WO2011052570A1 - 有機光電変換素子及びその製造方法 - Google Patents
有機光電変換素子及びその製造方法 Download PDFInfo
- Publication number
- WO2011052570A1 WO2011052570A1 PCT/JP2010/068943 JP2010068943W WO2011052570A1 WO 2011052570 A1 WO2011052570 A1 WO 2011052570A1 JP 2010068943 W JP2010068943 W JP 2010068943W WO 2011052570 A1 WO2011052570 A1 WO 2011052570A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- type semiconductor
- semiconductor material
- photoelectric conversion
- solvent
- active layer
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/30—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/15—Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/115—Polyfluorene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/151—Copolymers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/20—Carbon compounds, e.g. carbon nanotubes or fullerenes
- H10K85/211—Fullerenes, e.g. C60
- H10K85/215—Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an organic photoelectric conversion element used for an organic photoelectric device such as an organic solar cell or an organic photosensor, and a method for producing the same.
- the organic photoelectric conversion element is an element including a pair of electrodes including an anode and a cathode, and an organic active layer provided between the pair of electrodes.
- one of the electrodes is made of a transparent material, and light is incident on the organic active layer from the transparent electrode side.
- Charges (holes and electrons) are generated in the organic active layer by the energy (h ⁇ ) of light incident on the organic active layer, and the generated holes are directed to the anode and the electrons are directed to the cathode. Therefore, the current (I) is supplied to the external circuit by connecting the external circuit to the electrode.
- the organic active layer is composed of an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor).
- an electron-accepting compound (n-type semiconductor) and an electron-donating compound (p-type semiconductor) are mixed and used as an organic active layer having a single-layer structure, and an electron-accepting layer containing an electron-accepting compound And an electron donating layer containing an electron donating compound may be joined to form an organic active layer having a two-layer structure (see, for example, Patent Document 1).
- the former organic active layer having a single layer structure is referred to as a bulk hetero organic active layer
- the latter organic active layer having a two-layer structure is referred to as a heterojunction organic active layer.
- the electron-accepting compound and the electron-donating compound constitute a phase of a fine and complex shape that continues from one electrode side to the other electrode side, and A complex interface is formed while being separated. Therefore, in the bulk hetero type organic active layer, the phase containing the electron-accepting compound and the phase containing the electron-donating compound are in contact with each other through an interface having a very large area. Therefore, an organic photoelectric conversion element having a bulk hetero-type organic active layer has a heterojunction type organic activity in which a layer containing an electron-accepting compound and a layer containing an electron-donating compound are in contact with each other through one flat interface. Compared with the organic photoelectric conversion element which has a layer, higher photoelectric conversion efficiency is obtained.
- the photoelectric conversion element there is an inorganic photoelectric conversion element using an inorganic semiconductor material such as crystalline silicon or amorphous silicon in an active layer in addition to the above-described organic photoelectric conversion element.
- the organic photoelectric conversion element has an advantage that the organic active layer can be easily produced at room temperature by a coating method or the like and is lightweight, but has a problem that the photoelectric conversion efficiency is low. Regardless of whether it is organic or inorganic, there is a strict command to improve photoelectric conversion efficiency with respect to photoelectric conversion elements. At present, improvement in photoelectric conversion efficiency is required.
- the present invention has been made in view of the above-described conventional circumstances, and an object thereof is to provide an organic photoelectric conversion element having high photoelectric conversion efficiency and a method for manufacturing the same.
- the present invention provides an organic photoelectric conversion element adopting the following configuration and a method for manufacturing the same.
- An organic photoelectric conversion element formed using a solution The difference between the solubility parameter of the first p-type semiconductor material and the solubility parameter of the solvent is 2.9 to 6.5, and the difference between the solubility parameter of the n-type semiconductor material and the solubility parameter of the solvent is 0.
- the organic photoelectric conversion element which is -5.
- the p-type semiconductor material constituting the organic active layer further includes a second p-type semiconductor material, and the difference between the solubility parameter of the second p-type semiconductor material and the solubility parameter of the solvent is 2.8 to The organic photoelectric conversion element according to the above [1], which is 6.5.
- a manufacturing method for obtaining an organic photoelectric conversion element formed using a solution The difference between the solubility parameter of the first p-type semiconductor material and the solubility parameter of the solvent is 2.9 to 6.5, and the difference between the solubility parameter of the n-type semiconductor material and the solubility parameter of the solvent is 0 to 5.
- a second p-type semiconductor material is further used as the p-type semiconductor material constituting the organic active layer, and the difference between the solubility parameter of the second p-type semiconductor material and the solubility parameter of the solvent is 2.8 to The production of the organic photoelectric conversion element according to [4] above, wherein the first p-type semiconductor material, the second p-type semiconductor material, the n-type semiconductor material, and the solvent are selected within a range of 6.5. Method.
- FIG. 1 is a plan cross-sectional configuration diagram of an organic photoelectric conversion element showing a phase separation structure of a bulk hetero active layer.
- Organic active layer 2 Transparent first electrode (anode) 3 Second electrode (cathode) 4 First intermediate layer (hole transport layer) 5 Second intermediate layer (electron transport layer) 6 p-type region 7 n-type region 8 interface region
- the organic photoelectric conversion element according to the present invention has an anode, a cathode, and an organic active layer provided between the anode and the cathode, and the organic active layer is a first p-type.
- An organic photoelectric conversion element formed using a solution containing a semiconductor material, an n-type semiconductor material, and a solvent, wherein a difference between a solubility parameter of the first p-type semiconductor material and a solubility parameter of the solvent is 2. 9 to 6.5, and the difference between the solubility parameter of the n-type semiconductor material and the solubility parameter of the solvent is 0 to 5.
- the p-type semiconductor material constituting the organic active layer may further include a second p-type semiconductor material.
- the solubility parameter of the second p-type semiconductor material, the solubility parameter of the solvent, The difference is 2.8 to 6.5.
- solubility parameter (Solubility Parameter ( ⁇ ): SP value) is a value defined by the regular solution theory introduced by Hildebrand, and is known to be a measure of the solubility of a binary solution. ing. In regular solution theory, it is assumed that the force acting between the solvent and the solute is only an intermolecular force, so the solubility parameter is used as a measure of the intermolecular force. Although an actual solution is not necessarily a regular solution, it is empirically known that the smaller the difference between the SP values of the two components, the greater the solubility.
- the SP value between the three parties is obtained.
- the bulk hetero active layer having the most preferable phase separation structure that is, the interface region between the p-type region and the n-type region (electron / hole exciton generation region and electron and The optimal solvent can be determined to obtain a bulk hetero-active layer with an increased total volume of the hole transfer path region.
- a bulk hetero active layer having a most suitable phase separation structure that is, it is possible to determine an optimum solvent for obtaining a bulk hetero active layer in which the total area of the interface between the p-type region and the n-type region is increased. Such an effect can be obtained even when two or more kinds of materials are used as the p-type semiconductor material. Therefore, in order to widen the light wavelength absorption wavelength region and increase the light conversion efficiency, the two light absorption edge wavelengths are different from each other. Even when more than one type of p-type semiconductor material is selected, the optimum solvent can be determined, and as a result, a bulk hetero-active layer having the most suitable phase separation structure can be prepared.
- an organic photoelectric conversion element having high photoelectric conversion efficiency can be efficiently produced.
- the organic active layer is composed of a coating film of a solution comprising a p-type semiconductor material, an n-type semiconductor material, and a solvent. Each SP value is selected to have a predetermined difference from the solvent SP value.
- the photoelectric conversion element of the present invention is usually formed on a substrate.
- the substrate may be any substrate that does not chemically change when the electrodes are formed and the organic layer is formed.
- Examples of the material for the substrate include glass, plastic, polymer film, and silicon.
- the opposite electrode that is, the electrode far from the substrate
- the transparent or translucent electrode material examples include a conductive metal oxide film and a translucent metal thin film. Specifically, it is manufactured using indium oxide, zinc oxide, tin oxide, and conductive materials such as indium tin oxide (ITO), indium zinc oxide (IZO), and NESA that are composites thereof. A film, gold, platinum, silver, copper or the like is used. Among these electrode materials, ITO, indium / zinc / oxide, and tin oxide are preferable.
