[go: up one dir, main page]

WO2012011511A1 - 有機el素子の製造方法 - Google Patents

有機el素子の製造方法 Download PDF

Info

Publication number
WO2012011511A1
WO2012011511A1 PCT/JP2011/066494 JP2011066494W WO2012011511A1 WO 2012011511 A1 WO2012011511 A1 WO 2012011511A1 JP 2011066494 W JP2011066494 W JP 2011066494W WO 2012011511 A1 WO2012011511 A1 WO 2012011511A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
formula
represented
groups
Prior art date
Application number
PCT/JP2011/066494
Other languages
English (en)
French (fr)
Inventor
祥司 美馬
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201180045184.8A priority Critical patent/CN103120019B/zh
Priority to EP11809681.7A priority patent/EP2597934A4/en
Priority to US13/810,977 priority patent/US9276237B2/en
Publication of WO2012011511A1 publication Critical patent/WO2012011511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/50Forming devices by joining two substrates together, e.g. lamination techniques
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers

Definitions

  • the present invention relates to a method for manufacturing an organic EL element.
  • the organic EL element is configured by laminating an anode, a light emitting layer made of an organic material, and a cathode. When a voltage is applied to the organic EL element, holes are injected from the anode and electrons are injected from the cathode. The holes and electrons injected from each electrode are combined in the light emitting layer to emit light.
  • an organic EL element having a configuration composed only of an anode, a light emitting layer, and a cathode, it is difficult to obtain desired light emission characteristics. Therefore, a predetermined layer other than the light emitting layer is usually provided between the anode and the cathode.
  • a hole injection layer is provided between the anode and the light emitting layer, and an electron injection layer is provided between the light emitting layer and the cathode. That is, as one configuration of the organic EL element, one composed of an anode, a hole injection layer, a light emitting layer, an electron injection layer, and a cathode can be considered.
  • the hole injection layer is provided to facilitate hole injection from the anode
  • the electron injection layer is provided to facilitate electron injection from the cathode.
  • the organic EL element is formed by sequentially laminating each component on a support substrate.
  • As the order of the stacking (1) stacking order in which each component is sequentially stacked from the anode (forward stacking) and (2) stacking order in which each component is sequentially stacked from the cathode (reverse stacking) are considered. It is done.
  • an organic EL element is produced by forward lamination by a roll-to-roll method (see, for example, Patent Document 1).
  • the electron injection layer is made of an electron injection material that is unstable in the atmosphere.
  • the electron injection layer is made of Ba, BaO, NaF, or the like, and is usually formed in a vacuum atmosphere.
  • the cathode is provided on the electron injection layer.
  • the cathode is usually formed in a vacuum atmosphere.
  • the electron injection layer is covered with the cathode without being exposed to the atmosphere after the formation.
  • the cathode and the electron injection layer are sequentially formed on the electron injection layer.
  • a light emitting layer is formed.
  • the electron injection layer is exposed to the atmosphere, and the electron injection layer may deteriorate at that time.
  • the method for forming the light emitting layer is limited to a vapor deposition method and the like, and thus the light emitting material is limited to a material suitable for the vapor deposition method.
  • the entire apparatus including the apparatus for winding the flexible film needs to be maintained in a vacuum atmosphere, so that the apparatus becomes large. There is.
  • an object of the present invention is to provide a method for producing an organic EL element, which can be easily produced by a roll-to-roll method in a method of sequentially forming each component of the organic EL element from the cathode. There is to do.
  • the present invention relates to a method for producing an organic EL device, in which a cathode, an electron injection layer, a light emitting layer, and an anode are laminated in this order on a support substrate by a roll-to-roll method, and an organic EL device is produced.
  • a step of forming an electron injecting layer by coating an ink containing an ionic polymer on the cathode of the support substrate on which is formed, a step of forming a light emitting layer on the electron injecting layer, and a light emitting layer Forming an anode thereon.
  • the present invention also relates to a method for manufacturing an organic EL element, wherein the support substrate is made of a thin metal plate.
  • this invention relates to the manufacturing method of the organic EL element which apply
  • a roll-to-roll method is used. An organic EL element can be easily formed.
  • the manufacturing method of the organic EL device of the present embodiment is a manufacturing method of an organic EL device that produces an organic EL device on a support substrate by a roll-to-roll method, on the support substrate on which the cathode is formed, It includes a step of forming an electron injection layer by applying an ink containing an ionic polymer to form a film, a step of forming a light emitting layer on the electron injection layer, and a step of forming an anode on the light emitting layer.
  • the organic EL element can be used, for example, for a light source of a lighting device or a backlight of a display device.
  • the organic EL element of this embodiment will be described with reference to FIG.
  • FIG. 1 is a cross-sectional view schematically showing the organic EL element of this embodiment.
  • the organic EL element of this embodiment is configured by laminating at least a cathode, an electron injection layer, a light emitting layer, and an anode in this order on a support substrate.
  • the organic EL element may be provided with a predetermined layer between the anode and the cathode as necessary.
  • a hole injection layer, a hole transport layer, an electron transport layer, and the like may be provided between the anode and the cathode.
  • FIG. 1 shows an organic EL element 1 configured by laminating a support substrate 2, a cathode 3, an electron injection layer 4, a light emitting layer 5, a hole injection layer 6, and an anode 7 in this order as an example.
  • the organic EL element is formed by sequentially laminating each component.
  • the electron injection layer is formed by applying an ink containing an ionic polymer to form a film.
  • the organic EL element produced by sequentially laminating each component of the organic EL element in order from the cathode can emit light.
  • an electron injection layer is formed by coating an ink containing an ionic polymer, and a light emitting layer, a hole transport layer, and a hole injection layer are further formed by a coating method. Therefore, the electron injection layer is once exposed to the atmosphere after its formation. That is, according to the method of the present embodiment, in an organic EL element having a reverse stacked configuration, an electron injection layer formed by coating and forming an ink containing an ionic polymer is assumed to be exposed to the atmosphere. In addition, the function as the electron injection layer can be maintained.
  • R2R method a method for producing an organic EL element by a roll-to-roll method (hereinafter sometimes referred to as R2R method) will be described.
  • R2R method at least a pair of winding cores 11 and 12 are arranged.
  • a band-shaped flexible film is wound around each of the pair of winding cores 11 and 12.
  • Rewinding of the flexible film from one winding core 11 to the other winding core 12 is performed by winding the flexible film sent out from one winding core 11 around the other winding core 12. .
  • each component of the organic EL element is laminated.
  • a support substrate having a cathode formed in advance on the surface is prepared. And as one winding core 11, what wound the support substrate in which the cathode was previously formed on this surface is used.
  • the support substrate delivered from one winding core 11 moves in the horizontal direction toward the other winding core 12 (the support substrate moves to the right in FIG. 2).
  • an ink containing a material to be an electron injection layer is applied and formed on the cathode to form an electron injection layer.
  • Ink containing a material to be an electron injection layer is supplied from the coating device 13.
  • ink containing a material that becomes the light emitting layer is then applied and formed on the electron injection layer to form the light emitting layer.
  • Ink containing a material to be the light emitting layer is supplied from the coating device 14.
  • an ink containing a material to be the hole injection layer is then applied and formed on the light emitting layer to form the hole injection layer.
  • Ink containing a material to be the hole injection layer is supplied from the coating device 15.
  • an ink containing a material that becomes an anode is then applied and formed on the hole injection layer, thereby forming an anode.
  • Ink containing a material to be the anode is supplied from the coating device 16.
  • An organic EL element is formed by the above steps.
  • the support substrate is then wound around the other core 12.
  • an organic EL element can be manufactured by the R2R method.
  • Examples of the coating devices 13, 14, 15, and 16 include a bar coat device, a capillary coat device, a slit coat device, an ink jet device, a spray coat device, a nozzle coat device, and a printing device.
  • a plurality of coating devices 13, 14, 15, and 16 are used, but these may all be the same type of device, and an optimal coating device may be used individually according to the type of ink. Also good.
  • FIG. 2 shows a mode in which ink is applied and formed on the support substrate from above in the vertical direction of the support substrate.
  • ink is applied on the support substrate from below in the vertical direction of the support substrate. May be formed by coating.
  • FIG. 2 shows a form in which the support substrate is sent in the horizontal direction (left and right in FIG. 2)
  • the support substrate may be sent in the vertical direction or in an oblique direction inclined from the horizontal direction to the vertical direction.
  • coating devices 13, 14, 15, and 16 are shown in FIG. 2, a cleaning device, a drying device, a static eliminator, and the like are further provided as necessary.
  • the cleaning device cleans the support substrate and modifies the surface of the support substrate (that is, the cathode surface), for example, before the ink is first applied to the support substrate sent out from one of the winding cores 11.
  • the cleaning device is realized by, for example, a low-pressure mercury lamp, an excimer lamp, a plasma cleaning device, and the like.
  • cleaning can be performed by irradiating the support substrate with light having an irradiation intensity of 5 to 20 mW / cm 2 using a low-pressure mercury lamp having a wavelength of 184.2 nm and spaced apart by about 5 mm to 15 mm.
  • atmospheric pressure plasma is suitably used, and argon gas containing 1 to 5% by volume of oxygen is used for cleaning under conditions of a frequency of 100 kHz to 150 MHz, a voltage of 10 V to 10 kV, and an irradiation distance of 5 to 20 mm. It can be carried out.
  • the static eliminator is arranged at a position where the static elimination treatment is performed on the support substrate in the process before applying the ink or the process after applying the ink.
  • the static eliminator is realized by, for example, a static eliminator that generates ions in the air. Ions in the air generated by the static eliminator are attracted to the charged body to compensate for charges of opposite polarity. This can neutralize static electricity.
  • the ink formed by coating is dried by a drying device as necessary.
  • This drying apparatus is disposed at a position where a drying process is performed in the step after applying the ink.
  • the drying device include a heating device and a light irradiation device.
  • the drying step generally takes a long time and tends to cause deterioration of a predetermined layer.
  • the drying may be performed in an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.
  • polymerizes can be obtained by applying energy using a heating apparatus or a light irradiation apparatus.
  • a speed adjusting means for adjusting the moving speed of the support substrate may be provided between the coating devices 13, 14, 15, and 16. By providing this speed adjusting means, it is possible to absorb the difference in the coating speeds of the coating apparatuses 13, 14, 15, and 16.
  • the speed adjusting means is realized by a so-called accumulator.
  • the method of forming the anode by a coating method has been described.
  • the anode may be formed by a method of transferring a conductive thin film serving as the anode.
  • a so-called laminating device is arranged, and the conductive thin film to be the anode is transferred by the laminating method to form the anode. May be.
  • the anode may be formed in a vacuum atmosphere.
  • the support substrate is wound around the other core 12 and then the anode is formed in a vacuum atmosphere. That's fine.
  • the support substrate on which the hole injection layer is formed may be cut into a predetermined size, and the cut support substrate may be carried into a vacuum apparatus to form the anode.
  • the R2R method is divided into two times, the first R2R method forms up to the hole injection layer in the atmosphere, and the second R2R method includes the winding core around which the support substrate is wound, and the entire R2R device.
  • the anode may be formed in a vacuum atmosphere while maintaining a vacuum atmosphere.
  • the organic EL element configured by reverse lamination according to the present embodiment may be a bottom emission type element, a top emission type element, or a dual emission type element.
  • the bottom emission type element means an organic EL element of a type in which light emitted from the light emitting layer is sequentially transmitted through the cathode and the support substrate and emitted to the outside.
  • the top emission type organic EL element means a type of organic EL element in which light emitted from the light emitting layer is transmitted through the anode and emitted to the outside.
  • the double-sided light emitting element is a type in which light emitted from the light emitting layer is sequentially transmitted through the cathode and the support substrate and emitted to the outside, and light emitted from the light emitting layer is transmitted through the anode and emitted to the outside.
  • an ITO thin film that has a high light transmittance and is generally used as a transparent electrode is an electrode suitable for an anode, and is generally used as an anode.
  • the power efficiency is not so high, so that it is not frequently used as a cathode.
  • an ITO thin film Compared with a metal thin film, an ITO thin film has a relatively high work function, and a barrier for injecting electrons from the ITO thin film becomes high. Therefore, in order to inject electrons from the ITO thin film, a high voltage is necessarily applied. Because there is.
  • a conductive thin film made of Al, Au, Ag or the like made thin is used for the transparent cathode.
  • Al, Au, Ag, etc. cannot be made too thin. Therefore, an electrode made of Al, Au, Ag, etc. thinned is less transparent than an ITO thin film. The use of such a low-transparency electrode has been a factor that hinders improvement in luminous efficiency.
  • a top emission type element can be formed by reverse lamination, so that the anode can be made transparent. Therefore, an ITO thin film having a high light transmittance among conductive thin films can be used as such an anode. This makes it possible to configure a top emission type organic EL element with high luminous efficiency.
  • the support substrate is preferably made of a thin metal plate.
  • a thin metal plate As will be described later, in the top emission type organic EL element, an opaque substrate can be used. In that case, from the viewpoint of heat dissipation, it is preferable to use a support substrate having a high thermal conductivity, and it is preferable to use a thin metal plate as such a support substrate.
  • a metal thin plate a thin plate made of Al, Cu, Fe or an alloy containing one or more of these metals can be used.
  • the organic EL element can have various layer configurations.
  • the organic EL element includes a pair of electrodes and a plurality of organic layers provided between the electrodes.
  • the plurality of organic layers include at least an electron injection layer and one light emitting layer.
  • the organic EL element may contain the layer which contains an inorganic substance and organic substance, the layer which consists only of inorganic, etc. other than an organic layer.
  • the organic substance constituting the organic layer may be a low molecular compound or a high molecular compound, or may be a mixture of a low molecular compound and a high molecular compound.
  • the organic layer preferably contains a polymer compound, and preferably contains a polymer compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
  • Examples of the layer provided between the cathode and the light emitting layer include an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the layer close to the cathode is the electron injection layer
  • the layer close to the light emitting layer is the electron transport layer.
  • Examples of the layer provided between the anode and the light emitting layer include a hole injection layer, a hole transport layer, and an electron block layer.
  • FIG. 1 An example of a layer structure of an organic EL element that can be applied to the organic EL element of the present invention is shown below.
  • (b) corresponds to the organic EL element shown in FIG.
  • (b) Support substrate / cathode / electron injection layer / light emitting layer / hole injection layer / anode
  • c Support substrate / cathode / electron injection layer / light emission Layer / hole transport layer / hole injection layer / anode
  • ⁇ Support substrate> As the support substrate, a substrate exhibiting light transmittance or a substrate exhibiting non-translucency is used. In the case of a so-called bottom emission type organic EL element, a support substrate that exhibits light transmittance is used. Further, in the case of a so-called top emission type organic EL element, the support substrate is not limited to one exhibiting light transmission, and one having non-translucency can also be used.
  • a substrate exhibiting flexibility can be applied.
  • a glass plate, a metal plate, a plastic, a polymer film, and a laminate of these are used. Note that the glass plate and the metal plate can also be used as flexible substrates by reducing the thickness thereof.
  • an electrode exhibiting optical transparency is used for the anode.
  • a thin film made of metal oxide, metal sulfide and metal having high electrical conductivity a thin film made of a conductive resin, or a thin film made of a resin and a conductive filler can be used. Those having high light transmittance are preferably used.
  • a thin film made of indium oxide, zinc oxide, tin oxide, indium tin oxide (ITO), indium zinc oxide (IZO), gold, platinum, silver, copper, or the like is used.
  • a thin film made of ITO, IZO, or tin oxide is preferably used.
  • Examples of a method for producing the anode include a vacuum deposition method, a sputtering method, an ion plating method, and a plating method. Further, as the anode, an organic transparent conductive film such as polyaniline or a derivative thereof, polythiophene or a derivative thereof may be used.
  • the conductive resin examples include 3,4-polyethylenedioxythiophene polystyrene sulfonic acid.
  • a conductive resin can be used for resin.
  • the conductive filler metal fine particles, conductive wires, or the like can be used.
  • the conductive filler Au, Ag, Al, or the like can be used.
  • the anode can be formed by coating and forming an ink in which a conductive filler and a resin are dispersed in a dispersion medium. The anode may be heated and fired as necessary.
  • a material that reflects light may be used for the anode.
  • a material that reflects light include metals, metal oxides, and metal sulfides having a work function of 3.0 eV or more. preferable.
  • the film thickness of the anode can be appropriately selected in consideration of light transmittance and electric resistance.
  • the thickness is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • ⁇ Hole injection layer As the hole injection material constituting the hole injection layer, oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine type, starburst type amine type, phthalocyanine type, amorphous carbon, polyaniline, And polythiophene derivatives.
  • oxides such as vanadium oxide, molybdenum oxide, ruthenium oxide, and aluminum oxide, phenylamine type, starburst type amine type, phthalocyanine type, amorphous carbon, polyaniline, And polythiophene derivatives.
  • a method for forming the hole injection layer for example, a method of forming a film using a solution containing a hole injection material can be cited.
  • the solvent of the solution used for film formation using this solution is not particularly limited as long as it can dissolve the hole injection material.
  • chlorine solvents such as chloroform, methylene chloride, dichloroethane, ether solvents such as tetrahydrofuran, aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone and methyl ethyl ketone, ethyl acetate, butyl acetate and ethyl cell
  • ester solvents such as sorb acetate and water.
  • the thickness of the hole injection layer is appropriately set in consideration of the electrical characteristics and the ease of film formation, and is, for example, 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 200 nm. is there.
  • ⁇ Hole transport layer> As the hole transport material constituting the hole transport layer, polyvinylcarbazole or a derivative thereof, polysilane or a derivative thereof, a polysiloxane derivative having an aromatic amine in a side chain or a main chain, a pyrazoline derivative, an arylamine derivative, a stilbene derivative, Triphenyldiamine derivative, polyaniline or derivative thereof, polythiophene or derivative thereof, polyarylamine or derivative thereof, polypyrrole or derivative thereof, poly (p-phenylene vinylene) or derivative thereof, or poly (2,5-thienylene vinylene) or Examples thereof include derivatives thereof.
  • a low-molecular hole transport material it is preferably used by being dispersed in a polymer binder.
  • the method for forming the hole transport layer is not particularly limited, and examples thereof include a film formation method using a solution.
  • the solvent of the solution used for film formation using the solution is not particularly limited as long as it can dissolve the hole transport material, and is exemplified as a solvent for the solution used when forming the hole injection layer from the solution. Can be used.
  • polystyrene polystyrene
  • hole transport material those that do not extremely inhibit charge transport are preferable, and those that weakly absorb visible light are preferably used.
  • polycarbonate, polyacrylate, polymethyl acrylate, polymethyl Examples include methacrylate, polystyrene, polyvinyl chloride, and polysiloxane.
  • the film thickness of the hole transport layer is appropriately set in consideration of the electrical characteristics and the ease of film formation. For example, it is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the light emitting layer is mainly composed of an organic substance that emits fluorescence and / or phosphorescence, or an organic substance and a dopant that assists the organic substance.
  • the dopant is added, for example, in order to improve the luminous efficiency and change the emission wavelength.
  • the organic substance may be a low molecular compound or a high molecular compound, and the light emitting layer preferably contains a high molecular compound having a polystyrene-equivalent number average molecular weight of 10 3 to 10 8 .
  • Examples of the light emitting material constituting the light emitting layer include the following dye materials, metal complex materials, polymer materials, and dopant materials.
  • dye-based materials include cyclopentamine derivatives, tetraphenylbutadiene derivative compounds, triphenylamine derivatives, oxadiazole derivatives, pyrazoloquinoline derivatives, distyrylbenzene derivatives, distyrylarylene derivatives, pyrrole derivatives, thiophene ring compounds. Pyridine ring compounds, perinone derivatives, perylene derivatives, oligothiophene derivatives, oxadiazole dimers, pyrazoline dimers, quinacridone derivatives, coumarin derivatives, and the like.
  • Metal complex materials examples include rare earth metals such as Tb, Eu, and Dy, or Al, Zn, Be, Ir, Pt, etc. as a central metal, and oxadiazole, thiadiazole, phenylpyridine, phenylbenzimidazole, quinoline.
  • the metal complex which has a structure etc. in a ligand can be mentioned.
  • metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes, phenanthroline
  • metal complexes that emit light from triplet excited states such as iridium complexes and platinum complexes, aluminum quinolinol complexes, benzoquinolinol beryllium complexes, benzoxazolyl zinc complexes, benzothiazole zinc complexes, azomethyl zinc complexes, porphyrin zinc complexes, phenanthroline
  • europium complexes include europium complexes.
  • Polymer material As polymer materials, polyparaphenylene vinylene derivatives, polythiophene derivatives, polyparaphenylene derivatives, polysilane derivatives, polyacetylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, the above dye materials and metal complex light emitting materials are polymerized. Things can be mentioned.
  • examples of the material that emits blue light include distyrylarylene derivatives, oxadiazole derivatives, and polymers thereof, polyvinylcarbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives.
  • polymer materials such as polyvinyl carbazole derivatives, polyparaphenylene derivatives, and polyfluorene derivatives are preferable.
  • Examples of materials that emit green light include quinacridone derivatives, coumarin derivatives, and polymers thereof, polyparaphenylene vinylene derivatives, polyfluorene derivatives, and the like. Of these, polymer materials such as polyparaphenylene vinylene derivatives and polyfluorene derivatives are preferred.
  • Examples of materials that emit red light include coumarin derivatives, thiophene ring compounds, and polymers thereof, polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives.
  • polymer materials such as polyparaphenylene vinylene derivatives, polythiophene derivatives, and polyfluorene derivatives are preferable.
  • Dopant material examples include perylene derivatives, coumarin derivatives, rubrene derivatives, quinacridone derivatives, squalium derivatives, porphyrin derivatives, styryl dyes, tetracene derivatives, pyrazolone derivatives, decacyclene, phenoxazone, and the like. Note that the thickness of such a light emitting layer is preferably about 2 nm to 200 nm.
  • Examples of the method for forming the light emitting material include a printing method, an ink jet printing method, and a nozzle coating method.
  • a printing method an ink jet printing method
  • a nozzle coating method For example, as described above, a plurality of types of ink can be applied separately by the nozzle coating method.
  • Electrode transport material constituting the electron transport layer
  • known materials can be used.
  • a diphenoquinone derivative, a metal complex of 8-hydroxyquinoline or a derivative thereof, polyquinoline or a derivative thereof, polyquinoxaline or a derivative thereof, polyfluorene or a derivative thereof, and the like can be given.
  • electron transport materials include oxadiazole derivatives, benzoquinone or derivatives thereof, anthraquinones or derivatives thereof, metal complexes of 8-hydroxyquinoline or derivatives thereof, polyquinoline or derivatives thereof, polyquinoxaline or derivatives thereof, polyfluorenes Or a derivative thereof, preferably 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole, benzoquinone, anthraquinone, tris (8-quinolinol) aluminum, and polyquinoline. preferable.
  • Examples of the method for forming the electron transport layer include film formation using a solution.
  • the film thickness of the electron transport layer is appropriately set in consideration of the electrical characteristics and the ease of film formation.
  • the thickness is 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, and more preferably 5 nm to 200 nm.
  • the electron injection layer includes an ionic polymer.
  • an ionic polymer which comprises an electron injection layer it has a structural unit containing 1 or more types of group chosen from the group which consists of group represented by Formula (1) and group represented by Formula (2), for example.
  • a polymer is mentioned.
  • the ionic polymer a structural unit containing one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) Examples thereof include a polymer having 15 to 100 mol%. These groups may be directly bonded to the main chain constituting the ionic polymer, or may be bonded to a substituent bonded to the main chain.
  • Q 1 represents a divalent organic group
  • Y 1 represents —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 2 ⁇ , or —B (R a ).
  • M 1 is, an ammonium cation having no or or a substituent having a metal cation or a substituent
  • Z 1 is, F -, Cl -, Br -, I -, OH -, R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 -, H 2 PO 4 -, BF 4 - or PF 6 -.
  • n1 represents an integer of 0 or more
  • a1 represents an integer of 1 or more
  • b1 represents however an integer of 0 or more
  • a1 and b1 are selected such that the charge of the group represented by the formula (1) is 0
  • a represents an aryl group having a carbon number of 6 to 50 with no or or a substituent having an alkyl group or a substituent having from 1 to 30 carbon atoms having no or or a substituent having a substituent
  • Q 1 , M 1 and Z 1 may be the same or different when there are a plurality of each.
  • Q 2 represents a divalent organic group
  • Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation or an iodonium cation
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R b SO 3 ⁇ , R b COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇
  • Z 2 is a metal cation or an organic group
  • a polymer having a group represented by the formula (3) is further mentioned.
  • the group represented by the formula (3) may be contained in the structural unit of the ionic polymer, and is represented by the formula (1). And may be contained in the same structural unit as the structural unit containing one or more groups selected from the group consisting of the group represented by formula (2), or in other structural units different from these. May be included.
  • a structural unit containing at least one of a group represented by the formula (1), a group represented by the formula (2), and a group represented by the formula (3) Is a polymer having 15 to 100 mol% of all structural units.
  • Q 3 represents a divalent organic group
  • Y 3 represents —CN or a group represented by any one of Formulas (4) to (12)
  • n3 represents an integer of 0 or more.
  • R ′ represents a divalent hydrocarbon group having a substituent or not having a substituent
  • R ′′ has a hydrogen atom, a substituent, or Represents a monovalent hydrocarbon group having no substituent, —COOH, —SO 3 H, —OH, —SH, —NR c 2 , —CN or —C ( ⁇ O) NR c 2 , and R ′′.
  • R ′ represents a trivalent hydrocarbon group having a substituent or not having a substituent
  • a3 represents an integer of 1 or more
  • a4 represents an integer of 0 or more
  • R c represents a substituent.
  • the ionic polymer is composed of a structural unit represented by formula (13), a structural unit represented by formula (15), a structural unit represented by formula (17), and a structural unit represented by formula (20). It is preferable that 15 to 100 mol% of one or more structural units selected from the group is contained in all the structural units.
  • the structural unit represented by the formula (13) is a structural unit including a group represented by the above formula (1) and a group represented by the above formula (3).
  • R 1 is a monovalent group including a group represented by Formula (14)
  • Ar 1 has a substituent other than R 1 or has no substituent ( 2 + n4) represents an aromatic group
  • n4 represents an integer of 1 or more, and when there are a plurality of R 1 s , they may be the same or different.
  • R 2 represents a (1 + m1 + m2) valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are the same as described above.
  • M1 and m2 each independently represents an integer of 1 or more, and there are a plurality of each of Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3. In the case, they may be the same or different.
  • the structural unit represented by Formula (15) is a structural unit including a group represented by Formula (2) and a group represented by Formula (3).
  • R 3 is a monovalent group including a group represented by Formula (16)
  • Ar 2 has a substituent other than R 3 or has no substituent.
  • R 4 represents a (1 + m3 + m4) valent organic group, and Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are the same as those described above.
  • M3 and m4 each independently represent an integer of 1 or more, and each of Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 is plural. In some cases they may be the same or different.
  • the structural unit represented by the formula (17) is a structural unit including a group represented by the above formula (1) and a group represented by the above formula (3).
  • R 5 is a monovalent group including a group represented by Formula (18)
  • R 6 is a monovalent group including a group represented by Formula (19).
  • Ar 3 represents a (2 + n6 + n7) -valent aromatic group having or not having a substituent other than R 5 and R 6
  • n6 and n7 each independently represents an integer of 1 or more.
  • R 5 and R 6 may be the same or different.
  • R 7 represents a direct bond or a (1 + m5) valent organic group
  • Q 1 , Y 1 , M 1 , Z 1 , n1, a1 and b1 represent the same meaning as described above
  • m5 represents Represents an integer of 1 or more.
  • R 8 represents a single bond or a (1 + m6) -valent organic group
  • Y 3 and n3 represent the same meaning as described above
  • m6 represents an integer of 1 or more.
  • R 8 is a single bond
  • m6 represents 1, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
  • the structural unit represented by the formula (20) is a structural unit including a group represented by the above formula (2) and a group represented by the above formula (3).
  • R 9 is a monovalent group including a group represented by Formula (21)
  • R 10 is a monovalent group including a group represented by Formula (22).
  • Ar 4 represents a (2 + n8 + n9) -valent aromatic group having a substituent or no substituent other than R 9 and R 10
  • n8 and n9 each independently represent an integer of 1 or more When there are a plurality of R 9 and R 10 , they may be the same or different.
  • R 11 represents a single bond or a (1 + m7) -valent organic group
  • Q 2 , Y 2 , M 2 , Z 2 , n2, a2, and b2 represent the same meaning as described above
  • m7 Represents an integer of 1 or more.
  • m7 represents 1, and when there are a plurality of Q 2 , Y 2 , M 2 , Z 2 , n 2 , a 2 and b 2, they may be the same or different. .
  • R 12 represents a single bond or a (1 + m8) -valent organic group
  • Y 3 and n3 represent the same meaning as described above
  • m8 represents an integer of 1 or more.
  • m8 represents 1, and when there are a plurality of Q 3 , Y 3 and n3, they may be the same or different.
  • the structural unit in the ionic polymer may contain two or more groups represented by the formula (1), and may contain two or more groups represented by the formula (2). ) May contain two or more groups represented by Hereinafter, the groups represented by formulas (1) to (3) will be described in more detail.
  • the divalent organic group represented by Q 1 includes a methylene group, an ethylene group, a 1,2-propylene group, a 1,3-propylene group, a 1,2-butylene group, 1,3 -Butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, at least one hydrogen in these groups
  • raw material monomer a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
  • the substituents which these groups have include alkyl groups, alkoxy groups, alkylthio groups, aryl groups, aryloxy groups, arylthio groups, arylalkyl groups, arylalkoxy groups, arylalkylthio groups, arylalkenyl groups, arylalkynyls.
  • C m -C n (m, n is a positive integer satisfying m ⁇ n) means that the number of carbon atoms of the organic group described together with this term is m to n It represents that.
  • a C m -C n alkyl group indicates that the alkyl group has m to n carbon atoms
  • a C m -C n alkyl aryl group indicates that the alkyl group has m carbon atoms of m to n.
  • n represents an aryl-C m -C n alkyl group, the alkyl group has m to n carbon atoms.
  • the alkyl group may be linear or branched, and may be a cycloalkyl group.
  • the number of carbon atoms in the alkyl group is preferably 1-20, and more preferably 1-10.
  • Examples of the alkyl group include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, and nonyl group. Decyl group, lauryl group and the like.
  • a hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • fluorine atom-substituted alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group.
  • Examples of the C 1 to C 12 alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, a pentyl group, an isoamyl group, and a hexyl group. Cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group and lauryl group.
  • the alkoxy group may be linear or branched, may be a cycloalkyloxy group, and may have a substituent.
  • the number of carbon atoms of the alkoxy group is preferably 1-20, and more preferably 1-10.
  • Alkoxy groups include methoxy, ethoxy, propyloxy, isopropyloxy, butoxy, isobutoxy, s-butoxy, t-butoxy, pentyloxy, hexyloxy, cyclohexyloxy, heptyloxy Octyloxy group, nonyloxy group, decyloxy group, lauryloxy group and the like.
  • the hydrogen atom in the alkoxy group may be substituted with a fluorine atom.
  • fluorine atom-substituted alkoxy group examples include a trifluoromethoxy group, a pentafluoroethoxy group, a perfluorobutoxy group, a perfluorohexyloxy group, and a perfluorooctyloxy group.
  • the alkoxy group also includes a methoxymethyloxy group and a 2-methoxyethyloxy group.
  • Examples of the C 1 -C 12 alkoxy group include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butoxy group, an isobutoxy group, an s-butoxy group, a t-butoxy group, a pentyloxy group, and a hexyloxy group.
  • the alkylthio group may be linear or branched, may be a cycloalkylthio group, and may have a substituent.
  • the alkylthio group preferably has 1 to 20 carbon atoms, and more preferably 1 to 10 carbon atoms.
  • alkylthio group examples include methylthio group, ethylthio group, propylthio group, isopropylthio group, butylthio group, isobutylthio group, s-butylthio group, t-butylthio group, pentylthio group, hexylthio group, cyclohexylthio group, heptylthio group, octylthio group , Nonylthio group, decylthio group, laurylthio group and the like.
  • the hydrogen atom in the alkylthio group may be substituted with a fluorine atom.
  • Examples of the fluorine atom-substituted alkylthio group include a trifluoromethylthio group.
  • the aryl group is a remaining atomic group obtained by removing one hydrogen atom bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • the aryl group has a group having a benzene ring, a group having a condensed ring, two or more independent benzene rings or condensed rings bonded via a single bond or a divalent organic group (for example, an alkenylene group such as a vinylene group). Also included are The aryl group preferably has 6 to 60 carbon atoms, and more preferably 7 to 48 carbon atoms.
  • the aryl group includes a phenyl group, a C 1 -C 12 alkoxyphenyl group, a C 1 -C 12 alkylphenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, and a 9-anthracenyl group.
  • the hydrogen atom in the aryl group may be substituted with a fluorine atom.
  • the fluorine atom-substituted aryl group include a pentafluorophenyl group.
  • the aryl groups a C 1 to C 12 alkoxyphenyl group and a C 1 to C 12 alkylphenyl group are preferable.
  • C 1 -C 12 alkoxyphenyl groups include methoxyphenyl, ethoxyphenyl, propyloxyphenyl, isopropyloxyphenyl, butoxyphenyl, isobutoxyphenyl, s-butoxyphenyl, t -Butoxyphenyl group, pentyloxyphenyl group, hexyloxyphenyl group, cyclohexyloxyphenyl group, heptyloxyphenyl group, octyloxyphenyl group, 2-ethylhexyloxyphenyl group, nonyloxyphenyl group, decyloxyphenyl group, 3,7 -Dimethyloctyloxyphenyl group, lauryloxyphenyl group and the like.
  • C 1 -C 12 alkylphenyl groups include methylphenyl, ethylphenyl, dimethylphenyl, propylphenyl, mesityl, methylethylphenyl, isopropylphenyl, butylphenyl, isobutylphenyl.
  • the aryloxy group preferably has 6 to 60 carbon atoms, and more preferably 7 to 48 carbon atoms.
  • Examples of the aryloxy group include a phenoxy group, a C 1 to C 12 alkoxyphenoxy group, a C 1 to C 12 alkylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a pentafluorophenyloxy group.
  • a C 1 -C 12 alkoxyphenoxy group and a C 1 -C 12 alkylphenoxy group are preferable.
  • the C 1 -C 12 alkoxyphenoxy group includes a methoxyphenoxy group, an ethoxyphenoxy group, a propyloxyphenoxy group, an isopropyloxyphenoxy group, a butoxyphenoxy group, an isobutoxyphenoxy group, an s-butoxyphenoxy group, t-butoxyphenoxy group, pentyloxyphenoxy group, hexyloxyphenoxy group, cyclohexyloxyphenoxy group, heptyloxyphenoxy group, octyloxyphenoxy group, 2-ethylhexyloxyphenoxy group, nonyloxyphenoxy group, decyloxyphenoxy group, 3, Examples include 7-dimethyloctyloxyphenoxy group, lauryloxyphenoxy group, and the like.
  • the C 1 -C 12 alkylphenoxy group includes a methylphenoxy group, an ethylphenoxy group, a dimethylphenoxy group, a propylphenoxy group, a 1,3,5-trimethylphenoxy group, a methylethylphenoxy group, an isopropylphenoxy group.
  • butylphenoxy group isobutylphenoxy group, s-butylphenoxy group, t-butylphenoxy group, pentylphenoxy group, isoamylphenoxy group, hexylphenoxy group, heptylphenoxy group, octylphenoxy group, nonylphenoxy group, decylphenoxy group, And dodecylphenoxy group.
  • the arylthio group is, for example, a group in which a sulfur element is bonded to the aforementioned aryl group.
  • the arylthio group may have a substituent on the aromatic ring of the aryl group.
  • the arylthio group preferably has 6 to 60 carbon atoms, and more preferably 6 to 30 carbon atoms.
  • Examples of the arylthio group include a phenylthio group, a C 1 to C 12 alkoxyphenylthio group, a C 1 to C 12 alkylphenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, and a pentafluorophenylthio group.
  • the arylalkyl group is, for example, a group in which the above alkyl group is bonded to the above aryl group.
  • the arylalkyl group may have a substituent.
  • the arylalkyl group preferably has 7 to 60 carbon atoms, and more preferably 7 to 30 carbon atoms.
  • the arylalkyl group includes a phenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkyl group, 1- naphthyl -C 1 ⁇ C 12 alkyl group, 2-naphthyl -C 1 ⁇ C 12 alkyl group and the like.
  • the arylalkoxy group is, for example, a group in which the above alkoxy group is bonded to the above aryl group.
  • the arylalkoxy group may have a substituent.
  • the arylalkoxy group preferably has 7 to 60 carbon atoms, and more preferably 7 to 30 carbon atoms.
  • the arylalkoxy group includes a phenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkoxy group, a C 1 -C 12 alkylphenyl-C 1 -C 12 alkoxy group, 1- naphthyl -C 1 ⁇ C 12 alkoxy groups, 2-naphthyl -C 1 ⁇ C 12 alkoxy groups and the like.
  • the arylalkylthio group is, for example, a group in which the aforementioned alkylthio group is bonded to the aforementioned aryl group.
  • the arylalkylthio group may have a substituent.
  • the arylalkylthio group preferably has 7 to 60 carbon atoms, and more preferably 7 to 30 carbon atoms.
  • the arylalkylthio group includes phenyl-C 1 -C 12 alkylthio group, C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkylthio group, C 1 -C 12 alkylphenyl-C 1 -C 12 alkylthio group, 1- naphthyl -C 1 ⁇ C 12 alkylthio groups, 2-naphthyl -C 1 ⁇ C 12 alkylthio groups and the like.
  • the arylalkenyl group is, for example, a group in which an alkenyl group is bonded to the aforementioned aryl group.
  • the arylalkenyl group preferably has 8 to 60 carbon atoms, and more preferably 8 to 30 carbon atoms.
  • the arylalkenyl group includes a phenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, a C 1 -C 12 alkylphenyl-C 2 -C 12 alkenyl group, 1- And naphthyl-C 2 -C 12 alkenyl group, 2-naphthyl-C 2 -C 12 alkenyl group, and the like.
  • C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkenyl group, C 2 -C 12 alkylphenyl- C 2 -C 12 alkenyl groups are preferred.
  • Examples of the C 2 -C 12 alkenyl group include a vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group, 1-pentenyl group, 2-pentenyl group, and 1-hexenyl. Group, 2-hexenyl group and 1-octenyl group.
  • the arylalkynyl group is, for example, a group in which an alkynyl group is bonded to the aforementioned aryl group.
  • the arylalkynyl group preferably has 8 to 60 carbon atoms, and more preferably 8 to 30 carbon atoms.
  • the arylalkynyl group includes phenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkylphenyl-C 2 -C 12 alkynyl group, 1- And naphthyl-C 2 -C 12 alkynyl group, 2-naphthyl-C 2 -C 12 alkynyl group, and the like.
  • C 1 -C 12 alkoxyphenyl-C 2 -C 12 alkynyl group, C 1 -C 12 alkylphenyl- C 2 -C 12 alkynyl groups are preferred.
  • the C 2 -C 12 alkynyl group includes, for example, ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 1-pentynyl group, 2-pentynyl group, 1-hexynyl group. Group, 2-hexynyl group and 1-octynyl group.
  • the substituted amino group at least one hydrogen atom in the amino group is substituted with one or two groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group, and a monovalent heterocyclic group.
  • the amino group formed is preferred.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted amino group is preferably 1 to 60, not including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have. 2 to 48 are more preferable.
