[go: up one dir, main page]

WO2011122332A1 - 相変化冷却器及びこれを備えた電子機器 - Google Patents

相変化冷却器及びこれを備えた電子機器 Download PDF

Info

Publication number
WO2011122332A1
WO2011122332A1 PCT/JP2011/056079 JP2011056079W WO2011122332A1 WO 2011122332 A1 WO2011122332 A1 WO 2011122332A1 JP 2011056079 W JP2011056079 W JP 2011056079W WO 2011122332 A1 WO2011122332 A1 WO 2011122332A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refrigerant
heat receiving
phase change
liquid
Prior art date
Application number
PCT/JP2011/056079
Other languages
English (en)
French (fr)
Inventor
坂本 仁
吉川 実
賢一 稲葉
毅哉 橋口
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/638,474 priority Critical patent/US9605907B2/en
Priority to JP2012508203A priority patent/JPWO2011122332A1/ja
Priority to CN201180017673.2A priority patent/CN102834688B/zh
Publication of WO2011122332A1 publication Critical patent/WO2011122332A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to cooling of semiconductor devices and electronic equipment.
  • the present invention relates to a semiconductor cooling device that circulates a refrigerant using a phase change phenomenon and an electronic apparatus including the same.
  • Patent Document 1 proposes a siphon boiling cooler for cooling power semiconductors. This boiling cooler is characterized by a structure in which a heat absorbing part and a heat radiating part are formed relatively integrally in addition to the necessity of a pump.
  • this boiling cooler it is necessary to integrally mold the structure of the heat absorbing portion in contact with the heating element, the heat radiating portion, and the refrigerant circulation path. Therefore, this boiling cooler becomes expensive when it is miniaturized for electronic components, and is difficult to use for general purposes.
  • Patent Document 2 proposes a method of creating a siphon effect and circulating a refrigerant by installing a condenser above the boiling part.
  • a condensing part due to the internal layout.
  • the pipe connected to the condensing part is installed vertically above the evaporation part, it is inevitable that condensation occurs in the pipe.
  • a liquid film is formed inside the tube, and a flow is generated to return to the boiling portion by gravity.
  • This not only results in resistance of the steam toward the condensing part, but also reduces the cross-sectional area of the steam path, resulting in pressure loss.
  • the dry-out of the evaporation part may be induced.
  • Patent Document 3 The structure disclosed in Patent Document 3 is the same as the structure disclosed in Patent Document 2. That is, even in the structure of Patent Document 3, since the condensing part is provided vertically above the evaporation heat absorption part, there is an unstable factor as described in Patent Document 2 above.
  • the refrigerant flow path from the condensing part to the evaporating part and the condensing part is formed by bending one pipe, so there is a possibility that it can be made inexpensive.
  • such a structure is not suitable for both liquid phase and gas phase refrigerant flows.
  • the evaporation section does not receive heat over the entire heat generating surface.
  • Patent Document 4 proposes a structure in which a pipe has a two-layer structure and a liquid phase channel and a gas phase channel are separated. With this structure, it is possible to improve the circulation characteristics of the refrigerant while maintaining the characteristic that the heat dissipating part can be installed away from the heat receiving part. That is, the pressure loss between the heat radiating part and the heat receiving part can be reduced, leading to improvement of the cooling characteristics.
  • Each of the above proposals is an attractive cooling method when there is an element having dominant power consumption inside the electronic device. However, when there are a plurality of heating elements, a plurality of these coolers are required.
  • Patent Document 5 proposes a structure that uses a phase change and cools a plurality of heat generating components.
  • the heat receiving portions are used as many as the number of elements to be cooled, and these and the heat radiating portions are configured by serial fluid circuits.
  • the refrigerant vaporized by the heat received from the upstream heat generating element passes through the heat receiving portion of the downstream element.
  • liquid phase refrigerant needs to be supplied to the downstream side, so a structure for forcibly circulating the refrigerant using a pump has been proposed. By using a pump, for example, the flow rate can be changed according to the amount of heat generated.
  • the cooling structure is complicated and expensive.
  • Patent Document 5 is characterized in that the refrigerant immediately before flowing into the heat receiving portion is heated to be in a state in which the phase is easily changed.
  • the structure for heating makes the structure of the cooler more complicated and expensive. Furthermore, it becomes a subject that the load to a thermal radiation part becomes larger than necessary.
  • Patent Document 6 proposes a cooler targeting a plurality of heating elements.
  • this cooler has a structure in which the refrigerant cooled by the heat radiating unit is supplied to each heat receiving unit through piping installed in parallel.
  • a liquid cooling type is assumed, and circulation of the refrigerant is required for each of the circuits installed in parallel.
  • the refrigerant recirculates to the heat radiating part gathered together.
  • the heat radiating part is designed to radiate the entire amount of recovered heat, the heat radiating efficiency becomes worse as compared with the case where heat is radiated without concentrating.
  • Japanese Patent No. 4026039 Japanese Unexamined Patent Publication No. 2002-168547 (page 6-7, FIG. 1, FIG. 2, FIG. 3) Japanese Unexamined Patent Publication No. 2005-195226 (pages 13-17)
  • Japanese Patent No. 3924674 Japanese Unexamined Patent Publication No. 2009-267181 (FIG. 1) Japanese Unexamined Patent Publication No. 2007-335624 (FIG. 6)
  • the cooling devices disclosed in Patent Documents 1 to 6 have several problems.
  • the first problem is the problem of downsizing the cooler. Electronic components are mounted with high density inside the electronic equipment, and this tendency is particularly remarkable in recent years.
  • the proportion of the radiator is large with respect to the limited internal volume of the apparatus. If it is a boiling / condensing cooler with high heat transfer efficiency, the heat receiving part and the heat radiating part can be downsized.
  • the heat radiation fin requires a large volume in the vicinity of the component.
  • Patent Document 2 and Patent Document 3 by separating the heat receiving section and the heat radiating section, the heat radiating section can be installed away from the vicinity of the heat generating component. Therefore, the above problem may be solved. That is, the heat radiating portion can be installed, for example, in the vicinity of the apparatus exhaust port, and at least the possibility of downsizing the component mounting area is increased.
  • the absolute volume does not change only by separating the heat receiving portion and the heat radiating portion. That is, in the boiling cooler in which the heat receiving portion and the heat radiating portion are respectively paired, a heat radiating area corresponding to the number is required when cooling a plurality of components.
  • the third problem is that the number of heat dissipating parts is determined by the number of heat generating parts. Moreover, the heat radiation area and the volume of the heat radiation part are designed so as to cope with the case where each heat generation part is operated with the maximum heat generation amount. For this reason, it is necessary to ensure the volume which installs a thermal radiation part so that it may be proportional to the number of heat-emitting parts.
  • a prior art there is an attempt to integrate a heat radiating portion. For example, in patent document 6, two pumps are needed by installing a heat receiving part in parallel. Moreover, as another prior art, the heat receiving part is connected in series, so that only one pump is required. However, in this structure, the heat from each heat receiving part is only radiated by providing the partition inside the heat radiating part.
  • the fourth problem is that the number of heat generating parts is also required for the cooling fan. Since there are fans corresponding to the heat generating portions, that is, the heat radiating portions, for example, the fans can be operated according to the operating status of the CPU corresponding to each. This is effective in terms of noise reduction and power consumption suppression. On the other hand, as many fans as the number of heat dissipating parts are required, which does not contribute to cost reduction.
  • the above problems can be solved by consolidating the heat dissipation parts.
  • the cooling characteristics can be maintained by increasing the heat radiation area according to the amount of heat generated. If the calorific value is the same, twice the heat radiation area is required. Since the flow rate is doubled and the number of pumps that control the flow rate is also two, the effect of consolidating the heat radiating section is that only one radiator for heat radiation and one fan are reduced.
  • An example of an object of the present invention is to provide a means for reliably cooling an electronic component as a plurality of heating elements and an electronic device mounting a semiconductor even when the operation rate of the electronic component is high. There is to do.
  • a phase change cooler includes a plurality of heat receiving portions that change the phase of a refrigerant from a liquid to a vapor by heat received from a heating element, and the refrigerant is converted from a vapor to a liquid by dissipating heat to the surroundings.
  • One heat-dissipating part that changes phase a plurality of steam pipes that respectively transport vapor-like refrigerant from each heat-receiving part to the heat-dissipating part, and a liquid that recirculates liquid refrigerant from the heat-dissipating part to each heat-receiving part A pipe and a bypass pipe connecting the heat receiving portions to each other.
  • the steam flows into the heat exchange unit through the plurality of steam pipes connected to the heat exchange unit according to the amount of heat received by the heat receiving unit.
  • the condensed liquid-phase refrigerant is returned to the heat receiving part through a liquid pipe corresponding to the number of heat receiving parts from one installed in the lower part of the heat exchange part in the direction of gravity.
  • the amount of refrigerant supplied to the heat receiving portion corresponds to the amount lost by vaporization.
  • the required amount of liquid is supplied self-sufficiently without an active liquid drive.
  • the refrigerant is also supplied from the adjacent heat receiving part.
  • the phase change cooler when the operating rate of a certain component is high, the refrigerant from the liquid pipe is received from the heat receiving portion where a large amount of the refrigerant is vaporized by receiving heat from the component.
  • the refrigerant is also supplied from a heat receiving unit adjacent thereto via a bypass pipe. Accordingly, it is possible to more reliably cool a part having a high operating rate.