- the method for producing the electrode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and the like.
- the other electrode may not be transparent, and as the electrode material of the electrode, a metal, a conductive polymer, or the like can be used.
- the electrode material include, for example, lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, aluminum, scandium, vanadium, zinc, yttrium, indium, cerium, samarium, europium, terbium, ytterbium, and the like.
- alloys thereof or one selected from the group consisting of one or more of the above metals and gold, silver, platinum, copper, manganese, titanium, cobalt, nickel, tungsten, and tin
- the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
- an additional intermediate layer (such as a charge transport layer) other than the photoorganic active layer may be used.
- an alkali metal such as lithium fluoride, a halide of an alkaline earth metal, an oxide, or the like can be used.
- fine particles of inorganic semiconductor such as titanium oxide, PEDOT (poly-3,4-ethylenedioxythiophene), and the like can be given.
- the organic active layer included in the photoelectric conversion element of the present invention includes a p-type semiconductor material and an n-type semiconductor material, and is obtained by forming a film obtained by dissolving these materials in a solvent.
- the organic active layer is formed using a solution containing one type of p-type semiconductor material (first p-type semiconductor material), one type of n-type semiconductor material, and a solvent
- first p-type semiconductor material The difference between the solubility parameter and the solvent solubility parameter is 2.9 to 6.5, and the difference between the solubility parameter of the n-type semiconductor material and the solvent solubility parameter is 0 to 5.
- a p-type semiconductor material, an n-type semiconductor material, and a solvent are selected.
- the difference between the solubility parameter of the second p-type semiconductor material and the solubility parameter of the solvent is within a range of 2.8 to 6.5.
- the first p-type semiconductor material, the n-type semiconductor material, and the solvent are selected.
- the total weight of the p-type semiconductor material is set to 100, and the weight of the second p-type semiconductor material is set to 50 or less. Is preferred.
- the difference in SP value between the three is within the predetermined range.
- An optimum solvent can be determined for obtaining a terror-type active layer.
- FIG. 1 is a schematic diagram showing a phase separation structure of the bulk hetero active layer.
- FIG. 1 shows a plane cross-sectional configuration of a general organic photoelectric conversion element having a bulk hetero active layer 1.
- the organic active layer 1 is formed between a transparent first electrode (for example, an anode) 2 and a second electrode (for example, a cathode).
- a first intermediate layer 4 such as a hole transport layer is provided between the organic active layer 1 and the first electrode (anode) 2 as necessary, and the organic active layer 1 and the second electrode (for example, If necessary, a second intermediate layer 5 such as an electron transport layer is provided between the cathode and the cathode.
- a p-type region 6 made of a p-type semiconductor material and an n-type region 7 made of an n-type semiconductor material extend from one electrode 2 side to the other electrode 3 side.
- the region (phase) of continuous fine and complicated shape is comprised, and it isolate
- excitons When light enters the organic active layer 1 from the transparent electrode side, excitons (electron / hole clone combinations) are generated in the p-type region 6 and the n-type region 7. When the generated excitons move and reach the interface region (depletion layer) 8, electrons and holes are separated due to differences in HOMO energy and LUMO energy of the p-type region 6 and the n-type region 7 in the interface region 8. Then, charges (electrons and holes) that can move independently are generated. The generated electrons go to the cathode 3 using the interface region 8 as a movement path, and the holes go to the anode 2 similarly using the interface region 8 as a movement path. As a result, an electromotive force is generated in the organic photoelectric conversion element.
- the number of p-type regions 6 and n-type regions 7 formed per unit volume of the organic active layer 1 is large, and each of the electrodes 2, 3 or both intermediate layers 4, 5 provided as necessary.
- the case where the p-type region 6 and the n-type region 7 are in the shape and form described above is the optimum phase separation structure in the present invention.
- the difference in SP value between the three is within the predetermined range.
- a bulk hetero active layer having a most suitable phase separation structure is formed.
- the optimum solvent to obtain can be determined. Such an effect can be obtained even when two or more types of materials are used as the p-type semiconductor material. Therefore, in order to increase the light absorption wavelength range and increase the light conversion efficiency, two types having different light absorption edge wavelengths can be used. Even when the above p-type semiconductor material is selected, the optimum solvent can be determined, and as a result, a bulk hetero active layer having the most suitable phase separation structure can be prepared.
- the p-type semiconductor material is an electron donating compound, for example, pyrazoline derivative, arylamine derivative, stilbene derivative, triphenyldiamine derivative, oligothiophene and its derivative, polyvinylcarbazole and its derivative, polysilane and its derivative, side chain or main chain.
- Examples thereof include p-type semiconductor polymers such as polysiloxane derivatives having an aromatic amine in the chain, polyaniline and derivatives thereof, polythiophene and derivatives thereof, polypyrrole and derivatives thereof, polyphenylene vinylene and derivatives thereof, and polythienylene vinylene and derivatives thereof.
- suitable p-type semiconductor polymers include organic polymer compounds having a structural unit represented by the following structural formula (1).
- organic polymer compound a copolymer of a compound having a structural unit represented by the structural formula (1) and a compound having a structural unit represented by the following structural formula (2) can be more preferably used. .
- Ar 1 and Ar 2 are the same or different and each represents a trivalent heterocyclic group.
- R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and are a hydrogen atom, a halogen atom, an alkyl group, an alkyloxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, Arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide group, acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, 1
- a valent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, arylalkynyl group, carboxyl group or cyano group is represented.
- R 50 is a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, acyl group, acyloxy group, amide Group, acid imide group, amino group, substituted amino group, substituted silyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, monovalent heterocyclic group, heterocyclic oxy group, heterocyclic thio group, arylalkenyl group, An arylalkynyl group, a carboxyl group or a cyano group is represented.
- R 51 is an alkyl group having 6 or more carbon atoms, an alkyloxy group having 6 or more carbon atoms, an alkylthio group having 6 or more carbon atoms, an aryl group having 6 or more carbon atoms, an aryloxy group having 6 or more carbon atoms, or 6 or more carbon atoms.
- copolymer examples include a polymer compound A that is a copolymer of two compounds represented by the following structural formula (3) and a polymer represented by the following structural formula (4).
- Compound B is used.
- the n-type semiconductor material is an electron accepting compound, for example, oxadiazole derivatives, anthraquinodimethane and its derivatives, benzoquinone and its derivatives, naphthoquinone and its derivatives, anthraquinone and its derivatives, tetracyanoanthraquinodimethane and its derivatives, fluorenone derivatives, diphenyldicyanoethylene and derivatives thereof, diphenoquinone derivatives, 8-hydroxyquinoline and metal complexes of derivatives thereof, polyquinoline and derivatives thereof, polyquinoxaline and derivatives thereof, polyfluorene and derivatives thereof, fullerenes such as C 60 and Examples thereof include phenanthrene derivatives such as bathocuproine, metal oxides such as titanium oxide, and carbon nanotubes.
- the electron-accepting compound titanium oxide, carbon nanotubes, fullerenes, and fullerene derivatives are preferable, and fullerenes and
- fullerene examples include C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, such as C 84 fullerene, and the like.
- fullerene derivatives include C 60 fullerene derivatives, C 70 fullerene derivatives, C 76 fullerene derivatives, C 78 fullerene derivatives, and C 84 fullerene derivatives. Specific examples of the fullerene derivative include the following.
- fullerene derivatives include [6,6] phenyl-C61 butyric acid methyl ester (C60PCBM, [6,6] -Phenyl C61 butyric acid methyl ester), [6,6] phenyl-C71 butyric acid methyl ester (C70PCBM). , [6,6] -Phenyl C71 butyric acid methyl ester), [6,6] Phenyl-C85 butyric acid methyl ester (C84PCBM, [6,6] -Phenyl C85 butyric acid methyl ester), [6,6] Chenyl And C61 butyric acid methyl ester ([6,6] -Thienyl C61 butyric acid methyl ester).
- the ratio of the fullerene derivative is preferably 10 to 1000 parts by weight and more preferably 20 to 500 parts by weight with respect to 100 parts by weight of the electron donating compound. .
- the thickness of the photoorganic active layer is usually preferably 1 nm to 100 ⁇ m, more preferably 2 nm to 1000 nm, still more preferably 5 nm to 500 nm, and more preferably 20 nm to 200 nm.