  • substituted amino groups include methylamino group, dimethylamino group, ethylamino group, diethylamino group, propylamino group, dipropylamino group, isopropylamino group, diisopropylamino group, butylamino group, isobutylamino group, and s-butylamino group.
  • the substituted silyl group at least one hydrogen atom in the silyl group is substituted by 1 to 3 groups selected from the group consisting of an alkyl group, an aryl group, an arylalkyl group and a monovalent heterocyclic group Silyl group formed.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent.
  • the number of carbon atoms of the substituted silyl group is preferably 1 to 60, not including the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have. 3 to 48 are more preferable.
  • substituted silyl group examples include trimethylsilyl group, triethylsilyl group, tripropylsilyl group, triisopropylsilyl group, isopropyldimethylsilyl group, isopropyldiethylsilyl group, t-butyldimethylsilyl group, pentyldimethylsilyl group, hexyldimethylsilyl group, Heptyldimethylsilyl group, octyldimethylsilyl group, 2-ethylhexyldimethylsilyl group, nonyldimethylsilyl group, decyldimethylsilyl group, 3,7-dimethyloctyldimethylsilyl group, lauryldimethylsilyl group, (phenyl-C 1 -C 12 Alkyl) silyl group, (C 1 -C 12 alkoxyphenyl-C 1 -C 12 alkyl) silyl
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the acyl group preferably has 2 to 20 carbon atoms, and more preferably 2 to 18 carbon atoms.
  • Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a benzoyl group, a trifluoroacetyl group, and a pentafluorobenzoyl group.
  • the acyloxy group preferably has 2 to 20 carbon atoms, and more preferably 2 to 18 carbon atoms.
  • Examples of the acyloxy group include an acetoxy group, a propionyloxy group, a butyryloxy group, an isobutyryloxy group, a pivaloyloxy group, a benzoyloxy group, a trifluoroacetyloxy group, and a pentafluorobenzoyloxy group.
  • the imine residue means a residue obtained by removing one hydrogen atom in this structure from an imine compound having a structure represented by at least one of the formula: HN ⁇ C ⁇ and the formula: —N ⁇ CH—.
  • imine compounds include compounds in which a hydrogen atom bonded to a nitrogen atom in aldimine, ketimine, and aldimine is substituted with an alkyl group, aryl group, arylalkyl group, arylalkenyl group, arylalkynyl group, or the like. It is done.
  • the number of carbon atoms in the imine residue is preferably 2-20, and more preferably 2-18.
  • Examples of the imine residue include a general formula: —CR ⁇ ⁇ N—R ⁇ or a general formula: —N ⁇ C (R ⁇ ) 2 (where R ⁇ is a hydrogen atom, an alkyl group, an aryl group, an arylalkyl) Group, an arylalkenyl group, or an arylalkynyl group, and R ⁇ independently represents an alkyl group, an aryl group, an arylalkyl group, an arylalkenyl group, or an arylalkynyl group, provided that two R ⁇ are present.
  • Two R ⁇ are bonded to each other to form a divalent group, for example, an alkylene group having 2 to 18 carbon atoms such as an ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, etc. As a ring may be formed.).
  • the imine residue include the following groups.
  • the amide group preferably has 1 to 20 carbon atoms, and more preferably 2 to 18 carbon atoms.
  • As the amide group formamide group, acetamide group, propioamide group, butyroamide group, benzamide group, trifluoroacetamide group, pentafluorobenzamide group, diformamide group, diacetamide group, dipropioamide group, dibutyroamide group, dibenzamide group, ditrifluoro Examples include an acetamide group and a dipentafluorobenzamide group.
  • the acid imide group is a residue obtained by removing a hydrogen atom bonded to the nitrogen atom from an acid imide, and preferably has 4 to 20 carbon atoms, more preferably 4 to 18.
  • Examples of the acid imide group include the following groups.
  • the monovalent heterocyclic group refers to the remaining atomic group obtained by removing one hydrogen atom from a heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a hetero atom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the monovalent heterocyclic group may have a substituent.
  • the monovalent heterocyclic group preferably has 3 to 60 carbon atoms, and more preferably 3 to 20 carbon atoms. The number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • Examples of such a monovalent heterocyclic group include a thienyl group, a C 1 to C 12 alkyl thienyl group, a pyrrolyl group, a furyl group, a pyridyl group, a C 1 to C 12 alkyl pyridyl group, a pyridazinyl group, a pyrimidyl group, Examples include a pyrazinyl group, a triazinyl group, a pyrrolidyl group, a piperidyl group, a quinolyl group, and an isoquinolyl group, and among them, a thienyl group, a C 1 to C 12 alkylthienyl group, a pyridyl group, and a C 1 to C 12 alkylpyridyl group are preferable.
  • the monovalent heterocyclic group is preferably a monovalent aromatic heterocyclic group.
  • the substituted carboxyl group is a group in which a hydrogen atom in a carboxyl group is substituted with an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group, that is, a formula: —C ( ⁇ O) OR * (formula R * is a group represented by an alkyl group, an aryl group, an arylalkyl group or a monovalent heterocyclic group.
  • the substituted oxycarbonyl group preferably has 2 to 60 carbon atoms, and more preferably 2 to 48 carbon atoms.
  • the alkyl group, aryl group, arylalkyl group or monovalent heterocyclic group may have a substituent. Note that the number of carbon atoms does not include the number of carbon atoms of the substituent that the alkyl group, aryl group, arylalkyl group, or monovalent heterocyclic group may have.
  • substituted carboxyl group examples include methoxycarbonyl group, ethoxycarbonyl group, propoxycarbonyl group, isopropoxycarbonyl group, butoxycarbonyl group, isobutoxycarbonyl group, s-butoxycarbonyl group, t-butoxycarbonyl group, pentyloxycarbonyl group, hexyl group.
  • Y 1 represents a monovalent group such as —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 — .
  • the Y 1, -CO 2 from the viewpoint of the acidity of the ionic polymer -, -SO 2 -, -PO 3 - are preferred, -CO 2 - is more preferable. From the viewpoint of the stability of the ionic polymer, —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or —PO 3 — is preferable.
  • M 1 represents a metal cation or an ammonium cation having a substituent or no substituent.
  • the metal cation monovalent, divalent or trivalent ions are preferable, and Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Examples thereof include ions such as Sn, Ti, V, W, Y, Yb, Zn, and Zr. Of these, Li + , Na + , K + , Cs + , Ag + , Mg 2+ and Ca 2+ are preferable.
  • Examples of the substituent which the ammonium cation may have include 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an i-butyl group, and a t-butyl group. Of the alkyl group.
  • Z 1 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ . , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ .
  • n1 represents an integer of 0 or more. From the viewpoint of the synthesis of the raw material monomer, it is preferably an integer from 0 to 8, more preferably an integer from 0 to 2.
  • a1 represents an integer of 1 or more
  • b1 represents an integer of 0 or more.
  • a1 and b1 are selected such that the charge of the group represented by the formula (1) is zero.
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 has a monovalent metal cation or substituent.
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 ——
  • M 1 is a divalent metal cation
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 is a trivalent metal cation
  • Z 1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R a SO 3 ⁇ , R a COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇
  • Y 1 is —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 ⁇ , —PO 3 ⁇ , or —B (R a ) 3 —
  • M 1 has a monovalent metal cation or substituent, or
  • Z 1 is SO 4 2 ⁇ or HPO 4 2 ⁇
  • a1 is preferably an integer of 1 to 5, more preferably 1 or 2.
  • R a represents a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms or a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, Examples of the substituent that these groups may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group Carbon number such as alkyl group having 1 to 20 carbon atoms such as decyl group, lauryl group, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, etc. Examples thereof include 6 to 30 aryl groups.
  • Examples of the group represented by the formula (1) include the following groups.
  • the divalent organic group represented by Q 2 include the same groups as those exemplified for the divalent organic group represented by Q 1 described above. From the viewpoint of ease of synthesis of the raw material monomer, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
  • the group mentioned as an example of the divalent organic group represented by Q 2 may have a substituent, and the substituent is the same as the substituent exemplified in the description of Q 1 described above. Groups. When a plurality of substituents are present, they may be the same or different.
  • Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation, or an iodonium cation.
  • -C + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • ammonium cations include: -N + R 3 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • phosphonyl cations include: -P + R 3 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • the sulfonyl cation include: -S + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • iodonium cation for example, -I + R 2 (Wherein, R is the same or different and represents an alkyl group or an aryl group).
  • Y 2 represents a carbocation, an ammonium cation, a phosphonyl cation, a sulfonyl cation from the viewpoint of ease of synthesis of the raw material monomer and stability of the raw material monomer and the ionic polymer against air, moisture or heat.
  • ammonium cations are more preferred.
  • Z 2 represents a metal cation or an ammonium cation having a substituent or not having a substituent.
  • the metal cation monovalent, divalent or trivalent ions are preferable, and Li, Na, K, Cs, Be, Mg, Ca, Ba, Ag, Al, Bi, Cu, Fe, Ga, Mn, Pb, Examples thereof include ions such as Sn, Ti, V, W, Y, Yb, Zn, and Zr.
  • Examples of the substituent that the ammonium cation may have include alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, and t-butyl group. Groups.
  • M 2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R b SO 3 ⁇ , R b COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ are represented.
  • n2 represents an integer of 0 or more, preferably an integer of 0 to 6, and more preferably an integer of 0 to 2.
  • a2 represents an integer of 1 or more
  • b2 represents an integer of 0 or more.
  • a2 and b2 are selected such that the charge of the group represented by the formula (2) is zero.
  • a2 is preferably an integer from 1 to 3, more preferably 1 or 2.
  • R b has an alkyl group having 1 to 30 carbon atoms which has a substituent or has no substituent, or has 6 to 50 carbon atoms which has a substituent or has no substituent.
  • R b is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, cyclohexyl, heptyl, octyl, nonyl Carbon number such as alkyl group having 1 to 20 carbon atoms such as decyl group, lauryl group, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, etc. Examples thereof include 6 to 30 aryl groups.
  • Examples of the group represented by the formula (2) include the following groups.
  • examples of the divalent organic group represented by Q 3 include the same groups as those exemplified for the divalent organic group represented by Q 1 described above. From the viewpoint of ease of synthesis of the raw material monomer, a divalent saturated hydrocarbon group, an arylene group, and an alkyleneoxy group are preferable.
  • the group mentioned as an example of the divalent organic group represented by Q 3 may have a substituent, and the substituent is the same as the substituent exemplified in the description of Q 1 described above. Groups. When a plurality of substituents are present, they may be the same or different.
  • the divalent organic group represented by Q 3 is preferably a group represented by — (CH 2 ) —.
  • n3 represents an integer of 0 or more, preferably an integer of 0 to 20, and more preferably an integer of 0 to 8.
  • Y 3 represents —CN or a group represented by any one of formulas (4) to (12).
  • the divalent hydrocarbon group represented by R ′ includes a methylene group, an ethylene group, a 1,2-propylene group, a 1,3-propylene group, and a 1,2-butylene.
  • Group, 1,3-butylene group, 1,4-butylene group, 1,5-pentylene group, 1,6-hexylene group, 1,9-nonylene group, 1,12-dodecylene group, among these groups A divalent saturated hydrocarbon group having 1 to 50 carbon atoms, which has a substituent or does not have a substituent, such as a group in which at least one hydrogen atom is substituted with a substituent; ethenylene group, propenylene group, 3 -Butenylene group, 2-butenylene group, 2-pentenylene group, 2-hexenylene group, 2-nonenylene group, 2-dodecenylene group, a group in which at least one hydrogen atom in these groups is substituted with a
  • a divalent unsaturated hydrocarbon group having 2 to 50 carbon atoms which has a substituent or no substituent, such as an alkenylene group having 2 to 50 carbon atoms and an ethynylene group; a cyclopropylene group, a cyclopropylene group, Substituents such as butylene, cyclopentylene, cyclohexylene, cyclononylene, cyclododecylene, norbornylene, adamantylene, and groups in which at least one hydrogen atom in these groups is substituted with a substituent Or a divalent cyclic saturated hydrocarbon group having 3 to 50 carbon atoms and having no substituents; 1,3-phenylene group, 1,4-phenylene group, 1,4-naphthylene group, 1,5 -Having a substituent such as a naphthylene group, a 2,6-naphthylene group
  • An arylene group having 6 to 50 carbon atoms having no substituent methyleneoxy group, ethyleneoxy group, propyleneoxy group, butyleneoxy group, pentyleneoxy group, hexyleneoxy group, at least one of these groups
  • Examples thereof include an alkyleneoxy group having 1 to 50 carbon atoms which has a substituent or does not have a substituent, such as a group obtained by substituting one hydrogen atom with a substituent.
  • substituent in these groups include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • the monovalent hydrocarbon group represented by R ′′ includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t -Butyl group, pentyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, and the like, An alkyl group having 1 to 20 carbon atoms which has a substituent or no substituent; a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthracenyl group, a 2-anthracenyl group, a 9-anthracenyl group, Examples thereof include an aryl group having 6 to 30 carbon atoms, which has
  • a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group, and a 2-naphthyl group are preferable.
  • substituent in these groups include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • the trivalent hydrocarbon group represented by R ′ ′′ includes a methanetriyl group, an ethanetriyl group, a 1,2,3-propanetriyl group, a 1,2,4-butanetriyl group, 1 , 2,5-pentanetriyl group, 1,3,5-pentanetriyl group, 1,2,6-hexanetriyl group, 1,3,6-hexanetriyl group, at least of these groups
  • substituent in these groups include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R c is preferably a methyl group, an ethyl group, a phenyl group, a 1-naphthyl group or a 2-naphthyl group from the viewpoint of solubility of the ionic polymer.
  • a3 represents an integer of 1 or more, and an integer of 3 to 10 is preferable.
  • a4 represents an integer of 0 or more.
  • a4 is preferably an integer of 0 to 30, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 10, and more preferably an integer of 0 to 5.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 3 to 20.
  • a4 is preferably an integer of 0 to 20, and more preferably an integer of 0 to 10.
  • Y 3 is —CN, a group represented by the formula (4), a group represented by the formula (6), a group represented by the formula (10), from the viewpoint of ease of synthesis of the raw material monomer.
  • the group represented by Formula (11) is preferable, the group represented by Formula (4), the group represented by Formula (6), or the group represented by Formula (11) is more preferable, and the following groups Is particularly preferred.
  • the ionic polymer of this embodiment is represented by the structural unit represented by the formula (13), the structural unit represented by the formula (15), the structural unit represented by the formula (17), and the formula (20). It is preferable that the polymer has at least one structural unit selected from the group consisting of structural units, and more preferable is an ionic polymer having 15 to 100 mol% of the structural units in the total structural units.
  • R 1 is a monovalent group including a group represented by Formula (14), and Ar 1 has a substituent other than R 1 or has no substituent (2 + n4).
  • n4 represents an integer of 1 or more.
  • Group represented by the formula (14) may be directly bonded to Ar 1, it may be bonded to Ar 1 via a predetermined group.
  • the predetermined group include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, and cyclononylene.
  • Ar 1 may have a substituent other than R 1 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group is preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n4 represents an integer of 1 or more, preferably an integer of 1 to 4, more preferably an integer of 1 to 3.
  • Examples of the (2 + n4) -valent aromatic group represented by Ar 1 in the formula (13) include a (2 + n4) -valent aromatic hydrocarbon group and a (2 + n4) -valent aromatic heterocyclic group.
  • a (2 + n4) -valent aromatic group consisting of only a carbon atom or consisting of a carbon atom and one or more atoms selected from the group consisting of a hydrogen atom, a nitrogen atom and an oxygen atom is preferable.
  • Examples of the (2 + n4) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, a furan ring, A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a monocyclic aromatic ring such as a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; two selected from the group consisting of a monocyclic aromatic ring A (2 + n4) -valent group obtained by removing (2 + n4) hydrogen atoms from a condensed polycyclic aromatic ring having two or more condensed rings; two selected from the group consisting of a monocyclic aromatic ring and a condensed polycyclic
  • Examples of the monocyclic aromatic ring include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • Examples of the aggregate of aromatic rings include the following rings.
  • bridged polycyclic aromatic ring examples include the following rings.
  • (2 + n4) hydrogen atoms are removed from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer.
  • a group obtained by removing (2 + n4) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred.
  • a group obtained by removing (2 + n4) hydrogen atoms from the ring is more preferred.
  • examples of the (1 + m1 + m2) -valent organic group represented by R 2 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group in which (m1 + m2) hydrogen atoms are removed from an alkyl group, a group in which (m1 + m2) hydrogen atoms are removed from an aryl group, and (m1 + m2) from an alkoxy group A group in which a hydrogen atom is removed is preferable.
  • substituent in these groups include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R 3 is a monovalent group including a group represented by Formula (16), and Ar 2 has a substituent other than R 3 or has no substituent (2 + n5 ) Valent aromatic group, and n5 represents an integer of 1 or more.
  • Group represented by the formula (16) may be directly bonded to Ar 2, it may be bonded to Ar 2 through a predetermined group.
  • the predetermined group include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, and cyclononylene.
  • Ar 2 may have a substituent other than R 3 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group is preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n5 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n5) -valent aromatic group represented by Ar 2 in Formula (15) include a (2 + n5) -valent aromatic hydrocarbon group and a (2 + n5) -valent aromatic heterocyclic group.
  • a (2 + n5) -valent aromatic group consisting of only a carbon atom or consisting of a carbon atom and one or more atoms selected from the group consisting of a hydrogen atom, a nitrogen atom and an oxygen atom is preferable.
  • Examples of the (2 + n5) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, a furan ring, A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a monocyclic aromatic ring such as a pyrrole ring, a pyrazole ring, an imidazole ring, an oxazole ring, or an azadiazole ring; two selected from the group consisting of a monocyclic aromatic ring A (2 + n5) -valent group obtained by removing (2 + n5) hydrogen atoms from a condensed polycyclic aromatic ring fused with two or more rings; a group selected from the group consisting of a monocyclic aromatic ring and the condensed polycyclic
  • Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 12 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the condensed polycyclic aromatic ring include the rings represented by the formulas 13 to 27 exemplified in the description of the structural unit represented by the formula (13).
  • Examples of the aggregate of aromatic rings include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by formulas 37 to 44 exemplified in the description of the structural unit represented by formula (13).
  • (2 + n5) hydrogen atoms are removed from the ring represented by the formulas 1 to 14, 26 to 29, 37 to 39, or 41.
  • a group obtained by removing (2 + n5) hydrogen atoms from the ring represented by the formulas 1 to 6, 8, 13, 26, 27, 37, or 41 is more preferred, and the group represented by the formula 1, 37, or 41 is preferred.
  • a group obtained by removing (2 + n5) hydrogen atoms from the ring is more preferred.
  • n3 and m4 each independently represents an integer of 1 or more.
  • examples of the (1 + m3 + m4) -valent organic group represented by R 4 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • substituent in these groups include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • R 5 is a monovalent group containing a group represented by Formula (18)
  • R 6 is a monovalent group containing a group represented by Formula (19)
  • Ar 3 represents a (2 + n6 + n7) -valent aromatic group having a substituent or no substituent other than R 5 and R 6
  • n6 and n7 each independently represents an integer of 1 or more.
  • Groups represented by the formula (18) and the group represented by the formula (19) may be directly bonded to Ar 3, it may be bonded to Ar 3 through a predetermined group.
  • the predetermined group include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, and cyclononylene.
  • Ar 3 may have a substituent other than R 5 and R 6 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group is preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n6 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • n7 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n6 + n7) -valent aromatic group represented by Ar 3 in Formula (17) include a (2 + n6 + n7) -valent aromatic hydrocarbon group and a (2 + n6 + n7) -valent aromatic heterocyclic group.
  • a (2 + n6 + n7) -valent aromatic group consisting of only a carbon atom or consisting of a carbon atom and one or more atoms selected from the group consisting of a hydrogen atom, a nitrogen atom and an oxygen atom is preferable.
  • Examples of the (2 + n6 + n7) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, an imidazole ring, A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from a monocyclic aromatic ring such as an oxazole ring; a condensed polycyclic fragrance in which two or more rings selected from the group consisting of monocyclic aromatic rings are condensed A (2 + n6 + n7) -valent group obtained by removing (2 + n6 + n7) hydrogen atoms from the ring; two or more aromatic rings selected from the group consisting of a monocyclic aromatic ring and the condensed polycyclic aromatic
  • Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 5 and formulas 7 to 10 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the condensed polycyclic aromatic ring include the rings represented by the formulas 13 to 27 exemplified in the description of the structural unit represented by the formula (13).
  • Examples of the aggregate of aromatic rings include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by formulas 37 to 44 exemplified in the description of the structural unit represented by formula (13).
  • the (2 + n6 + n7) -valent aromatic group is from the ring represented by the formulas 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39, or 41 from the viewpoint of easy synthesis of the raw material monomer.
  • a group in which (2 + n6 + n7) hydrogen atoms have been removed is preferred, and a group in which (2 + n6 + n7) hydrogen atoms have been removed from the ring represented by formula 1, 37 or 41 is more preferred, and a ring represented by formula 1, 38 or 42 And more preferably a group obtained by removing (2 + n6 + n7) hydrogen atoms from the group.
  • R 7 represents a single bond or a (1 + m5) -valent organic group, and is preferably a (1 + m5) -valent organic group.
  • examples of the (1 + m5) -valent organic group represented by R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • substituent in these groups include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • m5 represents an integer of 1 or more. However, when R 7 is a single bond, m5 represents 1.
  • R 8 represents a single bond or a (1 + m6) -valent organic group, and is preferably a (1 + m6) -valent organic group.
  • examples of the (1 + m6) -valent organic group represented by R 8 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing m6 hydrogen atoms from an alkoxy group having 1 to 50 carbon atoms which has a substituent or no substituent; m6 hydrogen atoms from an amino group having a substituent containing a carbon atom Excluded groups: groups obtained by removing m6 hydrogen atoms from a silyl group having a substituent containing carbon atoms, From the viewpoint of formation of ease, groups of alkyl groups except m6 hydrogen atoms, a group remaining after removing m6 hydrogen atoms from an aryl group, a group obtained by removing m6 hydrogen atoms from an amino group.
  • substituent in these groups include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • m6 represents an integer of 1 or more. However, when R 8 is a single bond, m6 represents 1.
  • R 9 is a monovalent group containing a group represented by Formula (21)
  • R 10 is a monovalent group containing a group represented by Formula (22)
  • Ar 4 represents a (2 + n8 + n9) -valent aromatic group having a substituent other than R 9 and R 10 or not having a substituent
  • n8 and n9 each independently represents an integer of 1 or more.
  • Groups represented by the formula (21) and the group represented by the formula in (22) may be directly bonded to Ar 4, it may be bonded to Ar 4 through a predetermined group.
  • the predetermined group include methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, nonylene group, dodecylene group, cyclopropylene group, cyclobutylene group, cyclopentylene group, cyclohexylene group, and cyclononylene.
  • Ar 4 may have a substituent other than R 9 and R 10 .
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a carboxyl group, or a substituted carboxyl group is preferable from the viewpoint of ease of synthesis of the raw material monomer.
  • n8 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • n9 represents an integer of 1 or more, preferably an integer of 1 to 4, and more preferably an integer of 1 to 3.
  • Examples of the (2 + n8 + n9) -valent aromatic group represented by Ar 4 in the formula (20) include a (2 + n8 + n9) -valent aromatic hydrocarbon group and a (2 + n8 + n9) -valent aromatic heterocyclic group.
  • a (2 + n8 + n9) -valent aromatic group consisting of only a carbon atom or consisting of a carbon atom and one or more atoms selected from the group consisting of a hydrogen atom, a nitrogen atom and an oxygen atom is preferable.
  • Examples of the (2 + n8 + n9) -valent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a furan ring, a pyrrole ring, a pyrazole ring, and an imidazole ring.
  • Examples of the monocyclic aromatic ring include rings represented by formulas 1 to 5 and formulas 7 to 10 exemplified in the description of the structural unit represented by formula (13).
  • Examples of the condensed polycyclic aromatic ring include the rings represented by the formulas 13 to 27 exemplified in the description of the structural unit represented by the formula (13).
  • Examples of the aggregate of aromatic rings include rings represented by formulas 28 to 36 exemplified in the description of the structural unit represented by formula (13).
  • bridged polycyclic aromatic ring examples include rings represented by formulas 37 to 44 exemplified in the description of the structural unit represented by formula (13).
  • the (2 + n8 + n9) -valent aromatic group is selected from the ring represented by the formulas 1 to 5, 7 to 10, 13, 14, 26 to 29, 37 to 39, or 41 from the viewpoint of ease of synthesis of the raw material monomer.
  • a group obtained by removing (2 + n8 + n9) hydrogen atoms is preferred, and a group obtained by removing (2 + n8 + n9) hydrogen atoms from the ring represented by formulas 1 to 6, 8, 14, 27, 28, 38 or 42 is more preferred.
  • a group obtained by removing (2 + n8 + n9) hydrogen atoms from the ring represented by 1, 37 or 41 is more preferable.
  • R 11 represents a single bond or a (1 + m7) -valent organic group, and is preferably a (1 + m7) -valent organic group.
  • examples of the (1 + m7) -valent organic group represented by R 11 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • substituent in these groups include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • m7 represents an integer of 1 or more. Provided that when R 11 is a single bond, m7 represents 1.
  • R 12 represents a single bond or a (1 + m8) valent organic group, and is preferably a (1 + m8) valent organic group.
  • examples of the (1 + m8) -valent organic group represented by R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • substituent in these groups include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • m8 represents an integer of 1 or more. Provided that when R 12 is a single bond, m8 represents 1.
  • the structural unit represented by the formula (13) is preferably a structural unit represented by the formula (23) or a structural unit represented by the formula (24) from the viewpoint of electron transport properties of the obtained ionic polymer.
  • the structural unit represented by formula (24) is more preferred.
  • R 13 represents a (1 + m9 + m10) -valent organic group
  • R 14 represents a monovalent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1 , A1, b1 and n3 represent the same meaning as described above
  • m9 and m10 each independently represent an integer of 1 or more, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, When there are a plurality of b1 and n3, they may be the same or different.
  • examples of the (1 + m9 + m10) -valent organic group represented by R 13 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, and t-butyl.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • examples of the monovalent organic group represented by R 14 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, It has a substituent such as a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • a group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms which does not have a substituent phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group A 9-anthracenyl group, a group in which at least one hydrogen atom in these groups is substituted with a substituent, or the like, and an aryl group having 6 to 30 carbon atoms which has a substituent or does not have a substituent Groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group , A cyclohexyloxy group, a cyclononyloxy group, a cyclo
  • a group obtained by removing one hydrogen atom from an alkyl group, a group obtained by removing one hydrogen atom from an aryl group, and a group obtained by removing one hydrogen atom from an alkoxy group Is preferred.
  • Examples of the structural unit represented by the formula (23) include the following structural units.
  • R 13 represents a (1 + m11 + m12) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are the same as described above.
  • M11 and m12 each independently represents an integer greater than or equal to 1.
  • R 13 , m11, m12, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 If there are multiple of each, they may be the same or different.
  • examples of the (1 + m11 + m12) -valent organic group represented by R 13 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m11 + m12) hydrogen atoms from an alkyl group a group obtained by removing (m11 + m12) hydrogen atoms from an aryl group, and (m11 + m12) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (24) include the following structural units.
  • the structural unit represented by Formula (25) is preferable from a viewpoint of durability of the obtained ionic polymer.
  • R 15 represents a (1 + m13 + m14) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n3 are the same as described above.
  • M13, m14 and m15 each independently represents an integer of 1 or more, R 15 , m13, m14, Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1 And when there are a plurality of n3, they may be the same or different.
  • examples of the (1 + m13 + m14) -valent organic group represented by R 15 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m13 + m14) hydrogen atoms from an alkyl group a group obtained by removing (m13 + m14) hydrogen atoms from an aryl group, and (m13 + m14) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (25) include the following structural units.
  • the structural unit represented by the formula (15) is preferably a structural unit represented by the formula (26) or a structural unit represented by the formula (27) from the viewpoint of electron transport properties of the obtained ionic polymer.
  • the structural unit represented by formula (27) is more preferred.
  • R 16 represents a (1 + m16 + m17) -valent organic group
  • R 17 represents a monovalent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2, a2, b2, and n3 represent the same as defined above
  • m16 and, m17 represents an integer of 1 or more independently .
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and (m16 + m17) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the monovalent organic group represented by R 17 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, It has a substituent such as a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group obtained by substituting at least one hydrogen atom of these groups with a substituent.
  • a group obtained by removing one hydrogen atom from an alkyl group having 1 to 20 carbon atoms which does not have a substituent phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group A 9-anthracenyl group, a group having at least one hydrogen atom in these groups substituted with a substituent, or the like, and an aryl group having 6 to 30 carbon atoms which has a substituent or does not have a substituent Groups excluding one hydrogen atom; methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, nonyloxy group, dodecyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group , A cyclohexyloxy group, a cyclononyloxy group, a cyclod
  • a group obtained by removing one hydrogen atom from an alkyl group, a group obtained by removing one hydrogen atom from an aryl group, and a group obtained by removing one hydrogen atom from an alkoxy group Is preferred.
  • Examples of the structural unit represented by the formula (26) include the following structural units.
  • R 16 represents a (1 + m16 + m17) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are the same as described above.
  • m16 and, m17 each independently represent an integer of 1 or more .R 16, m16, m17, Q 2, Q 3, Y 2, M 2, Z 2, Y 3, n2, a2, b2 and When there are a plurality of n3, they may be the same or different.
  • examples of the (1 + m16 + m17) -valent organic group represented by R 16 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m16 + m17) hydrogen atoms from an alkyl group a group obtained by removing (m16 + m17) hydrogen atoms from an aryl group, and (m16 + m17) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (27) include the following structural units.
  • the structural unit represented by Formula (28) is preferable from a viewpoint of durability of the obtained ionic polymer.
  • R 18 represents a (1 + m18 + m19) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 are the same as described above.
  • M18, m19 and m20 each independently represents an integer of 1 or more, R 18 , m18, m19, Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n2, a2, b2 And when there are a plurality of n3, they may be the same or different.
  • examples of the (1 + m18 + m19) -valent organic group represented by R 18 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m18 + m19) hydrogen atoms from the alkyl group a group obtained by removing (m18 + m19) hydrogen atoms from the aryl group, and (m18 + m19) groups obtained from the alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (28) include the following structural units.
  • the structural unit represented by the formula (17) is preferably a structural unit represented by the formula (29) from the viewpoint of electron transport properties of the obtained ionic polymer.
  • R 19 represents a single bond or a (1 + m21) -valent organic group
  • R 20 represents a single bond or a (1 + m22) -valent organic group
  • Q 1 , Q 3 , Y 1 , M 1, Z 1, Y 3 , n1, a1, b1 and n3 represent the same as defined above, represents an integer of 1 or more m21 and m22 each independently.
  • m21 1 and when R 20 is a single bond m22 represents 1.
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1 and n3 are plural They may be the same or different.
  • examples of the (1 + m21) -valent organic group represented by R 19 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m21) hydrogen atoms from an alkyl group a group obtained by removing (m21) hydrogen atoms from an aryl group, and (m21) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m22) -valent organic group represented by R 20 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m22) hydrogen atoms from an alkyl group a group obtained by removing (m22) hydrogen atoms from an aryl group, and (m22) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (29) include the following structural units.
  • the structural unit represented by Formula (30) is preferable from the viewpoint of durability of the obtained ionic polymer.
  • R 21 represents a single bond or a (1 + m23) valent organic group
  • R 22 represents a single bond or a (1 + m24) valent organic group
  • Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n 1, a 1, b 1 and n 3 represent the same meaning as described above
  • m 23 and m 24 each independently represent an integer of 1 or more, provided that when R 21 is a single bond, m 23 is 1 and when R 22 is a single bond
  • m24 represents 1 and m25 and m26 each independently represents an integer of 1 or more, m23, m24, R 21 , R 22 , Q 1 , Q 3 , Y 1 , M 1 , Z 1 , Y 3 , n1, a1, b1, and n
  • examples of the (1 + m23) -valent organic group represented by R 21 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m23) hydrogen atoms from an alkyl group a group obtained by removing (m23) hydrogen atoms from an aryl group, and (m23) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m24) -valent organic group represented by R 22 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m24) hydrogen atoms from an alkyl group a group obtained by removing (m24) hydrogen atoms from an aryl group, and (m24) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (30) include the following structural units.
  • R 23 represents a single bond or a (1 + m27) -valent organic group
  • R 24 represents a single bond or a (1 + m28) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 represent the same meaning as described above
  • m 27 and m 28 each independently represent an integer of 1 or more, provided that when R 23 is a single bond, m 27 is 1 and when R 24 is a single bond, m28 represents 1.
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 They may be the same or different.
  • examples of the (1 + m27) -valent organic group represented by R 23 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m27) hydrogen atoms from an alkyl group a group obtained by removing (m27) hydrogen atoms from an aryl group, and (m27) groups obtained from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m28) -valent organic group represented by R 24 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m28) hydrogen atoms from an alkyl group a group obtained by removing (m28) hydrogen atoms from an aryl group, and (m28) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (31) include the following structural units.
  • the structural unit represented by Formula (32) is preferable from a viewpoint of durability of the obtained ionic polymer.
  • R 25 represents a single bond or a (1 + m29) -valent organic group
  • R 26 represents a single bond or a (1 + m30) -valent organic group
  • Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 represent the same meaning as described above
  • m 29 and m 30 each independently represent an integer of 1 or more, provided that when R 25 is a single bond, m 29 is 1 and when R 26 is a single bond, m30 represents 1.
  • m31 and m32 each independently represent an integer of 1 or more m29, m30, R 25 , R 26 , Q 2 , Q 3 , Y 2 , M 2 , Z 2 , Y 3 , n 2, a 2, b 2 and n 3 may be the same or different when there are a plurality of each.
  • examples of the (1 + m29) -valent organic group represented by R 25 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m29) hydrogen atoms from an alkyl group a group obtained by removing (m29) hydrogen atoms from an aryl group, and (m29) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • examples of the (1 + m30) -valent organic group represented by R 26 include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • a substituent such as a group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, a lauryl group, or a group in which at least one hydrogen atom in these groups is substituted with a substituent.
  • a group obtained by removing (m30) hydrogen atoms from an alkyl group a group obtained by removing (m30) hydrogen atoms from an aryl group, and (m30) pieces from an alkoxy group.
  • a group in which a hydrogen atom is removed is preferable.
  • Examples of the structural unit represented by the formula (32) include the following structural units.
  • the ionic polymer of the present embodiment is further one or more types represented by the formula (33) You may have a structural unit.
  • Ar 5 represents a divalent aromatic group having a substituent or not having a substituent, or a divalent aromatic amine residue having or not having a substituent.
  • X ′ represents an imino group having a substituent or not having a substituent, a silylene group having a substituent or not having a substituent, an ethenylene having a substituent or not having a substituent A group or an ethynylene group, m33 and m34 each independently represent 0 or 1, and at least one of m33 and m34 is 1.
  • Examples of the divalent aromatic group represented by Ar 5 in formula (33) include a divalent aromatic hydrocarbon group and a divalent aromatic heterocyclic group.
  • Examples of the divalent aromatic group include a benzene ring, a pyridine ring, a 1,2-diazine ring, a 1,3-diazine ring, a 1,4-diazine ring, a 1,3,5-triazine ring, a furan ring, and a pyrrole ring.
  • a divalent group obtained by removing two hydrogen atoms from a monocyclic aromatic ring such as thiophene ring, pyrazole ring, imidazole ring, oxazole ring, oxadiazole ring, azadiazole ring, etc .; selected from the group consisting of monocyclic aromatic rings
  • a divalent group obtained by removing two hydrogen atoms from a condensed polycyclic aromatic ring in which two or more are condensed; two or more aromatic rings selected from the group consisting of a monocyclic aromatic ring and a condensed polycyclic aromatic ring Is a divalent group obtained by removing two hydrogen atoms from an aggregate of aromatic rings formed by linking them with a single bond, an ethenylene group or an ethynylene group; a condensed polycyclic aromatic ring or two adjacent aromatic rings in an aromatic ring assembly A methylene group, ethylene group, carbonyl group And a divalent group in which two hydrogen
  • the number of monocyclic aromatic rings to be condensed is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer.
  • the number of linked aromatic rings is preferably 2 to 4, more preferably 2 to 3, and even more preferably 2 from the viewpoint of solubility.
  • the number of aromatic rings to be bridged is preferably 2 to 4, more preferably 2 to 3, and further preferably 2 from the viewpoint of solubility of the ionic polymer.
  • Examples of the monocyclic aromatic ring include the following rings.
  • Examples of the condensed polycyclic aromatic ring include the following rings.
  • Examples of the aggregate of aromatic rings include the following rings.
  • bridged polycyclic aromatic ring examples include the following rings.
  • the divalent aromatic group represented by Ar 5 is represented by the formulas 45 to 60, 61 to 71, 77 to 80, 91. , 92, 93 or 96 is preferably a divalent group obtained by removing two hydrogen atoms from the ring represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92 or 96.
  • a divalent group in which two hydrogen atoms are removed is more preferable.
  • the above divalent aromatic group may have a substituent.
  • substituents include the same substituents as those exemplified in the description of Q 1 described above.
  • Examples of the divalent aromatic amine residue represented by Ar 5 in formula (33) include a group represented by formula (34).
  • Ar 6 , Ar 7 , Ar 8 and Ar 9 each independently have an arylene group which has a substituent or has no substituent, or has a substituent or has a substituent.
  • Ar 10 , Ar 11, and Ar 12 each independently have a substituent or an aryl group having no substituent, a substituent, or a substituent.
  • No monovalent heterocyclic group, and n10 and m35 each independently represents 0 or 1.
  • Examples of the substituent that the arylene group, aryl group, divalent heterocyclic group, and monovalent heterocyclic group may have include a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, and an aryloxy group.