  • the number of heat radiating portions can be smaller than the number of heat receiving portions, and the cooling structure can be reduced in size and simplified from the viewpoint of the entire apparatus. For example, by combining steam from multiple heat receiving parts into one heat dissipating part, not only can the cost be reduced by reducing the number of parts, but also power saving can be achieved by reducing the number of fans constituting the heat dissipating part. You can also.
  • FIG. 1 It is a schematic perspective view which shows the phase change cooler which concerns on 1st Embodiment of this invention. It is a schematic plan view which shows the phase change cooler which concerns on 1st Embodiment of this invention. It is a schematic front view which shows the phase change cooler which concerns on 1st Embodiment of this invention. It is a schematic plan view which shows the electronic device carrying the phase change cooler by embodiment of this invention. It is a schematic longitudinal cross-sectional view which shows the electronic device carrying the phase change cooler shown in FIG. It is a schematic longitudinal cross-sectional view which shows the structure of the heat receiving part of the phase change cooler shown in FIG. It is a schematic plan view which shows the side wall part which comprises the heat receiving part shown in FIG.
  • FIG. 11B is a cross-sectional view showing the bottom plate along the line EE in FIG. 11A.
  • FIG. 11B is a cross-sectional view showing the bottom plate along the line EE in FIG. 11A.
  • FIG. 11A It is a schematic front view which shows the thermal radiation part shown in FIG.
  • FIG. 12A It is sectional drawing which shows the thermal radiation part along the FF line
  • phase change cooler which concerns on 3rd Embodiment of this invention. It is a schematic plan view which shows the phase change cooler which concerns on 4th Embodiment of this invention. It is a schematic front view which shows the phase change cooler which concerns on 4th Embodiment of this invention. It is a schematic plan view which shows the phase change cooler which concerns on 5th Embodiment of this invention. It is a schematic front view which shows the phase change cooler which concerns on 5th Embodiment of this invention.
  • FIG. 1 is a schematic perspective view of a phase change cooler 10.
  • FIG. 2 is a schematic plan view of the phase change cooler 10 shown in FIG.
  • FIG. 3 is a schematic front view of the phase change cooler 10 shown in FIG.
  • FIG. 1 shows a phase change cooler 10 according to a first embodiment of the present invention having two heat receiving portions 11 and one heat radiating portion 12.
  • an electronic component D provided on the substrate K is installed below the heat receiving unit 11 via a thermally conductive grease, a heat radiating sheet, or the like.
  • the heat receiving portion 11 is fixed on the substrate K with screws N.
  • a grounding pressure is generated between the heat receiving portion 11 and the electronic component D by giving the fixing structure springiness.
  • FIG. 4 shows a bypass pipe that connects the heat receiving portions 11 to each other in a second embodiment described later.
  • the ground pressure is preferably set to a pressure of about 100 kPa to 1 MPa so as not to exceed the specifications of the parts.
  • the heat receiving part 11 is a hollow chamber made of a metal such as copper or aluminum having good thermal conductivity.
  • FIG. 6 is a schematic cross-sectional view showing the heat receiving portion 11.
  • the heat receiving portion 11 includes a side wall portion 111 (see FIGS. 7A and 7B), a top plate 112 (see FIGS. 8A and 8B), and a bottom plate 113 (see FIGS. 9A and 9B).
  • the side wall 111 has a substantially cylindrical shape.
  • the top plate 112 is substantially circular and is provided so as to cover the opening on the one end side of the side wall 111.
  • the bottom plate 113 is substantially circular and is provided so as to cover the opening on the other end side of the side wall 111. As shown in FIGS.
  • a liquid inflow port 111a is formed through the side wall 111.
  • a steam outlet 112 a is formed through the top plate 112.
  • the bottom plate 113 is provided with a plurality of fins 113a for improving heat transfer to the refrigerant R on the inner side surface of the chamber.
  • a flow path for controlling the flow of liquid or vapor may be formed on the inner surface of the chamber of the bottom plate 113.
  • the interval between the fins 113a and the distance between the flow path walls should be approximately 1 mm to several mm or more so that the generated bubbles are not disturbed by the fins 113a and the flow path.
  • the surface of the inner surface of the chamber of the bottom plate 113 is preferably roughened to a level of several tens to several hundreds of millimeters by sand blasting or the like so as to be the core of bubble generation. This structure increases the number of nuclei when bubbles are generated.
  • the cross-sectional shape of the heat receiving portion 11 is not limited to a cylindrical shape, and can be appropriately changed in design. 10A to 11B show the configuration of the side wall 111 and the bottom plate 113 when the cross-sectional shape of the heat receiving portion 11 is substantially rectangular.
  • the first purpose of providing the flow control protrusion 113b is to uniformly distribute the liquid-phase refrigerant R on the boiling surface. While supplying the liquid necessary for continuously boiling, there is an effect of preventing the dry-out where the liquid phase disappears at the time of high heat generation from spreading to the entire bottom.
  • the surface tension is generally smaller than that of water, and the diameter of bubbles formed at the time of boiling is around 1.0 mm. In such a case, it is not desirable to make the distance between the flow control protrusions 113b extremely narrow and less than the diameter of the bubbles. It is desirable that the distance between the flow control protrusions 113b be about the bubble diameter or more.
  • the second purpose of the flow control protrusion 113b is to increase the heat radiation area. Considering that the larger the surface area, the larger the heat radiation amount can be. If the distance between the flow control protrusions 113b is too large, the number of flow control protrusions 113b that can be formed is limited.
  • the amount of heat that passes through the flow control protrusion 113b depends on the thickness of the protrusion. If the flow control protrusion 113b is thickened, more heat flows. However, if the flow control protrusion 113b is too thick, the heat dissipation area is limited. Considering these points, it is best to form the flow control protrusion 113b so as to satisfy the following conditions. That is, the distance between the flow control protrusions 113b is set to about 1.0 mm. The thickness of the flow control protrusion 113b is set to about 1.0 to 2.0 mm. The height of the flow control protrusion 113b is set to about 1.0 to 5.0 mm.
  • the flow control protrusion 113b structure having an aspect ratio of about 1: 5 on the millimeter scale is manufactured by cutting, it is a good method.
  • the flow control protrusion 113b and the bottom plate 113 inside the heat receiving portion 11 are formed integrally, the thermal resistance generated at their connecting portions can be reduced as compared with the case where both are formed separately and combined.
  • FIG. 6 shows an example in which the flow control protrusion 113b and the bottom plate 113 are integrally formed.
  • the refrigerant R undergoes a phase change due to heat from the electronic component D, and steam is generated.
  • This steam passes through the steam pipe 13 at the upper part of the heat receiving part 11 shown in FIG. 1 and goes to the upper part of the heat radiating part 12 as a radiator.
  • a steam pipe 13 connected to another heat receiving unit 11 is also connected to the upper part of the heat radiating unit 12.
  • a corrugated radiating fin 121 is formed at the center of the radiating portion 12. Heat is dissipated by the air passing between the radiating fins 121.
  • the air flow is uniformly supplied as cooling air between the radiation fins 121 by the axial fan 122 shown in FIG.
  • the diameter of the axial fan 122 is about 120 mm, which is substantially the same as the cross-sectional size of the heat radiating section 12.
  • a plurality of steam pipes 13 are connected to the upper part of the heat radiation part 12.
  • the steam from the plurality of heat receiving units 11 is conveyed to the heat radiating unit 12 through the plurality of steam pipes 13.
  • the plurality of steam pipes 13 are desirably connected at equal intervals to the surface of the heat radiating section 12 on the side where the cooling air is discharged.
  • the plurality of steam pipes 13 may be evenly arranged on the long side surface of the heat dissipating unit 12.
  • two steam pipes 13 may be connected to the left and right side surfaces on the short side of the heat radiating section 12. It is desirable to increase the diameter of the steam pipe 13 through which steam having a relatively low density flows so that the pressure loss during steam passage is minimized.
  • one end of a plurality of liquid tubes 14 is connected to the lower part of the heat radiating section 12. Further, the other end of each liquid pipe 14 is connected to each heat receiving portion 11.
  • the diameter of the liquid pipe 14 is smaller than the diameter of the steam pipe 13.
  • the side wall part 111 is created using a material (copper, aluminum) with high thermal conductivity.
  • a condensate inflow portion 111b with a thread is engraved on the side wall portion 111.
  • the bottom plate 113 and the side wall 111 are joined by means such as brazing.
  • the main body of the heat receiving part 11 is formed by the above process.
  • the top plate 112 is previously formed integrally with the steam outflow portion 112b.
  • the steam outflow portion 112b in which a thread is engraved is screwed onto the top plate 112.
  • the heat radiating section 12 is mainly configured by a heat radiating section header 123, a condensate retention section 124, a refrigerant flow path 125, and heat radiating fins 121.
  • the basic structure of the heat dissipating unit 12 is similar to a radiator used in an automobile or the like. However, in the embodiment of the present invention, since the refrigerant vapor is condensed in addition to the heat radiation, it is important to allow efficient heat radiation for the condensation of the refrigerant R.
  • the steam inlet 126 is preferably connected to the heat radiating section header 123 at a right angle, as shown in the cross-sectional view along FF in FIG. 12B.
  • the steam flowing into the heat radiating part header 123 can collide with the wall on the back side of the heat radiating part header 123 and diffuse the steam so as to fill the heat radiating part header 123.
  • the pressure inside the heat radiating part header 123 can be made constant. Therefore, the flow rate of the refrigerant flow path 125 can be made uniform.
  • the refrigerant flow path 125 is preferably as thin as possible from the viewpoint of heat dissipation, but needs a certain thickness from the viewpoint of the flow of the condensed refrigerant R.
  • condensation relies on gravity-dependent liquid phase exclusion capabilities.
