WO2011086998A1 - 操舵装置 - Google Patents
操舵装置 Download PDFInfo
- Publication number
- WO2011086998A1 WO2011086998A1 PCT/JP2011/050296 JP2011050296W WO2011086998A1 WO 2011086998 A1 WO2011086998 A1 WO 2011086998A1 JP 2011050296 W JP2011050296 W JP 2011050296W WO 2011086998 A1 WO2011086998 A1 WO 2011086998A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- angular velocity
- yaw angular
- angle
- vehicle
- Prior art date
Links
- 230000008447 perception Effects 0.000 abstract 1
- 238000012545 processing Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001953 sensory effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/002—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D5/00—Power-assisted or power-driven steering
- B62D5/008—Changing the transfer ratio between the steering wheel and the steering gear by variable supply of energy, e.g. by using a superposition gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/001—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/20—Conjoint control of vehicle sub-units of different type or different function including control of steering systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/18—Steering angle
Definitions
- the present invention relates to a steering device, and more particularly to a steering device that realizes a relationship between a steering angle of a steering wheel and a yaw angular velocity.
- Non-Patent Document 1 Yasuo Shimizu et al., “Steering system in which gear ratio changes as a function of vehicle speed and steering angle and its effect”, Japan Society for Automotive Engineers, Preprint of Scientific Lecture, No. 21-99, 1999
- Non-Patent Document 1 discloses only “proportional steering gear ratio” and does not disclose a specific setting method such as proportional gain. Therefore, the technique described in Non-Patent Document 1 has a problem that if the gear ratio is too small, the actual steering angle is too large and quick with respect to the steering angle, and the driver feels uncomfortable.
- the present invention has been made to solve the above problems.
- a steering apparatus includes a steering wheel direction and a direction of a target arrival point after a predetermined forward gaze time on a target course on which the vehicle travels, as viewed from the driver's viewpoint.
- the relationship between the steering angle of the steering wheel and the yaw angular velocity generated in the vehicle, which is predetermined so as to correspond to the direction of the reference position, is configured.
- the steering device realizes a relationship between a predetermined steering angle of the steering wheel and a yaw angular velocity generated in the vehicle, thereby determining a predetermined forward gaze on a target course traveled by the vehicle from the viewpoint of the driver.
- the direction of the target reaching point after time is made to correspond to the direction of the reference position of the handle.
- the steering device associates the direction of the target arrival point after the predetermined forward gaze time on the target course on which the vehicle travels with the direction of the reference position of the steering wheel as viewed from the driver's viewpoint. .
- the said steering apparatus can improve the unity feeling of a vehicle and a driver, it can perform the steering suitable for the driver
- the steering device is the direction of the target arrival point after the predetermined forward gaze time on the target course on which the vehicle travels from the viewpoint of the driver,
- the direction of the reference position is made to correspond.
- FIG. 1 is a schematic diagram showing a configuration of a vehicle steering apparatus according to a first embodiment of the present invention. It is a block diagram which shows the structure of the computer of the vehicle steering apparatus which concerns on the 1st Embodiment of this invention. It is an image figure which shows the deflection angle of the advancing direction of a vehicle, and the direction which goes to a target arrival point. It is an image figure which shows the deflection angle of the advancing direction of a vehicle, and the direction which goes to a target arrival point. It is an image figure which shows a relative depression angle. It is an image figure which shows the deflection angle of the vehicle front-back direction and the direction which goes to a target arrival point. It is an image figure which shows a mode that the head of the driver moved.
- a steering gear ratio variable mechanism 16 is connected to a rotating shaft 14 interlocked with a steering wheel 12.
- An output shaft 18 protrudes from the steering gear ratio variable mechanism 16, and a pinion 20 connected to the output shaft 18 meshes with a rack shaft 22 connected to a steering wheel (not shown).
- the steering gear ratio variable mechanism 16 is connected to the computer 24.
- the steering gear ratio variable mechanism 16 has a conventionally well-known structure, and the steering gear ratio variable mechanism 16 changes the steering gear ratio of the steering gear ratio variable mechanism 16 based on a gear ratio command signal output from the computer 24. Is configured to do.
- the computer 24 is connected to a vehicle speed sensor 26 that detects the vehicle speed of the host vehicle and a steering angle sensor 28 that detects the steering angle of the steering wheel 12 (the steering angle of the steering wheel).
- the computer 24 includes a CPU, a RAM, and a ROM that stores a program for executing a gear ratio control processing routine to be described later, and is functionally configured as follows.
- the computer 24 is based on map storage means 30 that stores in advance a map indicating the relationship between the steering angle of the steering wheel 12, the vehicle speed, and the yaw angular velocity gain, the vehicle speed from the vehicle speed sensor 26, and the steering angle from the steering angle sensor 28.
- map storage means 30 that stores in advance a map indicating the relationship between the steering angle of the steering wheel 12, the vehicle speed, and the yaw angular velocity gain, the vehicle speed from the vehicle speed sensor 26, and the steering angle from the steering angle sensor 28.
- a yaw gain calculation unit 32 that calculates a target value of the yaw angular velocity gain
- gear ratio calculation unit 34 that calculates a steering gear ratio that realizes the calculated target value of the yaw angular velocity gain.
- gear ratio control means 36 for outputting a gear ratio
- the driver handles the steering wheel based on the deviation angle ⁇ gaze (see FIGS. 3A and 3B) between the traveling direction of the vehicle (the direction of the velocity vector) and the direction of the target arrival point of the vehicle after the forward gaze time T.
- the predicted value r pre of the yaw angular velocity as the vehicle motion predicted value realized by the above is calculated by the following equation (1).
- k r is the transfer gain from forward gaze angle theta gaze to yaw velocity r
- tau is the dead time.
- the dead time ⁇ is a time for matching the timing of the change of the vehicle motion and the timing of the change of the curvature of the traveling course, and is a predetermined time.
- the above equation (1) is a result indicating that the driver is operating the handle based on the forward gaze angle.
- the forward gaze time T gazee is set as a fixed time of 2.5 to 3.5 seconds.
- the driver Since the driver operates the steering wheel based on the forward gazing angle in this way, the driver passes the target reaching point after the forward gazing time with the intention of the driver. From this, by matching the direction of the forward gazing point, which is also the output of the vehicle motion, with the direction of the reference position of the handle, which is the amount of operation of the driver, as shown in FIG. In the present embodiment, attention is focused on improving operability and agility.
- the forward gaze angle defined in FIGS. 3A and 3B is based on the traveling direction of the automobile.
- the front-rear direction of the vehicle body on which the driver is seated is determined. Need to be a standard. Therefore, in the present embodiment, as shown in the following formula (4), an angle obtained by adding a vehicle body slip angle to a front gaze angle (a vehicle front-rear direction and a predetermined front gaze time on a target course on which the vehicle travels) Let us consider matching the steering angle of the steering wheel (the relative angle between the reference position in the neutral position of the steering wheel and the current reference position of the steering wheel) with a deviation angle from the direction of the subsequent target arrival point.