  • Substituents are vinyl group, acetylene group, butenyl group, acrylic group, acrylate group, acrylamide group, methacryl group, methacrylate group, methacrylamide group, vinyl ether group, vinylamino group, silanol group, small ring (cyclopropyl group, It may be a crosslinking group such as a group having a cyclobutyl group, an epoxy group, an oxetane group, a diketene group, an episulfide group or the like, a lactone group, a lactam group, or a group containing a structure of a siloxane derivative.
  • the carbon atom in Ar 6 and the carbon atom in Ar 8 may each be directly bonded to the nitrogen atom, and bonded via a divalent group such as —O— or —S—. It may be.
  • Examples of the aryl group and monovalent heterocyclic group represented by Ar 10 , Ar 11 , and Ar 12 include the same groups as the aryl group and monovalent heterocyclic group described and exemplified above as the substituent.
  • Examples of the arylene group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms bonded to a carbon atom constituting an aromatic ring from an aromatic hydrocarbon.
  • the arylene group preferably has 6 to 60 carbon atoms, and more preferably 7 to 48 carbon atoms.
  • Specific examples of the arylene group include a phenylene group, a biphenylene group, a C 1 to C 17 alkoxyphenylene group, a C 1 to C 17 alkylphenylene group, a 1-naphthylene group, a 2-naphthylene group, a 1-anthracenylene group, and a 2-anthracenylene group.
  • the hydrogen atom in the aryl group may be substituted with a fluorine atom. Examples of the fluorine atom-substituted aryl group include a tetrafluorophenylene group.
  • aryl groups a phenylene group, a biphenylene group, a C 1 to C 12 alkoxyphenylene group, and a C 1 to C 12 alkylphenylene group are preferable.
  • Examples of the divalent heterocyclic group represented by Ar 6 , Ar 7 , Ar 8 , Ar 9 include the remaining atomic groups obtained by removing two hydrogen atoms from a heterocyclic compound.
  • the heterocyclic compound is not only a carbon atom but also an oxygen atom, a sulfur atom, a nitrogen atom, a phosphorus atom, a boron atom, a silicon atom as an element constituting a ring among organic compounds having a cyclic structure.
  • An organic compound containing a heteroatom such as a selenium atom, a tellurium atom or an arsenic atom.
  • the divalent heterocyclic group may have a substituent.
  • the divalent heterocyclic group preferably has 4 to 60 carbon atoms, and more preferably 4 to 20 carbon atoms. The number of carbon atoms of the divalent heterocyclic group does not include the number of carbon atoms of the substituent.
  • divalent heterocyclic group for example, thiophenediyl group, C 1 ⁇ C 12 alkyl thiophenediyl group, pyrrolediyl group, furandiyl group, pyridinediyl group, C 1 ⁇ C 12 alkyl pyridinediyl group, pyridazine
  • examples thereof include a diyl group, a pyrimidine diyl group, a pyrazine diyl group, a triazine diyl group, a pyrrolidine diyl group, a piperidine diyl group, a quinoline diyl group, and an isoquinoline diyl group.
  • a thiophene diyl group, a C 1 -C 12 alkylthiophene diyl group, a pyridinediyl group, and a C 1 -C 12 alkylpyridine diyl group are more preferable.
  • the ionic polymer containing a divalent aromatic amine residue as a structural unit may further have another structural unit.
  • other structural units include arylene groups such as a phenylene group and a fluorenediyl group. Of these ionic polymers, those containing a crosslinking group are preferred.
  • Examples of the divalent aromatic amine residue represented by the formula (34) include groups in which two hydrogen atoms have been removed from the aromatic amine represented by the formulas 101 to 110.
  • the aromatic amines represented by Formulas 101 to 110 may have a substituent as long as a divalent aromatic amine residue can be generated.
  • substituents include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • X ′ is an imino group having a substituent or not having a substituent, a silylene group having a substituent or not having a substituent, a substituent having a substituent or having a substituent.
  • substituent that the imino group, silyl group or ethenylene group may have include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, and a pentyl group.
  • Alkyl groups having 1 to 20 carbon atoms such as hexyl group, cyclohexyl group, heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decyl group, 3,7-dimethyloctyl group, lauryl group; phenyl group, 1 -Aryl groups having 6 to 30 carbon atoms such as naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group and 9-anthracenyl group. When a plurality of substituents are present, they may be the same or different.
  • X ' is preferably an imino group, an ethenylene group or an ethynylene group.
  • m33 is preferably 1 and m34 is preferably 0.
  • the structural unit represented by the formula (33) is preferably the structural unit represented by the formula (35) from the viewpoint of electron accepting property of the ionic polymer.
  • Ar 13 is a pyridinediyl group having a substituent or not having a substituent, a pyrazinediyl group having a substituent or not having a substituent, a substituent or a substituent. Represents a pyrimidinediyl group having no substituent, a pyridazinediyl group having a substituent or not having a substituent, or a triazinediyl group having a substituent or not having a substituent.
  • Examples of the substituent that the pyridinediyl group may have include the same substituents as the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyrazinediyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyrimidinediyl group may have include the same substituents as the substituents exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the pyridazinediyl group may have include the same substituents as those exemplified in the description of Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • Examples of the substituent that the triazinediyl group may have include the same substituents as those exemplified in the description regarding Q 1 described above. When a plurality of substituents are present, they may be the same or different.
  • the structural unit represented by Formula (13), the structural unit represented by Formula (15), the structural unit represented by Formula (17), and the formula (20) included in the ionic polymer of the present embodiment is more preferably 30 to 100 mol% in all the structural units contained in the ionic polymer excluding the terminal structural unit.
  • Terminal structural unit As the terminal structural unit (terminal group) of the ionic polymer of this embodiment, a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a s-butyl group, a t-butyl group, Pentyl group, isoamyl group, hexyl group, cyclohexyl group, heptyl group, octyl group, nonyl group, decyl group, lauryl group methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butoxy group, isobutoxy group, s-butoxy group T-butoxy group, pentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, 2-ethylhexyloxy
  • the ionic polymer of this embodiment is preferably a conjugated compound.
  • the ionic polymer is a conjugated compound when the ionic polymer has one single lone pair of electrons in the main chain, such as multiple bonds (for example, double bonds, triple bonds), nitrogen atoms, oxygen atoms, etc. It means to include a region that is continuous across the bond.
  • the ionic polymer is a conjugated compound, from the viewpoint of electron transport properties of the conjugated compound, ⁇ (The number of atoms on the main chain contained in a region where multiple bonds or unshared electron pairs of nitrogen atoms, oxygen atoms, etc.
  • ratio is preferably 50% or more, more preferably 60% or more, more preferably 70% or more, and 80% or more. Is more preferable and 90% or more is even more preferable.
  • the ionic polymer of this embodiment is preferably a polymer compound, more preferably a conjugated polymer compound.
  • the polymer compound means a compound having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more.
  • the ionic polymer being a conjugated polymer compound means that the ionic polymer is a conjugated compound and a polymer compound.
  • the polystyrene-equivalent number average molecular weight of the ionic polymer is preferably 1 ⁇ 10 3 to 1 ⁇ 10 8 , and 2 ⁇ 10 3 to 1 ⁇ . 10 7 is more preferable, 3 ⁇ 10 3 to 1 ⁇ 10 7 is more preferable, and 5 ⁇ 10 3 to 1 ⁇ 10 7 is even more preferable.
  • the weight average molecular weight in terms of polystyrene is preferably 1 ⁇ 10 3 to 5 ⁇ 10 7 , more preferably 1 ⁇ 10 3 to 1 ⁇ 10 7. More preferably, it is ⁇ 10 3 to 5 ⁇ 10 6 .
  • the number average molecular weight in terms of polystyrene is 1 ⁇ 10 3 ⁇ 5 ⁇ 10 5, more preferably 1 ⁇ 10 3 ⁇ 5 ⁇ 10 4, More preferably, it is 1 ⁇ 10 3 to 3 ⁇ 10 3 .
  • the polystyrene-equivalent number average molecular weight and weight average molecular weight of the ionic polymer can be determined using, for example, gel permeation chromatography (GPC).
  • the number of all structural units (that is, the degree of polymerization) contained in the ionic polymer excluding the terminal structural unit is preferably from 1 to 20, and preferably from 1 to 10. More preferably, it is more preferably 1 or more and 5 or less.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is ⁇ 5.0 eV or more and ⁇ 2.0 eV or less. It is preferably ⁇ 4.5 eV or more and ⁇ 2.0 eV or less.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is preferably ⁇ 6.0 eV or more and ⁇ 3.0 eV or less, and ⁇ 5.5 eV or more and ⁇ 3.0 eV or less. More preferred.
  • the orbital energy of HOMO is lower than that of LUMO.
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the ionic polymer is obtained by measuring the ionization potential of the ionic polymer and using the obtained ionization potential as the orbital energy.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the ionic polymer is obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy.
  • a photoelectron spectrometer is used to measure the ionization potential.
  • the energy difference between HOMO and LUMO is obtained from the absorption terminal by measuring the absorption spectrum of the ionic polymer using an ultraviolet / visible / near infrared spectrophotometer.
  • the polymer composed of the ionic polymer of the present embodiment is preferably substantially non-luminescent when used in an electroluminescent device.
  • the fact that a certain polymer is substantially non-luminous means as follows. First, an electroluminescent element A having a layer containing a certain polymer is produced. On the other hand, the electroluminescent element 2 which does not have the layer containing a polymer is produced. Although the electroluminescent element A has a layer containing a polymer, the electroluminescent element 2 is different from the electroluminescent element 2 only in that it does not have a layer containing a polymer. Next, a forward voltage of 10 V is applied to the electroluminescent element A and the electroluminescent element 2 to measure an emission spectrum.
  • the wavelength ⁇ that gives the maximum peak in the emission spectrum obtained for the electroluminescent element 2 is obtained.
  • the emission spectrum at the wavelength ⁇ is set to 1, the emission spectrum obtained for the electroluminescent element 2 is normalized, and the normalized emission amount S 0 is calculated by integrating with respect to the wavelength.
  • the emission intensity at the wavelength ⁇ is 1, the emission spectrum obtained for the electroluminescent element A is also normalized, and the normalized emission amount S is calculated by integrating the wavelength.
  • the polymer When the value calculated by (S ⁇ S 0 ) / S 0 ⁇ 100% is 30% or less, that is, compared with the normalized light emission amount of the electroluminescent element 2 having no polymer-containing layer, the polymer When the increase in the normalized luminescence amount of the electroluminescent element A having a layer containing is 30% or less, the polymer used is substantially non-luminescent.
  • the value calculated by (S—S 0 ) / S 0 ⁇ 100 is preferably 15% or less, and more preferably 10% or less.
  • an ionic polymer containing a group represented by the formula (1) and a group represented by the formula (3), an ionic polymer comprising only a group represented by the formula (23), represented by the formula (23) And one or more groups selected from the group consisting of groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, and 101 to 110, wherein two hydrogen atoms are removed.
  • An ionic polymer comprising only a group represented by formula (24), a group represented by formula (24) and formulas 45-50, 59, 60, 77, 80, 91, 92, 96 Ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by 101 to 110, and ionic polymer comprising only groups represented by formula (25) , Groups represented by formula (25) and formulas 45 to 50, 5 , 60, 77, 80, 91, 92, 96, an ionic polymer comprising one or more groups selected from the group consisting of groups obtained by removing two hydrogen atoms from the groups represented by formulas (29) ) An ionic polymer consisting only of groups represented by formula (29), groups represented by formula (29) and groups represented by formulas 45 to 50, 59, 60, 77, 80, 91, 92, 96, 101 to 110 An ionic polymer comprising at least one group selected from the group consisting of groups obtained by
  • Examples of the ionic polymer containing the group represented by the formula (1) and the group represented by the formula (3) include the following polymer compounds. Of these, in the polymer compound represented by the formula in which two structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol%, and the proportion of the structural unit on the right is (100 ⁇ p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
  • Examples of the ionic polymer containing the group represented by the formula (2) and the group represented by the formula (3) include the following polymer compounds. Of these, in the polymer compound represented by the formula in which two structural units are separated by a slash “/”, the proportion of the structural unit on the left is p mol%, and the proportion of the structural unit on the right is (100 ⁇ p) mol%, and these structural units are randomly arranged. In the following formula, n represents the degree of polymerization.
  • a method for producing the ionic polymer of this embodiment will be described.
  • a suitable method for producing the ionic polymer for example, a method of containing a compound represented by the formula (36) as an essential raw material and subjecting it to condensation polymerization can be mentioned.
  • the compound represented by Formula 36 a compound in which —A a — is a structural unit represented by Formula (13), a compound in which —A a — is a structural unit represented by Formula (15), a a - it is preferable to use at least one compound is a structural unit is represented by the formula (20) - a compound is a structural unit represented by the formula (17) and -A a.
  • a a is represented by the formula (3) and one or more groups selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2).
  • Y 4 and Y 5 each independently represent a group involved in condensation polymerization.
  • a compound having two substituents involved in condensation polymerization which is a structural unit other than-, may be used together with the compound represented by formula (36) for condensation polymerization.
  • Examples of the compound having two condensation-polymerizable substituents used to contain such other structural units include compounds represented by the formula (37).
  • the compound represented by the formula (36) (the compound represented by Y 4 -A a -Y 5 )
  • the compound represented by the formula (37) is subjected to condensation polymerization, so that An ionic polymer further having a structural unit represented by A b- can be produced.
  • Y 6 -A b -Y 7 (In Formula (37), Ab is a structural unit represented by Formula (33) or a structural unit represented by Formula (35), and Y 6 and Y 7 are independently involved in condensation polymerization. Group.)
  • Examples of the group (Y 4 , Y 5 , Y 6 and Y 7 ) involved in such condensation polymerization include a hydrogen atom, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an aryl alkyl sulfonate group, a boric acid ester residue, Examples thereof include a sulfonium methyl group, a phosphonium methyl group, a phosphonate methyl group, a monohalogenated methyl group, —B (OH) 2 , a formyl group, a cyano group, and a vinyl group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • aryl sulfonate group include a benzene sulfonate group and a p-toluene sulfonate group. Illustrated.
  • sulfonium methyl group that can be selected as a group involved in condensation polymerization, the following formula: —CH 2 S + Me 2 E ⁇ or —CH 2 S + Ph 2 E ⁇ (Wherein, E represents a halogen atom, Ph represents a phenyl group, and the same shall apply hereinafter).
  • Examples of the phosphonium methyl group that can be selected as a group involved in condensation polymerization include the following formula: -CH 2 P + Ph 3 E - (Wherein E represents a halogen atom).
  • a phosphonate methyl group which can be selected as a group involved in condensation polymerization, the following formula: —CH 2 PO (OR d ) 2 (Wherein, R d represents an alkyl group, an aryl group, or an arylalkyl group). )
  • examples of the monohalogenated methyl group that can be selected as a group involved in condensation polymerization include a methyl fluoride group, a methyl chloride group, a methyl bromide group, and a methyl iodide group.
  • a group suitable as a group involved in condensation polymerization varies depending on the type of polymerization reaction. For example, when a zerovalent nickel complex such as a Yamamoto coupling reaction is used, a halogen atom, an alkyl sulfonate group, an aryl sulfonate group And arylalkyl sulfonate groups. Further, when a nickel catalyst or palladium catalyst such as Suzuki coupling reaction is used, an alkyl sulfonate group, a halogen atom, a borate ester residue, —B (OH) 2 and the like can be mentioned, and an oxidizing agent or electrochemically In the case of oxidative polymerization, a hydrogen atom is exemplified.
  • the compound (monomer) represented by the formula (36) or (37) having a plurality of groups involved in condensation polymerization is added to an organic solvent as necessary.
  • Such polymerization methods include, for example, “Organic Reactions”, Vol. 14, pages 270-490, John Wiley & Sons, Inc., 1965, “Organic Synthesis”. Syntheses ”, Collective Volume 6 (Collective Volume VI), 407-411, John Wiley & Sons, Inc., 1988, Chemical Review, Vol.
  • a known condensation polymerization reaction when manufacturing an ionic polymer, you may employ
  • a polymerization method include a method of polymerizing a corresponding monomer by a Suzuki coupling reaction, a method of polymerization by a Grignard reaction, a method of polymerization by a Ni (0) complex, a method of polymerization by an oxidizing agent such as FeCl 3
  • examples thereof include a method of electrochemically oxidative polymerization and a method of decomposing an intermediate polymer having an appropriate leaving group.
  • a polymerization method using a Suzuki coupling reaction a polymerization method using a Grignard reaction, and a polymerization method using a nickel zero-valent complex are preferable because the structure of the resulting ionic polymer can be easily controlled.
  • One aspect of a preferred production method of the ionic polymer of the present embodiment has a group selected from the group consisting of a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, and an arylalkyl sulfonate group as a group involved in condensation polymerization.
  • This is a method for producing an ionic polymer by using a raw material monomer and performing condensation polymerization in the presence of a nickel zero-valent complex.
  • Examples of the raw material monomer used in such a method include dihalogenated compounds, bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates.
  • dihalogenated compounds bis (alkyl sulfonate) compounds, bis (aryl sulfonate) compounds, bis (aryl alkyl sulfonate) compounds, halogen-alkyl sulfonate compounds, and halogen-aryl sulfonates.
  • Another embodiment of a preferable method for producing an ionic polymer is as follows: a halogen atom, an alkyl sulfonate group, an aryl sulfonate group, an arylalkyl sulfonate group, —B (OH) 2 , and a boric acid ester residue as groups involved in condensation polymerization
  • K total number of moles of acid ester residues
  • the organic solvent although it varies depending on the compound and reaction to be used, it is generally preferable to use an organic solvent that has been sufficiently deoxygenated to suppress side reactions.
  • an organic solvent that has been sufficiently deoxygenated to suppress side reactions.
  • organic solvents examples include saturated hydrocarbons such as pentane, hexane, heptane, octane and cyclohexane, unsaturated hydrocarbons such as benzene, toluene, ethylbenzene and xylene, carbon tetrachloride, chloroform, dichloromethane, chlorobutane, bromobutane, chloro Halogenated saturated hydrocarbons such as pentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane and bromocyclohexane, halogenated unsaturated hydrocarbons such as chlorobenzene, dichlorobenzene and trichlorobenzene, methanol, ethanol, propanol, isopropanol, butanol, alcohols such as t-butyl alcohol, carboxylic acids such as formic acid, acetic acid and propionic
  • organic solvents may be used alone or in combination of two or more.
  • ethers are more preferable from the viewpoint of reactivity
  • tetrahydrofuran and diethyl ether are more preferable
  • toluene and xylene are preferable from the viewpoint of reaction rate.
  • an alkali or an appropriate catalyst in order to react the raw material monomers. What is necessary is just to select such an alkali or a catalyst according to the superposition
  • Such an alkali or catalyst is preferably one that is sufficiently dissolved in the solvent used in the reaction.
  • an alkali or catalyst solution is slowly added while stirring the reaction solution under an inert atmosphere such as argon or nitrogen, or the reaction solution is slowly added to the alkali or catalyst solution. And the method of adding.
  • the terminal group is protected with a stable group. It may be.
  • the terminal group is protected with such a stable group
  • the ionic polymer when it is a conjugated compound, it preferably has a conjugated bond continuous with the conjugated structure of the main chain of the ionic polymer, Examples of the structure include a structure in which an aryl group or a heterocyclic group is bonded via a carbon-carbon bond. Examples of such a stable group for protecting the end group include substituents such as a monovalent aromatic compound group represented by the structural formula of Chemical Formula 10 in JP-A-9-45478.
  • an ionic polymer having no cation is polymerized in the first step, and the ionic polymer is polymerized in the second step.
  • the method of manufacturing the ionic polymer containing a cation is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include a hydrolysis reaction with a metal hydroxide, an alkyl ammonium hydroxide, or the like.
  • an ionic polymer having no ions is polymerized in the first step, and ions are generated from the ionic polymer in the second step.
  • the method of manufacturing the ionic polymer containing this is mentioned.
  • the above-mentioned condensation polymerization reaction may be mentioned.
  • the reaction in the second step include quaternary ammonium chlorination reaction of amine using alkyl halide, halogen abstraction reaction with SbF 5 and the like.
  • the ionic polymer of this embodiment is excellent in charge injection and transportability, an element that emits light with high luminance can be obtained.
  • Examples of the method for forming a layer containing an ionic polymer include a method of forming a film using a solution containing an ionic polymer.
  • Solvents used for film formation using such solutions include alcohols other than water, ethers, esters, nitrile compounds, nitro compounds, halogenated alkyls, aryl halides, thiols, sulfides Of these solvents, soloxides, sulfoxides, thioketones, amides, carboxylic acids and the like, solvents having a solubility parameter of 9.3 or more are preferable.
  • Examples of the solvent include methanol (12.9), ethanol (11.2), 2-propanol (11.5), 1- Butanol (9.9), t-butyl alcohol (10.5), acetonitrile (11.8), 1,2-ethanediol (14.7), N, N-dimethylformamide (11.5), dimethyl sulfoxide (12.8), acetic acid (12.4), nitrobenzene (11.1), nitromethane (11.0), 1,2-dichloroethane (9.7), dichloromethane (9.6), chlorobenzene (9.6) ), Bromobenzene (9.9), dioxane (9.8), propylene carbonate (13.3), pyridine (10.4), carbon disulfide (10.0), and a mixed solvent thereof. It is.
  • a mixed solvent obtained by mixing two kinds of solvents (referred to as solvent 1 and solvent 2) will be described.
  • the film thickness of the electron injection layer differs depending on the ionic polymer to be used. Therefore, the electron injection layer may be selected so that the drive voltage and the light emission efficiency are appropriate. However, a thickness that does not generate pinholes is preferable. From the viewpoint of lowering the driving voltage of the element, the film thickness is preferably 1 nm to 1 ⁇ m, more preferably 2 nm to 500 nm, and even more preferably 2 nm to 200 nm. From the viewpoint of protecting the light emitting layer, the film thickness is preferably 5 nm to 1 ⁇ m.
  • a material for the cathode is preferably a material having a low work function, easy electron injection into the light emitting layer, and high electrical conductivity.
  • a material having a high visible light reflectivity is preferable as a material of the cathode in order to reflect light emitted from the light emitting layer to the anode side by the cathode.
  • the cathode for example, an alkali metal, an alkaline earth metal, a transition metal, a Group 13 metal of the periodic table, or the like can be used.
  • cathode material examples include beryllium, magnesium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and other metals, and alloys of two or more of these metals.
  • An alloy of one or more of metals and one or more of gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, tin, graphite, or a graphite intercalation compound is used.
  • Examples of the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, calcium-aluminum alloy and the like.
  • a transparent conductive electrode made of a conductive metal oxide, a conductive organic material, or the like can be used as the cathode.
  • the conductive metal oxide include indium oxide, zinc oxide, tin oxide, ITO, and IZO.
  • examples of the conductive organic material include polyaniline or a derivative thereof, polythiophene or a derivative thereof.
  • the cathode may be composed of a laminate in which two or more layers are laminated.
  • the electron injection layer may be used as a cathode.
  • a material conventionally used as an anode may be used for the cathode.
  • an electron injection layer made of an ionic polymer is formed, even if the cathode is formed by a material that has been used as an anode such as ITO, if a higher voltage is applied than when the cathode is formed by a metal, This is because electrons are injected, so that an organic EL element that emits light can be obtained.
  • the film thickness of the cathode is appropriately designed in consideration of required characteristics and process simplicity.
  • the thickness is 10 nm to 10 ⁇ m, preferably 20 nm to 1 ⁇ m, and more preferably 50 nm to 500 nm.
  • Examples of the method for producing the cathode include a vacuum deposition method, a sputtering method, and a laminating method in which a metal thin film is thermocompression bonded.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the polymer were determined by using gel permeation chromatography (GPC) (manufactured by Tosoh Corporation: HLC-8220 GPC), polystyrene equivalent weight average molecular weight and number average molecular weight. As sought.
  • the sample to be measured was dissolved in tetrahydrofuran so as to have a concentration of about 0.5% by weight, and 50 ⁇ L was injected into GPC. Furthermore, tetrahydrofuran was used as the mobile phase of GPC and allowed to flow at a flow rate of 0.5 mL / min.
  • the structural analysis of the polymer was performed by 1 H-NMR analysis using a Varian 300 MHz NMR spectrometer. In addition, the measurement was performed by dissolving the sample in a soluble heavy solvent (a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom) so as to have a concentration of 20 mg / mL.
  • a soluble heavy solvent a solvent in which a hydrogen atom in a solvent molecule was replaced with a deuterium atom
  • the orbital energy of the highest occupied molecular orbital (HOMO) of the polymer was determined by measuring the ionization potential of the polymer and using the obtained ionization potential as the orbital energy.
  • the orbital energy of the lowest unoccupied molecular orbital (LUMO) of the polymer was obtained by calculating the energy difference between HOMO and LUMO and using the sum of the value and the ionization potential measured above as the orbital energy. .
  • a photoelectron spectrometer manufactured by Riken Keiki Co., Ltd .: AC-2
  • the energy difference between HOMO and LUMO was determined from the absorption terminal by measuring the absorption spectrum of the polymer using an ultraviolet, visible and near infrared spectrophotometer (Varian: Cary 5E).
  • the resulting solid was filtered off and washed with heated acetonitrile. The washed solid was dissolved in acetone, and the solid was recrystallized from the obtained acetone solution and filtered.
  • the resulting solid (62.7 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (86.3 g), potassium carbonate (62.6 g), and 18-crown-6 (7 2 g) was dissolved in N, N-dimethylformamide (DMF) (670 mL) and the solution was transferred to a flask and stirred at 105 ° C. overnight. The obtained mixture was allowed to cool to room temperature, added to ice water, and stirred for 1 hour.
  • DMF N, N-dimethylformamide
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the number average molecular weight in terms of polystyrene of the polymer A was 5.2 ⁇ 10 4 .
  • the polymer A consists of a repeating unit represented by the formula (A).
  • the conjugated polymer compound 1 is composed of a repeating unit represented by the formula (B).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) “Ratio of repeating units including one or more groups represented” and “Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are , 100 mol%.
  • the conjugated polymer compound 1 had an orbital energy of HOMO of ⁇ 5.5 eV and an orbital energy of LUMO of ⁇ 2.7 eV.
  • the resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (131 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared.
  • the obtained potassium salt of polymer A is referred to as conjugated polymer compound 2.
  • Conjugated polymer compound 2 is composed of repeating units represented by formula (C).
  • conjugated polymer compound 2 “a group represented by formula (1) in all repeating units and represented by formula (2)”.
  • the conjugated polymer compound 2 had an orbital energy of HOMO of ⁇ 5.5 eV and an orbital energy of LUMO of ⁇ 2.7 eV.
  • conjugated polymer compound 3 The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (123 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer A completely disappeared.
  • the resulting sodium salt of polymer A is referred to as conjugated polymer compound 3.
  • the conjugated polymer compound 3 is composed of a repeating unit represented by the formula (D).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) “Ratio of repeating units including one or more groups represented” and “Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are , 100 mol%.
  • the conjugated polymer compound 3 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • conjugated polymer compound 4 The resulting ammonium salt of polymer A is referred to as conjugated polymer compound 4.
  • the conjugated polymer compound 4 is composed of a repeating unit represented by the formula (E).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) “Ratio of repeating units including one or more groups represented” and “Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are , 90 mol%.
  • the conjugated polymer compound 4 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • reaction was allowed to react for 3.5 hours. Thereafter, parabromotoluene (0.68 g) was added thereto, and the mixture was further reacted for 2.5 hours. After the reaction, the reaction solution was cooled to room temperature, 50 ml of ethyl acetate / 50 ml of distilled water were added, and the aqueous layer was removed. After adding 50 ml of distilled water again to remove the aqueous layer, magnesium sulfate was added as a desiccant, and the insoluble matter was filtered to remove the organic solvent.
  • the number average molecular weight in terms of polystyrene of the polymer B was 2.0 ⁇ 10 3 .
  • the polymer B is represented by the formula (F).
  • the conjugated polymer compound 5 is represented by the formula (G).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) "Ratio of repeating units containing one or more groups represented” and “Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are It is 33.3 mol% by rounding off to the second decimal place. ).
  • the conjugated polymer compound 5 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer C was 526 mg.
  • the number average molecular weight in terms of polystyrene of the polymer C was 3.6 ⁇ 10 4 .
  • the polymer C consists of a repeating unit represented by the formula (H).
  • N, N′-bis (4-bromophenyl) -N, N′-bis (4-t-butyl-2,6-dimethylphenyl) 1,4-phenylenediamine is disclosed in, for example, JP-A-2008-74917. It can be synthesized by the method described in the publication.
  • the conjugated polymer compound 6 is composed of a repeating unit represented by the formula (I).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) “Ratio of repeating units including one or more groups represented” and “Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are 95 mol%.
  • the conjugated polymer compound 6 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer D was 590 mg.
  • the number average molecular weight in terms of polystyrene of the polymer D was 2.7 ⁇ 10 4 .
  • the polymer D consists of a repeating unit represented by the formula (J).
  • 3,7-dibromo-N- (4-n-butylphenyl) phenoxazine is based on the method described in JP-A-2007-70620 (or the method described in JP-A-2004-137456). Synthesized).
  • conjugated polymer compound 7 is composed of a repeating unit represented by the formula (K) (“selected from the group consisting of a group represented by the formula (1) and a group represented by the formula (2) in all repeating units).
  • the ratio of the repeating unit containing one or more groups and one or more groups represented by the formula (3) "and" the formulas (13), (15), (17), ( The ratio of the repeating unit represented by 20) is 90 mol%.)
  • the conjugated polymer compound 7 had a HOMO orbital energy of ⁇ 5.3 eV and a LUMO orbital energy of ⁇ 2.4 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 10 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in tetrahydrofuran and purified by passing through an alumina column and a silica gel column. The tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 293 mg.
  • the number average molecular weight in terms of polystyrene of the polymer E was 1.8 ⁇ 10 4 .
  • the polymer E consists of a repeating unit represented by the formula (L).
  • conjugated polymer compound 8 The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (170 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer E completely disappeared. The resulting cesium salt of polymer E is referred to as conjugated polymer compound 8.
  • the conjugated polymer compound 8 is composed of a repeating unit represented by the formula (M).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) "Ratio of repeating units containing one or more groups represented” and "Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are 75 mol%.
  • the conjugated polymer compound 8 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.6 eV.
  • Phenylboronic acid (0.002 g) was added to the reaction solution and refluxed for 4 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added, and the mixture was stirred for 1 hour. The mixed solution was dropped into 300 mL of methanol and stirred for 1 hour, and then the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in 20 mL of tetrahydrofuran.
  • the obtained solution was dropped into a mixed solvent of 120 ml of methanol and 50 mL of 3% by weight acetic acid aqueous solution and stirred for 1 hour, and then the deposited precipitate was filtered and dissolved in 20 ml of tetrahydrofuran.
  • the solution thus obtained was dropped into 200 ml of methanol and stirred for 30 minutes, and then the deposited precipitate was filtered to obtain a solid.
  • the obtained solid was dissolved in a mixed solvent of tetrahydrofuran / ethyl acetate (1/1 (volume ratio)) and purified by passing through an alumina column and a silica gel column.
  • the tetrahydrofuran solution collected from the column was concentrated and then added dropwise to methanol (200 mL), and the precipitated solid was filtered and dried.
  • the yield of the obtained polymer E was 343 mg.
  • the polystyrene equivalent number average molecular weight of the polymer F was 6.0 ⁇ 10 4 .
  • the polymer F consists of a repeating unit represented by the formula (N).
  • the conjugated polymer compound 9 is composed of a repeating unit represented by the formula (O).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) "Ratio of repeating units containing one or more groups represented” and "Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are 75 mol%.
  • the conjugated polymer compound 9 had a HOMO orbital energy of ⁇ 5.9 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the reaction solution was added dropwise to a mixture of methanol (200 mL) and 1N dilute hydrochloric acid (200 mL). The resulting precipitate was collected by filtration and redissolved in tetrahydrofuran. The solution was added dropwise to a mixture of methanol (200 mL) and 15% aqueous ammonia (100 mL), and the resulting precipitate was collected by filtration. The precipitate was redissolved in tetrahydrofuran, added dropwise to a mixture of methanol (200 mL) and water (100 mL), and the resulting precipitate was collected by filtration. The collected precipitate was dried under reduced pressure to obtain a polymer G (360 mg). The number average molecular weight in terms of polystyrene of the polymer G was 6.0 ⁇ 10 4 .
  • the polymer G consists of a repeating unit represented by the formula (P).
  • the conjugated polymer compound 10 is composed of a repeating unit represented by the formula (Q).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) "Ratio of repeating units containing one or more groups represented” and "Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are , 100 mol%.
  • the conjugated polymer compound 10 had a HOMO orbital energy of ⁇ 5.7 eV and a LUMO orbital energy of ⁇ 2.9 eV.
  • the obtained precipitate was filtered off to obtain a solid (18 g). Under an inert atmosphere, the obtained solid (1 g), 2- [2- (2-methoxyethoxy) ethoxy] -p-toluenesulfonate (1.5 g), potassium carbonate (0.7 g), DMF (15 mL) were added. Mix and stir at 100 ° C. for 4 hours. After allowing to cool, chloroform was added to perform liquid separation and extraction, and the solution was concentrated. The concentrate was dissolved in chloroform and purified by passing through a silica gel column. The solution was concentrated to give 1,3-dibromo-5-ethoxycarbonyl-6- [2- [2- (2-methoxyethoxy) ethoxy] ethoxy] benzene (1.0 g).
  • Phenylboronic acid (6 mg) was added to the reaction solution and refluxed for 14 hours. Next, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added and stirred for 2 hours. The aqueous layer was removed, the organic layer was washed with distilled water, and the solid obtained by concentration was dissolved in chloroform and purified by passing through an alumina column and a silica gel column. The eluate from the column was concentrated and dried. The yield of the obtained polymer H was 0.44 g.
  • the number average molecular weight in terms of polystyrene of the polymer H was 3.6 ⁇ 10 4 .
  • the polymer H consists of a repeating unit represented by the formula (R).
  • conjugated polymer compound 11 The resulting solid was washed with water and dried under reduced pressure to obtain a pale yellow solid (190 mg). From the NMR spectrum, it was confirmed that the signal derived from the ethyl group at the ethyl ester site in the polymer H had completely disappeared. The resulting cesium salt of polymer H is referred to as conjugated polymer compound 11.
  • the conjugated polymer compound 11 is composed of a repeating unit represented by the formula (S).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) "Ratio of repeating units containing one or more groups represented” and "Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are , 100 mol%.
  • the conjugated polymer compound 11 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the number average molecular weight in terms of polystyrene of the polymer I was 2.0 ⁇ 10 3 .
  • the polymer I is represented by the formula (T).
  • 2- (4,4,5,5-tetramethyl-1,2,3-dioxaboran-2-yl) -9,9-dioctylfluorene is, for example, The Journal of Physical Chemistry B 2000, 104, 9118- It can be synthesized by the method described in 9125.
  • the conjugated polymer compound 12 is represented by the formula (U).
  • “at least one group selected from the group consisting of the group represented by the formula (1) and the group represented by the formula (2) in all repeating units and the formula (3) "Ratio of repeating units containing one or more groups represented” and “Ratio of repeating units represented by formulas (13), (15), (17), (20) in all repeating units” are It is 33.3 mol% by rounding off to the second decimal place.
  • the conjugated polymer compound 12 had a HOMO orbital energy of ⁇ 5.6 eV and a LUMO orbital energy of ⁇ 2.8 eV.
  • the number average molecular weight in terms of polystyrene of the polymer J was 2.0 ⁇ 10 4 .
  • the polymer J consists of a structural unit represented by the formula (V).
  • the conjugated polymer compound 13 is composed of a structural unit represented by the formula (W).
  • the conjugated polymer compound 13 had a HOMO orbital energy of ⁇ 5.51 eV and a LUMO of ⁇ 2.64 eV.
  • the number average molecular weight in terms of polystyrene of the polymer K was 2.3 ⁇ 10 4 .
  • the polymer K consists of a structural unit represented by the formula (X).
  • the conjugated polymer compound 14 is composed of a structural unit represented by the formula (Y).
  • the conjugated polymer compound 14 had a HOMO orbital energy of ⁇ 5.56 eV and a LUMO orbital energy of ⁇ 2.67 eV.
  • the number average molecular weight in terms of polystyrene of the polymer L was 3.4 ⁇ 10 4 .
  • the polymer L consists of a structural unit represented by the formula (Z).
  • the conjugated polymer compound 15 is composed of a structural unit represented by the formula (AA).
  • the conjugated polymer compound 15 had a HOMO orbital energy of ⁇ 5.50 eV and a LUMO orbital energy of ⁇ 2.65 eV.
  • Example 16 (Production and evaluation of organic EL elements) Methanol and conjugated polymer compound 1 were mixed to obtain a composition containing 0.2% by weight of conjugated polymer compound 1.
  • the composition was applied by spin coating in the air on an ITO cathode (film thickness: 45 nm) patterned on the surface of a glass substrate to obtain a coating film having a film thickness of 10 nm.
  • the substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 10 minutes to evaporate the solvent, and then naturally cooled to room temperature. A formed substrate was obtained.
  • a light emitting polymer material (“Lumation BP361” manufactured by Summation Co., Ltd.) and xylene were mixed to obtain a composition for forming a light emitting layer containing 1.4% by weight of the light emitting polymer material.
  • a composition for forming a light-emitting layer is applied in the air by a spin coating method on the layer containing the conjugated polymer compound 1 of the substrate on which the layer containing the conjugated polymer compound 1 obtained above is formed. Coating film was obtained.
  • the substrate provided with this coating film was heated at 130 ° C. for 15 minutes in an inert atmosphere (nitrogen atmosphere) to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a light emitting layer was formed.
  • the hole injection material solution was applied in the air by a spin coating method to obtain a coating film having a thickness of 60 nm.
  • the substrate provided with this coating film was heated in an inert atmosphere (nitrogen atmosphere) at 130 ° C. for 15 minutes to evaporate the solvent and then naturally cooled to room temperature to obtain a substrate on which a hole injection layer was formed.
  • PEDOT PSS solution (poly (3,4-ethylenedioxythiophene) / polystyrenesulfonic acid, product name: “Baytron”) manufactured by Starck Vitec Co., Ltd. was used as the hole injection material solution.
  • the substrate on which the hole injection layer obtained above was formed was inserted into a vacuum apparatus, Au was deposited on the layer by 80 nm by a vacuum deposition method, and an anode was formed, whereby the laminated structure 1 was manufactured. .
  • the laminated structure 2 obtained above was taken out from the vacuum apparatus, and sealed with sealing glass and a two-component mixed epoxy resin in an inert atmosphere (in a nitrogen atmosphere) to obtain an organic EL element 1.
  • Example 17 (Production and evaluation of double-sided light emitting organic EL elements) A double-sided organic EL device 2 was obtained in the same manner as in Experimental Example 13 except that the film thickness of Au was changed to 20 nm in Experimental Example 13.
  • SYMBOLS 1 Organic EL element, 2 ... Support substrate, 3 ... Cathode, 4 ... Electron injection layer, 5 ... Light emitting layer, 6 ... Hole injection layer, 7 ... Anode, 11 ... One winding core, 12 ... Other winding core , 13, 14, 15, 16 ... coating device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、有機EL素子の各構成要素を陰極から順次形成する方法において、ロール・ツー・ロール法によって簡便に有機EL素子を作製する有機EL素子の製造方法を提供することを課題とする。好適な実施形態の有機EL素子の製造方法は、ロール・ツー・ロール法によって、支持基板上に、陰極、電子注入層、発光層及び陽極をこの順に積層して有機EL素子を作製する有機EL素子の製造方法であって、陰極が形成された支持基板における陰極上に、イオン性ポリマーを含むインキを塗布して成膜することによって電子注入層を形成する工程と、電子注入層上に発光層を形成する工程と、発光層上に陽極を形成する工程とを含む。