  • the condensed refrigerant R forms a thin liquid phase on the inner wall of the flow path, and is discharged to the condensate retention part 124 side by gravity.
  • vapor may be trapped as bubbles in the condensed liquid phase. In such a case, resistance to the discharge of the liquid phase occurs.
  • the flow path width is minimized as much as possible.
  • it is preferable to set the width of the inner surface of the flow path to 0.3 mm or more and the width of the inner surface of the flow path to 1.0 mm or less from the viewpoint of heat dissipation.
  • a flexible piping material for the steam pipe 13 and the liquid pipe 14 that connect the heat receiving section 11 and the heat radiating section 12.
  • a polymer material is highly flexible but has water permeability. For this reason, the refrigerant R leaks through the pipe wall surface.
  • the material of the vapor pipe 13 and the liquid pipe 14 has a polymer material with a small water permeability such as butyl rubber, a polymer pipe material in which a metal thin film is laminated, or a bellows shape. Adoption of flexible metal piping materials is good. It is preferable to provide an inflow / outflow nozzle at a position where the steam pipe 13 or the liquid pipe 14 is connected to the heat receiving section 11 and the heat radiating section 12.
  • a steam pipe 13 or a liquid pipe 14 is connected to the inflow / outflow nozzle.
  • the refrigerant R may also leak through the interface between the connection portion and the vapor pipe 13 or the liquid pipe 14. For this reason, it is desirable to seal the connecting portion using an adhesive.
  • a vapor pipe 13 and a liquid pipe 14 using a metal material can be used for connection between the heat receiving part 11 and the heat radiating part 12.
  • a metal material By using a metal material, the airtightness inside the cooler can be improved, and an effect of preventing leakage of the refrigerant can be obtained. In order to maintain flexibility, the same effect can be obtained by using a piping material having a laminated structure of a thin metal film and the polymer material.
  • the steam pipe 13 is drawn vertically upward from the heat receiving portion 11, bent substantially horizontally, and then connected to the heat radiating portion 12. According to such a configuration, it is possible to prevent the refrigerant condensed inside the vapor pipe 13 from flowing back along the vapor pipe 13. That is, since the pressure of the refrigerant in the vapor pipe 13 decreases from the upstream side toward the downstream side, the refrigerant is likely to condense at the most downstream portion. Therefore, if the most downstream part of the steam pipe 13 is formed substantially in parallel to prevent the backflow of the condensed liquid layer, the phase change cooler 10 can be operated more stably.
  • the refrigerant is injected and the internal air is removed through the refrigerant inlet (not shown).
  • the inside of the phase change cooler 10 becomes the saturated vapor pressure of the refrigerant R.
  • the saturated vapor pressure is preferably as close to 1 atm as possible. This is because when the saturated vapor pressure deviates significantly from 1 atm, it is necessary to increase the strength of the phase change cooler 10.
  • Vertrel (trademark) manufactured by DuPont, which is a kind of fluorine-based refrigerant, has a boiling point of 55 ° C. at atmospheric pressure and a saturated vapor pressure of about 30 kPa at room temperature.
  • phase change cooler 10 Considering the cooling of electronic equipment, Vertrel is not so different from the atmospheric pressure at normal temperature, and can be kept at almost 2 atm or less even during operation. Therefore, the phase change cooler 10 according to the embodiment of the present invention. It is good as a refrigerant.
  • the phase change cooler 10 When the refrigerant R boils inside the heat receiving unit 11, the generated steam has a smaller specific gravity than the liquid phase, and thus travels toward the steam outlet 112a located in the upper part of the gravity direction.
  • the steam pipe 13 gently changes its angle to carry steam toward the heat radiating portion 12 with low resistance. It is a favorable condition for ensuring the performance of the heat dissipating part 12 that the steam pipe 13 is connected to the surface of the heat dissipating part 12 on the side where the cooling air is discharged.
  • the steam introduced into the heat radiating part 12 flows from the top to the bottom in the interior and returns to the liquid.
  • the refrigerant R that has returned to the liquid stays in the lower part of the heat radiating section 12, proceeds through the liquid pipe 14 in the direction of the arrow shown in FIG. 5, and returns to the heat receiving section 11.
  • the refrigerant R that has reached the heat radiating section 12 from the vapor inlet 126 as vapor is condensed while passing through the refrigerant flow path 125.
  • the condensed refrigerant R flows to the condensate retention part 124 that is relatively lower in the gravity direction.
  • the amount of liquid retained in the condensate retaining part 124 is determined so as not to hinder the inflow of steam from the upper part of the heat radiating part 12.
  • the refrigerant R condensed in the condensate retention part 124 is supplied to the heat receiving part 11 by gravity.
  • the centralized heat radiation structure enables the cooling of the refrigerant R by the single axial fan 122. Therefore, the cooling structure is simple and power consumption can be reduced.
  • the phase change cooler 10 when the phase change cooler 10 is employed in a workstation equipped with two CPUs (CPU0, CPU1) (“phase change” in FIG. 13), the thermal resistance doubles. Compared with the case of cooling by the water cooling method (“water cooling” in FIG. 13), the increase in thermal resistance can be kept low. The same effect can be obtained by using a server, a personal computer, a supercomputer, etc. equipped with an arithmetic element such as a CPU.
  • the cooling target is not limited to an arithmetic element such as a CPU, and may be any heating element.
  • the same effect can be obtained even when the phase change cooler 10 is used in a network device such as a router equipped with a plurality of heating elements, an LED projector having a plurality of light emitting elements and optical devices, a projector utilizing an LCD or a DMD, and the like. can get.
  • the inside of the heat radiating portion 12 since the inside of the heat radiating portion 12 has an integral structure without partitioning, when the heat generation amount of the electronic component D that receives heat from one heat receiving portion 11 is small, the other heat receiving portion 11 is heated.
  • the entire heat dissipating part 12 can be used for cooling the electronic component D that receives the heat. Thereby, the effect that thermal resistance reduces is acquired.
  • each steam pipe 13 is connected to the surface of the heat radiating section 12 on the side where the cooling air is discharged. According to such a configuration, the thickness of the heat radiating portion 12 in a direction substantially orthogonal to the cooling air discharge direction can be suppressed, and the heat radiating portion 12 can be thinned.
  • phase change cooler 20 in order to maintain the supply capability of the refrigerant R to the heat receiving unit 11, a bypass pipe 21 that connects the heat receiving units 11 to each other is provided. There is a high possibility that the amount of heat generated will change depending on the operating rate of the heat generating electronic component D inside the electronic device.
  • the bypass pipe 21 By providing the bypass pipe 21, the liquid is supplied not only from the liquid pipe 14 but also from the adjacent heat receiving unit 11 when the operating rate of a certain electronic component D is high.
  • the bypass pipe 21 When the bypass pipe 21 is connected so as to directly connect the plurality of heat receiving portions 11 in this way, the supply performance of the liquid-phase refrigerant R is improved. For example, a good cooling performance can be obtained when a sudden heat generation amount changes. Can be maintained.
  • the plurality of heat receiving portions 11 By creating the bypass pipe 21 with a flexible material, the plurality of heat receiving portions 11 can be appropriately mounted on each electronic component D to be cooled, and grounding conditions important for cooling can be individually managed.
  • phase change cooler 30 according to a third embodiment of the present invention will be described.
  • the installation position of the heat generating electronic component D is also important from a viewpoint other than cooling such as electricity.
  • the cooling performance is maintained by extending the vapor pipe 13 and the liquid pipe 14 as necessary. can do.
  • combined use with the bypass pipe 21 of 2nd Embodiment is also preferable.
  • the steam pipes 13 connected to the two heat receiving portions 11 have two opposite surfaces constituting the heat radiating portion 12, more specifically cooling. They are connected to two surfaces that are substantially orthogonal to the surface from which the wind is discharged.
  • each steam pipe 13 is connected to the side surface on the short side of the heat radiating section 12, each steam pipe 13 and each liquid pipe 14 are not on the cooling air ventilation path, so that the ventilation efficiency is improved. And cooling performance can be improved.
  • one end of the liquid pipe 41 is connected to the heat radiating section 12 at one location.
  • the other end side of the liquid pipe 41 is branched and connected to each heat receiving portion 11.
  • the liquid pipe 41 has one end connected to the heat radiating part 12 at one place and the other end having a plurality of branched parts connected to the respective heat receiving parts 11.
  • liquid pipe 41 installed below the gravitational direction needs to be installed near the mounting area of the electronic component D inside the electronic device. It is preferable to reduce the number of the liquid tubes 41 arranged in this region in a state where the electronic components D are mounted with high density.
  • phase change cooler 60 according to a fifth embodiment of the present invention will be described. As shown in FIGS. 17A and 17B, in the phase change cooler 60, one heat receiving part 61 and one heat radiating part 12 are connected to each other via a vapor pipe 13 and a liquid pipe 14.
  • each steam pipe 13 is preferably determined according to the amount of heat generated by the corresponding individual electronic component D.
  • a refrigerant circulation system with low pressure loss is formed, and efficient steam discharge, that is, cooling of the electronic component D is achieved.
  • the number of the heat receiving parts 61 is one, the number of the liquid pipes 41 can also be reduced, so that not only the structure is simplified, but also the risk of refrigerant leakage during use is reduced.
  • phase change cooler can be applied to cooling electronic devices such as computers, servers, network devices, and personal computers. Moreover, it is applicable also to the cooling use of optical system apparatuses, such as a projector and a display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 本発明の相変化冷却器は、発熱体から受ける熱によって冷媒を液体から蒸気へ相変化させる複数の受熱部と、周囲に放熱することによって冷媒を蒸気から液体へ相変化させる1つの放熱部と、前記各受熱部から前記放熱部へ蒸気状の冷媒をそれぞれ輸送する複数の蒸気管と、前記放熱部から前記各受熱部へ液体状の冷媒をそれぞれ還流する液体管と、前記各受熱部を互いに接続するバイパス管とを備える。

