車輪加速度情報に変換する微分器を有し、該微分器からの車輪加速度情報を前記車体振動の推定に資することにより、車体ピッチング運動のピッチ角加速度を車体振動として推定するものであることを特徴とする車体振動推定装置。 - 請求項1~19のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記車輪速物理量を微分して車輪加速度情報に変換する微分器を有し、該微分器からの車輪加速度情報を前記車体振動の推定に資することにより、車体上下運動の上下加速度を車体振動として推定するものであることを特徴とする車体振動推定装置。 - 請求項1~22のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段は、前記車輪速物理量を車体のピッチ角変動に応じ補正して前記車体振動の推定に資するものであることを特徴とする車体振動推定装置。 - 請求項23に記載の車体振動推定装置において、
前記車輪速物理量の補正は、前記車輪速物理量から車体ピッチ角速度を減算するものであることを特徴とする車体振動推定装置。 - 請求項1~24のいずれか1項に記載の車体振動推定装置において、
前記車輪速物理量検出手段は、前後左右4輪の車輪速物理量を個別に検出するものであり、
前記振動推定手段は、4輪個々の前後方向変位量と上下方向変位量との間における相関関係、および前記4輪個々の車輪速物理量から、前記車体振動の推定を行うものであることを特徴とする車体振動推定装置。 - 請求項1~25のいずれか1項に記載の車体振動推定装置において、
前記振動推定手段を車輪速物理量基準車体振動推定手段に流用し、該手段により推定した車体振動を車輪速物理量基準の車体振動として用い、
車両の制駆動力を検出する制駆動力検出手段と、
前記車輪速物理量基準車体振動推定手段で推定した車輪速物理量基準の車体振動をオブザーバ入力としつつ、前記制駆動力検出手段で求めた車両の制駆動力から車両モデルを用いて前記車体の振動を推定し、該推定した車体の振動を最終的な車体振動とする制駆動力基準車体振動推定手段とを設けてなることを特徴とする車体振動推定装置。 - 請求項26に記載の車体振動推定装置において、
前記制駆動力検出手段は、運転操作から車両の要求トルクを演算し、該要求トルクを前記車両の制駆動力として前記制駆動力基準車体振動推定手段での推定に供するものであることを特徴とする車体振動推定装置。 - 車両が制駆動力を自動的に加減するアクチュエータを具えたものである、請求項26,27に記載の車体振動推定装置において、
前記制駆動力検出手段は、前記アクチュエータの動作から車両の要求トルクを演算し、該要求トルクを前記車両の制駆動力として前記制駆動力基準車体振動推定手段での推定に供するものであることを特徴とする車体振動推定装置。 - 請求項26~28のいずれか1項に記載の車体振動推定装置において、
前記制駆動力基準車体振動推定手段は、前記車輪速物理量基準車体振動推定手段が推定したピッチング振動および/または上下振動をオブザーバ入力としつつ、前記最終的な車体振動である制駆動力基準車体振動としてピッチング振動および/または上下振動を推定するものであることを特徴とする車体振動推定装置。 - 請求項1~29のいずれか1項に記載の車体振動推定装置を具え、
前記振動推定手段または制駆動力基準車体振動推定手段で推定した車体振動を軽減するのに必要な制駆動力補正量を演算する制駆動力補正量演算手段と、
該手段で求めた制駆動力補正量だけ前記車両の制駆動力を補正する制駆動力補正手段とを設けてなることを特徴とする車体制振制御装置。 - 請求項30に記載の車体制振制御装置において、
前記制駆動力補正量演算手段は、前記制駆動力基準車体振動推定手段で推定した最終的な車体振動に所定のゲインを乗じて前記制駆動力補正量を求めるものであることを特徴とする車体制振制御装置。 - 請求項30または31に記載の車体制振制御装置において、
前記制駆動力補正量演算手段は、前記制駆動力基準車体振動推定手段で推定した最終的な車体振動に所定のゲインを乗じて得られる乗算値の線形和を前記制駆動力補正量とするものであることを特徴とする車体制振制御装置。 - 請求項32に記載の車体制振制御装置において、
前記所定のゲインは、前記制駆動力基準車体振動推定手段で推定した最終的な車体振動の種類ごとに抑制度合いを重み付けして定めたレギュレータゲインであることを特徴とする車体制振制御装置。 - 請求項32に記載の車体制振制御装置において、
前記所定のゲインは、前記制駆動力基準車体振動推定手段で推定した最終的な車体振動に対する抑制度合いの重み付けパターンを変えて設定した複数のレギュレータゲインから成るものであり、
前記制駆動力補正量演算手段は、該複数のレギュレータゲインと前記最終的な車体振動との積算値の総和を前記制駆動力補正量とするものであることを特徴とする車体制振制御装置。 - 請求項32に記載の車体制振制御装置において、
前記所定のゲインは、前記制駆動力基準車体振動推定手段で推定した最終的な車体振動に対する抑制度合いの重み付けパターンを変えて設定した複数のレギュレータゲインから成るものであり、
前記制駆動力補正量演算手段は、該複数のレギュレータゲインと、これらレギュレータゲインに対するチューニングゲインと、前記最終的な車体振動との積算値の総和を前記制駆動力補正量とするものであることを特徴とする車体制振制御装置。 - 請求項18~23のいずれか1項に記載の車体制振制御装置において、
前記最終的な車体振動は、ピッチング振動および/または上下振動であることを特徴とする車体制振制御装置。 - 請求項1~25のいずれか1項に記載の車体振動推定装置において、