Description

有機EL素子の製造方法
本発明は有機EL素子の製造方法に関する。
発光素子には、その構成や発光原理などが異なる種々のものがある。そのひとつとして、現在、有機EL(Electro Luminescence)素子が実用化されつつある。
有機EL素子は、陽極、有機物からなる発光層、および陰極が積層されて構成される。この有機EL素子に電圧を印加すると、陽極から正孔が注入されるとともに、陰極から電子が注入される。そして各電極から注入された正孔と電子が発光層において結合することによって発光が生じる。
陽極、発光層、および陰極のみからなる構成の有機EL素子では、所期の発光特性を得ることが難しいため、通常は陽極と陰極との間に発光層以外の所定の層が設けられる。たとえば、陽極と発光層との間には正孔注入層が設けられ、発光層と陰極との間には電子注入層が設けられる。すなわち有機EL素子の構成のひとつとして、陽極、正孔注入層、発光層、電子注入層および陰極からなるものが考えられる。正孔注入層は、陽極からの正孔注入を容易にするために、また電子注入層は、陰極からの電子注入を容易にするために、それぞれ設けられる。
有機EL素子は、支持基板上に各構成要素を順次積層することによって形成される。そして、その積層の順序としては、(1)陽極から各構成要素を順次積層する積層順(順積層)と、(2)陰極から各構成要素を順次積層する積層順(逆積層)とが考えられる。従来の技術ではロール・ツー・ロール法によって、順積層で有機EL素子を作製している(たとえば特許文献1参照)。
特開2007-149589号公報
ところが、上述の従来の技術を、そのまま逆積層による有機EL素子の製造方法に適用しようとすると、つぎのような問題が生じる。
一般に、電子注入層は、大気中において不安定な電子注入材料によって構成されている。たとえば、電子注入層は、Ba、BaOおよびNaFなどによって構成されており、通常は真空雰囲気において形成される。順積層では電子注入層上に陰極が設けられるが、陰極の形成時における電子注入層の劣化を抑制するために、陰極の形成も通常は真空雰囲気において行われる。このように電子注入層は、その形成後において大気に曝されることなく陰極によって覆われる。
このような順積層の構成の有機EL素子に対して、その積層順を逆にして、各構成要素を陰極から順次積層する場合、陰極、電子注入層を順次形成した後に、電子注入層上に発光層を形成することになる。この発光層の形成を塗布法によって行う場合、電子注入層が大気に曝されることになり、その際に電子注入層が劣化することがある。
電子注入層の劣化を避けるためには、真空雰囲気で発光層を形成する必要があるが、真空雰囲気ではインキが沸騰するため、発光層の形成に塗布法を適用することはできない。そのため発光層の形成方法は、蒸着法などに限定され、ひいては発光材料までもが蒸着法などに適した材料に限定されることになる。また、ロール・ツー・ロール法において、発光層を真空雰囲気で形成する場合、可撓性フィルムを巻き取る装置を含めて装置全体を真空雰囲気に保つ必要があるため、装置が大型化するという問題がある。
したがって、本発明の目的は、有機EL素子の各構成要素を陰極から順次形成する方法において、ロール・ツー・ロール法によって簡便に有機EL素子を作製することができる有機EL素子の製造方法を提供することにある。
本発明は、ロール・ツー・ロール法によって、支持基板上に、陰極、電子注入層、発光層及び陽極をこの順に積層して有機EL素子を作製する有機EL素子の製造方法であって、陰極が形成された支持基板における陰極上に、イオン性ポリマーを含むインキを塗布して成膜することによって電子注入層を形成する工程と、電子注入層上に発光層を形成する工程と、発光層上に陽極を形成する工程とを含む方法に関する。
また、本発明は、支持基板が、金属薄板からなる、有機EL素子の製造方法に関する。
また、本発明は、電子注入層を形成する工程において、常圧の雰囲気下で前記インキを塗布する、有機EL素子の製造方法に関する。
本発明によれば、常圧程度の雰囲気中において比較的安定な新規な電子注入材料を用いることにより、有機EL素子の各構成要素を陰極から順次形成する方法において、ロール・ツー・ロール法によって簡便に有機EL素子を形成することができる。
有機EL素子を模式的に示す断面図である。 有機EL素子の製造方法を模式的に示す図である。
以下、本発明の好適な実施形態について説明する。
本実施形態の有機EL素子の製造方法は、ロール・ツー・ロール法によって、支持基板上に有機EL素子を作製する有機EL素子の製造方法であって、陰極が形成された支持基板上に、イオン性ポリマーを含むインキを塗布して成膜することによって電子注入層を形成する工程と、電子注入層上に発光層を形成する工程と、発光層上に陽極を形成する工程とを含む。
有機EL素子はたとえば照明装置の光源や、表示装置のバックライトに使用することができる。以下、図1を参照して本実施形態の有機EL素子について説明する。図1は本実施形態の有機EL素子を模式的に示す断面図である。
本実施形態の有機EL素子は、支持基板上に、少なくとも陰極、電子注入層、発光層、および陽極がこの順で積層されて構成される。なお有機EL素子は陽極と陰極との間に、発光層および電子注入層に加えて、必要に応じて所定の層が設けられていてもよい。たとえば陽極と陰極との間には、正孔注入層、正孔輸送層および電子輸送層などが設けられていてもよい。図1は、一例として支持基板2、陰極3、電子注入層4、発光層5、正孔注入層6、および陽極7がこの順で積層されて構成される有機EL素子1を示している。
有機EL素子は、各構成要素を順次積層することによって形成される。本実施形態では、電子注入層は、イオン性ポリマーを含むインキを塗布して成膜することによって形成される。
後述する実験例において示されるように、本実施形態の方法によれば、有機EL素子の各構成要素を陰極から順に順次積層することによって作製された有機EL素子は、発光することができる。この有機EL素子は、イオン性ポリマーを含むインキを塗布成膜することによって電子注入層を形成し、さらに発光層、正孔輸送層、正孔注入層を塗布法によって形成したものである。そのため、電子注入層は、その形成後に一旦大気に曝されている。すなわち、本実施形態の方法によれば、逆積層の構成を有する有機EL素子において、イオン性ポリマーを含むインキを塗布成膜することによって形成された電子注入層は、たとえ大気に曝されたとしても、電子注入層としての機能を維持することができる。
以下、図2を参照して、ロール・ツー・ロール法(以下、R2R法ということがある。)によって有機EL素子を製造する方法について説明する。R2R法では、少なくとも一対の巻き芯11,12が配置される。一対の巻き芯11,12にはそれぞれ帯状の可撓性フィルムが巻き回されている。一方の巻き芯11から他方の巻き芯12への可撓性フィルムの巻き替えは、一方の巻き芯11から送り出された可撓性フィルムが、他方の巻き芯12に巻き取られることによって行われる。この可撓性フィルムの巻き替えの際に、有機EL素子の各構成要素がそれぞれ積層される。
本実施形態では、まず、表面に予め陰極が形成された支持基板を用意する。そして一方の巻き芯11として、この表面に予め陰極が形成された支持基板が巻き回されたものを使用する。
一方の巻き芯11から送り出される支持基板は、他方の巻き芯12に向けて水平方向に移動する(図2では右方に支持基板が移動する。)。
支持基板の移動中、電子注入層となる材料を含むインキが陰極上に塗布成膜され、電子注入層が形成される。電子注入層となる材料を含むインキは塗布装置13から供給される。
電子注入層が形成されると、つぎに、発光層となる材料を含むインキが電子注入層上に塗布成膜され、発光層が形成される。発光層となる材料を含むインキは塗布装置14から供給される。
発光層が形成されると、つぎに、正孔注入層となる材料を含むインキが発光層上に塗布成膜され、正孔注入層が形成される。正孔注入層となる材料を含むインキは塗布装置15から供給される。
正孔注入層が形成されると、つぎに、陽極となる材料を含むインキが正孔注入層上に塗布成膜され、陽極が形成される。陽極となる材料を含むインキは塗布装置16から供給される。
以上の工程によって有機EL素子が形成される。
陽極が形成されると、つぎに、支持基板は他方の巻き芯12に巻き取られる。
以上の工程は、大気中において行うことができる。たとえばクリーンルームにおいて、R2R法によって有機EL素子を製造することができる。なお、必要に応じて、不活性ガス雰囲気において上記の工程を行ってもよい。このように真空雰囲気を導入することなく、R2R法によって有機EL素子を形成することで、簡便に有機EL素子を形成することが可能となる。
上述の塗布装置13、14、15、16としては、たとえばバーコート装置、キャピラリーコート装置、スリットコート装置、インクジェット装置、スプレーコート装置、ノズルコート装置および印刷装置などが挙げられる。本実施形態では複数の塗布装置13、14、15、16が用いられるが、これらは全て同じ種類の装置であってもよく、またインキの種類に応じて適宜最適な塗布装置を個別に用いてもよい。
図2では、支持基板の鉛直方向の上方から、支持基板上にインキを塗布成膜する形態を示しているが、他の実施形態として、支持基板の鉛直方向の下方から、支持基板上にインキを塗布成膜してもよい。
図2では水平方向(図2では左右方向)に支持基板が送られる形態を示しているが、鉛直方向や、水平方向から鉛直方向に傾いた斜め方向に支持基板が送られてもよい。
図2では塗布装置13、14、15、16のみが示されているが、必要に応じて、清掃装置や、乾燥装置、除電装置などがさらに設けられる。
清掃装置は、一方の巻き芯11から送り出される支持基板に最初にインキが塗布される前の工程において、支持基板の清掃を行い、たとえば支持基板の表面(すなわち陰極表面)を改質する。清掃装置はたとえば低圧水銀ランプ、エキシマランプおよびプラズマ洗浄装置などによって実現される。たとえば5mm~15mm程度離間して配置される波長184.2nmの低圧水銀ランプを用いて、照射強度5~20mW/cmの光を支持基板に照射することによって清掃を行うことができる。またプラズマ洗浄装置では、たとえば大気圧プラズマが好適に用いられ、酸素を1~5体積%含有するアルゴンガスを用い、周波数100kHz~150MHz、電圧10V~10kV、照射距離5~20mmの条件で清掃を行うことができる。
各塗布装置13,14,15,16,17によってインキをそれぞれ塗布する前に、支持基板に除電処理を施すことが好ましい。このように除電処理を施すことによって、ごみの付着や絶縁破壊などを防ぐことができる。そのため除電装置は、インキを塗布する前の工程またはインキを塗布した後の工程において、支持基板の除電処理をする位置に配置される。除電装置は、たとえば空気中にイオンを生成する除電器によって実現される。除電装置によって生成した空気中のイオンは、帯電体に引き寄せられて反対極性の電荷を補う。これによって静電気を中和することができる。
塗布して成膜されたインキは、必要に応じて乾燥装置によって乾燥される。この乾燥装置は、インキを塗布した後の工程において、乾燥処理を施す位置に配置される。乾燥装置としては、たとえば加熱装置や光照射装置が挙げられる。インキを塗布する工程に比べると乾燥工程は、一般に長い時間を要し、所定の層が劣化する要因となりやすい。乾燥工程における所定の層の劣化を抑制するために、乾燥は、窒素ガス雰囲気やアルゴンガス雰囲気などの不活性ガス雰囲気において行ってもよい。なおインキが、エネルギーを加えることによって重合する材料を含む場合、加熱装置や光照射装置を用いてエネルギーを加えることによって、薄膜を構成する材料の少なくとも一部が重合した薄膜を得ることができる。
各塗布装置13,14,15,16の間に、支持基板の移動速度を調整する速度調整手段を設けてもよい。この速度調整手段を設けることによって、各塗布装置13,14,15,16の塗布速度の相違を吸収することができる。速度調整手段はいわゆるアキュムレータによって実現される。
本実施形態では、陽極を塗布法によって形成する方法について説明したが、陽極は、当該陽極となる導電性薄膜を転写する方法によって形成してもよい。すなわち陽極となる材料を含むインキを塗布して成膜する塗布装置16(図2参照)にかえて、いわゆるラミネート装置を配置し、ラミネート法によって陽極となる導電性薄膜を転写し、陽極を形成してもよい。
また、陽極は真空雰囲気において形成してもよい。この場合、たとえば正孔注入層を形成した後に、この正孔注入層上に陽極を形成することなく、一旦、他方の巻き芯12に支持基板を巻き取り、その後、陽極を真空雰囲気において形成すればよい。たとえば、正孔注入層が形成された支持基板を所定の大きさに切断し、この切断された支持基板を真空装置に搬入して陽極を形成してもよい。またたとえばR2R法を2回に分けて行い、1回目のR2R法では大気中において正孔注入層まで形成し、2回目のR2R法では、支持基板を巻き取る巻き芯を含めて、R2R装置全体を真空雰囲気に保った状態で、陽極を真空雰囲気において形成してもよい。
本実施形態である逆積層にて構成される有機EL素子は、ボトムエミッション型の素子であっても、トップエミッション型の素子であっても、また両面発光型の素子であってもよい。ここでボトムエミッション型の素子とは、発光層から放射される光が陰極、支持基板を順次透過して外界に出射する型の有機EL素子を意味する。またトップエミッション型の有機EL素子とは、発光層から放射される光が陽極を透過して外界に出射する型の有機EL素子を意味する。また両面発光型の素子とは、発光層から放射される光が陰極、支持基板を順次透過して外界に出射するとともに、発光層から放射される光が陽極を透過して外界に出射する型の有機EL素子を意味する。
従来の技術のように順積層の有機EL素子では、発光効率の高いトップエミッション型の有機EL素子を構成することは技術的に困難であった。順積層のトップエミッション型の有機EL素子では陰極を透明にする必要がある。導電性薄膜のなかでも光透過率が高く、透明電極として一般に使用されているITO薄膜は、陽極に適した電極であり、陽極として一般に使用されている。しかし、ITO薄膜を陰極として使用した場合、電力効率があまり高くならないため、陰極としては多用されていない。金属薄膜と比較するとITO薄膜は仕事関数が比較的高く、当該ITO薄膜から電子を注入する際の障壁が高くなるので、このITO薄膜から電子を注入するには必然的に高い電圧を印加する必要があるからである。
そのため、透明な陰極にはAl、Au、Agなどを薄膜化して透明にした導電性薄膜が使用されていた。電極の電気抵抗を考慮すると、Al、Au、Agなどは過度に薄くすることはできないため、Al、Au、Agなどを薄膜化した電極は、ITO薄膜に比べると透明性が低い。このような透明性の低い電極の使用が、発光効率の向上を阻害する要因となっていた。
これに対して本実施形態によれば、逆積層によりトップエミッション型の素子を形成することができるので、陽極を透明にすることができる。そのため、このような陽極として、導電性薄膜のなかでも光透過率が高いITO薄膜などを使用することができる。これによって、発光効率の高いトップエミッション型の有機EL素子を構成することが可能となる。
またトップエミッション型の有機EL素子を支持基板上に形成する形態では、支持基板は、金属薄板からなることが好ましい。後述するように、トップエミッション型の有機EL素子では支持基板には不透明なものを使用することができる。その場合、放熱性の観点から、支持基板には熱伝導率の高いものを用いることが好ましく、このような支持基板として、金属薄板を使用することが好ましい。このような金属薄板としては、Al、Cu、Feやこれらの金属が1種類以上含まれた合金などからなる薄板を用いることができる。
上述したように従来、順積層では発光効率の高いトップエミッション型の有機EL素子を構成することが困難であったところ、これを逆積層にすることで、発光効率の高いトップエミッション型の素子を実現することができ、さらにその支持基板として金属薄板を用いることで、放熱効果を高めることができる。
つぎに、有機EL素子の層構成および各層の構成材料をさらに詳しく説明する。
前述したように有機EL素子は種々の層構成をとりうる。有機EL素子は、一対の電極と、それらの電極間に設けられる複数の有機層とを含んで構成される。本実施形態では、複数の有機層として、少なくとも電子注入層と1層の発光層を有する。なお有機EL素子は、有機層以外に、無機物と有機物とを含む層や、無機のみからなる層などを含んでいてもよい。有機層を構成する有機物は、低分子化合物でも高分子化合物でもよく、また低分子化合物と高分子化合物との混合物でもよい。有機層は、高分子化合物を含むことが好ましく、ポリスチレン換算の数平均分子量が10~10である高分子化合物を含むことが好ましい。
陰極と発光層との間に設けられる層としては、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層との両方の層が設けられる場合、陰極に近い層が電子注入層となり、発光層に近い層が電子輸送層となる。陽極と発光層との間に設けられる層としては、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に近い層が正孔注入層となり、発光層に近い層が正孔輸送層となる。
以下に本発明の有機EL素子に適用されうる有機EL素子の層構成の一例を示す。これらのうち、(b)が、図1に示す有機EL素子に該当する。
(a)支持基板/陰極/電子注入層/発光層/陽極
(b)支持基板/陰極/電子注入層/発光層/正孔注入層/陽極
(c)支持基板/陰極/電子注入層/発光層/正孔輸送層/正孔注入層/陽極
(d)支持基板/陰極/電子注入層/電子輸送層/発光層/陽極
(e)支持基板/陰極/電子注入層/電子輸送層/発光層/正孔注入層/陽極
(f)支持基板/陰極/電子注入層/電子輸送層/発光層/正孔輸送層/正孔注入層/陽極
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。)
<支持基板>
 支持基板には光透過性を示すもの、または不透光性を示すものが用いられる。なお、いわゆるボトムエミッション型の有機EL素子の場合、支持基板には光透過性を示すものが用いられる。またいわゆるトップエミッション型の有機EL素子の場合、支持基板には、光透過性を示すものに限らず、不透光性を示すものも使用することができる。
支持基板としては、可撓性を示すものを適用することができる。支持基板としては、ガラス板、金属板、プラスチック、高分子フィルム、並びにこれらを積層したものなどが用いられる。なおガラス板、および金属板は、その厚さを薄くすることによって、可撓性を示す基板として使用することもできる。
<陽極>
 トップエミッション型の有機EL素子の場合、陽極には光透過性を示す電極が用いられる。光透過性を示す電極としては、電気伝導度の高い金属酸化物、金属硫化物および金属などの薄膜、導電性樹脂からなる薄膜、または樹脂と導電性フィラーとからなる薄膜を用いることができ、光透過率の高いものが好適に用いられる。たとえば酸化インジウム、酸化亜鉛、酸化スズ、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)、金、白金、銀、および銅などから成る薄膜が用いられる。これらの中でも、ITO、IZO、または酸化スズから成る薄膜が好適に用いられる。陽極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法などを挙げることができる。また陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
導電性樹脂としては、3,4-ポリエチレンジオキシチオフェンポリスチレンスルフォン酸が挙げられる。また、陽極が、樹脂と導電性フィラーとからなる薄膜によって構成される場合、樹脂には導電性樹脂を使用することができる。導電性フィラーとしては、金属微粒子や導電性ワイヤーなどを使用することができる。導電性フィラーとしては、AuやAg、Alなどを使用することができる。陽極は、導電性フィラーおよび樹脂を分散媒に分散させたインキを塗布成膜することによって形成することができる。陽極は必要に応じて加熱焼成してもよい。
なおボトムエミッション型の有機EL素子の場合、陽極には、光を反射する材料を用いてもよく、このような材料としては、仕事関数3.0eV以上の金属、金属酸化物、金属硫化物が好ましい。
陽極の膜厚は、光の透過性および電気抵抗などを考慮して、適宜選択することができる。例えば、10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
<正孔注入層>
 正孔注入層を構成する正孔注入材料としては、酸化バナジウム、酸化モリブデン、酸化ルテニウム、および酸化アルミニウムなどの酸化物や、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、アモルファスカーボン、ポリアニリン、およびポリチオフェン誘導体などを挙げることができる。
正孔注入層の形成方法としては、たとえば正孔注入材料を含む溶液を用いて成膜を行う方法を挙げることができる。この溶液を用いた成膜に使用される溶液の溶媒としては、正孔注入材料を溶解させるものであれば特に制限はない。たとえば、クロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒、および水を挙げることができる。
正孔注入層の膜厚は、電気的な特性や成膜の容易性などを勘案して適宜設定され、例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
<正孔輸送層>
 正孔輸送層を構成する正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などを挙げることができる。
これらの中で、正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p-フェニレンビニレン)若しくはその誘導体、又はポリ(2,5-チエニレンビニレン)若しくはその誘導体などの高分子正孔輸送材料が好ましく、より好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
正孔輸送層の形成方法としては、特に制限はないが、溶液を用いた成膜による方法を挙げることができる。
溶液を用いた成膜に用いられる溶液の溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はなく、正孔注入層を溶液から成膜する際に用いられる溶液の溶媒として例示したものを用いることができる。
正孔輸送材料に混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収の弱いものが好適に用いられ、例えばポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンなどを挙げることができる。
正孔輸送層の膜厚は、電気的な特性や成膜の容易性などを勘案して適宜設定される。例えば1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
<発光層>
 発光層は、主として蛍光及び/又はりん光を発光する有機物、またはこの有機物とこれを補助するドーパントとから構成される。ドーパントは、例えば発光効率の向上や、発光波長を変化させるために加えられる。なお有機物は、低分子化合物でも高分子化合物でもよく、発光層は、ポリスチレン換算の数平均分子量が、10~10である高分子化合物を含むことが好ましい。発光層を構成する発光材料としては、例えば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
(色素系材料)
 色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
(金属錯体系材料)
 金属錯体系材料としては、例えばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができる。例えばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
(高分子系材料)
 高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも、高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
また、緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも、高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
また赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも、高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
(ドーパント材料)
 ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、約2nm~200nmであると好ましい。
発光材料の成膜方法としては、印刷法、インクジェットプリント法、ノズルコート法などを挙げることができる。たとえば、上述したようにノズルコート法によって複数種類のインキを塗り分けることができる。
<電子輸送層>
 電子輸送層を構成する電子輸送材料としては、公知のものを使用できる。たとえば、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアンスラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
これらのうち、電子輸送材料としては、オキサジアゾール誘導体、ベンゾキノン若しくはその誘導体、アントラキノン若しくはその誘導体、又は8-ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体が好ましく、2-(4-ビフェニリル)-5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8-キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
電子輸送層の成膜法としては溶液を用いた成膜を挙げることができる。
 電子輸送層の膜厚は、電気的な特性や成膜の容易性などを勘案して適宜設定される。例えば、1nm~1μmであり、好ましくは2nm~500nmであり、さらに好ましくは5nm~200nmである。
<電子注入層>
 電子注入層は、イオン性ポリマーを含む。電子注入層を構成するイオン性ポリマーとしては、例えば、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を有する重合体が挙げられる。イオン性ポリマーの一形態としては、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基を含む構造単位を、全構造単位中、15~100モル%有する重合体が挙げられる。これらの基は、イオン性ポリマーを構成している主鎖に直接結合していてもよく、主鎖に結合している置換基に結合していてもよい。
-(Qn1-Y(Ma1(Zb1  (1)
 (式(1)中、Qは2価の有機基を表し、Yは、-CO 、-SO 、-SO 、-PO 2-、又は-B(Rを表し、Mは、金属カチオン又は置換基を有するか若しくは置換基を有さないアンモニウムカチオンを表し、Zは、F、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を表し、n1は、0以上の整数を表し、a1は、1以上の整数を表し、b1は、0以上の整数を表す。ただし、a1及びb1は、式(1)で表される基の電荷が0となるように選択され、Rは置換基を有するか若しくは置換基を有さない炭素原子数1~30のアルキル基又は置換基を有するか若しくは置換基を有さない炭素原子数6~50のアリール基を表し、Q、M及びZがそれぞれ複数個ある場合、それらは同一でも異なっていてもよい。)
-(Qn2-Y(Ma2(Zb2  (2)
 (式(2)中、Qは2価の有機基を表し、Yは、カルボカチオン、アンモニウムカチオン、ホスホニルカチオン又はスルホニルカチオン又はヨードニウムカチオンを表し、Mは、F、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を表し、Zは金属カチオン又は置換基を有するか若しくは置換基を有さないアンモニウムカチオンを表し、n2は0以上の整数を表し、a2は1以上の整数を表し、b2は0以上の整数を表す。ただし、a2及びb2は、式(2)で表される基の電荷が0となるように選択され、Rは置換基を有するか若しくは置換基を有さない炭素原子数1~30のアルキル基又は置換基を有するか若しくは置換基を有さない炭素原子数6~50のアリール基を表し、Q、M及びZのおのおのは複数個ある場合、同一でも異なっていてもよい。)
本実施形態で用いられるイオン性ポリマーの一形態としては、さらに式(3)で表される基を有する重合体が挙げられる。イオン性ポリマーが式(3)で表される基を有する場合、式(3)で表される基は、イオン性ポリマーの構造単位中に含まれていてもよく、式(1)で表される基及び式(2)で表される基からなる群から選ばれる一種以上の基を含む構造単位と同一の構造単位内に含まれていてもよいし、これらとは異なる他の構造単位内に含まれていてもよい。さらに、イオン性ポリマーの一形態としては、式(1)で表される基、式(2)で表される基、及び式(3)で表される基のうち少なくとも1種を含む構造単位を、全構造単位中、15~100モル%有する重合体が挙げられる。
-(Qn3-Y   (3)
 (式(3)中、Qは2価の有機基を表し、Yは-CN又は式(4)~(12)のいずれかで表される基を表し、n3は0以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000001