Description

相変化冷却器及びこれを備えた電子機器
 本発明は、半導体装置及び電子機器の冷却に関する。本発明は、特に相変化現象を利用して冷媒を循環させる半導体冷却装置及びこれを備えた電子機器に関する。
 半導体や電子機器で発生する大量の熱を伝えるために、半導体外部に高い熱伝導率を持つ材料を接着し、吸熱器としてその内部に冷媒を流すことにより、高い冷却性能を得ようとする方法が開発されている。吸熱器で冷媒を沸騰させることで、より高い冷却効果を得ようとする方法も開発されている。冷媒が奪った熱を外部に放出するためには、冷媒を吸熱部と放熱部のあいだで循環させる必要がある。一般的には、冷媒の循環にポンプが用いられている。
 沸騰冷却式の場合、発生する蒸気と液体の密度差により、蒸気が重力方向に対して上部に集まる原理を利用して、冷却器下部に吸熱部、上部に放熱部を設置することで、ポンプを必要としない、サーマルサイフォン式冷却構造も提案されている。例えば特許文献1や特許文献2には、この冷却構造が開示されている。特許文献1は、パワー半導体の冷却のためのサイフォン式沸騰冷却器として提案している。この沸騰冷却器は、ポンプが要らないほかに、吸熱部と放熱部を比較的一体で形成した構造を特徴としている。この沸騰冷却器では、発熱体に接する吸熱部の構造と放熱部と冷媒の循環経路を一体として成型する必要がある。そのため、この沸騰冷却器は、電子部品向けに小型化すると高価になり、汎用的に使うことは難しい。
 特許文献2は、凝縮器を沸騰部より上方に設置することにより、サイフォン効果を生みだし、冷媒の循環を行う方式を提案している。ところが、電子装置においては、その内部のレイアウトにより必ずしも上方に配管を延長し凝縮部を設置することが出来ない。また、凝縮部に接続される配管を蒸発部より鉛直上方に設置した場合、配管内での凝縮が起きることは避けられない。この場合、管内部に液膜が形成され重力により沸騰部に戻ろうとする流れが発生する。これは、凝縮部に向かう蒸気の抵抗になるばかりでなく、蒸気経路の断面積を縮小させ、圧力損失を生む。この結果、凝縮部の性能がいかされないだけでなく、冷却器としての運転が不安定になる。さらに、最悪の場合、蒸発部のドライアウトが誘発されるおそれがある。
 特許文献3に開示の構造は、特許文献2に開示の構造と同様である。すなわち特許文献3の構造においても、凝縮部が蒸発吸熱部の鉛直上方に設けられているため、上記特許文献2で説明したような不安定要因がある。特許文献3の構造は、凝縮部から蒸発部そして凝縮部へと向かう冷媒流路を配管1本を折り曲げて形成しているため、安価にできる可能性はある。しかしながら、このような構造は、液相、気相両方の冷媒の流れにとって適当ではない。また、蒸発部では発熱面全体での受熱が行われない。
 特許文献4は、この課題を解決するために、配管を2層構造にして、液相流路と気相流路を分離する構造を提案している。この構造により、放熱部を受熱部から離して設置できる特徴は維持しつつ、冷媒の循環特性を向上させることが出来る。すなわち、放熱部と受熱部と間の圧力損失を低減させることができ、冷却特性の改善につながる。上記の提案はいずれも、電子機器内部に支配的な消費電力をもった素子がある場合に魅力的な冷却方法である。しかしながら、複数の発熱素子がある場合には、これらの冷却器が複数必要となる。
 特許文献5は、相変化を利用した冷却器であって、複数の発熱部品を冷却する構造を提案している。冷却対象の素子の数だけ受熱部が用いられ、それらと放熱部は直列の流体回路で構成されている。この構造においては、上流側の発熱素子からの受熱によって気化した冷媒が下流側素子の受熱部を通過する。下流側素子の冷却には液相冷媒が下流側に供給される必要があるため、ポンプを使って強制的に冷媒を循環させる構造が提案されている。ポンプを使うことにより、例えば発熱量に応じて流量を変化させることが可能となる。しかしながら、冷却構造としては、複雑で高価になる。さらに、液相冷媒が強制的に供給されているために、受熱部での素子から冷媒への熱移動は、相変化を伴わない液冷と相変化を伴う沸騰冷却が混在する。沸騰冷却のほうが、伝熱特性が高い。このため、沸騰冷却の比率を大きくすることが性能向上のために望ましい。そのために、特許文献5では、受熱部へ流入する直前の冷媒を、加熱し相変化しやすい状態にすることを特徴としている。加熱のための構造は冷却器の構造をさらに複雑で高価する。さらに、放熱部への負荷が必要以上に大きくなることが課題となる。
 特許文献6は、複数の発熱素子を対象とする冷却器を提案している。この冷却器は、それぞれの発熱素子の冷却を最適化するために、放熱部で冷やされた冷媒を、並列に設置された配管を通じてそれぞれの受熱部に供給する構造となっている。この冷却器においては、液冷式を想定しており、冷媒の循環は並列に設置された回路それぞれに必要となる。冷媒は一つに集約された放熱部に還流する。放熱部は回収された熱の全量を放熱するように設計されるが、放熱効率は集約せずに放熱する場合に比べて悪くなる。
日本国特許第4026039号公報(図1) 日本国特開2002-168547号公報(第6-7頁、図1、図2、図3) 日本国特開2005-195226号公報(第13-17頁) 日本国特許第3924674号公報(図1) 日本国特開2009-267181号公報(図1) 日本国特開2007-335624号公報(図6)
 上述のように、特許文献1から6に開示された冷却装置にはいくつかの問題がある。第1の問題点は、冷却器の小型化の問題である。電子機器内部は高密度に電子部品が実装され、この傾向は近年特に顕著である。限られた装置内容積に対して、放熱器の占める割合は大きい。伝熱効率の高い沸騰・凝縮方式の冷却器であれば、受熱部・放熱部の小型化が可能である。但し、受熱・放熱一体型の冷却器では、放熱フィンが部品近傍に大きな容積を必要とする。
 特許文献2や特許文献3は、受熱部と放熱部を分離することで、放熱部は発熱部品近傍から離れて設置することが出来る。そのため、上記の問題を解決できるかもしれない。すなわち、放熱部は例えば装置排気口近傍に設置することが可能となり、少なくとも部品実装領域の小型化の可能性が高くなる。ただし、第2の問題点として、絶対的な容積は、受熱部と放熱部が分離されただけでは変化しない。すなわち、受熱部と放熱部がそれぞれ対になった沸騰冷却器においては、複数部品の冷却に際して、その個数分だけ放熱面積が必要になる。例えば、4つのCPUを搭載したサーバー機器において、外気に対する放熱部は4つのCPU分必要になる。その結果、CPU1つを搭載した装置と比較して、4倍の放熱面積とそのための容積が必要となる。
 第3の問題点は、放熱部が、発熱部の数だけ求められることである。しかも、放熱面積や放熱部の体積は、それぞれの発熱部が最大発熱量で稼動した場合に対応できるよう設計される。このため、発熱部の数に比例するように放熱部を設置する体積を確保する必要がある。従来技術として、放熱部を一体化するような試みがある。例えば、特許文献6では、受熱部を並列に設置することにより、ポンプも二台必要になっている。また、ほかの従来技術として、受熱部を直列に接続することにより、ポンプを一台で済ませている。しかしながら、この構造においては、放熱部の内部に仕切りを設けることでそれぞれの受熱部からの熱を放熱するにとどまる。これらの解決法は、複数の発熱体を冷却する場合、単純にポンプの下流において流路を分岐させるだけでは、流量の管理が難しいことを示している。
 第4の問題点は、冷却ファンについても発熱部の数だけ求められることである。発熱部、すなわち放熱部に対応したファンがあることで、例えばそれぞれに対応するCPUの稼働状況に合わせてファンを動作させることが出来る。これは、騒音低減や消費電力抑制の観点で有効である。その一方で、放熱部の数だけファンが必要になり、コスト低減には寄与しない。
 放熱部を集約すれば、上記の問題は解決できる。しかしながら、第5の問題点として、放熱特性の悪化の可能性が生じる。例えば、素子1つの冷却する場合と素子2つの冷却する場合とを比較すると、発熱量に応じて放熱面積を増加させることで、冷却特性を維持できる。発熱量が同じなら、2倍の放熱面積が必要になる。流量も2倍となり、流量を制御するポンプも2台となるため、放熱部集約の効果は、放熱用ラジエータが1台、ファンが1台削減される程度である。
 本発明は、このような事情を考慮してなされた。本発明の目的の一例は、複数の発熱体としての電子部品や半導体を搭載する電子機器において、ある1つの電子部品等で稼動率が高い場合でも、その電子部品を確実に冷却する手段を提供することにある。
 上記目的を達成するために、本発明の相変化冷却器は、発熱体から受ける熱によって冷媒を液体から蒸気へ相変化させる複数の受熱部と、周囲に放熱することによって冷媒を蒸気から液体へ相変化させる1つの放熱部と、前記各受熱部から前記放熱部へ蒸気状の冷媒をそれぞれ輸送する複数の蒸気管と、前記放熱部から前記各受熱部へ液体状の冷媒をそれぞれ還流する液体管と、前記各受熱部を互いに接続するバイパス管とを備える。
 このような構成によれば、熱交換部に接続された複数の蒸気管を通じて、それぞれ受熱部での受熱量に応じて、蒸気が熱交換部に流入する。凝縮した液相冷媒は、熱交換部の重力方向下部に設置された一本から受熱部の数に対応した液体管を通じて、受熱部に還流する。冷媒の受熱部への供給量は、気化して失われた分に相当する。必要な液量が、能動的な液体駆動装置なしに、自給的に供給される。また、ある1つの部品の稼働率が高い状態の場合、その部品から熱を受けて多くの冷媒が気化する受熱部に対しては、液体管から冷媒が供給されるだけでなく、バイパス管を介して近接する受熱部からも冷媒が供給される。
 本発明に係る相変化冷却器によれば、ある1つの部品の稼働率が高い状態の場合、その部品から熱を受けて多くの冷媒が気化する受熱部に対しては、液体管から冷媒が供給されるだけでなく、バイパス管を介して近接する受熱部からも冷媒が供給される。従って、稼働率の高い部品をより確実に冷却することができる。
 また、本発明に係る相変化冷却器によれば、放熱部の数を受熱部の数より少なくでき、装置全体の観点からの冷却構造の小型化・簡易化がはかれる。たとえば、複数の受熱部からの蒸気を1箇所の放熱部にまとめることで、部品点数の減少による低コスト化を図れるだけでなく、放熱部を構成するファンの台数の減少による省電力化を図ることもできる。