- K roll is a roll rate
- the forward fixed point time T gaze between the transfer gain k r from forward gaze angle theta gaze to the yaw angular velocity r, since the equation (2) of relation is established, the forward gaze angle theta gaze, It is described by the following equation (6).
- vehicle body slip angle ⁇ is described by the following equation (7) from a linear model of vehicle motion.
- C r is the rear wheel cornering power
- l is the wheel base
- l r is the center-to-rear axle distance
- M is the vehicle mass
- v is the vehicle speed.
- the relationship of the above equation (8) is a relationship equation under the assumption that the viewpoint position of the driver does not change.
- the driver posture that is, the viewpoint position changes due to the influence of the lateral acceleration.
- the center of the handle as seen from the driver is determined by the following equation (9) ⁇ Move outward by d .
- h x is the distance between the driver head and the center of the handle (see FIG. 5B).
- the relative depression angle ⁇ z has a relationship expressed by the following expression (14) based on the steering wheel center depression angle ⁇ zsw from the driver's viewpoint to the steering wheel center, the forward gaze time T gaze and the eye point height h eye. To do.
- the above equation (16) represents an example of the relationship between the steering angle of the steering wheel and the yaw angular velocity in the present invention.
- the gradient of the yaw angular velocity with respect to the steering angle of the steering wheel is a ratio ( ⁇ r / ⁇ sw ) between the variation amount ⁇ r of the yaw angular velocity and the variation amount ⁇ sw of the steering angle of the steering wheel.
- the yaw angular velocity obtained based on the above equation (16) is set as the target value.
- the gradient of the yaw angular velocity with respect to the steering angle of the steering wheel calculated from the above equation (16) exceeds the upper limit value, as shown by the solid line in FIG. 6, the gradient of the yaw angular velocity with respect to the steering angle of the steering wheel is restricted to the upper limit value. It is preferable to correct the target value of the yaw angular velocity.
- the gradient of the yaw angular velocity with respect to the steering angle of the steering wheel is In the steering angle region that is less than the upper limit value, the yaw angular velocity calculated based on the above equation (16) is converted into a yaw angular velocity gain.
- the yaw angular velocity corrected so as to have the gradient of the yaw angular velocity with respect to the steering angle of the steering wheel as the upper limit value is converted into a yaw angular velocity gain.
- a map showing the relationship between the yaw angular velocity gain k and the steering angle ⁇ sw of the steering wheel is obtained for each vehicle speed as shown in FIG.
- the map storage means 30 of the vehicle steering apparatus 10 stores the steering angle and yaw angular velocity gain for each vehicle speed as shown by the solid line in FIG. A map that defines the relationship is stored.
- the yaw gain calculation means 32 sets the target value of the yaw angular speed gain corresponding to the vehicle speed detected by the vehicle speed sensor 26 and the steering angle of the steering wheel detected by the steering angle sensor 28 according to the map stored in the map storage means 30. calculate.
- the target yaw angular velocity gain is realized by actively changing the characteristic of the steering gear ratio variable mechanism 16 provided between the steering wheel and the mechanism that steers the actual steering angle of the front wheels according to the vehicle speed. If the dynamic characteristic of the vehicle motion is ignored between the actual steering angle ⁇ f of the front wheels and the yaw angular velocity r, the relationship expressed by the following equation (17) is established.
- C f is the front wheel cornering power.
- the steering gear ratio g sw for realizing the yaw angular velocity gain k calculated from the map shown in FIG. 6 by the above equations (17) and (18) is expressed by the following equation (19).
- the gear ratio calculating means 34 calculates the steering gear ratio based on the target yaw angular velocity gain k calculated by the yaw gain calculating means 32 and the vehicle speed v detected by the vehicle speed sensor 26 according to the above equation (19). To do.
- the gear ratio control means 36 outputs a gear ratio command signal to the steering gear ratio variable mechanism 16 so as to change to the calculated steering gear ratio, thereby controlling the steering gear ratio.
- a gear ratio control processing routine shown in FIG. 8 is executed in the computer 24 while the vehicle equipped with the vehicle steering device 10 is traveling.
- step 100 the computer 24 acquires each of the vehicle speed detected by the vehicle speed sensor 26 and the steering angle of the steering wheel detected by the steering angle sensor 28.
- step 102 the computer 24 calculates the target value of the yaw angular velocity gain from the vehicle speed and the steering angle of the steering wheel obtained in step 100 according to the map stored in the map storage unit 30.
- step 104 the computer 24 realizes the target value of the yaw angular velocity gain from the vehicle speed acquired in step 100 and the target value of the yaw angular velocity gain calculated in step 102 according to the above equation (19).
- step 106 the computer 24 outputs a gear ratio command signal to the steering gear ratio variable mechanism 16 so as to change to the steering gear ratio calculated in step 104, thereby controlling the steering gear ratio. Return to 100.
- the target value of the yaw angular velocity gain calculated repeatedly is realized by repeatedly executing the above processing.
- the vehicle steering apparatus is the direction of the target arrival point after a predetermined forward gaze time on the target course on which the vehicle travels, as viewed from the driver's viewpoint,
- the target value of the yaw angular velocity gain is calculated and the steering gear ratio is controlled in accordance with a map showing the relationship between the steering angle of the steering wheel and the yaw angular velocity gain determined so as to match the direction of the reference position of the steering wheel.
- a yaw angular velocity gain (gain from steering angle to yaw angular velocity) was set.
- Such a yaw angular velocity gain is realized by a steering gear ratio such that the forward gaze angle is proportional to the steering angle tangent of the steering wheel.
- the steering gear ratio is set so that the forward gaze angle is proportional to the steering angle of the steering wheel, and the above yaw angular velocity gain is a characteristic that cannot be realized by the conventional technique.
- the vehicle steering apparatus of the present embodiment is proportional to the tangent of the steering angle of the steering wheel. Outputs the yaw angular velocity. This means that the yaw angular velocity gain increases as the steering wheel is turned. In the conventional technique having a yaw angular velocity gain that does not depend on the steering angle of the steering wheel, the direction of the reference position of the steering wheel and the direction of the front gazing point cannot be matched in a relatively large steering region.
- the sense of unity in the large steering area can be improved as a result of the direction of the reference position of the steering wheel and the direction of the forward gazing point being coincident even in a large steering area. it can.
- the vehicle steering apparatus by limiting the gradient of the yaw angular velocity with respect to the steering angle of the steering wheel to the upper limit value obtained in advance based on human characteristics, the driver can operate in a large steering angle region. This makes it possible to steer the vehicle with a small correction steering angle without feeling sensitive to changes in vehicle motion. Therefore, the vehicle steering apparatus according to the present embodiment can improve the sense of unity between the vehicle and the driver without impairing the controllability.