(式(4)~(12)中、R’は、置換基を有するか若しくは置換基を有さない2価の炭化水素基を表し、R’’は、水素原子、置換基を有するか若しくは置換基を有さない1価の炭化水素基、-COOH、-SOH、-OH、-SH、-NR 、-CN又は-C(=O)NR を表し、R’’’は、置換基を有するか若しくは置換基を有さない3価の炭化水素基を表し、a3は、1以上の整数を表し、a4は、0以上の整数を表し、Rは、置換基を有するか若しくは置換基を有さない炭素原子数1~30のアルキル基又は置換基を有するか若しくは置換基を有さない炭素原子数6~50のアリール基を表し、R’、R’’及びR’’’のそれぞれが複数個ある場合、それらは同一でも異なっていてもよい。)
イオン性ポリマーは、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位及び式(20)で表される構造単位からなる群から選ばれる1種以上の構造単位を、全構造単位中、15~100モル%含むことが好ましい。
式(13)で表される構造単位は、上記式(1)で表される基及び上記式(3)で表される基を含む構造単位である。
Figure JPOXMLDOC01-appb-C000002

(式(13)中、Rは、式(14)で表される基を含む1価の基であり、ArはR以外の、置換基を有するか又は置換基を有さない(2+n4)価の芳香族基を表し、n4は、1以上の整数を表す。Rは、複数個ある場合、それらは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000003
式(14)中、Rは、(1+m1+m2)価の有機基を表し、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は、前述と同じ意味を表し、m1及びm2は、それぞれ独立に1以上の整数を表し、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3のそれぞれが複数個ある場合、それらは同一でも異なっていてもよい。)
式(15)で表される構造単位は、上記式(2)で表される基及び上記式(3)で表される基を含む構造単位である。
Figure JPOXMLDOC01-appb-C000004

(式(15)中、Rは、式(16)で表される基を含む1価の基であり、Arは、R以外の、置換基を有するか又は置換基を有さない(2+n5)価の芳香族基を表し、n5は、1以上の整数を表す。Rは、複数個ある場合、それらは同一でも異なっていてもよい。
Figure JPOXMLDOC01-appb-C000005

(式(16)中、Rは、(1+m3+m4)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は、前述と同じ意味を表し、m3及びm4は、それぞれ独立に1以上の整数を表す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のそれぞれが複数個ある場合、それらは同一でも異なっていてもよい。)
式(17)で表される構造単位は、上記式(1)で表される基及び上記式(3)で表される基を含む構造単位である。
Figure JPOXMLDOC01-appb-C000006

(式(17)中、Rは、式(18)で表される基を含む1価の基であり、Rは、式(19)で表される基を含む1価の基であり、Arは、R及びR以外の、置換基を有するか又は置換基を有さない(2+n6+n7)価の芳香族基を表し、n6及びn7は、それぞれ独立に1以上の整数を表し、R及びRのおのおのが複数個ある場合、それらは同一でも異なっていてもよい。
-R-{(Qn1-Y(Ma1(Zb1m5  (18)
 式(18)中、Rは、直接結合又は(1+m5)価の有機基を表し、Q、Y、M、Z、n1、a1及びb1は前述と同じ意味を表し、m5は1以上の整数を表す。Q、Y、M、Z、n1、a1及びb1のおのおのが複数個ある場合、それらは同一でも異なっていてもよい。
-R-{(Qn3-Ym6  (19)
 式(19)中、Rは、単結合又は(1+m6)価の有機基を表し、Y及びn3は、前述と同じ意味を表し、m6は、1以上の整数を表す。ただし、Rが単結合のとき、m6は1を表し、Q、Y及びn3のおのおのが複数個ある場合、それらは同一でも異なっていてもよい。)
式(20)で表される構造単位は、上記式(2)で表される基及び上記式(3)で表される基を含む構造単位である。
Figure JPOXMLDOC01-appb-C000007

(式(20)中、Rは、式(21)で表される基を含む1価の基であり、R10は、式(22)で表される基を含む1価の基であり、Arは、R及びR10以外の、置換基を有するか又は置換基を有さない(2+n8+n9)価の芳香族基を表し、n8及びn9は、それぞれ独立に1以上の整数を表す。R及びR10のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。
-R11-{(Qn2-Y(Ma2(Zb2m7  (21)
 式(21)中、R11は、単結合又は(1+m7)価の有機基を表し、Q、Y、M、Z、n2、a2及びb2は、前述と同じ意味を表し、m7は、1以上の整数を表す。ただし、R11が単結合のとき、m7は1を表し、Q、Y、M、Z、n2、a2及びb2のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。
-R12-{(Qn3-Ym8  (22)
 式(22)中、R12は、単結合又は(1+m8)価の有機基を表し、Y及びn3は、前述と同じ意味を表し、m8は、1以上の整数を表す。ただし、R12が単結合のとき、m8は1を表し、Q、Y及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
イオン性ポリマー中の構造単位は、式(1)で表される基を2種類以上含んでいてもよく、式(2)で表される基を2種類以上含んでいてもよく、式(3)で表される基を2種類以上含んでいてもよい。以下、式(1)~(3)で表される基についてより詳細に説明する。
-式(1)で表される基-
 式(1)中、Qで表される2価の有機基としては、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数2~50のアルケニレン基や、エチニレン基等の、置換基を有するか又は置換基を有さない炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4’-ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルキレンオキシ基;炭素原子を含む置換基を有するイミノ基;炭素原子を含む置換基を有するシリレン基が挙げられる。イオン性ポリマーの原料となるモノマー(以下、「原料モノマー」と言う。)の合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
これらの基が有している置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、ヒドロキシ基、カルボキシル基、置換カルボキシル基、シアノ基及びニトロ基等が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。これらのうち、アミノ基、シリル基、ハロゲン原子、ヒドロキシ基及びニトロ基以外の置換基は炭素原子を含む。
以下、置換基について説明する。なお、本明細書において、「C~C」(m、nはm<nを満たす正の整数である)という用語は、この用語とともに記載された有機基の炭素原子数がm~nであることを表す。例えば、C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表し、C~Cアルキルアリール基であれば、アルキル基の炭素原子数がm~nであることを表し、アリール-C~Cアルキル基であれば、アルキル基の炭素原子数がm~nであることを表す。
アルキル基は、直鎖状でも分岐状でもよく、シクロアルキル基でもよい。アルキル基の炭素原子数は1~20であると好ましく、1~10がより好ましい。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等が挙げられる。
アルキル基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキル基としては、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基等が挙げられる。なお、C1~C12アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基が挙げられる。
アルコキシ基は、直鎖状でも分岐状でもよく、シクロアルキルオキシ基であってもよく、置換基を有していてもよい。アルコキシ基の炭素原子数は1~20であると好ましく、1~10がより好ましい。アルコキシ基としては、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ラウリルオキシ基等が挙げられる。
アルコキシ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルコキシ基としては、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシルオキシ基、パーフルオロオクチルオキシ基等が挙げられる。また、アルコキシ基には、メトキシメチルオキシ基、2-メトキシエチルオキシ基も含まれる。なお、C~C12アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられる。
アルキルチオ基としては、直鎖状でも分岐状でもよく、シクロアルキルチオ基であってもよく、置換基を有していてもよい。アルキルチオ基の炭素原子数は1~20であると好ましく、1~10がより好ましい。アルキルチオ基としては、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基等が挙げられる。
アルキルチオ基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アルキルチオ基としては、トリフルオロメチルチオ基等が挙げられる。
アリール基は、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子1個を除いた残りの原子団である。アリール基には、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基(例えば、ビニレン基等のアルケニレン基)を介して結合した基も含まれる。アリール基は、炭素原子数が6~60であると好ましく、7~48であることがより好ましい。アリール基としては、フェニル基、C~C12アルコキシフェニル基、C~C12アルキルフェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等が挙げられる。
アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、ペンタフルオロフェニル基等が挙げられる。アリール基の中では、C~C12アルコキシフェニル基、C~C12アルキルフェニル基が好ましい。
アリール基のうち、C1~C12アルコキシフェニル基としては、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基等が挙げられる。
アリール基のうち、C~C12アルキルフェニル基としては、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基等が挙げられる。
アリールオキシ基は、炭素原子数が6~60であると好ましく、7~48であるとより好ましい。アリールオキシ基としては、フェノキシ基、C~C12アルコキシフェノキシ基、C~C12アルキルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、ペンタフルオロフェニルオキシ基等が挙げられる。アリールオキシ基の中では、C~C12アルコキシフェノキシ基及びC~C12アルキルフェノキシ基が好ましい。
アリールオキシ基のうち、C~C12アルコキシフェノキシ基としては、メトキシフェノキシ基、エトキシフェノキシ基、プロピルオキシフェノキシ基、イソプロピルオキシフェノキシ基、ブトキシフェノキシ基、イソブトキシフェノキシ基、s-ブトキシフェノキシ基、t-ブトキシフェノキシ基、ペンチルオキシフェノキシ基、ヘキシルオキシフェノキシ基、シクロヘキシルオキシフェノキシ基、ヘプチルオキシフェノキシ基、オクチルオキシフェノキシ基、2-エチルヘキシルオキシフェノキシ基、ノニルオキシフェノキシ基、デシルオキシフェノキシ基、3,7-ジメチルオクチルオキシフェノキシ基、ラウリルオキシフェノキシ基等が挙げられる。
アリールオキシ基のうち、C~C12アルキルフェノキシ基としては、メチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5-トリメチルフェノキシ基、メチルエチルフェノキシ基、イソプロピルフェノキシ基、ブチルフェノキシ基、イソブチルフェノキシ基、s-ブチルフェノキシ基、t-ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基等が挙げられる。
アリールチオ基は、例えば、前述のアリール基に硫黄元素が結合した基である。アリールチオ基は、アリール基の芳香環上に置換基を有していてもよい。アリールチオ基は、炭素原子数が6~60であると好ましく、6~30であることがより好ましい。アリールチオ基としては、フェニルチオ基、C~C12アルコキシフェニルチオ基、C~C12アルキルフェニルチオ基、1-ナフチルチオ基、2-ナフチルチオ基、ペンタフルオロフェニルチオ基等が挙げられる。
アリールアルキル基は、例えば、前述のアリール基に前述のアルキル基が結合した基である。アリールアルキル基は、置換基を有していてもよい。アリールアルキル基は、炭素原子数が7~60であると好ましく、7~30であることがより好ましい。アリールアルキル基としては、フェニル-C~C12アルキル基、C~C12アルコキシフェニル-C~C12アルキル基、C~C12アルキルフェニル-C~C12アルキル基、1-ナフチル-C~C12アルキル基、2-ナフチル-C~C12アルキル基等が挙げられる。
アリールアルコキシ基は、例えば、前述のアリール基に前述のアルコキシ基が結合した基である。アリールアルコキシ基は、置換基を有していてもよい。アリールアルコキシ基は、炭素原子数が7~60であると好ましく、7~30であることがより好ましい。アリールアルコキシ基としては、フェニル-C~C12アルコキシ基、C~C12アルコキシフェニル-C~C12アルコキシ基、C~C12アルキルフェニル-C~C12アルコキシ基、1-ナフチル-C~C12アルコキシ基、2-ナフチル-C~C12アルコキシ基等が挙げられる。
アリールアルキルチオ基は、例えば、前述のアリール基に前述のアルキルチオ基が結合した基である。アリールアルキルチオ基は、置換基を有していてもよい。アリールアルキルチオ基は、炭素原子数が7~60であると好ましく、7~30であることがより好ましい。アリールアルキルチオ基としては、フェニル-C~C12アルキルチオ基、C~C12アルコキシフェニル-C~C12アルキルチオ基、C~C12アルキルフェニル-C~C12アルキルチオ基、1-ナフチル-C~C12アルキルチオ基、2-ナフチル-C~C12アルキルチオ基等が挙げられる。
アリールアルケニル基は、例えば、前述のアリール基にアルケニル基が結合した基である。アリールアルケニル基は、炭素原子数が8~60であると好ましく、8~30であることがより好ましい。アリールアルケニル基としては、フェニル-C~C12アルケニル基、C~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基、1-ナフチル-C~C12アルケニル基、2-ナフチル-C~C12アルケニル基等が挙げられ、C~C12アルコキシフェニル-C~C12アルケニル基、C~C12アルキルフェニル-C~C12アルケニル基が好ましい。なお、C~C12アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、1-ペンテニル基、2-ペンテニル基、1-ヘキセニル基、2-ヘキセニル基、1-オクテニル基が挙げられる。
アリールアルキニル基は、例えば、前述のアリール基にアルキニル基が結合した基である。アリールアルキニル基は、炭素原子数が8~60であると好ましく、8~30であることがより好ましい。アリールアルキニル基としては、フェニル-C~C12アルキニル基、C~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基、1-ナフチル-C~C12アルキニル基、2-ナフチル-C~C12アルキニル基等が挙げられ、C~C12アルコキシフェニル-C~C12アルキニル基、C~C12アルキルフェニル-C~C12アルキニル基が好ましい。なお、C~C12アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、1-ペンチニル基、2-ペンチニル基、1-ヘキシニル基、2-ヘキシニル基、1-オクチニル基が挙げられる。
置換アミノ基としては、アミノ基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1又は2個の基によって置換されたアミノ基が好ましい。アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素原子数は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで、1~60であると好ましく、2~48がより好ましい。
置換アミノ基としては、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C~C12アルキル)アミノ基、(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、(C~C12アルキルフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルキルフェニル-C~C12アルキル)アミノ基、1-ナフチル-C~C12アルキルアミノ基、2-ナフチル-C~C12アルキルアミノ基等が挙げられる。
置換シリル基としては、シリル基の中の少なくとも1個の水素原子が、アルキル基、アリール基、アリールアルキル基及び1価の複素環基からなる群から選択される1~3個の基によって置換されたシリル基が挙げられる。アルキル基、アリール基、アリールアルキル基又は1価の複素環基は置換基を有していてもよい。置換シリル基の炭素原子数は、アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数を含めないで、1~60であると好ましく、3~48がより好ましい。
置換シリル基としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C~C12アルキル)シリル基、(C~C12アルコキシフェニル-C~C12アルキル)シリル基、(C~C12アルキルフェニル-C~C12アルキル)シリル基、(1-ナフチル-C~C12アルキル)シリル基、(2-ナフチル-C~C12アルキル)シリル基、(フェニル-C~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t-ブチルジフェニルシリル基、ジメチルフェニルシリル基等が挙げられる。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
アシル基は、炭素原子数が2~20であると好ましく、2~18であることがより好ましい。アシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基等が挙げられる。
アシルオキシ基は、炭素原子数が2~20であると好ましく、2~18であることがより好ましい。アシルオキシ基としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。
イミン残基は、式:H-N=C<及び式:-N=CH-の少なくとも一方で表される構造を有するイミン化合物から、この構造中の水素原子1個を除いた残基を意味する。このようなイミン化合物としては、例えば、アルジミン、ケチミン及びアルジミン中の窒素原子に結合した水素原子がアルキル基、アリール基、アリールアルキル基、アリールアルケニル基、アリールアルキニル基等で置換された化合物が挙げられる。イミン残基の炭素原子数は、2~20であると好ましく、2~18がより好ましい。イミン残基としては、例えば、一般式:-CRβ=N-Rγ又は一般式:-N=C(Rγ(式中、Rβは水素原子、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表し、Rγは独立に、アルキル基、アリール基、アリールアルキル基、アリールアルケニル基、又はアリールアルキニル基を表す。ただし、Rγが2個存在する場合、2個のRγは相互に結合し一体となって2価の基、例えば、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の炭素原子数2~18のアルキレン基として環を形成してもよい。)で表される基が挙げられる。イミン残基としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000008

