[go: up one dir, main page]

WO2011039888A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2011039888A1
WO2011039888A1 PCT/JP2009/067186 JP2009067186W WO2011039888A1 WO 2011039888 A1 WO2011039888 A1 WO 2011039888A1 JP 2009067186 W JP2009067186 W JP 2009067186W WO 2011039888 A1 WO2011039888 A1 WO 2011039888A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
semiconductor device
gate trench
gate
drift region
Prior art date
Application number
PCT/JP2009/067186
Other languages
French (fr)
Japanese (ja)
Inventor
秀史 高谷
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112009005299.1T priority Critical patent/DE112009005299B4/en
Priority to JP2011534021A priority patent/JP5472309B2/en
Priority to PCT/JP2009/067186 priority patent/WO2011039888A1/en
Priority to US13/499,599 priority patent/US8598652B2/en
Publication of WO2011039888A1 publication Critical patent/WO2011039888A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/668Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • H10D30/0297Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • H10D62/107Buried supplementary regions, e.g. buried guard rings 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/108Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having localised breakdown regions, e.g. built-in avalanching regions 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • H10D62/156Drain regions of DMOS transistors
    • H10D62/157Impurity concentrations or distributions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/101Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
    • H10D84/141VDMOS having built-in components
    • H10D84/148VDMOS having built-in components the built-in components being breakdown diodes, e.g. Zener diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/512Disposition of the gate electrodes, e.g. buried gates
    • H10D64/513Disposition of the gate electrodes, e.g. buried gates within recesses in the substrate, e.g. trench gates, groove gates or buried gates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • H10D64/516Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform

Definitions

  • the present invention relates to a trench gate type semiconductor device.
  • Japanese Patent Publication No. 2007-317779 discloses an example of a trench gate type semiconductor device.
  • This semiconductor device includes an n-type drift region and a p-type body region provided on the surface side of the drift region.
  • a gate trench extending through the body region to the drift region is formed.
  • the gate electrode is disposed in the gate trench and faces the body region via an insulator.
  • a p-type diffusion region is formed in a range surrounding the bottom of the gate trench.
  • An object of the present specification is to provide a semiconductor device capable of suppressing deterioration in characteristics even when the avalanche operation is performed on the semiconductor device.
  • the inventor has sought the cause of the deterioration of the characteristics of the semiconductor device due to the avalanche operation.
  • the behavior of carriers generated during the avalanche operation is a cause of deteriorating the characteristics of the semiconductor device. That is, in the conventional semiconductor device, breakdown occurs at the pn junction between the body region and the drift region during the avalanche operation. Carriers (holes) generated by breakdown are collected in the vicinity of the gate electrode, and a part thereof is accumulated in an insulator in the vicinity of the gate electrode. When carriers (holes) are accumulated in the insulator, the gate capacitance increases, which causes a decrease in characteristics (for example, switching characteristics) of the semiconductor device. In particular, when the avalanche operation is continuously performed on the semiconductor device as in the continuous avalanche test, the amount of carriers (holes) accumulated in the insulator is large, so the influence is great.
  • the semiconductor device provided in the present specification includes a first conductivity type drift region, a second conductivity type body region, a gate trench, a gate electrode, an insulator, and a second conductivity type diffusion region.
  • the body region is provided on the surface side of the drift region.
  • the gate trench extends through the body region to the drift region.
  • the gate electrode is disposed in the gate trench and faces the body region.
  • the insulator is disposed between the gate electrode and the wall surface of the gate trench.
  • the diffusion region surrounds the bottom of the gate trench and is surrounded by a drift region.
  • the impurity concentration in the diffusion region is made higher than the impurity concentration in the body region.
  • First conductivity type and “second conductivity type” mean either n-type or p-type. That is, when the “first conductivity type” is n-type, the “second conductivity type” is p-type, and when the “first conductivity type” is p-type, the “second conductivity type” is n-type. It is a type.
  • the impurity concentration in the diffusion region surrounding the bottom of the gate trench is higher than the impurity concentration in the body region. Therefore, when an avalanche operation is performed on this semiconductor device, breakdown occurs not at the pn junction between the body region and the drift region but at the pn junction between the diffusion region and the drift region. Since breakdown occurs at a pn junction further away from the gate electrode (that is, a pn junction between the diffusion region and the drift region), the amount of carriers gathered in the vicinity of the gate electrode can be reduced and accumulated in an insulator near the gate electrode. Can reduce the amount of carriers played. As a result, an increase in gate capacitance is suppressed, and deterioration in characteristics of the semiconductor device can be suppressed.
  • a plurality of gate trenches can be arranged in a certain direction at intervals.
  • a gate electrode and an insulator are disposed inside each gate trench, and a diffusion region of the second conductivity type can be provided at the bottom of each gate trench so as to surround the bottom.
  • the width of the diffusion region in the gate trench arrangement direction is longer than the width when the breakdown voltage of the semiconductor device is maximized when the width of the diffusion region is changed, And it is preferable that it is shorter than the width
  • the impurity concentration in the vicinity of the side wall surface in the gate trench arrangement direction of the gate trench may be made lower than the impurity concentration in the intermediate portion of the adjacent gate trench. Since the electrical resistance of the drift region in the vicinity of the side wall surface of the gate trench is increased, it is possible to suppress carriers from being collected in the vicinity of the gate electrode.
  • a shielding region is further provided between the body region and the diffusion region, which protrudes from the side wall surface in the gate trench arrangement direction of the gate trench into the drift region, and shields the flow of carriers from the diffusion region to the gate electrode. Also good. By forming the shielding region, it is possible to suppress carriers from being collected toward the gate electrode.
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1.
  • the figure which shows the impurity concentration distribution in a diffusion region (impurity concentration distribution along the III-III line of FIG. 1).
  • region (impurity concentration distribution along the VV line of FIG. 1).
  • Sectional drawing which shows the structure of the semiconductor device of 2nd Example.
  • the figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example.
  • the semiconductor device 10 includes a cell region 90 in which a semiconductor element is formed and a termination region 92 that surrounds the cell region 90.
  • FIG. 1 illustration of electrodes and the like formed on the upper surface of the semiconductor substrate is omitted.
  • a plurality of gate trenches 26 are formed in the cell region 90.
  • the gate trenches 26 extend in the y direction of FIG. 1 and are arranged at intervals in the x direction of FIG. That is, the x direction in FIG. 1 is the arrangement direction of the gate trenches 26.
  • a termination trench 94 is formed in the termination region 92.
  • the termination trench 94 makes a round around the cell region 90.
  • the cell region 90 and the termination region 92 are formed on the same semiconductor substrate.
  • a known substrate for example, a silicon substrate (Si substrate), a silicon carbide substrate (SiC substrate), or the like
  • SiC substrate silicon carbide substrate
  • a vertical field effect transistor (MOSFET) is formed on the semiconductor substrate 11.
  • a gate trench 26 is formed on the upper surface of the semiconductor substrate 11.
  • the gate trench 26 penetrates the source region 24 and the body region 20 described later, and its lower end extends to the drift region 16.
  • a gate electrode 30 is formed in the gate trench 26.
  • the gate electrode 30 is formed so that the lower end of the gate electrode 30 is slightly deeper than the lower surface of the body region 20.
  • An insulator 28 is filled between the wall surface of the gate trench 26 and the gate electrode 30 (that is, laterally and below the gate electrode 30). For this reason, the gate electrode 30 faces the body region 20 and the source region 24 with the insulator 28 interposed therebetween.
  • a cap insulating film 32 is formed on the gate electrode 30.
  • an n + type source region 24 and a p + type body contact region 22 are formed in a region facing the upper surface of the semiconductor substrate 11.
  • the source region 24 is formed in contact with the insulator 28.
  • Body contact region 22 is formed in contact with source region 24.
  • a p ⁇ -type body region 20 is formed below the source region 24 and the body contact region 22.
  • the impurity concentration in the body region 20 is set lower than the impurity concentration in the body contact region 22.
  • the impurity concentration of the body region 20 can be, for example, 0.5 to 5.0 ⁇ e 17 cm ⁇ 3 .
  • the body region 20 is in contact with the source region 24 and the body contact region 22, and is in contact with the insulator 28 below the source region 24. For this reason, the source region 24 is surrounded by the body region 20 and the body contact region 22.
  • n ⁇ type drift region 16 is formed below the body region 20.
  • the impurity concentration of the drift region 16 can be set to, for example, 1.0 ⁇ e 15 to 1.0 ⁇ e 17 cm ⁇ 3 .
  • the drift region 16 is in contact with the lower surface of the body region 20.
  • the drift region 16 is separated from the source region 24 by the body region 20.
  • a p ⁇ -type diffusion region 18 is formed in the drift region 16 in a range surrounding the bottom of the gate trench 26.
  • the diffusion region 18 is in contact with the insulator 28 below the gate electrode 30 (that is, at the bottom of the gate trench 26).
  • the periphery of the diffusion region 18 is surrounded by the drift region 16. Thereby, the diffusion region 18 is separated from the body region 20.
  • the impurity concentration and size of the diffusion region 18 will be described in detail later.
  • n + type drain region 14 is formed in a region facing the lower surface of the semiconductor substrate 11.
  • the impurity concentration of the drain region 14 can be set to 1.0 ⁇ e 18 to 5.0 ⁇ e 19 cm ⁇ 3 , for example.
  • the drain region 14 is in contact with the lower surface of the drift region 20.
  • the drain region 14 is separated from the body region 20 by the drift region 16.
  • a drain electrode 12 is formed on the lower surface of the semiconductor substrate 11.
  • the drain electrode 12 is in ohmic contact with the drain region 14.
  • a source electrode 34 is formed on the upper surface of the semiconductor substrate 11. The source electrode 34 is formed so as to cover the cap insulating film 32 and is insulated from the gate electrode 30. The source electrode 34 is in ohmic contact with the source region 24 and the body contact region 22.
  • the drain electrode 12 is connected to the power supply potential, and the source electrode 34 is connected to the ground potential.
  • the semiconductor device 11 is off.
  • the semiconductor device 11 is turned on. That is, a channel is formed in the body region 20 in a range in contact with the gate insulator 28.
  • electrons flow from the source electrode 34 to the drain electrode 12 through the source region 24, the channel of the body region 20, the drift region 16, and the drain region 14. That is, a current flows from the drain electrode 12 to the source electrode 34.
  • the impurity concentration and size of the diffusion region 18 are adjusted so that breakdown occurs at the pn junction between the diffusion region 18 and the drift region 16 when the semiconductor device 10 is subjected to an avalanche operation. That is, in the semiconductor device in which the diffusion region in the floating state is formed below the gate trench as in this embodiment, the depletion layer is formed at the pn junction between the body region and the drift region and the pn junction between the diffusion region and the drift region. And the breakdown voltage between the drain and source is secured.
  • One method for causing breakdown at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation is to make the impurity concentration of the diffusion region 18 higher than the impurity concentration of the body region 20.
  • the dimensions (such as the width in the x direction) of the diffusion region 18 can be appropriately determined in consideration of other characteristics (breakdown voltage, on-resistance, etc.) required for the semiconductor device 10.
  • the p-type impurity concentration of the body region 20 is 1.0 to 4.0 ⁇ e 16 cm ⁇ 3
  • the p-type impurity concentration of the diffusion region 18 is 1.5 to 4.5 ⁇ e higher than this. 17 cm ⁇ 3 .
  • the diffusion region 18 and the body region 20 described above can be formed by a known method. For example, it can be formed by implanting p-type impurities into the semiconductor substrate 11 and thermally diffusing the implanted p-type impurities. At this time, the impurity concentration and size of the diffusion region 18 and the body region 20 can be controlled by adjusting the amount of the p-type impurity to be implanted and the thermal diffusion time.
  • the impurity concentration in the diffusion region 18 is not constant, and the impurity concentration in the body region 20 is not constant. That is, as shown in FIG.
  • the impurity concentration in the diffusion region 18 has a peak value P 1 (maximum value) at the center thereof, and decreases as it approaches the boundary with the drift region 16.
  • the impurity concentration in the body region 20 changes in the depth direction as shown in FIG. 5, and reaches a peak value P 2 (maximum value) at the depth z 2 .
  • the range with a depth of 0 to z 1 corresponds to the body contact region 22
  • the range with a depth of z 1 to z 3 corresponds to the body region 20.
  • the peak value P 1 of the impurity concentration of the diffusion region 18 and the peak value P 2 of the impurity concentration of the body region 20 are, for example, (P 1 / P 2 ) of 1.1 to 10
  • the range can be adjusted.
  • the peak value ratio (P 1 / P 2 ) in the range of 1.1 to 10, a stable breakdown can be achieved at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation.
  • the dimension of the diffusion region 18 is made larger than that of the conventional method.
  • the width of the diffusion region 18 in the x direction (gate trench arrangement direction) is made longer than the conventional one. That is, when the width of the diffusion region 18 in the x direction is changed, the breakdown voltage of the semiconductor device 10 changes. As shown in FIG. 4, when the width of the diffusion region 18 in the x direction is d 1 , the breakdown voltage of the semiconductor device 10 reaches the maximum value V max , and when the width of the diffusion region 18 in the x direction exceeds d 1 , The breakdown voltage of the semiconductor device 10 decreases.
  • the pn junction between the diffusion region 18 and the drift region 16 can be suitably broken down.
  • the width of the diffusion region 18 in the x direction is set such that adjacent diffusion regions 18 do not contact each other. This is to ensure a space for the carrier to move when the semiconductor device 10 is turned on. Further, as shown in FIG. 4, the width in the x-direction diffusion region 18 exceeds d 1, the breakdown voltage of the semiconductor device 10 is lowered, the ON resistance of the semiconductor device 10 increases. For this reason, it is preferable that the width of the diffusion region 18 in the x direction is not more than “d 2 ” shown in FIG. This “d 2 ” is a width when the breakdown voltage of the semiconductor device 10 is 0.8 ⁇ V max .
  • the width of the diffusion region 18 in the x direction is equal to or less than d 2 , the breakdown voltage of the semiconductor device 10 and the increase in on-resistance are suppressed while the breakdown region is the pn junction between the diffusion region 18 and the drift region 16. can do. Therefore, it is preferable to determine the width of the diffusion region 18 in the x direction within the range of d 1 to d 2 . These d 1 and d 2 may be determined by experiment or may be determined by calculation using a device simulator.
  • the p-type impurity concentration of the diffusion region 18 can be appropriately determined in consideration of other characteristics required for the semiconductor device 10.
  • the p-type impurity concentration of the diffusion region 18 may be higher than the p-type impurity concentration of the body region 20. By doing so, breakdown can be more stably performed at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation.
  • the avalanche test can be performed by a known method. That is, the drain electrode 12 of the semiconductor device 10 is connected to the power supply potential via the coil. Further, the source electrode 34 of the semiconductor device 10 is connected to the ground potential. In this state, a pulse voltage is applied to the gate electrode 30. When a pulse voltage is applied to the gate electrode, the semiconductor device 10 is turned on for a predetermined time and then turned off. When the semiconductor device 10 is turned on, a current flows through the semiconductor device 10 and energy is accumulated in the coil. When the semiconductor device 10 is turned off, a large counter electromotive force is generated in the coil due to the energy accumulated in the coil. When the back electromotive force generated in the coil acts on the semiconductor device 10, the semiconductor device 10 performs an avalanche operation.
  • the semiconductor device 10 of this embodiment when an avalanche operation is performed, the collection of holes in the vicinity of the gate electrode 30 is suppressed, and the holes in the insulator 28 in the vicinity of the gate electrode 30 are suppressed. Is suppressed from being accumulated. For this reason, an increase in gate capacitance can be suppressed, and deterioration of characteristics (such as switching characteristics) of the semiconductor device 10 due to an avalanche operation can be suppressed. In addition, since accumulation of holes in the insulator 28 is suppressed as described above, deterioration in characteristics of the semiconductor device 10 can be effectively suppressed even when a continuous avalanche test is performed.
  • FIG. 6 the same parts as those of the semiconductor device 10 of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • the n ⁇ type drift region 42 has a low concentration drift region 42a having a low impurity concentration and a high concentration having a higher impurity concentration than the low concentration drift region 42a.
  • the difference from the first embodiment is that a drift region 42b is provided.
  • the low concentration drift region 42 a is formed in the vicinity of the side wall surface of the gate trench 26 in the gate trench arrangement direction (that is, the x direction).
  • the high concentration drift region 42b is formed in an intermediate portion of the adjacent gate trench 26 (between adjacent low concentration drift regions 42a). Since the low concentration drift region 42a has a lower impurity concentration than the high concentration drift region 42b, the electric resistance is higher than that of the high concentration drift region 42b.
  • a low-concentration drift region 42a having a high resistance is formed in the vicinity of the side wall surface of the gate trench 26, and a low-concentration drift region 42b having a low electrical resistance is formed at a position away from the gate trench 26. For this reason, holes generated by breakdown at the pn junction between the diffusion region 18 and the drift region 16 are unlikely to flow through the low concentration drift region 42a and easily flow through the high concentration drift region 42b. As a result, the collection of holes in the vicinity of the gate electrode 30 can be further suppressed.
  • the trench 44 (which then becomes the gate trench 26) is formed in a tapered shape.
  • a p-type impurity is implanted into the bottom of the trench 44 in order to form the diffusion region 18 at the bottom of the trench 44.
  • the acceleration voltage of the p-type impurity to be implanted is set high. Since the trench 44 is formed in a tapered shape, a small amount of p-type impurity is also implanted into the side wall surface of the trench 44.
  • the impurity concentration of the drift region 42 in the vicinity of the side wall surface of the trench 44 is reduced, and the low concentration drift region 42a is formed.
  • the trench 44 gate trench 26
  • the low concentration drift region 42a can be easily formed.
  • the low concentration drift region 42 a is formed in the entire depth range from the body region 20 to the diffusion region 18, but the technique of this specification is in such a form. Not limited. A low concentration drift region may be formed in at least a part of the depth range from the body region 20 to the diffusion region 18.
  • a semiconductor device 50 according to a third embodiment will be described with reference to FIG. Also in FIG. 8, the same parts as those of the semiconductor device 10 of the first embodiment are denoted by the same reference numerals as those of the first embodiment.
  • the semiconductor device 50 of the third embodiment differs from the first embodiment in that a shielding region 52a is formed at a depth between the body region 20 and the diffusion region 18.
  • the shielding region 52 a is formed of an insulating material and is integrated with the insulator 28 filled in the gate trench 26.
  • the shielding region 52 a extends in the x direction from the side wall surface of the gate trench 26 and protrudes into the drift region 16.
  • a shielding region 52a protruding in the x direction from the side wall surface of the gate trench 26 is formed. For this reason, the holes generated by the breakdown at the pn junction between the diffusion region 18 and the drift region 16 are prevented from moving toward the gate electrode 30 by the shielding region 52a. As a result, the collection of holes in the vicinity of the gate electrode 30 can be effectively suppressed.
  • the projecting length L 1 from the gate trench side wall of the shielding region 52a may be appropriately determined according to the size of the property deterioration due to the avalanche operation. If the characteristics degradation due to avalanche behavior is small, it is preferably smaller than the projection length L 2 from the gate trench side wall surface of the diffusion region 18. With this configuration, when the semiconductor device 50 is turned on, it is possible to secure a large space for current to flow to the side of the gate trench 26, and to suppress an increase in the on-resistance of the semiconductor device 50. it can. On the other hand, when the characteristic degradation due to avalanche behavior is large, it may be larger than the projection length L 2 of the diffusion region 18 of the protruding length L 1 of the shielding region 52a. As a result, deterioration of the characteristics of the semiconductor device 50 can be effectively suppressed.
  • a trench 62 is formed by dry etching the semiconductor substrate 60.
  • a thin oxide film (insulator) (not shown) on the wall surface of the trench 62.
  • a p-type impurity is implanted into the bottom of the trench 62 to form a diffusion region 64 at the bottom of the trench 62 (FIG. 10). reference).
  • an oxide film 66 is filled in the gate trench 62 by CVD (Chemical Vapor Deposition) (see FIG. 11).
  • the semiconductor substrate 60 is dry-etched to form an opening 68 for forming a shielding region (see FIG. 12).
  • the oxide film 70 is filled in the opening 68 by the CVD method (see FIG. 13).
  • the oxide film 70 is removed by etching, leaving the portion 72 to be a shielding region (see FIG. 14).
  • the semiconductor layer 74 is epitaxially grown in the opening 68 (see FIG. 15).
  • the semiconductor layer 74 is dry-etched to form a trench 76 (a portion that becomes the gate trench 26) (see FIG. 16).
  • a gate material 80 polysilicon film
  • the technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing.
  • the technique of the second embodiment a technique of forming a low concentration drift region in the vicinity of the gate trench side wall surface
  • the technique of the second embodiment can be used alone. That is, even when breakdown occurs at the pn junction between the body region and the drift region during avalanche operation, holes are collected in the vicinity of the gate electrode by forming the low concentration drift region in the vicinity of the gate trench sidewall surface. Can be suppressed.