前記車体振動を表す物理量を検出する車体振動物理量検出手段を具え、
前記振動推定手段は、この車体振動物理量検出手段で検出した車体振動物理量から、或る車体振動状態量を算出する車体振動状態量演算手段として流用し、
該手段で演算した或る車体振動状態量から別の車体振動状態量を求める車体振動状態量補完手段を設け、
前記車体振動状態量演算手段で求めた或る車体振動状態量、および、前記車体振動状態量補完手段で求めた別の車体振動状態量を、車体振動推定結果として出力するよう構成したことを特徴とする車体振動推定装置。 - 請求項37に記載の車体振動推定装置において、
前記車体振動状態量補完手段は、前記車体振動状態量演算手段で求めた或る車体振動状態量の微積学処理値を前記別の車体振動状態量とするものであることを特徴とする車体振動推定装置。 - 請求項38に記載の車体振動推定装置において、
前記車体振動状態量補完手段は微分器を具え、前記車体振動状態量演算手段で求めた或る車体振動状態量を該微分器により微分して得られた車体振動状態量の微分値を前記別の車体振動状態量とするものであることを特徴とする車体振動推定装置。 - 請求項38または39に記載の車体振動推定装置において、
前記車体振動状態量補完手段は積分器を具え、前記車体振動状態量演算手段で求めた或る車体振動状態量を該積分器により積分して得られた車体振動状態量の積分値を前記別の車体振動状態量とするものであることを特徴とする車体振動推定装置。 - 請求項40に記載の車体振動推定装置において、
前記積分器は、所定の時定数を具えた擬似積分器であり、該所定の時定数に応じ古い入力による成分が、積分結果の中から徐々に消去されるものであることを特徴とする車体振動推定装置。 - 請求項41に記載の車体振動推定装置において、
前記擬似積分器は、前記所定の時定数が車体共振周期と同等以上の値であり、少なくとも共振周期分の情報を累積可能なものであることを特徴とする車体振動推定装置。 - 請求項37~42のいずれか1項に記載の車体振動推定装置において、
前記車体振動物理量検出手段は車体振動物理量として、前記車輪のうち、前輪の車輪速である前輪速に関した前輪速物理量および後輪の車輪速である後輪速に関した後輪速物理量をそれぞれ検出するものであり、
前記車体振動状態量演算手段は、前記前輪速物理量、および、前記車体に対する前輪の前後方向変位量と上下方向変位量との間における相関関係、並びに、前記後輪速物理量、および、前記車体に対する後輪の前後方向変位量と上下方向変位量との間における相関関係から、前記或る車体振動状態量を算出するものであることを特徴とする車体振動推定装置。 - 請求項43に記載の車体振動推定装置において、
前記車体に対する前輪および後輪の前後方向変位量と上下方向変位量との間における相関関係は、前記サスペンション装置のリンク構造に応じ決まる幾何学的拘束条件であることを特徴とする車体振動推定装置。 - 請求項37~44のいずれか1項に記載の車体振動推定装置において、
前記車体振動状態量補完手段は、自身の演算結果である前記別の車体振動状態量、または、前記車体振動状態量演算手段からの或る車体振動状態量、或いは、これら別の車体振動状態量および或る車体振動状態量の双方に対し、定常成分または低周波成分を除去するフィルタ処理を施すものであることを特徴とする車体振動推定装置。 - 請求項37~45のいずれか1項に記載の車体振動推定装置において、
前記車体振動状態量補完手段は、自身の演算結果である前記別の車体振動状態量、または、前記車体振動状態量演算手段からの或る車体振動状態量、或いは、これら別の車体振動状態量および或る車体振動状態量の双方に対し、高周波成分を除去するフィルタ処理を施すものであることを特徴とする車体振動推定装置。 - 請求項37~42のいずれか1項に記載の車体振動推定装置において、
前記車体振動物理量検出手段および車体振動状態量演算手段に代え、前記車体振動状態量を直接的に若しくは間接的に検出する車体振動状態量検出手段を設け、
該手段で検出した車体振動状態量を前記或る車体振動状態量とするものであることを特徴とする車体振動推定装置。 - 請求項37~47のいずれか1項に記載の車体振動推定装置において、
前記車体振動状態量演算手段が算出する或る車体振動状態量は、ピッチ角速度と上下バウンス速度とであり、
前記車体振動状態量補完手段が求める別の車体振動状態量は、ピッチ角およびピッチ角加速度の少なくとも一方と、上下バウンス量および上下バウンス加速度の少なくとも一方とであることを特徴とする車体振動推定装置。 - 請求項37~48のいずれか1項に記載の車体振動推定装置を具え、
前記車体振動状態量演算手段が算出した或る車体振動状態量、および、前記車体振動状態量補完手段で求めた別の車体振動状態量を軽減するのに必要な制駆動力補正量を演算する制駆動力補正量演算手段と、
該手段で求めた制駆動力補正量だけ前記車両の制駆動力を補正する制駆動力補正手段とを設けてなることを特徴とする車体制振制御装置。 - 請求項49に記載の車体制振制御装置において、
前記制駆動力補正量演算手段は、前記或る車体振動状態量および別の車体振動状態量に所定のゲインを乗じて前記制駆動力補正量を求めるものであることを特徴とする車体制振制御装置。 - 請求項49または50に記載の車体制振制御装置において、
前記制駆動力補正量演算手段は、前記或る車体振動状態量および別の車体振動状態量に所定のゲインを乗じて得られる乗算値の線形和を前記制駆動力補正量とするものであることを特徴とする車体制振制御装置。 - 請求項51に記載の車体制振制御装置において、