(式中、Meはメチル基を示し、以下、同様である。)
アミド基は、炭素原子数が1~20であると好ましく、2~18であることがより好ましい。アミド基としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基等が挙げられる。
酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基であり、炭素原子数が4~20であると好ましく、4~18であることがより好ましい。酸イミド基としては、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000009
1価の複素環基とは、複素環式化合物から水素原子1個を除いた残りの原子団をいう。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。1価の複素環基は置換基を有していてもよい。1価の複素環基は、炭素原子数が3~60であると好ましく、3~20がより好ましい。なお、1価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。
このような1価の複素環基としては、例えば、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基が挙げられ、中でも、チエニル基、C~C12アルキルチエニル基、ピリジル基及びC~C12アルキルピリジル基が好ましい。なお、1価の複素環基としては、1価の芳香族複素環基が好ましい。
置換カルボキシル基とは、カルボキシル基中の水素原子が、アルキル基、アリール基、アリールアルキル基又は1価の複素環基で置換された基、すなわち、式:-C(=O)OR(式中、Rはアルキル基、アリール基、アリールアルキル基又は1価の複素環基)で表される基である。置換オキシカルボニル基は、炭素原子数が2~60であると好ましく、2~48であることがより好ましい。アルキル基、アリール基、アリールアルキル基又は1価の複素環基は、置換基を有していてもよい。なお、上記の炭素原子数には、アルキル基、アリール基、アリールアルキル基又は1価の複素環基が有していてもよい置換基の炭素原子数は含まないものとする。
置換カルボキシル基としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、s-ブトキシカルボニル基、t-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2-エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7-ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基等が挙げられる。
式(1)中、Yは、-CO 、-SO 、-SO 、-PO 、又は-B(R 等の1価の基を表す。Yとしては、イオン性ポリマーの酸性度の観点からは-CO 、-SO 、-PO が好ましく、-CO がより好ましい。イオン性ポリマーの安定性の観点からは、-CO 、-SO 、-SO 又は-PO が好ましい。
式(1)中、Mは、金属カチオン又は置換基を有するか若しくは置換基を有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられる。なかでも、Li、Na、K、Cs、Ag、Mg2+、Ca2+が好ましい。また、アンモニウムカチオンが有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、i-ブチル基、t-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。
式(1)中、Zは、F、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を表す。
式(1)中、n1は、0以上の整数を表す。原料モノマーの合成の観点から、好ましくは0から8の整数であり、より好ましくは0から2の整数である。
式(1)中、a1は、1以上の整数を表し、b1は0以上の整数を表す。
a1及びb1は、式(1)で表される基の電荷が0となるように選択される。例えば、Yが-CO 、-SO 、-SO 、-PO 、又は-B(R であり、Mが1価の金属カチオン又は置換基を有するか若しくは置換基を有さないアンモニウムカチオンであり、ZがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合は、a1及びb1の値は、a1=b1+1を満たすように選択される。また、Yが-CO 、-SO 、-SO 、-PO 、又は-B(R --であり、Mが2価の金属カチオンであり、ZがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合は、a1及びb1の値は、b1=2×a1-1を満たすように選択される。
が-CO 、-SO 、-SO 、-PO 、又は-B(R であり、Mが3価の金属カチオンであり、ZがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合は、a1及びb1の値は、b1=3×a1-1を満たすように選択される。Yが-CO 、-SO 、-SO 、-PO 、又は-B(R であり、Mが1価の金属カチオン又は置換基を有するか若しくは置換基を有さないアンモニウムカチオンであり、ZがSO 2-又はHPO 2-である場合には、a1及びb1の値は、a1=2×b1+1を満たすように選択される。a1とb1との関係を表す上記のいずれの数式においても、a1は好ましくは1から5の整数であり、より好ましくは1又は2である。
は置換基を有するか若しくは置換基を有さない炭素原子数1~30のアルキル基又は置換基を有するか若しくは置換基を有さない炭素原子数6~50のアリール基を表すが、これらの基が有していてもよい置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1~20のアルキル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。
式(1)で表される基としては、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000010
-式(2)で表される基-
 式(2)中、Qで表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられる。原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
で表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(2)中、Yはカルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオン、又はヨードニウムカチオンを表す。
 カルボカチオンとしては、例えば、
-C
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 アンモニウムカチオンとしては、例えば、
-N
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 ホスホニルカチオンとしては、例えば、
-P
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 スルホニルカチオンとしては、例えば、
-S
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
 ヨードニウムカチオンとしては、例えば、
-I
(式中、Rは、同一又は相異なり、アルキル基又はアリール基を表す。)で表される基が挙げられる。
式(2)中、Yは、原料モノマーの合成の容易さ並びに原料モノマー及びイオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、カルボカチオン、アンモニウムカチオン、ホスホニルカチオン、スルホニルカチオンが好ましく、アンモニウムカチオンがより好ましい。
式(2)中、Zは、金属カチオン又は置換基を有するか若しくは置換基を有さないアンモニウムカチオンを表す。金属カチオンとしては、1価、2価又は3価のイオンが好ましく、Li、Na、K、Cs、Be、Mg、Ca、Ba、Ag、Al、Bi、Cu、Fe、Ga、Mn、Pb、Sn、Ti、V、W、Y、Yb、Zn、Zr等のイオンが挙げられる。また、アンモニウムカチオンが有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素原子数1~10のアルキル基が挙げられる。
式(2)中、MはF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を表す。
式(2)中、n2は、0以上の整数を表し、好ましくは0から6の整数であり、より好ましくは0から2の整数である。
式(2)中、a2は、1以上の整数を表し、b2は、0以上の整数を表す。
a2及びb2は、式(2)で表される基の電荷が0となるように選択される。例えば、MがF、Cl、Br、I、OH、RSO 、RCOO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、HSO 、HPO 、BF 又はPF である場合、Zが1価の金属イオン又は置換基を有するか若しくは置換基を有さないアンモニウムイオンであれば、a2及びb2の値は、a2=b2+1を満たすように選択され、Zが2価の金属イオンであれば、a2及びb2の値は、a2=2×b2+1を満たすように選択され、Zが3価の金属イオンであれば、a2及びb2の値は、a2=3×b2+1を満たすように選択される。
がSO 2-、HPO 2-である場合、Zが1価の金属イオン又は置換基を有するか若しくは置換基を有さないアンモニウムイオンであれば、a2及びb2の値は、b2=2×a2-1を満たすように選択され、Zが3価の金属イオンであれば、a2及びb2の値は、2×a2=3×b2+1の関係を満たすように選択される。a2とb2との関係を表す上記のいずれの数式においても、a2は好ましくは1から3の整数であり、より好ましくは1又は2である。
式(2)中、Rは、置換基を有するか若しくは置換基を有さない炭素原子数1~30のアルキル基又は置換基を有するか若しくは置換基を有さない炭素原子数6~50のアリール基を表す。これらの基が有していてもよい置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基等の炭素原子数1~20のアルキル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。
式(2)で表される基としては、例えば、以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
-式(3)で表される基-
 式(3)中、Qで表される2価の有機基としては、前述のQで表される2価の有機基について例示したものと同様の基が挙げられる。原料モノマーの合成の容易さの観点からは、2価の飽和炭化水素基、アリーレン基、アルキレンオキシ基が好ましい。
で表される2価の有機基の例として挙げた基は置換基を有していてもよく、当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
で表される2価の有機基としては、-(CH)-で表される基が好ましい。
式(3)中、n3は0以上の整数を表し、好ましくは0から20の整数であり、より好ましくは0から8の整数である。
式(3)中、Yは、-CN又は式(4)~(12)のいずれかで表される基を表す。
式(4)~(12)中、R’で表される2価の炭化水素基としては、メチレン基、エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,2-ブチレン基、1,3-ブチレン基、1,4-ブチレン基、1,5-ペンチレン基、1,6-ヘキシレン基、1,9-ノニレン基、1,12-ドデシレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50の2価の飽和炭化水素基;エテニレン基、プロペニレン基、3-ブテニレン基、2-ブテニレン基、2-ペンテニレン基、2-ヘキセニレン基、2-ノネニレン基、2-ドデセニレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数2~50のアルケニレン基、及び、エチニレン基等の、置換基を有するか又は置換基を有さない炭素原子数2~50の2価の不飽和炭化水素基;シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数3~50の2価の環状飽和炭化水素基;1,3-フェニレン基、1,4-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、2,6-ナフチレン基、ビフェニル-4,4’-ジイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~50のアリーレン基;メチレンオキシ基、エチレンオキシ基、プロピレンオキシ基、ブチレンオキシ基、ペンチレンオキシ基、ヘキシレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルキレンオキシ基等が挙げられる。
これらの基における置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(4)~(12)中、R’’で表される1価の炭化水素基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基が好ましい。
これらの基における置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(5)中、R’’’で表される3価の炭化水素基としては、メタントリイル基、エタントリイル基、1,2,3-プロパントリイル基、1,2,4-ブタントリイル基、1,2,5-ペンタントリイル基、1,3,5-ペンタントリイル基、1,2,6-ヘキサントリイル基、1,3,6-ヘキサントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキルトリイル基;1,2,3-ベンゼントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基等が挙げられる。イオン性ポリマーの溶解性の観点からは、メタントリイル基、エタントリイル基、1,2,4-ベンゼントリイル基、1,3,5-ベンゼントリイル基が好ましい。
これらの基における置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(4)~(12)中、Rとしては、イオン性ポリマーの溶解性の観点からは、メチル基、エチル基、フェニル基、1-ナフチル基、2-ナフチル基が好ましい。
式(4)及び式(5)中、a3は1以上の整数を表し、3~10の整数が好ましい。式(6)~(12)中、a4は0以上の整数を表す。式(6)においては、a4は、0~30の整数が好ましく、3~20の整数がより好ましい。式(7)~(10)においては、a4は、0~10の整数が好ましく、0~5の整数がより好ましい。式(11)においては、a4は、0~20の整数が好ましく、3~20の整数がより好ましい。式(12)においては、a4は、0~20の整数が好ましく、0~10の整数がより好ましい。
としては、原料モノマーの合成の容易さの観点からは、-CN、式(4)で表される基、式(6)で表される基、式(10)で表される基、又は式(11)で表される基が好ましく、式(4)で表される基、式(6)で表される基、又は式(11)で表される基がより好ましく、以下の基が特に好ましい。
Figure JPOXMLDOC01-appb-C000013
-イオン性ポリマー中の構造単位-
 本実施形態のイオン性ポリマーは、式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位からなる群より選ばれる1種以上の構造単位を有することが好ましく、この構造単位を全構造単位中、15~100モル%有するイオン性ポリマーであることがより好ましい。
(式(13)で表される構造単位)
 式(13)中、Rは式(14)で表される基を含む1価の基であり、ArはR以外の、置換基を有するか又は置換基を有さない(2+n4)価の芳香族基を表し、n4は1以上の整数を表す。
式(14)で表される基は、Arに直接結合していてもよく、所定の基を介してArに結合していてもよい。この所定の基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のオキシアルキレン基;置換基を有するか又は置換基を有さないイミノ基;置換基を有するか又は置換基を有さないシリレン基;置換基を有するか又は置換基を有さないエテニレン基;エチニレン基;置換基を有するか又は置換基を有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子等が挙げられる。
Arは、R以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
Arが有するR以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基が好ましい。
式(13)中、n4は、1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(13)中のAr1で表される(2+n4)価の芳香族基としては、(2+n4)価の芳香族炭化水素基、(2+n4)価の芳香族複素環基が挙げられる。なかでも、炭素原子のみからなるか、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n4)価の芳香族基が好ましい。
(2+n4)価の芳香族基としては、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基;単環式芳香環及び縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環の集合体から水素原子を(2+n4)個除いた(2+n4)価の基;縮合多環式芳香環又は芳香環の集合体の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n4)個除いた(2+n4)価の基等が挙げられる。
単環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000014
縮合多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000015
芳香環の集合体としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000016
有橋多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000017
(2+n4)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n4)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n4)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n4)個除いた基がさらに好ましい。
式(14)中、Rで表される(1+m1+m2)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m1+m2)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m1+m2)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m1+m2)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m1+m2)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m1+m2)個の水素原子を除いた基、アリール基から(m1+m2)個の水素原子を除いた基、アルコキシ基から(m1+m2)個の水素原子を除いた基が好ましい。
これらの基における置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
(式(15)で表される構造単位)
 式(15)中、Rは、式(16)で表される基を含む1価の基であり、ArはR以外の、置換基を有するか又は置換基を有さない(2+n5)価の芳香族基を表し、n5は1以上の整数を表す。
式(16)で表される基は、Arに直接結合していてもよく、所定の基を介してArに結合していてもよい。この所定の基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のオキシアルキレン基;置換基を有するか又は置換基を有さないイミノ基;置換基を有するか又は置換基を有さないシリレン基;置換基を有するか又は置換基を有さないエテニレン基;エチニレン基;置換基を有するか又は置換基を有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子等が挙げられる。
Arは、R以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
Arが有するR以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基が好ましい。
式(15)中、n5は、1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(15)中のArで表される(2+n5)価の芳香族基としては、(2+n5)価の芳香族炭化水素基、(2+n5)価の芳香族複素環基が挙げられる。なかでも、炭素原子のみからなるか、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n5)価の芳香族基が好ましい。
(2+n5)価の芳香族基としては、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環、アザジアゾール環等の単環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基;単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環の集合体から水素原子を(2+n5)個除いた(2+n5)価の基;縮合多環式芳香環又は芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n5)個除いた(2+n5)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~12で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。
芳香環の集合体としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。
(2+n5)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~14、26~29、37~39又は41で表される環から水素原子を(2+n5)個除いた基が好ましく、式1~6、8、13、26、27、37又は41で表される環から水素原子を(2+n5)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n5)個除いた基がさらに好ましい。
式(16)中、m3及びm4はそれぞれ独立に1以上の整数を表す。
式(16)中、Rで表される(1+m3+m4)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m3+m4)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m3+m4)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m3+m4)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m3+m4)個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基から(m3+m4)個の水素原子を除いた基、アリール基から(m3+m4)個の水素原子を除いた基、アルコキシ基から(m3+m4)個の水素原子を除いた基が好ましい。
これらの基における置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
(式(17)で表される構造単位)
 式(17)中、Rは、式(18)で表される基を含む1価の基であり、Rは、式(19)で表される基を含む1価の基であり、Arは、R及びR以外の、置換基を有するか又は置換基を有さない(2+n6+n7)価の芳香族基を表し、n6及びn7はそれぞれ独立に1以上の整数を表す。
式(18)で表される基及び式(19)で表される基は、Arに直接結合していてもよく、所定の基を介してArに結合していてもよい。この所定の基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を炭素原子数1~50のオキシアルキレン基;置換基を有するか又は置換基を有さないイミノ基;置換基を有するか又は置換基を有さないシリレン基;置換基を有するか又は置換基を有さないエテニレン基;エチニレン基;置換基を有するか又は置換基を有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子等が挙げられる。
ArはR及びR以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
Arが有するR及びR以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基が好ましい。
式(17)中、n6は、1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(17)中、n7は、1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(17)中のArで表される(2+n6+n7)価の芳香族基としては、(2+n6+n7)価の芳香族炭化水素基、(2+n6+n7)価の芳香族複素環基が挙げられる。なかでも、炭素原子のみからなるか、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n6+n7)価の芳香族基が好ましい。(2+n6+n7)価の芳香族基としては、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環、オキサゾール環等の単環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;単環式芳香環及び該縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環の集合体から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基;縮合多環式芳香環又は芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n6+n7)個除いた(2+n6+n7)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~5、式7~10で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。
芳香環の集合体としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。
(2+n6+n7)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n6+n7)個除いた基が好ましく、式1、37又は41で表される環から水素原子を(2+n6+n7)個除いた基がより好ましく、式1、38又は42で表される環から水素原子を(2+n6+n7)個除いた基がさらに好ましい。
式(18)中、Rは、単結合又は(1+m5)価の有機基を表し、(1+m5)価の有機基であることが好ましい。
式(18)中、Rで表される(1+m5)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基からm5個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基からm5個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm5個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm5個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基からm5個の水素原子を除いた基、アリール基からm5個の水素原子を除いた基、アルコキシ基からm5個の水素原子を除いた基が好ましい。
これらの基における置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(18)中、m5は1以上の整数を表す。ただし、Rが単結合のときは、m5は1を表す。
式(19)中、Rは単結合又は(1+m6)価の有機基を表し、(1+m6)価の有機基であることが好ましい。
式(19)中、Rで表される(1+m6)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基からm6個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基からm6個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm6個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm6個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm6個の水素原子を除いた基、アリール基からm6個の水素原子を除いた基、アルコキシ基からm6個の水素原子を除いた基が好ましい。
これらの基における置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(19)中、m6は1以上の整数を表す。ただし、Rが単結合のときは、m6は1を表す。
(式(20)で表される構造単位)
 式(20)中、Rは、式(21)で表される基を含む1価の基であり、R10は、式(22)で表される基を含む1価の基であり、Arは、R及びR10以外の置換基を有するか又は置換基を有さない(2+n8+n9)価の芳香族基を表し、n8及びn9はそれぞれ独立に1以上の整数を表す。
式(21)で表される基及び式(22)で表される基は、Ar4に直接結合していてもよく、所定の基を介してArに結合していてもよい。この所定の基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ノニレン基、ドデシレン基、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロへキシレン基、シクロノニレン基、シクロドデシレン基、ノルボニレン基、アダマンチレン基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルキレン基;オキシメチレン基、オキシエチレン基、オキシプロピレン基、オキシブチレン基、オキシペンチレン基、オキシヘキシレン基、オキシノニレン基、オキシドデシレン基、シクロプロピレンオキシ基、シクロブチレンオキシ基、シクロペンチレンオキシ基、シクロへキシレンオキシ基、シクロノニレンオキシ基、シクロドデシレンオキシ基、ノルボニレンオキシ基、アダマンチレンオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のオキシアルキレン基;置換基を有するか又は置換基を有さないイミノ基;置換基を有するか又は置換基を有さないシリレン基;置換基を有するか又は置換基を有さないエテニレン基;エチニレン基;置換基を有するか又は置換基を有さないメタントリイル基;酸素原子、窒素原子、硫黄原子等のヘテロ原子を介してAr4に結合していてもよい。
Arは、R及びR10以外の置換基を有していてもよい。当該置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
Arが有するR及びR10以外の置換基としては、原料モノマーの合成の容易さの観点から、アルキル基、アルコキシ基、アリール基、アリールオキシ基、カルボキシル基又は置換カルボキシル基が好ましい。
式(20)中、n8は、1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(20)中、n9は、1以上の整数を表し、好ましくは1から4の整数であり、より好ましくは1から3の整数である。
式(20)中のArで表される(2+n8+n9)価の芳香族基としては、(2+n8+n9)価の芳香族炭化水素基、(2+n8+n9)価の芳香族複素環基が挙げられる。なかでも、炭素原子のみからなるか、又は、炭素原子と、水素原子、窒素原子及び酸素原子からなる群から選ばれる1つ以上の原子とからなる(2+n8+n9)価の芳香族基が好ましい。
(2+n8+n9)価の芳香族基としては、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、フラン環、ピロール環、ピラゾール環、イミダゾール環等の単環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;単環式芳香環からなる群から選ばれる二つ以上の環が縮合した縮合多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;単環式芳香環及び縮合多環式芳香環からなる群より選ばれる二つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環の集合体から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基;縮合多環式芳香環又は芳香環の集合体の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を(2+n8+n9)個除いた(2+n8+n9)価の基等が挙げられる。
単環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式1~5、式7~10で表される環が挙げられる。
縮合多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式13~27で表される環が挙げられる。
芳香環の集合体としては、例えば、式(13)で表される構造単位に関する説明中で例示した式28~36で表される環が挙げられる。
有橋多環式芳香環としては、例えば、式(13)で表される構造単位に関する説明中で例示した式37~44で表される環が挙げられる。
(2+n8+n9)価の芳香族基としては、原料モノマーの合成の容易さの観点から、式1~5、7~10、13、14、26~29、37~39又は41で表される環から水素原子を(2+n8+n9)個除いた基が好ましく、式1~6、8、14、27、28、38又は42で表される環から水素原子を(2+n8+n9)個除いた基がより好ましく、式1、37又は41で表される環から水素原子を(2+n8+n9)個除いた基がさらに好ましい。
式(21)中、R11は、単結合又は(1+m7)価の有機基を表し、(1+m7)価の有機基であることが好ましい。
式(21)中、R11で表される(1+m7)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基からm7個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基からm7個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm7個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm7個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm7個の水素原子を除いた基、アリール基からm7個の水素原子を除いた基、アルコキシ基からm7個の水素原子を除いた基が好ましい。
これらの基における置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(21)中、m7は1以上の整数を表す。ただし、R11が単結合のとき、m7は1を表す。
式(22)中、R12は単結合又は(1+m8)価の有機基を表し、(1+m8)価の有機基であることが好ましい。
式(22)中、R12で表される(1+m8)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基からm8個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基からm8個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基からm8個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基からm8個の水素原子を除いた基が挙げられ、原料モノマーの合成の容易さの観点からは、アルキル基からm8個の水素原子を除いた基、アリール基からm8個の水素原子を除いた基、アルコキシ基からm8個の水素原子を除いた基が好ましい。
これらの基における置換基としては、前述のQに関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(22)中、m8は1以上の整数を表す。ただし、R12が単結合のとき、m8は1を表す。
以下、上述した各構造単位の例について説明する。
(式(13)で表される構造単位の例)
 式(13)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(23)で表される構造単位、式(24)で表される構造単位が好ましく、式(24)で表される構造単位がより好ましい。
まず、式(23)で表される構造単位について説明する。
Figure JPOXMLDOC01-appb-C000018

(式(23)中、R13は(1+m9+m10)価の有機基を表し、R14は1価の有機基を表し、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m9及びm10はそれぞれ独立に1以上の整数を表す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(23)中、R13で表される(1+m9+m10)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m9+m10)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m9+m10)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m9+m10)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m9+m10)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m9+m10)個の水素原子を除いた基、アリール基から(m9+m10)個の水素原子を除いた基、アルコキシ基から(m9+m10)個の水素原子を除いた基が好ましい。
式(23)中、R14で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から1個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。
式(23)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000019
次に、式(24)で表される構造単位について説明する。
Figure JPOXMLDOC01-appb-C000020

(式(24)中、R13は、(1+m11+m12)価の有機基を表し、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m11及びm12はそれぞれ独立に1以上の整数を表す。R13、m11、m12、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(24)中、R13で表される(1+m11+m12)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m11+m12)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m11+m12)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m11+m12)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m11+m12)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m11+m12)個の水素原子を除いた基、アリール基から(m11+m12)個の水素原子を除いた基、アルコキシ基から(m11+m12)個の水素原子を除いた基が好ましい。
式(24)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
また、式(13)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(25)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000025

(式(25)中、R15は、(1+m13+m14)価の有機基を表し、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m13、m14及びm15はそれぞれ独立に1以上の整数を表す。R15、m13、m14、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(25)中、R15で表される(1+m13+m14)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m13+m14)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m13+m14)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m13+m14)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m13+m14)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m13+m14)個の水素原子を除いた基、アリール基から(m13+m14)個の水素原子を除いた基、アルコキシ基から(m13+m14)個の水素原子を除いた基が好ましい。
式(25)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000026
(式(15)で表される構造単位の例)
 式(15)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(26)で表される構造単位、式(27)で表される構造単位が好ましく、式(27)で表される構造単位がより好ましい。
まず、式(26)で表される構造単位について説明する。
Figure JPOXMLDOC01-appb-C000027

(式(26)中、R16は、(1+m16+m17)価の有機基を表し、R17は1価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(26)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
式(26)中、R17で表される1価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から1個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から1個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から1個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から1個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から1個の水素原子を除いた基、アリール基から1個の水素原子を除いた基、アルコキシ基から1個の水素原子を除いた基が好ましい。
式(26)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000028
次に、式(27)で表される構造単位について説明する。
Figure JPOXMLDOC01-appb-C000029

(式(27)中、R16は、(1+m16+m17)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m16及び、m17はそれぞれ独立に1以上の整数を表す。R16、m16、m17、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(27)中、R16で表される(1+m16+m17)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m16+m17)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m16+m17)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m16+m17)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m16+m17)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m16+m17)個の水素原子を除いた基、アリール基から(m16+m17)個の水素原子を除いた基、アルコキシ基から(m16+m17)個の水素原子を除いた基が好ましい。
式(27)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
また、式(15)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(28)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000033

(式(28)中、R18は、(1+m18+m19)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m18、m19及びm20はそれぞれ独立に1以上の整数を表す。R18、m18、m19、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(28)中、R18で表される(1+m18+m19)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m18+m19)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m18+m19)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m18+m19)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m18+m19)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m18+m19)個の水素原子を除いた基、アリール基から(m18+m19)個の水素原子を除いた基、アルコキシ基から(m18+m19)個の水素原子を除いた基が好ましい。
式(28)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000034
(式(17)で表される構造単位の例)
 式(17)で表される構造単位としては、得られるイオン性ポリマーの電子輸送性の観点からは、式(29)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000035

(式(29)中、R19は、単結合又は(1+m21)価の有機基を表し、R20は、単結合又は(1+m22)価の有機基を表し、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m21及びm22はそれぞれ独立に1以上の整数を表す。ただし、R19が単結合のとき、m21は1を表し、R20が単結合のとき、m22は1を表す。Q、Q、Y、M、Z、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(29)中、R19で表される(1+m21)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m21)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m21)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m21)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m21)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m21)個の水素原子を除いた基、アリール基から(m21)個の水素原子を除いた基、アルコキシ基から(m21)個の水素原子を除いた基が好ましい。
式(29)中、R20で表される(1+m22)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m22)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m22)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m22)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m22)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m22)個の水素原子を除いた基、アリール基から(m22)個の水素原子を除いた基、アルコキシ基から(m22)個の水素原子を除いた基が好ましい。
式(29)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000036
また、式(17)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(30)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000037

(式(30)中、R21は、単結合又は(1+m23)価の有機基を表し、R22は、単結合又は(1+m24)価の有機基を表し、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3は前述と同じ意味を表し、m23及びm24はそれぞれ独立に1以上の整数を表す。ただし、R21が単結合のとき、m23は1を表し、R22が単結合のとき、m24は1を表し、m25及びm26はそれぞれ独立に1以上の整数を表す。m23、m24、R21、R22、Q、Q、Y、M、Z、Y、n1、a1、b1及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(30)中、R21で表される(1+m23)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m23)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m23)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m23)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m23)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m23)個の水素原子を除いた基、アリール基から(m23)個の水素原子を除いた基、アルコキシ基から(m23)個の水素原子を除いた基が好ましい。
式(30)中、R22で表される(1+m24)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m24)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m24)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m24)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m24)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m24)個の水素原子を除いた基、アリール基から(m24)個の水素原子を除いた基、アルコキシ基から(m24)個の水素原子を除いた基が好ましい。
式(30)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000038
(式(20)で表される構造単位の例)
 式(20)で表される構造単位としては、得られる電子輸送性の観点からは、式(31)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000039

(式(31)中、R23は、単結合又は(1+m27)価の有機基を表し、R24は、単結合又は(1+m28)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m27及びm28はそれぞれ独立に1以上の整数を表す。ただし、R23が単結合のとき、m27は1を表し、R24が単結合のとき、m28は1を表す。Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(31)中、R23で表される(1+m27)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m27)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m27)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m27)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m27)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m27)個の水素原子を除いた基、アリール基から(m27)個の水素原子を除いた基、アルコキシ基から(m27)個の水素原子を除いた基が好ましい。
式(31)中、R24で表される(1+m28)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m28)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m28)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m28)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m28)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m28)個の水素原子を除いた基、アリール基から(m28)個の水素原子を除いた基、アルコキシ基から(m28)個の水素原子を除いた基が好ましい。
式(31)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000040
また、式(20)で表される構造単位としては、得られるイオン性ポリマーの耐久性の観点からは、式(32)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000041

(式(32)中、R25は、単結合又は(1+m29)価の有機基を表し、R26は、単結合又は(1+m30)価の有機基を表し、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3は前述と同じ意味を表し、m29及びm30はそれぞれ独立に1以上の整数を表す。ただし、R25が単結合のとき、m29は1を表し、R26が単結合のとき、m30は1を表す。m31及びm32はそれぞれ独立に1以上の整数を表す。m29、m30、R25、R26、Q、Q、Y、M、Z、Y、n2、a2、b2及びn3のおのおのは複数個ある場合、それらは同一でも異なっていてもよい。)
式(32)中、R25で表される(1+m29)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m29)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m29)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m29)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m29)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m29)個の水素原子を除いた基、アリール基から(m29)個の水素原子を除いた基、アルコキシ基から(m29)個の水素原子を除いた基が好ましい。
式(32)中、R26で表される(1+m30)価の有機基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~20のアルキル基から(m30)個の水素原子を除いた基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数6~30のアリール基から(m30)個の水素原子を除いた基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ノニルオキシ基、ドデシルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロへキシルオキシ基、シクロノニルオキシ基、シクロドデシルオキシ基、ノルボニルオキシ基、アダマンチルオキシ基、これらの基の中の少なくとも1個の水素原子を置換基で置換した基等の、置換基を有するか又は置換基を有さない炭素原子数1~50のアルコキシ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するアミノ基から(m30)個の水素原子を除いた基;炭素原子を含む置換基を有するシリル基から(m30)個の水素原子を除いた基が挙げられる。原料モノマーの合成の容易さの観点からは、アルキル基から(m30)個の水素原子を除いた基、アリール基から(m30)個の水素原子を除いた基、アルコキシ基から(m30)個の水素原子を除いた基が好ましい。
式(32)で表される構造単位としては、以下の構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000042
(その他の構造単位)
 本実施形態のイオン性ポリマーは、上述した式(13)、(15)、(17)及び(20)で表される構造単位のほかに、さらに式(33)で表される1種以上の構造単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000043

(式(33)中、Arは、置換基を有するか若しくは置換基を有さない2価の芳香族基又は置換基を有するか若しくは置換基を有さない2価の芳香族アミン残基を表し、X’は、置換基を有するか若しくは置換基を有さないイミノ基、置換基を有するか若しくは置換基を有さないシリレン基、置換基を有するか若しくは置換基を有さないエテニレン基又はエチニレン基を表し、m33及びm34はそれぞれ独立に0又は1を表し、m33及びm34の少なくとも1つは1である。)
式(33)中のArで表される2価の芳香族基としては、2価の芳香族炭化水素基、2価の芳香族複素環基が挙げられる。2価の芳香族基としては、ベンゼン環、ピリジン環、1,2-ジアジン環、1,3-ジアジン環、1,4-ジアジン環、1,3,5-トリアジン環、フラン環、ピロール環、チオフェン環、ピラゾール環、イミダゾール環、オキサゾール環、オキサジアゾール環、アザジアゾール環等の単環式芳香環から水素原子を2個除いた2価の基;単環式芳香環からなる群から選ばれる二つ以上が縮合した縮合多環式芳香環から水素原子を2個除いた2価の基;単環式芳香環及び縮合多環式芳香環からなる群より選ばれる2つ以上の芳香環を、単結合、エテニレン基又はエチニレン基で連結してなる芳香環の集合体から水素原子を2個除いた2価の基;縮合多環式芳香環又は芳香環集合の隣り合う2つの芳香環をメチレン基、エチレン基、カルボニル基、イミノ基等の2価の基で橋かけした架橋を有する有橋多環式芳香環から水素原子を2個除いた2価の基等が挙げられる。
縮合多環式芳香環において、縮合する単環式芳香環の数は、イオン性ポリマーの溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。芳香環の集合体において、連結される芳香環の数は、溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。有橋多環式芳香環において、橋かけされる芳香環の数は、イオン性ポリマーの溶解性の観点からは、2~4が好ましく、2~3がより好ましく、2がさらに好ましい。
単環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000044
縮合多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000045
芳香環の集合体としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000046
有橋多環式芳香環としては、例えば、以下の環が挙げられる。
Figure JPOXMLDOC01-appb-C000047
イオン性ポリマーの電子受容性及び正孔受容性のいずれか一方又は両方の観点からは、Arで表される2価の芳香族基は式45~60、61~71、77~80、91、92、93又は96で表される環から水素原子を2個除いた2価の基が好ましく、式45~50、59、60、77、80、91、92又は96で表される環から水素原子を2個除いた2価の基がより好ましい。
上記の2価の芳香族基は、置換基を有していてもよい。当該置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。
式(33)中のAr5で表される2価の芳香族アミン残基としては、式(34)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000048

(式(34)中、Ar、Ar、Ar及びArは、それぞれ独立に、置換基を有するか若しくは置換基を有さないアリーレン基又は置換基を有するか若しくは置換基を有さない2価の複素環基を表し、Ar10、Ar11及びAr12は、それぞれ独立に、置換基を有するか若しくは置換基を有さないアリール基又は置換基を有するか若しくは置換基を有さない1価の複素環基を表し、n10及びm35は、それぞれ独立に、0又は1を表す。)
アリーレン基、アリール基、2価の複素環基、1価の複素環基が有していてもよい置換基としては、ハロゲン原子、アルキル基、アルキルオキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルキルオキシ基、アリールアルキルチオ基、アルケニル基、アルキニル基、アリールアルケニル基、アリールアルキニル基、アシル基、アシルオキシ基、アミド基、酸イミド基、イミン残基、置換アミノ基、置換シリル基、置換シリルオキシ基、置換シリルチオ基、置換シリルアミノ基、シアノ基、ニトロ基、1価の複素環基、ヘテロアリールオキシ基、ヘテロアリールチオ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、アリールアルキルオキシカルボニル基、ヘテロアリールオキシカルボニル基及びカルボキシル基等が挙げられる。置換基は、ビニル基、アセチレン基、ブテニル基、アクリル基、アクリレート基、アクリルアミド基、メタクリル基、メタクリレート基、メタクリルアミド基、ビニルエーテル基、ビニルアミノ基、シラノール基、小員環(シクロプロピル基、シクロブチル基、エポキシ基、オキセタン基、ジケテン基、エピスルフィド基等)を有する基、ラクトン基、ラクタム基、又はシロキサン誘導体の構造を含有する基等の架橋基であってもよい。
n10が0の場合、Ar中の炭素原子及びAr中の炭素原子は、それぞれ窒素原子に直接結合してもよく、-O-、-S-等の2価の基を介して結合していてもよい。
Ar10、Ar11、Ar12で表されるアリール基、1価の複素環基としては、前記で置換基として説明し例示したアリール基、1価の複素環基と同様の基が挙げられる。
Ar、Ar、Ar、Arで表されるアリーレン基としては、芳香族炭化水素から芳香環を構成する炭素原子に結合した水素原子2個を除いた残りの原子団が挙げられる。例えば、ベンゼン環を持つ基、縮合環を持つ基、独立したベンゼン環又は縮合環2個以上が単結合又は2価の有機基(例えば、ビニレン基等のアルケニレン基)を介して結合した基などが挙げられる。
アリーレン基は、炭素原子数が6~60であると好ましく、7~48であることがより好ましい。アリーレン基の具体例としては、フェニレン基、ビフェニレン基、C~C17アルコキシフェニレン基、C~C17アルキルフェニレン基、1-ナフチレン基、2-ナフチレン基、1-アントラセニレン基、2-アントラセニレン基、9-アントラセニレン基が挙げられる。アリール基中の水素原子はフッ素原子で置換されていてもよい。該当するフッ素原子置換アリール基としては、テトラフルオロフェニレン基等が挙げられる。
アリール基の中では、フェニレン基、ビフェニレン基、C~C12アルコキシフェニレン基、C~C12アルキルフェニレン基が好ましい。
Ar、Ar、Ar、Arで表される2価の複素環基としては、複素環式化合物から水素原子2個を除いた残りの原子団が挙げられる。ここで、複素環式化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素として、炭素原子だけでなく、酸素原子、硫黄原子、窒素原子、リン原子、ホウ素原子、ケイ素原子、セレン原子、テルル原子、ヒ素原子等のヘテロ原子を含む有機化合物をいう。2価の複素環基は置換基を有していてもよい。2価の複素環基は、炭素原子数が4~60であると好ましく、4~20がより好ましい。なお、2価の複素環基の炭素原子数には、置換基の炭素原子数は含まないものとする。
このような2価の複素環基としては、例えば、チオフェンジイル基、C~C12アルキルチオフェンジイル基、ピロールジイル基、フランジイル基、ピリジンジイル基、C~C12アルキルピリジンジイル基、ピリダジンジイル基、ピリミジンジイル基、ピラジンジイル基、トリアジンジイル基、ピロリジンジイル基、ピペリジンジイル基、キノリンジイル基、イソキノリンジイル基が挙げられる。中でも、チオフェンジイル基、C~C12アルキルチオフェンジイル基、ピリジンジイル基及びC~C12アルキルピリジンジイル基がより好ましい。
構造単位として2価の芳香族アミン残基を含むイオン性ポリマーは、さらに他の構造単位を有していてもよい。他の構造単位としては、フェニレン基、フルオレンジイル基等のアリーレン基等が挙げられる。なお、これらのイオン性ポリマーの中では、架橋基を含んでいるものが好ましい。
式(34)で表される2価の芳香族アミン残基としては、式101~110で表される芳香族アミンから水素原子を2個除いた基が例示される。
Figure JPOXMLDOC01-appb-C000049
式101~110で表される芳香族アミンは、2価の芳香族アミン残基を生成しうる範囲で置換基を有していてもよい。この置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
式(33)中、X’は、置換基を有するか若しくは置換基を有さないイミノ基、置換基を有するか若しくは置換基を有さないシリレン基、置換基を有するか若しくは置換基を有さないエテニレン基又はエチニレン基を表す。イミノ基、シリル基若しくはエテニレン基が有していてもよい置換基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基、3,7-ジメチルオクチル基、ラウリル基等の炭素原子数1~20のアルキル基;フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基等の炭素原子数6~30のアリール基等が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
イオン性ポリマーの空気、湿気又は熱に対する安定性の観点からは、X’はイミノ基、エテニレン基、エチニレン基が好ましい。
イオン性ポリマーの電子受容性、正孔受容性の観点からは、m33が1であり、m34が0であることが好ましい。
式(33)で表される構造単位としては、イオン性ポリマーの電子受容性の観点からは、式(35)で表される構造単位が好ましい。
Figure JPOXMLDOC01-appb-C000050