- the second embodiment is different from the first embodiment mainly in that the target value of the yaw angular velocity is calculated and the steering gear ratio is controlled so as to realize the target value of the yaw angular velocity. Yes.
- the computer 224 of the vehicle steering apparatus includes a map storage unit 230 that stores in advance a map indicating the relationship between the steering angle, the vehicle speed, and the yaw angular velocity of the steering wheel 12; Based on the vehicle speed from the vehicle speed sensor 26 and the steering angle from the steering angle sensor 28, the yaw rate calculation means 232 for calculating the target value of the yaw angular speed according to the map stored in the map storage means 230, and the calculated yaw angular speed.
- Gear ratio calculation means 234 for calculating a steering gear ratio to be realized and gear ratio control means 36 are provided.
- the relationship between the steering angle of the steering wheel and the yaw angular velocity as shown by the broken line in FIG. Obtained at every vehicle speed.
- the steering wheel by correcting the target value of the yaw angular velocity so that the gradient of the yaw angular velocity with respect to the steering angle of the steering wheel is constrained to the upper limit value, the steering wheel as shown by the solid line in FIG. A relationship between the steering angle and the yaw angular velocity is obtained for each vehicle speed.
- the map storage means 230 of the vehicle steering apparatus stores a map that defines the relationship between the steering angle of the steering wheel and the yaw angular velocity as shown by the solid line in FIG. 10 for each vehicle speed. .
- the yaw rate calculation means 232 calculates the yaw angular velocity corresponding to the vehicle speed detected by the vehicle speed sensor 26 and the steering angle of the steering wheel detected by the steering angle sensor 28 according to the map stored in the map storage means 230.
- the gear ratio calculation unit 234 calculates the target yaw angular velocity r according to the above equation (17) based on the target yaw angular velocity r calculated by the yaw rate calculation unit 232 and the vehicle speed v detected by the vehicle speed sensor 26.
- the front wheel actual rudder angle ⁇ f that realizes is calculated.
- the gear ratio calculation means 234 calculates the steering gear ratio according to the above equation (18) based on the calculated actual front wheel steering angle ⁇ f and the steering angle ⁇ sw of the steering wheel detected by the steering angle sensor 28. .
- the computer 224 acquires each of the vehicle speed detected by the vehicle speed sensor 26 and the steering angle of the steering wheel detected by the steering angle sensor 28. Then, the computer 224 calculates the target value of the yaw angular velocity based on the vehicle speed and the steering angle of the steering wheel obtained in accordance with the map stored in the map storage unit 230.
- the computer 224 calculates the steering gear for realizing the target value of the yaw angular velocity from the vehicle speed acquired above and the target value of the yaw angular velocity calculated above according to the equations (17) and (18). Calculate the ratio. Then, the computer 224 outputs a gear ratio command signal to the steering gear ratio variable mechanism 16 so as to change to the steering gear ratio calculated above, controls the steering gear ratio, and returns to the initial processing.
- the target value of the yaw angular velocity calculated repeatedly is realized by repeatedly executing the above processing.
- the vehicle steering apparatus is the direction of the target arrival point after a predetermined forward gaze time on the target course on which the vehicle travels, as viewed from the driver's viewpoint, A target value of the yaw angular velocity is calculated according to a map showing the relationship between the steering angle of the steering wheel and the yaw angular velocity determined so as to match the direction of the reference position of the steering wheel, and the steering gear ratio is controlled.
- the vehicle steering apparatus can improve the sense of unity between the vehicle and the driver, and can perform steering suitable for the driver's feeling without the driver feeling uncomfortable.
- the third embodiment is mainly different from the first embodiment in that the steering gear ratio according to the steering angle of the steering wheel is mechanically realized.
- the pinion 320 connected to the rotating shaft 14 interlocked with the steering wheel 12 is connected to a steering wheel (not shown). Meshed with the rack shaft 22.
- the pinion gear of the pinion 320 is designed as follows.
- the steering angle of the steering wheel at a specific speed (for example, 50 to 60 km) A relationship with the yaw angular velocity gain is required.
- the pinion gear of the pinion 320 is designed so as to realize a steering gear ratio according to the obtained steering angle of the steering wheel.
- the vehicle equipped with the vehicle steering device 310 according to the present embodiment has a steering gear ratio that realizes a target value of the yaw angular velocity gain according to the steering angle of the steering wheel by the pinion gear of the pinion 320.
- the vehicle steering device 310 when traveling at a specific speed, the direction of the reference position of the steering wheel as viewed from the driver's viewpoint in the region up to a large steering angle in front of which the change in the vehicle motion is felt sensitively.
- the direction of the forward gazing point can be matched. In the region of a larger steering angle, the driver can steer the vehicle with a small corrected steering angle without feeling sensitive to changes in the vehicle motion.
- the steering gear ratio is designed according to the relationship between the steering angle of the steering wheel and the yaw angular velocity gain indicated by the map used in the first embodiment. It is not limited.
- the steering gear ratio may be designed according to the relationship between the steering angle of the steering wheel and the yaw angular velocity indicated by the map described in the second embodiment. In this case, first, based on the relationship between the steering angle of the steering wheel and the yaw angular velocity indicated by the solid line in FIG. 10 for each vehicle speed described in the second embodiment, at a specific speed (for example, 50 to 60 km). The relationship between the steering angle of the steering wheel and the yaw angular velocity is required.
- the steering gear ratio corresponding to the steering angle of the steering wheel is obtained.
- the pinion gear of the pinion 320 is designed so as to realize a steering gear ratio according to the obtained steering angle of the steering wheel.
- the steering of the front wheels is controlled has been described as an example.
- the present invention is not limited to this.
- Rear wheel steering may be controlled.
- the steering gear of the rear wheel that realizes the target value of the yaw angular velocity gain or the target value of the yaw angular velocity based on the formula derived using the relationship between the actual steering angle of the rear wheel and the yaw angular velocity. A ratio is calculated.
- steering of both the front wheels and the rear wheels may be controlled.
- the target value of the yaw angular velocity gain or the target value of the yaw angular velocity is realized based on the formula derived using the relationship between the actual steering angle of the front wheels, the actual steering angle of the rear wheels, and the yaw angular velocity.
