WO2011108438A1 - 機能性積層板、タッチパネル用透明導電性積層板、およびこれを用いたタッチパネル - Google Patents
機能性積層板、タッチパネル用透明導電性積層板、およびこれを用いたタッチパネル Download PDFInfo
- Publication number
- WO2011108438A1 WO2011108438A1 PCT/JP2011/054151 JP2011054151W WO2011108438A1 WO 2011108438 A1 WO2011108438 A1 WO 2011108438A1 JP 2011054151 W JP2011054151 W JP 2011054151W WO 2011108438 A1 WO2011108438 A1 WO 2011108438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- adhesive layer
- functional
- transparent
- laminate
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0445—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/025—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/044—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
- G06F3/0446—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/041—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
- G06F3/045—Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/10—Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/20—Inorganic coating
- B32B2255/205—Metallic coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2255/00—Coating on the layer surface
- B32B2255/26—Polymeric coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/40—Properties of the layers or laminate having particular optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
- B32B2457/208—Touch screens
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
Definitions
- the present invention relates to a functional laminate, and relates to a functional laminate that can strengthen the waist while reducing the thickness and prevent the plastic film from being peeled off from the adhesive layer during the die cutting process.
- the present invention also relates to a transparent conductive laminated plate for a touch panel that is light and has no fear of breakage, and is excellent in processing (die-cutting) suitability, and a touch panel using the same.
- a functional laminate with a functional film bonded to a plastic plate is thin and thick, lacks flexibility, and cracks during die cutting to achieve the desired size. There is a problem such as.
- the functional plastic plate in which the functional layer is directly formed on the plastic plate has the same problem.
- a capacitive touch panel and a resistive touch panel an electrode in which a transparent conductive film is formed on a transparent substrate is used.
- a plastic film may be used as the transparent substrate, but glass is used when importance is attached to durability and waist.
- glass is used as the transparent substrate, there are problems that the weight is increased and the glass is scattered when broken. In order to solve this problem, it is conceivable to use a plastic plate having a sufficient thickness as the transparent substrate.
- a transparent conductive laminate using a sufficiently thick plastic plate as a transparent substrate is sufficient, but lacks a feeling of pressing (touched touch) because it is too strong. There is a problem that it breaks during the die cutting process. In this case as well, in order to avoid the above problems at the time of die-cutting, it is conceivable to form a transparent conductive layer on a transparent plastic plate previously formed in a predetermined size, but in this case, there is a problem that workability is inferior. is there.
- the present applicant has proposed a technique relating to a laminated board in which two or more plastic films are bonded together via an adhesive layer as a material suitable for a surface protective film or the like (Patent Document 1).
- This laminated board has a characteristic that it is firm while keeping its thickness thin, and in order to solve the above-mentioned problems, it can be considered to be used as a base for forming a functional film or a transparent conductive layer.
- Patent Document 1 can prevent the occurrence of cracking during the die-cutting process, there are cases where floating or peeling occurs between the plastic film and the adhesive layer.
- the present invention provides a functional laminate that is thin, flexible, and strong, and does not float or peel between the plastic film and the adhesive layer even after performing a die-cutting process.
- An object of the present invention is to provide a transparent conductive laminate for a touch panel that is light but has a waist and a feeling of pressing (touched touch) and is not damaged during handling.
- the inventors of the present invention do not improve the floating or peeling between the plastic film and the adhesive layer, which occurs when the laminate is subjected to the die-cutting process, by simply improving the adhesion between the plastic film and the adhesive layer.
- the present inventors have found that the hardness of is related to the floating and peeling, and have completed the present invention.
- the present invention is a functional laminate comprising at least two plastic films bonded via an adhesive layer, and having a functional layer on at least one of the plastic films, wherein the martens of the adhesive layer
- the hardness is 260 N / mm 2 or less.
- the functional layer refers to a plastic film to be used, which is a physical function that the plastic film does not have, such as an optical function, an electrical function, a thermodynamic function, a heat ray or a gas shielding. It means a layer that provides functions such as functions.
- a first aspect of the functional laminate of the present invention is a laminate obtained by bonding at least two or more plastic films via an adhesive layer, and at least one between the plastic film and the plastic film.
- a functional laminate comprising a functional layer, wherein the adhesive layer has a Martens hardness of 260 N / mm 2 or less.
- the second aspect of the functional laminate of the present invention is a laminate obtained by bonding at least two plastic films via an adhesive layer, and functions on at least one surface of the outermost plastic film.
- a third aspect of the functional laminate of the present invention is a transparent conductive laminate for a touch panel. Specifically, at least two or more transparent plastic films are bonded with an adhesive layer having a Martens hardness of 260 N / mm 2 or less. A transparent conductive layer is provided on at least one surface of the laminated laminate to be bonded.
- the functional layer is a layer having a function selected from, for example, an electromagnetic wave shielding function, a heat ray reflecting function, a gas barrier function, and a planar heating function.
- the functional layer is a layer having a function selected from, for example, a light reflection function, a light transmission adjustment function, and an antifogging function.
- the functional laminate of the present invention is preferably characterized in that the combined thickness of the plastic film and the adhesive layer is 250 to 700 ⁇ m, and the thickness of each plastic film is 50 to 400 ⁇ m. .
- the functional laminate of the present invention is preferably characterized in that the resin constituting the adhesive layer contains a thermosetting resin or an ionizing radiation curable resin.
- the touch panel of the present invention is characterized by using the above transparent conductive laminate for touch panel. That is, the first aspect of the touch panel of the present invention includes a transparent conductive substrate having a transparent conductive layer on at least one side of a transparent substrate, and the transparent substrate is at least two transparent plastic films.
- a capacitive touch panel characterized by being a transparent laminated plate obtained by laminating an adhesive layer with an adhesive layer having a Martens hardness of 260 N / mm 2 or less.
- an upper electrode having a transparent conductive layer on a transparent base material and a lower electrode having a transparent conductive layer on a transparent base material are transparent conductive layers.
- the transparent substrate of the upper electrode and / or the transparent substrate of the lower electrode has at least two plastic films with a Martens hardness of 260 N / mm 2 or less.
- the functional laminate of the present invention has a structure in which at least two or more plastic films are bonded together via an adhesive layer, so that the plastic film and the adhesive layer do not float or peel off, and the thickness is increased. While being thin, the laminate is strong and can be a laminate having excellent die-cutting properties. In addition, the functional laminate of the present invention is stronger than a single plastic film having the same thickness, and can prevent cracking during the die cutting process. The reason why the functional laminate can be made difficult to break is that the plastic film that constitutes the laminate can be used with a thickness that is easy to die-cut, and the adhesive layer absorbs the impact during die-cutting. It is done.
- the transparent conductive laminate for touch panel of the present invention is light and has no fear of damage during handling. Thereby, although it is light, there is a waist and a feeling of pressing (touched touch), and a touch panel that does not cause glass scattering during handling can be provided.
- Sectional drawing which shows one Example of the functional laminated sheet of the 1st aspect of this invention Sectional drawing which shows the other Example of the functional laminated sheet of the 1st aspect of this invention.
- Sectional drawing which shows one Example of the functional laminated sheet of the 2nd aspect of this invention Sectional drawing which shows the other Example of the functional laminated sheet of the 2nd aspect of this invention.
- Sectional drawing which shows one Example of the transparent conductive laminated board for touchscreens of this invention Sectional drawing which shows the other Example of the transparent conductive laminated board for touchscreens of this invention. Sectional drawing which shows the other Example of the transparent conductive laminated board for touchscreens of this invention. Sectional drawing which shows the Example of the electrostatic capacitance type touch panel (surface type) of this invention Sectional drawing which shows the Example of the capacitive touch panel (projection type) of this invention Sectional drawing which shows the Example of the resistive film type touch panel of this invention
- the functional laminate of the present invention and the transparent conductive laminate for touch panel (hereinafter, collectively referred to as a functional laminate if not particularly distinguished) have at least two plastic films as an adhesive layer as a common structure. It has the laminated body structure bonded together. First, the material of the laminated body common to each embodiment and its structure will be described.
- polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and various plastic films made of polyethylene, polypropylene, triacetyl cellulose, polyvinyl chloride, acrylic resin, and the like can be used.
- a polyethylene terephthalate film that has been stretched, particularly biaxially stretched, is preferred in that it has a strong waist and is difficult to break during die cutting.
- the surface of the plastic film may be subjected to an easy adhesion treatment such as a corona discharge treatment or an undercoat easy adhesion treatment.
- plastic films with high transparency are used for functional laminates, transparent conductive laminates for touch panels and applications where a functional layer is present inside the laminate and light transmission is required.
- the plastic film may not transmit light, and for example, a foam film or a white or black film may be used.
- each plastic film is preferably 50 to 400 ⁇ m, more preferably 100 to 350 ⁇ m, and even more preferably 150 to 300 ⁇ m.
- the thickness of each plastic film is preferably 50 to 400 ⁇ m, more preferably 100 to 350 ⁇ m, and even more preferably 150 to 300 ⁇ m.
- the combined thickness of the plastic film and adhesive layer of the functional laminate is preferably 200 ⁇ m to 1 mm, and the lower limit is more preferably 250 ⁇ m or more, and even more preferably 300 ⁇ m or more. is there. In the case of the functional laminate of the first and third aspects, it is particularly preferably 350 ⁇ m or more. By setting the thickness to 250 ⁇ m or more, the waist can be easily bent.
- the upper limit is preferably 700 ⁇ m or less. By setting the thickness to 1 mm or less, the die cutting process can be facilitated. In the transparent conductive laminate for touch panel, the waist strength can be moderated and the pressing feeling can be improved.
- the adhesive layer consists of a resin and additives that are added as necessary.
- a resin constituting the adhesive layer a thermosetting resin or an ionizing radiation curable resin that is crosslinked and cured by heating and / or ionizing radiation irradiation or the like is preferably used. These resins increase the adhesion to the plastic film by crosslinking and curing, and can strengthen the waist of the functional laminate.
- Thermosetting resins can be crosslinked and cured by heat below the heat-resistant temperature of the plastic film because of the requirement in the manufacturing method that the coating liquid containing the thermosetting resin is applied on the plastic film and then crosslinked by heat.
- a thermosetting resin that can be used is preferable. Specifically, those obtained by crosslinking and curing a crosslinkable resin such as melamine type, epoxy type, amino alkyd type, urethane type, acrylic type, polyester type, phenol type and the like by heat can be used. In particular, an acrylic thermosetting resin that can strengthen the waist when used as a functional laminate and has good adhesion to a plastic film is preferable.
- the thermosetting resin includes a room temperature curable resin that cures at room temperature (5 to 35 ° C.).
- a compound such as polyisocyanate, amino resin, epoxy resin, carboxylic acid or the like can be appropriately used according to a suitable resin.
- the ionizing radiation curable resin it is preferable to use a resin formed from a paint that can be crosslinked and cured by irradiation with ionizing radiation (ultraviolet rays or electron beams).
- ionizing radiation ultraviolet rays or electron beams
- an ionizing radiation curable coating one or a mixture of two or more of a photocationic polymerizable resin capable of photocationic polymerization, a photopolymerizable prepolymer or a photopolymerizable monomer capable of radical photopolymerization, and the like. Can be used.
- Various additives can be added to such an ionizing radiation curable coating. However, when ultraviolet rays are used for curing, it is preferable to add a photopolymerization initiator, an ultraviolet sensitizer, or the like.
- the adhesive layer may contain a thermoplastic resin such as an acrylic adhesive resin in addition to the curable resin described above.
- a thermoplastic resin such as an acrylic adhesive resin in addition to the curable resin described above.
- the thermoplastic resin By mixing the thermoplastic resin, pressure-sensitive adhesiveness at room temperature can be imparted to the adhesive layer, so that the plastic films can be easily attached to each other. Further, by mixing the thermoplastic resin, the Martens hardness can be adjusted to be low, and when the die-cutting process is performed, it is difficult for floating or peeling between the plastic film and the adhesive layer.
- the thermoplastic resin is preferably 60% or less of the resin constituting the adhesive layer.
- additives such as leveling agents, ultraviolet absorbers, antioxidants, antistatic agents, pigments, dyes, etc. are added in addition to the above-mentioned resins within the range not impairing the function of the functional layer described later. May be.
- another function may be imparted to the adhesive layer by adding an additive.
- a function as a light diffusing plate or a function as a transmission screen can be imparted by including a light diffusing agent in the adhesive layer.
- the adhesive layer is cured by heating and / or irradiating the above-mentioned thermosetting resin or ionizing radiation curable paint.
- Curing here refers to the change from the state of a paint having fluidity at room temperature to the state of losing fluidity, and the degree of curing may vary. The degree of curing can be adjusted by the dose.
- the thickness of the adhesive layer after curing is preferably 1 to 50 ⁇ m.
- the lower limit of the adhesive layer is further preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, particularly preferably 10 ⁇ m or more, and the upper limit is further preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
- the reason why the thickness is 50 ⁇ m or less is that even if the thickness is 50 ⁇ m or more, the effect of strengthening the waist due to the thickness cannot be obtained so much and the thickness of the functional laminate becomes too thick.
- the irradiation amount of the ionizing radiation with respect to a plastic film increases by making the thickness of an adhesion layer thick, it will also cause deterioration of a plastic film.
- the cured adhesive layer has a Martens hardness of 260 N / mm 2 or less, preferably 200 N / mm 2 or less, particularly preferably 100 N / mm 2 or less.