(式(35)中、Ar13は、置換基を有するか若しくは置換基を有さないピリジンジイル基、置換基を有するか若しくは置換基を有さないピラジンジイル基、置換基を有するか若しくは置換基を有さないピリミジンジイル基、置換基を有するか若しくは置換基を有さないピリダジンジイル基又は置換基を有するか若しくは置換基を有さないトリアジンジイル基を表す。)
ピリジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピラジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピリミジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
ピリダジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
トリアジンジイル基が有していてもよい置換基としては、前述のQ1に関する説明中で例示した置換基と同様の置換基が挙げられる。置換基が複数個存在する場合には、それらは同一でも異なっていてもよい。
(構造単位の割合)
 本実施形態のイオン性ポリマーに含まれる式(13)で表される構造単位、式(15)で表される構造単位、式(17)で表される構造単位、及び式(20)で表される構造単位の合計の割合は、有機EL素子の発光効率の観点からは、末端の構造単位を除くイオン性ポリマーに含まれる全構造単位中、30~100モル%であることがより好ましい。
(末端の構造単位)
 本実施形態のイオン性ポリマーの末端の構造単位(末端基)としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ラウリル基メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、メチルチオ基、エチルチオ基、プロピルチオ基、イソプロピルチオ基、ブチルチオ基、イソブチルチオ基、s-ブチルチオ基、t-ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、ノニルチオ基、デシルチオ基、ラウリルチオ基、メトキシフェニル基、エトキシフェニル基、プロピルオキシフェニル基、イソプロピルオキシフェニル基、ブトキシフェニル基、イソブトキシフェニル基、s-ブトキシフェニル基、t-ブトキシフェニル基、ペンチルオキシフェニル基、ヘキシルオキシフェニル基、シクロヘキシルオキシフェニル基、ヘプチルオキシフェニル基、オクチルオキシフェニル基、2-エチルヘキシルオキシフェニル基、ノニルオキシフェニル基、デシルオキシフェニル基、3,7-ジメチルオクチルオキシフェニル基、ラウリルオキシフェニル基、メチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、イソプロピルフェニル基、ブチルフェニル基、イソブチルフェニル基、t-ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、イソプロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、イソブチルアミノ基、s-ブチルアミノ基、t-ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2-エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7-ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ジトリフルオロメチルアミノ基、フェニルアミノ基、ジフェニルアミノ基、(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルコキシフェニル)アミノ基、ジ(C~C12アルキルフェニル)アミノ基、1-ナフチルアミノ基、2-ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジニルアミノ基、トリアジニルアミノ基、(フェニル-C~C12アルキル)アミノ基、(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、(C~C12アルキルフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルコキシフェニル-C~C12アルキル)アミノ基、ジ(C~C12アルキルフェニル-C~C12アルキル)アミノ基、1-ナフチル-C~C12アルキルアミノ基、2-ナフチル-C~C12アルキルアミノ基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリイソプロピルシリル基、イソプロピルジメチルシリル基、イソプロピルジエチルシリル基、t-ブチルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2-エチルヘキシルジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7-ジメチルオクチルジメチルシリル基、ラウリルジメチルシリル基、(フェニル-C~C12アルキル)シリル基、(C~C12アルコキシフェニル-C~C12アルキル)シリル基、(C~C12アルキルフェニル-C~C12アルキル)シリル基、(1-ナフチル-C~C12アルキル)シリル基、(2-ナフチル-C~C12アルキル)シリル基、(フェニル-C~C12アルキル)ジメチルシリル基、トリフェニルシリル基、トリ(p-キシリル)シリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t-ブチルジフェニルシリル基、ジメチルフェニルシリル基、チエニル基、C~C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C~C12アルキルピリジル基、ピリダジニル基、ピリミジル基、ピラジニル基、トリアジニル基、ピロリジル基、ピペリジル基、キノリル基、イソキノリル基、ヒドロキシ基、メルカプト基、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられる。末端の構造単位が複数個存在する場合には、それらは同一でも異なっていてもよい。
-イオン性ポリマーの特性-
 本実施形態のイオン性ポリマーは、好ましくは共役化合物である。イオン性ポリマーが共役化合物であるとは、このイオン性ポリマーが主鎖中に、多重結合(例えば、二重結合、三重結合)又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域を含むことを意味する。イオン性ポリマーは、共役化合物である場合、共役化合物の電子輸送性の観点から、
{(多重結合又は窒素原子、酸素原子等が有する非共有電子対が1つの単結合を挟んで連なっている領域に含まれる主鎖上の原子の数)/(主鎖上の全原子の数)}×100%で計算される値(比)が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがより好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。
また、本実施形態のイオン性ポリマーは、好ましくは高分子化合物であり、より好ましくは共役高分子化合物である。ここで、高分子化合物とは、ポリスチレン換算の数平均分子量が1×10以上である化合物をいう。また、イオン性ポリマーが共役高分子化合物であるとは、このイオン性ポリマーが共役化合物かつ高分子化合物であることを意味する。
本実施形態のイオン性ポリマーの塗布による成膜性の観点から、イオン性ポリマーのポリスチレン換算の数平均分子量が1×10~1×10であることが好ましく、2×10~1×10であることがより好ましく、3×10~1×10であることがより好ましく、5×10~1×10であることがさらに好ましい。また、イオン性ポリマーの純度の観点から、ポリスチレン換算の重量平均分子量が1×10~5×10であることが好ましく、1×10~1×10であることがより好ましく、1×10~5×10であることがさらに好ましい。また、イオン性ポリマーの溶解性の観点から、ポリスチレン換算の数平均分子量は1×10~5×10であることが好ましく、1×10~5×10であることがより好ましく、1×10~3×10であることがさらに好ましい。イオン性ポリマーのポリスチレン換算の数平均分子量及び重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、求めることができる。
本実施形態のイオン性ポリマーの純度の観点から、末端構造単位を除くイオン性ポリマー中に含まれる全構造単位の数(即ち、重合度)は1以上20以下であることが好ましく、1以上10以下であることがより好ましく、1以上5以下であることがさらに好ましい。
本実施形態のイオン性ポリマーの電子受容性、正孔受容性の観点からは、イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーが、-5.0eV以上-2.0eV以下であることが好ましく、-4.5eV以上-2.0eV以下がより好ましい。また、同様の観点から、イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーが、-6.0eV以上-3.0eV以下であることが好ましく、-5.5eV以上-3.0eV以下がより好ましい。ただし、HOMOの軌道エネルギーはLUMOの軌道エネルギーよりも低い。
なお、イオン性ポリマーの最高占有分子軌道(HOMO)の軌道エネルギーは、イオン性ポリマーのイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを軌道エネルギーとすることにより求める。一方、イオン性ポリマーの最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を軌道エネルギーとすることにより求める。イオン化ポテンシャルの測定には光電子分光装置を用いる。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計を用いてイオン性ポリマーの吸収スペクトルを測定し、その吸収末端より求める。
本実施形態のイオン性ポリマーより構成される重合体は、電界発光素子で用いられた場合、実質的に非発光性であることが好ましい。ここで、ある重合体が実質的に非発光性であるとは、以下のとおりの意味である。まず、ある重合体を含む層を有する電界発光素子Aを作製する。一方、重合体を含む層を有さない電界発光素子2を作製する。電界発光素子Aは重合体を含む層を有するが、電界発光素子2は重合体を含む層を有さない点でのみ、電界発光素子Aと電界発光素子2とは異なる。次に、電界発光素子A及び電界発光素子2に10Vの順方向電圧を印加して発光スペクトルを測定する。電界発光素子2について得られた発光スペクトルにおいて最大ピークを与える波長λを求める。波長λにおける発光強度を1として、電界発光素子2について得られた発光スペクトルを規格化し、波長について積分して規格化発光量Sを計算する。一方、波長λにおける発光強度を1として、電界発光素子Aについて得られた発光スペクトルも規格化し、波長について積分して規格化発光量Sを計算する。(S-S)/S×100%で計算される値が30%以下である場合、即ち、重合体を含む層を有さない電界発光素子2の規格化発光量に比べ、重合体を含む層を有する電界発光素子Aの規格化発光量の増加分が30%以下である場合に、用いた重合体は実質的に非発光性であるものとする。本実施形態における重合体は、(S-S)/S×100で計算される値が15%以下であることが好ましく、10%以下であることがより好ましい。
式(1)で表される基及び式(3)で表される基を含むイオン性ポリマーとしては、式(23)で表される基のみからなるイオン性ポリマー、式(23)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(24)で表される基のみからなるイオン性ポリマー、式(24)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(25)で表される基のみからなるイオン性ポリマー、式(25)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(29)で表される基のみからなるイオン性ポリマー、式(29)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(30)で表される基のみからなるイオン性ポリマー、式(30)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
式(1)で表される基及び式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058

(式中、pは15~100の数を表す。)
 
式(2)で表される基及び前記式(3)で表される基を含むイオン性ポリマーとしては、式(26)で表される基のみからなるイオン性ポリマー、式(26)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(27)で表される基のみからなるイオン性ポリマー、式(27)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(28)で表される基のみからなるイオン性ポリマー、式(28)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(31)で表される基のみからなるイオン性ポリマー、式(31)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマー、式(32)で表される基のみからなるイオン性ポリマー、式(32)で表される基および式45~50、59、60、77、80、91、92、96、101~110で表される基から水素原子を2個除いた基からなる群から選ばれる1種以上の基からなるイオン性ポリマーが挙げられる。
式(2)で表される基及び式(3)で表される基を含むイオン性ポリマーとしては、以下の高分子化合物が挙げられる。これらのうち、2種の構造単位がスラッシュ「/」で区切られている式で表される高分子化合物では、左側の構造単位の割合がpモル%、右側の構造単位の割合が(100-p)モル%であり、これらの構造単位はランダムに配列している。なお、以下の式中、nは重合度を表す。
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062

(式中、pは15~100の数を表す。)
-イオン性ポリマーの製造方法-
 次に、本実施形態のイオン性ポリマーを製造する方法について説明する。イオン性ポリマーを製造するための好適な方法としては、例えば、式(36)で表される化合物を必須の原料として含有させて、これを縮合重合させる方法を挙げることができる。中でも、式36で表される化合物として、-A-が式(13)で表される構造単位である化合物、-A-が式(15)で表される構造単位である化合物、-A-が式(17)で表される構造単位である化合物及び-A-が式(20)で表される構造単位である化合物の少なくとも1種を用いることが好ましい。
  Y-A-Y   (36)
(式(36)中、Aは、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と、式(3)で表される1種以上の基とを含む繰り返し単位を表し、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。)
また、本実施形態のイオン性ポリマー中に、式(36)中の-A-で表される構造単位とともに、-A-以外の他の構造単位を含有させる場合には、-A-以外の他の構造単位となる、2個の縮合重合に関与する置換基を有する化合物を用い、これを式(36)で表される化合物とともに共存させて縮合重合させればよい。
このような他の構造単位を含有させるために用いられる2個の縮合重合可能な置換基を有する化合物としては、式(37)で表される化合物が例示される。このようにして、式(36)で表される化合物(Y-A-Yで表される化合物)に加えて、式(37)で表される化合物を縮合重合させることで、-A-で表される構造単位を更に有するイオン性ポリマーを製造することができる。
  Y-A-Y    (37)
(式(37)中、Aは式(33)で表される構造単位又は式(35)で表される構造単位であり、Y及びYは、それぞれ独立に、縮合重合に関与する基を示す。)
このような縮合重合に関与する基(Y、Y、Y及びY)としては、水素原子、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル残基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、-B(OH)、ホルミル基、シアノ基、ビニル基等が挙げられる。
このような縮合重合に関与する基として選択され得るハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
また、縮合重合に関与する基として選択され得るアルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基が例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p-トルエンスルホネート基が例示される。
縮合重合に関与する基として選択され得るアリールアルキルスルホネート基としては、ベンジルスルホネート基が例示される。
また、縮合重合に関与する基として選択され得るホウ酸エステル残基としては、下記式で表される基が例示される。
Figure JPOXMLDOC01-appb-C000063
さらに、縮合重合に関与する基として選択され得るスルホニウムメチル基としては、下記式:
  -CHMe、又は、-CHPh
(式中、Eはハロゲン原子を示す。Phはフェニル基を示し、以下、同じである。)で表される基が例示される。
また、縮合重合に関与する基として選択され得るホスホニウムメチル基としては、下記式:
  -CHPh
(式中、Eはハロゲン原子を示す。)で表される基が例示される。
また、縮合重合に関与する基として選択され得るホスホネートメチル基としては、下記式:
  -CHPO(OR
(式中、Rはアルキル基、アリール基、又はアリールアルキル基を示す。)で表される基が例示される。)
さらに、縮合重合に関与する基として選択され得るモノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
さらに、縮合重合に関与する基として好適な基は、重合反応の種類によって異なるが、例えば、Yamamotoカップリング反応等の0価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基が挙げられる。また、Suzukiカップリング反応等のニッケル触媒又はパラジウム触媒を用いる場合には、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル残基、-B(OH)等が挙げられ、酸化剤又は電気化学的に酸化重合する場合には、水素原子が挙げられる。
本実施形態のイオン性ポリマーを製造する際には、例えば、縮合重合に関与する基を複数有する式(36)又は(37)で表される化合物(モノマー)を、必要に応じて有機溶媒に溶解し、アルカリや適当な触媒を用いて、有機溶媒の融点以上沸点以下の温度で反応させる重合方法を採用してもよい。このような重合方法としては、例えば、”オルガニック リアクションズ(Organic Reactions)”,第14巻,270-490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、”オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407-411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Macromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)に記載の公知の方法を採用することができる。
また、イオン性ポリマーを製造する際には、縮合重合に関与する基に応じて、既知の縮合重合反応を採用してもよい。このような重合方法としては、該当するモノマーを、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)錯体により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、適当な脱離基を有する中間体高分子の分解による方法等が挙げられる。このような重合反応の中でも、Suzukiカップリング反応により重合する方法、Grignard反応により重合する方法、及びニッケルゼロ価錯体により重合する方法が、得られるイオン性ポリマーの構造制御がし易いので好ましい。
本実施形態のイオン性ポリマーの好ましい製造方法の1つの態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基からなる群から選択される基を有する原料モノマーを用いて、ニッケルゼロ価錯体の存在下で縮合重合して、イオン性ポリマーを製造する方法である。このような方法に使用する原料モノマーとしては、例えば、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物、ハロゲン-アルキルスルホネート化合物、ハロゲン-アリールスルホネート化合物、ハロゲン-アリールアルキルスルホネート化合物、アルキルスルホネート-アリールスルホネート化合物、アルキルスルホネート-アリールアルキルスルホネート化合物及びアリールスルホネート-アリールアルキルスルホネート化合物が挙げられる。
イオン性ポリマーの好ましい製造方法の他の態様は、縮合重合に関与する基として、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、-B(OH)、及びホウ酸エステル残基からなる群から選ばれる基を有し、全原料モノマーが有する、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基及びアリールアルキルスルホネート基のモル数の合計(J)と、-B(OH)及びホウ酸エステル残基のモル数の合計(K)の比が実質的に1(通常K/Jは0.7~1.2の範囲)である原料モノマーを用いて、ニッケル触媒又はパラジウム触媒の存在下で縮合重合して、イオン性ポリマーを製造する方法である。
有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために十分に脱酸素処理を施した有機溶媒を用いることが好ましい。イオン性ポリマーを製造する際には、このような有機溶媒を用いて不活性雰囲気下で反応を進行させることが好ましい。また、有機溶媒においては、脱酸素処理と同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応等の水との2相系での反応の場合にはその限りではない。
このような有機溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレン等の不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサン等のハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブチルアルコール等のアルコール類、蟻酸、酢酸、プロピオン酸等のカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル-t-ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン等のエーテル類、トリメチルアミン、トリエチルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、ピリジン等のアミン類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルモルホリンオキシド等のアミド類が例示される。これらの有機溶媒は1種を単独で、又は2種以上を混合して用いてもよい。また、このような有機溶媒の中でも、反応性の観点からはエーテル類がより好ましく、テトラヒドロフラン、ジエチルエーテルが更に好ましく、反応速度の観点からはトルエン、キシレンが好ましい。
イオン性ポリマーを製造する際においては、原料モノマーを反応させるために、アルカリや適当な触媒を添加することが好ましい。このようなアルカリ又は触媒は、採用する重合方法等に応じて選択すればよい。このようなアルカリ又は触媒としては、反応に用いる溶媒に十分に溶解するものが好ましい。また、アルカリ又は触媒を混合する方法としては、反応液をアルゴンや窒素等の不活性雰囲気下で攪拌しながらゆっくりとアルカリ又は触媒の溶液を添加するか、アルカリ又は触媒の溶液に反応液をゆっくりと添加する方法が例示される。
本実施形態のイオン性ポリマーにおいては、末端基に重合活性基がそのまま残っていると得られる発光素子の発光特性や寿命特性が低下する可能性があるため、末端基が安定な基で保護されていてもよい。このように安定な基で末端基が保護されている場合、イオン性ポリマーが共役化合物であるときには、このイオン性ポリマーの主鎖の共役構造と連続した共役結合を有していることが好ましく、その構造としては、例えば、炭素-炭素結合を介してアリール基又は複素環基と結合している構造が挙げられる。このような末端基を保護する安定な基としては、特開平9-45478号公報において化10の構造式で示される1価の芳香族化合物基等の置換基が挙げられる。
式(1)で表される構造単位を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でカチオンを有さないイオン性ポリマーを重合し、第2工程でこのイオン性ポリマーからカチオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のカチオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、金属水酸化物、アルキルアンモニウムヒドロキシド等による加水分解反応等が挙げられる。
式(2)で表される基を含むイオン性ポリマーを製造する他の好ましい方法としては、第1工程でイオンを有さないイオン性ポリマーを重合し、第2工程で該イオン性ポリマーからイオンを含有するイオン性ポリマーを製造する方法が挙げられる。第1工程のイオンを有さないイオン性ポリマーを重合する方法としては、前述の縮合重合反応が挙げられる。第2工程の反応としては、ハロゲン化アルキルを用いたアミンの4級アンモニウム塩化反応、SbF5によるハロゲン引き抜き反応等が挙げられる。
本実施形態のイオン性ポリマーは電荷の注入性や輸送性に優れるため、高輝度で発光する素子が得られる。
イオン性ポリマーを含む層を形成する方法としては、例えば、イオン性ポリマーを含有する溶液を用いて成膜する方法が挙げられる。
このような溶液を用いた成膜に用いる溶媒としては、水を除くアルコール類、エーテル類、エステル類、二トリル化合物類、ニトロ化合物類、ハロゲン化アルキル類、ハロゲン化アリール類、チオール類、スルフィド類、スルホキシド類、チオケトン類、アミド類、カルボン酸類等の溶媒のうち、溶解度パラメーターが9.3以上の溶媒が好ましい。該溶媒の例(各括弧内の値は、各溶媒の溶解度パラメーターの値を表す)としては、メタノール(12.9)、エタノール(11.2)、2-プロパノール(11.5)、1-ブタノール(9.9)、t-ブチルアルコール(10.5)、アセトニトリル(11.8)、1,2-エタンジオール(14.7)、N,N-ジメチルホルムアミド(11.5)、ジメチルスルホキシド(12.8)、酢酸(12.4)、ニトロベンゼン(11.1)、ニトロメタン(11.0)、1,2-ジクロロエタン(9.7)、ジクロロメタン(9.6)、クロロベンゼン(9.6)、ブロモベンゼン(9.9)、ジオキサン(9.8)、炭酸プロピレン(13.3)、ピリジン(10.4)、二硫化炭素(10.0)、及びこれらの溶媒の混合溶媒が挙げられる。
ここで、2種の溶媒(溶媒1、溶媒2とする)を混合してなる混合溶媒について説明すると、混合溶媒の溶解度パラメーター(δ)は、δ=δ×φ+δ×φにより求めることとする(δは溶媒1の溶解度パラメーター、φは溶媒1の体積分率、δは溶媒2の溶解度パラメーター、φは溶媒2の体積分率である。)
電子注入層の膜厚は、用いるイオン性ポリマーによって最適値が異なるため、駆動電圧と発光効率が適度な値となるように選択すればよいが、ピンホールが発生しない厚さが好ましい。素子の駆動電圧を低くする観点からは、膜厚は、1nm~1μmであることが好ましく、2nm~500nmであることがより好ましく、2nm~200nmであることがさらに好ましい。発光層を保護する観点からは、膜厚は、5nm~1μmであることが好ましい。
<陰極>
 陰極の材料としては、仕事関数が小さく、発光層への電子注入が容易で、電気伝導度の高い材料が好ましい。またトップエミッション型の有機EL素子では、発光層から放射される光を陰極で陽極側に反射するために、陰極の材料としては可視光反射率の高い材料が好ましい。陰極には、例えばアルカリ金属、アルカリ土類金属、遷移金属および周期表の13族金属などを用いることができる。陰極の材料としては、例えばベリリウム、マグネシウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、これらの金属のうちの2種以上の合金、これらの金属のうちの1種以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金などが挙げられる。
また、陰極としては導電性金属酸化物および導電性有機物などから成る透明導電性電極を用いることができる。具体的には、導電性金属酸化物として酸化インジウム、酸化亜鉛、酸化スズ、ITO、およびIZOを挙げることができる。また、導電性有機物としてポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などを挙げることができる。なお、陰極は、2層以上を積層した積層体で構成されていてもよい。なお電子注入層が陰極として用いられる場合もある。
陰極には、従来、陽極として使用されていた材料を用いてもよい。イオン性ポリマーからなる電子注入層を形成した場合において、たとえITOなどの陽極として使用されてきた材料によって陰極を形成しても、金属によって陰極を形成した場合よりも高い電圧を印加すれば陰極から電子が注入されるため、発光する有機EL素子が得られるからである。
陰極の膜厚は、求められる特性および工程の簡易さなどを考慮して適宜設計される。例えば10nm~10μmであり、好ましくは20nm~1μmであり、さらに好ましくは50nm~500nmである。
陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法などを挙げることができる。
以下、実験例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実験例に限定されるものではない。
[測定方法等]
 重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー株式会社製:HLC-8220GPC)を用いて、ポリスチレン換算の重量平均分子量及び数平均分子量として求めた。また、測定する試料は、約0.5重量%の濃度になるようにテトラヒドロフランに溶解させ、GPCに50μL注入した。更に、GPCの移動相としてはテトラヒドロフランを用い、0.5mL/分の流速で流した。重合体の構造分析はVarian社製300MHzNMRスペクトロメータ-を用いた、H-NMR解析によって行った。また、測定は、20 mg/mLの濃度になるように試料を可溶な重溶媒(溶媒分子中の水素原子が重水素原子で置換された溶媒)に溶解させて行った。
重合体の最高占有分子軌道(HOMO)の軌道エネルギーは、重合体のイオン化ポテンシャルを測定し、得られたイオン化ポテンシャルを該軌道エネルギーとすることにより求めた。一方、重合体の最低非占有分子軌道(LUMO)の軌道エネルギーは、HOMOとLUMOとのエネルギー差を求め、その値と前記で測定したイオン化ポテンシャルとの和を該軌道エネルギーとすることにより求めた。イオン化ポテンシャルの測定には光電子分光装置(理研計器株式会社製:AC-2)を用いた。また、HOMOとLUMOのエネルギー差は紫外・可視・近赤外分光光度計(Varian社製:Cary5E)を用いて重合体の吸収スペクトルを測定し、その吸収末端より求めた。
[参考例1]
(2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)の合成)
 2,7-ジブロモ-9-フルオレノン(52.5g)、サリチル酸エチル(154.8g)、及びメルカプト酢酸(1.4g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(630mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(62.7g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(86.3g)、炭酸カリウム(62.6g)、及び18-クラウン-6(7.2g)をN、N-ジメチルホルムアミド(DMF)(670 mL)に溶解させ、溶液をフラスコへ移して105℃で終夜撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物A)(51.2g)を得た。
Figure JPOXMLDOC01-appb-C000064
[参考例2]
(2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)の合成)
 窒素雰囲気下、化合物A(15g)、ビス(ピナコラート)ジボロン(8.9g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(0.8g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.5g)、酢酸カリウム(9.4g)、ジオキサン(400mL)を混合し、110℃に加熱し、10時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮した。反応混合物をメタノールで3回洗浄した。沈殿物をトルエンに溶解させ、溶液に活性炭を加えて攪拌した。その後、ろ過を行い、ろ液を減圧濃縮することで、2,7-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(化合物B)(11.7g)を得た。
Figure JPOXMLDOC01-appb-C000065
[参考例3]
(ポリ[9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A)の合成)
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液に4-t-ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られたポリ[9,9-ビス[3-エトキシカルボニル-4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン](重合体A(BSAFEGP))の収量は520mgであった。
重合体Aのポリスチレン換算の数平均分子量は5.2×10であった。重合体Aは、式(A)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000066
[実験例1]
(重合体Aセシウム塩の合成)
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びエタノール(20mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、55℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのセシウム塩を共役高分子化合物1と呼ぶ。
共役高分子化合物1は、式(B)で表される繰り返し単位からなる。共役高分子化合物1において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。共役高分子化合物1のHOMOの軌道エネルギーは-5.5eV、LUMOの軌道エネルギーは-2.7eVであった。
Figure JPOXMLDOC01-appb-C000067
[実験例2]
(重合体Aカリウム塩の合成)
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化カリウム(400mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール50mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(131mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのカリウム塩を共役高分子化合物2と呼ぶ。
共役高分子化合物2は式(C)で表される繰り返し単位からなる、共役高分子化合物2において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。共役高分子化合物2のHOMOの軌道エネルギーは-5.5eV、LUMOの軌道エネルギーは-2.7eVであった。
Figure JPOXMLDOC01-appb-C000068
[実験例3]
(重合体Aナトリウム塩の合成)
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(10mL)を混合し、混合溶液に、水酸化ナトリウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(123mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Aのナトリウム塩を共役高分子化合物3と呼ぶ。
共役高分子化合物3は式(D)で表される繰り返し単位からなる。共役高分子化合物3において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。共役高分子化合物3のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000069
[実験例4]
(重合体Aアンモニウム塩の合成)
 重合体A(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(15mL)を混合し、混合溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。反応溶液にテトラメチルアンモニウムヒドロキシド(50mg)を水(1mL)に溶解させた水溶液を加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体A内のエチルエステル部位のエチル基由来のシグナルが90%消失していることを確認した。得られた重合体Aのアンモニウム塩を共役高分子化合物4と呼ぶ。
共役高分子化合物4は式(E)で表される繰り返し単位からなる。共役高分子化合物4において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、90モル%である。共役高分子化合物4のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
[参考例4]
(2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)の合成)
 不活性雰囲気下、化合物A(0.52g)、2,7-ビス(1,3,2-ジオキサボロラン-2-イル)-9,9-ジオクチルフルオレン(1.29g)、トリフェニルホスフィンパラジウム(0.0087g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、トルエン(10mL)、及び2M炭酸ナトリウム水溶液(10mL)を混合し、80℃に加熱した。反応液を3.5時間反応させた。その後、そこに、パラブロモトルエン(0.68g)を加えて、更に2.5時間反応させた。反応後、反応液を室温まで冷却し、酢酸エチル50ml/蒸留水50mlを加えて水層を除去した。再び蒸留水50mlを加えて水層を除去した後、乾燥剤として硫酸マグネシウムを加えて、不溶物をろ過して、有機溶媒を除去した。その後、得られた残渣を再びTHF10mLに溶かして、飽和ジエチルジチオカルバミン酸ナトリウム水2mLを添加して、30分間撹拌した後、有機溶媒を除去した。アルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1、v/v)を通して精製を行い、析出した沈殿をろ過して12時間減圧乾燥させたところ、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体B)が524mg得られた。
重合体Bのポリスチレン換算の数平均分子量は、2.0×10であった。なお、重合体Bは、式(F)で表される。
Figure JPOXMLDOC01-appb-C000071
[実験例5]
(重合体Bセシウム塩の合成)
 重合体B(262mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(10mL)、及びメタノール(15mL)を添加し、混合物を55℃に昇温した。そこに、水酸化セシウム(341mg)を水(1mL)に溶かした水溶液を添加し、55℃で5時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(250mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Bセシウム塩を共役高分子化合物5と呼ぶ。
共役高分子化合物5は、式(G)で表される。共役高分子化合物5において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、小数第二位で四捨五入して、33.3モル%である。)。共役高分子化合物5のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.6eVであった。
Figure JPOXMLDOC01-appb-C000072
[参考例5]
(重合体Cの合成)
 不活性雰囲気下、化合物A(0.40g)、化合物B(0.49g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(35mg)、トリフェニルホスフィンパラジウム(8mg)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。反応液にフェニルボロン酸(0.01g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Cの収量は526mgであった。
重合体Cのポリスチレン換算の数平均分子量は3.6×10であった。重合体Cは、式(H)で表される繰り返し単位からなる。
なお、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミンは、例えば特開2008-74917号公報に記載されている方法で合成することができる。
Figure JPOXMLDOC01-appb-C000073
[実験例6]
(重合体Cセシウム塩の合成)
 重合体C(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(20mL)、及びメタノール(20mL)を添加し混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール30mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(150mg)を得た。NMRスペクトルにより、重合体C内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Cのセシウム塩を共役高分子化合物6と呼ぶ。
共役高分子化合物6は式(I)で表される繰り返し単位からなる。共役高分子化合物6において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、95モル%である。共役高分子化合物6のHOMOの軌道エネルギーは-5.3eV、LUMOの軌道エネルギーは-2.6eVであった。
Figure JPOXMLDOC01-appb-C000074
[参考例6]
(重合体Dの合成)
 不活性雰囲気下、化合物A(0.55g)、化合物B(0.67g)、N,N’-ビス(4-ブロモフェニル)-N,N’-ビス(4-t-ブチル-2,6-ジメチルフェニル)1,4-フェニレンジアミン(0.038g)、3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジン 0.009g、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、2時間還流させた。反応液にフェニルボロン酸(0.004g)を加え、6時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Dの収量は590mgであった。
重合体Dのポリスチレン換算の数平均分子量は2.7×10であった。重合体Dは、式(J)で表される繰り返し単位からなる。
なお、3,7-ジブロモ-N-(4-n-ブチルフェニル)フェノキサジンは、特開2007-70620号公報に記載の方法に基づいて(あるいは特開2004-137456号公報に記載の方法を参考にして)合成した。
Figure JPOXMLDOC01-appb-C000075
[実験例7]
(重合体Dセシウム塩の合成)
 重合体D(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(10mL)を混合した。混合溶液に、水酸化セシウム(360mg)を水(2mL)に溶解させた水溶液を添加し、65℃で3時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(210mg)を得た。NMRスペクトルにより、 重合体D内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた 重合体Dのセシウム塩を共役高分子化合物7と呼ぶ。共役高分子化合物7は式(K)で表される繰り返し単位からなる(「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、90モル%である。)。共役高分子化合物7のHOMOの軌道エネルギーは-5.3eV、LUMOの軌道エネルギーは-2.4eVであった。
Figure JPOXMLDOC01-appb-C000076
[参考例7]
(重合体Eの合成)
 不活性雰囲気下、化合物A(0.37g)、化合物B(0.82g)、1,3-ジブロモベンゼン(0.09g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(6mL)を滴下し、7時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、10時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフランに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は293mgであった。
重合体Eのポリスチレン換算の数平均分子量は1.8×10であった。重合体Eは、式(L)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000077
[実験例8]
(重合体Eセシウム塩の合成)
 重合体E(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(200mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(170mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Eのセシウム塩を共役高分子化合物8と呼ぶ。
共役高分子化合物8は式(M)で表される繰り返し単位からなる。共役高分子化合物8において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、75モル%である。共役高分子化合物8のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.6eVであった。
Figure JPOXMLDOC01-appb-C000078
[参考例8]
(重合体Fの合成)
 不活性雰囲気下、化合物B(1.01g)、1,4-ジブロモ-2,3,5,6-テトラフルオロベンゼン(0.30g)、トリフェニルホスフィンパラジウム(0.02g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)、及びトルエン(10mL)を混合し、105℃に加熱した。この反応液に2M炭酸ナトリウム水溶液(6mL)を滴下し、4時間還流させた。反応液にフェニルボロン酸(0.002g)を加え、4時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、1時間撹拌した。混合溶液をメタノール300mL中に滴下して1時間攪拌した後、析出した沈殿をろ過して2時間減圧乾燥させ、テトラヒドロフラン20mlに溶解させた。得られた溶液をメタノール120ml、3重量%酢酸水溶液50mLの混合溶媒中に滴下して1時間攪拌した後、析出した沈殿をろ過し、テトラヒドロフラン20mlに溶解させた。こうして得られた溶液をメタノール200mlに滴下して30分攪拌した後、析出した沈殿をろ過して固体を得た。得られた固体をテトラヒドロフラン/酢酸エチル(1/1(体積比))の混合溶媒に溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムから回収したテトラヒドロフラン溶液を濃縮した後、メタノール(200mL)に滴下し、析出した固体をろ過し、乾燥させた。得られた重合体Eの収量は343mgであった。
重合体Fのポリスチレン換算の数平均分子量は6.0×10であった。重合体Fは、式(N)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000079
[実験例9]
(重合体Fセシウム塩の合成)
 重合体F(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(10mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(260mg)を水(2mL)に溶解させた水溶液を添加し、65℃で2時間撹拌した。反応溶液にメタノール10mLを加え、さらに65℃で5時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(130mg)を得た。NMRスペクトルにより、重合体E内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Fのセシウム塩を共役高分子化合物9と呼ぶ。
共役高分子化合物9は式(O)で表される繰り返し単位からなる。共役高分子化合物9において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、75モル%である。共役高分子化合物9のHOMOの軌道エネルギーは-5.9eV、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000080
[参考例9]
 不活性雰囲気下、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(11.0g)、トリエチレングリコール(30.0g)、水酸化カリウム(3.3g)を混合し、100℃で18時間過熱攪拌した。放冷後、反応溶液を水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。濃縮した溶液を、クーゲルロワー蒸留(10mmTorr、180℃)することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(6.1g)を得た。
[参考例10]
 不活性雰囲気下、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エタノール(8.0g)、水酸化ナトリウム(1.4g)、蒸留水(2mL)、テトラヒドロフラン(2mL)を混合し、氷冷した。混合溶液に、p-トシルクロリド(5.5g)のテトラヒドロフラン(6.4mL)溶液を30分かけて滴下し、滴下後反応溶液を室温に上げて15時間攪拌した。反応溶液に蒸留水(50mL)を加え、6M硫酸で反応溶液を中和した後、クロロホルムで分液抽出を行った。溶液を濃縮することで、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(11.8g)を得た。
[参考例11]
(2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)の合成)
 2,7-ジブロモ-9-フルオレノン(127.2g)、サリチル酸エチル(375.2g)、及びメルカプト酢酸(3.5g)を300mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(1420mL)を添加し、混合物を75℃で終夜撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別し固体(167.8g)を得た。得られた固体(5g)、2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)p-トルエンスルホネート(10.4g)、炭酸カリウム(5.3g)、及び18-クラウン-6(0.6g)をN、N-ジメチルホルムアミド(DMF)(100 mL)に溶解させ、溶液をフラスコへ移して105℃で4時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液にクロロホルム(300mL)を加えて分液抽出を行い、溶液を濃縮した。濃縮物を酢酸エチルに溶解させ、アルミナのカラムに通液し、溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3-エトキシカルボニル-4-[2-(2-(2-(2-(2-(2-メトキシエトキシ)-エトキシ)-エトキシ)-エトキシ)-エトキシ)エトキシ]フェニル]-フルオレン(化合物C)(4.5g)を得た。
Figure JPOXMLDOC01-appb-C000081
[参考例12]
(重合体Gの合成)
 不活性雰囲気下、化合物C(1.0g)、4-t-ブチルフェニルブロミド(0.9mg)、2,2’-ビピリジン(0.3g)、脱水テトラヒドロフラン(50mL)を200mLフラスコに入れ混合した。混合物を55℃に昇温した後、ビス(1,5-シクロオクタジエン)ニッケル(0.6g)を添加し、55℃で5時間撹拌した。混合物を室温まで冷却した後、反応溶液をメタノール(200mL)、1N希塩酸(200mL)の混合液に滴下した。生じた沈殿物をろ過により収集した後、テトラヒドロフランに再溶解させた。メタノール(200mL)、15%アンモニア水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。沈殿物をテトラヒドロフランに再溶解させ、メタノール(200mL)、水(100mL)の混合液に滴下し、生じた沈殿物をろ過により収集した。収集した沈殿物を減圧乾燥することで重合体G(360mg)を得た。重合体Gのポリスチレン換算の数平均分子量は6.0×10であった。重合体Gは、式(P)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000082
[実験例10]
(重合体Gセシウム塩の合成)
 重合体G(150mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(15mL)、及びメタノール(5mL)を混合した。混合溶液に、水酸化セシウム(170mg)を水(2mL)に溶解させた水溶液を添加し、65℃で6時間撹拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(95)mg)を得た。NMRスペクトルにより、重合体G内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Gのセシウム塩を共役高分子化合物10と呼ぶ。
共役高分子化合物10は式(Q)で表される繰り返し単位からなる。共役高分子化合物10において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。共役高分子化合物10のHOMOの軌道エネルギーは-5.7eV、LUMOの軌道エネルギーは-2.9eVであった。
Figure JPOXMLDOC01-appb-C000083
[参考例13]
(1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼンの合成)
 不活性雰囲気下、3,5-ジブロモサリチル酸(20g)、エタノール(17mL)、濃硫酸(1.5mL)、トルエン(7mL)を混合し、130℃で20時間過熱攪拌した。放冷後、反応溶液を氷水(100mL)に加え、クロロホルムで分液抽出を行い、溶液を濃縮した。得られた固体を、イソプロパノールに溶解し、溶液を蒸留水に滴下した。得られた析出物をろ別することにより、固体(18g)を得た。不活性雰囲気下、得られた固体(1g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(1.5g)、炭酸カリウム(0.7g)、DMF(15mL)を混合し、100℃で4時間過熱攪拌した。放冷後、クロロホルムを加えて分液抽出し、溶液を濃縮した。濃縮物をクロロホルムに溶解させ、シリカゲルカラムに通液することにより精製した。溶液を濃縮することにより、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(1.0g)を得た。
[参考例14]
(重合体Hの合成)
 不活性雰囲気下、化合物A(0.2g)、化合物B(0.5g)、1,3-ジブロモ-5-エトキシカルボニル-6-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]ベンゼン(0.1g)、トリフェニルホスフィンパラジウム(30mg)、テトラブチルアンモニウムブロミド(4mg)、及びトルエン(19mL)を混合し、105℃に加熱した。この反応液に2M 炭酸ナトリウム水溶液(5mL)を滴下し、5時間還流させた。反応液にフェニルボロン酸(6mg)を加え、14時間還流させた。次いで、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。水層を除去して有機層を蒸留水で洗浄し、濃縮して得られた固体をクロロホルムに溶解させ、アルミナカラム、シリカゲルカラムを通すことにより精製した。カラムからの溶出液を濃縮して乾燥させた。得られた重合体Hの収量は0.44gであった。
重合体Hのポリスチレン換算の数平均分子量は3.6×10であった。重合体Hは、式(R)で表される繰り返し単位からなる。
Figure JPOXMLDOC01-appb-C000084
[実験例11]
(重合体Hセシウム塩の合成)
 重合体H(200mg)を100mLフラスコに入れ、窒素置換した。テトラヒドロフラン(14mL)、及びメタノール(7mL)を添加し混合した。混合溶液に、水酸化セシウム(90mg)を水(1mL)に溶解させた水溶液を添加し、65℃で1時間撹拌した。反応溶液にメタノール5mLを加え、さらに65℃で4時間攪拌した。混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、重合体H内のエチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Hのセシウム塩を共役高分子化合物11と呼ぶ。
共役高分子化合物11は式(S)で表される繰り返し単位からなる。共役高分子化合物11において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、100モル%である。共役高分子化合物11のHOMOの軌道エネルギーは-5.6eV、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000085
[参考例15]
(2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン(化合物D)の合成)
 2,7-ジブロモ-9-フルオレノン(34.1g)、2,3-ジヒドロキシ安息香酸メチル(101.3g)、及びメルカプト酢酸(1.4g)を500mLフラスコに入れ、窒素置換した。そこに、メタンスルホン酸(350mL)を添加し、混合物を90℃で19時間撹拌した。混合物を放冷し、氷水に添加して1時間撹拌した。生じた固体をろ別し、加熱したアセトニトリルで洗浄した。洗浄済みの該固体をアセトンに溶解させ、得られたアセトン溶液から固体を再結晶させ、ろ別した。得られた固体(16.3g)、2-[2-(2-メトキシエトキシ)エトキシ]-p-トルエンスルホネート(60.3g)、炭酸カリウム(48.6g)、及び18-クラウン-6(2.4g)をN、N-ジメチルホルムアミド(DMF)(500 mL)に溶解させ、溶液をフラスコへ移して110℃で15時間撹拌した。得られた混合物を室温まで放冷し、氷水へ加え、1時間撹拌した。反応液に酢酸エチル(300mL)を加えて分液抽出を行い、溶液を濃縮し、クロロホルム/メタノール(50/1(体積比))の混合溶媒に溶解させ、シリカゲルカラムを通すことにより精製した。カラムに通液した溶液を濃縮することで、2,7-ジブロモ-9,9-ビス[3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]-5-メトキシカルボニルフェニル]フルオレン (化合物D)(20.5g)を得た。
[参考例16]
(2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[5-メトキシカルボニル-3,4-ビス[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)の合成)
 不活性雰囲気下、化合物D(0.70g)、2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレン (0.62g) 、トリフェニルホスフィンパラジウム(0.019g)、ジオキサン(40mL)、水(6mL)及び炭酸カリウム水溶液(1.38g)を混合し、80℃に加熱した。反応液を1時間反応させた。反応後、飽和ジエチルジチオカルバミン酸ナトリウム水5mLを添加して、30分間撹拌した後、有機溶媒を除去した。得られた固体をアルミナカラム(展開溶媒 ヘキサン:酢酸エチル=1:1(体積比))を通して精製を行い、溶液を濃縮することで、2,7-ビス[7-(4-メチルフェニル)-9,9-ジオクチルフルオレン-2-イル]-9,9-ビス[3-エトキシカルボニル-4-[2-[2-(2-メトキシエトキシ)エトキシ]エトキシ]フェニル]-フルオレン(重合体I)を660mg得た。
重合体Iのポリスチレン換算の数平均分子量は、2.0×10であった。重合体Iは、式(T)で表される。
なお、2-(4,4,5,5-テトラメチル-1,2,3-ジオキサボラン-2-イル)-9,9-ジオクチルフルオレンは、例えばThe Journal of Physical Chemistry B 2000, 104, 9118-9125に記載されている方法で合成することができる。
Figure JPOXMLDOC01-appb-C000086
[実験例12]
(重合体Iセシウム塩の合成)
 重合体I(236mg)を100mLフラスコに入れ、アルゴン置換した。そこに、テトラヒドロフラン(20mL)、及びメタノール(10mL)を添加し、混合物を65℃に昇温した。そこに、水酸化セシウム(240mg)を水(2mL)に溶かした水溶液を添加し、65℃で7時間撹拌した。得られた混合物を室温まで冷却した後、反応溶媒を減圧留去した。生じた固体を水で洗浄し、減圧乾燥させることで薄黄色の固体(190mg)を得た。NMRスペクトルにより、エチルエステル部位のエチル基由来のシグナルが完全に消失していることを確認した。得られた重合体Iセシウム塩を共役高分子化合物12と呼ぶ。
共役高分子化合物12は、式(U)で表される。共役高分子化合物12において、「全繰り返し単位中の、式(1)で表される基及び式(2)で表される基からなる群から選ばれる1種以上の基と式(3)で表される1種以上の基とを含む繰り返し単位の割合」及び「全繰り返し単位中の、式(13)、(15)、(17)、(20)で表される繰り返し単位の割合」は、小数第二位で四捨五入して、33.3モル%である。共役高分子化合物12のHOMOの軌道エネルギーは-5.6eVであり、LUMOの軌道エネルギーは-2.8eVであった。
Figure JPOXMLDOC01-appb-C000087
[実験例13]
(化合物Eの合成)
 窒素雰囲気下、2,7-ジブロモ-9-フルオレノン(92.0g、272mmol)、及びジエチルエーテル(3.7L)を混合して0℃に冷却し、1mol/Lヨウ化メチルマグネシウム-ジエチルエーテル溶液(0.5L、545mmol)を滴下して3時間撹拌した。反応混合物に塩化アンモニウム水溶液を加えて水層を除去し、有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物E(92.81g、262mmol、収率96%)を得た。
Figure JPOXMLDOC01-appb-C000088
(化合物Fの合成)
 窒素雰囲気下、化合物E(83.0g、234mmol)、p-トルエンスルホン酸一水和物(4.49g、23.6mmol)、及びクロロホルム(2.5L)を1時間還流し、反応混合物に塩化アンモニウム水溶液を加えて水層を除去した。有機層を無水硫酸ナトリウムで乾燥して減圧濃縮し、化合物F(73.6g、219mmol、収率93%)を得た。
Figure JPOXMLDOC01-appb-C000089
(化合物Gの合成)
 窒素雰囲気下、化合物F(70.0g、208mmol)、サリチル酸エチル(104g、625mmol)、メルカプト酢酸(4.20g、45.6mmol)、及びメタンスルホン酸(1214g)を70℃で8時間撹拌し、反応混合物を氷水に滴下して析出した固体をろ過で回収し、メタノールで洗浄した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物G(52.14g、104mmol、収率50%)を得た。
Figure JPOXMLDOC01-appb-C000090
(化合物Hの合成)
 窒素雰囲気下、化合物G(41.2g、82.0mmol)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(75.8g、238mmol)、ジメチルホルムアミド(214g)、炭酸カリウム(54.4g、394mmol)、及び18-クラウン-6(4.68g、18mmol)を105℃で2時間撹拌し、反応混合物を水に加え酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物H(40.2g、62.0mmol、収率76%)を得た。化合物HのH NMRの測定結果は、以下の通りであった。
 H NMR(400MHz,CDCl,rt)
δ(ppm) 1.37(3H),1.84(3H),3.36(3H),3.53(2H),3.58-3.79(6H),3.73(2H),4.12(2H),4.34(2H),6.80(1H),6.90(1H),7.28(2H),7.48(2H),7.58(2H),7.70(1H).
Figure JPOXMLDOC01-appb-C000091
(化合物Iの合成)
 窒素雰囲気下、化合物H(28.4g、43.8mmol)、ビス(ピナコラト)ジボロン(24.30g、95.7mol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(0.35g、0.4mmol)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(0.24g、0.4mmol)、酢酸カリウム(25.60g、260mmol)、及び1,4-ジオキサン(480mL)を120℃で17時間撹拌し、反応混合物をろ過して酢酸エチルで洗浄した。ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し、次いで再結晶で精製して化合物I(18.22g、24.5mmol、収率56%)を得た。化合物IのH NMRの測定結果は、以下の通りであった。
 H NMR(400MHz,CDCl,rt)
δ(ppm) 1.30-1.47(27H),1.88(3H),3.35(3H),3.53(2H),3.60-3.69(4H),3.73(2H),3.84(2H),4.10(2H),4.34(2H),6.74(1H),6.87(1H),7.58(2H),7.72-7.89(5H).
Figure JPOXMLDOC01-appb-C000092
(重合体Jの合成)
 アルゴン雰囲気下、化合物H(0.47g)、化合物I(0.48g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.6mg)、テトラブチルアンモニウムブロミド(6mg)、トルエン(6mL)、2mol/L炭酸ナトリウム水溶液(2mL)を105℃で6時間撹拌し、次いでフェニルボロン酸(35mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.65g)と水(13mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し析出物をろ過で回収して乾燥した。固体をクロロホルムに溶解させ、アルミナ、及びシリカゲルクロマトグラフィーにより精製し、溶出液をメタノールに滴下し析出物をろ過で回収して乾燥し、重合体J(0.57g)を得た。
重合体Jのポリスチレン換算の数平均分子量は2.0×104であった。重合体Jは、式(V)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000093
(重合体Jセシウム塩の合成)
 アルゴン雰囲気下、重合体J(0.20g)、THF(18mL)、メタノール(9mL)、水酸化セシウム一水和物(97mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(52mL)を加え65℃で6時間撹拌した。反応混合物を濃縮して乾燥し、固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下し固体をろ過で回収して乾燥し、重合体Jセシウム塩(0.20g)を得た。得られた重合体Jセシウム塩を共役高分子化合物13と呼ぶ。
共役高分子化合物13は、式(W)で表される構造単位からなる。共役高分子化合物13のHOMOの軌道エネルギーは-5.51eV、LUMOの軌道エネルギーは-2.64eVであった。
Figure JPOXMLDOC01-appb-C000094
[実験例14]
(化合物Jの合成)
 窒素気流下、2,7-ジブロモ-9,9-ビス(3,4-ジヒドロキシ)-フルオレン(138.4g)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(408.6g)、炭酸カリウム(358.5g)及びアセトニトリル(2.5L)を混合し、3時間加熱還流した。放冷後、反応混合物をろ別し、ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し化合物J(109.4)を得た。
Figure JPOXMLDOC01-appb-C000095
(化合物Kの合成)
 窒素雰囲気下、化合物J(101.2g)、ビス(ピナコラト)ジボロン(53.1g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン錯体(3.7g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(5.4g)、酢酸カリウム(90.6g)及びジオキサン(900mL)を混合し、110℃に加熱し、8時間加熱還流させた。放冷後、反応液をろ過し、ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製して化合物K(51.4g)を得た。
Figure JPOXMLDOC01-appb-C000096
(重合体Kの合成)
 化合物K(0.715g)、化合物J(0.426g)、aliquot336(6.60mg)、ビス(トリフェニルホスフィン)ジクロロパラジウム(0.460mg)、2mol/L炭酸ナトリウム水溶液(10mL)、トルエン(20mL)を加えて、105℃で5時間撹拌し、次いでフェニルボロン酸(32mg)を加え105℃で6時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.72g)と水(14mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し析出物をろ過で回収して乾燥した。固体をクロロホルムに溶解させ、アルミナ、及びシリカゲルクロマトグラフィーにより精製し、溶出液を濃縮し乾燥させた。濃縮物をトルエンに溶解させて、メタノールに滴下し析出物をろ過で回収して乾燥し、重合体K(0.55g)を得た。
重合体Kのポリスチレン換算の数平均分子量は2.3×104であった。重合体Kは、式(X)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000097
(重合体Kセシウム塩の合成)
 アルゴン雰囲気下、重合体K(0.15g)、THF(20mL)、メタノール(10mL)、水酸化セシウム一水和物(103mg)、及び水(1mL)を65℃で2時間撹拌し、次いでメタノール(20mL)を加え65℃で2時間撹拌した。反応混合物を濃縮して乾燥し、固体にメタノールを加えてろ過した。得られたろ液を濃縮して乾燥し、得られた固体を水で洗浄した後、乾燥させることで、重合体Kのセシウム塩(0.14g)を得た。得られた重合体Kのセシウム塩を共役高分子化合物14と呼ぶ。
共役高分子化合物14は、式(Y)で表される構造単位からなる。共役高分子化合物14のHOMOの軌道エネルギーは-5.56eV、LUMOの軌道エネルギーは-2.67eVであった。
Figure JPOXMLDOC01-appb-C000098
[実験例15]
(化合物Lの合成)
 窒素雰囲気下、5-ブロモ-2-ヒドロキシ安息香酸(92.85g)、エタノール(1140mL)、及び濃硫酸(45mL)を48時間還流し、減圧濃縮した後に酢酸エチル(1000mL)を加え、水及び10重量%炭酸ナトリウム水溶液で有機層を洗浄した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物L(95.38g、収率91%)を得た。
Figure JPOXMLDOC01-appb-C000099
(化合物Mの合成)
 窒素雰囲気下、化合物L(95.0g)、ビス(ピナコラト)ジボロン(108.5g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドのジクロロメタン付加物(3.3g)、1,1’-ビス(ジフェニルホスフィノ)フェロセン(2.2g)、酢酸カリウム(117.2g)、及び1,4-ジオキサン(1.3L)を105℃で22時間撹拌し、反応混合物をろ過してジオキサン及びトルエンで洗浄した。ろ液を減圧濃縮して酢酸エチルを加え、飽和食塩水で洗浄し、有機層を無水硫酸ナトリウムで乾燥して減圧濃縮した。得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物M(90.1g、308mmol)を得た。
Figure JPOXMLDOC01-appb-C000100
(化合物Nの合成)
 窒素雰囲気下、1,5-ジヒドロキシナフタレン(15.0g)、トリエチルアミン(28.5g)、及びクロロホルム(150mL)を混合して0℃に冷却し、トリフルオロメタンスルホン酸無水物(68.7g)を滴下して1時間撹拌した。反応混合物に水、及びクロロホルムを加えて水層を除去し、有機層を水で洗浄した。有機層を無水硫酸ナトリウムで乾燥して減圧濃縮し、得られた固体を再結晶で精製し、化合物N(31.46g)を得た。下記式中、Tfはトリフルオロメチルスルホニル基を示す。
Figure JPOXMLDOC01-appb-C000101
(化合物Oの合成)
 窒素雰囲気下、化合物N(16.90g)、化合物M(23.30g)、テトラキス(トリフェニルホスフィン)パラジウム(0)(4.60g)、リン酸カリウム(42.30g)、及び1,2-ジメトキシエタン(340mL)を80℃で14時間撹拌し、反応混合物をろ過してクロロホルム及びメタノールで洗浄した。ろ液を減圧濃縮してシリカゲルカラムクロマトグラフィーで精製し、化合物O(8.85g)を得た。
Figure JPOXMLDOC01-appb-C000102
(化合物Pの合成)
 窒素雰囲気下、化合物O(8.80g)、2-[2-(2-メトキシエトキシ)エトキシ]-エチル-p-トルエンスルホネート(12.52g)、ジメチルホルムアミド(380mL)、炭酸カリウム(13.32g)、及び18-クラウン-6(1.02g)を100℃で23時間撹拌し、反応混合物を水に加え酢酸エチルで抽出した。有機層を塩化ナトリウム水溶液で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、化合物P(7.38g)を得た。
Figure JPOXMLDOC01-appb-C000103
(化合物Qの合成)
 窒素雰囲気下、化合物P(5.53g)、ビス(ピナコラト)ジボロン(11.25g)、(1,5-シクロオクタジエン)(メトキシ)イリジウム(I)二量体(0.15g、シグマアルドリッチ社製)、4,4’-ジ-tert-ブチル-2,2’-ジピリジル(0.12g、シグマアルドリッチ社製)、及び1,4-ジオキサン(300mL)を110℃で19時間撹拌し、反応混合物を減圧濃縮した。粗生成物をシリカゲルカラムクロマトグラフィーで精製し、次いで再結晶で精製して化合物Q(5.81g)を得た。化合物QのH NMRの測定結果は、以下の通りであった。
 H NMR(400MHz,CDCl,rt)
δ(ppm) 1.27-1.41(30H),3.39(6H),3.57(4H),3.66-3.75(8H),3.83(4H),3.99(4H),4.27-4.42(8H),7.13(2H),7.60(2H),7.76(2H),7.93(2H),8.30(2H).
Figure JPOXMLDOC01-appb-C000104
(重合体Lの合成)
 アルゴン雰囲気下、化合物J(0.53g)、化合物Q(0.43g)、ジクロロビス(トリフェニルホスフィン)パラジウム(0.3mg)、Aliquat336(5mg、シグマアルドリッチ社製)、トルエン(12mL)、2mol/L炭酸ナトリウム水溶液(1mL)を105℃で9時間撹拌し、次いでフェニルボロン酸(23mg)を加え105℃で14時間撹拌した。反応混合物にジエチルジチオカルバミン酸ナトリウム三水和物(0.40g)と水(8mL)を加えて80℃で2時間撹拌し、混合物をメタノールに滴下し析出物をろ過で回収して乾燥した。固体をクロロホルムに溶解させ、アルミナ、及びシリカゲルクロマトグラフィーにより精製し、溶出液をメタノールに滴下し析出物をろ過で回収して乾燥し、重合体L(0.56g)を得た。
重合体Lのポリスチレン換算の数平均分子量は3.4×104であった。重合体Lは、式(Z)で表される構造単位からなる。
Figure JPOXMLDOC01-appb-C000105
(重合体Lセシウム塩の合成)
 アルゴン雰囲気下、重合体L(0.25g)、THF(13mL)、メタノール(6mL)、水酸化セシウム一水和物(69mg)、及び水(1mL)を65℃で6時間撹拌し、反応混合物を濃縮してイソプロパノールに滴下し、固体をろ過で回収して乾燥した。固体にメタノールを加えてろ過し、ろ液をイソプロパノールに滴下し固体をろ過で回収して乾燥し、重合体Lセシウム塩(0.19g)を得た。得られた重合体Lセシウム塩を共役高分子化合物15と呼ぶ。
共役高分子化合物15は、式(AA)で表される構造単位からなる。共役高分子化合物15のHOMOの軌道エネルギーは-5.50eV、LUMOの軌道エネルギーは-2.65eVであった。
Figure JPOXMLDOC01-appb-C000106
[実験例16]
(有機EL素子の作製及び評価)
 メタノールと共役高分子化合物1とを混合し、0.2重量%の共役高分子化合物1を含む組成物を得た。ガラス基板表面に成膜パターニングされたITO陰極(膜厚:45nm)上に、前記組成物を大気中でスピンコート法により塗布し、膜厚10nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で10分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、共役高分子化合物1を含む電子注入層が形成された基板を得た。
次に、発光高分子材料(サメイション(株)製「Lumation BP361」)とキシレンとを混合し、1.4重量%の発光高分子材料を含む発光層形成用組成物を得た。上記で得た共役高分子化合物1を含む層が形成された基板の共役高分子化合物1を含む層の上に、発光層形成用組成物を大気中でスピンコート法により塗布し、膜厚80nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、発光層が形成された基板を得た。
次に、上記で得た発光層が形成された基板の発光層の上に、正孔注入材料溶液を大気中でスピンコート法により塗布し、膜厚60nmの塗膜を得た。この塗膜を設けた基板を不活性雰囲気下(窒素雰囲気下)、130℃で15分間加熱し、溶媒を蒸発させた後、室温まで自然冷却させ、正孔注入層が形成された基板を得た。ここで正孔注入材料溶液には、スタルクヴイテック(株)製PEDOT:PSS溶液(ポリ(3,4‐エチレンジオキシチオフェン)・ポリスチレンスルホン酸、製品名:「Baytron」)を用いた。
上記で得た正孔注入層が形成された基板を真空装置内に挿入し、真空蒸着法によって該層の上にAuを80nm成膜し、陽極を形成させて、積層構造体1を製造した。
上記で得た積層構造体2を真空装置より取り出し、不活性雰囲気下(窒素雰囲気下)で、封止ガラスと2液混合型エポキシ樹脂にて封止し、有機EL素子1を得た。
上記で得られた有機EL素子1に10Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000107
[実験例17]
(両面発光型の有機EL素子の作製及び評価)
 実験例13において、Auの膜厚を20nmとした以外は、実験例13と同様に操作して、両面発光型の有機EL素子2を得た。
上記で得られた両面発光型の有機EL素子2に15Vの順方向電圧を印加し、発光輝度と発光効率を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000108
表1および2で示すように、大気中において塗布プロセスでイオン性ポリマーを成膜し、電子注入層を形成した逆積層の有機EL素子が、発光することを確認した。
 1…有機EL素子、2…支持基板、3…陰極、4…電子注入層、5…発光層、6…正孔注入層、7…陽極、11…一方の巻き芯、12…他方の巻き芯、13,14,15,16…塗布装置。
 