前記所定のゲインは、前記或る車体振動状態量および別の車体振動状態量の種類ごとに抑制度合いを重み付けして定めたレギュレータゲインであることを特徴とする車体制振制御装置。 - 請求項52に記載の車体制振制御装置において、
前記所定のゲインは、前記或る車体振動状態量および別の車体振動状態量に対する抑制度合いの重み付けパターンを変えて設定した複数のレギュレータゲインから成るものであり、
前記制駆動力補正量演算手段は、該複数のレギュレータゲインと前記或る車体振動状態量および別の車体振動状態量との積算値の総和を前記制駆動力補正量とするものであることを特徴とする車体制振制御装置。 - 請求項51に記載の車体制振制御装置において、
前記所定のゲインは、前記或る車体振動状態量および別の車体振動状態量に対する抑制度合いの重み付けパターンを変えて設定した複数のレギュレータゲインから成るものであり、
前記制駆動力補正量演算手段は、該複数のレギュレータゲインと、これらレギュレータゲインに対するチューニングゲインと、前記或る車体振動状態量および別の車体振動状態量との積算値の総和を前記制駆動力補正量とするものであることを特徴とする車体制振制御装置。 - 請求項49に記載の車体制振制御装置において、
前記制駆動力補正量演算手段は、前記或る車体振動状態量および別の車体振動状態量を車体上の任意の2点における上下運動物理量に変換し、これら2点における車体上下運動物理量の少なくとも一方を軽減するのに必要な制駆動力補正量を求めて、前記制駆動力補正手段による制駆動力補正に供するものであることを特徴とする車体制振制御装置。 - 請求項49に記載の車体制振制御装置において、
前記制駆動力補正量演算手段は、前記或る車体振動状態量および別の車体振動状態量を、車体に対する前輪および後輪の相対的な上下運動物理量に変換し、これら前輪および後輪の上下運動物理量の少なくとも一方を軽減するのに必要な制駆動力補正量を求めて、前記制駆動力補正手段による制駆動力補正に供するものであることを特徴とする車体制振制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/812,088 US8880292B2 (en) | 2010-08-26 | 2011-08-23 | Device for estimating vehicle body vibration and controller for suppressing vehicle body vibration using same |
EP11819904.1A EP2610605B1 (en) | 2010-08-26 | 2011-08-23 | Device for estimating vehicle body vibration and controller for suppressing vehicle body vibration using same |
CN201180052091.8A CN103189729B (zh) | 2010-08-26 | 2011-08-23 | 车体振动估计装置以及使用它的车体减振控制装置 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010189027A JP5652053B2 (ja) | 2010-08-26 | 2010-08-26 | 車体振動推定装置およびこれを用いた車体制振制御装置 |
JP2010-189067 | 2010-08-26 | ||
JP2010189106A JP5652055B2 (ja) | 2010-08-26 | 2010-08-26 | 車体振動推定装置およびこれを用いた車体制振制御装置 |
JP2010-189106 | 2010-08-26 | ||
JP2010-189027 | 2010-08-26 | ||
JP2010189067A JP5652054B2 (ja) | 2010-08-26 | 2010-08-26 | 車体振動推定装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012026441A1 true WO2012026441A1 (ja) | 2012-03-01 |
Family
ID=45723440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/068910 WO2012026441A1 (ja) | 2010-08-26 | 2011-08-23 | 車体振動推定装置およびこれを用いた車体制振制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8880292B2 (ja) |
EP (1) | EP2610605B1 (ja) |
CN (1) | CN103189729B (ja) |
WO (1) | WO2012026441A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014103122A1 (ja) * | 2012-12-25 | 2014-07-03 | 住友重機械工業株式会社 | 電動フォークリフト用のモータ駆動装置およびそれを用いた電動フォークリフト |
WO2014183946A1 (en) * | 2013-05-16 | 2014-11-20 | Jaguar Land Rover Limited | Vehicle speed control system |