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Provided is a semiconductor device, wherein, even if the semiconductor device is brought into avalanche operation, the deterioration of the characteristics can be suppressed. The semiconductor device is provided with a first conductivity-type drift region, a second conductivity-type body region which is provided on the surface side of the drift region, a gate trench which passes through the body region and extends to the drift region, a gate electrode which is arranged in the gate trench, an insulator which is arranged between the gate electrode and the wall surface of the gate trench, and a second conductivity-type diffusion region which surrounds the bottom of the gate trench. The impurity concentration and size of the diffusion region are adjusted in such a manner that breakdown is caused in the p-n junction of the diffusion region and the drift region during the avalanche operation.

Description

半導体装置Semiconductor device

 本発明は、トレンチゲート型の半導体装置に関する。 The present invention relates to a trench gate type semiconductor device.

 日本国特許公開公報2007-317779号は、トレンチゲート型の半導体装置の一例を開示している。この半導体装置は、n型のドリフト領域と、そのドリフト領域の表面側に設けられたp型のボディ領域を備えている。この半導体装置では、ボディ領域を貫通してドリフト領域にまで伸びるゲートトレンチが形成されている。ゲート電極は、ゲートトレンチ内に配置され、絶縁体を介してボディ領域と対向している。ゲートトレンチの底部を囲む範囲にはp型の拡散領域が形成されている。 Japanese Patent Publication No. 2007-317779 discloses an example of a trench gate type semiconductor device. This semiconductor device includes an n-type drift region and a p-type body region provided on the surface side of the drift region. In this semiconductor device, a gate trench extending through the body region to the drift region is formed. The gate electrode is disposed in the gate trench and faces the body region via an insulator. A p-type diffusion region is formed in a range surrounding the bottom of the gate trench.

 この種の半導体装置では、通常、アバランシェ試験が行われ、半導体装置の信頼性が確認される。しかしながら、従来の半導体装置にアバランシェ動作を行わせると、半導体装置の特性が低下することが判明した。本明細書は、半導体装置にアバランシェ動作を行わせても、特性の低下を抑制できる半導体装置を提供することを目的とする。 In this type of semiconductor device, an avalanche test is usually performed to confirm the reliability of the semiconductor device. However, it has been found that when an avalanche operation is performed on a conventional semiconductor device, the characteristics of the semiconductor device deteriorate. An object of the present specification is to provide a semiconductor device capable of suppressing deterioration in characteristics even when the avalanche operation is performed on the semiconductor device.

 本発明者は、アバランシェ動作に起因する半導体装置の特性の低下の原因を探求した。その結果、アバランシェ動作時に発生するキャリアの挙動が半導体装置の特性を低下させる原因であることを突き止めた。すなわち、従来の半導体装置では、アバランシェ動作時にボディ領域とドリフト領域とのpn接合においてブレークダウンが発生する。ブレークダウンにより発生したキャリア(ホール)は、ゲート電極の近傍に集まり、その一部がゲート電極近傍の絶縁体に蓄積される。絶縁体にキャリア(ホール)が蓄積されると、ゲート容量が増加し、半導体装置の特性(例えば、スイッチング特性)が低下する原因となる。特に、連続アバランシェ試験のように、半導体装置に連続してアバランシェ動作を行わせると、絶縁体に蓄積されるキャリア(ホール)の量が多量となるため、その影響は大きい。 The inventor has sought the cause of the deterioration of the characteristics of the semiconductor device due to the avalanche operation. As a result, it has been found that the behavior of carriers generated during the avalanche operation is a cause of deteriorating the characteristics of the semiconductor device. That is, in the conventional semiconductor device, breakdown occurs at the pn junction between the body region and the drift region during the avalanche operation. Carriers (holes) generated by breakdown are collected in the vicinity of the gate electrode, and a part thereof is accumulated in an insulator in the vicinity of the gate electrode. When carriers (holes) are accumulated in the insulator, the gate capacitance increases, which causes a decrease in characteristics (for example, switching characteristics) of the semiconductor device. In particular, when the avalanche operation is continuously performed on the semiconductor device as in the continuous avalanche test, the amount of carriers (holes) accumulated in the insulator is large, so the influence is great.

 本明細書が提供する半導体装置は、第1導電型のドリフト領域と、第2導電型のボディ領域と、ゲートトレンチと、ゲート電極と、絶縁体と、第2導電型の拡散領域を備える。ボディ領域は、ドリフト領域の表面側に設けられている。ゲートトレンチは、ボディ領域を貫通してドリフト領域にまで伸びている。ゲート電極は、ゲートトレンチ内に配置されており、ボディ領域と対向している。絶縁体は、ゲート電極とゲートトレンチの壁面との間に配置されている。拡散領域は、ゲートトレンチの底部を囲んでおり、その周囲がドリフト領域によって囲まれている。そして、拡散領域の不純物濃度がボディ領域の不純物濃度よりも高くされている。 The semiconductor device provided in the present specification includes a first conductivity type drift region, a second conductivity type body region, a gate trench, a gate electrode, an insulator, and a second conductivity type diffusion region. The body region is provided on the surface side of the drift region. The gate trench extends through the body region to the drift region. The gate electrode is disposed in the gate trench and faces the body region. The insulator is disposed between the gate electrode and the wall surface of the gate trench. The diffusion region surrounds the bottom of the gate trench and is surrounded by a drift region. The impurity concentration in the diffusion region is made higher than the impurity concentration in the body region.

 「第1導電型」及び「第2導電型」とは、n型またはp型のいずれかを意味する。すなわち、「第1導電型」がn型である場合には「第2導電型」がp型であり、「第1導電型」がp型である場合には「第2導電型」がn型である。 “First conductivity type” and “second conductivity type” mean either n-type or p-type. That is, when the “first conductivity type” is n-type, the “second conductivity type” is p-type, and when the “first conductivity type” is p-type, the “second conductivity type” is n-type. It is a type.

 この半導体装置では、ゲートトレンチの底部を囲む拡散領域の不純物濃度が、ボディ領域の不純物濃度よりも高い。このため、この半導体装置にアバランシェ動作を行わせると、ボディ領域とドリフト領域とのpn接合ではなく、拡散領域とドリフト領域とのpn接合においてブレークダウンが発生する。ゲート電極からより離れたpn接合(すなわち、拡散領域とドリフト領域とのpn接合)でブレークダウンするため、ゲート電極の近傍に集まるキャリアの量を減らすことができ、ゲート電極近傍の絶縁体に蓄積されるキャリアの量を減らすことができる。その結果、ゲート容量の増加が抑制され、半導体装置の特性の低下を抑制することができる。 In this semiconductor device, the impurity concentration in the diffusion region surrounding the bottom of the gate trench is higher than the impurity concentration in the body region. Therefore, when an avalanche operation is performed on this semiconductor device, breakdown occurs not at the pn junction between the body region and the drift region but at the pn junction between the diffusion region and the drift region. Since breakdown occurs at a pn junction further away from the gate electrode (that is, a pn junction between the diffusion region and the drift region), the amount of carriers gathered in the vicinity of the gate electrode can be reduced and accumulated in an insulator near the gate electrode. Can reduce the amount of carriers played. As a result, an increase in gate capacitance is suppressed, and deterioration in characteristics of the semiconductor device can be suppressed.

 この半導体装置では、複数のゲートトレンチを、間隔を空けて一定の方向に配列することができる。この場合、各ゲートトレンチの内部にはゲート電極及び絶縁体が配置されており、各ゲートトレンチの底部には、その底部を囲むように第2導電型の拡散領域を設けることができる。 In this semiconductor device, a plurality of gate trenches can be arranged in a certain direction at intervals. In this case, a gate electrode and an insulator are disposed inside each gate trench, and a diffusion region of the second conductivity type can be provided at the bottom of each gate trench so as to surround the bottom.

 半導体装置が複数のゲートトレンチを備える場合、拡散領域のゲートトレンチ配列方向の幅が、拡散領域の幅を変化させたときに半導体装置の耐圧が最大となるときの幅よりも長くされており、かつ、隣接する拡散領域同士が接触してしまうときの幅よりも短くされていることが好ましい。拡散領域の幅を長くすることで、拡散領域とドリフト領域とのpn接合において好適にブレークダウンさせることができる。 When the semiconductor device includes a plurality of gate trenches, the width of the diffusion region in the gate trench arrangement direction is longer than the width when the breakdown voltage of the semiconductor device is maximized when the width of the diffusion region is changed, And it is preferable that it is shorter than the width | variety when adjacent diffused regions contact. By increasing the width of the diffusion region, it is possible to suitably break down the pn junction between the diffusion region and the drift region.

 また、ドリフト領域では、ゲートトレンチのゲートトレンチ配列方向の側壁面近傍の不純物濃度を、隣接するゲートトレンチの中間部分の不純物濃度よりも低くするようにしてもよい。ゲートトレンチ側壁面近傍のドリフト領域の電気抵抗が高くなるため、キャリアがゲート電極の近傍に集まることを抑制することができる。 In the drift region, the impurity concentration in the vicinity of the side wall surface in the gate trench arrangement direction of the gate trench may be made lower than the impurity concentration in the intermediate portion of the adjacent gate trench. Since the electrical resistance of the drift region in the vicinity of the side wall surface of the gate trench is increased, it is possible to suppress carriers from being collected in the vicinity of the gate electrode.

 また、ボディ領域と拡散領域との間において、ゲートトレンチのゲートトレンチ配列方向の側壁面からドリフト領域内に突出し、拡散領域からゲート電極へのキャリアの流れを遮蔽する遮蔽領域をさらに備えるようにしてもよい。遮蔽領域を形成することで、キャリアがゲート電極に向かって集まることを抑制することができる。 Further, a shielding region is further provided between the body region and the diffusion region, which protrudes from the side wall surface in the gate trench arrangement direction of the gate trench into the drift region, and shields the flow of carriers from the diffusion region to the gate electrode. Also good. By forming the shielding region, it is possible to suppress carriers from being collected toward the gate electrode.