- Martens hardness represents the hardness (hardness of dent) of the adhesive layer obtained from the test load and the indentation surface area when the surface of the adhesive layer is pushed with a Vickers indenter, and is an index of the hardness of the adhesive layer. .
- the Martens hardness is a value measured by a method according to ISO-14477-1 in an atmosphere of a temperature of 20 ° C. and a relative humidity of 60%.
- the Martens hardness of the adhesive layer By setting the Martens hardness of the adhesive layer to 260 N / mm 2 or less, it is possible to prevent the floating or peeling between the plastic film and the functional layer and the adhesive layer when performing the die cutting process. The reason is that when the Martens hardness is greater than 260 N / mm 2 , a large force is required to cut the plastic film with a blade, and the repulsive force of the plastic film becomes too large. This is thought to be because floating or peeling occurs between the adhesive layer.
- the lower limit of the Martens hardness is preferably 1 N / mm 2 or more, more preferably 2 N / mm 2 or more.
- the blending of monomers and oligomers constituting the resin used in the adhesive layer As a method of setting the Martens hardness of the adhesive layer to 260 N / mm 2 or less, the blending of monomers and oligomers constituting the resin used in the adhesive layer, the blending of resins and additives used in the adhesive layer (resins having different Martens hardnesses) And the like, and the addition of thermoplastic resins).
- an acrylate monomer having a hydroxy group or an amino group is preferably used as the photopolymerizable monomer. Adhesive strength can be increased by using an acrylate monomer having a hydroxy group or an amino group, and Martens hardness can be adjusted by adjusting the amount thereof.
- hydroxy group acrylates such as hydroxyethyl acrylate, hydroxypropyl acrylate, 2-hydroxybutyl acrylate, and 4-hydroxybutyl acrylate
- hydroxy group methacrylates such as hydroxyethyl methacrylate, hydroxypropyl methacrylate, and 2-hydroxybutyl methacrylate
- acrylamide such as dimethylolacrylamide, dimethylaminopropyl acrylamide, diethyl acrylamide and hydroxyethyl acrylamide, and dimethylaminoethyl acrylate and acryloylmorpholine.
- the Martens hardness can be adjusted by adding a thermoplastic resin or by increasing or decreasing the irradiation amount of ionizing radiation when the adhesive layer is cured.
- the adhesive strength of the adhesive layer it is preferable to have an appropriate adhesive strength that does not easily peel between the functional layer and the adhesive layer or between the plastic film and the adhesive layer after the adhesive layer is cured.
- the repulsive force of the plastic film causes floating or peeling when performing the die-cutting process, and the adhesive layer has an adhesive force even if it does not peel easily. This is because even small ones may float or peel off due to the repulsive force of the plastic film during die cutting.
- the adhesive force between the plastic film or the functional layer and the adhesive layer is preferably 5 N / 25 mm width or more, and more preferably 10 N / 25 mm width or more. Moreover, it is more preferable that it is 15 N / 25 mm width or more which is difficult to peel off.
- Adhesive strength can be adjusted by adjusting the types of monomers and oligomers constituting the resin used in the adhesive layer and by adjusting the resin composition.
- the pencil hardness (JIS-K5600-5-4: 1999) of the adhesive layer is preferably HB or more from the viewpoint of waist.
- the functional layer is provided between the plastic film and the plastic film constituting the laminate (first embodiment), and is provided as the outermost surface layer of the laminate (second embodiment). ), And further described in order according to the configuration (third embodiment) of the transparent conductive laminate for touch panel.
- the functional laminated board of 1st embodiment has a functional layer in at least one between a plastic film and a plastic film. Specific examples thereof are shown in FIGS. 1 and 2 show the case of two plastic films, and FIGS. 3 and 4 show the case of three plastic films.
- the position of the functional layer 13 in the laminate 1 varies depending on the purpose and forming method of the functional layer, but may be between the plastic film 11 and the adhesive layer 12 as shown in FIGS. 2 or between the adhesive layers 12 as shown in FIG.
- the functional layer since the functional layer is present inside the laminate, the functional layer can be prevented from being damaged and the durability can be improved.
- Examples of the functional layer of this embodiment include a layer having a function selected from an electromagnetic wave shielding function, a heat ray reflecting function, a gas barrier function, and a planar heat generating function.
- the electromagnetic wave shielding functional layer can be formed by providing a conductive material in a lattice shape or by providing a conductive layer over one surface.
- the conductive grid pattern has a pitch of about 40 to 250 mesh [number of grids per inch (25.4 mm)], and the line width of the grid is preferably 100 ⁇ m or less, more preferably 50 pitches. 200 mesh and the line width of the lattice is 70 ⁇ m or less. If the pitch of the grid exceeds 250 mesh, the visible light transmittance tends to decrease, whereas if it is less than 40 mesh, the grid pattern tends to be noticeable. On the other hand, when the line width of the grating exceeds 100 ⁇ m, the grating tends to be easily noticeable.
- Conductive grid pattern is made by bonding conductive mesh to plastic film, applying / drying / curing conductive paste on plastic film, or forming metal in grid pattern by plating or etching. Etc. can be provided.
- the conductive layer can be provided by applying, drying and curing a conductive paste on a plastic film, bonding a metal foil to the plastic film, sputtering or vapor-depositing a metal or metal oxide on the plastic film, etc. .
- the conductive layer is preferably one in which metal layers and dielectric layers are alternately laminated, or one in which high refractive index material layers and low refractive index material layers are alternately laminated. Such a conductive layer can improve transparency.
- the electromagnetic wave shielding functional layer there is a means for applying and drying a metal fine particle solution that self-assembles into a plastic film, and this means that an irregular mesh pattern can be formed. Can be prevented.
- the metal fine particle solution that self-assembles for example, the materials described in JP-T-2008-546165 can be used.
- the heat ray reflective functional layer is composed of at least a metal layer. Since a heat ray reflective functional layer can make transparency favorable, it is preferable to set it as the structure which laminated
- the metal layer can be made of a metal such as gold, silver, copper, aluminum, nickel, palladium, tin or an alloy thereof, and in particular, a thin film using silver or an alloy thereof that hardly absorbs visible light. Is preferred.
- a metal layer is formed using a vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a thermal CVD method, a plasma CVD method, a photo CVD method, or a plating method. be able to.
- Dielectric layers include titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, niobium oxide, indium tin oxide (ITO), titanium nitride, silicon oxynitride, silicon nitride, etc. These metal oxides and metal nitrides can be used. Such dielectric layers can be formed by vapor deposition methods such as vacuum deposition, sputtering, ion plating, thermal CVD, plasma CVD, and photo CVD, as well as coating methods such as sol-gel. Can be used to form a film.
- the gas barrier functional layer may be an inorganic thin film or a resin layer.
- Examples of the inorganic substance constituting the inorganic thin film include inorganic substances such as silicon, aluminum, titanium, selenium, magnesium, barium, zinc, tin, indium, calcium, tantalum, zirconium, thorium, thallium, etc., or a single or a mixture of halides.
- examples thereof include ceramics such as metal compounds and glass.
- organic substances constituting the resin layer include vinylidene chloride-vinyl chloride copolymer, vinylidene chloride-acrylonitrile copolymer, vinylidene chloride-acrylic copolymer, biaxially stretched polypropylene (OPP), unstretched polypropylene (CPP), and cyclic.
- organic substances constituting the resin layer include vinylidene chloride-vinyl chloride copolymer, vinylidene chloride-acrylonitrile copolymer, vinylidene chloride-acrylic copolymer, biaxially stretched polypropylene (OPP), unstretched polypropylene (CPP), and cyclic.
- synthetic resins such as polyolefin, polychlorotrifluoroethylene (PCTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
- planar heat generating functional layer examples include a conductive circuit serving as a heat generating element and a copper wire, and a heat generating layer obtained by dispersing conductive powder such as carbon in a binder resin such as synthetic rubber.
- Electrodes are connected to the conductive circuit, copper wire, and heat generating layer that will be the planar heat generating functional layer, and the conductive circuit, copper wire, and heat generating layer are sandwiched between insulating layers such as plastic films and adhesive layers.
- the conductive circuit can be formed by a known method such as etching after attaching a metal foil on a plastic film, depositing a metal, sputtering a metal, or printing a conductive paste.
- the functional laminate of the present embodiment may be provided with an outermost layer, a layer printed between the layers (printing layer), and other layers.
- the printed layer is formed for the purpose of hiding the structure existing on the lower side of the functional laminate or displaying necessary information depending on the application in which the functional laminate of the present embodiment is used. Yes, it may be printed directly on frames, characters, ruled lines, patterns, etc. on plastic film that constitutes the laminate, or printed on materials such as printable film, paper, etc. Good.
- the functional laminate of the present embodiment includes a plastic film provided with a functional layer and a plastic film bonded together via an adhesive layer, a plastic film provided with an adhesive layer and a functional layer in sequence, and a plastic film provided with an adhesive layer And a plastic film, a functional layer (when it can be handled alone) and a plastic film are bonded together via an adhesive layer.
- the adhesive layer can be formed by dissolving or dispersing the thermosetting resin or ionizing radiation curable resin components in an appropriate solvent to prepare a coating solution, or mixing the adhesive layer components without using a solvent.
- the coating solution is adjusted by adjusting the coating solution, and the coating solution is applied onto a plastic film by a known method such as a roll coating method, a bar coating method, a spray coating method, or an air knife coating method.
- a known method such as a roll coating method, a bar coating method, a spray coating method, or an air knife coating method.
- heating or ionizing radiation irradiation may be used.
- the dose of ionizing radiation is about 500 to 1500 mJ.
- the functional laminate of this embodiment can be die-cut into a desired shape depending on the application.
- the die cutting process can be performed by a conventionally known method using, for example, a die cutter using a Thomson blade die (Bik blade die).
- the functional laminate of this embodiment can be used as a surface protection plate for liquid crystal display devices, plasma display devices, EL display devices, etc., when the functional layer has an electromagnetic wave shielding function. Further, when the functional layer has a heat ray reflecting function, it can be used by being fitted into a frame (for example, a screen door frame) and installed on a window rail. When the functional layer has a gas barrier function, it can be assembled into a box shape and used as a gas barrier case. Further, when the functional layer has a planar heating function, it can be fitted into a frame and used as a thin heater.
- the functional laminate of the second embodiment has a functional layer on at least one surface of the outermost plastic film. Examples thereof are shown in FIGS. 5 and 6 show a case where the functional layer 13 is provided on one outermost surface of the functional laminate 1, and FIG. 7 shows a case where both the outermost surfaces of the functional laminate 1 are provided.
- the functional layer 13 may be provided inside the laminate as shown in FIG. 5 to 7 show a laminated plate composed of two plastic films 11, but as shown in FIGS. 3 and 4 shown in the first embodiment, three laminated plates or It is also possible to configure with a plastic film larger than that. It is also possible to adhere the functional layer to the uppermost plastic film via the adhesive layer 12.
- Examples of the functional layer of the present embodiment include a layer having a function selected from a light reflection function, a light transmission adjustment function, and an antifogging function.
- the light reflection functional layer may be any layer that can reflect light (including infrared rays), and examples thereof include a white layer and a metal thin film layer.
- a foamed white film a white resin layer to which a white pigment such as titanium dioxide or barium sulfate is added can be used.
- the metal thin film layer is laminated by a physical vapor deposition method (PVD).
- PVD physical vapor deposition method
- a metal such as silver or aluminum that can be formed by a vacuum vapor deposition method, an ion plating method, a sputtering method, an ion beam vapor deposition method, or the like.
- a thin film or the like can be used.
- the thickness of the metal thin film layer is preferably 50 nm or more and 1000 nm or less, and more preferably 80 nm or more and 300 nm or less.
- other similar light reflecting functional layers and other functional layers are provided on the surface on which the light reflecting functional layer is not provided (the surface on which the adhesive layer is provided or one surface of another plastic film).
- a light reflecting function layer is provided, or in order to absorb light that is not reflected by the light reflecting function layer, black or the like can be used.
- a colored resin layer can also be provided. Further, by providing a light diffusing function on another surface, it can be used as a reflective screen.
- the light reflection preventing functional layer and the light reflecting functional layer, it is possible to transmit visible light and reflect infrared light.
- the light reflection preventing functional layer may be any layer that can prevent reflection of light, and examples thereof include a refractive index adjustment layer and an unevenness imparting layer.
- the refractive index adjustment layer is a multi-layered film with different refractive indexes or a single layer film with a low refractive index or a high refractive index, and reflects light reflected at the interface of air, plastic film, refractive index adjustment layer, etc. It is a layer for preventing or reducing the occurrence.
- a binder resin is appropriately selected, a resin layer obtained by adding a pigment to the binder resin, a metal thin film layer, or the like can be used.
- the pigment for adjusting the refractive index for example, silicon oxide, aluminum oxide, antimony oxide, tin oxide, titanium oxide, zirconium oxide, tantalum oxide and the like can be used.
- the average particle diameter of the pigment is preferably 0.1 ⁇ m or less. By setting the average particle size to 0.1 ⁇ m or less, irregular reflection of light from the refractive index adjusting layer can be prevented, and a decrease in transparency can be prevented.