- the photo-organic active layer is a bulk hetero type and can be formed by film formation from a solution containing a p-type semiconductor material, an n-type semiconductor material, and a solvent.
- the solvent used for film formation from a solution dissolves the p-type semiconductor material and the n-type semiconductor material, and the SP value of each of the p-type semiconductor material and the n-type semiconductor material used is the SP value. There is no particular limitation as long as the difference falls within the predetermined range described above.
- Examples of the solvent included in the selection target include unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, and tetrachloride.
- unsaturated hydrocarbon solvents such as toluene, xylene, mesitylene, tetralin, decalin, bicyclohexyl, n-butylbenzene, sec-butylbenzene, tert-butylbenzene, and tetrachloride.
- Halogenated saturated hydrocarbon solvents such as carbon, chloroform, dichloromethane, dichloroethane, chlorobutane, bromobutane, chloropentane, bromopentane, chlorohexane, bromohexane, chlorocyclohexane, bromocyclohexane, chlorobenzene, dichlorobenzene, trichlorobenzene, etc.
- Examples thereof include unsaturated hydrocarbon solvents, ether solvents such as tetrahydrofuran and tetrahydropyran.
- the above-mentioned p-type semiconductor material and n-type semiconductor material can usually be dissolved in the solvent in an amount of 0.1% by weight or more.
- spin coating method for film formation, spin coating method, casting method, micro gravure coating method, gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, gravure printing, flexographic printing Coating methods such as a printing method, an offset printing method, an ink jet printing method, a dispenser printing method, a nozzle coating method, and a capillary coating method can be used.
- spin coating, flexographic printing, gravure printing, ink jet printing, and dispenser printing are preferred.
- the photoelectric conversion element of the present invention can be operated as an organic thin film solar cell by generating a photovoltaic force between the electrodes by irradiating light such as sunlight from a transparent or translucent electrode. It can also be used as an organic thin film solar cell module by integrating a plurality of organic thin film solar cells.
- a photocurrent flows and it can be operated as an organic photosensor. It can also be used as an organic image sensor by integrating a plurality of organic photosensors.
- the organic thin film solar cell can basically have the same module structure as a conventional solar cell module.
- the solar cell module generally has a structure in which cells are formed on a support substrate such as metal or ceramic, and the cell is covered with a filling resin or protective glass, and light is taken in from the opposite side of the support substrate. It is also possible to use a transparent material such as tempered glass for the support substrate, configure a cell thereon, and take in light from the transparent support substrate side.
- a module structure called a super straight type, a substrate type, and a potting type, a substrate integrated module structure used in an amorphous silicon solar cell, and the like are known. Even in an organic thin-film solar cell to which the organic photoelectric conversion element of the present invention is applied, these module structures can be appropriately selected depending on the purpose of use, the place of use and the environment.
- a typical super straight type or substrate type module cells are arranged at regular intervals between support substrates that are transparent on one or both sides and treated with antireflection, and adjacent cells are connected by metal leads or flexible wiring. It is connected, and the collector electrode is arrange
- plastic materials such as ethylene vinyl acetate (EVA) may be used between the substrate and the cell in the form of a film or a filling resin depending on the purpose in order to protect the cell and improve the current collection efficiency.
- EVA ethylene vinyl acetate
- the surface protective layer is made of a transparent plastic film, or the protective function is achieved by curing the filling resin. It is possible to eliminate the supporting substrate on one side.
- the periphery of the support substrate is fixed in a sandwich shape with a metal frame in order to ensure internal sealing and module rigidity, and a sealing material is hermetically sealed between the support substrate and the frame. Further, if a flexible material is used for the cell itself, the support substrate, the filling material, and the sealing material, a solar cell can be formed on the curved surface.
- a solar cell using a flexible support such as a polymer film
- cells are sequentially formed while feeding out a roll-shaped support, cut to a desired size, and then the periphery is sealed with a flexible and moisture-proof material.
- the battery body can be produced.
- SCAF module structure described in Solar Energy Materials and Solar Cells, 48, p383-391.
- a solar cell using a flexible support can be used by being bonded and fixed to a curved glass or the like.
- Example 1 Transparent substrate-Transparent anode-Formation of hole transport layer
- a transparent glass substrate having a transparent electrode (anode) formed by sputtering and patterned with ITO having a thickness of about 150 nm was prepared.
- the glass substrate was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried.
- UV ozone apparatus to dry the substrate (UV-0 3 devices, Techno Vision Co., Ltd., model number "UV-312") was carried out UV-0 3 processing at.
- a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (manufactured by HC Starck B-Tech, trade name “Bytron P TP AI 4083”) is prepared. It filtered with the filter of 0.5 micron diameter. The filtered suspension was formed into a film with a thickness of 70 nm by spin coating on the side of the substrate on which the transparent electrode was provided. The obtained film was dried on a hot plate under an atmospheric environment at 200 ° C. for 10 minutes to form a hole transport layer on the transparent electrode.
- polymer compound A (first p-type semiconductor polymer) which is an electron-donating compound represented by the following structural formula (3) and poly (3-hexylthiophene) (P3HT) (second p-type semiconductor)
- P3HT poly (3-hexylthiophene)
- Two types of electron donating polymer materials (p-type semiconductor materials) and [6,6] -phenyl C61 butyric acid methyl ester ([6,6]) which is an electron accepting compound (n-type semiconductor material).
- ] -PCBM was prepared in a 2: 1: 4 orthodichlorobenzene solution. At this time, the concentration of the polymer compound A in the solution was 0.5% by weight.
- the prepared solution was spin-coated on the surface of the hole transport layer of the substrate, and then dried in an N 2 atmosphere. As a result, a bulk hetero organic active layer was formed on the hole transport layer.
- the polymer compound A which is a copolymer of the two compounds represented by the structural formula (3), had a polystyrene-equivalent weight average molecular weight of 17000 and a polystyrene-equivalent number average molecular weight of 5000. Further, the light absorption edge wavelength of the polymer A was 925 nm.
- the component structure of the organic active layer is set as follows. Since the selection of the solvent greatly affects the formation of the electron / hole transfer path in the active layer, that is, the phase separation structure of the pn semiconductor, the phase separation structure was controlled from the SP value. Since the solubility of the polymer compound A is very high, the SP value of the PCB which is the n-type semiconductor material is close to the SP value of the solvent, and the SP value of the polymer compound A which is the solvent and the p-type semiconductor material is Therefore, orthodichlorobenzene was selected as a solvent in order to obtain a certain value.
- the difference between the SP values of the first p-type semiconductor material and the solvent is 2.9 to 6.5, and the SP values of the second p-type semiconductor material and the solvent are SP.
- the difference between the values is 2.8 to 6.5, and the difference between the SP values of the n-type semiconductor material and the solvent needs to be 0 to 5.
- the SP value of chlorobenzene selected as the solvent was 19.58, the SP value of xylene was 18.05, the SP value of toluene was 18.30, the SP value of chloroform was 18.81, The SP value is 20.72.
- the SP value of the polymer compound A which is the first p-type semiconductor material has a difference from the SP value of orthodichlorobenzene in the range of 2.9 to 6.5.
- the SP value of P3HT, which is a semiconductor material, is 16.80
- the SP value of C60PCBM which is an n-type semiconductor material, is 22.45.
- the SP value of orthodichlorobenzene is 20.72. Accordingly, orthodichlorobenzene was selected as the optimum solvent.
- Example 2 Transparent substrate-Transparent anode-Formation of hole transport layer
- a transparent glass substrate having a transparent electrode (anode) formed by sputtering and patterned with ITO having a thickness of about 150 nm was prepared.
- the glass substrate was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried.
- UV ozone apparatus to dry the substrate (UV-0 3 devices, Techno Vision Co., Ltd., model number "UV-312") was carried out UV-0 3 processing at.
- a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (manufactured by HC Starck B-Tech, trade name “Bytron P TP AI 4083”) is prepared. It filtered with the filter of 0.5 micron diameter. The filtered suspension was formed into a film with a thickness of 70 nm by spin coating on the side of the substrate on which the transparent electrode was provided. The obtained film was dried on a hot plate under an atmospheric environment at 200 ° C. for 10 minutes to form a hole transport layer on the transparent electrode.