第1実施例の半導体装置の平面図。The top view of the semiconductor device of the 1st example. 図1のII-II線断面図。FIG. 2 is a sectional view taken along line II-II in FIG. 1. 拡散領域内の不純物濃度分布を示す図(図1のIII-III線に沿った不純物濃度分布)。The figure which shows the impurity concentration distribution in a diffusion region (impurity concentration distribution along the III-III line of FIG. 1). 拡散領域のx方向の幅と半導体装置の耐圧との関係を示す図。The figure which shows the relationship between the width | variety of the x direction of a diffusion region, and the proof pressure of a semiconductor device. ボディ領域内における深さ方向の不純物濃度分布を示す図(図1のV-V線に沿った不純物濃度分布)。The figure which shows the impurity concentration distribution of the depth direction in a body area | region (impurity concentration distribution along the VV line of FIG. 1). 第2実施例の半導体装置の構造を示す断面図。Sectional drawing which shows the structure of the semiconductor device of 2nd Example. 第2実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 2nd Example. 第3実施例の半導体装置の構造を示す断面図。Sectional drawing which shows the structure of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example. 第3実施例の半導体装置の製造方法を説明するための図。The figure for demonstrating the manufacturing method of the semiconductor device of 3rd Example.

(第1実施例) 第1実施例の半導体装置10について、図面を参照して説明する。図1に示すように、半導体装置10は、半導体素子が形成されるセル領域90と、セル領域90を取り囲む終端領域92を有している。なお、図1では、半導体基板の上面に形成される電極等の図示を省略している。セル領域90には、複数のゲートトレンチ26が形成されている。ゲートトレンチ26は、図1のy方向に伸びており、図1のx方向に間隔を空けて配列されている。すなわち、図1のx方向がゲートトレンチ26の配列方向となっている。終端領域92には終端トレンチ94が形成されている。終端トレンチ94は、セル領域90の周囲を一巡している。セル領域90と終端領域92は、同一の半導体基板に形成されている。半導体基板には、公知の基板(例えば、シリコン基板(Si基板),炭化シリコン基板(SiC基板)等)を用いることができる。 First Example A semiconductor device 10 according to a first example will be described with reference to the drawings. As shown in FIG. 1, the semiconductor device 10 includes a cell region 90 in which a semiconductor element is formed and a termination region 92 that surrounds the cell region 90. In FIG. 1, illustration of electrodes and the like formed on the upper surface of the semiconductor substrate is omitted. A plurality of gate trenches 26 are formed in the cell region 90. The gate trenches 26 extend in the y direction of FIG. 1 and are arranged at intervals in the x direction of FIG. That is, the x direction in FIG. 1 is the arrangement direction of the gate trenches 26. A termination trench 94 is formed in the termination region 92. The termination trench 94 makes a round around the cell region 90. The cell region 90 and the termination region 92 are formed on the same semiconductor substrate. As the semiconductor substrate, a known substrate (for example, a silicon substrate (Si substrate), a silicon carbide substrate (SiC substrate), or the like) can be used.

 図2に示すように、半導体基板11には縦型の電界効果型トランジスタ(MOSFET)が形成されている。半導体基板11の上面には、ゲートトレンチ26が形成されている。ゲートトレンチ26は、後述するソース領域24及びボディ領域20を貫通し、その下端はドリフト領域16まで伸びている。ゲートトレンチ26内には、ゲート電極30が形成されている。ゲート電極30は、ゲート電極30の下端がボディ領域20の下面よりわずかに深くなるように形成されている。ゲートトレンチ26の壁面とゲート電極30の間(すなわち、ゲート電極30の側方及び下方)には絶縁体28が充填されている。このため、ゲート電極30は、絶縁体28を介してボディ領域20及びソース領域24に対向している。また、ゲート電極30の上部にはキャップ絶縁膜32が形成されている。 As shown in FIG. 2, a vertical field effect transistor (MOSFET) is formed on the semiconductor substrate 11. A gate trench 26 is formed on the upper surface of the semiconductor substrate 11. The gate trench 26 penetrates the source region 24 and the body region 20 described later, and its lower end extends to the drift region 16. A gate electrode 30 is formed in the gate trench 26. The gate electrode 30 is formed so that the lower end of the gate electrode 30 is slightly deeper than the lower surface of the body region 20. An insulator 28 is filled between the wall surface of the gate trench 26 and the gate electrode 30 (that is, laterally and below the gate electrode 30). For this reason, the gate electrode 30 faces the body region 20 and the source region 24 with the insulator 28 interposed therebetween. A cap insulating film 32 is formed on the gate electrode 30.

 半導体基板11の上面に臨む領域には、n型のソース領域24とp型のボディコンタクト領域22が形成されている。ソース領域24は、絶縁体28と接するように形成されている。ボディコンタクト領域22は、ソース領域24に接するように形成されている。 In a region facing the upper surface of the semiconductor substrate 11, an n + type source region 24 and a p + type body contact region 22 are formed. The source region 24 is formed in contact with the insulator 28. Body contact region 22 is formed in contact with source region 24.

 ソース領域24とボディコンタクト領域22の下側には、p型のボディ領域20が形成されている。ボディ領域20の不純物濃度は、ボディコンタクト領域22中の不純物濃度より低くされている。ボディ領域20の不純物濃度は、例えば、0.5~5.0×e17cm-3とすることができる。ボディ領域20は、ソース領域24及びボディコンタクト領域22に接しており、ソース領域24の下側で絶縁体28に接している。このため、ソース領域24は、ボディ領域20及びボディコンタクト領域22によって囲まれている。 A p -type body region 20 is formed below the source region 24 and the body contact region 22. The impurity concentration in the body region 20 is set lower than the impurity concentration in the body contact region 22. The impurity concentration of the body region 20 can be, for example, 0.5 to 5.0 × e 17 cm −3 . The body region 20 is in contact with the source region 24 and the body contact region 22, and is in contact with the insulator 28 below the source region 24. For this reason, the source region 24 is surrounded by the body region 20 and the body contact region 22.

 ボディ領域20の下側には、n型のドリフト領域16が形成されている。ドリフト領域16の不純物濃度は、例えば、1.0×e15~1.0×e17cm-3とすることができる。ドリフト領域16は、ボディ領域20の下面に接している。ドリフト領域16は、ボディ領域20によってソース領域24から分離されている。 An n type drift region 16 is formed below the body region 20. The impurity concentration of the drift region 16 can be set to, for example, 1.0 × e 15 to 1.0 × e 17 cm −3 . The drift region 16 is in contact with the lower surface of the body region 20. The drift region 16 is separated from the source region 24 by the body region 20.

 ドリフト領域16内には、ゲートトレンチ26の底部を囲む範囲にp型の拡散領域18が形成されている。拡散領域18は、ゲート電極30の下方(すなわち、ゲートトレンチ26の底部)の絶縁体28に接している。拡散領域18の周囲は、ドリフト領域16に囲まれている。これによって、拡散領域18は、ボディ領域20から分離されている。拡散領域18の不純物濃度及び寸法については、後で詳述する。 A p -type diffusion region 18 is formed in the drift region 16 in a range surrounding the bottom of the gate trench 26. The diffusion region 18 is in contact with the insulator 28 below the gate electrode 30 (that is, at the bottom of the gate trench 26). The periphery of the diffusion region 18 is surrounded by the drift region 16. Thereby, the diffusion region 18 is separated from the body region 20. The impurity concentration and size of the diffusion region 18 will be described in detail later.

 半導体基板11の下面に臨む領域には、n型のドレイン領域14が形成されている。ドレイン領域14の不純物濃度は、例えば、1.0×e18~5.0×e19cm-3とすることができる。ドレイン領域14は、ドリフト領域20の下面に接している。ドレイン領域14は、ドリフト領域16によってボディ領域20から分離されている。 An n + type drain region 14 is formed in a region facing the lower surface of the semiconductor substrate 11. The impurity concentration of the drain region 14 can be set to 1.0 × e 18 to 5.0 × e 19 cm −3 , for example. The drain region 14 is in contact with the lower surface of the drift region 20. The drain region 14 is separated from the body region 20 by the drift region 16.

 半導体基板11の下面にはドレイン電極12が形成されている。ドレイン電極12は、ドレイン領域14とオーミック接触している。半導体基板11の上面には、ソース電極34が形成されている。ソース電極34は、キャップ絶縁膜32を覆うように形成されており、ゲート電極30から絶縁されている。ソース電極34は、ソース領域24及びボディコンタクト領域22とオーミック接触している。 A drain electrode 12 is formed on the lower surface of the semiconductor substrate 11. The drain electrode 12 is in ohmic contact with the drain region 14. A source electrode 34 is formed on the upper surface of the semiconductor substrate 11. The source electrode 34 is formed so as to cover the cap insulating film 32 and is insulated from the gate electrode 30. The source electrode 34 is in ohmic contact with the source region 24 and the body contact region 22.

 上述した半導体装置10を使用する時は、ドレイン電極12が電源電位に接続され、ソース電極34がグランド電位に接続される。ゲート電極30の電位が閾値電位未満である場合は、半導体装置11はオフしている。ゲート電極30の電位が閾値電位以上となると、半導体装置11はオンする。すなわち、ゲート絶縁体28に接している範囲のボディ領域20にチャネルが形成される。これによって、電子が、ソース電極34から、ソース領域24、ボディ領域20のチャネル、ドリフト領域16及びドレイン領域14を通ってドレイン電極12に流れる。すなわち、ドレイン電極12からソース電極34に電流が流れる。 When the semiconductor device 10 described above is used, the drain electrode 12 is connected to the power supply potential, and the source electrode 34 is connected to the ground potential. When the potential of the gate electrode 30 is less than the threshold potential, the semiconductor device 11 is off. When the potential of the gate electrode 30 becomes equal to or higher than the threshold potential, the semiconductor device 11 is turned on. That is, a channel is formed in the body region 20 in a range in contact with the gate insulator 28. As a result, electrons flow from the source electrode 34 to the drain electrode 12 through the source region 24, the channel of the body region 20, the drift region 16, and the drain region 14. That is, a current flows from the drain electrode 12 to the source electrode 34.