- Metals used for the refractive index adjustment layer include metal oxides such as titanium oxide, tantalum oxide, zirconium oxide, zinc oxide, tin oxide, silicon oxide, indium oxide, titanium oxynitride, titanium nitride, silicon oxynitride, and silicon nitride. Alternatively, metal nitride can be used. Such a metal thin film can be provided in the same manner as the metal thin film layer of the light reflection functional layer.
- the unevenness imparting layer can prevent reflection on the surface of the plastic film by being provided on the outermost surface of the functional laminate.
- corrugated provision layer can be provided by forming with a binder resin and a pigment, or giving a blasting process etc. to a plastic film.
- the anti-fogging functional layer is a layer for preventing fogging due to water droplets.
- Examples of such an antifogging functional layer include a hydrophilic layer and a water repellent layer.
- the main chain structure of the hydrophilic polymer is not particularly limited.
- Preferred main chain structures include acrylic resin, methacrylic resin, polyvinyl acetal resin, polyurethane resin, polyurea resin, polyimide resin, polyamide resin, epoxy resin, polystyrene resin, novolac type phenol resin, polyester resin, cellulose, amylose, Examples include natural cyclic polymer resins such as chitosan, synthetic rubber, natural rubber and the like, and acrylic resin and methacrylic resin are particularly preferable.
- the hydrophilic polymer may be a copolymer.
- the hydrophilic group is preferably a carboxyl group, an alkali metal salt of a carboxyl group, a sulfonic acid group, an alkali metal salt of a sulfonic acid group, a hydroxyl group, an amide group, a carbamoyl group, a sulfonamide group, a sulfamoyl group, or a functional group.
- These groups may be present at any position in the polymer.
- the hydrophilic layer is made of anatase-type titanium oxide, rutile-type titanium oxide, brookite-type titanium oxide, zinc oxide, tin oxide, ferric oxide, dibismuth trioxide, tungsten trioxide having a photocatalytic function in an inorganic binder, What mixed strontium titanate etc. may be used.
- the contact angle of such a hydrophilic layer with respect to water is preferably 20 ° or less. Moreover, it is preferable to give an unevenness
- acrylic resin epoxy resin, silicone resin, fluorine resin, etc.
- hydrophobic group phenyl group, alkyl group, fluoroalkyl group, acetoxy group, oxime group, methoxy group Amide group, propenoxy group, methyl group and the like.
- the water contact angle of the water repellent layer is preferably 90 ° or more.
- the anti-fogging functional layer can have a laminated structure of a hydrophilic layer and a porous water-repellent layer.
- a porous water-repellent layer By providing a porous water-repellent layer on the hydrophilic layer in this way, the hydrophilic layer is positioned on the outermost surface even when the hydrophilic layer contains water and adhesiveness is expressed on the surface of the hydrophilic layer. Therefore, when there is no problem due to adhesiveness, or when water droplets adhere to the surface of the water repellent layer, the water droplets can easily permeate from the pores of the water repellent layer into the hydrophilic layer, and the water droplets remain on the surface of the antifogging functional layer. Therefore, the antifogging effect is improved.
- the functional laminate of this embodiment may also be provided with an outermost layer, a layer printed between the layers (printing layer), and other layers, as in the first embodiment.
- the laminate of the present embodiment is produced by bonding at least two or more plastic films through an adhesive layer.
- an adhesive layer is formed on one plastic film, the other plastic film is bonded to the coated surface, and then the adhesive layer is cured by heating or irradiation with ionizing radiation.
- a method for forming the adhesive layer the same method as in the first embodiment can be employed.
- a coating solution containing the material constituting the functional layer is applied onto a plastic film by a known method such as a roll coating method, a bar coating method, a spray coating method, or an air knife coating method. Depending on the condition, it can be formed by heating or irradiation with ionizing radiation.
- additives such as a leveling agent, an ultraviolet absorber and an antioxidant may be added.
- the laminated plate of this embodiment is a material suitable for the surface protection plate of the display device, but can also be used for applications other than the surface protection plate, and can be die-cut into a desired shape depending on the application. .
- the die cutting process can be performed by a conventionally known method using, for example, a die cutter using a Thomson blade die (Bik blade die), and the same effect can be obtained.
- the functional laminate of this embodiment can be used as a surface protection plate for liquid crystal display devices, plasma display devices, EL display devices, etc., when the functional layer has a light reflection function and a light transmission adjustment function. Moreover, when it is set as a metal thin film layer as a light reflection functional layer, it can also be used as a mirror which does not break. Further, when the functional layer has an anti-fogging function, it can be used by being fitted into a frame (for example, a screen door frame) and installed on a window rail. Moreover, it can be assembled into a machine box and used as an anti-fogging case.
- a frame for example, a screen door frame
- the third embodiment is a transparent conductive laminate for a touch panel, and a transparent conductive layer is provided on at least one surface of the transparent laminate. Specific examples thereof are shown in FIGS.
- FIG. 8 shows a transparent conductive laminate 6 for a touch panel having a transparent conductive layer 2 on one surface of the transparent laminate 10.
- the upper electrode or the lower electrode of the resistive touch panel or the surface type capacitive touch panel is shown. It can be used as a member.
- FIG. 9 shows a transparent conductive laminate 6 for a touch panel having a transparent conductive layer 2 on both sides of a transparent laminate 10, a projection type capacitive touch panel, or a surface type capacitive type having an electromagnetic shielding function. It can be used as a touch panel.
- FIG. 10 shows a transparent conductive laminate 6 for a touch panel having two transparent conductive layers 2 on one side of the transparent laminate 10 with an insulating layer 3 interposed therebetween, and can be used as a projected capacitive touch panel. .
- the transparent conductive layer generally known transparent conductive materials can be used.
- a transparent conductive material such as indium oxide, tin oxide, indium tin oxide (ITO), gold, silver, or palladium can be used. These can be formed on one side or both sides of the laminate by a vacuum deposition method, a sputtering method, an ion plating method, a solution coating method, or the like. Further, it is possible to form a transparent conductive layer using an organic conductive material.
- the thickness of the transparent conductive layer varies depending on the applied material, it cannot be generally stated, but the thickness is such that the surface resistivity is 1000 ⁇ or less, preferably 500 ⁇ or less. In consideration of economic efficiency, a range of 10 nm or more, preferably 20 nm or more and 80 nm or less, preferably 70 nm or less is suitable.
- the transparent conductive layer forms a pattern by etching or the like as necessary.
- one transparent conductive layer is formed from an X electrode that recognizes the X coordinate
- the other transparent conductive layer is It is formed from a Y electrode that recognizes the Y coordinate.
- the conductive layer is formed in a long and narrow strip shape with an interval. When incorporated in the touch panel, the strip directions of the upper electrode and the lower electrode are arranged so as to be orthogonal.
- a refractive index adjustment layer between the plastic film and the transparent conductive layer.
- a refractive index adjustment layer formed of a material close to the refractive index of the material constituting the electrode between the plastic film and the transparent conductive layer.
- the transparent conductive laminate for touch panel of the present invention is produced by laminating at least two plastic films through an adhesive layer.
- an adhesive layer is formed on one plastic film, the other plastic film is bonded to the coated surface, and then the adhesive layer is cured by heating or irradiation with ionizing radiation.
- the same method as in the first and second embodiments can be adopted.
- the timing for forming the transparent conductive layer may be before or after the plastic films are bonded together.
- the transparent conductive laminate for touch panel preferably has a hard coat layer between the side not having the transparent conductive layer and between the plastic film and the transparent conductive layer.
- a hard coat layer By having a hard coat layer, it is possible to further strengthen the waist and make it difficult to scratch.
- the hard coat layer is preferably formed from a thermosetting resin or an ionizing radiation curable resin, and the thickness is preferably 2 to 15 ⁇ m from the viewpoint of die cutting treatment.
- a protective film on the transparent conductive layer from the viewpoint of preventing damage.
- the protective film include an inorganic thin film formed by sputtering an inorganic oxide such as silica. Such an inorganic thin film can also be used as the insulating layer 3 shown in FIG.
- the transparent conductive laminate for touch panel of the present embodiment can be die-cut into a desired shape depending on the application, and the same effect can be obtained. That is, there is no cracking at the time of punching, and no peeling or floating occurs at the interface between the plastic film and the adhesive layer.
- the touch panel of the present invention is characterized by using the above-described transparent conductive laminate for a touch panel.
- Main touch panels include a capacitive touch panel and a resistive touch panel, and the present invention can be applied to both.
- an appropriate transparent conductive laminate is selected and used.
- each type of touch panel will be described.
- the capacitive touch panel can be divided into a surface type (Surface Capacitive) and a projected type (Projected Capacitive).
- FIG. 11 shows an embodiment of the surface-type capacitive touch panel 20.
- a transparent conductive laminate 6 having a transparent conductive layer 2 and a protective layer 4 on one surface of a transparent substrate (transparent laminate) 10 and an electromagnetic wave shielding layer 5 on the other surface.
- the transparent substrate 10 is a transparent laminated plate in which two plastic films 11 are laminated via an adhesive layer 12.
- the basic circuit is generally a constant voltage circuit that uses a sine wave as a drive signal and allows a very weak current to flow through the transparent conductive layer at the same time.
- the panel When a person is not touching, the panel has almost the same potential at the four corners, so almost no current flows through the panel.
- the current flowing on the panel changes depending on the human body capacity. The amount of current change at that time is inversely proportional to the distance from the four corners to the touch point. Then, the current is converted into voltage to determine the coordinates.
- FIG. 12 shows an embodiment of the configuration of the projected capacitive touch panel 20.
- the illustrated touch panel has a configuration in which the transparent conductive layer 2 and the protective layer 4 are provided on one surface of the transparent substrate 10 and the transparent conductive layer 2, the lead electrode wire 7 and the protective layer 4 are provided on the other surface.
- the transparent substrate 10 is a transparent laminated plate in which two plastic films 11 are laminated via an adhesive layer 12.
- the transparent conductive laminate 6 can be changed to the transparent conductive laminate 6 shown in FIG. 9 or FIG.
- one transparent conductive layer is formed from an X electrode that recognizes an X coordinate
- the other transparent conductive layer is formed from a Y electrode that recognizes a Y coordinate.
- the coordinates of the touch point are determined by detecting a voltage change between the XY electrodes caused by the finger approaching.
- the resistive film type touch panel is arranged through a spacer so that the transparent conductive layers of the upper electrode and the lower electrode having a transparent conductive layer on a transparent base material face each other.
- the illustrated touch panel includes a transparent conductive layer 2 on one surface of the transparent substrate 10, an upper electrode having the hard coat layer 9 on the other surface, and a lower electrode having the transparent conductive layer 2 on one surface of the transparent substrate 10.
- a transparent conductive layer 2 on one surface of the transparent substrate 10 an upper electrode having the hard coat layer 9 on the other surface
- a lower electrode having the transparent conductive layer 2 on one surface of the transparent substrate 10. Are arranged via a spacer 8 so that the transparent conductive layers 2 of the upper electrode and the lower electrode face each other.
- the coordinates of the touch point are determined according to the voltage value when the upper electrode and the lower electrode of the touch point are in contact with each other and energized.
- the strip directions of the upper electrode and the lower electrode are arranged to be orthogonal to each other.
- the structure of the touch panel of the present invention described above is the same as that of a conventional capacitive or resistive touch panel.
- at least two transparent plastic films as the transparent base material have a Martens hardness of 260 N / mm.
- the touch panel has a low waist and a feeling of pressing (touched feeling), and is free from the risk of glass scattering during handling.
- Example 1 On one surface of a transparent polyester film A (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m, a titanium oxide layer (dielectric layer: first layer) having a thickness of 15 nm is provided, and a silver layer (metal) having a thickness of 12 nm is formed thereon. Layer: second layer), and a titanium oxide layer (dielectric layer: third layer) having a thickness of 25 nm was further provided thereon to form a heat ray reflective layer. Note that all the three layers were formed by a sputtering method under vacuum (5 ⁇ 100 ⁇ 5 torr). Moreover, since the said heat ray reflective layer has a silver layer, it had an electromagnetic wave shielding function.
- a hard coat layer coating solution having the following composition is applied by a bar coating method so as to have a thickness of 5 ⁇ m, irradiated with ultraviolet rays, and heat ray reflected.
- a transparent polyester film having a layer and a hard coat layer was produced.
- an adhesive layer coating solution S1 having the following composition was applied on the heat ray reflective layer of the transparent polyester film A by a bar coating method so as to have a thickness of 10 ⁇ m.
- a transparent poster film B (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m was bonded onto the adhesive layer, and irradiated with ultraviolet rays to produce the functional laminate of Example 1.
- Example 2 A functional laminate of Example 2 was produced in the same manner as in Example 1 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S2.
- ⁇ Adhesive layer coating solution S2> ⁇ Ionizing radiation curable resin 30 parts (NK Oligo U-200PA: Shin-Nakamura Chemical Co., Ltd.) ⁇ Ionizing radiation curable resin 30 parts (Aronix M-6100: Toagosei Co., Ltd.) ⁇ Hydroxyethyl methacrylate 40 parts ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Example 3 A functional laminate of Example 3 was produced in the same manner as in Example 1 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S3.
- ⁇ Adhesive layer coating solution S3> ⁇ Ionizing radiation curable resin 30 parts (KAYARAD R-115: Nippon Kayaku) ⁇ Ionizing radiation curable resin 30 parts (Aronix M-6100: Toagosei Co., Ltd.) ⁇ Hydroxyethyl methacrylate 40 parts ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Example 4 A functional laminate of Example 4 was produced in the same manner as in Example 1 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S4.