- the steering gear ratio of the front and rear wheels is calculated.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
- Power Steering Mechanism (AREA)
Abstract
操舵装置は、予め定められたハンドルの舵角と車両に発生するヨー角速度との関係を実現することにより、ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向θgazeβと、ハンドルの基準位置の方向δswとを一致させる。これにより、操舵装置は、車両とドライバとの一体感を向上させることができるため、ドライバが、違和感を覚えることのない、ドライバの感覚に合った操舵を行うことができる。
Description
本発明は、操舵装置に係り、特に、ハンドルの舵角とヨー角速度との関係を実現する操舵装置に関する。
従来より、「コーナー進入時において運転者は目標とする経路上で車速に依らず約1.2秒後に到達すべき地点を注視している」という実験データに基づき、現在の車両進行方向と注視点のなす角度がハンドル角と比例するようにステアリングギヤ比を設定する技術が知られている(非特許文献1)。
清水康夫ほか、「ギヤ比が車速と操舵角の関数として変化するステアリングシステムとその効果について」、社団法人自動車技術会、学術講演会前刷集、No.21-99、1999年
清水康夫ほか、「ギヤ比が車速と操舵角の関数として変化するステアリングシステムとその効果について」、社団法人自動車技術会、学術講演会前刷集、No.21-99、1999年
しかしながら、上記の非特許文献1は、「比例するステアリングギヤ比」についてのみ開示しており、具体的な比例ゲインなどの設定方法について開示していない。したがって、非特許文献1に記載の技術では、ギヤ比が小さすぎると操舵角に対して実舵角が大きくクイックになりすぎて、ドライバが違和感を覚えてしまう、という問題がある。
本発明は、上記の問題点を解決するためになされたものである。
上記の目的を達成するために本発明の一態様の操舵装置は、ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向と、ハンドルの基準位置の方向とを対応させるように予め定められた、前記ハンドルの舵角と車両に発生するヨー角速度との関係を実現するように構成されている。
上記操舵装置は、予め定められたハンドルの舵角と車両に発生するヨー角速度との関係を実現することにより、ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向と、ハンドルの基準位置の方向とを対応させる。
このように、上記操舵装置は、ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向と、ハンドルの基準位置の方向とを対応させる。これにより、上記操舵装置は、車両とドライバとの一体感を向上させることができるため、ドライバが違和感を覚えることのない、ドライバの感覚に合った操舵を行うことができる。
以上説明したように、本発明の一態様である操舵装置は、ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向と、ハンドルの基準位置の方向とを対応させる。これにより、操舵装置は、車両とドライバとの一体感を向上させることができるため、ドライバが違和感を覚えることのない、ドライバの感覚に合った操舵を行うことができる、という効果が得られる。
以下、図面を参照して本発明の実施の形態を詳細に説明する。本実施の形態では、車両に搭載され、かつ、車両のステアリングギヤ比を制御する車両操舵装置に本発明を適用した場合を例に説明する。
図1に示すように、本発明の実施の形態に係る車両操舵装置10は、ステアリングホイール12に連動する回動軸14に、ステアリングギヤ比可変機構16が接続されている。このステアリングギヤ比可変機構16からは、出力軸18が突出しており、この出力軸18に連結されたピニオン20が、図示を省略した操舵輪に連結されたラック軸22に噛合している。
従って、ステアリングホイール12の回転が、ステアリングギヤ比可変機構16を介して、ピニオン20に伝わり、ラック軸22がその軸方向(図1の矢印W方向)へ移動する。これによって、操舵輪が転舵する。
ステアリングギヤ比可変機構16は、コンピュータ24に連結されている。ステアリングギヤ比可変機構16は、従来からある周知の構造であり、ステアリングギヤ比可変機構16は、コンピュータ24から出力されるギヤ比指令信号に基づいてステアリングギヤ比可変機構16のステアリングギヤ比を変更するように構成されている。
図2に示すように、コンピュータ24は、自車両の車速を検出する車速センサ26と、ステアリングホイール12の舵角(ハンドルの舵角)を検出する操舵角センサ28とに接続されている。
コンピュータ24は、CPUと、RAMと、後述するギヤ比制御処理ルーチンを実行するためのプログラムを記憶したROMとを備え、機能的には次に示すように構成されている。コンピュータ24は、ステアリングホイール12の舵角、車速、及びヨー角速度ゲインの関係を示すマップを予め記憶したマップ記憶手段30と、車速センサ26からの車速及び操舵角センサ28からの舵角に基づいて、マップ記憶手段30に記憶されたマップに従って、ヨー角速度ゲインの目標値を算出するヨーゲイン算出手段32と、算出されたヨー角速度ゲインの目標値を実現するステアリングギヤ比を算出するギヤ比算出手段34と、算出されたステアリングギヤ比に変更するようにギヤ比指令信号を出力するギヤ比制御手段36とを備えている。
次に、本実施の形態の原理について説明する。
まず、ドライバモデルに関して、特願2009-9863号明細書の記載から、車両の進行方向と前記車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向との偏角である前方注視角と、一定時間後のヨー角速度とが、車速に依存することなく比例関係にあることがわかっている。
すなわち、車両の進行方向(速度ベクトルの方向)と前方注視時間T後の車両の目標到達点の方向との偏角θgaze(図3A、図3B参照)に基づいて、ドライバがハンドル操作することによって実現される車両運動予測値としてのヨー角速度の予測値rpreが、以下の(1)式によって演算される。
ただし、krは前方注視角θgazeからヨー角速度rまでの伝達ゲインであり、τは、むだ時間である。ここで、むだ時間τとは、車両運動の変化のタイミングと走行コースの曲率の変化のタイミングとを合わせるための時間であり、予め定められた時間である。
上記(1)式は、ドライバが前方注視角に基づいてハンドルを操作していることを示す結果である。
また、理論解析の結果、前方注視時間Tgazeと、前方注視角θgazeからヨー角速度rまでの伝達ゲインkrとの間には、以下の(2)式で表される関係が成立していることがわかっている。
本実施の形態では、前方注視時間Tgazeを2.5秒~3.5秒の一定時間として設定する。
また、前方注視時間Tgazeとむだ時間τの間には、以下の(3)式で表される関係が成立していることがわかっている。
このようにドライバは前方注視角に基づいてハンドルを操作していることから、ドライバの意図で、前方注視時間後に車両の目標到達点を通過する。このことから、車両運動の出力でもある前方注視点の方向と、ドライバの操作量であるハンドルの基準位置の方向とを、図4Bに示すように一致させることにより、車両とドライバの一体感や操作性、アジリティなどを向上させることに、本実施の形態では着目した。