 次に、拡散領域18の不純物濃度及び寸法について説明する。拡散領域18の不純物濃度及び寸法は、半導体装置10にアバランシェ動作をさせたときに、拡散領域18とドリフト領域16とのpn接合においてブレークダウンが生じるように調整されている。すなわち、本実施例のように、ゲートトレンチの下部にフローティング状態の拡散領域が形成された半導体装置では、ボディ領域とドリフト領域とのpn接合と、拡散領域とドリフト領域とのpn接合に空乏層が広がり、ドレイン-ソース間の耐圧が確保される。このため、半導体装置10にアバランシェ動作をさせると、ボディ領域とドリフト領域とのpn接合と、拡散領域とドリフト領域とのpn接合のいずれか一方でブレークダウンが発生する。本実施例では、拡散領域18の不純物濃度及び寸法を調整することで、アバランシェ動作時に拡散領域18とドリフト領域16とのpn接合においてブレークダウンが生じるようにしている。 Next, the impurity concentration and dimensions of the diffusion region 18 will be described. The impurity concentration and size of the diffusion region 18 are adjusted so that breakdown occurs at the pn junction between the diffusion region 18 and the drift region 16 when the semiconductor device 10 is subjected to an avalanche operation. That is, in the semiconductor device in which the diffusion region in the floating state is formed below the gate trench as in this embodiment, the depletion layer is formed at the pn junction between the body region and the drift region and the pn junction between the diffusion region and the drift region. And the breakdown voltage between the drain and source is secured. For this reason, when the avalanche operation is performed on the semiconductor device 10, breakdown occurs in any one of the pn junction between the body region and the drift region and the pn junction between the diffusion region and the drift region. In this embodiment, by adjusting the impurity concentration and size of the diffusion region 18, breakdown occurs at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation.

 アバランシェ動作時に拡散領域18とドリフト領域16とのpn接合においてブレークダウンを生じさせるための一つの方法としては、拡散領域18の不純物濃度をボディ領域20の不純物濃度よりも高くすることである。この場合、拡散領域18の寸法(x方向の幅等)は、半導体装置10に求められる他の特性(耐圧,オン抵抗等)を考慮して適宜決定することができる。例えば、ボディ領域20のp型の不純物濃度を1.0~4.0×e16cm-3とし、拡散領域18のp型の不純物濃度をこれよりも高い1.5~4.5×e17cm-3とする。これによって、アバランシェ動作時に、拡散領域18とドリフト領域16とのpn接合においてブレークダウンを生じさせることができる。 One method for causing breakdown at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation is to make the impurity concentration of the diffusion region 18 higher than the impurity concentration of the body region 20. In this case, the dimensions (such as the width in the x direction) of the diffusion region 18 can be appropriately determined in consideration of other characteristics (breakdown voltage, on-resistance, etc.) required for the semiconductor device 10. For example, the p-type impurity concentration of the body region 20 is 1.0 to 4.0 × e 16 cm −3, and the p-type impurity concentration of the diffusion region 18 is 1.5 to 4.5 × e higher than this. 17 cm −3 . Thereby, breakdown can be caused at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation.

 なお、上述した拡散領域18及びボディ領域20は、公知の方法で形成することができる。例えば、半導体基板11にp型の不純物を注入し、その注入したp型の不純物を熱拡散させることで形成することができる。この際、注入するp型不純物の量と熱拡散時間を調整することで、拡散領域18とボディ領域20の不純物濃度及び寸法を制御することができる。
 このような方法で拡散領域18及びボディ領域20を形成する場合、拡散領域18内の不純物濃度は一定とならず、また、ボディ領域20内の不純物濃度は一定とならない。すなわち、図3に示すように、拡散領域18内の不純物濃度は、その中心でピーク値P(最大値)となり、ドリフト領域16との境界近傍に近づくにつれて低くなる。一方、ボディ領域20内の不純物濃度は、図5に示すように深さ方向に変化し、深さzでピーク値P(最大値)となる。なお、図5において、深さが0~zの範囲はボディコンタクト領域22に相当し、深さがz~zの範囲がボディ領域20に相当する。
The diffusion region 18 and the body region 20 described above can be formed by a known method. For example, it can be formed by implanting p-type impurities into the semiconductor substrate 11 and thermally diffusing the implanted p-type impurities. At this time, the impurity concentration and size of the diffusion region 18 and the body region 20 can be controlled by adjusting the amount of the p-type impurity to be implanted and the thermal diffusion time.
When the diffusion region 18 and the body region 20 are formed by such a method, the impurity concentration in the diffusion region 18 is not constant, and the impurity concentration in the body region 20 is not constant. That is, as shown in FIG. 3, the impurity concentration in the diffusion region 18 has a peak value P 1 (maximum value) at the center thereof, and decreases as it approaches the boundary with the drift region 16. On the other hand, the impurity concentration in the body region 20 changes in the depth direction as shown in FIG. 5, and reaches a peak value P 2 (maximum value) at the depth z 2 . In FIG. 5, the range with a depth of 0 to z 1 corresponds to the body contact region 22, and the range with a depth of z 1 to z 3 corresponds to the body region 20.

 このような場合には、拡散領域18の不純物濃度のピーク値Pと、ボディ領域20の不純物濃度のピーク値Pとを、例えば、(P/P)が1.1~10の範囲となるように調整することができる。ピーク値の比(P/P)を1.1~10の範囲とすることで、アバランシェ動作時に拡散領域18とドリフト領域16とのpn接合において安定してブレークダウンさせることができる。 In such a case, the peak value P 1 of the impurity concentration of the diffusion region 18 and the peak value P 2 of the impurity concentration of the body region 20 are, for example, (P 1 / P 2 ) of 1.1 to 10 The range can be adjusted. By setting the peak value ratio (P 1 / P 2 ) in the range of 1.1 to 10, a stable breakdown can be achieved at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation.

 また、アバランシェ動作時に拡散領域18とドリフト領域16とのpn接合においてブレークダウンを生じさせるための他の方法としては、拡散領域18の寸法を従来よりも大きくする。具体的には、拡散領域18のx方向(ゲートトレンチ配列方向)の幅を従来よりも長くする。すなわち、拡散領域18のx方向の幅を変化させると、半導体装置10の耐圧が変化する。図4に示すように、拡散領域18のx方向の幅がdとなるときに半導体装置10の耐圧が最大値Vmaxとなり、拡散領域18のx方向の幅がdを超えて長くなると半導体装置10の耐圧が低下する。本実施例では、拡散領域18のx方向の幅をdより長くすることで、拡散領域18とドリフト領域16とのpn接合で好適にブレークダウンさせることができる。 As another method for causing breakdown at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation, the dimension of the diffusion region 18 is made larger than that of the conventional method. Specifically, the width of the diffusion region 18 in the x direction (gate trench arrangement direction) is made longer than the conventional one. That is, when the width of the diffusion region 18 in the x direction is changed, the breakdown voltage of the semiconductor device 10 changes. As shown in FIG. 4, when the width of the diffusion region 18 in the x direction is d 1 , the breakdown voltage of the semiconductor device 10 reaches the maximum value V max , and when the width of the diffusion region 18 in the x direction exceeds d 1 , The breakdown voltage of the semiconductor device 10 decreases. In the present embodiment, by making the width of the diffusion region 18 in the x direction longer than d 1 , the pn junction between the diffusion region 18 and the drift region 16 can be suitably broken down.

 なお、拡散領域18のx方向の幅は、隣接する拡散領域18同士が接しないような幅とする。半導体装置10がオンしたときに、キャリアが移動するスペースを確保するためである。また、図4に示すように、拡散領域18のx方向の幅がdを越えると、半導体装置10の耐圧が低下し、半導体装置10のオン抵抗が増加する。このため、拡散領域18のx方向の幅は、図4に示す「d」以下とすることが好ましい。この「d」は、半導体装置10の耐圧が0.8×Vmaxとなるときの幅である。拡散領域18のx方向の幅をd以下とすることで、ブレークダウンする場所を拡散領域18とドリフト領域16とのpn接合としながら、半導体装置10の耐圧の低下及びオン抵抗の増加を抑制することができる。従って、拡散領域18のx方向の幅は、d~dの範囲で決定することが好ましい。このd,dは、実験によって決定してもよいし、デバイスシュミレータを利用した計算によって決定してもよい。 The width of the diffusion region 18 in the x direction is set such that adjacent diffusion regions 18 do not contact each other. This is to ensure a space for the carrier to move when the semiconductor device 10 is turned on. Further, as shown in FIG. 4, the width in the x-direction diffusion region 18 exceeds d 1, the breakdown voltage of the semiconductor device 10 is lowered, the ON resistance of the semiconductor device 10 increases. For this reason, it is preferable that the width of the diffusion region 18 in the x direction is not more than “d 2 ” shown in FIG. This “d 2 ” is a width when the breakdown voltage of the semiconductor device 10 is 0.8 × V max . By making the width of the diffusion region 18 in the x direction equal to or less than d 2 , the breakdown voltage of the semiconductor device 10 and the increase in on-resistance are suppressed while the breakdown region is the pn junction between the diffusion region 18 and the drift region 16. can do. Therefore, it is preferable to determine the width of the diffusion region 18 in the x direction within the range of d 1 to d 2 . These d 1 and d 2 may be determined by experiment or may be determined by calculation using a device simulator.

 なお、拡散領域18のx方向の幅をd1より長くした場合においては、拡散領域18のp型不純物濃度は、半導体装置10に求められる他の特性を考慮して適宜決定することができる。もちろん、拡散領域18のp型不純物濃度をボディ領域20のp型不純物濃度よりも高くしてもよい。このようにすることで、アバランシェ動作時に拡散領域18とドリフト領域16とのpn接合においてより安定してブレークダウンさせることができる。 When the width of the diffusion region 18 in the x direction is longer than d1, the p-type impurity concentration of the diffusion region 18 can be appropriately determined in consideration of other characteristics required for the semiconductor device 10. Of course, the p-type impurity concentration of the diffusion region 18 may be higher than the p-type impurity concentration of the body region 20. By doing so, breakdown can be more stably performed at the pn junction between the diffusion region 18 and the drift region 16 during the avalanche operation.