CN104228606A (zh) * | 2014-08-30 | 2014-12-24 | 重庆长安汽车股份有限公司 | 一种纯电动汽车消除车辆抖动的控制方法 |
US20220063420A1 (en) * | 2020-08-25 | 2022-03-03 | Hyundai Mobis Co., Ltd. | Method and apparatus for controlling driving force for dual-motor-equipped vehicle |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5857781B2 (ja) * | 2012-02-15 | 2016-02-10 | 日産自動車株式会社 | 電動モータを用いた車両の制振制御装置 |
JP2013193717A (ja) * | 2012-03-23 | 2013-09-30 | Nissan Motor Co Ltd | 車両の制御装置及び車両の制御方法 |
WO2013172281A1 (ja) * | 2012-05-14 | 2013-11-21 | 日産自動車株式会社 | 車両の制御装置及び車両の制御方法 |
JP5850035B2 (ja) | 2013-12-12 | 2016-02-03 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
DE102014200435A1 (de) * | 2014-01-13 | 2015-07-16 | Ford Global Technologies, Llc | Verfahren zum Betreiben eines Bremssystems eines Kraftfahrzeugs sowie Bremssystem für ein Kraftfahrzeug |
DE102014001515A1 (de) * | 2014-02-07 | 2015-08-13 | Schenck Process Gmbh | Schwingmaschine |
JP6153493B2 (ja) * | 2014-04-25 | 2017-06-28 | ヤマハ発動機株式会社 | ロール角推定装置および輸送機器 |
JP6482789B2 (ja) * | 2014-08-19 | 2019-03-13 | Kyb株式会社 | サスペンション制御装置 |
JP6248970B2 (ja) * | 2015-03-11 | 2017-12-20 | トヨタ自動車株式会社 | 車体状態量推定装置 |
JP6245217B2 (ja) * | 2015-05-19 | 2017-12-13 | トヨタ自動車株式会社 | 車両の状態量推定装置 |
EP3313701B1 (en) * | 2015-06-26 | 2024-08-14 | C.R.F. Società Consortile per Azioni | Method for reducing noise in a driveline of a motor vehicle |
JP6578146B2 (ja) * | 2015-07-10 | 2019-09-18 | Ntn株式会社 | スリップ制御装置 |
JP6233608B2 (ja) * | 2015-10-13 | 2017-11-22 | トヨタ自動車株式会社 | 車両の駆動力制御装置 |
WO2017073184A1 (ja) * | 2015-10-26 | 2017-05-04 | 三菱電機株式会社 | 車速制御装置 |
JP6233609B2 (ja) * | 2015-10-27 | 2017-11-22 | トヨタ自動車株式会社 | 車両の駆動力制御装置 |
DE102016206604B4 (de) * | 2016-04-19 | 2020-01-23 | Volkswagen Aktiengesellschaft | Steuervorrichtung und Verfahren zum Regeln einer Dämpferhärte eines Schwingungsdämpfers eines Kraftfahrzeugs |
JP6640659B2 (ja) * | 2016-06-14 | 2020-02-05 | 株式会社日立製作所 | 電力変換器の制御装置、電力変換システム、圧縮機駆動システム、フライホイール発電システム、及び、電力変換器の制御方法 |
CN106528988B (zh) * | 2016-10-27 | 2019-04-23 | 桂林电子科技大学 | 含有限频带约束的车辆主动悬架鲁棒控制器的设计方法 |
DE102016123421B4 (de) | 2016-12-05 | 2024-02-15 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und Steuerungseinrichtung zur Einstellung der Dämpfkraft eines Stoßdämpfers |
US10703359B2 (en) | 2017-01-27 | 2020-07-07 | Ford Global Technologies, Llc | Controlling vehicle orientation |
DE102017202750A1 (de) * | 2017-02-21 | 2018-08-23 | Volkswagen Aktiengesellschaft | Steuersystem und Verfahren zum Dämpfen von Schwingungen eines Antriebsstrangs eines Kraftfahrzeugs sowie Kraftfahrzeug mit einem solchen Steuersystem |