ところで、上記図3A、図3Bで定義した前方注視角は、自動車の進行方向を基準としていたが、ハンドルの舵角との関係を一致させるためには、ドライバが着席している車体前後方向を基準とする必要がある。そこで、本実施の形態では、以下の(4)式に示すように前方注視角に車体スリップ角を加えた角度(車両前後方向と、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向との偏角)と、ハンドルの舵角(ハンドル中立状態での基準位置と現在のハンドルの基準位置との相対角度)を一致させることを考える。
また、図4Aに示すように、ハンドル中心と前方注視点との相対俯角をθzとすると、操舵角δswが注視点の方向と一致するための条件として、以下の(5)式が得られる。
なお、上記(5)式では、ロール運動のためにハンドル角が見かけ上、ロール角だけ切り戻されることを考慮している。また、Krollは、ロール率である。
ところで、前方注視時間Tgazeと、前方注視角θgazeからヨー角速度rまでの伝達ゲインkrとの間には、上記(2)式の関係が成立することから、前方注視角θgazeは、以下の(6)式で記述される。
さらに、車体スリップ角βは、車両運動の線形モデルから、以下の(7)式で記述される。
上記(6)式、(7)式により、上記(5)式は、以下の(8)式に書き直すことができる。
ただし、Crは後輪コーナリングパワーであり、lは、ホイールベースであり、lrは、重心-後軸間距離である。また、mは車両質量であり、vは車速である。
ところで、上記(8)式の関係は、ドライバの視点位置は変化しないという仮定の下での関係式である。しかし、実車走行時には、横加速度の影響を受けて、ドライバ姿勢すなわち視点の位置が変化することを考慮する必要がある。図5Aに示すように車両の横加速度に比例してドライバの頭部が横加速度に対抗する方向にhy移動すると、ドライバから見たハンドルの中心は、以下の(9)式で求められるθdだけ旋回外向きに移動する。
ただし、hxはドライバ頭部とハンドル中心の距離である(図5B参照)。
したがって、図5Cから、ドライバ頭部移動時の操舵角δswの方向(ハンドルの基準位置の方向)が、前方注視点の方向と一致するための条件は、以下の(10)式で表される。
本実施の形態では、横加速度が9.8 [m/s2] 発生したときにhy= hymax 移動するとして、以下の(11)式のように、θdを定式化する。
さらに、横加速度とヨー角速度との関係(スリップ角が増加しないための条件)は、以下の(12)式で表される。
上記(11)式、(12)式を考慮すると、以下の(13)式で表される関係式が導出される。
また、相対俯角θzは、ドライバの視点からハンドル中心までのハンドル中心俯角θzswと前方注視時間Tgazeとアイポイント高heyeとに基づく、以下の(14)式で表される関係が成立する。
上記(14)式より、上記(13)式は、以下の(15)式で記述できる。
ここで、以下の式を仮定する。
この式により、上記(15)式は、以下の(16)式で記述できる。
上記(16)式は、図6の破線が示すように、ヨー角速度rが、ハンドルの舵角δswとロール角φ(=Kroll・r・v)との相対角(δsw-φ)のタンジェントに比例することを表している。また、上記(16)式が、本発明におけるハンドルの舵角とヨー角速度との関係の一例を表わしている。
ところで、上記(16)式に基づいて操舵系の制御を行った場合、ハンドルの舵角とロール角の相対角が90degに近づくとヨー角速度は無限に大きくなり、90deg以内の操舵角領域ですべての運転操作が行われることになる。このような特性は、ハンドルを持ち替える必要がない、という利点がある。一方で、このような特性は、ハンドル操舵という操作に対する車両運動の変化を過敏に感じる場合があり操縦性を損なってしまう、という欠点も持ち合わせることになる。
そこで、車両運動の変化を過敏に感じ、操縦性を損なう特性を調べるために、ハンドルの舵角に対するヨー角速度の勾配を様々に変化させた車両を用い、定常円旋回からの修正操舵などのタスクを与える官能評価実験を行なった。この官能評価実験の結果、ハンドルの舵角に対するヨー角速度の勾配の上限、すなわちこれ以上の勾配を設定した場合に操縦性が損なわれる、ハンドルの舵角に対するヨー角速度の勾配は、個人差があるものの0.35~0.38[1/s]の間にあることがわかった。この実験は、走行する速度を変更しながら実施されたが、この実験において、速度ごとの上限値の変化は見られなかった。なお、ハンドルの舵角に対するヨー角速度の勾配は、ヨー角速度の変化量Δrとハンドルの舵角の変化量Δδswとの比(Δr/Δδsw)である。
以上により、ハンドルの舵角に対するヨー角速度の勾配が、人間特性に基づいて予め求められた上限値に満たない操舵角領域では、上記(16)式に基づいて求められるヨー角速度を目標値とする。上記(16)式から演算されたハンドルの舵角に対するヨー角速度の勾配が上限値を越えるときには、図6の実線が示すように、ハンドルの舵角に対するヨー角速度の勾配を上限値に制約するようにヨー角速度の目標値を修正することが好ましい。
このように、ハンドルの舵角に対するヨー角速度の特性を設定することによって、車両運動の変化を過敏に感じる手前の大きな操舵角までの領域において、ドライバの視点から見た、ハンドルの基準位置の方向と前方注視点の方向とを一致させることができる。さらに大きな操舵角の領域では、車両運動の変化を過敏に感じることなく、少ない修正操舵角で車両を操縦することが可能となる。
本実施の形態では、ヨー角速度とハンドルの舵角の比であるヨー角速度ゲインkと、ハンドルの舵角δswとの関係を示すマップを求めるために、ハンドルの舵角に対するヨー角速度の勾配が上限値に満たない操舵角領域では、上記(16)式に基づいて算出されるヨー角速度を、ヨー角速度ゲインに変換した。また、ハンドルの舵角に対するヨー角速度の勾配が上限値を超える舵角領域では、ハンドルの舵角に対するヨー角速度の勾配を上限値とするように修正したヨー角速度を、ヨー角速度ゲインに変換した。これによって、図7に示すような、各車速毎に、ヨー角速度ゲインkとハンドルの舵角δswとの関係を示すマップが得られる。なお、上記図7の破線は、上記(16)式に基づいて導出されたヨー角速度ゲインを示し、実線は、上記(16)式から導出されるハンドルの舵角に対するヨー角速度の勾配が上限値を超えた場合にその上限値に制約した特性を示している。
以上説明した原理に基づいて、本実施の形態に係る車両操舵装置10のマップ記憶手段30には、上記図7の実線に示すような、各車速毎に、ハンドルの舵角とヨー角速度ゲインとの関係を定めたマップが記憶されている。
ヨーゲイン算出手段32は、車速センサ26によって検出された車速と、操舵角センサ28によって検出されたハンドルの舵角とに対応するヨー角速度ゲインの目標値を、マップ記憶手段30に記憶されたマップに従って算出する。
次に、上記のマップに基づいて算出される目標とするヨー角速度ゲインを実現するための制御方法について説明する。
目標とするヨー角速度ゲインは、ハンドルと前輪の実舵角を転舵する機構との間に設けたステアリングギヤ比可変機構16の特性を、車速に応じてアクティブに変更することにより実現される。前輪の実舵角δfとヨー角速度rとの間には、車両運動の動特性を無視すると、以下の(17)式で表される関係が成立している。
ただし、Cfは、前輪コーナリングパワーである。ハンドルの舵角δswと前輪実舵角δfとの間のステアリングギヤ比をgswとすると、以下の(18)式の関係が得られる。
上記(17)式、(18)式により、上記図6に示すマップから算出されるヨー角速度ゲインkを実現するためのステアリングギヤ比gswは、以下の(19)式で表される。
ギヤ比算出手段34は、上記(19)式に従って、ヨーゲイン算出手段32によって算出された目標とするヨー角速度ゲインkと、車速センサ26によって検出された車速vとに基づいて、ステアリングギヤ比を算出する。
ギヤ比制御手段36は、算出されたステアリングギヤ比に変更するようにギヤ比指令信号をステアリングギヤ比可変機構16へ出力して、ステアリングギヤ比を制御する。