本発明の第1実施形態に係る相変化冷却器を示す概略斜視図である。 本発明の第1実施形態に係る相変化冷却器を示す概略平面図である。 本発明の第1実施形態に係る相変化冷却器を示す概略正面図である。 本発明の実施形態による相変化冷却器を搭載した電子機器を示す概略平面図である。 図1に示す相変化冷却器を搭載した電子機器を示す概略縦断面図である。 図1に示す相変化冷却器の受熱部の構成を示す概略縦断面図である。 図6に示す受熱部を構成する側壁部を示す概略平面図である。 図7AのA-A線に沿った側壁部を示す断面図である。 図6に示す受熱部を構成する天板を示す概略平面図である。 図8AのB-B線に沿った天板を示す断面図である。 図6に示す受熱部を構成する底板を示す概略平面図である。 図9AのC-C線に沿った底板を示す断面図である。 図6に示す受熱部の断面形状を略矩形にした場合における側壁部を示す概略平面図である。 図10AのD-D線に沿った側壁部を示す断面図である。 図6に示す受熱部の断面形状を略矩形にした場合における底板を示す概略平面図である。 図11AのE-E線に沿った底板を示す断面図である。 図1に示す放熱部を示す概略正面図である。 図12AのF-F線に沿った放熱部を示す断面図である。 2つのCPUを搭載したワークステーションにおける図1の相変化冷却器の評価結果を示すグラフである。 本発明の第2実施形態に係る相変化冷却器を示す概略正面図である。 本発明の第2実施形態に係る相変化冷却器を示す概略平面図である。 本発明の第3実施形態に係る相変化冷却器を示す概略平面図である。 本発明の第4実施形態に係る相変化冷却器を示す概略平面図である。 本発明の第4実施形態に係る相変化冷却器を示す概略正面図である。 本発明の第5実施形態に係る相変化冷却器を示す概略平面図である。 本発明の第5実施形態に係る相変化冷却器を示す概略正面図である。
[第1実施形態]
 以下、図面を参照し、本発明の実施の形態について説明する。まず、本発明の第1実施形態に係る相変化冷却器の構成について説明する。図1~図3は、本実施形態の相変化冷却器10の構成を示す。図1は、相変化冷却器10の概略斜視図である。図2は、図1に示す相変化冷却器10の概略平面図である。図3は、図1に示す相変化冷却器10の概略正面図である。
 図1は、2つの受熱部11と1つの放熱部12を有する本発明の第1の実施形態に係る相変化冷却器10を示す。
 図4及び図5に示すように、受熱部11の下部には、熱伝導性グリースや放熱シートなどを介して、基板Kの上に設けられた電子部品Dが設置されている。熱的な接続を維持するために、受熱部11はネジNで基板Kの上に固定されている。このとき、固定構造にばね性を持たせることで、受熱部11と電子部品Dとの間に接地圧力が発生することが好ましい。図4には、後述する第2実施形態における、受熱部11を互いに接続するバイパス管が示されている。
 この接地圧力は、部品の規格を超えないように、100kPaから1MPa程度の圧力とすることが好適である。
 受熱部11は、熱伝導性の良い銅やアルミニウムなどの金属で作られた中空のチャンバーである。図6は、受熱部11を示す概略断面図である。受熱部11は、側壁部111(図7A、図7B参照)と、天板112(図8A、図8B参照)と、底板113(図9A、図9B参照)とを備えている。側壁部111は、略円筒形状である。天板112は、略円形であり、側壁部111の一端側開口を覆うように設けられている。底板113は、略円形であり、側壁部111の他端側開口を覆うように設けられている。図7Aおよび図7Bに示すように、側壁部111を貫通して液流入口111aが形成される。図8Aおよび図8Bに示すように、天板112を貫通して蒸気流出口112aが形成されている。図9Aおよび図9Bに示すように、底板113には、そのチャンバー内側面に、冷媒Rへの伝熱性を良くするためのフィン113aが複数設けられている。図9Aおよび図9Bに詳細は示さないが、底板113のチャンバー内側面には、液や蒸気の流れを制御するための流路が形成されていてもよい。発生した気泡の剥離がフィン113aや流路に邪魔されないように、フィン113aの間隔、流路壁間の距離は、概ね1mmから数mm以上を確保するとよい。底板113のチャンバー内側面の表面は、気泡の発生の核となるように、サンドブラストなどで数10mmから数100mmレベルの粗さにすることが好ましい。この構造により、気泡が発生する際の核の数が増える。受熱部11の断面形状は円筒形状に限定されず、適宜設計変更が可能である。図10Aから図11Bは、受熱部11の断面形状を略矩形にした場合の側壁部111と底板113の構成を示す。
 受熱部11の底板113は、発熱素子に接するために熱伝導性の高い材料を用いて形成することが望ましい。銅およびアルミニウムは高い熱伝導率を持つ汎用される金属である。このため、これらの材料を用いて、発熱素子に接する面から流動制御突起113bまでを一体として形成することが望ましい。流動制御突起113bを設けた第一の目的は、液相冷媒Rを沸騰面表面に均一に分布させることである。常に沸騰を続けるために必要な液体の供給を行いつつ、高発熱時に液相がなくなるドライアウトを底部全体に広がるのを防ぐ効果がある。有機系の冷媒Rを用いた場合、一般に水よりも表面張力が小さく、沸騰時に形成する泡の径が1.0mm前後である。このような場合には、流動制御突起113b間距離を極端に狭く泡の径以下にすることは望ましくない。流動制御突起113b間距離は、泡の径程度かそれ以上にすることが望ましい。流動制御突起113bの第二の目的は放熱面積を拡大させることである。表面積が広いほど放熱量も大きくできることを考えると、流動制御突起113b間の距離を大きくとりすぎると、形成できる流動制御突起113bの数が限定されてしまう。流動制御突起113b内部を通過する熱量は、突起の厚みに依存する。流動制御突起113bを厚くすればより多くの熱が流れる。しかしながら、流動制御突起113bを厚くしすぎると放熱面積が限定されてしまう。これらの点を踏まえると、以下の条件を満たすように流動制御突起113bを形成することが最良である。すなわち、流動制御突起113b間距離を1.0mm程度に設定する。流動制御突起113bの厚みを1.0から2.0mm程度に設定する。流動制御突起113bの高さを1.0から5.0mm程度に設定する。これらミリスケールで、アスペクト比が1:5程度の流動制御突起113b構造であれば、切削で製造することが良好な方法の一つである。受熱部11内部の流動制御突起113bと底板113とを一体で形成すると、両者を別々に形成して合体する場合に比べてそれらの接続部に生じる熱抵抗を少なくすることができる。図6は、流動制御突起113bと底板113とを一体として形成した場合の例を示す。
 受熱部11の内部では、電子部品Dからの熱により冷媒Rが相変化し、蒸気が生成される。この蒸気は、図1に示す受熱部11の上部の蒸気管13を通り、ラジエータである放熱部12の上部に向かう。放熱部12の上部には、もう1つの受熱部11と接続する蒸気管13も接続されている。放熱部12の中央部には、コルゲートタイプの放熱フィン121が形成されている。放熱フィン121間を通過する空気により、熱が放散される。空気の流れは、図3に示す軸流ファン122により放熱フィン121間に均等に冷却風として供給される。軸流ファン122の直径は約120mmで、放熱部12の断面サイズとほぼ同じである。
 放熱部12の上部には、複数の蒸気管13が接続されている。複数の蒸気管13を介して複数の受熱部11からの蒸気がそれぞれ放熱部12に運ばれる。複数の蒸気管13は、放熱部12の上部であって冷却風が排出される側の面に、均等な間隔で接続されることが望ましい。例えば、図1に示すように、複数の蒸気管13を、放熱部12の長辺側の側面に均等にならべてもよい。図に詳細は示さないが、放熱部12の短辺側の左右両側面に2本の蒸気管13をそれぞれ接続させもよい。密度が比較的低い蒸気が流れる蒸気管13は、その直径を大きくして、蒸気通過時の圧力損失が最小限になるようにすることが望ましい。
 図1に示すように、放熱部12の下部には複数本の液体管14の一端が接続されている。また、各液体管14の他端が各受熱部11にそれぞれ接続されている。この液体管14の管径は、蒸気管13の管径に比べて小さい。冷却器全体が定常状態にあるとき、質量ベースの流量はどこも同じであるが、体積ベースの流量は大きく異なる。これは、液体と気体では密度が大きく変化するためである。受熱部11へと接続される液体管14の径が小さいことは、蒸気の混入を防ぐ意味でも効果がある。その結果、逆流を防ぐ、もしくは逆流が生じてもその影響を最低限に抑えることができる系を、逆止弁なしに実現することができる。
 次に、本発明の実施形態に係る相変化冷却器10の望ましい構造について補足説明する。また、相変化冷却器10の製造方法の概要を説明する。図6に示すように、熱伝導性の高い材料(銅、アルミニウム)を用いて、側壁部111を作成する。この側壁部111にネジ山の刻設された凝縮液流入部111bを螺着させる。次に、底板113と側壁部111とをロウ付けなどの手段により接合する。以上の工程により、受熱部11の本体を形成する。次に、同じく熱伝導性の高い材料を用いて形成した図8Aおよび図8Bに示す天板112を、受熱部11の本体とロウ付けなどの手段により接合して受熱部11を作成する。天板112は、予め蒸気流出部112bと一体として形成しておく。あるいは、天板112には、ネジ山の刻設された蒸気流出部112bを螺着しておく。ロウ付けにて各部を接合することにより、沸騰時の圧力変動に耐えうる密閉構造の受熱部11を得ることができる。
 放熱部12は、図12Aに示すように、主として放熱部ヘッダー123、凝縮液滞留部124、冷媒流路125、および放熱フィン121によって構成されている。放熱部12の基本構造は自動車などに用いられているラジエータに似ている。ただし、本発明の実施形態においては、放熱の外に冷媒蒸気の凝縮が行なわれるので、冷媒Rの凝縮に効率のよい放熱ができるようすることが肝要である。蒸気流入口126は、図12BのF-Fに沿った断面図に示すように、放熱部ヘッダー123に直角に接続することが良好である。この結果、放熱部ヘッダー123に流入する蒸気は、放熱部ヘッダー123の背面側の壁に衝突し、放熱部ヘッダー123に充満するように蒸気を拡散させることができる。これにより、放熱部ヘッダー123の内部の圧力を一定にすることができる。従って、冷媒流路125の流量を均一化することができる。