 次に、アバランシェ試験を実施するときの半導体装置10の動作について説明する。アバランシェ試験は、公知の方法によって実施することができる。すなわち、半導体装置10のドレイン電極12をコイルを介して電源電位に接続する。また、半導体装置10のソース電極34をグランド電位に接続する。この状態で、ゲート電極30にパルス電圧を印加する。ゲート電極にパルス電圧が印加されると、半導体装置10は所定時間だけオンし、その後、オフされる。半導体装置10がオンすると、半導体装置10に電流が流れ、コイルにエネルギが蓄積される。半導体装置10がオフすると、コイルに蓄積されたエネルギによってコイルに大きな逆起電力が発生する。コイルに発生した逆起電力が半導体装置10に作用すると、半導体装置10はアバランシェ動作を行う。 Next, the operation of the semiconductor device 10 when performing the avalanche test will be described. The avalanche test can be performed by a known method. That is, the drain electrode 12 of the semiconductor device 10 is connected to the power supply potential via the coil. Further, the source electrode 34 of the semiconductor device 10 is connected to the ground potential. In this state, a pulse voltage is applied to the gate electrode 30. When a pulse voltage is applied to the gate electrode, the semiconductor device 10 is turned on for a predetermined time and then turned off. When the semiconductor device 10 is turned on, a current flows through the semiconductor device 10 and energy is accumulated in the coil. When the semiconductor device 10 is turned off, a large counter electromotive force is generated in the coil due to the energy accumulated in the coil. When the back electromotive force generated in the coil acts on the semiconductor device 10, the semiconductor device 10 performs an avalanche operation.

 半導体装置10がアバランシェ動作を行うと、拡散領域18とドリフト領域16とのpn接合でブレークダウンが発生する。拡散領域18とドリフト領域16とのpn接合でブレークダウンすると、ブレークダウンにより発生したホールの多くは図2の矢印のように流れ、ボディ領域20及びボディコンタクト領域22を通ってソース電極34に流れる。このため、ブレークダウンにより発生したホールが、ゲート電極30の近傍に集まることが抑制され、ゲート電極30の近傍の絶縁体28にホールが蓄積することが抑制される。 When the semiconductor device 10 performs an avalanche operation, breakdown occurs at the pn junction between the diffusion region 18 and the drift region 16. When breakdown occurs at the pn junction between the diffusion region 18 and the drift region 16, most of the holes generated by the breakdown flow as indicated by arrows in FIG. 2 and flow to the source electrode 34 through the body region 20 and the body contact region 22. . For this reason, the holes generated by the breakdown are suppressed from being collected in the vicinity of the gate electrode 30, and the accumulation of holes in the insulator 28 in the vicinity of the gate electrode 30 is suppressed.

 なお、従来の半導体装置では、ボディ領域20とドリフト領域16とのpn接合においてブレークダウンする。このため、ゲート電極30の近傍でブレークダウンすることとなるため、ゲート電極30の近傍により多くのホールが集まる。その結果、ゲート電極30の近傍の絶縁体28(図2の符号36で示す箇所)に多量のホールが蓄積されることとなる。 In the conventional semiconductor device, breakdown occurs at the pn junction between the body region 20 and the drift region 16. For this reason, breakdown occurs in the vicinity of the gate electrode 30, so that more holes gather near the gate electrode 30. As a result, a large amount of holes are accumulated in the insulator 28 (location indicated by reference numeral 36 in FIG. 2) in the vicinity of the gate electrode 30.

 上述したことから明らかなように、本実施例の半導体装置10では、アバランシェ動作をする際に、ゲート電極30の近傍にホールが集まることが抑制され、ゲート電極30の近傍の絶縁体28にホールが蓄積されることが抑制される。このため、ゲート容量の増加を抑制でき、アバランシェ動作による半導体装置10の特性(スイッチング特性等)の悪化を抑えることができる。また、上記のように絶縁体28へのホールの蓄積が抑制されるため、連続アバランシェ試験を行っても、半導体装置10の特性の低下を効果的に抑制することができる。 As is clear from the above, in the semiconductor device 10 of this embodiment, when an avalanche operation is performed, the collection of holes in the vicinity of the gate electrode 30 is suppressed, and the holes in the insulator 28 in the vicinity of the gate electrode 30 are suppressed. Is suppressed from being accumulated. For this reason, an increase in gate capacitance can be suppressed, and deterioration of characteristics (such as switching characteristics) of the semiconductor device 10 due to an avalanche operation can be suppressed. In addition, since accumulation of holes in the insulator 28 is suppressed as described above, deterioration in characteristics of the semiconductor device 10 can be effectively suppressed even when a continuous avalanche test is performed.

(第2実施例) 第2実施例の半導体装置40について、図6を参照して説明する。図6では、第1実施例の半導体装置10と同一部分には第1実施例と同一の番号を付している。 Second Embodiment A semiconductor device 40 according to a second embodiment will be described with reference to FIG. In FIG. 6, the same parts as those of the semiconductor device 10 of the first embodiment are denoted by the same reference numerals as those of the first embodiment.

 図6に示すように、第2実施例の半導体装置40では、n型のドリフト領域42が、不純物濃度が低い低濃度ドリフト領域42aと、低濃度ドリフト領域42aよりも不純物濃度が高い高濃度ドリフト領域42bを備えている点で、第1実施例と異なる。低濃度ドリフト領域42aは、ゲートトレンチ26のゲートトレンチ配列方向(すなわち、x方向)の側壁面近傍に形成されている。高濃度ドリフト領域42bは、隣接するゲートトレンチ26の中間部分(隣接する低濃度ドリフト領域42aの間)に形成されている。低濃度ドリフト領域42aは、高濃度ドリフト領域42bより不純物濃度が低いため、高濃度ドリフト領域42bよりも電気抵抗が高くなっている。 As shown in FIG. 6, in the semiconductor device 40 of the second embodiment, the n type drift region 42 has a low concentration drift region 42a having a low impurity concentration and a high concentration having a higher impurity concentration than the low concentration drift region 42a. The difference from the first embodiment is that a drift region 42b is provided. The low concentration drift region 42 a is formed in the vicinity of the side wall surface of the gate trench 26 in the gate trench arrangement direction (that is, the x direction). The high concentration drift region 42b is formed in an intermediate portion of the adjacent gate trench 26 (between adjacent low concentration drift regions 42a). Since the low concentration drift region 42a has a lower impurity concentration than the high concentration drift region 42b, the electric resistance is higher than that of the high concentration drift region 42b.

 この半導体装置40では、ゲートトレンチ26の側壁面近傍に高抵抗の低濃度ドリフト領域42aが形成され、ゲートトレンチ26から離れた位置に電気抵抗が低い低濃度ドリフト領域42bが形成されている。このため、拡散領域18とドリフト領域16とのpn接合でブレークダウンすることにより発生するホールは、低濃度ドリフト領域42aを流れ難く、高濃度ドリフト領域42bを流れ易い。その結果、ゲート電極30の近傍にホールが集まることをさらに抑制することができる。 In this semiconductor device 40, a low-concentration drift region 42a having a high resistance is formed in the vicinity of the side wall surface of the gate trench 26, and a low-concentration drift region 42b having a low electrical resistance is formed at a position away from the gate trench 26. For this reason, holes generated by breakdown at the pn junction between the diffusion region 18 and the drift region 16 are unlikely to flow through the low concentration drift region 42a and easily flow through the high concentration drift region 42b. As a result, the collection of holes in the vicinity of the gate electrode 30 can be further suppressed.

 ここで、低濃度ドリフト領域42aを形成する方法の一例について説明する。図7に示すように、この形成方法では、トレンチ44(その後にゲートトレンチ26となる)をテーパ状に形成する。次いで、トレンチ44の底部に拡散領域18を形成するため、トレンチ44の底部にp型の不純物を注入する。この際、注入するp型不純物の加速電圧を高めに設定する。トレンチ44がテーパ状に形成されているため、トレンチ44の側壁面にも少量のp型不純物が注入される。その結果、トレンチ44の側壁面近傍のドリフト領域42の不純物濃度が低下し、低濃度ドリフト領域42aが形成される。この方法では、トレンチ44(ゲートトレンチ26)をテーパ状とするだけでよいため、低濃度ドリフト領域42aを簡易に形成することができる。 Here, an example of a method for forming the low concentration drift region 42a will be described. As shown in FIG. 7, in this formation method, the trench 44 (which then becomes the gate trench 26) is formed in a tapered shape. Next, a p-type impurity is implanted into the bottom of the trench 44 in order to form the diffusion region 18 at the bottom of the trench 44. At this time, the acceleration voltage of the p-type impurity to be implanted is set high. Since the trench 44 is formed in a tapered shape, a small amount of p-type impurity is also implanted into the side wall surface of the trench 44. As a result, the impurity concentration of the drift region 42 in the vicinity of the side wall surface of the trench 44 is reduced, and the low concentration drift region 42a is formed. In this method, since the trench 44 (gate trench 26) only needs to be tapered, the low concentration drift region 42a can be easily formed.

 なお、図6に示す半導体装置40では、ボディ領域20から拡散領域18までの深さ範囲の全域に低濃度ドリフト領域42aが形成されていたが、本明細書の技術は、このような形態に限られない。ボディ領域20から拡散領域18までの深さ範囲の少なくとも一部に低濃度ドリフト領域が形成されていてもよい。 In the semiconductor device 40 shown in FIG. 6, the low concentration drift region 42 a is formed in the entire depth range from the body region 20 to the diffusion region 18, but the technique of this specification is in such a form. Not limited. A low concentration drift region may be formed in at least a part of the depth range from the body region 20 to the diffusion region 18.

(第3実施例) 第3実施例の半導体装置50について、図8を参照して説明する。図8でも、第1実施例の半導体装置10と同一部分には第1実施例と同一の番号を付している。 Third Embodiment A semiconductor device 50 according to a third embodiment will be described with reference to FIG. Also in FIG. 8, the same parts as those of the semiconductor device 10 of the first embodiment are denoted by the same reference numerals as those of the first embodiment.