- polymer compound B (first p-type semiconductor polymer) which is an electron-donating compound represented by the following structural formula (4) and poly (3-hexylthiophene) (P3HT) (second p-type semiconductor)
- P3HT poly (3-hexylthiophene)
- Two types of electron-donating polymer materials (p-type semiconductor materials) and [6,6] -phenyl C61 butyric acid methyl ester ([6,6]) which is an electron-accepting compound (n-type semiconductor material).
- ] -PCBM was prepared in a 2: 1: 4 orthodichlorobenzene solution.
- the concentration of the polymer compound B in the solution at this time was 0.5% by weight.
- the prepared solution was spin-coated on the surface of the hole transport layer of the substrate, and then dried in an N 2 atmosphere. As a result, a bulk hetero organic active layer was formed on the hole transport layer.
- the polymer compound B represented by the structural formula (4) had a polystyrene equivalent weight average molecular weight of 17887 and a polystyrene equivalent number average molecular weight of 5,000. Further, the light absorption edge wavelength of the polymer A was 645 nm.
- the component structure of the organic active layer is set as follows.
- the difference between the SP values of the first p-type semiconductor material and the solvent is 2.9 to 6.5
- the SP values of the second p-type semiconductor material and the solvent are SP.
- the difference between the values is 2.8 to 6.5
- the difference between the SP values of the n-type semiconductor material and the solvent needs to be 0 to 5.
- the SP value of chlorobenzene selected as the solvent was 19.58, the SP value of xylene was 18.05, the SP value of toluene was 18.30, the SP value of chloroform was 18.81, The SP value is 20.72.
- the SP value of polymer compound B which is a p-type semiconductor material is 16.70
- the SP value of P3HT which is also a p-type semiconductor material is 16.80
- the C value of C60PCBM which is an n-type semiconductor material is The SP value is 22.45.
- the SP value of orthodichlorobenzene is 20.72. Accordingly, orthodichlorobenzene was selected as the optimum solvent.
- Example 3 Transparent substrate-Transparent anode-Formation of hole transport layer
- a transparent glass substrate having a transparent electrode (anode) formed by sputtering and patterned with ITO having a thickness of about 150 nm was prepared.
- the glass substrate was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried.
- UV ozone apparatus to dry the substrate was carried out UV-0 3 processing at.
- a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (manufactured by HC Starck B-Tech, trade name “Bytron P TP AI 4083”) is prepared. It filtered with the filter of 0.5 micron diameter. The filtered suspension was formed into a film with a thickness of 70 nm by spin coating on the side of the substrate on which the transparent electrode was provided. The obtained film was dried on a hot plate under an atmospheric environment at 200 ° C. for 10 minutes to form a hole transport layer on the transparent electrode.
- the component structure of the organic active layer is set as follows. In order to obtain an optimum phase separation structure, the difference between the SP values of the first p-type semiconductor material and the solvent is 2.9 to 6.5, and the difference between the SP values of the n-type semiconductor material and the solvent is Must be 0-5.
- the SP value of chlorobenzene selected as the solvent was 19.58, the SP value of xylene was 18.05, the SP value of toluene was 18.30, the SP value of chloroform was 18.81, The SP value is 20.72.
- the SP value of P3HT, which is a p-type semiconductor material is 16.80
- the SP value of C60PCBM which is an n-type semiconductor material, is 22.45.
- the SP value of orthodichlorobenzene is 20.72. Accordingly, orthodichlorobenzene was selected as the optimum solvent.
- Example 4 Transparent substrate-Transparent anode-Formation of hole transport layer
- a transparent glass substrate having a transparent electrode (anode) formed by sputtering and patterned with ITO having a thickness of about 150 nm was prepared.
- the glass substrate was washed with an organic solvent, an alkaline detergent, and ultrapure water and dried.
- UV ozone apparatus to dry the substrate (UV-0 3 devices, Techno Vision Co., Ltd., model number "UV-312") was carried out UV-0 3 processing at.
- a suspension of poly (3,4) ethylenedioxythiophene / polystyrene sulfonic acid (manufactured by HC Starck B-Tech, trade name “Bytron P TP AI 4083”) is prepared. It filtered with the filter of 0.5 micron diameter. The filtered suspension was formed into a film with a thickness of 70 nm by spin coating on the side of the substrate on which the transparent electrode was provided. The obtained film was dried on a hot plate under an atmospheric environment at 200 ° C. for 10 minutes to form a hole transport layer on the transparent electrode.
- the concentration of MEH-PPV in the solution was 0.5% by weight.
- the prepared solution was spin-coated on the surface of the hole transport layer of the substrate, and then dried in an N 2 atmosphere. As a result, a bulk hetero organic active layer was formed on the hole transport layer.
- the component structure of the organic active layer is set as follows.
- the difference between the SP values of the first p-type semiconductor material and the solvent is 2.9 to 6.5
- the SP values of the second p-type semiconductor material and the solvent are SP.
- the difference between the values is 2.8 to 6.5
- the difference between the SP values of the n-type semiconductor material and the solvent needs to be 0 to 5.
- the SP value of chlorobenzene selected as the solvent was 19.58, the SP value of xylene was 18.05, the SP value of toluene was 18.30, the SP value of chloroform was 18.81, The SP value is 20.72.
- the SP value of poly (2-methoxy-5- (2′-ethylhexyloxy) -1,4-phenylenevinylene) (MEH-PPV), which is the first p-type semiconductor material, is that of orthodichlorobenzene.
- the difference from the SP value is in the range of 2.9 to 6.5, the SP value of P3HT which is the second p-type semiconductor material is 16.80, and the SP value of C60PCBM which is the n-type semiconductor material is 22.45.
- the SP value of orthodichlorobenzene is 20.72. Accordingly, orthodichlorobenzene was selected as the optimum solvent.
- the photoelectric conversion efficiencies of the photoelectric conversion elements produced in Examples 1 to 4 are Comparative Examples 1, 2, and 3 corresponding to Examples 1, 2, 3, and 4, respectively. , 4 showed higher values than the respective photoelectric conversion efficiencies and short circuit current densities of the respective photoelectric conversion elements manufactured in (4).