 冷媒流路125は、放熱の観点からはなるべく細いほうが良好であるが、凝縮した冷媒Rの流れの観点からすると、ある程度の太さが必要となる。本発明の実施形態においては、凝縮は重力に依存した液相の排除能力に頼っている。理想的には、凝縮した冷媒Rが流路内壁に薄膜の液相を形成し、重力により凝縮液滞留部124側に排出される。まれに、凝縮した液相に蒸気が気泡となってトラップされることがあり、このような場合には、液相の排出に抵抗となる。このような事態を避けるためには、なるべく流路幅を最低限とする。有機冷媒を用いた場合には、流路内面の幅を0.3mm以上、放熱性の観点から同じく流路内面の幅を1.0mm以下に設定することが好ましい。
 受熱部11と放熱部12とを接続する蒸気管13及び液体管14には、柔軟な配管材料を使うことが望ましい。高分子系の材料は柔軟性が高いが、透水性がある。このため、冷媒Rが配管壁面を通じて漏出してしまう。柔軟な接続を実現するためには、蒸気管13及び液体管14の材料として、ブチルゴムのように透水性の小さな高分子材料や、金属薄膜が積層された高分子配管材料や、蛇腹形状を有する柔軟性のある金属配管材料などの採用が良好である。受熱部11と放熱部12とに蒸気管13あるいは液体管14とを接続する位置に、流入・流出ノズルを設けることが好ましい。この流入・流出ノズルに蒸気管13あるいは液体管14を接続する。接続部と蒸気管13あるいは液体管14との界面を通じても冷媒Rの漏出の恐れがある。このため、接続部は接着材を用いて封止することが望ましい。受熱部11と放熱部12との接続には、金属材料を用いた蒸気管13および液体管14を用いることも可能である。金属材料を使うことで、冷却器内部の気密性を向上させることができ、冷媒の漏出を防ぐ効果が得られる。柔軟性を維持するために、薄い金属膜と上記高分子材料との積層構造にある配管材料を用いても同様の効果が得られる。蛇腹状になった金属配管でも、柔軟性を持った接続が可能である。蒸気管13は、図5に示すように、受熱部11から鉛直上方に引き出され、略水平に曲折された後、放熱部12に接続されている。このような構成によれば、蒸気管13の内部で凝縮した冷媒が蒸気管13に沿って逆流するのを防止することができる。すなわち、この蒸気管13は、冷媒の圧力が上流側から下流側に向かって低下していくため、その最下流部で冷媒が凝縮しやすい。そのため、蒸気管13の最下流部を略平行に形成して凝縮した液層の逆流を防止すれば、相変化冷却器10のより安定した運転が可能となる。
 接続部の封止が完了したら、冷媒注入口(不図示)を通じて、冷媒の注入と、内包空気の排除を行う。空気を排除することにより、相変化冷却器10の内部は冷媒Rの飽和蒸気圧となる。冷媒Rの選定の一つの条件として、飽和蒸気圧はなるべく1気圧に近いものが好ましい。飽和蒸気圧が1気圧から大きく外れた場合は、相変化冷却器10の強度を大きくする必要が生じるためである。例えば、フッ素系冷媒の一種であるデュポン社製のVertrel(商標)は大気圧での沸点が55℃で、常温での飽和蒸気圧が約30kPaである。電子機器の冷却を考えると、Vertrelは、常温での大気圧との差がそれほど大きくなく、動作時においてもほぼ2気圧以下に保つことができるため、本発明の実施形態による相変化冷却器10の冷媒として良好である。
 次に、本発明の実施形態による相変化冷却器10の作用効果について説明する。受熱部11の内部で冷媒Rが沸騰すると、発生した蒸気は液相に比べて比重が小さいため、重力方向上部に位置する蒸気流出口112aへと向かう。蒸気管13は緩やかに角度を変えることで、放熱部12へ向けて低抵抗に蒸気を運ぶ。放熱部12の上部であって冷却風が排出される側の面に蒸気管13が接続されていることは、放熱部12の性能確保にとって良好な条件である。放熱部12に導入された蒸気はその内部を上から下へと流れ、液に戻る。液に戻った冷媒Rは放熱部12の下部に滞留し、液体管14を図5に示す矢印方向に進行して受熱部11へと戻っていく。
 蒸気として蒸気流入口126より放熱部12に到達した冷媒Rは、冷媒流路125を通過しながら凝縮する。放熱フィン121間を流れる冷却風により、凝縮熱が冷媒Rから冷媒流路125壁、放熱フィン121へと熱が伝わり、放熱される。凝縮した冷媒Rは、相対的に重力方向下部にある凝縮液滞留部124へと流れていく。凝縮液滞留部124に滞留する液量は、放熱部12の上部からの蒸気の流入の妨げにならないように決定される。凝縮液滞留部124の凝縮した冷媒Rは、重力により受熱部11にそれぞれ供給される。
 本発明の実施形態による集中放熱の構造により、1台の軸流ファン122による冷媒Rの冷却が可能となっている。従って、冷却構造が単純で、消費電力の削減が可能となっている。例えば、図13に示すように、2つのCPU(CPU0、CPU1)を搭載したワークステーションに相変化冷却器10を採用した場合(図13における「相変化」)は、熱抵抗が倍増してしまう水冷式で冷却する場合(図13における「水冷」)と比較すると、熱抵抗の増加が低く維持できる。CPUなど演算素子を搭載したサーバーやパソコン、スーパーコンピューターなどでも同様の効果が得られる。冷却対象はCPUなどの演算素子に限られず任意の発熱体であればよい。複数の発熱体が搭載されるルーターなどのネットワーク機器や、複数の発光素子や光デバイスをもつLEDプロジェクターやLCDやDMDを活用するプロジェクターなどに相変化冷却器10を採用しても同様の効果が得られる。
 しかも、本実施形態では、放熱部12の内部は仕切りがない一体構造となっているので、一方の受熱部11が熱を受ける電子部品Dの発熱量が少ないときには、他方の受熱部11が熱を受ける電子部品Dの冷却のために放熱部12全体を使うことができる。これにより、熱抵抗が低減するという効果が得られる。
 また、本実施形態では、各蒸気管13が、いずれも放熱部12における冷却風が排出される側の面に接続されている。このような構成によれば、冷却風の排出方向に略直交する方向への放熱部12の厚みを抑制することができ、放熱部12の薄型化を図ることができる。
[第2実施形態]
 次に、本発明の第2実施形態に係る相変化冷却器20について説明する。図14Aおよび図14Bに示すように、相変化冷却器20では、冷媒Rの受熱部11への供給能力を維持するために、受熱部11を互いに接続するバイパス管21が設けられている。電子機器内部の発熱電子部品Dの稼働率により発熱量が変化する可能性は大きい。バイパス管21を設けることにより、ある一つの電子部品Dの稼働率が高い状態の場合、液は液体管14からのみでなく、近接する受熱部11からも供給される。
 このように複数の受熱部11の間を直接接続するようにバイパス管21が接続されていると、液相冷媒Rの供給性能が向上し、例えば急激な発熱量の変化時に良好な冷却性能を維持できる。バイパス管21を柔軟な材料で作成することにより、複数の受熱部11をそれぞれの冷却対象電子部品Dに適切に実装することができ、冷却に重要な接地条件の管理を個別に行える。
[第3実施形態]
 次に、本発明の第3実施形態に係る相変化冷却器30について説明する。図15に示すように、相変化冷却器30では、各蒸気管13及び各液体管14の長さが受熱部11ごとに異なっている。本発明の実施形態に係る相変化冷却器30が適用される電子機器などでは、発熱電子部品Dの設置位置は電気など冷却以外の観点からの要求も重要である。電子部品Dの位置、放熱位置が決められており、各受熱部11と放熱部12との距離が異なる場合、蒸気管13と液体管14を必要に応じて延伸することにより、冷却性能を維持することができる。また、第2実施形態のバイパス管21との併用も好ましい。
[第4実施形態]
 次に、本発明の第4実施形態に係る相変化冷却器40について説明する。図16Aおよび図16Bに示すように、相変化冷却器40では、2つの受熱部11に接続している蒸気管13が、放熱部12を構成する相対向する2つの面、より詳細には冷却風が排出される面と略直交する2つの面に対してそれぞれ接続されている。
 このように各蒸気管13を放熱部12の短辺側の側面にそれぞれ接続した場合、各蒸気管13及び各液体管14が冷却風の通風経路上にないため、通風効率のアップを図ることができ、冷却性能を向上させることができる。
 また、図16Aおよび図16Bに示すように、相変化冷却器40では、液体管41の一端側が放熱部12に1箇所で接続される。一方、液体管41の他端側が分岐して各受熱部11にそれぞれ接続されている。言い換えると、液体管41は、放熱部12に1箇所で接続される一端部と、各受熱部11にそれぞれ接続される分岐した複数の分岐部を有する他端部とを有する。
 重力方向下方に設置される液体管41は、電子機器内部で、電子部品Dの実装領域の近くに設置することが必要になる可能性が高い。この領域に配置される液体管41の本数を少なくすることは、高密度に電子部品Dが実装されているような状態において好ましい。
[第5実施形態]
 次に、本発明の第5実施形態に係る相変化冷却器60について説明する。図17Aおよび図17Bに示すように、相変化冷却器60では、1つの受熱部61と1つの放熱部12とが、蒸気管13及び液体管14を介して互いに接続されている。
 高密度に発熱電子部品Dが実装されている電子機器の内部では、受熱構造の一体化が望ましい場合がある。それぞれの蒸気管13は、対応する個別の電子部品Dの発熱量に応じて、その径が決定されることが望ましい。また、受熱部61における電子部品Dの近傍に蒸気流出口を設けることにより、圧力損失の低い冷媒循環系が形成され、効率的な蒸気排出すなわち電子部品Dの冷却が達成される。また、受熱部61が1個であることにより、液体管41の数も減らすことができるので、構造が簡略化されるだけでなく、使用時における冷媒漏出のリスクの低減にも寄与する。
 この出願は、2010年3月29日に出願された日本出願特願2010-076126を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明による相変化冷却器は、コンピュータやサーバー、ネットワーク機器、パソコンといった電子機器の冷却に適用できる。また、プロジェクターやディスプレイといった光学系装置の冷却用途にも適用可能である。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
11       受熱部
12  放熱部
13  蒸気管
14  液体管
21  バイパス管
113b 流動制御突起
121 放熱フィン
122   軸流ファン
123   放熱部ヘッダー
125      冷媒流路
D  電子部品
K  基板
N      ネジ
R      冷媒