 第3実施例の半導体装置50では、ボディ領域20と拡散領域18との間の深さに遮蔽領域52aが形成されている点で、第1実施例と異なる。遮蔽領域52aは、絶縁材料によって形成されており、ゲートトレンチ26内に充填された絶縁体28と一体化されている。遮蔽領域52aは、ゲートトレンチ26の側壁面からx方向に伸び、ドリフト領域16内に突出している。 The semiconductor device 50 of the third embodiment differs from the first embodiment in that a shielding region 52a is formed at a depth between the body region 20 and the diffusion region 18. The shielding region 52 a is formed of an insulating material and is integrated with the insulator 28 filled in the gate trench 26. The shielding region 52 a extends in the x direction from the side wall surface of the gate trench 26 and protrudes into the drift region 16.

 この半導体装置50では、ゲートトレンチ26の側壁面からx方向に突出する遮蔽領域52aが形成されている。このため、拡散領域18とドリフト領域16とのpn接合でブレークダウンすることにより発生するホールは、遮蔽領域52aによって、ゲート電極30に向かって移動することが妨げられる。その結果、ゲート電極30の近傍にホールが集まることを効果的に抑制することができる。 In this semiconductor device 50, a shielding region 52a protruding in the x direction from the side wall surface of the gate trench 26 is formed. For this reason, the holes generated by the breakdown at the pn junction between the diffusion region 18 and the drift region 16 are prevented from moving toward the gate electrode 30 by the shielding region 52a. As a result, the collection of holes in the vicinity of the gate electrode 30 can be effectively suppressed.

 なお、遮蔽領域52aのゲートトレンチ側壁面からの突出長さLは、アバランシェ動作に起因する特性低下の大きさに応じて適宜決めることができる。アバランシェ動作に起因する特性低下が小さい場合には、拡散領域18のゲートトレンチ側壁面からの突出長さLよりも小さくすることが好ましい。このように構成することで、半導体装置50がオンしたときに、ゲートトレンチ26の側方に電流が流れるスペースを多く確保することができ、半導体装置50のオン抵抗が増加することを抑えることができる。一方、アバランシェ動作に起因する特性低下が大きい場合には、遮蔽領域52aの突出長さLを拡散領域18の突出長さLよりも大きくしてもよい。これによって、半導体装置50の特性低下を効果的に抑えることができる。 Incidentally, the projecting length L 1 from the gate trench side wall of the shielding region 52a may be appropriately determined according to the size of the property deterioration due to the avalanche operation. If the characteristics degradation due to avalanche behavior is small, it is preferably smaller than the projection length L 2 from the gate trench side wall surface of the diffusion region 18. With this configuration, when the semiconductor device 50 is turned on, it is possible to secure a large space for current to flow to the side of the gate trench 26, and to suppress an increase in the on-resistance of the semiconductor device 50. it can. On the other hand, when the characteristic degradation due to avalanche behavior is large, it may be larger than the projection length L 2 of the diffusion region 18 of the protruding length L 1 of the shielding region 52a. As a result, deterioration of the characteristics of the semiconductor device 50 can be effectively suppressed.

 ここで、遮蔽領域52aを形成する方法の一例について説明する。図9に示すように、まず、半導体基板60をドライエッチングすることでトレンチ62を形成する。次いで、トレンチ62の壁面に薄い酸化膜(絶縁体)(図示せず)を形成した後、トレンチ62の底部にp型不純物を注入し、トレンチ62の底部に拡散領域64を形成する(図10参照)。次いで、CVD(Chemical Vapor Deposition)法によってゲートトレンチ62内に酸化膜66を充填する(図11参照)。次いで、半導体基板60をドライエッチングすることで、遮蔽領域を形成するための開口68を形成する(図12参照)。次いで、CVD法によって、開口68内に酸化膜70を充填する(図13参照)。次いで、遮蔽領域となる部分72を残して、酸化膜70をエッチングにより除去する(図14参照)。次いで、開口68内に半導体層74をエピタキシャル成長させる(図15参照)。次いで、半導体層74をドライエッチングすることでトレンチ76(ゲートトレンチ26となる部位)を形成する(図16参照)。次いで、トレンチ76の壁面に絶縁体76を形成した後、ゲート材80(ポリシリコン膜)を埋め込む。これによって、ゲートトレンチの側壁面からドリフト領域内に突出する遮蔽領域を形成することができる。 Here, an example of a method for forming the shielding region 52a will be described. As shown in FIG. 9, first, a trench 62 is formed by dry etching the semiconductor substrate 60. Next, after forming a thin oxide film (insulator) (not shown) on the wall surface of the trench 62, a p-type impurity is implanted into the bottom of the trench 62 to form a diffusion region 64 at the bottom of the trench 62 (FIG. 10). reference). Next, an oxide film 66 is filled in the gate trench 62 by CVD (Chemical Vapor Deposition) (see FIG. 11). Next, the semiconductor substrate 60 is dry-etched to form an opening 68 for forming a shielding region (see FIG. 12). Next, the oxide film 70 is filled in the opening 68 by the CVD method (see FIG. 13). Next, the oxide film 70 is removed by etching, leaving the portion 72 to be a shielding region (see FIG. 14). Next, the semiconductor layer 74 is epitaxially grown in the opening 68 (see FIG. 15). Next, the semiconductor layer 74 is dry-etched to form a trench 76 (a portion that becomes the gate trench 26) (see FIG. 16). Next, after an insulator 76 is formed on the wall surface of the trench 76, a gate material 80 (polysilicon film) is buried. As a result, it is possible to form a shielding region that protrudes from the sidewall surface of the gate trench into the drift region.

 以上、第1~第3実施例を詳細に説明したが、本明細書に記載の技術は上述した実施例に限られない。例えば、上述した各実施例は半導体基板にMOSFETを形成した例であったが、本明細書に記載の技術はIGBT等の他の半導体装置にも適用することができる。 Although the first to third embodiments have been described in detail above, the technology described in this specification is not limited to the above-described embodiments. For example, each of the embodiments described above is an example in which a MOSFET is formed on a semiconductor substrate, but the technique described in this specification can also be applied to other semiconductor devices such as an IGBT.

 また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時の請求項に記載の組み合わせに限定されるものではない。例えば、第2実施例の技術(ゲートトレンチ側壁面近傍に低濃度ドリフト領域を形成する技術)は、単独で用いることができる。すなわち、アバランシェ動作時にボディ領域とドリフト領域とのpn接合でブレークダウンが生じる場合であっても、ゲートトレンチ側壁面近傍に低濃度ドリフト領域を形成することで、ゲート電極の近傍にホールが集まることを抑制することができる。 Further, the technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. For example, the technique of the second embodiment (a technique of forming a low concentration drift region in the vicinity of the gate trench side wall surface) can be used alone. That is, even when breakdown occurs at the pn junction between the body region and the drift region during avalanche operation, holes are collected in the vicinity of the gate electrode by forming the low concentration drift region in the vicinity of the gate trench sidewall surface. Can be suppressed.

Claims (6)

 第1導電型のドリフト領域と、
 ドリフト領域の表面側に設けられている第2導電型のボディ領域と、
 ボディ領域を貫通してドリフト領域にまで伸びているゲートトレンチと、
 ゲートトレンチ内に配置されており、ボディ領域と対向しているゲート電極と、
 ゲート電極とゲートトレンチの壁面との間に配置されている絶縁体と、
 ゲートトレンチの底部を囲んでおり、その周囲がドリフト領域によって囲まれている第2導電型の拡散領域と、を備えており、
 拡散領域の不純物濃度がボディ領域の不純物濃度よりも高い半導体装置。
A drift region of a first conductivity type;
A second conductivity type body region provided on the surface side of the drift region;
A gate trench extending through the body region to the drift region;
A gate electrode disposed in the gate trench and facing the body region;
An insulator disposed between the gate electrode and the wall surface of the gate trench;
A second conductivity type diffusion region surrounding the bottom of the gate trench and surrounded by a drift region;
A semiconductor device in which the impurity concentration in the diffusion region is higher than the impurity concentration in the body region.
 複数のゲートトレンチが間隔を空けて一定の方向に配列されており、
 各ゲートトレンチの内部には、ゲート電極及び絶縁体が配置されており、
 各ゲートトレンチの底部には、その底部を囲むように第2導電型の拡散領域が設けられている請求項1に記載の半導体装置。
A plurality of gate trenches are arranged in a certain direction at intervals,
Inside each gate trench, a gate electrode and an insulator are arranged,
The semiconductor device according to claim 1, wherein a diffusion region of a second conductivity type is provided at a bottom portion of each gate trench so as to surround the bottom portion.
 拡散領域のゲートトレンチ配列方向の幅が、拡散領域の幅を変化させたときに半導体装置の耐圧が最大となるときの幅よりも長くされており、かつ、隣接する拡散領域同士が接触してしまうときの幅よりも短くされている請求項2に記載の半導体装置。 The width of the diffusion region in the gate trench arrangement direction is longer than the width when the breakdown voltage of the semiconductor device is maximized when the width of the diffusion region is changed, and adjacent diffusion regions are in contact with each other. The semiconductor device according to claim 2, wherein the width of the semiconductor device is shorter than the width at the time of occurrence.  ドリフト領域では、ゲートトレンチのゲートトレンチ配列方向の側壁面近傍の不純物濃度が、隣接するゲートトレンチの中間部分の不純物濃度よりも低い請求項2又は3に記載の半導体装置。 4. The semiconductor device according to claim 2, wherein in the drift region, an impurity concentration in the vicinity of the side wall surface in the gate trench arrangement direction of the gate trench is lower than an impurity concentration in an intermediate portion between adjacent gate trenches.  ボディ領域と拡散領域との間において、ゲートトレンチのゲートトレンチ配列方向の側壁面からドリフト領域内に突出し、拡散領域からゲート電極に向かうキャリアの流れを遮蔽する遮蔽領域をさらに備えている請求項2~4のいずれか1項に記載の半導体装置。 3. A shielding region is further provided between the body region and the diffusion region, which projects into the drift region from a side wall surface in the gate trench arrangement direction of the gate trench and shields a carrier flow from the diffusion region toward the gate electrode. 5. The semiconductor device according to any one of items 1 to 4.  第1導電型のドリフト領域と、
 ドリフト領域の表面側に設けられている第2導電型のボディ領域と、
 ボディ領域を貫通してドリフト領域にまで伸びているゲートトレンチと、
 ゲートトレンチ内に配置されており、ボディ領域と対向しているゲート電極と、
 ゲート電極とゲートトレンチの壁面との間に配置されている絶縁体と、
 ゲートトレンチの底部を囲んでおり、その周囲がドリフト領域によって囲まれている第2導電型の拡散領域と、を備えており、
 拡散領域の不純物濃度及び寸法が、アバランシェ動作時に拡散領域とドリフト領域のpn接合においてブレークダウンが生じるように調整されている半導体装置。
A drift region of a first conductivity type;
A second conductivity type body region provided on the surface side of the drift region;
A gate trench extending through the body region to the drift region;
A gate electrode disposed in the gate trench and facing the body region;
An insulator disposed between the gate electrode and the wall surface of the gate trench;
A second conductivity type diffusion region surrounding the bottom of the gate trench and surrounded by a drift region;
A semiconductor device in which the impurity concentration and size of a diffusion region are adjusted so that breakdown occurs at a pn junction between the diffusion region and the drift region during an avalanche operation.
PCT/JP2009/067186 2009-10-01 2009-10-01 Semiconductor device WO2011039888A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112009005299.1T DE112009005299B4 (en) 2009-10-01 2009-10-01 Semiconductor device
JP2011534021A JP5472309B2 (en) 2009-10-01 2009-10-01 Semiconductor device
PCT/JP2009/067186 WO2011039888A1 (en) 2009-10-01 2009-10-01 Semiconductor device
US13/499,599 US8598652B2 (en) 2009-10-01 2009-10-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/067186 WO2011039888A1 (en) 2009-10-01 2009-10-01 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2011039888A1 true WO2011039888A1 (en) 2011-04-07