- ⁇ Adhesive layer coating solution S4> ⁇ Ionizing radiation curable resin 60 parts (KAYARAD R-115: Nippon Kayaku) ⁇ Hydroxyethyl methacrylate 40 parts ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Example 5 A functional laminate of Example 5 was produced in the same manner as in Example 1 except that the transparent polyester film A and the transparent polyester film B were both changed to a polyester film having a thickness of 250 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.). .
- Example 6 A functional laminate of Example 6 was produced in the same manner as in Example 1 except that the transparent polyester film A and the transparent polyester film B were both changed to a 100 ⁇ m thick polyester film (Cosmo Shine A4300: Toyobo Co., Ltd.). .
- Example 7 A polyester film having a heat ray reflective layer and a hard coat layer was produced in the same manner as in Example 1 using a transparent polyester film C (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 250 ⁇ m instead of the transparent polyester film A.
- the same adhesive layer coating solution S1 as in Example 1 was applied to one surface of the heat ray reflective layer side of the polyester film and a transparent polyester film D (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m, respectively. It was applied by a bar coating method so as to have a thickness of 10 ⁇ m, and two adhesive films were obtained.
- Example 8 A functional laminate of Example 8 was produced in the same manner as in Example 7 except that the transparent polyester film D was changed to a transparent polyester film having a thickness of 250 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.).
- Example 9 The functional layered laminate of Example 9 was used in the same manner as in Example 1 except that the adhesive layer coating solution was replaced with the following adhesive layer coating solution S5, the adhesive layer coating solution was applied and dried, and then bonded and UV-irradiated. A plate was made.
- Comparative Example 1 A functional laminate of Comparative Example 1 was produced in the same manner as in Example 1 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S6.
- Adhesive layer coating solution S6> ⁇ Ionizing radiation curable resin 50 parts (KAYARAD R-115: Nippon Kayaku) ⁇ Ionizing radiation curable resin 30 parts (NK Ester A-TMM-3N: Shin-Nakamura Chemical Co., Ltd.) ⁇ 20 parts of photopolymerizable monomer (ACMO: Kojinsha) ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Comparative Example 2 A functional laminate of Comparative Example 2 was produced in the same manner as in Example 1 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S7.
- Comparative Example 3 A functional laminate of Comparative Example 3 was produced in the same manner as in Example 1 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S8.
- Adhesive layer coating solution S8> ⁇ Ionizing radiation curable resin 100 parts (NK Ester A-TMM-3N: Shin-Nakamura Chemical Co., Ltd.) ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Comparative Example 4 A functional laminate of Comparative Example 4 was produced in the same manner as in Example 1 except that the adhesive layer coating solution was changed to the following intermediate layer coating solution S9.
- Intermediate layer coating solution S9 ⁇ 90 parts of ionizing radiation curable resin (NK Oligo U15-HA: Shin-Nakamura Chemical Co., Ltd.) ⁇ Butyl acrylate 10 parts ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- a titanium oxide layer (dielectric layer: first layer) having a thickness of 15 nm is provided on one surface of a transparent polyester film (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 250 ⁇ m, and a silver layer (metal layer) having a thickness of 12 nm is formed thereon. : A second layer), and a titanium oxide layer (dielectric layer: third layer) having a thickness of 25 nm was further provided thereon to form a heat ray reflective layer.
- the above three layers were all formed by sputtering under vacuum (5 ⁇ 10 ⁇ 5 torr).
- a hard coat layer coating solution having the following composition is applied to the surface opposite to the heat ray reflective layer by a bar coating method so as to have a thickness of 5 ⁇ m, and irradiated with ultraviolet rays.
- ⁇ Hard coat layer coating solution> ⁇ 58 parts of ionizing radiation curable resin (Diabeam UR6530: Mitsubishi Rayon) ⁇ 1.8 parts of photopolymerization initiator (Irgacure 651 Ciba Japan) ⁇ Methyl ethyl ketone 80 parts ⁇ Toluene 60 parts ⁇ Ethyl cellosolve 7 parts
- Comparative Example 6 A functional film of Comparative Example 6 was produced in the same manner as Comparative Example 5 except that the transparent polyester film was changed to a transparent polyester film having a thickness of 188 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.).
- the adhesive layer coating solutions S1 to S9 of Examples 1 to 9 and Comparative Examples 1 to 4 are applied to a transparent polyester film F (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m so that the thickness becomes 10 ⁇ m.
- a transparent polyester film F Cosmo Shine A4300: Toyobo Co., Ltd.
- a release film is bonded onto the adhesive layer, irradiated with ultraviolet rays (irradiation amount: 1000 mJ), the adhesive layer is cured, the release film is peeled off from the adhesive layer, and the hardness of the surface of the adhesive layer after curing is cured.
- polyester film having the hard coat layer of the functional laminate and the other members constituting the laminate are peeled left and right at a peel rate of 100 mm / min in the same manner as in the T-type peel test. It was measured. The case where the force required for peeling was 10 N / 2 mm width or more was indicated as “ ⁇ ”, and the case where the force required for peeling was less than 10 N / 2 mm width was indicated as “X”.
- Waist “ ⁇ ” indicates that the finger does not bend when touched, “ ⁇ ” indicates that the finger is slightly bent when touched, and “x” indicates that the finger bends greatly when touched.
- surface has shown the thickness as a base material which does not include the thickness of a hard-coat layer or another functional layer (the same is true of Table 2 and Table 3).
- the functional laminates of Examples 1 to 9 have a Martens hardness of 260 N / mm 2 or less, it is possible to prevent floating and peeling when the die cutting process is performed. I was able to.
- the thickness of the plastic film + adhesive layer was in the range of 250 ⁇ m to 700 ⁇ m, and the waist was sufficient.
- the adhesive strength of the adhesive layer was 15 N / 25 mm width or more. For this reason, after performing the die cutting process, the two plastic films cannot be peeled off and are particularly firmly bonded.
- the thickness of the plastic film + adhesive layer is thinner than that of Example 1. Since the total thickness (210 ⁇ m) is relatively thin, the functional laminate of Example 6 was slightly bent when touched with a finger, but the strength of the waist was one piece of plastic thicker than that (Comparative Example) 5: 250 ⁇ m), indicating that it is stronger than one plastic film having the same thickness.
- the thickness of the plastic film + adhesive layer is thicker than that of Example 1. Because of the thick thickness, the waist was very sufficient. However, since the total thickness was large, a greater force was required for die cutting than the functional laminates of Examples 1 to 6.
- the Martens hardness of the intermediate layer provided in place of the adhesive layer was greater than 260 N / mm 2 , and the adhesive strength of the two plastic films was less than 10 N / 25 mm width. For this reason, since the adhesiveness between the plastic film and the adhesive layer was poor and the plastic film was easily peeled off, the repulsive force of the plastic film could not be suppressed during the punching process, and floating or peeling occurred.
- the functional films of Comparative Examples 5 to 6 are obtained by providing a heat ray reflective layer and a hard coat layer on a single plastic film. Since two or more plastic films were not laminated and the thickness of the plastic film was thin, sufficient waist was not obtained.
- ⁇ Antireflection layer coating solution > ⁇ Silica sol 200 parts ⁇ Porous silica fine particle dispersion 100 parts (silica component: 5%, average particle size: 55 nm) ⁇ Isopropanol 350 parts ⁇ n-Butanol 350 parts
- a hard coat layer coating solution having the following composition was applied on one surface of a transparent polyester film B (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m by a bar coating method so as to have a thickness of 5 ⁇ m. Irradiated to produce a transparent polyester film having a hard coat layer.
- an adhesive layer coating solution S1 having the following composition was applied to the surface of the transparent polyester film A opposite to the antireflection layer by a bar coating method so as to have a thickness of 10 ⁇ m. Subsequently, the surface opposite to the hard coat layer of the transparent polyester film having the hard coat layer on the adhesive layer was bonded and irradiated with ultraviolet rays to produce the functional laminate of Example 10.
- Example 11 (Light reflection functional layer / coating) An adhesive layer coating solution S2 having the following composition was applied to both sides of a transparent polyester film A (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m by a bar coating method so as to have a thickness of 10 ⁇ m.
- a 75 ⁇ m foam white polyester film B (Lumirror E-60: Toray Industries, Inc.) and a 75 ⁇ m transparent polyester film C (Cosmo Shine A4300: Toyobo Co., Ltd.) are bonded to the other side and irradiated with ultraviolet rays from the transparent polyester film C side. Thus, a laminated plate was produced.
- barium sulfate B-55: Sakai Chemical Industry Co., Ltd.
- titanium dioxide Ti Pure R-700: DuPont Co., Ltd.
- sulfuric acid sulfuric acid in a weight ratio to urethane resin
- Barium: titanium dioxide: resin 21: 9: 5 was dispersed to prepare a white resin layer coating.
- This paint was applied to the surface (outermost surface) of the foamed white polyester film B and the transparent polyether film C located on the outermost surface of the laminate so that the dry coating thickness was 50 ⁇ m on one side, and the white resin layer (light reflecting layer) A functional laminate of Example 11 having a functional layer) was produced.
- Example 12 (Light reflecting layer / metal) An adhesive layer coating solution S3 having the following composition is applied to the surface of a transparent polyester film A (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m by a bar coating method so that the thickness becomes 10 ⁇ m.
- a 75 ⁇ m foam white polyester film B (Lumirror E-60: Toray Industries, Inc.) and a 75 ⁇ m transparent polyester film C (Cosmo Shine A4300: Toyobo Co., Ltd.) are bonded to the other surface and irradiated with ultraviolet rays from the transparent polyester film C side. A laminated plate was produced.
- Example 12 an aluminum layer having a thickness of 12 nm is formed on one surface of the transparent polyester film C of the laminate by sputtering under vacuum (5 ⁇ 10 ⁇ 5 torr) to form a metal layer (light reflection functional layer). Then, the functional laminate of Example 12 was produced.
- Example 13 (Anti-fogging function) Instead of the polyester film having the hard coat layer of Example 10, a polyester film having an antifogging layer was used, and the same procedure as in Example 10 was performed except that the adhesive layer coating solution was replaced with the following adhesive layer coating solution S4. The functional laminate of Example 13 was produced.
- a polyester film having an anti-fogging layer is coated on one side of a polyester film (Cosmo Shine A4300: Toyobo Co., Ltd.), dried so that the thickness after drying of the hydrophilic layer coating solution is 20 ⁇ m, the high-pressure mercury lamp was irradiated with ultraviolet rays to form a hydrophilic layer, on the hydrophilic layer, the surface protective layer coating solution 18 g / m 2 coating of the following formulation, dried by forming a surface protective layer Produced.
- a polyester film Cosmo Shine A4300: Toyobo Co., Ltd.
- Example 14 A functional laminate of Example 14 was prepared in the same manner as Example 10 except that the transparent polyester film A and the transparent polyester film B were both changed to a polyester film having a thickness of 250 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.). .
- Example 15 A functional laminate of Example 15 was produced in the same manner as in Example 10 except that the transparent polyester film A and the transparent polyester film B were both changed to a 100 ⁇ m thick polyester film (Cosmo Shine A4300: Toyobo Co., Ltd.). .
- Example 16 A polyester film having an antireflection layer was produced in the same manner as in Example 10 except that a transparent polyester film C (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 250 ⁇ m was used instead of the transparent polyester film A.
- an adhesive layer coating solution S1 similar to that in Example 10 was applied to one surface of a transparent polyester film D (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m by a bar coating method so as to have a thickness of 10 ⁇ m.
- the transparent polyester film C was bonded to the surface opposite to the antireflection layer.
- Example 10 a transparent polyester film having a hard coat layer on one surface of a transparent polyester film E (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 250 ⁇ m was prepared in the same manner as in Example 10.
- the adhesive layer coating solution S1 of Example 10 was applied by a bar coating method so as to have a thickness of 10 ⁇ m, and hard coat layer / film E / adhesive layer / film D / adhesion.
- the adhesive laminate was cured by bonding and ultraviolet irradiation so as to be layer / film C / antireflection layer, and a functional laminate of Example 16 was produced.
- Example 17 A functional laminate of Example 17 was produced in the same manner as in Example 16 except that the transparent polyester film D was changed to a transparent polyester film having a thickness of 250 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.).
- Example 18 The functional laminate of Example 18 was changed in the same manner as in Example 10 except that the adhesive layer coating solution was replaced with the following adhesive layer coating solution S5, the adhesive layer coating solution was applied and dried, and then bonded and UV-irradiated. A plate was made.
- Comparative Example 7 A functional laminate of Comparative Example 7 was produced in the same manner as in Example 10 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S6.
- Adhesive layer coating solution S6> ⁇ Ionizing radiation curable resin 50 parts (KAYARAD R-115: Nippon Kayaku) ⁇ Ionizing radiation curable resin 30 parts (NK Ester A-TMM-3N: Shin-Nakamura Chemical Co., Ltd.) ⁇ 20 parts of cationic photopolymerizable monomer (ACMO: Kojinsha) ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Comparative Example 8 A functional laminate of Comparative Example 8 was produced in the same manner as in Example 10 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S7.
- Comparative Example 9 A functional laminate of Comparative Example 9 was produced in the same manner as in Example 10 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S8.