次に、本実施の形態に係る車両操舵装置10の作用について説明する。車両操舵装置10を搭載した車両の走行中に、コンピュータ24において、図8に示すギヤ比制御処理ルーチンが実行される。
まず、ステップ100において、コンピュータ24は、車速センサ26より検出された車速及び操舵角センサ28より検出されたハンドルの舵角の各々を取得する。そして、ステップ102において、コンピュータ24は、マップ記憶手段30に記憶されたマップに従って、上記ステップ100で取得した車速及びハンドルの舵角からヨー角速度ゲインの目標値を算出する。
次のステップ104では、コンピュータ24は、上記ステップ100で取得した車速と上記ステップ102で算出されたヨー角速度ゲインの目標値とから、上記(19)式に従って、ヨー角速度ゲインの目標値を実現するためのステアリングギヤ比を算出する。そして、ステップ106において、コンピュータ24は、上記ステップ104で算出されたステアリングギヤ比に変更するようにギヤ比指令信号をステアリングギヤ比可変機構16へ出力して、ステアリングギヤ比を制御し、上記ステップ100へ戻る。
上記の処理が繰り返し実行されることにより、繰り返し算出されたヨー角速度ゲインの目標値が各々実現される。
以上説明したように、第1の実施の形態に係る車両操舵装置は、ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向と、ハンドルの基準位置の方向とを一致させるように定められたハンドルの舵角とヨー角速度ゲインとの関係を示すマップに従って、ヨー角速度ゲインの目標値を算出し、ステアリングギヤ比を制御する。これにより、車両操舵装置は、車両とドライバとの一体感を向上させることができ、ドライバが違和感を覚えることのない、ドライバの感覚に合った操舵を行うことができる。
ハンドルの基準位置の方向を前方注視点の方向に一致させることによって、車両との一体感が向上する点に着目し、ドライバから見える前方注視点の方向とハンドルの基準位置の方向が一致するようなヨー角速度ゲイン(操舵角からヨー角速度までのゲイン)を設定した。このようなヨー角速度ゲインは、前方注視角がハンドルの舵角のタンジェントに比例するようなステアリングギヤ比によって実現される。しかし、従来技術では、前方注視角がハンドルの舵角に比例するようにステアリングギヤ比が設定されており、上記のヨー角速度ゲインは、従来技術では実現できない特性である。
また、一定時間後の目標到達点と進行方向とのなす角度である前方注視角、及びヨー角速度は比例することから、本実施の形態の車両操舵装置は、ハンドルの舵角のタンジェントに比例するヨー角速度を出力する。これは、ハンドルを切り増すにしたがってヨー角速度ゲインが増加することを意味している。ハンドルの舵角に依存しないヨー角速度ゲインを有する従来技術では、比較的大きな操舵領域において、ハンドルの基準位置の方向と前方注視点の方向を一致させることができない。これに対し、本実施の形態に係る車両操舵装置では、大きな操舵領域においても、ハンドルの基準位置の方向と前方注視点の方向とが一致する結果、大きな操舵領域における一体感も向上させることができる。
また、本実施の形態に係る車両操舵装置では、ハンドルの舵角に対するヨー角速度の勾配を、人間特性に基づいて予め求められた上限値に制約することにより、大きな操舵角の領域において、ドライバが、車両運動の変化を過敏に感じることなく、少ない修正操舵角で車両を操縦することが可能となる。したがって、本実施の形態に係る車両操舵装置は、操縦性を損なうことなく、車両とドライバとの一体感を向上させることが可能となる。
次に、第2の実施の形態に係る車両操舵装置について説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
第2の実施の形態では、ヨー角速度の目標値を算出して、ヨー角速度の目標値を実現するようにステアリングギヤ比を制御している点が、第1の実施の形態と主に異なっている。
図9に示すように、第2の実施の形態に係る車両操舵装置のコンピュータ224は、ステアリングホイール12の舵角、車速、及びヨー角速度の関係を示すマップを予め記憶したマップ記憶手段230と、車速センサ26からの車速及び操舵角センサ28からの舵角に基づいて、マップ記憶手段230に記憶されたマップに従って、ヨー角速度の目標値を算出するヨーレート算出手段232と、算出されたヨー角速度を実現するステアリングギヤ比を算出するギヤ比算出手段234と、ギヤ比制御手段36とを備えている。
上記第1の実施の形態で説明した上記(16)式に対して、数値演算を行って解いた結果、図10の破線が示すような、ハンドルの舵角とヨー角速度との関係が、各車速毎に得られる。また、第1の実施の形態と同様に、ハンドルの舵角に対するヨー角速度の勾配を上限値に制約するようにヨー角速度の目標値を修正することにより、図10の実線に示すようなハンドルの舵角とヨー角速度との関係が、各車速毎に得られる。
本実施の形態に係る車両操舵装置のマップ記憶手段230には、各車速毎に、上記図10の実線に示すようなハンドルの舵角とヨー角速度との関係を定めたマップが記憶されている。
ヨーレート算出手段232は、車速センサ26によって検出された車速と、操舵角センサ28によって検出されたハンドルの舵角とに対応するヨー角速度を、マップ記憶手段230に記憶されたマップに従って算出する。
ギヤ比算出手段234は、ヨーレート算出手段232によって算出された目標とするヨー角速度rと、車速センサ26によって検出された車速vとに基づいて、上記(17)式に従って、目標とするヨー角速度rを実現する前輪実舵角δfを算出する。ギヤ比算出手段234は、算出された前輪実舵角δfと、操舵角センサ28によって検出されたハンドルの舵角δswとに基づいて、上記(18)式に従って、ステアリングギヤ比を算出する。
次に、第2の実施の形態に係るギヤ比制御処理ルーチンについて説明する。
まず、コンピュータ224は、車速センサ26より検出された車速及び操舵角センサ28より検出されたハンドルの舵角の各々を取得する。そして、コンピュータ224は、マップ記憶手段230に記憶されたマップに従って、上記で取得した車速及びハンドルの舵角に基づいてヨー角速度の目標値を算出する。
次に、コンピュータ224は、上記で取得した車速と上記で算出されたヨー角速度の目標値とから、上記(17)式、(18)式に従って、ヨー角速度の目標値を実現するためのステアリングギヤ比を算出する。そして、コンピュータ224は、上記で算出されたステアリングギヤ比に変更するようにギヤ比指令信号をステアリングギヤ比可変機構16へ出力して、ステアリングギヤ比を制御し、最初の処理へ戻る。
上記の処理が繰り返し実行されることにより、繰り返し算出されたヨー角速度の目標値が各々実現される。
以上説明したように、第2の実施の形態に係る車両操舵装置は、ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向と、ハンドルの基準位置の方向とを一致させるように定められたハンドルの舵角とヨー角速度との関係を示すマップに従って、ヨー角速度の目標値を算出し、ステアリングギヤ比を制御する。これにより、車両操舵装置は、車両とドライバとの一体感を向上させることができ、ドライバが違和感を覚えることのない、ドライバの感覚に合った操舵を行うことができる。
次に、第3の実施の形態に係る車両操舵装置について説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。
第3の実施の形態では、ハンドルの舵角に応じたステアリングギヤ比を機構的に実現している点が、第1の実施の形態と主に異なっている。
図11に示すように、第3の発明の実施の形態に係る車両操舵装置310では、ステアリングホイール12に連動する回動軸14に連結されたピニオン320が、図示を省略した操舵輪に連結されたラック軸22に噛合している。