JP6627829B2 (ja) * | 2017-07-20 | 2020-01-08 | トヨタ自動車株式会社 | 車両の制振制御装置 |
DE102017217413B4 (de) * | 2017-09-29 | 2022-02-10 | Continental Teves Ag & Co. Ohg | Verfahren zum Ermitteln einer Betriebsgröße einer Trommelbremse, Trommelbremsanordnungen, Auswertevorrichtung und Speichermedium |
JP7028649B2 (ja) | 2018-01-10 | 2022-03-02 | 日立Astemo株式会社 | 車両、車両運動状態推定装置および車両運動状態推定方法 |
JP7224897B2 (ja) | 2018-12-21 | 2023-02-20 | 日立Astemo株式会社 | 車両運動状態推定装置、車両運動状態推定方法並びに車両 |
CN112977080B (zh) * | 2019-12-16 | 2022-08-26 | 华为技术有限公司 | 驱动防滑控制方法、装置以及驱动防滑控制系统 |
JP7542362B2 (ja) * | 2020-08-20 | 2024-08-30 | 株式会社Subaru | 制御装置 |
JP7548416B2 (ja) * | 2021-03-22 | 2024-09-10 | 日産自動車株式会社 | 駆動力制御方法及び駆動力制御装置 |
US20220314965A1 (en) * | 2021-03-31 | 2022-10-06 | Honda Motor Co., Ltd. | Systems and methods for stabilizing a vehicle on two wheels |
WO2023032012A1 (ja) * | 2021-08-30 | 2023-03-09 | 日産自動車株式会社 | 電動車両の制御方法及び電動車両の制御装置 |
CN113468771B (zh) * | 2021-09-02 | 2021-12-14 | 清华大学 | 一种利用结构固有参数的振动估计方法 |
EP4548054A1 (en) * | 2022-06-29 | 2025-05-07 | Nikola Corporation | Real-time mass estimation of electric vehicles |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09226336A (ja) * | 1996-02-22 | 1997-09-02 | Unisia Jecs Corp | 車両懸架装置 |
JPH1134631A (ja) * | 1997-07-24 | 1999-02-09 | Mitsubishi Electric Corp | 電子制御サスペンション装置 |
JP2000283758A (ja) * | 1999-03-30 | 2000-10-13 | Unisia Jecs Corp | 車両姿勢検出装置 |
JP2004168148A (ja) | 2002-11-19 | 2004-06-17 | Denso Corp | 車両制御装置 |
US7010409B2 (en) * | 2003-02-26 | 2006-03-07 | Ford Global Technologies, Llc | Reference signal generator for an integrated sensing system |
JP2008100605A (ja) * | 2006-10-19 | 2008-05-01 | Toyota Motor Corp | 車両の車輪トルク推定装置及び制振制御装置 |
JP2008179277A (ja) | 2007-01-25 | 2008-08-07 | Toyota Motor Corp | 走行装置 |
JP2009108830A (ja) * | 2007-10-31 | 2009-05-21 | Toyota Motor Corp | 車両の制振制御を行う駆動制御装置 |
JP2009127456A (ja) | 2007-11-20 | 2009-06-11 | Toyota Motor Corp | 車両の制振制御装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6122585A (en) * | 1996-08-20 | 2000-09-19 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Anti-lock braking system based on an estimated gradient of friction torque, method of determining a starting point for anti-lock brake control, and wheel-behavior-quantity servo control means equipped with limit determination means |