Claims (3)

  1. ロール・ツー・ロール法によって、支持基板上に、陰極、電子注入層、発光層及び陽極をこの順に積層して有機EL素子を作製する有機EL素子の製造方法であって、
     陰極が形成された支持基板における陰極上に、イオン性ポリマーを含むインキを塗布して成膜することによって電子注入層を形成する工程と、
     電子注入層上に発光層を形成する工程と、
     発光層上に陽極を形成する工程と、を含む、方法。
  2. 支持基板が、金属薄板からなる、請求項1記載の方法。
  3. 電子注入層を形成する工程において、常圧の雰囲気下で前記インキを塗布する、請求項1又は2記載の方法。
     
PCT/JP2011/066494 2010-07-21 2011-07-20 有機el素子の製造方法 WO2012011511A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180045184.8A CN103120019B (zh) 2010-07-21 2011-07-20 有机el元件的制造方法
EP11809681.7A EP2597934A4 (en) 2010-07-21 2011-07-20 METHOD OF MANUFACTURING AN ORGANIC EL-ELEMENT
US13/810,977 US9276237B2 (en) 2010-07-21 2011-07-20 Method for producing organic EL element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010163676 2010-07-21
JP2010-163676 2010-07-21

Publications (1)

Publication Number Publication Date
WO2012011511A1 true WO2012011511A1 (ja) 2012-01-26

Family

ID=45496930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066494 WO2012011511A1 (ja) 2010-07-21 2011-07-20 有機el素子の製造方法

Country Status (6)

Country Link
US (1) US9276237B2 (ja)
EP (1) EP2597934A4 (ja)
JP (1) JP5862086B2 (ja)
CN (1) CN103120019B (ja)
TW (1) TW201220575A (ja)
WO (1) WO2012011511A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495231B2 (ja) 2019-02-08 2024-06-04 住友化学株式会社 化合物およびそれを用いた発光素子

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963422B2 (en) * 2010-07-21 2015-02-24 Sumitomo Chemical Company, Limited Method for manufacturing organic light-emitting device and organic light-emitting device
US8927978B2 (en) * 2010-07-21 2015-01-06 Sumitomo Chemical Company, Limited Organic EL element
EP2692796B1 (en) * 2011-03-28 2019-07-10 Sumitomo Chemical Co., Ltd Composition
US20140166989A1 (en) * 2012-12-17 2014-06-19 Universal Display Corporation Manufacturing flexible organic electronic devices
US10103384B2 (en) 2013-07-09 2018-10-16 Evonik Degussa Gmbh Electroactive polymers, manufacturing process thereof, electrode and use thereof
DE102014003300A1 (de) 2014-03-07 2015-09-10 Evonik Degussa Gmbh Neue Tetracyanoanthrachinondimethanpolymere und deren Verwendung
DE102014004760A1 (de) 2014-03-28 2015-10-01 Evonik Degussa Gmbh Neue 9,10-Bis(1,3-dithiol-2-yliden)-9,10-dihydroanthracenpolymere und deren Verwendung
EP3262094B1 (de) 2015-08-26 2018-12-26 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
EP3262668B1 (de) 2015-08-26 2018-12-05 Evonik Degussa GmbH Verwendung bestimmter polymere als ladungsspeicher
KR102146324B1 (ko) 2016-06-02 2020-08-21 에보니크 오퍼레이션즈 게엠베하 전극 물질을 제조하는 방법
TWI686415B (zh) 2016-08-05 2020-03-01 德商贏創運營有限公司 含有噻嗯之聚合物作為電荷儲存裝置之用途
EP3510061B1 (de) 2016-09-06 2020-04-15 Evonik Operations GmbH Verfahren zur verbesserten oxidation sekundärer amingruppen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945478A (ja) 1995-02-01 1997-02-14 Sumitomo Chem Co Ltd 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
JP2004137456A (ja) 2002-06-21 2004-05-13 Samsung Sdi Co Ltd 青色電界発光高分子およびこれを用いた有機電界発光素子
JP2007070620A (ja) 2005-08-12 2007-03-22 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2007149589A (ja) 2005-11-30 2007-06-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
JP2008074917A (ja) 2006-09-20 2008-04-03 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2009123690A (ja) * 2007-10-22 2009-06-04 Konica Minolta Holdings Inc 塗布層形成後或いは対電極層形成後に乾燥剤フィルムを貼合して巻き取る有機エレクトロニクス素子とその製造方法
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
JP2010103040A (ja) * 2008-10-27 2010-05-06 Konica Minolta Holdings Inc 有機エレクトロニクス素子、その製造方法、及び製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW334474B (en) 1995-02-01 1998-06-21 Sumitomo Kagaku Kk Method for making a polymeric fluorescent substrate and organic electrolumninescent element
GB2347013A (en) * 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
WO2001005194A1 (fr) * 1999-07-07 2001-01-18 Sony Corporation Procede et appareil de fabrication d'afficheur electroluminescent organique souple
US6869635B2 (en) 2000-02-25 2005-03-22 Seiko Epson Corporation Organic electroluminescence device and manufacturing method therefor
KR101170168B1 (ko) * 2004-01-30 2012-07-31 에스케이이노베이션 주식회사 9,9-디(플루오레닐)-2,7-플루오레닐 단위를 함유하는 유기전기발광고분자 및 이를 이용한 전기발광소자
JP4245015B2 (ja) * 2006-08-11 2009-03-25 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法並びに電子機器
WO2008062642A1 (en) * 2006-11-22 2008-05-29 Nec Corporation Semiconductor device and method for fabricating the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945478A (ja) 1995-02-01 1997-02-14 Sumitomo Chem Co Ltd 高分子蛍光体とその製造方法および有機エレクトロルミネッセンス素子
JP2004137456A (ja) 2002-06-21 2004-05-13 Samsung Sdi Co Ltd 青色電界発光高分子およびこれを用いた有機電界発光素子
JP2007070620A (ja) 2005-08-12 2007-03-22 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2007149589A (ja) 2005-11-30 2007-06-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子の製造方法
JP2008074917A (ja) 2006-09-20 2008-04-03 Sumitomo Chemical Co Ltd 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2009123690A (ja) * 2007-10-22 2009-06-04 Konica Minolta Holdings Inc 塗布層形成後或いは対電極層形成後に乾燥剤フィルムを貼合して巻き取る有機エレクトロニクス素子とその製造方法
JP2009239279A (ja) * 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
JP2010103040A (ja) * 2008-10-27 2010-05-06 Konica Minolta Holdings Inc 有機エレクトロニクス素子、その製造方法、及び製造装置

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Organic Reactions", vol. 14, 1965, JOHN WILEY & SONS, INC., pages: 270 - 490
"Organic Syntheses", vol. VI, 1988, JOHN WILEY & SONS, INC., pages: 407 - 411
CHEM. REV., vol. 95, 1995, pages 2457
JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 576, 1999, pages 147
MACROMOLECULAR CHEMISTRY MACROMOLECULAR SYMPOSIUM, vol. 12, 1987, pages 229
See also references of EP2597934A4
THE JOURNAL OF PHYSICAL CHEMISTRY B, vol. 104, 2000, pages 9118 - 9125

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495231B2 (ja) 2019-02-08 2024-06-04 住友化学株式会社 化合物およびそれを用いた発光素子

Also Published As

Publication number Publication date
JP2012043781A (ja) 2012-03-01
EP2597934A4 (en) 2014-07-16
JP5862086B2 (ja) 2016-02-16
TW201220575A (en) 2012-05-16
CN103120019B (zh) 2015-09-16
US20130183782A1 (en) 2013-07-18
EP2597934A1 (en) 2013-05-29
CN103120019A (zh) 2013-05-22
US9276237B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5653122B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5862086B2 (ja) 有機el素子の製造方法
JP5982747B2 (ja) 有機el素子
JP5863307B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2012046736A1 (ja) 有機el装置及びその製造方法
CN103385036B (zh) 有机电致发光元件的制造方法
JP5899635B2 (ja) 有機el素子
WO2012011456A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置
WO2012011471A1 (ja) 有機エレクトロルミネッセンスディスプレイ装置の製造方法及び有機エレクトロルミネッセンスディスプレイ装置
WO2012070575A1 (ja) 発光装置及び発光装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045184.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11809681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011809681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011809681

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13810977

Country of ref document: US