- Adhesive layer coating solution S8> ⁇ Ionizing radiation curable resin 100 parts (NK Ester A-TMM-3N: Shin-Nakamura Chemical Co., Ltd.) ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Comparative Example 10 A functional laminate S9 of Comparative Example 10 was produced in the same manner as in Example 10 except that the adhesive layer coating solution was changed to the following intermediate layer coating solution S9.
- Intermediate layer coating solution > ⁇ 90 parts of ionizing radiation curable resin (NK Oligo U15-HA: Shin-Nakamura Chemical Co., Ltd.) ⁇ Butyl acrylate 10 parts ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Example 11 An antireflection layer having a thickness of 0.2 ⁇ m was formed on one surface of a transparent polyester film having a thickness of 250 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.) as in Example 10. Next, on the surface opposite to the antireflection layer, a hard coat layer similar to that in Example 10 was applied by a bar coating method so as to have a thickness of 5 ⁇ m, and irradiated with ultraviolet rays to produce a functional film of Comparative Example 11. did.
- Comparative Example 12 A functional film of Comparative Example 12 was produced in the same manner as Comparative Example 11 except that the transparent polyester film was changed to a transparent polyester film having a thickness of 188 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.).
- the functional laminates of Examples 10 to 18 have a Martens hardness of 260 N / mm 2 or less, it is possible to prevent floating and peeling when the die cutting process is performed. I was able to.
- the thickness of the plastic film + adhesive layer was in the range of 250 ⁇ m to 700 ⁇ m, and the waist was sufficient.
- the adhesive strength of the adhesive layer was 15 N / 25 mm width or more. For this reason, after performing the die cutting process, the two plastic films cannot be peeled off and are particularly firmly bonded.
- the thickness of the plastic film + adhesive layer is thinner than that of Example 10. Since the total thickness (210 ⁇ m) is relatively thin, the functional laminate of Example 15 was slightly bent when touched with a finger, but the waist strength was one piece of plastic thicker than that (Comparative Example) 11: 250 ⁇ m), indicating that it is stronger than one plastic film having the same thickness.
- the thickness of the plastic film + adhesive layer is thicker than that of Example 10. Because of the thick thickness, the waist was very sufficient. However, since the total thickness was large, a greater force was required for die cutting than the functional laminates of Examples 10 to 15.
- the Martens hardness of the intermediate layer provided in place of the adhesive layer was greater than 260 N / mm 2 , and the adhesive strength of the two plastic films was less than 10 N / 25 mm width. For this reason, since the adhesiveness between the plastic film and the adhesive layer was poor and the plastic film was easily peeled off, the repulsive force of the plastic film could not be suppressed during the punching process, and floating or peeling occurred.
- the functional films of Comparative Examples 11 and 12 are obtained by providing an antireflection layer and a hard coat layer on a single plastic film. Since two or more plastic films were not laminated and the thickness of the plastic film was thin, sufficient waist was not obtained.
- an adhesive layer coating solution S1 having the following composition was applied on the surface of the transparent polyester film A opposite to the hard coat layer by a bar coating method so as to have a thickness of 10 ⁇ m.
- a transparent poster film B (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m was bonded onto the adhesive layer and irradiated with ultraviolet rays to obtain a transparent laminate a.
- Example 20 A transparent laminate b was obtained in the same manner as in Example 19 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S2.
- Example 21 A transparent laminate c was obtained in the same manner as in Example 19 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S3.
- ⁇ Adhesive layer coating solution S3> ⁇ Ionizing radiation curable resin 30 parts (KAYARAD R-115: Nippon Kayaku) ⁇ Ionizing radiation curable resin 30 parts (Aronix M-6100: Toagosei Co., Ltd.) ⁇ Hydroxyethyl methacrylate 40 parts ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Example 22 A transparent laminate d was obtained in the same manner as in Example 19 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S4.
- ⁇ Adhesive layer coating solution S4> ⁇ Ionizing radiation curable resin 60 parts (KAYARAD R-115: Nippon Kayaku) ⁇ Hydroxyethyl methacrylate 40 parts ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Example 23 A transparent laminate e was obtained in the same manner as in Example 19 except that the transparent polyester film A and the transparent polyester film B were both changed to a polyester film having a thickness of 250 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.).
- Example 24 A transparent laminate f was obtained in the same manner as in Example 19 except that the transparent polyester film A and the transparent polyester film B were both changed to a 100 ⁇ m thick polyester film (Cosmo Shine A4300: Toyobo Co., Ltd.).
- Example 25 A polyester film having a hard coat layer was produced in the same manner as in Example 19 by using a transparent polyester film C (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 250 ⁇ m instead of the transparent polyester film A.
- the same adhesive layer coating solution S1 as in Example 19 was applied to the surface of the polyester film opposite to the hard coat layer and one surface of the transparent polyester film D (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 188 ⁇ m.
- the obtained two adhesive films and a transparent polyester film E (Cosmo Shine A4300: Toyobo Co., Ltd.) having a thickness of 250 ⁇ m were combined with a hard coat layer / film C / adhesive layer / film D / adhesive layer / film E. Then, the adhesive layer was cured by irradiating with ultraviolet rays to obtain a transparent laminate g.
- Example 26 A transparent laminate h was obtained in the same manner as in Example 25 except that the transparent polyester film D was changed to a transparent polyester film having a thickness of 250 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.).
- Example 27 The transparent laminate of Example 27, except that the adhesive layer coating solution was replaced with the following adhesive layer coating solution S5, the adhesive layer coating solution was applied and dried, then bonded and not irradiated with ultraviolet light. i was obtained.
- a transparent laminate j was obtained in the same manner as in Example 19 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S6.
- a transparent laminate k was obtained in the same manner as in Example 19 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S7.
- a transparent laminate 1 was obtained in the same manner as in Example 19 except that the adhesive layer coating solution was changed to the following adhesive layer coating solution S8.
- Adhesive layer coating solution S8> ⁇ Ionizing radiation curable resin 100 parts (NK Ester A-TMM-3N: Shin-Nakamura Chemical Co., Ltd.) ⁇ Photopolymerization initiator 5 parts (Irgacure 184: Ciba Japan)
- Comparative Example 18 A transparent film o was obtained in the same manner as in Comparative Example 17 except that the transparent polyester film was changed to a transparent polyester film having a thickness of 188 ⁇ m (Cosmo Shine A4300: Toyobo Co., Ltd.).
- ITO Indium tin oxide
- the transparent conductive laminates for touch panels of Examples 19 to 27 have a Martens hardness of 260 N / mm 2 or less, so that they do not float or peel off when the die cutting process is performed. could be prevented.
- the thickness of the plastic film + adhesive layer was in the range of 250 ⁇ m to 700 ⁇ m, and the waist was sufficient.
- the adhesive strength of the adhesive layer was 15 N / 25 mm width or more. For this reason, after performing the die cutting process, the two plastic films cannot be peeled off and are particularly firmly bonded.
- the thickness of the plastic film + adhesive layer is thinner than that of Example 19. Since the total thickness (210 ⁇ m) is relatively thin, the transparent conductive laminate for touch panel of Example 24 was slightly bent when touched with a finger, but the waist strength was one thicker plastic. (Comparative Example 17: 250 ⁇ m) It was shown that the waist was stronger than one plastic film having the same thickness.