従って、ステアリングホイール12の回転が、回動軸14を介して、ピニオン320に伝わり、ラック軸22がその軸方向(図1の矢印W方向)へ移動することによって、操舵輪が転舵する。
ピニオン320のピニオンギヤは、以下のように設計されている。
まず、上記第1の実施の形態で説明した上記図7の実線が示す車速毎のハンドルの舵角とヨー角速度ゲインとの関係から、特定速度(例えば、50~60km)におけるハンドルの舵角とヨー角速度ゲインとの関係が求められる。
求められたハンドルの舵角とヨー角速度ゲインとの関係と、上記(19)式とに基づいて、ハンドルの舵角に応じたステアリングギヤ比が求められる。
求められたハンドルの舵角に応じたステアリングギヤ比を実現するように、ピニオン320のピニオンギヤが設計される。
本実施の形態に係る車両操舵装置310を搭載した車両は、ピニオン320のピニオンギヤにより、ハンドルの舵角に応じて、ヨー角速度ゲインの目標値を実現するようなステアリングギヤ比を有する。
これによって、車両操舵装置310は、特定速度で走行しているときには、車両運動の変化を過敏に感じる手前の大きな操舵角までの領域において、ドライバの視点から見た、ハンドルの基準位置の方向と前方注視点の方向とを一致させることができる。さらに大きな操舵角の領域では、ドライバは、車両運動の変化を過敏に感じることなく、少ない修正操舵角で車両を操縦することが可能となる。
なお、上記の実施の形態では、第1の実施の形態で用いたマップが示すハンドルの舵角とヨー角速度ゲインの関係に従って、ステアリングギヤ比が設計される場合を例に説明したが、これに限定されるものではない。第2の実施の形態で説明したマップが示すハンドルの舵角とヨー角速度の関係に従って、ステアリングギヤ比が設計されてもよい。この場合には、まず、上記第2の実施の形態で説明した、車速毎の上記図10の実線が示すハンドルの舵角とヨー角速度との関係から、特定速度(例えば、50~60km)におけるハンドルの舵角とヨー角速度との関係が求められる。求められたハンドルの舵角とヨー角速度との関係と、上記(17)式、(18)式とに基づいて、ハンドルの舵角に応じたステアリングギヤ比が求められる。求められたハンドルの舵角に応じたステアリングギヤ比を実現するように、ピニオン320のピニオンギヤが設計される。
また、上記の第1の実施の形態~第3の実施の形態では、前輪の操舵が制御される場合を例に説明したが、これに限定されるものではない。後輪の操舵が制御されてもよい。この場合には、後輪の実舵角とヨー角速度との間の関係を用いて導出される式に基づいて、ヨー角速度ゲインの目標値又はヨー角速度の目標値を実現する後輪のステアリングギヤ比が算出される。また、前輪及び後輪の双方の操舵が制御されてもよい。この場合には、前輪の実舵角と後輪の実舵角とヨー角速度との間の関係を用いて導出される式に基づいて、ヨー角速度ゲインの目標値又はヨー角速度の目標値を実現する前後輪のステアリングギヤ比が算出される。
10、310 車両操舵装置
12 ステアリングホイール
16 ステアリングギヤ比可変機構
20、320 ピニオン
24、224 コンピュータ
26 車速センサ
28 操舵角センサ
30、230 マップ記憶手段
32 ヨーゲイン算出手段
34、234 ギヤ比算出手段
36 ギヤ比制御手段
232 ヨーレート算出手段
12 ステアリングホイール
16 ステアリングギヤ比可変機構
20、320 ピニオン
24、224 コンピュータ
26 車速センサ
28 操舵角センサ
30、230 マップ記憶手段
32 ヨーゲイン算出手段
34、234 ギヤ比算出手段
36 ギヤ比制御手段
232 ヨーレート算出手段
Claims (9)
- ドライバの視点から見た、車両の走行する目標コース上の予め定められた前方注視時間後の目標到達点の方向と、ハンドルの基準位置の方向とを対応させるように予め定められた、前記ハンドルの舵角と車両に発生するヨー角速度との関係を実現する操舵装置。
- 車両のステアリングギヤ比によって前記ハンドルの操舵角とヨー角速度との関係を実現する請求項1記載の操舵装置。
- 前記前方注視時間を、2.5秒~3.5秒とした請求項1記載の操舵装置。
- 前記ハンドルの舵角と前記ヨー角速度との関係を、前記ハンドルの舵角と車両に発生するロール角との相対角のタンジェントに比例するヨー角速度を発生させるように定めた請求項1記載の操舵装置。
- 前記ハンドルの舵角と車両に発生するロール角との相対角のタンジェントに比例するヨー角速度を発生させると共に、前記ハンドルの舵角に対するヨー角速度の勾配が、人間特性に基づいて予め求められた上限値に制約されるように、前記ハンドルの舵角と前記ヨー角速度との関係を定めた請求項4記載の操舵装置。
- 前記上限値を、0.35~0.38[1/s]とした請求項5記載の操舵装置。
- 前記車両の車速を検出する車速検出部と、
前記ハンドルの舵角を検出する舵角検出部と、
前記車速検出部によって検出された車速、前記舵角検出部によって検出された前記ハンドルの舵角、及び前記ハンドルの舵角と車速及び前記ヨー角速度との関係に基づいて、ヨー角速度ゲインを算出するヨー角速度ゲイン算出部と、
前記ヨー角速度ゲイン算出部によって算出されたヨー角速度ゲインを実現するように、ステアリングギヤ比を制御する制御部と、
を含む請求項1記載の操舵装置。 - 前記ヨー角速度ゲイン算出部は、前記車速検出部によって検出された車速、前記舵角検出部によって検出された前記ハンドルの舵角、及び前記ハンドルの舵角と車速及び前記ヨー角速度との関係から予め求められた前記ハンドルの舵角とヨー角速度ゲインとの関係に基づいて、ヨー角速度ゲインを算出する請求項7記載の操舵装置。
- 前記車両の車速を検出する車速検出部と、
前記ハンドルの舵角を検出する舵角検出部と、
前記車速検出部によって検出された車速、前記舵角検出部によって検出された前記ハンドルの舵角、及び前記ハンドルの舵角と車速及び前記ヨー角速度との関係に基づいて、目標ヨー角速度を算出するヨー角速度算出部と、
前記ヨー角速度算出部によって算出された目標ヨー角速度を実現するように、ステアリングギヤ比を制御する制御部と、
を含む請求項1記載の操舵装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/496,767 US8515623B2 (en) | 2010-01-14 | 2011-01-11 | Steering apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010006200A JP5393495B2 (ja) | 2010-01-14 | 2010-01-14 | 操舵装置 |
JP2010-006200 | 2010-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011086998A1 true WO2011086998A1 (ja) | 2011-07-21 |
Family
ID=44304272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050296 WO2011086998A1 (ja) | 2010-01-14 | 2011-01-11 | 操舵装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8515623B2 (ja) |
JP (1) | JP5393495B2 (ja) |
WO (1) | WO2011086998A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143820A (ja) * | 2010-01-14 | 2011-07-28 | Toyota Central R&D Labs Inc | 操舵装置 |
CN107878557A (zh) * | 2016-09-30 | 2018-04-06 | 新乡航空工业(集团)有限公司 | 一种汽车智能电动助力转向系统 |