JPH11198624A (ja) * | 1998-01-12 | 1999-07-27 | Unisia Jecs Corp | 車両挙動演算装置および車両懸架装置 |
CN1325298C (zh) * | 2002-05-07 | 2007-07-11 | 株式会社普利司通 | 汽车控制方法和汽车控制装置 |
EP1798077B1 (en) * | 2005-12-16 | 2014-05-07 | Sumitomo Rubber Industries, Ltd. | Apparatus, method and program for alarming decrease in tire air-pressure |
JP4519113B2 (ja) * | 2006-09-12 | 2010-08-04 | トヨタ自動車株式会社 | 車両用サスペンションシステム |
US8428819B2 (en) * | 2007-08-31 | 2013-04-23 | GM Global Technology Operations LLC | Suspension system with optimized damper response for wide range of events |
US8322728B2 (en) * | 2007-09-28 | 2012-12-04 | Hitachi, Ltd. | Suspension control apparatus |
JP4968005B2 (ja) * | 2007-11-13 | 2012-07-04 | トヨタ自動車株式会社 | サスペンション制御装置 |
JP4877240B2 (ja) * | 2008-01-29 | 2012-02-15 | トヨタ自動車株式会社 | 車両用サスペンションシステム |
JP5224039B2 (ja) * | 2008-03-31 | 2013-07-03 | 日立オートモティブシステムズ株式会社 | サスペンション制御装置 |
JP4737222B2 (ja) * | 2008-04-18 | 2011-07-27 | トヨタ自動車株式会社 | 車両用サスペンションシステム |
JP4935757B2 (ja) * | 2008-05-27 | 2012-05-23 | トヨタ自動車株式会社 | 車両用サスペンションシステム |
-
2011
- 2011-08-23 WO PCT/JP2011/068910 patent/WO2012026441A1/ja active Application Filing
- 2011-08-23 EP EP11819904.1A patent/EP2610605B1/en active Active
- 2011-08-23 CN CN201180052091.8A patent/CN103189729B/zh active Active
- 2011-08-23 US US13/812,088 patent/US8880292B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09226336A (ja) * | 1996-02-22 | 1997-09-02 | Unisia Jecs Corp | 車両懸架装置 |
JPH1134631A (ja) * | 1997-07-24 | 1999-02-09 | Mitsubishi Electric Corp | 電子制御サスペンション装置 |
JP2000283758A (ja) * | 1999-03-30 | 2000-10-13 | Unisia Jecs Corp | 車両姿勢検出装置 |
JP2004168148A (ja) | 2002-11-19 | 2004-06-17 | Denso Corp | 車両制御装置 |
US7010409B2 (en) * | 2003-02-26 | 2006-03-07 | Ford Global Technologies, Llc | Reference signal generator for an integrated sensing system |
JP2008100605A (ja) * | 2006-10-19 | 2008-05-01 | Toyota Motor Corp | 車両の車輪トルク推定装置及び制振制御装置 |
JP2008179277A (ja) | 2007-01-25 | 2008-08-07 | Toyota Motor Corp | 走行装置 |
JP2009108830A (ja) * | 2007-10-31 | 2009-05-21 | Toyota Motor Corp | 車両の制振制御を行う駆動制御装置 |
JP2009127456A (ja) | 2007-11-20 | 2009-06-11 | Toyota Motor Corp | 車両の制振制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2610605A4 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014103122A1 (ja) * | 2012-12-25 | 2014-07-03 | 住友重機械工業株式会社 | 電動フォークリフト用のモータ駆動装置およびそれを用いた電動フォークリフト |
JPWO2014103122A1 (ja) * | 2012-12-25 | 2017-01-12 | 住友重機械工業株式会社 | 電動フォークリフト用のモータ駆動装置およびそれを用いた電動フォークリフト |