Claims (5)

  1.  発熱体から受ける熱によって冷媒を液体から蒸気へ相変化させる複数の受熱部と、
     周囲に放熱することによって冷媒を蒸気から液体へ相変化させる1つの放熱部と、
     前記各受熱部から前記放熱部へ蒸気状の冷媒をそれぞれ輸送する複数の蒸気管と、
     前記放熱部から前記各受熱部へ液体状の冷媒をそれぞれ還流する液体管と、
     前記各受熱部を互いに接続するバイパス管と、を備える相変化冷却器。
  2.  前記各蒸気管の長さが、前記各受熱部毎に相違する請求項1に記載の相変化冷却器。
  3.  前記液体管は、前記放熱部に1箇所で接続される一端部と、前記各受熱部にそれぞれ接続される分岐した複数の分岐部を有する他端部とを有する請求項1又は2に記載の相変化冷却器。
  4.  前記受熱部が2つであって、各受熱部から延びる前記各蒸気管が、前記放熱部を形成する相対向する2つの面にそれぞれ接続される請求項1乃至3のいずれか1項に記載の相変化冷却器。
  5.  請求項1乃至4のいずれか1項に記載の相変化冷却器を備える電子機器。
PCT/JP2011/056079 2010-03-29 2011-03-15 相変化冷却器及びこれを備えた電子機器 WO2011122332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/638,474 US9605907B2 (en) 2010-03-29 2011-03-15 Phase change cooler and electronic equipment provided with same
JP2012508203A JPWO2011122332A1 (ja) 2010-03-29 2011-03-15 相変化冷却器及びこれを備えた電子機器
CN201180017673.2A CN102834688B (zh) 2010-03-29 2011-03-15 相变冷却器和设有该相变冷却器的电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-076126 2010-03-29
JP2010076126 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122332A1 true WO2011122332A1 (ja) 2011-10-06

Family

ID=44712053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056079 WO2011122332A1 (ja) 2010-03-29 2011-03-15 相変化冷却器及びこれを備えた電子機器

Country Status (4)

Country Link
US (1) US9605907B2 (ja)
JP (1) JPWO2011122332A1 (ja)
CN (1) CN102834688B (ja)
WO (1) WO2011122332A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102974A1 (ja) * 2012-01-04 2013-07-11 日本電気株式会社 冷却装置
JP2013137181A (ja) * 2011-10-31 2013-07-11 Abb Technology Ag 電気および/または電子部品を備えるモジュールにおける熱サイフォン冷却器配置
JP2013145069A (ja) * 2012-01-13 2013-07-25 Panasonic Corp 冷却装置およびこれを搭載した電子機器および電気自動車
WO2014147837A1 (ja) * 2013-03-22 2014-09-25 富士通株式会社 冷却システム及び電子機器
US20140326016A1 (en) * 2012-01-01 2014-11-06 Nec Corporation Cooling device and electric equipment using the same
WO2015008485A1 (ja) * 2013-07-19 2015-01-22 日本電気株式会社 密閉筐体の冷却構造及びそれを用いた光学装置
JPWO2013018667A1 (ja) * 2011-08-01 2015-03-05 日本電気株式会社 冷却装置及びそれを用いた電子機器
JP2017017199A (ja) * 2015-07-01 2017-01-19 富士通株式会社 冷却部品及び電子機器
JP2017041577A (ja) * 2015-08-21 2017-02-23 日本電気株式会社 冷却装置および冷却方法
JPWO2016031186A1 (ja) * 2014-08-27 2017-06-08 日本電気株式会社 相変化冷却装置および相変化冷却方法
JP2017133828A (ja) * 2017-04-03 2017-08-03 富士通株式会社 冷却システム及び電子機器
KR20180098150A (ko) * 2017-02-24 2018-09-03 도요타 지도샤(주) 열교환기, 그 열교환기를 사용한 열교환 방법, 그 열교환기를 사용한 열수송 시스템, 및 그 열수송 시스템을 사용하는 열수송 방법
WO2019049241A1 (ja) * 2017-09-06 2019-03-14 日本電気株式会社 冷却システム、及び、冷却方法
JP2020067210A (ja) * 2018-10-23 2020-04-30 富士通株式会社 冷却装置、電子機器及び冷却装置の製造方法
WO2022030464A1 (ja) * 2020-08-07 2022-02-10 ダイキン工業株式会社 液浸冷却装置、ヒートパイプ、およびコールドプレート

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150062821A1 (en) * 2012-03-22 2015-03-05 Nec Corporation Cooling Structure for Electronic Circuit Board, and Electronic Device Using the Same
EP2677261B1 (en) * 2012-06-20 2018-10-10 ABB Schweiz AG Two-phase cooling system for electronic components
US20160014933A1 (en) * 2013-02-26 2016-01-14 Nec Corporation Electronic apparatus cooling system and electronic apparatus cooling system fabrication method
US20160116225A1 (en) * 2013-05-29 2016-04-28 Nec Corporation Cooling device and method for manufacturing same
KR102196216B1 (ko) * 2014-07-18 2020-12-30 삼성전자주식회사 냉각 장치 및 그 제어 방법
WO2016134268A1 (en) * 2015-02-19 2016-08-25 J R Thermal LLC Intermittent thermosyphon
TWI650522B (zh) * 2015-05-21 2019-02-11 萬在工業股份有限公司 冷媒式散熱裝置
JP2017040434A (ja) * 2015-08-20 2017-02-23 富士通株式会社 冷却装置及び電子機器
JP6461361B2 (ja) * 2015-09-14 2019-01-30 三菱電機株式会社 冷却器、電力変換装置、及び冷却システム
WO2017169969A1 (ja) * 2016-03-31 2017-10-05 日本電気株式会社 冷却装置
US10859318B2 (en) * 2017-02-16 2020-12-08 J R Thermal, LLC Serial thermosyphon
JP7185420B2 (ja) * 2018-05-24 2022-12-07 現代自動車株式会社 沸騰冷却装置
JP2020029967A (ja) * 2018-08-21 2020-02-27 セイコーエプソン株式会社 冷却装置及びプロジェクター
CN109213298A (zh) * 2018-10-10 2019-01-15 郑州云海信息技术有限公司 一种用于服务器的虹吸管散热器
JP2020106209A (ja) * 2018-12-27 2020-07-09 川崎重工業株式会社 蒸発器及びループ型ヒートパイプ
TWI718485B (zh) * 2019-02-27 2021-02-11 雙鴻科技股份有限公司 熱交換裝置
PL3829278T3 (pl) 2019-11-29 2022-07-18 Ovh Układ chłodzenia dla serwera z możliwością zamontowania w szafie serwerowej
CN111752359A (zh) * 2020-06-30 2020-10-09 联想(北京)有限公司 一种电子设备
US12241688B2 (en) * 2020-10-22 2025-03-04 Asia Vital Components Co., Ltd. Vapor-phase/liquid-phase fluid heat exchange unit
CN113613468B (zh) * 2021-08-04 2024-12-17 东莞市讯冷热传科技有限公司 钎焊冷媒散热器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206347A (ja) * 1982-05-26 1983-12-01 Mitsubishi Electric Corp 均熱装置
JPH0426039B2 (ja) * 1985-08-14 1992-05-06 Sato Kogyo
JP2002168547A (ja) * 2000-11-20 2002-06-14 Global Cooling Bv 熱サイホンによるcpu冷却装置
JP2004335846A (ja) * 2003-05-09 2004-11-25 Denso Corp 熱交換器
JP2005195226A (ja) * 2004-01-06 2005-07-21 Mitsubishi Electric Corp ポンプレス水冷システム
JP2007034699A (ja) * 2005-07-27 2007-02-08 Toshiba Corp 電子機器
JP3924674B2 (ja) * 2001-12-27 2007-06-06 昭和電工株式会社 発熱素子用沸騰冷却器
JP2007335624A (ja) * 2006-06-15 2007-12-27 Hitachi Ltd 電子機器用の液冷装置
JP2009267181A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd 冷却システム及びそれを備えた電子機器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1900715A (en) * 1928-05-04 1933-03-07 Selden Res & Engineering Corp Method of carrying out exothermic catalytic vapor phase reactions
US3512582A (en) * 1968-07-15 1970-05-19 Ibm Immersion cooling system for modularly packaged components
US3609991A (en) * 1969-10-13 1971-10-05 Ibm Cooling system having thermally induced circulation
SU1576833A1 (ru) * 1988-03-11 1990-07-07 Челябинское Ремонтно-Монтажное Специализированное Управление Треста "Союзцветметгазоочистка" Теплопередающее устройство
JPH0426039A (ja) 1990-05-21 1992-01-29 Hitachi Ltd 陰極線管
US6005772A (en) * 1997-05-20 1999-12-21 Denso Corporation Cooling apparatus for high-temperature medium by boiling and condensing refrigerant
US5940270A (en) * 1998-07-08 1999-08-17 Puckett; John Christopher Two-phase constant-pressure closed-loop water cooling system for a heat producing device
TW523893B (en) * 2001-01-16 2003-03-11 Denso Corp Cooling equipment
US6536510B2 (en) * 2001-07-10 2003-03-25 Thermal Corp. Thermal bus for cabinets housing high power electronics equipment
US6981543B2 (en) * 2001-09-20 2006-01-03 Intel Corporation Modular capillary pumped loop cooling system
US20050067147A1 (en) * 2003-09-02 2005-03-31 Thayer John Gilbert Loop thermosyphon for cooling semiconductors during burn-in testing
DE20314532U1 (de) * 2003-09-16 2004-02-19 Pries, Wulf H. Vorrichtung zur Ableitung von Wärme von elektronischen und elektrischen Bauelementen
JP2005122503A (ja) * 2003-10-17 2005-05-12 Hitachi Ltd 冷却装置およびこれを内蔵した電子機器
KR20060105769A (ko) * 2003-12-08 2006-10-11 노이즈 리미트 에이피에스 버블 펌프를 구비한 냉각 시스템
US7457118B1 (en) * 2003-12-19 2008-11-25 Emc Corporation Method and apparatus for dispersing heat from high-power electronic devices
US20070284088A1 (en) * 2004-08-18 2007-12-13 Kyo-Seok Chun Cooling Apparatus of Looped Heat Pipe Structure
US7686071B2 (en) * 2005-07-30 2010-03-30 Articchoke Enterprises Llc Blade-thru condenser having reeds and heat dissipation system thereof
US20070175614A1 (en) * 2006-01-30 2007-08-02 Jaffe Limited Loop heat exchange apparatus
US20070227703A1 (en) * 2006-03-31 2007-10-04 Bhatti Mohinder S Evaporatively cooled thermosiphon
US9074825B2 (en) * 2007-09-28 2015-07-07 Panasonic Intellectual Property Management Co., Ltd. Heatsink apparatus and electronic device having the same
US20100071880A1 (en) * 2008-09-22 2010-03-25 Chul-Ju Kim Evaporator for looped heat pipe system
WO2010050129A1 (ja) * 2008-10-29 2010-05-06 日本電気株式会社 冷却構造及び電子機器並びに冷却方法
CN101578029A (zh) 2009-06-19 2009-11-11 北京航空航天大学 一种集成热管和泡沫金属芯体的相变温控装置
JP5210997B2 (ja) * 2009-08-28 2013-06-12 株式会社日立製作所 冷却システム、及び、それを用いる電子装置
JP2013506307A (ja) * 2009-09-28 2013-02-21 アーベーベー・リサーチ・リミテッド 電子部品を冷却するための冷却モジュール
WO2011040129A1 (ja) * 2009-09-29 2011-04-07 日本電気株式会社 電子機器装置の熱輸送構造