Family

ID=43825742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067186 WO2011039888A1 (en) 2009-10-01 2009-10-01 Semiconductor device

Country Status (4)

Country Link
US (1) US8598652B2 (en)
JP (1) JP5472309B2 (en)
DE (1) DE112009005299B4 (en)
WO (1) WO2011039888A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238834A (en) * 2011-04-12 2012-12-06 Denso Corp Method of manufacturing semiconductor device and semiconductor device
WO2015098168A1 (en) * 2013-12-26 2015-07-02 トヨタ自動車株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2016213374A (en) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 Semiconductor device
JP2017005140A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Insulated gate type switching device and manufacturing method thereof
KR20210030850A (en) * 2019-09-10 2021-03-18 한국전기연구원 SiC Trench Gate MOSFET Device and Manufacturing Method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256786A1 (en) * 2012-03-29 2013-10-03 Feei Cherng Enterprise Co., Ltd. Trench mosfet with shielded electrode and avalanche enhancement region
US8981528B2 (en) 2012-11-16 2015-03-17 Vishay General Semiconductor Llc GaN-based Schottky diode having partially recessed anode
US8981381B2 (en) 2012-11-16 2015-03-17 Vishay General Semiconductor Llc GaN-based Schottky diode having dual metal, partially recessed electrode
US9018698B2 (en) * 2012-11-16 2015-04-28 Vishay General Semiconductor Llc Trench-based device with improved trench protection
JP5807653B2 (en) * 2013-03-26 2015-11-10 トヨタ自動車株式会社 Manufacturing method of semiconductor device
JP2014216572A (en) * 2013-04-26 2014-11-17 株式会社東芝 Semiconductor device
JP6219704B2 (en) * 2013-12-17 2017-10-25 トヨタ自動車株式会社 Semiconductor device
JP6711100B2 (en) * 2016-04-15 2020-06-17 富士電機株式会社 Silicon carbide semiconductor device, method for manufacturing silicon carbide semiconductor device, and method for controlling silicon carbide semiconductor device
JP6669628B2 (en) * 2016-10-20 2020-03-18 トヨタ自動車株式会社 Switching element
JP6928336B2 (en) * 2016-12-28 2021-09-01 富士電機株式会社 Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
JP7081087B2 (en) * 2017-06-02 2022-06-07 富士電機株式会社 Insulated gate type semiconductor device and its manufacturing method
JP7247514B2 (en) * 2017-11-09 2023-03-29 富士電機株式会社 Semiconductor device and its manufacturing method
US11411104B2 (en) * 2020-03-10 2022-08-09 Kabushiki Kaisha Toshiba Semiconductor device
CN114792722A (en) * 2021-01-25 2022-07-26 博盛半导体股份有限公司 Shielded gate trench MOSFET

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094098A (en) * 1999-09-21 2001-04-06 Denso Corp Silicon carbide semiconductor device and method of manufacturing the same
JP2005005655A (en) * 2002-06-28 2005-01-06 Internatl Rectifier Corp MOS gate semiconductor device
JP2005116822A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Insulated gate semiconductor device and manufacturing method thereof
JP2006093457A (en) * 2004-09-24 2006-04-06 Toyota Motor Corp Insulated gate semiconductor device
JP2006202940A (en) * 2005-01-20 2006-08-03 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2006245358A (en) * 2005-03-04 2006-09-14 Toyota Motor Corp Insulated gate semiconductor device
WO2009075200A1 (en) * 2007-12-10 2009-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291957B2 (en) 1995-02-17 2002-06-17 富士電機株式会社 Vertical trench MISFET and method of manufacturing the same
JP2001284584A (en) * 2000-03-30 2001-10-12 Toshiba Corp Semiconductor device and manufacturing method thereof
JP2003273354A (en) * 2002-03-18 2003-09-26 Fuji Electric Co Ltd Semiconductor device and method of manufacturing the same
US7470953B2 (en) 2003-10-08 2008-12-30 Toyota Jidosha Kabushiki Kaisha Insulated gate type semiconductor device and manufacturing method thereof
JP4971595B2 (en) 2005-03-15 2012-07-11 ルネサスエレクトロニクス株式会社 Semiconductor device
JP4622905B2 (en) 2006-03-24 2011-02-02 トヨタ自動車株式会社 Method of manufacturing insulated gate semiconductor device
JP5048273B2 (en) * 2006-05-10 2012-10-17 オンセミコンダクター・トレーディング・リミテッド Insulated gate semiconductor device
JP4735414B2 (en) 2006-05-24 2011-07-27 トヨタ自動車株式会社 Insulated gate semiconductor device
JP4450241B2 (en) 2007-03-20 2010-04-14 株式会社デンソー Method for manufacturing silicon carbide semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001094098A (en) * 1999-09-21 2001-04-06 Denso Corp Silicon carbide semiconductor device and method of manufacturing the same
JP2005005655A (en) * 2002-06-28 2005-01-06 Internatl Rectifier Corp MOS gate semiconductor device
JP2005116822A (en) * 2003-10-08 2005-04-28 Toyota Motor Corp Insulated gate semiconductor device and manufacturing method thereof
JP2006093457A (en) * 2004-09-24 2006-04-06 Toyota Motor Corp Insulated gate semiconductor device
JP2006202940A (en) * 2005-01-20 2006-08-03 Toyota Motor Corp Semiconductor device and manufacturing method thereof
JP2006245358A (en) * 2005-03-04 2006-09-14 Toyota Motor Corp Insulated gate semiconductor device
WO2009075200A1 (en) * 2007-12-10 2009-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Semiconductor device and method of manufacturing the device, and method of manufacturing trench gate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012238834A (en) * 2011-04-12 2012-12-06 Denso Corp Method of manufacturing semiconductor device and semiconductor device
WO2015098168A1 (en) * 2013-12-26 2015-07-02 トヨタ自動車株式会社 Semiconductor device and method for manufacturing semiconductor device
JP2015126086A (en) * 2013-12-26 2015-07-06 トヨタ自動車株式会社 Semiconductor device and method for manufacturing semiconductor device
CN105849909A (en) * 2013-12-26 2016-08-10 丰田自动车株式会社 Semiconductor device and method for manufacturing semiconductor device
KR101792449B1 (en) 2013-12-26 2017-10-31 도요타 지도샤(주) Semiconductor device and method for manufacturing semiconductor device
CN105849909B (en) * 2013-12-26 2018-05-04 丰田自动车株式会社 The manufacture method of semiconductor device and semiconductor device
JP2016213374A (en) * 2015-05-12 2016-12-15 株式会社豊田中央研究所 Semiconductor device
JP2017005140A (en) * 2015-06-11 2017-01-05 トヨタ自動車株式会社 Insulated gate type switching device and manufacturing method thereof
KR20210030850A (en) * 2019-09-10 2021-03-18 한국전기연구원 SiC Trench Gate MOSFET Device and Manufacturing Method thereof
KR102330787B1 (en) * 2019-09-10 2021-11-24 한국전기연구원 SiC Trench Gate MOSFET Device and Manufacturing Method thereof

Also Published As

Publication number Publication date
DE112009005299B4 (en) 2015-08-06
JPWO2011039888A1 (en) 2013-02-21
DE112009005299T5 (en) 2012-12-27
US8598652B2 (en) 2013-12-03
US20120187478A1 (en) 2012-07-26
JP5472309B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5472309B2 (en) Semiconductor device
JP6356322B2 (en) Trench gate type insulated gate bipolar transistor
US9627520B2 (en) MOS transistor having a cell array edge zone arranged partially below and having an interface with a trench in an edge region of the cell array
KR101745776B1 (en) Power Semiconductor Device
US8264033B2 (en) Semiconductor device having a floating semiconductor zone
US9472660B2 (en) Semiconductor device
US7910486B2 (en) Method for forming nanotube semiconductor devices
JP5188037B2 (en) Semiconductor device
US20130334598A1 (en) Semiconductor device and method for manufacturing same
JP5136578B2 (en) Semiconductor device
US9698256B2 (en) Termination of super junction power MOSFET
US11888022B2 (en) SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof
CN103165604B (en) Semiconductor components with space-saving edge structures
JP2008124346A (en) Power semiconductor device
JP2012023272A (en) Semiconductor device
US9960268B2 (en) Semiconductor devices, power semiconductor devices, and methods for forming a semiconductor device
US20210320170A1 (en) Insulated Gate Power Semiconductor Device and Method for Manufacturing Such Device
JPWO2015015808A1 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2016115847A (en) Semiconductor device
JP2015070184A (en) Semiconductor device
CN113659009A (en) Power semiconductor device with internal anisotropic doping and manufacturing method thereof
CN103367396B (en) Super junction Schottky semiconductor device and preparation method thereof
JP2012059931A (en) Semiconductor device
JP2012195394A (en) Method of manufacturing semiconductor device
JP2009043795A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850077

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534021

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13499599

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112009005299

Country of ref document: DE

Ref document number: 1120090052991

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850077

Country of ref document: EP

Kind code of ref document: A1