WO2014183946A1 (en) * | 2013-05-16 | 2014-11-20 | Jaguar Land Rover Limited | Vehicle speed control system |
CN105283364A (zh) * | 2013-05-16 | 2016-01-27 | 捷豹路虎有限公司 | 车辆速度控制系统 |
US9855933B2 (en) | 2013-05-16 | 2018-01-02 | Jaguar Land Rover Limited | Vehicle speed control system |
CN105283364B (zh) * | 2013-05-16 | 2018-01-26 | 捷豹路虎有限公司 | 车辆速度控制系统 |
CN104228606A (zh) * | 2014-08-30 | 2014-12-24 | 重庆长安汽车股份有限公司 | 一种纯电动汽车消除车辆抖动的控制方法 |
CN104228606B (zh) * | 2014-08-30 | 2016-08-24 | 重庆长安汽车股份有限公司 | 一种纯电动汽车消除车辆抖动的控制方法 |
US20220063420A1 (en) * | 2020-08-25 | 2022-03-03 | Hyundai Mobis Co., Ltd. | Method and apparatus for controlling driving force for dual-motor-equipped vehicle |
US12162361B2 (en) * | 2020-08-25 | 2024-12-10 | Hyundai Mobis Co., Ltd. | Method and apparatus for controlling driving force for dual-motor-equipped vehicle |
Also Published As
Publication number | Publication date |
---|---|
CN103189729A (zh) | 2013-07-03 |
US20130231838A1 (en) | 2013-09-05 |
EP2610605B1 (en) | 2023-04-12 |
US8880292B2 (en) | 2014-11-04 |
EP2610605A1 (en) | 2013-07-03 |
EP2610605A4 (en) | 2018-01-10 |
CN103189729B (zh) | 2015-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012026441A1 (ja) | 車体振動推定装置およびこれを用いた車体制振制御装置 | |
JP5652053B2 (ja) | 車体振動推定装置およびこれを用いた車体制振制御装置 | |
JP5652055B2 (ja) | 車体振動推定装置およびこれを用いた車体制振制御装置 | |
CN110023166B (zh) | 车辆运动状态推断装置 | |
JP5445532B2 (ja) | 車両制御装置、車両制御プログラム、および車両制御方法 | |
CN102343778B (zh) | 车体姿态控制装置 | |
AU2016201638B2 (en) | Vibration control device and vibration control system | |
CN111615480B (zh) | 车辆、车辆运动状态推断装置以及车辆运动状态推断方法 | |
JP5652054B2 (ja) | 車体振動推定装置 | |
US10118609B2 (en) | Driving force control device for a vehicle | |
JP5696405B2 (ja) | 車体制振制御装置 | |
CN104908548B (zh) | 车辆状态推定装置、车辆控制装置及车辆状态推定方法 | |
JP5895368B2 (ja) | 制駆動力制御装置および制駆動力制御方法 | |
KR20240032311A (ko) | 차량의 토크 분배 방법 | |
KR20230045647A (ko) | 차량의 구동력 제어 방법 | |
KR20230138097A (ko) | 차량의 구동력 제어 방법 | |
JP2018024265A (ja) | 車両状態量推定装置 | |
JP5381877B2 (ja) | 車両制御装置 | |
KR20230173244A (ko) | 차량의 구동력 제어 방법 | |
JP2008049996A (ja) | 車両の運動制御装置 | |
JP2020117196A (ja) | 車両運動状態推定装置 | |
JP6252456B2 (ja) | 車両制御装置 | |
JP2015033291A (ja) | 車両制御装置 | |
JP2022065602A (ja) | 車両姿勢制御装置および車両 | |
JP2023079384A (ja) | 振動情報推定装置およびサスペンション装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11819904 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13812088 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011819904 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |