WO2011161833A1 - 耐加熱黒変性に優れた溶融a1めっき鋼板及びその製造方法 - Google Patents
耐加熱黒変性に優れた溶融a1めっき鋼板及びその製造方法 Download PDFInfo
- Publication number
- WO2011161833A1 WO2011161833A1 PCT/JP2010/060917 JP2010060917W WO2011161833A1 WO 2011161833 A1 WO2011161833 A1 WO 2011161833A1 JP 2010060917 W JP2010060917 W JP 2010060917W WO 2011161833 A1 WO2011161833 A1 WO 2011161833A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plating
- steel sheet
- alloy layer
- layer
- steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/012—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/02—Alloys based on aluminium with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
- Y10T428/12757—Fe
Definitions
- the present invention does not cause the plating layer surface to turn black even when held at a high temperature of about 550 ° C., is excellent in heat blacking resistance that maintains high heat reflectivity, and further has excellent workability. It is related with a steel plate and its manufacturing method.
- a hot-dip Al-plated steel sheet obtained by plating an Al-Si alloy on a steel sheet retains silver white even at high temperatures and has excellent heat reflection characteristics because Si is added to the plating layer. For this reason, it is conventionally used for various heat-resistant applications such as an automobile muffler.
- this molten Al-plated steel sheet is also exposed to a high temperature of 450 ° C. or higher, mutual diffusion of Al and Fe occurs, and the Al—Si plating layer changes to an Al—Fe—Si intermetallic compound layer and turns black (
- alloying or black change this phenomenon is called alloying or black change, and the ease of black change is called black denaturation.
- solute nitrogen in the steel sheet is deeply involved in the alloying of the Al plating.
- an AlN layer is formed at the interface between the alloy layer and the steel sheet. Suppressing the alloying reaction is described in, for example, iron and steel 70 (1984) S475. It is also known that the AlN layer grows by annealing a steel sheet containing solute nitrogen after plating, and further the black change temperature rises.
- Patent Document 1 Based on this knowledge, various studies have been conducted on the technology for suppressing black change due to alloying. For example, in Patent Document 1, the present applicants described in Patent Document 1, after plating a steel sheet obtained by hot-dip Al plating on a steel in which the amount of C, Si, N, Al, O, Ti, Nb, V, and B is limited, An Al-plated steel sheet imparted with heat blackening resistance by annealing for 20 hours is disclosed.
- the black transition temperature of rimmed steel is about 520 ° C.
- killed steel is as low as 320 ° C.
- solute nitrogen (N) in the steel of killed steel has proposed. That is, Al and Ti that form stable nitrides are limited in order to secure solid solution nitrogen. For this reason, since deoxidation conditions and the like are affected, an example of a method for producing a cast slab for hot-dip Al-plated steel sheet in which C, Si, Mn, sol-Al, N, and O are specified to be in an appropriate range is disclosed.
- Fe-Al- is obtained by performing aluminum plating containing Mg to some extent on a component steel material in which sol-N remains stably, and then performing an annealing treatment at 300 to 500 ° C. for 2 to 20 hours. It has been proposed to form a monoclinic Si-Mg alloy between the steel plate and the plating layer, and to prevent black changes due to interdiffusion of elements by forming AlN between the intermetallic compound and the steel material. ing.
- Patent Document 4 Mn and Cr are added in combination to an aluminum plating layer, and these elements are remarkably concentrated at the interface between the alloy layer and the plating layer by annealing at 300 to 500 ° C. for 0.5 hour or longer after plating. It is disclosed that this layer exhibits an alloying suppressing effect. For this reason, it has been proposed to exhibit an effect of improving gloss retention.
- a barrier layer is formed by additional annealing after plating to suppress the formation of Fe-Al intermetallic compounds, but the workability is poor, and because of high temperature and long time heating, production Poor properties, production costs increase, and there are problems not only in terms of processability and economy, but also in terms of the environment. Therefore, in order to solve these problems, the present application has a high temperature of 550 ° C. or higher without additional annealing after Al plating, or at least heat-resistant blackening without additional annealing after plating of a conventional Al-plated steel sheet. It is an object to produce a steel sheet having excellent properties.
- FIG. 1 shows the relationship between solid solution nitrogen and heat-resistant temperature. The point where the solid solution nitrogen is 46 ppm is rimmed steel. It turns out that heat resistance improves by additional annealing when solid solution nitrogen will be 46 ppm or less.
- a steel material containing 46 ppm or more of solute nitrogen has poor workability, and when drawn, the frequency of occurrence of cracks increases. Therefore, it cannot be applied to processing of complicated shapes. Therefore, in the present invention, it is also an object to propose a production method capable of preventing black change without additional annealing and improving workability in a low solid solution nitrogen steel of 46 ppm or less.
- the present inventors have found that when the formation of the AlN layer is promoted at the interface between the steel material and the Al plating layer (hereinafter referred to as “plating interface”), the concentration of nitrogen (N) is increased. It was found that carbon (C) was concentrated with the conversion. It is considered that the presence of C, which is an austenite former, has some function and promotes the concentration of N. Therefore, as a result of adding N and Cu, which are austenite formers other than C, and investigating the N enrichment promoting effect, it was found that these austenite former elements have an N enrichment promoting effect. At the same time, the steel sheet of the present invention was found to satisfy the workability, and the present invention was achieved.
- the gist is as follows.
- the amount of Si in the Al plating bath is 4 to 11%, and the bath temperature is 610.
- the present invention it is not necessary to perform post annealing after plating, and a hot-dip aluminized steel sheet excellent in heat blackening resistance and workability can be obtained even at a high temperature of 550 ° C. or higher. Therefore, compared with the prior art, the productivity is very good, and the manufacturing cost is kept low, and the effect of high heat blackening resistance and high gloss maintenance and improvement is achieved. In addition, since the heat treatment process is greatly reduced, energy consumption is suppressed and CO 2 emission is suppressed, so that it is possible to obtain an effect that the environmental load is significantly recommended.
- FIG. 1 is a graph showing the relationship between the amount of nitrogen (N) in steel and the heat resistance of steel.
- FIG. 2 is a conceptual diagram showing the mechanism of black change on the surfaces of capped steel and aluminum-killed steel. The upper row shows capped steel and the lower row shows aluminum / killed steel.
- FIG. 3 is a diagram showing an example of a high-frequency GDS analysis result of the surface of the aluminum-plated steel sheet. 3A is a diagram mainly showing the distribution of aluminum and iron, and FIG. 3B is a diagram mainly showing the distribution of carbon (C) and nitrogen (N).
- FIG. 4 is a conceptual diagram showing the relationship between the peak concentration of AlN (N integrated intensity in GDS) and the black change temperature.
- FIG. 1 is a graph showing the relationship between the amount of nitrogen (N) in steel and the heat resistance of steel.
- FIG. 2 is a conceptual diagram showing the mechanism of black change on the surfaces of capped steel and aluminum-killed steel. The upper row shows capped steel and the lower row
- FIG. 5 is a diagram showing a state of black change in the aluminum-plated steel sheet according to the Al plating bath temperature and the Si concentration in the Al plating bath in Examples.
- FIG. 6 is a diagram illustrating the occurrence of black change in the aluminum-plated steel sheet due to the Al plating bath temperature and the Si concentration in the Al plating bath in the examples.
- FIG. 7 is a conceptual diagram of the draw bead test.
- FIG. 2 shows a simple explanatory diagram of the mechanism.
- FIG. 2 shows an example of a capped steel containing a relatively high concentration of solute nitrogen (N), and the lower part shows an example of an Al killed steel containing a low concentration of solute nitrogen.
- blackening was improved by the following mechanism.
- x) First, when Al plating is performed on the capped steel 10 serving as a bare metal, an AlN barrier layer 11 and a hexagonal Al—Fe—Si alloy layer 12 are formed between the Al plated layer 13 and the bare metal 10 after plating. . y) During the subsequent heating at 550 ° C., the hexagonal Al—Fe—Si alloy layer 12 changes to a monoclinic Al—Fe—Si alloy layer 12 ′.
- the hexagonal Al—Fe—Si alloy layer 12 is also referred to as (Al—Fe—Si) H, and the monoclinic Al—Fe—Si alloy layer 12 ′ is also referred to as (Al—Fe—Si) M. .
- These are all intermetallic compounds produced in an Al—Fe—Si ternary system, and have crystal structures of hexagonal and monoclinic, respectively.
- the hexagonal Al—Fe—Si alloy layer is Al 8 Fe 2 Si and the monoclinic Al—Fe—Si alloy layer is Al 5 FeSi.
- the AlN layer 15 is formed at the plating interface (interface between the steel material and the plating layer as a base material), and this serves as a barrier layer to suppress mutual diffusion of elements of the steel material and the plating layer. Therefore, the plating layer does not change to an Al—Fe alloy (intermetallic compound), and a surface with good light reflectivity can be obtained (upper stage in FIG. 2).
- the AlN barrier layer that is, the above-described barrier layer, since there is little solid solution nitrogen There is no element, and the elements mutually diffuse between the steel material and the plating layer.
- the hexagonal Al—Fe—Si alloy layer 12 changes to a monoclinic Al—Fe—Si alloy layer, and further diffuses into the Al plating layer 13 and changes to the ⁇ phase and the ⁇ phase 14, so that plating is in progress. It is considered that the blackening occurred due to the increase of Fe in the lower part of FIG.
- FIG. 3 shows the result of high frequency GDS analysis from the surface after the Al plating, in which only the Al plating layer is electrolytically peeled to expose the alloy layer.
- the high-frequency GDS is an analyzer that measures the element distribution in the depth direction while sputtering the surface with Ar gas, the horizontal axis indicates the sputtering time, and the vertical axis indicates the signal intensity proportional to the concentration.
- C which is an austenite forming element
- N is much more soluble in austenite than ferrite. That is, it was thought that by adding an element that is an austenite-forming element and easily concentrated on the surface, only a slight thickness on the outermost surface is austenitized, and the N concentration here increases (N increases).
- Cu and Ni are mentioned as an element which has such a property. Considering that these elements may have similar effects, the influence of these elements was examined. As a result, it was confirmed that when Cu or Ni was added, an AlN layer and a hexagonal Al—Fe—Si alloy layer were formed to about 3 ⁇ m at the plating interface.
- FIG. 4 shows the relationship between the peak concentration of AlN (the integrated intensity of N in GDS) and the black change temperature.
- the black change temperature increases as the peak concentration of AlN increases. That is, when a firm barrier layer of AlN is formed, elemental interdiffusion between the steel material and the Al plating layer is suppressed, and it is considered that no Fe—Al intermetallic compound is generated.
- the reason why the hexagonal Al—Fe—Si alloy layer has an effect on the black change will be considered.
- additional annealing is not performed after plating, it is considered that AlN is generated in the cooling process after Al plating.
- the alloy layer since the alloy layer has already been formed, solid solution nitrogen in the steel reacts with Al in the alloy layer to form AlN.
- the hexagonal Al—Fe—Si alloy layer is more likely to react with solute nitrogen in the steel than the monoclinic Al—Fe—Si alloy layer, and as a result, AlN is generated.
- the presence of a hexagonal Al—Fe—Si alloy layer instead of a monoclinic Al—Fe—Si alloy layer at the interface between AlN and the Al plating layer facilitates the formation of AlN, which suppresses interdiffusion of Fe—Al. It is considered that a synergistic effect of the barrier effect can be expected. That is, the hexagonal Al—Fe—Si alloy layer is effective in generating AlN. However, since this hexagonal Al—Fe—Si alloy layer has high hardness, if this layer is thick, the ductility of the steel plate itself is hindered, and cracking is likely to occur when the plated steel plate is formed. Therefore, it is preferable to control the thickness of the hexagonal Al—Fe—Si alloy layer to 5 ⁇ m or less.
- the control of the alloy layer thickness is almost determined by the amount of Si in the bath and the bath temperature. If the bath temperature is too high, the alloy layer grows. Thus, in order to stabilize the formation of AlN and the formation of the hexagonal Al—Fe—Si alloy layer, the Si concentration in the plating bath is set to 4 to 11% and the plating bath temperature is set to a relatively low temperature of 610 to 650 ° C. It was also found that it is effective to hold it.
- the Si content is different when comparing the hexagonal Al—Fe—Si alloy layer and the monoclinic Al—Fe—Si alloy layer, as can be estimated from the chemical formula shown earlier. .
- the former contains about 10% while the latter contains about 15% Si. Therefore, when the Si content in the bath exceeds 11%, a monoclinic Al—Fe—Si alloy layer is mainly formed, and when the Si content in the bath is 4-11%, a hexagonal Al—Fe—Si alloy layer is easily generated. If the amount of Si in the bath is less than 4%, an Al—Fe compound containing no Si is easily generated.
- FIG. 5 shows the state of black change (photo) depending on the Al plating bath temperature and the Si concentration in the Al plating bath
- FIG. 6 shows the occurrence of black change due to the Si content in the bath and the bath temperature.
- the frame in the figure indicates a Si content of 4 to 11% and a bath temperature of 610 to 650 ° C.
- Table 1 shows the components of the steel material used as the base material at this time.
- the numbers at the bottom of FIG. 5 indicate the Si concentration in the bath and the bath temperature, respectively.
- ⁇ no black change
- ⁇ partial black change
- x full black change. Even a score of ⁇ is partially changed to black, so it cannot be put into practical use.
- the reasons for limiting the components in the present invention will be described.
- the unit of the component in steel is all mass%.
- C If the density
- the component system of the present invention inevitably contains solute nitrogen, so it is slightly inferior in workability. Therefore, low C is preferable from the viewpoint of workability.
- it is limited to 0.01% or less. However, from the above-mentioned point, it is desirably 0.005% or less, more desirably 0.004% or less, further desirably 0.0025% or less, and still more desirably 0.001% or less.
- the lower limit is preferably 0.0005%.
- Si reacts with oxygen at the steel making stage to remove oxygen in the molten steel. Also in the steel strip manufacturing process, there is a possibility of reacting with solid solution oxygen (O) in the steel. Si reacts with N in the steel to produce Si 3 N 4 , SiN, etc., thereby reducing solute nitrogen. Further, when the amount of Si is increased, non-plating is caused because the surface is concentrated as an oxide during heating in the hot dipping process.
- the lower element is a desirable element, and is 0.05% or less, preferably 0.041% or less, more preferably 0.021% or less, still more preferably 0.01% or less, and still more preferably 0.00. Limited to 004% or less. The lower limit is preferably about 0.001%.
- N In order to prevent black change after Al plating and maintain gloss, it is necessary to leave the steel sheet as solute nitrogen. For this purpose, 0.0015% or more of N is necessary, preferably 0.0019% or more, more preferably 0.0024% or more, and further preferably 0.0031% or more. On the other hand, the steel sheet hardens due to the increase in solute nitrogen, yield strength and tensile strength are greatly improved, and elongation is reduced. Also, press formability deteriorates. For this reason, the upper limit of the N amount is set to 0.0040%. In the present invention, since the Al concentration in the steel material is low as described below, AlN is not generated except on the surface in contact with the aluminum plating layer. Therefore, the amount of N is approximately equal to solute nitrogen.
- Al is usually used as a deoxidizer for molten steel in the steelmaking process. However, the remaining Al reacts with solute nitrogen in the steel strip manufacturing process to become AlN. This AlN is dispersed in the steel sheet and is different from AlN present at the steel sheet and the plating interface. For this reason, solute nitrogen is reduced, the concentration of AlN produced at the interface is reduced, and the black change prevention characteristics after Al plating are deteriorated.
- the upper limit is limited to 0.01%. Desirably, it is 0.005% or less, more desirably 0.003% or less, and further desirably 0.002% or less. The lower limit is 0.001%.
- oxygen Since oxygen is the source of inclusions in the steel, it is usually deoxidized with Al, Si, etc. at the steelmaking stage.
- the steel contains oxygen of 0.03% or more, more preferably 0.042% or more, and still more preferably 0.050% or more. This is because, as described above, if there is sufficient O in the steel, there is a stabilizing effect of heat blackening resistance. This is effective when oxygen is 0.03%. However, if the oxygen content is increased, the upper limit of O is made 0.08%, more preferably 0.065% in order to cause deterioration of workability due to inclusions.
- P, S These are known as impurities that easily segregate on the surface.
- the lower limit of P and S is 0.002%.
- P is an element that causes ductility and brittleness of the steel sheet, and S also inhibits the ductility of the steel sheet. Therefore, the upper limit is set to 0.1%.
- a more preferable upper limit of P is 0.066%, and a more preferable upper limit of S is 0.081%.
- Ni, Cu These elements are austenite forming elements that are easily concentrated on the surface, and are important elements that bring about an effect of improving heat blackening resistance as described above. That is, it has been found that C, which is an austenite forming element, is concentrated at the interface between the steel plate and the aluminum plating, which may promote N concentration. Therefore, the inventors further added Cu or Ni, which are austenite forming elements, and investigated the effect. As a result, it was confirmed that the addition of Cu or Ni facilitates the formation of an AlN layer. On the other hand, when Cr, which is one of the ferrite forming elements, is not present, the effect is obtained even if it is very small. However, when Cr is present, the effect is lost, so it is not desirable to add Cr together. Therefore, Cr is 0.02% or less, that is, an inevitable impurity level.
- the lower limit of Ni is 0.01%, preferably 0.018%, more preferably 0.029%.
- the lower limit of Cu is 0.01%, more preferably 0.022%, and still more preferably 0.041%. Excessive addition of Ni and Cu causes soot generation in hot rolling, so the upper limit is made 0.1%. By satisfying these lower limits, AlN generation can be achieved and black change can be suppressed.
- Mn may usually be contained in an amount of about 0.2 to 0.8%.
- Al plating (About Al plating) Next, the reasons for limiting Si in the Al plating layer and the hot Al plating bath will be described.
- the unit is mass% (in the following description, it is simply expressed as%).
- an Al—Fe intermetallic compound layer (usually referred to as an alloy layer: FeAl 3 or Fe 2 Al 5 ) easily grows thick, and the grown alloy layer causes plating peeling during processing.
- Si is added to suppress the growth of the alloy layer.
- the amount of Si needs to be 4% or more.
- the effect is saturated at about 11%, and the addition beyond it reduces the corrosion resistance and workability.
- the upper limit of the amount of Si in the plating bath is 11%, and the lower limit is 4%.
- the upper limit of the amount of Si in the plating bath is 11%, and the lower limit is 4%.
- the lower limit is 4%.
- about 2% of Fe eluted from a normal plated steel sheet or plating equipment is contained, but this is not particularly limited.
- the Si amount in the Al plating bath is 4 to 11%, and the bath temperature is particularly preferably 610 to 650 ° C.
- the bath temperature is particularly preferably 610 to 650 ° C.
- additive elements for Al plating layers and plating baths include Mn, Cr, Mg, Ti, Zn, Sb, Sn, Cu, Ni, Co, In, Bi, Misch metal, etc., but the plating layer is Al. Is applicable as long as Addition of Zn and Mg is effective in terms of making red rust unlikely to occur, but excessive addition of these elements having a high vapor pressure causes generation of fumes of Zn and Mg, Zn on the surface, and powdery substances derived from Mg The addition of Zn: 30% by mass or more and Mg: 5% by mass or more is not preferable.
- a post-plating treatment chemical conversion treatment, resin coating treatment, or the like may be performed for the purpose of primary rust prevention and lubricity.
- chromate treatment a trivalent treatment film is preferable in consideration of recent hexavalent chromium regulations.
- post-treatment other than inorganic chromate is also applicable.
- the amount of adhesion of the Al plating layer there are no particular limitations on the amount of adhesion of the Al plating layer, but there are many cases where the amount is usually 80 to 120 g / m 2 on both sides, and there is no particular problem with this amount of adhesion.
- Al-plated steel sheets are considered to be easily galling during press forming, but this has been a problem because the galling is more likely to occur when annealing is performed.
- the present invention improves heat blackening resistance without performing an annealing treatment, and an improvement in press formability can also be expected.
- box annealing or the like also referred to as Post Annealing or additional annealing.
- this is because the hardness of the Al plating is lowered by the annealing treatment, and galling is likely to occur when press forming.
- the box annealing treatment is applied, the shape of the steel sheet collapses due to warpage or the like, so that after that, a skin pass and a finishing plate are necessary, and three additional steps are eventually required. This is not preferable from the viewpoint of productivity and manufacturing cost.
- Example 1 Using a cold-rolled steel sheet having a steel component as shown in Table 2 (plate thickness 0.8 mm) that has undergone a normal hot-rolling process and cold-rolling process, hot-dip Al plating was performed.
- hot-dip Al plating a non-oxidation furnace-reduction furnace type line was used, and after plating, the amount of plating adhered was adjusted to about 80 g / m 2 on both sides by a gas wiping method, followed by cooling.
- the annealing temperature at this time was about 800 ° C., and the plating bath composition was Al-9% Si-2% Fe. Fe in the bath is unavoidably supplied from plating equipment and strips in the bath.
- the bath temperature was 645 ° C.
- the plating appearance was good with no unplating.
- a part of the prepared sample was further subjected to post-plating annealing treatment at 380 ° C. for 10 hours in an air atmosphere using a box annealing furnace, and further subjected to temper rolling at 1%. A dull roll was used as a roll during temper rolling. The characteristics of the sample thus prepared were evaluated.
- ⁇ Temperature conditions required for heat blackening resistance vary depending on the environment in which the materials used are exposed.
- the required temperature for toaster and hot plate household appliances is often as low as 500 ° C or lower, but it is about 550 ° C for fan heaters and petroleum stoves, but it exceeds 550 ° C when used for automobile and motorcycle mufflers.
- Change temperature is required. In such an application, a temperature exceeding 600 ° C. is originally required, but the required temperature of the material can be lowered by designing and the like. For example, the temperature of the material is 550 ° C. by including a heat insulating material. It is also possible. Conversely, by increasing the black change temperature of the material, the design margin can be increased, and the cost can be reduced by reducing the heat insulating material.
- Alloy layer type, plating layer hardness In order to identify the type of alloy layer, the composition of the alloy layer was measured from the cross section. Seven portions corresponding to the alloy layer of the sample subjected to cross-sectional polishing were measured arbitrarily by EPMA analysis, and a value of Si / (Al + Fe + Si) was calculated. At this time, it was calculated by mass%. When this value is 8 to 11%, it is a monoclinic Al—Fe—Si alloy layer, and when it is 12 to 16%, it is a hexagonal Al—Fe—Si alloy layer.
- the hardness of the Al plating layer was similarly measured using a cross-sectional sample and targeting the Al part of the Al plating layer. Five points were measured and the average value was calculated. The load at this time was 3 gf. Knoop hardness was measured using a micro hardness tester MVK-G3 manufactured by Akashi Seisakusho.
- Table 2 summarizes the details of the samples and the evaluation results.
- the component values surrounded by squares indicate that they are out of the components of the present application.
- Example 2 Using steel L in Table 1 (a component corresponding to the example of the present invention), plating was performed by changing the amount of Si in the Al plating bath and the bath temperature. The amount of adhesion was 80 g / m 2 on both sides as in Example 1. The sample thus produced was evaluated. Evaluation conditions and evaluation criteria were the same as those in Example 1. In addition, before performing an Al process here, the post-plating annealing process is not performed but it is evaluation as plating. Table 4 summarizes the relationship between plating conditions (the amount of Si in the bath and bath temperature), heat blackening resistance, and workability. At this time, the thickness of the alloy layer was measured with a cross-sectional microscope and shown in Table 4.
- Al plating conditions affect heat blackening resistance.
- the heat blackening resistance when the amount of Si in the plating bath and the bath temperature were varied was evaluated.
- the Si amount was 15%, the heat blackening resistance was inferior.
- the alloy layer was a monoclinic Al—Fe—Si alloy layer.
- the bath temperature was less than 610 ° C., the bath viscosity was too high and Al plating was difficult.
- the alloy layer of No. 1 did not correspond to either the hexagonal Al—Fe—Si alloy layer or the monoclinic Al—Fe—Si alloy layer. Since it was determined as Fe 2 Al 5 from the analysis result, it is described in this way.
- the bath temperature was raised and the alloy layer thickness was increased. Under such conditions, the alloy layer becomes too thick, which hinders the formability of the steel sheet.
- the present invention can be used for a steel material used at a high temperature of about 550 ° C., particularly for use in which importance is placed on the aesthetics of the appearance. According to the present invention, these steel materials that emphasize aesthetics used at a high temperature of about 550 ° C. can be manufactured with high productivity and low cost.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
これは、めっき後追加焼鈍することにより、母材となる鋼材中の窒素(N)とめっき層中のAlが反応し、めっき界面にAlN層を形成し、これがバリア層となり、鋼材中およびめっき層中の元素の相互拡散が抑制されるためと考えられる。
しかし、めっき後追加焼鈍(Post Annealing)は、鋼板の生産性を大きく悪化させ、製造コストの多大な上昇を招くだけでなく、省エネルギーやCO2排出抑制といった環境的観点から問題のある製造方法である。
そこで、本願は、こうした問題を解決するため、Alめっき後追加焼鈍をしないで550℃以上の高温、または少なくとも従来のAlめっき鋼板のめっき後追加焼鈍なしの耐加熱黒変性を有し、しかも加工性に優れた鋼板を製造することを課題とする。
そこで、本発明においては、46ppm以下の低固溶窒素鋼において、追加焼鈍なく黒変化が防止でき、加工性も改善しうる製造方法の提案も課題とする。
C :0.0005~0.01%,
Si :0.001~0.05%,
P :0.002~0.1%、
S :0.002~0.1%、
Al :0.001~0.01%、
N :0.0015~0.0040%
O :0.03~0.08%,
さらに
Ni :0.01~0.1%または
Cu :0.01~0.1%の1種または2種以上を含有し、
10×C+Ni+Cu>0.03
残部Fe及び不可避的不純物からなる鋼板の表面に、
組成が質量%でSi:4~11%、残部がAl及び不可避的不純物からなるAlめっき層を有し、Alめっき層と鋼板界面に厚み5μm以下のAl−Fe−Si合金層を有することを特徴とする耐加熱黒変性に優れた溶融Alめっき鋼板。
図2は、キャップド(Capped)鋼と、アルミ・キルド鋼の表面の黒変化のメカニズムを示す概念図である。上段にキャップド鋼、下段にアルミ・キルド鋼を示す。
図3は、アルミめっき鋼板の表面の高周波GDS解析結果の一例を示す図である。図3(a)は主に、アルミと鉄の分布を、図3(b)は、主に炭素(C)と窒素(N)の分布を示す図である。
図4は、AlNのピーク濃度(GDSでのNの積算強度)と黒変化温度の関係を示す概念図である。
図5は、実施例におけるAlめっき浴温とAlめっき浴中のSi濃度によるアルミめっき鋼板の黒変化の状態を示す図である。
図6は、実施例におけるAlめっき浴温とAlめっき浴中のSi濃度によるアルミめっき鋼板の黒変化の発生状況を示す図である。
図7は、ドロービード試験の概念図である。
まず、従来技術のように、Alめっき後追加焼鈍により黒変性が改善する(加熱黒変化し難くなる)理由について考察する。図2にそのメカニズムについて簡単な説明図を載せる。
高濃度の固溶窒素を含有するキャップド鋼の場合、以下のメカニズムにより黒変性を改善していた。
x)まず、地金となるキャップド鋼10にAlめっきを行うと、Alめっき層13と地金10との間にめっき後にAlNバリア層11と六方晶Al−Fe−Si合金層12ができる。
y)その後の550℃の加熱中に六方晶Al−Fe−Si合金層12が単斜晶Al−Fe−Si合金層12’に変化する。
その結果、CuまたはNiを添加するとめっき界面にAlN層と六方晶Al−Fe−Si合金層が3μm程度形成されることが確認できた。
尚、鋼板中にCrを添加すると鋼材表面にCrが濃化する。Crはフェライト形成元素であるので、Crが濃化するとオーステナイト形成元素であるC、N、Cu、Niの濃化を阻害してAlNのピーク濃度を下げてしまう。従って、Crはできる限り添加しないほうがよく、できれば添加は行わない。同様に、他のフェライト形成元素、例えばMoなども添加しない方が良い。
めっき後追加焼鈍をしない場合、AlNはAlめっき後の冷却過程で生成していると考えられる。このとき合金層は既に生成しているので、鋼中の固溶窒素が合金層のAlと反応してAlNを形成する。しかし、単斜晶Al−Fe−Si合金層に比べて六方晶Al−Fe−Si合金層は鋼中固溶窒素と反応し易く、その結果AlNが生成されると考えられる。
しかし、この六方晶Al−Fe−Si合金層は高硬度なので、この層が厚いと鋼板自体の延性を阻害し、めっき鋼板を成形する際に割れを生じやすい。したがって、この六方晶Al−Fe−Si合金層の厚みは5μm以下に制御することが好ましい。
また、図6の黒変化の評点としては、○:黒変化なし、△:部分的に黒変化、×:全面黒変化、とした。△の評点であっても部分的に黒変化しているため、実用には耐えられない。
まず鋼中成分について記述する。なお、鋼中成分の単位は全て質量%である。
C:固溶窒素の濃度が同程度であれば、C含有量が少ないほど鋼板の加工性が向上する。一方本発明の成分系は必然的に固溶窒素を含有するため加工性にやや劣る。従って、加工性から低Cの方が好ましい。本発明においては0.01%以下に限定する。しかし上記の主旨から、望ましくは0.005%以下、より望ましくは0.004%以下、更に望ましくは0.0025%以下、更にまた望ましくは0.001%以下である。また、鋼材としての強度を確保するため、下限は0.0005%が望ましい。
一方Pは鋼板の延性、脆性を引き起こす元素で、Sも鋼板の延性を阻害する。このため上限をそれぞれ0.1%とする。またPのより好ましい上限は0.066%であり、Sのより好ましい上限は0.081%である。
即ち、鋼板とアルミメッキの界面にはオーステナイト形成元素であるCが界面に濃化し、Nの濃化を助長している可能性があることが分かった。
そこで、本発明者らはオーステナイト形成元素であるCuまたはNiをさらに添加して、その効果を調査した。その結果、CuまたはNiを添加するとAlN層が形成されやすくなるのを確認した。一方、フェライト形成元素の一つであるCrが存在しない場合には非常に少なくても効果が出るが、Crが存在するとその効果が無くなるので、Crを併用して添加することは望ましく無い。そこで、Crは0.02%以下、すなわち不可避的不純物レベルとする。
次に、Alめっき層及び溶融Alめっき浴中のSi限定理由を説明する。なお、単位は質量%である(以下の説明では単に%と表記している)。Siを含有しないAlめっきにおいては、Al−Fe金属間化合物層(通常合金層と称する:FeAl3やFe2Al5)が厚く成長しやすく、成長した合金層は加工時のめっき剥離を引き起こす。通常この合金層成長を抑制するためにSiを添加している。合金層低減という目的のためには、Si量は4%以上必要である。一方、その効果は11%程度で飽和し、それ以上の添加は耐食性、加工性を低下させる。従ってめっき浴中のSi量の上限を11%、下限を4%とする。また浴中のAl,Si以外の不可避元素としては、通常めっき鋼板やめっき機器から溶出してくるFeを約2%含有しているが、これについては特に限定するものではない。
黒変化の評価は、520℃~580まで10℃おきに各温度で200時間の焼鈍を行い、表面の黒変化を目視観察して評価した。尚、これら評価時の加熱温度ではAlNは更に生成することは無く黒変化のみが進行することが知られている。表2に本発明の実施例における耐加熱黒変性評価、および加工性評価結果を示す。表2の結果からもわかるように、本発明品は焼鈍をしなくても550℃まで黒変化しないことが確認された。これは従来品(特許文献を参照)でめっき後焼鈍処理しないものの黒変化温度が520℃、530℃であるのに対し、黒変化の観点からの耐熱性、つまり耐加熱黒変性が改善したことが示されている。また、従来品(特許文献を参照)の焼鈍後の黒変化温度ともほぼ同等であり、本発明の効果が検証された。
(実施例1)
通常の熱延工程及び冷延工程を経た、表2に示すような鋼成分の冷延鋼板(板厚0.8mm)を材料として、溶融Alめっきを行った。溶融Alめっきは無酸化炉−還元炉タイプのラインを使用し、めっき後ガスワイピング法でめっき付着量を両面約80g/m2に調節し、その後冷却した。この際の焼鈍温度は約800℃、めっき浴組成としてはAl−9%Si−2%Feであった。浴中のFeは、浴中のめっき機器やストリップから供給され不可避のものである。また浴温は645℃とした。めっき外観は不めっき等がなく良好であった。作成した試料の一部は、更にボックス焼鈍炉を使用して、大気雰囲気、380℃で10時間のめっき後焼鈍処理を行い、その後更に1%の調質圧延を施した。調質圧延時のロールはダルロールを使用した。
こうして作成した試料の特性を評価した。
試料(50mm×100mm)をボックス焼鈍炉内で、520~580℃の各一定温度で各200hr焼鈍を行った。焼鈍後目視判定,断面組織観察で黒変化の有無を判定した。
耐加熱黒変性の評点としては、○:黒変化なし、△:部分的に黒変化、×:全面黒変化、とした。△の評点であっても部分的に黒変化しているため、実用には耐えられない。
プレス油を塗布した後、ブランク径:100mm,ポンチ径:50mm(絞り比2.0)で絞り加工を行い、絞り可能かどうかを判定した。
原板加工性評点については、○:異常無し、×:割れ発生、とした。
AlNの有無は、GDSで合金層−鋼板界面のNピークの検出によるものとする。またGDSはAlめっきを電解剥離で除去した後に測定するものとする。一方六方晶Al−Fe−Si合金層は(Al−Fe−Si)Hと記載したものと同じものを差し、これもAlめっき層を電解剥離で除去した後に表面からX線回折で同定することが可能である。
板厚0.8mm、30×200mm寸法の試験片に対してドロービード試験を行った。このときの金型形状を図6に示す。金型の表面粗度をRaで約1.2μmとした。プレス油を塗布した後にドロービード成形を10本連続で行い、10本目の試料でのカジリ発生状況を目視判定した。このときの押さえ荷重は500kfgで、板厚減少率は約12%であった。なお、原板加工性が×の判定であった水準はこの試験は実施しなかった。
判定基準 ○:カジリなし △:試料一部にカジリ発生 ×:試料全面にカジリ発生
合金層の種類を識別するために、断面より合金層の組成を測定した。断面研磨した試料の合金層に相当する部位を7点任意にEPMA分析にて測定し、Si/(Al+Fe+Si)の値を算出した。このとき質量%で計算した。この値が8~11%のときに単斜晶Al−Fe−Si合金層、12~16%のときに六方晶Al−Fe−Si合金層とし、そのどちらにも該当しないときは再測定し、7点測定中5点以上が六方晶Al−Fe−Si合金層であるときにこの合金層は六方晶Al−Fe−Si合金層であると判定した。逆に7点中5点が単斜晶Al−Fe−Si合金層であるときにはこの合金層は単斜晶Al−Fe−Si合金層と判定した。六方晶Al−Fe−Si合金層、単斜晶Al−Fe−Si合金層のどちらも4点以下のときには両方が生成しているとした。表3、4の表示において、H、Mのみで表示し、六方晶Al−Fe−Si合金層と単斜晶Al−Fe−Si合金層の両方が生成しているときはH+Mと表示した。
Alめっき層の硬度は同じく断面試料を用い、Alめっき層のAl部位を狙ってknoop硬度を測定した。5点測定し、平均値を算出した。このときの荷重は3gfとした。Knoop硬度は明石製作所(株)製微小硬度計MVK−G3を使用して測定した。
表2で成分値を□で囲んである部分は本願の成分を外れていることを示す。
Ni、Cuの作用はCと相俟ってAlNを形成させやすくすることにあるものと推定している。番号10において、530℃では黒変防止可能で、Ni、Cuを添加することで20℃の黒変化温度の上昇効果が認められた。550℃は従来焼鈍工程を付与しないと達成できない黒変化温度であった。なお、番号18~24にめっき後追加焼鈍を付与した時の特性を評価した結果を示す。黒変化温度は焼鈍を付与することで更に20℃上昇した。
しかしこのときにはAlめっきの硬度が低下して、プレスカジリが発生した。Alめっき層の硬度が低下しており、このためと考えられる。なお、焼鈍を付与することで合金層は全て単斜晶Al−Fe−Si合金層が検出された。詳細な説明で記載したように単斜晶Al−Fe−Si合金層は六方晶Al−Fe−Si合金層よりも低温で安定な相であり、焼鈍工程で変態して生成したものと判断される。
表1の鋼L(本発明例に相当する成分)を用いて、Alめっき浴中のSi量、浴温を変化させてめっきを施した。付着量は実施例1と同じく両面80g/m2とした。こうして製造した試料を評価した。評価条件、評価基準は実施例1と同じとした。なお、ここではAl加工を行う前に、めっき処理後焼鈍処理は施さず、めっきままの評価である。表4にめっき条件(浴中Si量、浴温)と耐加熱黒変性、加工性との関係をまとめた。なお、このときには断面検鏡より合金層厚みを測定し、表4に示した。
10’ キルド鋼10’
11 AlNバリア層11
12 六方晶Al−Fe−Si合金層12
12’ 単斜晶Al−Fe−Si合金層12’
13 Alめっき層
14 θ相やη相
15 AlN層
Claims (4)
- 組成が質量%で
C :0.0005~0.01%,
Si :0.001~0.05%,
P :0.002~0.1%、
S :0.002~0.1%、
Al :0.001~0.01%、
N :0.0015~0.0040%
O :0.03~0.08%,
さらに
Ni :0.01~0.1%または
Cu :0.01~0.1%の1種または2種を含有し、
10×C+Ni+Cu>0.03の関係を満足し、
残部Fe及び不可避的不純物からなる鋼板の表面に、組成が質量%でSi:4~11%、残部がAl及び不可避的不純物からなり、Knoop硬度で90~110であるAlめっき層を有し、当該Alめっき層と鋼板との界面に厚み5μm以下のAl−Fe−Si合金層を有することを特徴とする耐加熱黒変性に優れた溶融Alめっき鋼板。 - 前記鋼板と前記Al−Fe−Si合金層の界面にAlNが存在し、前記Al−Fe−Si合金層は六方晶型Al−Fe−Si合金層であり、当該六方晶型Al−Fe−Si合金層の厚みが5μm以下であることを特徴とする請求項1に記載の耐加熱黒変性に優れた溶融Alめっき鋼板。
- 前記耐加熱黒変性に優れた溶融Alめっき鋼板が、めっき後焼鈍処理をしないことを特徴とする請求項1または2に記載の耐加熱黒変性に優れた溶融Alめっき鋼板。
- 請求項1~3のいずれか1項に記載の鋼成分を有する鋼板をめっき原板としてAlめっきする際に、Alめっき浴中のSi量を4~11%、浴温を610~650℃とした後で加工を行う前に、めっき処理後焼鈍処理を施さないことを特徴とする耐加熱黒変性に優れた溶融Alめっき鋼板の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/704,786 US9464345B2 (en) | 2010-06-21 | 2010-06-21 | Hot dip Al coated steel sheet excellent in heat black discoloration resistance and method of production of same |
JP2012521257A JP5218703B2 (ja) | 2010-06-21 | 2010-06-21 | 耐加熱黒変性に優れた溶融Alめっき鋼板及びその製造方法 |
PCT/JP2010/060917 WO2011161833A1 (ja) | 2010-06-21 | 2010-06-21 | 耐加熱黒変性に優れた溶融a1めっき鋼板及びその製造方法 |
EP10853693.9A EP2584059B1 (en) | 2010-06-21 | 2010-06-21 | Hot-dip al-coated steel sheet with excellent thermal blackening resistance and process for production of same |
CN201080067560.9A CN102971444B (zh) | 2010-06-21 | 2010-06-21 | 耐加热黑变性优异的热浸镀Al钢板及其制造方法 |
ES10853693.9T ES2535676T3 (es) | 2010-06-21 | 2010-06-21 | Chapa de acero revestida de Al por inmersión en caliente, con excelente resistencia al ennegrecimiento por calor y un método para la producción de la misma |
KR1020127033076A KR101473550B1 (ko) | 2010-06-21 | 2010-06-21 | 내가열 흑변성이 우수한 용융Al 도금 강판 및 그 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/060917 WO2011161833A1 (ja) | 2010-06-21 | 2010-06-21 | 耐加熱黒変性に優れた溶融a1めっき鋼板及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011161833A1 true WO2011161833A1 (ja) | 2011-12-29 |
Family
ID=45371044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060917 WO2011161833A1 (ja) | 2010-06-21 | 2010-06-21 | 耐加熱黒変性に優れた溶融a1めっき鋼板及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9464345B2 (ja) |
EP (1) | EP2584059B1 (ja) |
JP (1) | JP5218703B2 (ja) |
KR (1) | KR101473550B1 (ja) |
CN (1) | CN102971444B (ja) |
ES (1) | ES2535676T3 (ja) |
WO (1) | WO2011161833A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013171876A (ja) * | 2012-02-17 | 2013-09-02 | Nisshin Steel Co Ltd | Cis太陽電池およびその製造方法 |
WO2014068889A1 (ja) * | 2012-10-31 | 2014-05-08 | Jfeスチール株式会社 | 溶融亜鉛めっき鋼板 |
US20140334971A1 (en) * | 2013-05-07 | 2014-11-13 | Hyundai Motor Company | Wear-resistant alloys having complex microstructure |
US20140334972A1 (en) * | 2013-05-07 | 2014-11-13 | Hyundai Motor Company | Wear-resistant alloy having complex microstructure |
JP5994856B2 (ja) * | 2013-03-28 | 2016-09-21 | Jfeスチール株式会社 | 溶融Al−Zn系めっき鋼板及びその製造方法 |
US9493862B2 (en) | 2013-05-07 | 2016-11-15 | Hyundai Motor Company | Wear-resistant alloy having complex microstructure |
US9732403B2 (en) | 2013-05-07 | 2017-08-15 | Hyundai Motor Company | Wear-resistant alloy having complex microstructure |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102294390B1 (ko) | 2013-09-27 | 2021-08-26 | 인텔 코포레이션 | Iii-v족 재료 능동 영역과 그레이딩된 게이트 유전체를 갖는 반도체 디바이스 |
US20180201123A1 (en) * | 2014-10-14 | 2018-07-19 | Nippon Steel & Sumitomo Metal Corporation | Plated steel sheet and fuel tank |
KR101569505B1 (ko) * | 2014-12-24 | 2015-11-30 | 주식회사 포스코 | 내박리성이 우수한 hpf 성형부재 및 그 제조방법 |
US11731397B2 (en) | 2015-12-24 | 2023-08-22 | Posco Co., Ltd | Alloy-coated steel sheet and manufacturing method therefor |
EP3396017A4 (en) * | 2015-12-24 | 2019-01-16 | Posco | ALLOY-COATED STEEL PLATE AND MANUFACTURING METHOD THEREFOR |
CN106334875A (zh) | 2016-10-27 | 2017-01-18 | 宝山钢铁股份有限公司 | 一种带铝或者铝合金镀层的钢制焊接部件及其制造方法 |
KR102043522B1 (ko) * | 2017-12-22 | 2019-11-12 | 주식회사 포스코 | 용접 액화 취성에 대한 저항성 및 도금 밀착성이 우수한 알루미늄 합금 도금강판 |
WO2019186740A1 (ja) | 2018-03-27 | 2019-10-03 | 日軽エムシーアルミ株式会社 | Al-Si-Mg系アルミニウム合金 |
US20210189517A1 (en) * | 2018-05-22 | 2021-06-24 | Thyssenkrupp Steel Europe Ag | Sheet Metal Part Formed from a Steel Having a High Tensile Strength and Method for Manufacturing Said Sheet Metal Part |
CN108842122B (zh) * | 2018-08-06 | 2021-06-15 | 首钢集团有限公司 | 一种热浸镀镀层钢板及其制造方法 |
EP4151770A4 (en) * | 2020-05-13 | 2023-10-04 | Nippon Steel Corporation | HOT STAMPING ELEMENT |
US11926120B2 (en) * | 2020-05-13 | 2024-03-12 | Nippon Steel Corporation | Steel sheet for hot stamping |
JP7269525B2 (ja) * | 2020-05-13 | 2023-05-09 | 日本製鉄株式会社 | ホットスタンプ用鋼板 |
KR102330812B1 (ko) * | 2020-06-30 | 2021-11-24 | 현대제철 주식회사 | 열간 프레스용 강판 및 이의 제조 방법 |
CN113528940B (zh) * | 2021-06-16 | 2022-06-21 | 首钢集团有限公司 | 一种铝硅合金系镀层热成形钢及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63109110A (ja) | 1986-10-24 | 1988-05-13 | Nisshin Steel Co Ltd | 耐加熱黒変性に優れた溶融Alめっき鋼板用鋳片の製造方法 |
JPH071984A (ja) | 1993-06-18 | 1995-01-06 | Honda Motor Co Ltd | 自動変速機用セレクトレバー構造 |
JPH08311629A (ja) | 1995-05-18 | 1996-11-26 | Nippon Steel Corp | 光沢保持性、耐食性に優れた溶融アルミめっき鋼板及びその製造法 |
JPH09195021A (ja) | 1996-01-18 | 1997-07-29 | Nippon Steel Corp | 耐加熱黒変性に優れた溶融アルミめっき鋼板の製造法 |
JP2000290764A (ja) | 1999-04-08 | 2000-10-17 | Nippon Steel Corp | 耐加熱黒変性に優れた溶融アルミめっき鋼板とその製造法 |
JP2004238682A (ja) * | 2003-02-06 | 2004-08-26 | Nippon Steel Corp | 耐食性に優れた自動車排気系材用溶融Al系めっき鋼板 |
JP2007107050A (ja) * | 2005-10-13 | 2007-04-26 | Nippon Steel Corp | 加工性に優れた溶融Al系めっき鋼板及びその製造方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DD292392A5 (de) * | 1990-03-02 | 1991-08-01 | Veb Eisenhuettenkombinat Ost,De | Kaltgewalztes stahlblech fuer die direktweissemaillierung und verfahren zu seiner herstellung |
CN1209481C (zh) | 1995-02-24 | 2005-07-06 | 日新制钢株式会社 | 热镀铝钢板及其制造方法和合金层控制装置 |
US5789089A (en) * | 1995-05-18 | 1998-08-04 | Nippon Steel Corporation | Hot-dipped aluminum coated steel sheet having excellent corrosion resistance and heat resistance, and production method thereof |
CA2230706C (en) | 1996-07-01 | 2002-12-31 | Nippon Steel Corporation | Rust-preventive steel sheet for fuel tanks exellent in air-tightness after welding and corrosion resistance subsequent to forming |
US6171413B1 (en) * | 1997-07-28 | 2001-01-09 | Nkk Corporation | Soft cold-rolled steel sheet and method for making the same |
EP0916624B1 (en) * | 1997-11-11 | 2001-07-25 | Kawasaki Steel Corporation | Porcelain-enameled steel sheets and frits for enameling |
FR2775297B1 (fr) * | 1998-02-25 | 2000-04-28 | Lorraine Laminage | Tole dotee d'un revetement d'aluminium resistant a la fissuration |
JP3360624B2 (ja) * | 1998-11-16 | 2002-12-24 | 住友金属工業株式会社 | ほうろう用冷延鋼板とその製造方法 |
JP3738754B2 (ja) * | 2002-07-11 | 2006-01-25 | 日産自動車株式会社 | 電着塗装用アルミニウムめっき構造部材及びその製造方法 |
DE60318745T2 (de) * | 2002-11-15 | 2009-01-15 | Nippon Steel Corp. | Stahl mit hervorragender zerspanbarkeit und herstellungsverfahren dafür |
JP2005015907A (ja) | 2003-06-05 | 2005-01-20 | Nippon Steel Corp | 高温強度、耐酸化性に優れた溶融Al系めっき鋼板 |
TWI248977B (en) * | 2003-06-26 | 2006-02-11 | Nippon Steel Corp | High-strength hot-rolled steel sheet excellent in shape fixability and method of producing the same |
JP4911977B2 (ja) | 2003-09-29 | 2012-04-04 | 日新製鋼株式会社 | 鋼/アルミニウムの接合構造体 |
JP4332065B2 (ja) * | 2004-05-18 | 2009-09-16 | 新日本製鐵株式会社 | ホーロー密着性が格段に優れたホーロー用鋼板及びその製造方法並びにホーロー製品 |
JP4492254B2 (ja) * | 2004-08-20 | 2010-06-30 | Jfeスチール株式会社 | 耐食性及び耐黒変性に優れたリン酸塩処理亜鉛めっき鋼板 |
JP4546848B2 (ja) * | 2004-09-28 | 2010-09-22 | 新日本製鐵株式会社 | ヘアライン外観を有する高耐食性Zn系合金めっき鋼材 |
JP5101249B2 (ja) * | 2006-11-10 | 2012-12-19 | Jfe鋼板株式会社 | 溶融Zn−Al系合金めっき鋼板およびその製造方法 |
JP2009035755A (ja) | 2007-07-31 | 2009-02-19 | Nisshin Steel Co Ltd | 二輪車排ガス経路部材用Al系めっき鋼板および部材 |
CN101255540A (zh) * | 2008-02-22 | 2008-09-03 | 马鞍山钢铁股份有限公司 | 一种合金化热浸镀锌钢板的生产方法 |
-
2010
- 2010-06-21 CN CN201080067560.9A patent/CN102971444B/zh not_active Expired - Fee Related
- 2010-06-21 WO PCT/JP2010/060917 patent/WO2011161833A1/ja active Application Filing
- 2010-06-21 KR KR1020127033076A patent/KR101473550B1/ko not_active Expired - Fee Related
- 2010-06-21 ES ES10853693.9T patent/ES2535676T3/es active Active
- 2010-06-21 US US13/704,786 patent/US9464345B2/en not_active Expired - Fee Related
- 2010-06-21 EP EP10853693.9A patent/EP2584059B1/en not_active Not-in-force
- 2010-06-21 JP JP2012521257A patent/JP5218703B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63109110A (ja) | 1986-10-24 | 1988-05-13 | Nisshin Steel Co Ltd | 耐加熱黒変性に優れた溶融Alめっき鋼板用鋳片の製造方法 |
JPH071984A (ja) | 1993-06-18 | 1995-01-06 | Honda Motor Co Ltd | 自動変速機用セレクトレバー構造 |
JPH08311629A (ja) | 1995-05-18 | 1996-11-26 | Nippon Steel Corp | 光沢保持性、耐食性に優れた溶融アルミめっき鋼板及びその製造法 |
JPH09195021A (ja) | 1996-01-18 | 1997-07-29 | Nippon Steel Corp | 耐加熱黒変性に優れた溶融アルミめっき鋼板の製造法 |
JP2000290764A (ja) | 1999-04-08 | 2000-10-17 | Nippon Steel Corp | 耐加熱黒変性に優れた溶融アルミめっき鋼板とその製造法 |
JP2004238682A (ja) * | 2003-02-06 | 2004-08-26 | Nippon Steel Corp | 耐食性に優れた自動車排気系材用溶融Al系めっき鋼板 |
JP2007107050A (ja) * | 2005-10-13 | 2007-04-26 | Nippon Steel Corp | 加工性に優れた溶融Al系めっき鋼板及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
JOURNAL OF IRON AND STEEL INSTITUTE OF JAPAN, vol. 70, 1984, pages S475 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013171876A (ja) * | 2012-02-17 | 2013-09-02 | Nisshin Steel Co Ltd | Cis太陽電池およびその製造方法 |
WO2014068889A1 (ja) * | 2012-10-31 | 2014-05-08 | Jfeスチール株式会社 | 溶融亜鉛めっき鋼板 |
CN104755647A (zh) * | 2012-10-31 | 2015-07-01 | 杰富意钢铁株式会社 | 热镀锌钢板 |
JP5994856B2 (ja) * | 2013-03-28 | 2016-09-21 | Jfeスチール株式会社 | 溶融Al−Zn系めっき鋼板及びその製造方法 |
JPWO2014155944A1 (ja) * | 2013-03-28 | 2017-02-16 | Jfeスチール株式会社 | 溶融Al−Zn系めっき鋼板及びその製造方法 |
US20140334971A1 (en) * | 2013-05-07 | 2014-11-13 | Hyundai Motor Company | Wear-resistant alloys having complex microstructure |
US20140334972A1 (en) * | 2013-05-07 | 2014-11-13 | Hyundai Motor Company | Wear-resistant alloy having complex microstructure |
US9493863B2 (en) * | 2013-05-07 | 2016-11-15 | Hyundai Motor Company | Wear-resistant alloy having complex microstructure |
US9493862B2 (en) | 2013-05-07 | 2016-11-15 | Hyundai Motor Company | Wear-resistant alloy having complex microstructure |
US9732403B2 (en) | 2013-05-07 | 2017-08-15 | Hyundai Motor Company | Wear-resistant alloy having complex microstructure |
Also Published As
Publication number | Publication date |
---|---|
EP2584059A4 (en) | 2014-05-21 |
CN102971444B (zh) | 2014-08-27 |
EP2584059B1 (en) | 2015-03-25 |
EP2584059A1 (en) | 2013-04-24 |
ES2535676T3 (es) | 2015-05-13 |
JP5218703B2 (ja) | 2013-06-26 |
US20130095345A1 (en) | 2013-04-18 |
CN102971444A (zh) | 2013-03-13 |
KR20130030768A (ko) | 2013-03-27 |
KR101473550B1 (ko) | 2014-12-16 |
US9464345B2 (en) | 2016-10-11 |
JPWO2011161833A1 (ja) | 2013-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5218703B2 (ja) | 耐加熱黒変性に優れた溶融Alめっき鋼板及びその製造方法 | |
WO2019111931A1 (ja) | アルミ系めっき鋼板、アルミ系めっき鋼板の製造方法及び自動車用部品の製造方法 | |
JP5648755B2 (ja) | 溶融亜鉛めっき鋼板の製造方法 | |
WO2013047804A1 (ja) | めっき濡れ性及びめっき密着性に優れた溶融亜鉛めっき層を備えた鋼板とその製造方法 | |
JPWO2019160106A1 (ja) | Fe−Al系めっきホットスタンプ部材及びFe−Al系めっきホットスタンプ部材の製造方法 | |
JP5417797B2 (ja) | 高強度溶融亜鉛系めっき鋼板およびその製造方法 | |
JP6525124B1 (ja) | アルミ系めっき鋼板、アルミ系めっき鋼板の製造方法及び自動車用部品の製造方法 | |
JP7332967B2 (ja) | ホットスタンプ部品 | |
CN103261466A (zh) | 具有优异抗氧化性和耐热性的镀铝钢板 | |
JP5176484B2 (ja) | 外観に優れた合金化溶融亜鉛めっき鋼板 | |
JP6205759B2 (ja) | めっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板 | |
JP5245376B2 (ja) | 焼付硬化性に優れた合金化溶融亜鉛めっき用鋼板を用いた合金化溶融亜鉛めっき鋼板 | |
JP7260840B2 (ja) | ホットスタンプ部材およびその製造方法 | |
TWI402360B (zh) | And a method for producing the molten Al-plated steel sheet with excellent heat resistance and blackening property | |
JP5206114B2 (ja) | 加工性、めっき密着性、耐食性、および外観品位に優れた合金化溶融亜鉛めっき鋼板 | |
JP3383125B2 (ja) | 耐食性、耐熱性に優れた溶融アルミめっき鋼板及びその製造法 | |
WO2024122118A1 (ja) | めっき鋼板 | |
WO2024122123A1 (ja) | めっき鋼板 | |
CN113614285A (zh) | 热冲压成型体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080067560.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10853693 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012521257 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13704786 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127033076 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010853693 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11109/DELNP/2012 Country of ref document: IN |