- the organic photoelectric conversion element according to the present invention can improve the photoelectric conversion efficiency, is useful for a photoelectric device such as a solar cell or an optical sensor, and is particularly suitable for an organic solar cell.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Electromagnetism (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
通常、前者の1層構造の有機活性層はバルクへテロ型有機活性層と呼称され、後者の2層積層構造の有機活性層はヘテロジャンクション型有機活性層と呼称される。
有機、無機を問わず、光電変換素子に対して光電変換効率の向上という至上命令的な要望があるが、特に有機光電変換素子に対しては、製造上の利点があるだけに、より一層の光電変換効率の向上が求められているのが現状である。
前記第1のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.9~6.5であり、前記n型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が0~5である有機光電変換素子。
[2] 有機活性層を構成するp型半導体材料としてさらに第2のp型半導体材料を含み、該第2のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.8~6.5である、上記[1]に記載の有機光電変換素子。
[3] 有機活性層に含まれるp型半導体材料の重量の合計を100とした場合、第2のp型半導体材料の重量が50以下である、上記[2]に記載の有機光電変換素子。
[4] 陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、前記有機活性層が第1のp型半導体材料とn型半導体材料と溶媒とを含む溶液を用いて形成された有機光電変換素子を得るための製造方法であって、
前記第1のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.9~6.5となり、前記n型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が0~5となる範囲内で、前記第1のp型半導体材料、n型半導体材料、および溶媒を選択する有機光電変換素子の製造方法。
[5] 有機活性層を構成するp型半導体材料としてさらに第2のp型半導体材料を用い、該第2のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.8~6.5となる範囲内で、前記第1のp型半導体材料、第2のp型半導体材料、n型半導体材料、および溶媒を選択する、上記[4]に記載の有機光電変換素子の製造方法。
[6] 有機活性層に含まれるp型半導体材料の重量の合計を100とした場合、第2のp型半導体材料の重量を50以下に設定する、上記[5]に記載の有機光電変換素子の製造方法。
2 透明な第1の電極(陽極)
3 第2の電極(陰極)
4 第1の中間層(正孔輸送層)
5 第2の中間層(電子輸送層)
6 p型領域
7 n型領域
8 界面領域
そして、本発明者らの知見によれば、p型半導体材料、n型半導体材料、および溶媒を含む溶液を用いてバルクへテロ型の有機活性層を得る場合、前記3者間のSP値の差を所定の範囲内に設定することにより、最も好適な相分離構造を有するバルクへテロ型活性層、すなわちp型領域とn型領域の界面領域(電子・正孔励起子発生領域および電子及び正孔の移動パス領域)の総容積を増大させたバルクへテロ型活性層を得るために最適な溶媒を決定することができる。
本発明の光電変換素子の基本的形態としては、少なくとも一方が透明又は半透明である一対の電極と、p型の半導体材料(電子供与性化合物)とn型の半導体材料(電子受容性化合物)との有機組成物から形成されるバルクへテロ型の有機活性層を有する。有機活性層は、p型半導体材料とn型半導体材料と溶媒とを有してなる溶液の塗膜から構成され、使用する溶液は、後述のように、p型半導体材料とn型半導体材料の各SP値が溶媒のSP値と所定の差を有するように選択される。
透明又は半透明の電極から入射した光エネルギーがフラーレン誘導体等のn型半導体材料及び/又は共役高分子化合物等のp型半導体材料で吸収され、電子と正孔がクーロン結合してなる励起子を生成する。生成した励起子が移動して、電子受容性化合物と電子供与性化合物が隣接しているヘテロ接合界面に達すると、界面でのそれぞれのHOMO(最高占有分子軌道)エネルギー及びLUMO(最低非占有分子軌道)エネルギーの違いにより電子と正孔が分離し、独立に動くことができる電荷(電子と正孔)が発生する。発生したそれぞれの電荷は、それぞれ電極へ移動することにより外部へ電気エネルギー(電流)として取り出すことができる。
本発明の光電変換素子は、通常、基板上に形成される。この基板は、電極を形成し、有機物の層を形成する際に化学的に変化しないものであればよい。基板の材料としては、例えば、ガラス、プラスチック、高分子フィルム、シリコン等が挙げられる。不透明な基板の場合には、反対の電極(即ち、基板から遠い方の電極)が透明又は半透明であることが好ましい。
前記の透明又は半透明の電極材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が挙げられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、及びそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド(IZO)、NESA等の導電性材料を用いて作製された膜や、金、白金、銀、銅等が用いられる。これら電極材料の中でも、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。電極の作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、電極材料として、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体等の有機の透明導電膜を用いてもよい。
光電変換効率を向上させるための手段として光有機活性層以外の付加的な中間層(電荷輸送層など)を使用しても良い。中間層として用いられる材料としては、例えば、フッ化リチウム等のアルカリ金属、アルカリ土類金属のハロゲン化物、酸化物等を用いることができる。また、酸化チタン等の無機半導体の微粒子、PEDOT(ポリ-3,4-エチレンジオキシチオフェン)などが挙げられる。
本発明の光電変換素子に含まれる有機活性層は、p型半導体材料とn型半導体材料とを含み、これら材料を溶媒に溶解して得た溶液を成膜化して得られる。
図1は上記バルクへテロ型活性層の相分離構造を示す模式図である。図1はバルクへテロ型活性層1を有する一般的な有機光電変換素子の平断面構成を示している。有機活性層1は透明な第1の電極(例えば、陽極)2と第2の電極(例えば、陰極)との間に形成されている。有機活性層1と第1の電極(陽極)2との間には必要に応じて正孔輸送層などの第1の中間層4が設けられ、有機活性層1と第2の電極(例えば、陰極)との間には必要に応じて電子輸送層などの第2の中間層5が設けられる。
p型半導体材料は電子供与性化合物であり、例えば、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、オリゴチオフェン及びその誘導体、ポリビニルカルバゾール及びその誘導体、ポリシラン及びその誘導体、側鎖又は主鎖に芳香族アミンを有するポリシロキサン誘導体、ポリアニリン及びその誘導体、ポリチオフェン及びその誘導体、ポリピロール及びその誘導体、ポリフェニレンビニレン及びその誘導体、ポリチエニレンビニレン及びその誘導体等のp型半導体ポリマーが挙げられる。
さらに、好適なp型半導体ポリマーとして、下記構造式(1)で示される構造単位を有する有機高分子化合物を挙げることができる。
n型半導体材料は電子受容性化合物であり、例えば、オキサジアゾール誘導体、アントラキノジメタン及びその誘導体、ベンゾキノン及びその誘導体、ナフトキノン及びその誘導体、アントラキノン及びその誘導体、テトラシアノアントラキノジメタン及びその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン及びその誘導体、ジフェノキノン誘導体、8-ヒドロキシキノリン及びその誘導体の金属錯体、ポリキノリン及びその誘導体、ポリキノキサリン及びその誘導体、ポリフルオレン及びその誘導体、C60等のフラーレン類及びその誘導体、バソクプロイン等のフェナントレン誘導体、酸化チタンなどの金属酸化物、カーボンナノチューブ等が挙げられる。電子受容性化合物としては、好ましくは、酸化チタン、カーボンナノチューブ、フラーレン、フラーレン誘導体であり、特に好ましくはフラーレン、フラーレン誘導体である。
フラーレン誘導体としてはC60フラーレン誘導体、C70フラーレン誘導体、C76フラーレン誘導体、C78フラーレン誘導体、C84フラーレン誘導体が挙げられる。フラーレンの誘導体の具体的構造としては、以下のようなものが挙げられる。
本願発明では、光有機活性層は、バルクへテロ型であり、p型半導体材料、n型半導体材料、および溶媒を含む溶液からの成膜により形成することができる。
本発明の光電変換素子は、透明又は半透明の電極から太陽光等の光を照射することにより、電極間に光起電力が発生し、有機薄膜太陽電池として動作させることができる。有機薄膜太陽電池を複数集積することにより有機薄膜太陽電池モジュールとして用いることもできる。
有機薄膜太陽電池は、従来の太陽電池モジュールと基本的には同様のモジュール構造をとりうる。太陽電池モジュールは、一般的には金属、セラミック等の支持基板の上にセルが構成され、その上を充填樹脂や保護ガラス等で覆い、支持基板の反対側から光を取り込む構造をとるが、支持基板に強化ガラス等の透明材料を用い、その上にセルを構成してその透明の支持基板側から光を取り込む構造とすることも可能である。具体的には、スーパーストレートタイプ、サブストレートタイプ、ポッティングタイプと呼ばれるモジュール構造、アモルファスシリコン太陽電池などで用いられる基板一体型モジュール構造等が知られている。本発明の有機光電変換素子を適用した有機薄膜太陽電池でも使用目的や使用場所および環境により、適宜これらのモジュール構造を選択できる。
(透明基板-透明陽極-正孔輸送層の形成)
スパッタ法にて成膜された約150nmの膜厚のITOがパターニングされてなる透明電極(陽極)を表面に有する透明ガラス基板を準備した。このガラス基板を有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした。乾かした基板にUVオゾン装置(UV-03装置、テクノビジョン社製、型番「UV-312」)にてUV-03処理を行った。
正孔輸送層材料としてポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸(HCスタルクビーテック社製、商品名「Bytron P TP AI 4083」)の懸濁液を用意し、この懸濁液を0.5ミクロン径のフィルターでろ過した。濾過した懸濁液を、前記基板の透明電極がある面側に、スピンコートにより70nmの厚みで成膜した。得られた膜を大気環境下のホットプレート上で200℃で10分間乾燥して、透明電極上に正孔輸送層を形成した。
次に、下記構造式(3)に表される電子供与性化合物である高分子化合物A(第1のp型半導体ポリマー)とポリ(3-ヘキシルチオフェン)(P3HT)(第2のp型半導体ポリマー)の2種類の電子供与性高分子材料(p型半導体材料)と、電子受容性化合物(n型半導体材料)である[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)の重量比2:1:4のオルトジクロロベンゼン溶液を調整した。この際の高分子化合物Aの溶液中の濃度は0.5重量%とした。