CN110871794A (zh) * | 2018-08-31 | 2020-03-10 | 上汽通用汽车有限公司 | 智能驾驶汽车路径跟随方法和智能驾驶汽车路径跟随系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5588388B2 (ja) | 2011-03-25 | 2014-09-10 | 株式会社豊田中央研究所 | 操舵装置 |
JP2016030587A (ja) * | 2014-07-30 | 2016-03-07 | 株式会社豊田中央研究所 | 到達予測点提示装置、及びプログラム |
JP6963490B2 (ja) * | 2017-12-15 | 2021-11-10 | 株式会社デンソー | 車両制御装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151133A (ja) * | 1999-11-24 | 2001-06-05 | Mitsubishi Motors Corp | 車両用舵角比可変操舵装置 |
JP2003127886A (ja) * | 2001-10-29 | 2003-05-08 | Honda Motor Co Ltd | 車両操舵装置 |
WO2008136456A1 (ja) * | 2007-05-02 | 2008-11-13 | Toyota Jidosha Kabushiki Kaisha | 車両挙動制御装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0558324A (ja) * | 1991-09-05 | 1993-03-09 | Toyota Motor Corp | 車両運動制御装置 |
JP4639545B2 (ja) * | 2001-07-19 | 2011-02-23 | 日産自動車株式会社 | 車両用操舵制御装置 |
JP4205442B2 (ja) * | 2003-01-16 | 2009-01-07 | 本田技研工業株式会社 | 操舵装置 |
JP4148022B2 (ja) * | 2003-05-22 | 2008-09-10 | 日産自動車株式会社 | 車両用操舵制御装置 |
JP4269994B2 (ja) * | 2004-03-25 | 2009-05-27 | 三菱ふそうトラック・バス株式会社 | 車両のステア特性制御装置 |
JP4398300B2 (ja) * | 2004-05-19 | 2010-01-13 | 本田技研工業株式会社 | 車両操舵装置 |
JP5040134B2 (ja) * | 2006-03-22 | 2012-10-03 | トヨタ自動車株式会社 | 車両制御装置及び方法 |
-
2010
- 2010-01-14 JP JP2010006200A patent/JP5393495B2/ja not_active Expired - Fee Related
-
2011
- 2011-01-11 WO PCT/JP2011/050296 patent/WO2011086998A1/ja active Application Filing
- 2011-01-11 US US13/496,767 patent/US8515623B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151133A (ja) * | 1999-11-24 | 2001-06-05 | Mitsubishi Motors Corp | 車両用舵角比可変操舵装置 |
JP2003127886A (ja) * | 2001-10-29 | 2003-05-08 | Honda Motor Co Ltd | 車両操舵装置 |
WO2008136456A1 (ja) * | 2007-05-02 | 2008-11-13 | Toyota Jidosha Kabushiki Kaisha | 車両挙動制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011143820A (ja) * | 2010-01-14 | 2011-07-28 | Toyota Central R&D Labs Inc | 操舵装置 |
CN107878557A (zh) * | 2016-09-30 | 2018-04-06 | 新乡航空工业(集团)有限公司 | 一种汽车智能电动助力转向系统 |
CN107878557B (zh) * | 2016-09-30 | 2019-11-29 | 新乡航空工业(集团)有限公司 | 一种汽车智能电动助力转向系统 |
CN110871794A (zh) * | 2018-08-31 | 2020-03-10 | 上汽通用汽车有限公司 | 智能驾驶汽车路径跟随方法和智能驾驶汽车路径跟随系统 |
Also Published As
Publication number | Publication date |
---|---|
US20120173082A1 (en) | 2012-07-05 |
JP2011143821A (ja) | 2011-07-28 |
JP5393495B2 (ja) | 2014-01-22 |
US8515623B2 (en) | 2013-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5588388B2 (ja) | 操舵装置 | |
JP6489135B2 (ja) | 車両の運転支援装置 | |
CN108297936B (zh) | 车辆的驾驶辅助装置 | |
JP4492471B2 (ja) | パワーステアリング装置。 | |
US8738230B2 (en) | Steering control apparatus for vehicle | |
JP6515754B2 (ja) | 車両の操舵反力制御装置 | |
JP5569631B2 (ja) | 車線維持支援方法及び車線維持支援装置 | |
WO2019240002A1 (ja) | 車両制御装置、車両制御方法、及び車両制御システム | |
WO2011086998A1 (ja) | 操舵装置 | |
JP4280682B2 (ja) | 車両の操舵装置 | |
JP5386873B2 (ja) | 車両用操舵装置及び車両用操舵方法 | |
JP2007296947A (ja) | 車両の操舵装置 | |
JP6637553B1 (ja) | 車両制御装置 | |
JP2018047827A (ja) | 操舵制御装置 | |
JP2016030587A (ja) | 到達予測点提示装置、及びプログラム | |
JP5301877B2 (ja) | 車両用操舵制御装置 | |
JP4692403B2 (ja) | 車両の操舵装置 | |
US11505186B2 (en) | Vehicle control device | |
JP5254737B2 (ja) | 車両運動制御装置及びプログラム | |
JP4579056B2 (ja) | 車両用操舵装置 | |
JP5291640B2 (ja) | 操舵装置 | |
JP4797471B2 (ja) | 車両の制御装置 | |
JP4231423B2 (ja) | 車両の操舵装置 | |
JP5088008B2 (ja) | 車体スリップ角制御装置及びプログラム | |
JP4807017B2 (ja) | 車両の操舵制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 13496767 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11732868 Country of ref document: EP Kind code of ref document: A1 |