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58206347A (ja) * 1982-05-26 1983-12-01 Mitsubishi Electric Corp 均熱装置
JPH0426039B2 (ja) * 1985-08-14 1992-05-06 Sato Kogyo
JP2002168547A (ja) * 2000-11-20 2002-06-14 Global Cooling Bv 熱サイホンによるcpu冷却装置
JP3924674B2 (ja) * 2001-12-27 2007-06-06 昭和電工株式会社 発熱素子用沸騰冷却器
JP2004335846A (ja) * 2003-05-09 2004-11-25 Denso Corp 熱交換器
JP2005195226A (ja) * 2004-01-06 2005-07-21 Mitsubishi Electric Corp ポンプレス水冷システム
JP2007034699A (ja) * 2005-07-27 2007-02-08 Toshiba Corp 電子機器
JP2007335624A (ja) * 2006-06-15 2007-12-27 Hitachi Ltd 電子機器用の液冷装置
JP2009267181A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd 冷却システム及びそれを備えた電子機器

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013018667A1 (ja) * 2011-08-01 2015-03-05 日本電気株式会社 冷却装置及びそれを用いた電子機器
JP2013137181A (ja) * 2011-10-31 2013-07-11 Abb Technology Ag 電気および/または電子部品を備えるモジュールにおける熱サイフォン冷却器配置
US20140326016A1 (en) * 2012-01-01 2014-11-06 Nec Corporation Cooling device and electric equipment using the same
EP2801781A4 (en) * 2012-01-04 2015-11-25 Nec Corp COOLING SYSTEM
JPWO2013102980A1 (ja) * 2012-01-04 2015-05-11 日本電気株式会社 冷却装置およびそれを用いた電子機器
JPWO2013102974A1 (ja) * 2012-01-04 2015-05-11 日本電気株式会社 冷却装置
WO2013102974A1 (ja) * 2012-01-04 2013-07-11 日本電気株式会社 冷却装置
JP2013145069A (ja) * 2012-01-13 2013-07-25 Panasonic Corp 冷却装置およびこれを搭載した電子機器および電気自動車
WO2014147837A1 (ja) * 2013-03-22 2014-09-25 富士通株式会社 冷却システム及び電子機器
JPWO2014147837A1 (ja) * 2013-03-22 2017-02-16 富士通株式会社 冷却システム及び電子機器
WO2015008485A1 (ja) * 2013-07-19 2015-01-22 日本電気株式会社 密閉筐体の冷却構造及びそれを用いた光学装置
JPWO2016031186A1 (ja) * 2014-08-27 2017-06-08 日本電気株式会社 相変化冷却装置および相変化冷却方法
JP2017017199A (ja) * 2015-07-01 2017-01-19 富士通株式会社 冷却部品及び電子機器
JP2017041577A (ja) * 2015-08-21 2017-02-23 日本電気株式会社 冷却装置および冷却方法
KR20180098150A (ko) * 2017-02-24 2018-09-03 도요타 지도샤(주) 열교환기, 그 열교환기를 사용한 열교환 방법, 그 열교환기를 사용한 열수송 시스템, 및 그 열수송 시스템을 사용하는 열수송 방법
KR102121718B1 (ko) * 2017-02-24 2020-06-11 도요타 지도샤(주) 열교환기, 그 열교환기를 사용한 열교환 방법, 그 열교환기를 사용한 열수송 시스템, 및 그 열수송 시스템을 사용하는 열수송 방법
US10816283B2 (en) 2017-02-24 2020-10-27 Toyota Jidosha Kabushiki Kaisha Heat exchanger, heat exchange method using heat exchanger, heat transport system using heat exchanger, and heat transport method using heat transport system
JP2017133828A (ja) * 2017-04-03 2017-08-03 富士通株式会社 冷却システム及び電子機器
WO2019049241A1 (ja) * 2017-09-06 2019-03-14 日本電気株式会社 冷却システム、及び、冷却方法
JPWO2019049241A1 (ja) * 2017-09-06 2020-09-24 日本電気株式会社 冷却システム、及び、冷却方法
US11363744B2 (en) 2017-09-06 2022-06-14 Nec Corporation Cooling system and cooling method
JP2020067210A (ja) * 2018-10-23 2020-04-30 富士通株式会社 冷却装置、電子機器及び冷却装置の製造方法
JP7155869B2 (ja) 2018-10-23 2022-10-19 富士通株式会社 冷却装置、電子機器及び冷却装置の製造方法
WO2022030464A1 (ja) * 2020-08-07 2022-02-10 ダイキン工業株式会社 液浸冷却装置、ヒートパイプ、およびコールドプレート
JP2022030744A (ja) * 2020-08-07 2022-02-18 ダイキン工業株式会社 液浸冷却装置
JP7583295B2 (ja) 2020-08-07 2024-11-14 ダイキン工業株式会社 液浸冷却装置

Also Published As

Publication number Publication date
CN102834688B (zh) 2015-07-15
JPWO2011122332A1 (ja) 2013-07-08
CN102834688A (zh) 2012-12-19
US20130025826A1 (en) 2013-01-31
US9605907B2 (en) 2017-03-28

Similar Documents

Publication Publication Date Title
WO2011122332A1 (ja) 相変化冷却器及びこれを備えた電子機器
JP5644767B2 (ja) 電子機器装置の熱輸送構造
JP6561846B2 (ja) 冷却装置及び電子装置
US8953317B2 (en) Wicking vapor-condenser facilitating immersion-cooling of electronic component(s)
JP4978401B2 (ja) 冷却装置
US9313919B2 (en) Radiator, electronic apparatus and cooling apparatus
US8773855B2 (en) Heat-dissipating device and electric apparatus having the same
WO2010058520A1 (ja) 沸騰冷却装置
US20060272798A1 (en) Loop-type heat exchange device
WO2015146110A1 (ja) 相変化冷却器および相変化冷却方法
JP2018194197A (ja) ヒートパイプ及び電子機器
US10907910B2 (en) Vapor-liquid phase fluid heat transfer module
JP6825615B2 (ja) 冷却システムと冷却器および冷却方法
CN115036279A (zh) 散热装置和冷却单元
US11280556B2 (en) Fast heat-sinking, current stabilization and pressure boosting device for condenser
WO2015072128A1 (ja) 配管構造、それを用いた冷却装置、および冷媒蒸気輸送方法
JP5252059B2 (ja) 冷却装置
TW202402148A (zh) 冷卻系統及伺服器
RU2639635C1 (ru) Теплопередающее устройство для охлаждения электронных компонентов
JP2008211001A (ja) 電子機器の冷却装置
EP2801781B1 (en) Cooling device
WO2016208180A1 (ja) 冷却装置およびこれを搭載した電子機器
US20240064937A1 (en) Immersion cooling system
JP3106428U (ja) 放熱装置
JP6622956B2 (ja) ループ型ヒートパイプを備えた熱輸送装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017673.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508203

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13638474

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762572

Country of ref document: EP

Kind code of ref document: A1