調整した溶液を上記基板の正孔輸送層の表面にスピンコートした後、N2雰囲気中で乾燥を行った。これにより正孔輸送層上にバルクへテロ型の有機活性層が形成された。
溶媒の選定が活性層中の電子・正孔移動パスの形成、すなわちpn半導体の相分離構造に大きく影響をもたらすことから、相分離構造をSP値から制御した。高分子化合物Aの溶解性が非常に高いことからn型半導体材料であるPCBMと溶媒のSP値が近い値であること、溶媒とp型半導体材料である高分子化合物Aの各SP値をそれらの差がある一定の値とするため、溶媒としてオルトジクロロベンゼンを選択した。
これに対して第1のp型半導体材料である高分子化合物AのSP値は、オルトジクロロベンゼンのSP値との差が2.9~6.5の範囲内にあり、第2のp型半導体材料であるP3HTのSP値は16.80であり、n型半導体材料であるC60PCBMのSP値は22.45である。オルトジクロロベンゼンのSP値は20.72である。したがって、溶媒としてはオルトジクロロベンゼンを最適として選択した。
最後に、上記基板を抵抗加熱蒸着装置内に置き、有機活性層の上部にLiFを約2.3nm制膜して電子輸送層を形成し、続いてAlを約70nmの膜厚で成膜して陰極を形成した。その後、さらに封止材としてエポキシ樹脂(急速硬化型アラルダイト)を用いて陰極上にガラス基板を接着することで封止処理を施し、有機光電変換素子を得た。
得られた光電変換素子の形状は、2mm×2mmの正四角形であった。
(透明基板-透明陽極-正孔輸送層の形成)
スパッタ法にて成膜された約150nmの膜厚のITOがパターニングされてなる透明電極(陽極)を表面に有する透明ガラス基板を準備した。このガラス基板を有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした。乾かした基板にUVオゾン装置(UV-03装置、テクノビジョン社製、型番「UV-312」)にてUV-03処理を行った。
正孔輸送層材料としてポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸(HCスタルクビーテック社製、商品名「Bytron P TP AI 4083」)の懸濁液を用意し、この懸濁液を0.5ミクロン径のフィルターでろ過した。濾過した懸濁液を、前記基板の透明電極がある面側に、スピンコートにより70nmの厚みで成膜した。得られた膜を大気環境下のホットプレート上で200℃で10分間乾燥して、透明電極上に正孔輸送層を形成した。
次に、下記構造式(4)に表される電子供与性化合物である高分子化合物B(第1のp型半導体ポリマー)とポリ(3-ヘキシルチオフェン)(P3HT)(第2のp型半導体ポリマー)の2種類の電子供与性高分子材料(p型半導体材料)と、電子受容性化合物(n型半導体材料)である[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)の重量比2:1:4のオルトジクロロベンゼン溶液を調整した。この際の高分子化合物Bの溶液中の濃度は0.5重量%とした。
調整した溶液を上記基板の正孔輸送層の表面にスピンコートした後、N2雰囲気中で乾燥を行った。これにより正孔輸送層上にバルクへテロ型の有機活性層が形成された。
最適な相分離構造を得るためには、第1のp型半導体材料と溶媒の各SP値の差としては2.9~6.5であり、第2のp型半導体材料と溶媒の各SP値の差としては2.8~6.5であり、n型半導体材料と溶媒の各SP値の差としては0~5である必要がある。
これに対してp型半導体材料である高分子化合物BのSP値が16.70であり、同じくp型半導体材料であるP3HTのSP値は16.80であり、n型半導体材料であるC60PCBMのSP値は22.45である。オルトジクロロベンゼンのSP値は20.72である。したがって、溶媒としてはオルトジクロロベンゼンを最適として選択した。
最後に、上記基板を抵抗加熱蒸着装置内に置き、有機活性層の上部にLiFを約2.3nm制膜して電子輸送層を形成し、続いてAlを約70nmの膜厚で成膜して陰極を形成した。その後、さらに封止材としてエポキシ樹脂(急速硬化型アラルダイト)を用いて陰極上にガラス基板を接着することで封止処理を施し、有機光電変換素子を得た。
得られた光電変換素子の形状は、2mm×2mmの正四角形であった。
(透明基板-透明陽極-正孔輸送層の形成)
スパッタ法にて成膜された約150nmの膜厚のITOがパターニングされてなる透明電極(陽極)を表面に有する透明ガラス基板を準備した。このガラス基板を有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした。乾かした基板にUVオゾン装置(UV-03装置、テクノビジョン社製、型番「UV-312」)にてUV-03処理を行った。
正孔輸送層材料としてポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸(HCスタルクビーテック社製、商品名「Bytron P TP AI 4083」)の懸濁液を用意し、この懸濁液を0.5ミクロン径のフィルターでろ過した。濾過した懸濁液を、前記基板の透明電極がある面側に、スピンコートにより70nmの厚みで成膜した。得られた膜を大気環境下のホットプレート上で200℃で10分間乾燥して、透明電極上に正孔輸送層を形成した。
次に、電子供与性化合物(第1のp型半導体材料)であるポリ(3-ヘキシルチオフェン)(P3HT)と、電子受容性化合物(n型半導体材料)である[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)の重量比1:0.8のオルトジクロロベンゼン溶液を調整した。
調整した溶液を上記基板の正孔輸送層の表面にスピンコートした後、N2雰囲気中で乾燥を行った。これにより正孔輸送層上にバルクへテロ型の有機活性層が形成された。
最適な相分離構造を得るためには、第1のp型半導体材料と溶媒の各SP値の差としては2.9~6.5であり、n型半導体材料と溶媒の各SP値の差としては0~5である必要がある。
これに対してp型半導体材料であるP3HTのSP値は16.80であり、n型半導体材料であるC60PCBMのSP値は22.45である。オルトジクロロベンゼンのSP値は20.72である。したがって、溶媒としてはオルトジクロロベンゼンを最適として選択した。
最後に、上記基板を抵抗加熱蒸着装置内に置き、有機活性層の上部にLiFを約2.3nm制膜して電子輸送層を形成し、続いてAlを約70nmの膜厚で成膜して陰極を形成した。その後、さらに封止材としてエポキシ樹脂(急速硬化型アラルダイト)を用いて陰極上にガラス基板を接着することで封止処理を施し、有機光電変換素子を得た。
得られた光電変換素子の形状は、2mm×2mmの正四角形であった。
(透明基板-透明陽極-正孔輸送層の形成)
スパッタ法にて成膜された約150nmの膜厚のITOがパターニングされてなる透明電極(陽極)を表面に有する透明ガラス基板を準備した。このガラス基板を有機溶媒、アルカリ洗剤、超純水で洗浄し、乾かした。乾かした基板にUVオゾン装置(UV-03装置、テクノビジョン社製、型番「UV-312」)にてUV-03処理を行った。
正孔輸送層材料としてポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルフォン酸(HCスタルクビーテック社製、商品名「Bytron P TP AI 4083」)の懸濁液を用意し、この懸濁液を0.5ミクロン径のフィルターでろ過した。濾過した懸濁液を、前記基板の透明電極がある面側に、スピンコートにより70nmの厚みで成膜した。得られた膜を大気環境下のホットプレート上で200℃で10分間乾燥して、透明電極上に正孔輸送層を形成した。
次に、電子供与性化合物であるポリ(2-メトキシ-5-(2’-エチルヘキシルオキシ)-1,4-フェニレンビニレン)(MEH-PPV)(第1のp型半導体ポリマー)とポリ(3-ヘキシルチオフェン)(P3HT)(第2のp型半導体ポリマー)の2種類の電子供与性高分子材料(p型半導体材料)と、電子受容性化合物(n型半導体材料)である[6,6]-フェニル C61 ブチリックアシッドメチルエステル([6,6]-PCBM)の重量比2:1:4のオルトジクロロベンゼン溶液を調整した。この際のMEH-PPVの溶液中の濃度は0.5重量%とした。
調整した溶液を上記基板の正孔輸送層の表面にスピンコートした後、N2雰囲気中で乾燥を行った。これにより正孔輸送層上にバルクへテロ型の有機活性層が形成された。
最適な相分離構造を得るためには、第1のp型半導体材料と溶媒の各SP値の差としては2.9~6.5であり、第2のp型半導体材料と溶媒の各SP値の差としては2.8~6.5であり、n型半導体材料と溶媒の各SP値の差としては0~5である必要がある。
これに対して第1のp型半導体材料であるポリ(2-メトキシ-5-(2’-エチルヘキシルオキシ)-1,4-フェニレンビニレン)(MEH-PPV)のSP値は、オルトジクロロベンゼンのSP値との差が2.9~6.5の範囲内にあり、第2のp型半導体材料であるP3HTのSP値は16.80であり、n型半導体材料であるC60PCBMのSP値は22.45である。オルトジクロロベンゼンのSP値は20.72である。したがって、溶媒としてはオルトジクロロベンゼンを最適として選択した。
最後に、上記基板を抵抗加熱蒸着装置内に置き、有機活性層の上部にLiFを約2.3nm制膜して電子輸送層を形成し、続いてAlを約70nmの膜厚で成膜して陰極を形成した。その後、さらに封止材としてエポキシ樹脂(急速硬化型アラルダイト)を用いて陰極上にガラス基板を接着することで封止処理を施し、有機光電変換素子を得た。
得られた光電変換素子の形状は、2mm×2mmの正四角形であった。
実施例1において溶媒としてオルトジクロロベンゼンの代わりにクロロベンゼンを用いたこと以外、実施例1と同様にして有機光電変換素子を作製した。
実施例2において溶媒としてオルトジクロロベンゼンの代わりにクロロベンゼンを用いたこと以外、実施例2と同様にして有機光電変換素子を作製した。
実施例3において溶媒としてオルトジクロロベンゼンの代わりにクロロベンゼンを用いたこと以外、実施例3と同様にして有機光電変換素子を作製した。
実施例4において溶媒としてオルトジクロロベンゼンの代わりにクロロベンゼンを用いたこと以外、実施例4と同様にして有機光電変換素子を作製した。
実施例1~4,および比較例1~4で得た光電変換素子の光電変換特性を、以下のようにして評価した。
得られた光電変換素子(有機薄膜太陽電池を想定:形状は、2mm×2mmの正四角形)にソーラシミュレーター(分光計器製、商品名「CEP-2000型、放射照度100mW/cm2」)を用いて一定の光を照射し、発生する電流と電圧を測定し、得られた測定値から光電変換効率(%)及び短絡電流密度を算出した。結果を下記表1および表2に示した。
Claims (6)
- 陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、前記有機活性層が第1のp型半導体材料とn型半導体材料と溶媒とを含む溶液を用いて形成された有機光電変換素子であって、
前記第1のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.9~6.5であり、前記n型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が0~5である有機光電変換素子。 - 有機活性層を構成するp型半導体材料としてさらに第2のp型半導体材料を含み、該第2のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.8~6.5である請求項1に記載の有機光電変換素子。
- 有機活性層に含まれるp型半導体材料の重量の合計を100とした場合、第2のp型半導体材料の重量が50以下である請求項2に記載の有機光電変換素子。
- 陽極と、陰極と、該陽極と該陰極との間に設けられる有機活性層とを有し、前記有機活性層が第1のp型半導体材料とn型半導体材料と溶媒とを含む溶液を用いて形成された有機光電変換素子を得るための製造方法であって、