- the transparent conductive laminates for touch panels of Examples 25 and 26 have a thicker plastic film + adhesive layer than that of Example 19. Because of the thick thickness, the waist was very sufficient. However, since the total thickness was thick, a greater force was required for die cutting than the transparent conductive laminates for touch panels of Examples 19 to 24.
- the transparent conductive laminates for touch panels of Comparative Examples 13 to 15 had a Martens hardness of greater than 260 N / mm 2 , and therefore floated or peeled off when the die cutting process was performed.
- the Martens hardness of the intermediate layer provided in place of the adhesive layer is larger than 260 N / mm 2 , and the adhesive strength of the two plastic films is less than 10 N / 25 mm width. there were. For this reason, since the adhesiveness between the plastic film and the adhesive layer was poor and the plastic film was easily peeled off, the repulsive force of the plastic film could not be suppressed during the punching process, and floating or peeling occurred.
- the functional films of Comparative Examples 17 and 18 are obtained by providing a heat ray reflective layer and a hard coat layer on a single plastic film. Since two or more plastic films were not laminated and the thickness of the plastic film was thin, sufficient waist was not obtained.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Laminated Bodies (AREA)
Abstract
Description
しかし、透明基材としてガラスを用いた場合、重量が重くなるとともに、破損の際に飛散してしまうという問題がある。この問題を解決するため、透明基材として十分な厚みあるプラスチック板を用いることが考えられる。
この場合も、型抜き加工時の上記問題を回避するために、あらかじめ所定サイズに形成された透明プラスチック板に透明導電層を形成することが考えられるが、この場合は作業性に劣るという問題がある。
すなわち、本発明のタッチパネルの第一の態様は、透明基材の少なくとも片面に透明導電層を有してなる透明導電性基材を備え、前記透明基材が、少なくとも2枚以上の透明プラスチックフィルムをマルテンス硬さ260N/mm2以下の接着層で貼り合せてなる透明積層板であることを特徴とする静電容量式タッチパネルである。
本発明の機能性積層板及びタッチパネル用透明導電性積層板(以下、特に区別しないときは、まとめて機能性積層板ともいう)は、共通する構造として、少なくとも2枚以上のプラスチックフィルムを接着層で貼り合わせた積層体構造を有している。まず各実施形態に共通する積層体の材料とその構成について説明する。
第一の実施形態の機能性積層板は、プラスチックフィルムとプラスチックフィルムとの間の少なくとも一つに機能層を有する。その具体例を図1~図4に示す。図1及び図2は、プラスチックフィルムが2枚の場合を、図3及び図4は、プラスチックフィルムが3枚の場合を示している。積層体1における機能層13の位置は、機能層の目的や形成手法によっても異なるが、図1や図3に示すようにプラスチックフィルム11と接着層12との間であってもよいし、図2や図4に示すように接着層12の間であってもよい。本実施形態の機能性積層板は、機能層が積層体の内部に存在するので、機能層の傷を防止し、耐久性を向上させることができる。
第二の実施形態の機能性積層板は、少なくとも最表面のプラスチックフィルムの一方の面に機能層を有する。その実施例を図5~図7に示す。図5及び図6は、機能層13が、機能性積層板1の一方の最表面に設けられる場合、図7は、機能性積層板1の最表面両面共に設けられる場合を示している。また最表面に設けられる機能層13とは別に、図6に示すように積層板の内部に、機能層13を設けてもよい。なお、図5~図7は、2枚のプラスチックフィルム11から構成される積層板を示しているが、第一の実施形態について示した図3、図4のように、積層板を3枚或いはそれ以上のプラスチックフィルムで構成することも可能である。また機能層を最上層のプラスチックフィルムに接着層12を介して接着することも可能である。
第三の実施形態は、タッチパネル用透明導電性積層板であり、透明積層板の少なくとも一方の面に透明導電層が設けられる。その具体例を図8~図10に示す。
[実施例1]
厚み188μmの透明ポリエステルフィルムA(コスモシャインA4300:東洋紡績社)の一方の面に、厚み15nmの酸化チタン層(誘電体層:第1層)を設け、その上に厚み12nmの銀層(金属層:第2層)を設け、さらにその上に厚み25nmの酸化チタン層(誘電体層:第3層)を設けて熱線反射層を形成した。なお、上記3層はいずれも真空下(5 ×100-5torr)でのスパッタリング法で形成した。また、上記熱線反射層は、銀層を有することから、電磁波シールド機能も兼ね備えるものであった。
・電離放射線硬化型樹脂 58部
(ダイヤビーム UR6530:三菱レイヨン社)
・光重合開始剤 1.8部
(イルガキュア 651:チバ・ジャパン社)
・メチルエチルケトン 80部
・トルエン 60部
・エチルセルソルブ 7部
・電離放射線硬化型樹脂 60部
(NKオリゴ U-200PA:新中村化学工業社)
・ヒドロキシエチルメタクリレート 35部
・2-ヒドロキシエチルアクリレート 5部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S2に代えた以外は、実施例1と同様にして実施例2の機能性積層板を作製した。
<接着層塗布液S2>
・電離放射線硬化型樹脂 30部
(NKオリゴ U-200PA:新中村化学工業社)
・電離放射線硬化型樹脂 30部
(アロニックス M-6100:東亞合成社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S3に代えた以外は、実施例1と同様にして実施例3の機能性積層板を作製した。
<接着層塗布液S3>
・電離放射線硬化型樹脂 30部
(KAYARAD R-115:日本化薬社)
・電離放射線硬化型樹脂 30部
(アロニックス M-6100:東亞合成社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S4に変更した以外は、実施例1と同様にして実施例4の機能性積層板を作製した。
<接着層塗布液S4>
・電離放射線硬化型樹脂 60部
(KAYARAD R-115:日本化薬社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
透明ポリエステルフィルムA及び透明ポリエステルフィルムBを何れも厚み250μmのポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例1と同様にして実施例5の機能性積層板を作製した。
透明ポリエステルフィルムA及び透明ポリエステルフィルムBを何れも厚み100μmのポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例1と同様にして実施例6の機能性積層板を作製した。
透明ポリエステルフィルムAの代わりに厚み250μmの透明ポリエステルフィルムC(コスモシャインA4300:東洋紡績社)を用いて、実施例1と同様にして熱線反射層およびハードコート層を有するポリエステルフィルムを作製した。次いで、当該ポリエステルフィルムの熱線反射層側の面、および厚み188μmの透明ポリエステルフィルムD(コスモシャインA4300:東洋紡績社)の一方の面に、実施例1と同様の接着層塗布液S1を、それぞれ厚みが10μmとなるようにバーコーティング法により塗布し、2枚の接着フィルムを得た。次いで、得られた2枚の接着フィルムと、厚み250μmの透明ポリエステルフィルムE(コスモシャインA4300:東洋紡績社)とを、ハードコート層/フィルムC/熱線反射層/接着層/フィルムD/接着層/フィルムEとなるように貼り合わせ、紫外線照射して接着層を硬化させ、実施例7の機能性積層板を作製した。
透明ポリエステルフィルムDを厚み250μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例7と同様にして実施例8の機能性積層板を作製した。
接着層塗布液を下記接着層塗布液S5に代え、接着層塗布液を塗布、乾燥した後、貼り合わせ、紫外線照射しなかった以外は、実施例1と同様にして実施例9の機能性積層板を作製した。
<接着層塗布液S5>
・熱硬化型樹脂 90部
(タケラック A-606:三井化学社)
・硬化剤 10部
(タケネート A-50:三井化学社)
・希釈溶剤 146部
接着層塗布液を下記接着層塗布液S6に代えた以外は、実施例1と同様にして比較例1の機能性積層板を作製した。
<接着層塗布液S6>
・電離放射線硬化型樹脂 50部
(KAYARAD R-115:日本化薬社)
・電離放射線硬化型樹脂 30部
(NKエステル A-TMM-3N:新中村化学工業社)
・光重合性モノマー 20部
(ACMO:興人社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S7に代えた以外は、実施例1と同様にして比較例2の機能性積層板を作製した。
<接着層塗布液S7>
・電離放射線硬化型樹脂 100部
(NKオリゴ U-15HA:新中村化学工業社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S8に代えた以外は、実施例1と同様にして比較例3の機能性積層板を作製した。
<接着層塗布液S8>
・電離放射線硬化型樹脂 100部
(NKエステル A-TMM-3N:新中村化学工業社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記中間層塗布液S9に代えた以外は、実施例1と同様にして比較例4の機能性積層板を作製した。
<中間層塗布液S9>
・電離放射線硬化型樹脂 90部
(NKオリゴ U15-HA:新中村化学工業社)
・ブチルアクリレート 10部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
厚み250μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)の一方の面に、厚み15nmの酸化チタン層(誘電体層:第1層)を設け、その上に厚み12nmの銀層(金属層:第2層)を設け、さらにその上に厚み25nmの酸化チタン層(誘電体層:第3層)を設けて熱線反射層を形成した。なお、上記3層はいずれも真空下(5 ×10-5torr)でのスパッタリング法で形成した。次いで、熱線反射層とは反対側の面に、下記の組成からなるハードコート層塗布液を、厚みが5μmとなるようにバーコーティング法により塗布、紫外線照射して、比較例5の機能性フィルムを作製した。
<ハードコート層塗布液>
・電離放射線硬化型樹脂 58部
(ダイヤビーム UR6530:三菱レイヨン社)
・光重合開始剤 1.8部
(イルガキュア 651 チバ・ジャパン社)
・メチルエチルケトン 80部
・トルエン 60部
・エチルセルソルブ 7部
透明ポリエステルフィルムを厚み188μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、比較例5と同様にして比較例6の機能性フィルムを作製した。
実施例1~9および比較例1~4の接着層塗布液S1~S9を厚み188μmの透明ポリエステルフィルムF(コスモシャインA4300:東洋紡績社)に、厚みが10μmとなるようにバーコーティング法により塗布した。接着層上に離型フィルムを貼り合わせ、紫外線照射して(照射量1000mJ)、接着層を硬化させた後、離型フィルムを接着層から剥離して、硬化後の接着層の表面の硬さを、温度20℃、相対湿度60%の雰囲気下で、超微小硬さ試験装置(商品名:フィッシャー・スコープHM2000、フィッシャー・インストルメンツ社)により、ISO-14577-1に準拠した方法で測定した。但し、最大試験荷重:1mNで測定した値である。結果を表1に示す。
型抜き機(手動プレス機、型式:トルクパックプレスTPシリーズ、アマダ社)による型抜きを行い、その際に剥がれや浮きが発生しなかったものを「○」、浮きや剥がれが発生したもの「×」とした。
機能性積層板のハードコート層を有するポリエステルフィルムと積層板を構成する他の部材をT型剥離試験と同様に、左右に、剥離速度100mm/minで剥離し、剥離力を測定した。剥離に要した力が10N/2mm幅以上のものを「○」、剥離に要した力が10N/2mm幅未満のものを「×」とした。
指で触れた際に撓まないものを「◎」、触れた際に僅かに撓むものを「○」、触れた際に大きく撓むものを「×」とした。
[実施例10](光反射防止層:LR)
厚み188μmの透明ポリエステルフィルムA(コスモシャインA4300:東洋紡績社)の一方の面に、下記の組成からなる反射防止層塗布液を、バーコータ一法により、乾燥後の厚みが0.1μmとなるように塗布、乾燥し、屈折率1.38の反射防止層を形成し、反射防止層を有する透明ポリエステルフィルムを作製した。
・シリカゾル 200部
・多孔状シリカ微粒子分散液 100部
(シリカ成分:5%、平均粒子径:55nm)
・イソプロパノール 350部
・n-ブタノール 350部
・電離放射線硬化型樹脂 58部
(ダイヤビーム UR6530:三菱レイヨン社)
・光重合開始剤 1.8部
(イルガキュア 651:チバ・ジャパン社)
・メチルエチルケトン 80部
・トルエン 60部
・エチルセルソルブ 7部
・電離放射線硬化型樹脂 60部
(NKオリゴ U-200PA:新中村化学工業社)
・ヒドロキシエチルメタクリレート 35部
・2-ヒドロキシエチルアクリレート 5部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
厚み188μmの透明ポエステルフィルムA(コスモシャインA4300:東洋紡績社)の両面に、下記の組成からなる接着層塗布液S2を、厚みが10μmとなるようにバーコーティング法により塗布し、一方の面に75μmの発泡白色ポリエステルフィルムB(ルミラーE-60:東レ社)、他方の面に75μmの透明ポリエステルフィルムC(コスモシャインA4300:東洋紡績社)を貼り合せ、透明ポリエステルフィルムC側から紫外線照射して、積層板を作製した。
・電離放射線硬化型樹脂 30部
(NKオリゴ U-200PA:新中村化学工業社)
・光カチオン重合性オリゴマー 30部
(アロニックス M-6100:東亞合成社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
厚み188μmの透明ポリエステルフィルムA(コスモシャインA4300:東洋紡績社)の面に、下記の組成からなる接着層塗布液S3を、厚みが10μmとなるようにバーコーティグ法により塗布し、一方の面に75μmの発泡白色ポリエステルフィルムB(ルミラーE-60:東レ社)、他方の面に75μmの透明ポリエステルフィルムC(コスモシャインA4300:東洋紡績社)を貼り合せ、透明ポリエステルフィルムC側から紫外線照射して、積層板を作製した。
・電離放射線硬化型樹脂 30部
(KAYARAD R-115:日本化薬社)
・電離放射線硬化型樹脂 30部
(アロニックス M-6100:東亞合成社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
実施例10のハードコート層を有するポリエステルフィルムの代わりに、防曇層を有するポリエステルフィルムを用い、接着層塗布液を下記接着層塗布液S4に代えた以外は、実施例10と同様にして実施例13の機能性積層板を作製した。防曇層を有するポリエステルフィルムは、ポリエステルフィルム(コスモシャインA4300:東洋紡績社)の一方の面に、下記親水性層塗液を乾燥後の厚みが20μmになるように塗布、乾燥し、次いで超高圧水銀灯により、紫外線を照射して親水性層を形成し、当該親水性層上に、下記の処方の表面保護層塗布液を18g/m2塗布、乾燥して表面保護層を形成することにより作製した。
・エチレンオキサイド変性ジアクリレート 20部
(ニューフロンティア PE-600:第一工業製薬社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
・エタノール 4部
・テトラエトキシシラン 20部
(オルトケイ酸テトラエチル:和光純薬社)
・アセチレングリコール 3部
(サーフィノール 465:エアープロダクツ社)
・エタノール 20部
・0.01規定塩酸水溶液 5部
以上を混合して室温で10時間撹拌反応させた後、塗布液とする。
・電離放射線硬化型樹脂 60部
(KAYARAD R-115:日本化薬社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
透明ポリエステルフィルムA及び透明ポリエステルフィルムBを何れも厚み250μmのポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例10と同様にして実施例14の機能性積層板を作製した。
透明ポリエステルフィルムA及び透明ポリエステルフィルムBを何れも厚み100μmのポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例10と同様にして実施例15の機能性積層板を作製した。
透明ポリエステルフィルムAの代わりに厚み250μmの透明ポリエステルフィルムC(コスモシャインA4300:東洋紡績社)を用いて、実施例10と同様にして反射防止層を有するポリエステルフィルムを作製した。次いで、厚み188μmの透明ポリエステルフィルムD(コスモシャインA4300:東洋紡績社)の一方の面に、実施例10と同様の接着層塗布液S1を、厚みが10μmとなるようにバーコーティング法により塗布し、透明ポリエステルフィルムCの反射防止層とは反対面と貼り合せた。
透明ポリエステルフィルムDを厚み250μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例16と同様にして実施例17の機能性積層板を作製した。
接着層塗布液を下記接着層塗布液S5に代え、接着層塗布液を塗布、乾燥した後、貼り合わせ、紫外線照射しなかった以外は、実施例10と同様にして実施例18の機能性積層板を作製した。