前記第1のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.9~6.5となり、前記n型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が0~5となる範囲内で、前記第1のp型半導体材料、n型半導体材料、および溶媒を選択する有機光電変換素子の製造方法。 - 有機活性層を構成するp型半導体材料としてさらに第2のp型半導体材料を用い、該第2のp型半導体材料の溶解パラメータと前記溶媒の溶解パラメーターとの差が2.8~6.5となる範囲内で、前記第1のp型半導体材料、第2のp型半導体材料、n型半導体材料、および溶媒を選択する請求項4に記載の有機光電変換素子の製造方法。
- 有機活性層に含まれるp型半導体材料の重量の合計を100とした場合、第2のp型半導体材料の重量を50以下に設定する請求項5に記載の有機光電変換素子の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/503,620 US20120204960A1 (en) | 2009-10-30 | 2010-10-26 | Organic photovoltaic cell and method for manufacturing the same |
CN2010800469527A CN102576805A (zh) | 2009-10-30 | 2010-10-26 | 有机光电转换元件及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-250583 | 2009-10-30 | ||
JP2009250583 | 2009-10-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052570A1 true WO2011052570A1 (ja) | 2011-05-05 |
Family
ID=43921994
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068943 WO2011052570A1 (ja) | 2009-10-30 | 2010-10-26 | 有機光電変換素子及びその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20120204960A1 (ja) |
JP (1) | JP5553727B2 (ja) |
CN (1) | CN102576805A (ja) |
WO (1) | WO2011052570A1 (ja) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140147996A1 (en) * | 2010-11-29 | 2014-05-29 | Arizon Board of Regents Acting for and on Behalf Arizona State University | Methods for fabricating bulk heterojunctions using solution processing techniques |
JP5747789B2 (ja) * | 2011-07-05 | 2015-07-15 | 住友化学株式会社 | 高分子化合物及びそれを用いた有機光電変換素子 |
EP2832731A4 (en) | 2012-03-27 | 2015-08-19 | Shionogi & Co | AROMATIC HETEROCYCLIC CHAIN 5-CORE DERIVED DERIVATIVE HAVING TRPV4 INHIBITORY ACTIVITY |
US9711741B2 (en) | 2012-08-24 | 2017-07-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal compounds and methods and uses thereof |
WO2014047616A1 (en) | 2012-09-24 | 2014-03-27 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Metal compounds, methods, and uses thereof |
WO2014109814A2 (en) | 2012-10-26 | 2014-07-17 | Arizona Board Of Regents Acting For And On Behalf Of Arizona State University | Metal complexes, methods, and uses thereof |
JP6804823B2 (ja) | 2013-10-14 | 2020-12-23 | アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University | 白金錯体およびデバイス |
US10020455B2 (en) | 2014-01-07 | 2018-07-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues |
US9941479B2 (en) | 2014-06-02 | 2018-04-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues |
US9923155B2 (en) | 2014-07-24 | 2018-03-20 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues |
WO2016025921A1 (en) | 2014-08-15 | 2016-02-18 | Arizona Board Of Regents On Behalf Of Arizona State University | Non-platinum metal complexes for excimer based single dopant white organic light emitting diodes |
US11329244B2 (en) | 2014-08-22 | 2022-05-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light-emitting diodes with fluorescent and phosphorescent emitters |
US10033003B2 (en) | 2014-11-10 | 2018-07-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate metal complexes with carbon group bridging ligands |
US9879039B2 (en) | 2015-06-03 | 2018-01-30 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues |
KR102356696B1 (ko) * | 2015-07-03 | 2022-01-26 | 삼성전자주식회사 | 유기 광전 소자 및 이미지 센서 |
EP3840364B1 (en) | 2015-12-03 | 2024-09-04 | Panasonic Intellectual Property Management Co., Ltd. | Image-capture device |
US11335865B2 (en) | 2016-04-15 | 2022-05-17 | Arizona Board Of Regents On Behalf Of Arizona State University | OLED with multi-emissive material layer |
WO2018025544A1 (ja) | 2016-08-05 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JPWO2018025545A1 (ja) | 2016-08-05 | 2019-05-30 | パナソニックIpマネジメント株式会社 | 撮像装置 |
KR20210083134A (ko) | 2016-10-12 | 2021-07-06 | 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 | 협대역 적색 인광성 4좌 백금(ii) 착물 |
US11183670B2 (en) | 2016-12-16 | 2021-11-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Organic light emitting diode with split emissive layer |
KR102678967B1 (ko) | 2017-01-27 | 2024-06-26 | 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 | 피리도-피롤로-아크리딘 및 유사체를 사용하는 금속 보조 지연 형광 이미터 |
JP6920652B2 (ja) | 2017-02-03 | 2021-08-18 | パナソニックIpマネジメント株式会社 | 撮像装置 |
JP7086573B2 (ja) * | 2017-11-17 | 2022-06-20 | キヤノン株式会社 | 光電変換素子、及びこれを用いた光エリアセンサ、撮像素子、撮像装置 |
JP7039285B2 (ja) * | 2017-02-07 | 2022-03-22 | キヤノン株式会社 | 光電変換素子、及びこれを用いた光エリアセンサ、撮像素子、撮像装置 |
WO2018147202A1 (ja) * | 2017-02-07 | 2018-08-16 | キヤノン株式会社 | 光電変換素子、及びこれを用いた光エリアセンサ、撮像素子、撮像装置 |
CN110301052B (zh) | 2017-02-07 | 2023-12-12 | 佳能株式会社 | 光电转换元件、和使用其的光学区域传感器、图像拾取元件和图像拾取设备 |
CN108807691A (zh) | 2017-04-28 | 2018-11-13 | 松下知识产权经营株式会社 | 光电转换膜以及使用了该光电转换膜的光电转换元件和摄像装置 |
CN108807674A (zh) | 2017-04-28 | 2018-11-13 | 松下知识产权经营株式会社 | 组合物以及使用了该组合物的光电转换元件及摄像装置 |
US11101435B2 (en) | 2017-05-19 | 2021-08-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Tetradentate platinum and palladium complexes based on biscarbazole and analogues |
US10516117B2 (en) | 2017-05-19 | 2019-12-24 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues |
US11594688B2 (en) | 2017-10-17 | 2023-02-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters |
US11647643B2 (en) | 2017-10-17 | 2023-05-09 | Arizona Board Of Regents On Behalf Of Arizona State University | Hole-blocking materials for organic light emitting diodes |