<接着層塗布液S5>
・熱硬化型樹脂 90部
(タケラック A-606:三井化学社)
・硬化剤 10部
(タケネート A-50:三井化学社)
・希釈溶剤 146部
接着層塗布液を下記接着層塗布液S6に代えた以外は、実施例10と同様にして比較例7の機能性積層板を作製した。
<接着層塗布液S6>
・電離放射線硬化型樹脂 50部
(KAYARAD R-115:日本化薬社)
・電離放射線硬化型樹脂 30部
(NKエステル A-TMM-3N:新中村化学工業社)
・光カチオン重合性モノマー 20部
(ACMO:興人社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S7に代えた以外は、実施例10と同様にして比較例8の機能性積層板を作製した。
<接着層塗布液S7>
・電離放射線硬化型樹脂 100部
(NKオリゴ U-15HA:新中村化学工業社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S8に代えた以外は、実施例10と同様にして比較例9の機能性積層板を作製した。
<接着層塗布液S8>
・電離放射線硬化型樹脂 100部
(NKエステル A-TMM-3N:新中村化学工業社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記中間層塗布液S9に代えた以外は、実施例10と同様にして比較例10の機能性積層板S9を作製した。
<中間層塗布液>
・電離放射線硬化型樹脂 90部
(NKオリゴ U15-HA:新中村化学工業社)
・ブチルアクリレート 10部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
厚み250μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)の一方の面に、実施例10と同様に厚み0.2μmの反射防止層を形成した。次いで、反射防止層とは反対側の面に、実施例10と同様のハードコート層を厚みが5μmとなるようにバーコーティング法により塗布、紫外線照射して、比較例11の機能性フィルムを作製した。
透明ポリエステルフィルムを厚み188μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、比較例11と同様にして比較例12の機能性フィルムを作製した。
実施例10~18および比較例7~12の接着層塗布液S1~S9を厚み188μmの透明ポリエステルフィルムF(コスモシャインA4300:東洋紡績社)に、厚みが10μmとなるようにバーコーティング法により塗布した。接着層上に離型フィルムを貼り合わせ、紫外線照射して(照射量1000mJ)、接着層を硬化させた後、離型フィルムを接着層から剥離して、硬化後の接着層の表面の硬さを、実施例1~9と同様に、測定した。結果を表2に示す。
(2)加工適性(剥がれ・浮き):実施例1~9と同様
(3)接着性
機能層が形成された最上層のポリエステルフィルムと、当該積層板を構成する他の部材とを剥離し、その間の接着性を実施例1~9と同様に測定し、評価した。
(4)腰:実施例1~9と同様
[実施例19]
厚み188μmの透明ポリエステルフィルムA(コスモシャインA4300:東洋紡績社)上に、下記の組成からなるハードコート層塗布液を、厚みが5μmとなるようにバーコーティング法により塗布、紫外線照射してハードコート層を有する透明ポリエステルフィルムを作製した。
・電離放射線硬化型樹脂 58部
(ダイヤビーム UR6530:三菱レイヨン社)
・光重合開始剤 1.8部
(イルガキュア 651:チバ・ジャパン社)
・メチルエチルケトン 80部
・トルエン 60部
・エチルセルソルブ 7部
<接着層塗布液S1>
・電離放射線硬化型樹脂 60部
(NKオリゴ U-200PA:新中村化学工業社)
・ヒドロキシエチルメタクリレート 35部
・2-ヒドロキシエチルアクリレート 5部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S2に代えた以外は、実施例19と同様にして透明積層板bを得た。
<接着層塗布液S2>
・電離放射線硬化型樹脂 30部
(NKオリゴ U-200PA:新中村化学工業社)
・電離放射線硬化型樹脂 30部
(アロニックス M-6100:東亞合成社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S3に代えた以外は、実施例19と同様にして透明積層板cを得た。
<接着層塗布液S3>
・電離放射線硬化型樹脂 30部
(KAYARAD R-115:日本化薬社)
・電離放射線硬化型樹脂 30部
(アロニックス M‐6100:東亜合成社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S4に変更した以外は、実施例19と同様にして透明積層板dを得た。
<接着層塗布液S4>
・電離放射線硬化型樹脂 60部
(KAYARAD R-115:日本化薬社)
・ヒドロキシエチルメタクリレート 40部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
透明ポリエステルフィルムA及び透明ポリエステルフィルムBを何れも厚み250μmのポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例19と同様にして透明積層板eを得た。
透明ポリエステルフィルムA及び透明ポリエステルフィルムBを何れも厚み100μmのポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例19と同様にして透明積層板fを得た。
透明ポリエステルフィルムAの代わりに厚み250μmの透明ポリエステルフィルムC(コスモシャインA4300:東洋紡績社)を用いて、実施例19と同様にしてハードコート層を有するポリエステルフィルムを作製した。次いで、当該ポリエステルフィルムのハードコート層とは反対側の面、および厚み188μmの透明ポリエステルフィルムD(コスモシャインA4300:東洋紡績社)の一方の面に、実施例19と同様の接着層塗布液S1を、それぞれ厚みが10μmとなるようにバーコーティング法により塗布し、2枚の接着フィルムを得た。次いで、得られた2枚の接着フィルムと、厚み250μmの透明ポリエステルフィルムE(コスモシャインA4300:東洋紡績社)とを、ハードコート層/フィルムC/接着層/フィルムD/接着層/フィルムEとなるように貼り合わせ、紫外線照射して接着層を硬化させ、透明積層板gを得た。
透明ポリエステルフィルムDを厚み250μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、実施例25と同様にして透明積層板hを得た。
接着層塗布液を下記接着層塗布液S5に代え、接着層塗布液を塗布、乾燥した後、貼り合わせ、紫外線照射しなかった以外は、実施例19と同様にして実施例27の透明積層板iを得た。
<接着層塗布液S5>
・熱硬化型樹脂 90部
(タケラック A-606:三井化学社)
・硬化剤 10部
(タケネート A-50:三井化学社)
・希釈溶剤 146部
接着層塗布液を下記接着層塗布液S6に代えた以外は、実施例19と同様にして透明積層板jを得た。
<接着層塗布液S6>
・電離放射線硬化型樹脂 50部
(KAYARAD R-115:日本化薬社)
・電離放射線硬化型樹脂 30部
(NKエステル A-TMM-3N:新中村化学工業社)
・光重合性モノマー 20部
(ACMO:興人社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S7に代えた以外は、実施例19と同様にして透明積層板kを得た。
<接着層塗布液S7>
・電離放射線硬化型樹脂 100部
(NKオリゴ U-15HA:新中村化学工業社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記接着層塗布液S8に代えた以外は、実施例19と同様にして透明積層板lを得た。
<接着層塗布液S8>
・電離放射線硬化型樹脂 100部
(NKエステル A-TMM-3N:新中村化学工業社)
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
接着層塗布液を下記中間層塗布液S9に代えた以外は、実施例19と同様にして透明積層板mを得た。
<中間層塗布液S9>
・電離放射線硬化型樹脂 90部
(NKオリゴ U15-HA:新中村化学工業社)
・ブチルアクリレート 10部
・光重合開始剤 5部
(イルガキュア 184:チバ・ジャパン社)
厚み250μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)の一方の面に、下記の組成からなるハードコート層塗布液を、厚みが5μmとなるようにバーコーティング法により塗布、紫外線照射して、透明フィルムnを得た。
<ハードコート層塗布液>
・電離放射線硬化型樹脂 58部
(ダイヤビーム UR6530:三菱レイヨン社)
・光重合開始剤 1.8部
(イルガキュア 651:チバ・ジャパン社)
・メチルエチルケトン 80部
・トルエン 60部
・エチルセルソルブ 7部
透明ポリエステルフィルムを厚み188μmの透明ポリエステルフィルム(コスモシャインA4300:東洋紡績社)に変更した以外は、比較例17と同様にして透明フィルムoを得た。
積層体a~m、およびフィルムn、oの表面(ハードコート層が形成されていない側)に、表面抵抗率が約400Ωとなる厚みで酸化インジウム錫(ITO)からなる透明導電層をスパッタリング法を用いて形成し、実施例19~27および比較例13~16のタッチパネル用透明導電性積層板、および比較例17、18のタッチパネル用透明導電性フィルムを得た。
実施例19~27および比較例13~16の接着層塗布液S1~S9を厚み188μmの透明ポリエステルフィルムF(コスモシャインA4300:東洋紡績社)に、厚みが10μmとなるようにバーコーティング法により塗布した。接着層上に離型フィルムを貼り合わせ、紫外線照射して(照射量1000mJ)、接着層を硬化させた後、離型フィルムを接着層から剥離して、硬化後の接着層の表面の硬さを、実施例1~9と同様に測定した。結果を表3に示す。
(3)接着性
タッチパネル用透明導電性積層板のハードコート層を有するポリエステルフィルムと、当該積層板を構成する他の部材とを剥離し、その間の接着性を実施例1~9と同様に測定し、評価した。
(4)腰:実施例1~9と同様
実施例19~26および比較例13~16のタッチパネル用透明導電性積層板、および比較例17、18のタッチパネル用透明導電性フィルムを、市販の抵抗膜式タッチパネルの上部電極として組み込み、抵抗膜式タッチパネルを作製した。得られたタッチパネルは軽いながらも腰と押下感(タッチした感触)があり、取扱い時にガラス飛散のおそれのないものであった。
2・・・透明導電層
3・・・ 絶縁層
4・・・保護層
5・・・電磁波シールド層
6・・・タッチパネル用透明導電性積層板
7・・・引き出し電極線
8・・・スペーサー
9・・・ハードコート層
10・・・透明積層板
11・・・プラスチックフィルム
12・・・接着層
13・・・機能層
20・・・タッチパネル
Claims (13)
- 少なくとも2枚以上のプラスチックフィルムを、接着層を介して貼り合せてなり、前記プラスチックフィルムの少なくとも1枚の片面または両面に機能層を備えた積層板であって、前記接着層のマルテンス硬さが260N/mm2以下であることを特徴とする機能性積層板。
- 少なくとも2枚以上のプラスチックフィルムを、接着層を介して貼り合せてなる積層板であって、プラスチックフィルムとプラスチックフィルムとの間の少なくとも一つに機能層を有し、前記接着層のマルテンス硬さが260N/mm2以下であることを特徴とする機能性積層板。
- 前記機能層が、電磁波シールド機能、熱線反射機能、ガスバリア機能、面状発熱機能から選ばれる機能を有することを特徴とする請求項2記載の機能性積層板。
- 少なくとも2枚以上のプラスチックフィルムを、接着層を介して貼り合せてなる積層板であって、少なくとも最表面のプラスチックフィルムの一方の面に機能層を有し、前記接着層のマルテンス硬さが260N/mm2以下であることを特徴とする機能性積層板。
- 前記機能層が、光反射機能、光透過調整機能、防曇機能から選ばれる機能を有することを特徴とする請求項4記載の機能性積層板。
- 前記プラスチックフィルムと接着層とを合わせた厚みが200~700μmであり、プラスチックフィルムの各々の厚みが50~400μmであることを特徴とする請求項1から5何れか1記載の機能性積層板。
- 前記接着層を構成する樹脂が、熱硬化型樹脂または電離放射線硬化型樹脂を含むことを特徴とする請求項1から6何れか1項記載の機能性積層板。
- 前記接着層が、機能層を兼ねることを特徴とする請求項1から6何れか1項記載の機能性積層板。
- 少なくとも2枚以上の透明プラスチックフィルムをマルテンス硬さ260N/mm2以下の接着層で貼り合せてなる透明積層板の少なくとも一方の面に透明導電層を有してなることを特徴とするタッチパネル用透明導電性積層板。
- 前記透明プラスチックフィルムと接着層とを合わせた厚みが200~700μmであり、プラスチックフィルムの各々の厚みが50~400μmであることを特徴とする請求項9記載のタッチパネル用透明導電性積層板。
- 前記接着層を構成する樹脂が、熱硬化型樹脂または電離放射線硬化型樹脂を含むことを特徴とする請求項9又は10項記載のタッチパネル用透明導電性積層板。
- 透明基材の少なくとも片面に透明導電層を有してなる透明導電性基材を備えた静電容量式タッチパネルにおいて、前記透明基材が、少なくとも2枚以上の透明プラスチックフィルムをマルテンス硬さ260N/mm2以下の接着層で貼り合せてなる透明積層板であることを特徴とする静電容量式タッチパネル。
- 透明基材上に透明導電層を有してなる上部電極と、透明基材上に透明導電層を有してなる下部電極とを、透明導電層どうしが対向するようにスペーサーを介して配置してなる抵抗膜方式のタッチパネルにおいて、前記上部電極の透明基材及び/又は前記下部電極の透明基材が、少なくとも2枚以上のプラスチックフィルムをマルテンス硬さ 260N/mm2以下の接着層で貼り合せてなる透明積層板であることを特徴とする抵抗膜式タッチパネル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20127023146A KR20130005272A (ko) | 2010-03-04 | 2011-02-24 | 기능성 적층판, 터치패널용 투명 도전성 적층판, 및 이것을 사용한 터치패널 |
JP2012503098A JP5838152B2 (ja) | 2010-03-04 | 2011-02-24 | 機能性積層板、タッチパネル用透明導電性積層板、およびこれを用いたタッチパネル |
US13/579,492 US20130063393A1 (en) | 2010-03-04 | 2011-02-24 | Functional laminated plate, and transparent electrically conductive laminated plate for touch panel and touch panel produced using same |
CN201180012396.6A CN102782619B (zh) | 2010-03-04 | 2011-02-24 | 功能性层叠板、触摸屏用透明导电性层叠板、及使用其的触摸屏 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010047257 | 2010-03-04 | ||
JP2010-047257 | 2010-03-04 | ||
JP2010-047258 | 2010-03-04 | ||
JP2010047258 | 2010-03-04 | ||
JP2010-047259 | 2010-03-04 | ||
JP2010047259 | 2010-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011108438A1 true WO2011108438A1 (ja) | 2011-09-09 |
Family
ID=44542092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/054151 WO2011108438A1 (ja) | 2010-03-04 | 2011-02-24 | 機能性積層板、タッチパネル用透明導電性積層板、およびこれを用いたタッチパネル |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130063393A1 (ja) |
JP (1) | JP5838152B2 (ja) |
KR (1) | KR20130005272A (ja) |
CN (1) | CN102782619B (ja) |
TW (1) | TW201139152A (ja) |
WO (1) | WO2011108438A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130154994A1 (en) * | 2011-12-15 | 2013-06-20 | Kai-Ti Yang | Transparent capacitive touch panel with electromagnetic shielding effect |
JP2013161323A (ja) * | 2012-02-07 | 2013-08-19 | Riken Technos Corp | 静電容量式タッチパネル |
JP2013176985A (ja) * | 2012-02-08 | 2013-09-09 | Kimoto & Co Ltd | 表面保護板の製造方法 |
WO2014017248A1 (ja) * | 2012-07-27 | 2014-01-30 | シャープ株式会社 | タッチパネルおよび表示装置 |
JP2014076659A (ja) * | 2012-09-21 | 2014-05-01 | Toppan Printing Co Ltd | 透明導電性積層体 |
WO2015182203A1 (ja) * | 2014-05-28 | 2015-12-03 | リンテック株式会社 | 積層部材の加工方法、積層部材の加工体およびガスバリアフィルム |
US20160215175A1 (en) * | 2013-10-23 | 2016-07-28 | Lg Hausys, Ltd. | High-refractive adhesive film and touch panel including the same |
JP2016200952A (ja) * | 2015-04-09 | 2016-12-01 | シャープ株式会社 | タッチパネル装置 |
JP2016221811A (ja) * | 2015-05-29 | 2016-12-28 | 大日本印刷株式会社 | 電熱線層を含む有機ガラス積層体 |
JP2016221812A (ja) * | 2015-05-29 | 2016-12-28 | 大日本印刷株式会社 | 電熱線層を含む有機ガラス積層体 |
JPWO2014092056A1 (ja) * | 2012-12-10 | 2017-01-12 | センセグ オサケ ユキチュア | 触覚センサ用前面板 |
TWI718540B (zh) * | 2019-05-23 | 2021-02-11 | 元太科技工業股份有限公司 | 觸控結構及其製作方法與觸控顯示裝置 |