WO2019123267A1 (en) * | 2017-12-18 | 2019-06-27 | King Abdullah University Of Science And Technology | Active layers and optoelectronic devices based on non-fullerenes and/or hole scavengers |
CN110197875B (zh) | 2018-02-26 | 2025-02-14 | 松下知识产权经营株式会社 | 光电转换元件及其制造方法 |
US12037348B2 (en) | 2018-03-09 | 2024-07-16 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue and narrow band green and red emitting metal complexes |
JP6767695B2 (ja) | 2018-03-29 | 2020-10-14 | パナソニックIpマネジメント株式会社 | 組成物、近赤外光電変換素子および撮像装置 |
JP7486103B2 (ja) | 2018-11-16 | 2024-05-17 | パナソニックIpマネジメント株式会社 | 組成物、光電変換素子および撮像装置 |
EP3886183B1 (en) | 2018-11-19 | 2023-06-14 | Panasonic Intellectual Property Management Co., Ltd. | Imaging device and imaging system |
WO2020121677A1 (ja) | 2018-12-14 | 2020-06-18 | パナソニックIpマネジメント株式会社 | カメラシステム |
US11878988B2 (en) | 2019-01-24 | 2024-01-23 | Arizona Board Of Regents On Behalf Of Arizona State University | Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues |
US11594691B2 (en) | 2019-01-25 | 2023-02-28 | Arizona Board Of Regents On Behalf Of Arizona State University | Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters |
EP3944349A4 (en) | 2019-03-20 | 2022-04-13 | Panasonic Intellectual Property Management Co., Ltd. | IMAGING DEVICE |
WO2020218045A1 (ja) | 2019-04-26 | 2020-10-29 | パナソニックIpマネジメント株式会社 | 撮像素子 |
US11785838B2 (en) | 2019-10-02 | 2023-10-10 | Arizona Board Of Regents On Behalf Of Arizona State University | Green and red organic light-emitting diodes employing excimer emitters |
US11945985B2 (en) | 2020-05-19 | 2024-04-02 | Arizona Board Of Regents On Behalf Of Arizona State University | Metal assisted delayed fluorescent emitters for organic light-emitting diodes |
CN117898038A (zh) * | 2021-08-20 | 2024-04-16 | 株式会社半导体能源研究所 | 受光器件、受发光装置及电子设备 |
EP4443896A4 (en) | 2021-12-02 | 2025-01-22 | Panasonic Intellectual Property Management Co., Ltd. | IMAGING DEVICE AND CAMERA SYSTEM |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008006071A2 (en) * | 2006-07-06 | 2008-01-10 | Solenne Bv | Blends of fullerene derivatives, and uses thereof in electronic devices |
WO2009022733A1 (ja) * | 2007-08-10 | 2009-02-19 | Sumitomo Chemical Company, Limited | 組成物及び有機光電変換素子 |
JP2009158734A (ja) * | 2007-12-27 | 2009-07-16 | Hitachi Ltd | 光電変換素子 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005032793A (ja) * | 2003-07-08 | 2005-02-03 | Matsushita Electric Ind Co Ltd | 有機光電変換素子 |
CN101248542B (zh) * | 2005-08-02 | 2011-08-10 | 株式会社艾迪科 | 光电转换元件 |
US7888593B2 (en) * | 2007-09-05 | 2011-02-15 | Northwestern University | TFB:TPDSi2 interfacial layer usable in organic photovoltaic cells |
JP2009135237A (ja) * | 2007-11-29 | 2009-06-18 | Nagoya Institute Of Technology | 溶解性フラーレン誘導体 |
-
2010
- 2010-10-26 CN CN2010800469527A patent/CN102576805A/zh active Pending
- 2010-10-26 US US13/503,620 patent/US20120204960A1/en not_active Abandoned
- 2010-10-26 WO PCT/JP2010/068943 patent/WO2011052570A1/ja active Application Filing
- 2010-10-28 JP JP2010242382A patent/JP5553727B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008006071A2 (en) * | 2006-07-06 | 2008-01-10 | Solenne Bv | Blends of fullerene derivatives, and uses thereof in electronic devices |
WO2009022733A1 (ja) * | 2007-08-10 | 2009-02-19 | Sumitomo Chemical Company, Limited | 組成物及び有機光電変換素子 |
JP2009158734A (ja) * | 2007-12-27 | 2009-07-16 | Hitachi Ltd | 光電変換素子 |
Non-Patent Citations (2)
Title |
---|
S.BAVEL ET AL.: "Relation between Photoactive Layer Thickness, 3D Morphology, and Device Performance in P3HT/PCBM Bulk-Heterojunction Solar Cells", MICROMOLECULES, vol. 42, no. 19, 10 September 2009 (2009-09-10), pages 7396 - 7403 * |
W.S.SHIN ET AL.: "Effect of Fabrication Conditions on the Performance of MEH-PPV: PCBM Photovoltaic Devices", MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 471, 2007, pages 129 - 135 * |
Also Published As
Publication number | Publication date |
---|---|
CN102576805A (zh) | 2012-07-11 |
JP2011119694A (ja) | 2011-06-16 |
JP5553727B2 (ja) | 2014-07-16 |
US20120204960A1 (en) | 2012-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5553727B2 (ja) | 有機光電変換素子及びその製造方法 | |
CN102598337B (zh) | 有机光电转换元件 | |
EP3012279B1 (en) | Copolymer and organic solar cell comprising same | |
US20120211741A1 (en) | Organic photovoltaic cell | |
US20110132453A1 (en) | Organic photoelectric conversion element and production method thereof | |
JP5715796B2 (ja) | 有機光電変換素子の製造方法 | |
JP5553728B2 (ja) | 有機光電変換素子 | |
JP2011119678A (ja) | 有機光電変換素子 | |
WO2011052509A1 (ja) | 有機光電変換素子の製造方法 | |
US20120216869A1 (en) | Organic photovoltaic cell and method for manufacturing the same | |
WO2011030411A1 (ja) | 有機薄膜太陽電池 | |
JP5608040B2 (ja) | 有機光電変換素子 | |
JP2011119704A (ja) | 有機光電変換素子及びその製造方法 | |
JP5665839B2 (ja) | 太陽電池およびその製造方法 | |
WO2011148900A1 (ja) | 高分子化合物及びそれを用いた光電変換素子 | |
WO2012121274A1 (ja) | 光電変換素子の製造方法 | |
WO2014136696A1 (ja) | 光電変換素子及びその製造方法 | |
JP2016066645A (ja) | 光電変換素子および光電変換素子の製造方法 | |
JP2010251235A (ja) | 電子素子 | |
WO2011052578A1 (ja) | 有機光電変換素子の製造方法 | |
KR20130137514A (ko) | 태양 전지 및 그 제조 방법 | |
JP2017103268A (ja) | 光電変換素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080046952.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10826702 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13503620 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10826702 Country of ref document: EP Kind code of ref document: A1 |