JPWO2019151495A1 (ja) * | 2018-02-02 | 2021-02-12 | 凸版印刷株式会社 | ガスバリア性フィルム及びその製造方法 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI457808B (zh) * | 2011-06-09 | 2014-10-21 | Shih Hua Technology Ltd | 觸摸屏 |
KR101402823B1 (ko) * | 2012-06-29 | 2014-06-27 | 엘지이노텍 주식회사 | 터치 패널 및 그 제조 방법 |
US9733331B2 (en) * | 2012-09-10 | 2017-08-15 | Apple Inc. | Method of manufacturing touch sensors |
JP5651259B2 (ja) * | 2013-03-25 | 2015-01-07 | 積水ナノコートテクノロジー株式会社 | 積層フィルム及びそのフィルムロール、並びにそれから得られうる光透過性導電性フィルム及びそれを利用したタッチパネル |
US20140320422A1 (en) * | 2013-04-26 | 2014-10-30 | Georgia Tech Research Coporation | Touch-sensitive panel for a communication device |
KR102203406B1 (ko) * | 2013-08-05 | 2021-01-15 | 다이니폰 인사츠 가부시키가이샤 | 전자 부품을 제작하기 위하여 사용되는 적층체, 필름 센서 및 필름 센서를 구비하는 터치 패널 장치 |
JP6372745B2 (ja) * | 2013-08-05 | 2018-08-15 | 大日本印刷株式会社 | 電子部品を作製するために用いられる積層体、フィルムセンサおよびフィルムセンサを備えるタッチパネル装置 |
GB2521835A (en) * | 2014-01-02 | 2015-07-08 | Nokia Technologies Oy | Electromagnetic shielding |
KR102088769B1 (ko) * | 2014-04-02 | 2020-04-16 | 한국전자통신연구원 | 터치 스크린 패널 제작 방법 및 터치 스크린 패널 |
CN104020880A (zh) * | 2014-05-27 | 2014-09-03 | 京东方科技集团股份有限公司 | 一种触摸显示装置 |
US9921678B2 (en) * | 2014-08-05 | 2018-03-20 | Georgia Tech Research Corporation | Self-powered, ultra-sensitive, flexible tactile sensors based on contact electrification |
EP3223120B1 (en) | 2014-11-20 | 2020-09-30 | Dongwoo Fine-Chem Co., Ltd. | Film touch sensor and manufacturing method therefor |
KR20160071735A (ko) | 2014-12-12 | 2016-06-22 | 동우 화인켐 주식회사 | 필름 터치 센서 및 그의 제조 방법 |
JP6352204B2 (ja) * | 2015-02-18 | 2018-07-04 | 富士フイルム株式会社 | 透明導電部材用積層体、転写材料、透明導電部材、タッチパネル及びその製造方法、並びに、タッチパネル表示装置 |
US11433651B2 (en) | 2015-03-18 | 2022-09-06 | Riken Technos Corporation | Hard coat laminated film |
PH12017501474B1 (en) | 2015-03-18 | 2024-05-15 | Riken Technos Corp | Anti-glare hard coat laminated film |
KR102003189B1 (ko) | 2015-03-18 | 2019-07-23 | 리껭테크노스 가부시키가이샤 | 하드 코트 적층 필름 및 이의 제조 방법 |
CN104867540B (zh) * | 2015-04-16 | 2018-02-02 | 浙江科创新材料科技有限公司 | 一种低雾度透明导电薄膜及其制备方法 |
TWI593943B (zh) * | 2015-10-19 | 2017-08-01 | 國立清華大學 | 可調變的感測元件 |
US10402019B2 (en) * | 2015-10-31 | 2019-09-03 | Lg Display Co., Ltd. | Display device |
TWI618098B (zh) * | 2015-11-24 | 2018-03-11 | Konica Minolta Inc | Touch panel sensor film |
EP3808800B1 (en) | 2016-09-14 | 2022-01-05 | Riken Technos Corporation | Hard coat laminated film |
JP7064313B2 (ja) | 2016-11-25 | 2022-05-10 | リケンテクノス株式会社 | ハードコート積層フィルム |
US20180147812A1 (en) | 2016-11-28 | 2018-05-31 | Johns Manville | Roofing membrane for mitigating passive intermodulation |
KR20190128080A (ko) | 2017-03-27 | 2019-11-14 | 주식회사 쿠라레 | 접합 유리용 폴리비닐 아세탈 수지 필름 |
JP6363769B1 (ja) * | 2017-06-19 | 2018-07-25 | グンゼ株式会社 | カバーフィルム |
KR102053704B1 (ko) * | 2018-03-16 | 2019-12-09 | 동우 화인켐 주식회사 | 고해상도 터치 센서 |
TWI722363B (zh) * | 2019-01-10 | 2021-03-21 | 恆顥科技股份有限公司 | 觸控投影屏幕以及觸控投影系統 |
US11964464B2 (en) * | 2019-10-29 | 2024-04-23 | Beijing Boe Optoelectronics Technology Co., Ltd. | Tape, vehicle-mounted display module and vehicle-mounted display device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148036A (ja) * | 1994-11-18 | 1996-06-07 | Nitto Denko Corp | 透明導電性フィルム |
WO2007080774A1 (ja) * | 2006-01-12 | 2007-07-19 | Kimoto Co., Ltd. | 液晶表示装置用表面保護板の製造方法および液晶表示装置の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59184631U (ja) * | 1983-05-27 | 1984-12-08 | アクリミラ−株式会社 | ヘアライン調合成樹脂板 |
JP2509769B2 (ja) * | 1991-09-17 | 1996-06-26 | 昭和電工株式会社 | 多層積層体 |
JPH08103985A (ja) * | 1994-10-05 | 1996-04-23 | Tsutsunaka Plast Ind Co Ltd | 合成樹脂製結露防止板の製造方法 |
JP2006285332A (ja) * | 2005-03-31 | 2006-10-19 | Gunze Ltd | 透明タッチパネル |
WO2006112525A1 (ja) * | 2005-04-18 | 2006-10-26 | Sumitomo Chemical Company, Limited | 基板および表示素子 |
US20080280073A1 (en) * | 2005-04-18 | 2008-11-13 | Sumitomo Chemical Company, Limited | Substrate and Display Device |
JP2007056232A (ja) * | 2005-07-25 | 2007-03-08 | Toyo Ink Mfg Co Ltd | インキジェット用活性エネルギー線硬化型インキ |
JP4814000B2 (ja) * | 2006-07-26 | 2011-11-09 | リンテック株式会社 | 光学機能性フィルム貼合用粘着剤、光学機能性フィルム及びその製造方法 |
JP2008204303A (ja) * | 2007-02-22 | 2008-09-04 | Gunze Ltd | 透明タッチパネル |
JP2009302029A (ja) * | 2008-02-13 | 2009-12-24 | Sumitomo Metal Mining Co Ltd | フレキシブル透明導電フィルムとフレキシブル機能性素子およびこれ等の製造方法 |
JP5117896B2 (ja) * | 2008-03-17 | 2013-01-16 | 株式会社クラレ | 反射型スクリーン及びその製造方法 |
JP5286960B2 (ja) * | 2008-06-17 | 2013-09-11 | 日油株式会社 | 透明導電性フィルム及びそれを備えるタッチパネル |
JP5224965B2 (ja) * | 2008-08-04 | 2013-07-03 | 三菱レイヨン株式会社 | 樹脂硬化物およびキーシート |
-
2011
- 2011-02-24 US US13/579,492 patent/US20130063393A1/en not_active Abandoned
- 2011-02-24 WO PCT/JP2011/054151 patent/WO2011108438A1/ja active Application Filing
- 2011-02-24 JP JP2012503098A patent/JP5838152B2/ja active Active
- 2011-02-24 KR KR20127023146A patent/KR20130005272A/ko not_active Withdrawn
- 2011-02-24 CN CN201180012396.6A patent/CN102782619B/zh not_active Expired - Fee Related
- 2011-03-02 TW TW100106898A patent/TW201139152A/zh not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08148036A (ja) * | 1994-11-18 | 1996-06-07 | Nitto Denko Corp | 透明導電性フィルム |
WO2007080774A1 (ja) * | 2006-01-12 | 2007-07-19 | Kimoto Co., Ltd. | 液晶表示装置用表面保護板の製造方法および液晶表示装置の製造方法 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130154994A1 (en) * | 2011-12-15 | 2013-06-20 | Kai-Ti Yang | Transparent capacitive touch panel with electromagnetic shielding effect |
JP2013161323A (ja) * | 2012-02-07 | 2013-08-19 | Riken Technos Corp | 静電容量式タッチパネル |
JP2013176985A (ja) * | 2012-02-08 | 2013-09-09 | Kimoto & Co Ltd | 表面保護板の製造方法 |
WO2014017248A1 (ja) * | 2012-07-27 | 2014-01-30 | シャープ株式会社 | タッチパネルおよび表示装置 |
JP2014076659A (ja) * | 2012-09-21 | 2014-05-01 | Toppan Printing Co Ltd | 透明導電性積層体 |
JPWO2014092056A1 (ja) * | 2012-12-10 | 2017-01-12 | センセグ オサケ ユキチュア | 触覚センサ用前面板 |
US20160215175A1 (en) * | 2013-10-23 | 2016-07-28 | Lg Hausys, Ltd. | High-refractive adhesive film and touch panel including the same |
US11091671B2 (en) * | 2013-10-23 | 2021-08-17 | Lg Chem, Ltd. | High-refractive adhesive film and touch panel including the same |
WO2015182203A1 (ja) * | 2014-05-28 | 2015-12-03 | リンテック株式会社 | 積層部材の加工方法、積層部材の加工体およびガスバリアフィルム |
JP2016200952A (ja) * | 2015-04-09 | 2016-12-01 | シャープ株式会社 | タッチパネル装置 |
JP2016221811A (ja) * | 2015-05-29 | 2016-12-28 | 大日本印刷株式会社 | 電熱線層を含む有機ガラス積層体 |
JP2016221812A (ja) * | 2015-05-29 | 2016-12-28 | 大日本印刷株式会社 | 電熱線層を含む有機ガラス積層体 |
JPWO2019151495A1 (ja) * | 2018-02-02 | 2021-02-12 | 凸版印刷株式会社 | ガスバリア性フィルム及びその製造方法 |
JP7287284B2 (ja) | 2018-02-02 | 2023-06-06 | 凸版印刷株式会社 | ガスバリア性フィルム及びその製造方法 |
TWI718540B (zh) * | 2019-05-23 | 2021-02-11 | 元太科技工業股份有限公司 | 觸控結構及其製作方法與觸控顯示裝置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2011108438A1 (ja) | 2013-06-27 |
CN102782619B (zh) | 2016-09-14 |
US20130063393A1 (en) | 2013-03-14 |
TW201139152A (en) | 2011-11-16 |
JP5838152B2 (ja) | 2015-12-24 |
CN102782619A (zh) | 2012-11-14 |
KR20130005272A (ko) | 2013-01-15 |
TWI561388B (ja) | 2016-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5838152B2 (ja) | 機能性積層板、タッチパネル用透明導電性積層板、およびこれを用いたタッチパネル | |
TWI547843B (zh) | 光學用片材及導電性片材、以及具備該光學用片材之顯示裝置 | |
WO2009116363A1 (ja) | 光学用フィルム、積層体及びタッチパネル | |
JP6297846B2 (ja) | 両面透明導電性フィルム及びその巻回体、並びにタッチパネル | |
JP6328984B2 (ja) | 両面透明導電性フィルムおよびタッチパネル | |
JP6279280B2 (ja) | 透明導電性フィルムおよびその用途 | |
WO2016009784A1 (ja) | 静電容量式タッチパネル | |
WO2017099125A1 (ja) | 透明導電性フィルム積層体、及びそれを含むタッチパネル | |
JP6331581B2 (ja) | 透明導電膜形成用積層体、透明導電性フィルム、タッチパネル、粘着剤層付き第2基材の選択方法、透明導電膜形成用積層体の製造方法及び透明導電性フィルムの製造方法 | |
JP6173726B2 (ja) | 多層積層フィルムの製造方法 | |
JP2007094191A (ja) | フラットディスプレイ用耐衝撃吸収材、プラズマディスプレイ用光学フィルタ、プラズマディスプレイパネル、及びフラットディスプレイ用耐衝撃吸収材の製造方法 | |
JP2012160291A (ja) | 透明導電性基板 | |
JP6458445B2 (ja) | 透明導電性積層体、及び該透明導電性積層体を用いたタッチパネル、並びに、透明導電性積層体の製造方法、及び該透明導電性積層体を用いたタッチパネルの製造方法 | |
JP7061429B2 (ja) | 無機化合物層接着用のハードコートフィルム、および、該ハードコートフィルムを用いた透明導電性フィルムおよびタッチパネル | |
JP6364860B2 (ja) | ハードコートフィルム、並びに、これを用いた透明導電性フィルム及びタッチパネル | |
JP2016091352A (ja) | 透明電極用ハードコートフィルム | |
WO2016051247A1 (ja) | アンチ二ュートンリング積層体およびそのアンチ二ュートンリング積層体を用いた静電容量式タッチパネル | |
JP2000105312A (ja) | プラズマディスプレイパネル用フィルター | |
JP2017061069A (ja) | 透明導電性フィルム積層体、及びそれを含むタッチパネル | |
JP2016078245A (ja) | 透明電極用ハードコートフィルム | |
KR102298932B1 (ko) | 베이스 기재 시트 및 정전용량식 터치패널 | |
JP6361462B2 (ja) | 透明導電性積層体の選別方法、及び透明導電性積層体の製造方法 | |
JP2012150893A (ja) | 透明導電性基板 | |
JP2009042272A (ja) | プラズマディスプレイパネル用前面フィルター、及びその製造方法 | |
JP2015041135A (ja) | タッチパネル用フィルムの製造方法及びタッチパネル用フィルム、タッチパネル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180012396.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11750548 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012503098 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13579492 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20127023146 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11750548 Country of ref document: EP Kind code of ref document: A1 |