WO2011010619A1 - ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤 - Google Patents
ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤 Download PDFInfo
- Publication number
- WO2011010619A1 WO2011010619A1 PCT/JP2010/062109 JP2010062109W WO2011010619A1 WO 2011010619 A1 WO2011010619 A1 WO 2011010619A1 JP 2010062109 W JP2010062109 W JP 2010062109W WO 2011010619 A1 WO2011010619 A1 WO 2011010619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- polyamic acid
- diamine compound
- diamine
- polyimide
- Prior art date
Links
- 0 *C*(CC=CC=CN)N Chemical compound *C*(CC=CC=CN)N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/02—Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/61—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/02—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
- C07D241/10—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D241/12—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/02—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
- C07D241/10—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D241/14—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D241/20—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
Definitions
- the present invention relates to a novel diamine compound useful as a raw material for a polymer used in a liquid crystal alignment film, a polyamic acid and a polyimide obtained using the same, and a liquid crystal alignment treatment agent. Furthermore, it is related with the liquid crystal display element which has a liquid crystal aligning film obtained from the said liquid-crystal aligning agent.
- a liquid crystal alignment treatment agent (also referred to as a liquid crystal alignment agent) mainly composed of a polyimide precursor such as polyamic acid or a solution of soluble polyimide is applied to a glass substrate and fired.
- a so-called polyimide-based liquid crystal alignment film is mainly used.
- the liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal.
- the liquid crystal alignment film used has a high voltage holding ratio and a direct current voltage has been applied due to demands for suppressing the decrease in contrast of the liquid crystal display elements and reducing the afterimage phenomenon.
- the characteristic that the residual charge at the time is small and / or the residual charge accumulated by the DC voltage is quickly relaxed has become increasingly important.
- a liquid crystal aligning agent containing a tertiary amine having a specific structure in addition to polyamic acid or an imide group-containing polyamic acid was used as a short time until the afterimage generated by direct current voltage disappears.
- a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material for example, see Patent Document 1.
- a compound containing one carboxylic acid group in the molecule In addition to polyamic acid and its imidized polymer, a compound containing one carboxylic acid group in the molecule, assuming that the voltage holding ratio is high and the time until the afterimage generated by direct current voltage disappears is short , Using a liquid crystal aligning agent containing a very small amount of a compound selected from a compound containing one carboxylic anhydride group in the molecule and a compound containing one tertiary amine group in the molecule (for example, a patent Document 3) is known.
- liquid crystal alignment film to be used has to be more reliable than conventional liquid crystal alignment films.
- the electrical characteristics of the liquid crystal alignment film are not only good in initial characteristics but also, for example, at a high temperature for a long time. There is a need to maintain good properties even after exposure.
- An object of the present invention is to provide a liquid crystal alignment treatment agent capable of obtaining a liquid crystal alignment film having a high voltage holding ratio and capable of quickly relieving residual charges accumulated by a DC voltage even after being exposed to a high temperature for a long time. It is in providing the diamine compound which can be used as a raw material of the polyamic acid and / or polyimide (henceforth also referred to as a polymer). Furthermore, an object of the present invention is to provide a liquid crystal alignment film having a high voltage holding ratio and capable of obtaining a liquid crystal alignment film in which residual charges accumulated by a DC voltage are quickly relaxed even after being exposed to a high temperature for a long time. It is an object of the present invention to provide a liquid crystal display device with high reliability that can withstand a long-term use in a treating agent and a severe use environment.
- X 1 represents —CO— or —CONH—
- X 2 represents an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom
- X 3 represents 1 to 5 carbon atoms
- It represents a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms, which may be substituted with 5 alkyl groups.
- the diamine component contains 0.01 to 99 mol of a diamine compound having a carboxyl group in the molecule with respect to 1 mol of the diamine according to any one of (1) to (3) above.
- the polyamic acid according to the above (6) or (7), wherein the diamine compound having a carboxyl group in the molecule is a diamine represented by the following formula [2], or a polyimide obtained by imidizing the polyamic acid .
- X 5 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4.
- (11) A liquid crystal alignment film obtained from the liquid crystal aligning agent according to (9) or (10).
- (12) A liquid crystal display device having the liquid crystal alignment film according to (11).
- the diamine compound of the present invention is a novel diamine containing a specific structure containing a 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms in the side chain (hereinafter also referred to as a specific diamine compound). And can be obtained by a relatively simple method.
- the 5-membered or 6-membered aromatic heterocycle containing two nitrogen atoms in the specific diamine compound functions as an electron hopping site depending on the conjugated structure thereof, so that the polyamic acid and / or the specific acid using the specific diamine compound and / or
- the liquid crystal alignment film obtained from the polyimide polymer imidized with the polyamic acid can promote the movement of electric charge in the liquid crystal alignment film, has a high voltage holding ratio, and is exposed to a high temperature for a long time. Even in such a case, the residual charge accumulated by the DC voltage can be relaxed quickly.
- a liquid crystal display element having a liquid crystal alignment film obtained from a liquid crystal alignment treatment agent containing a polyamic acid and / or a polyimide polymer using the diamine compound of the present invention is excellent in reliability and has a large screen. Therefore, it can be suitably used for high-definition liquid crystal televisions.
- the specific diamine compound of the present invention is represented by the following formula [1].
- X 1 represents —CO— or —CONH—
- X 2 represents an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom
- X 3 represents 1 to 5 carbon atoms.
- the bonding position of the two amino groups (—NH 2 ) in the formula [1] is not limited. Specifically, with respect to the linking group (X 1 ) of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring Position, 3, 5 positions. Among these, taking into consideration the reactivity when synthesizing the polyamic acid and the ease of synthesizing the diamine compound, the bonding positions of the two amino groups are positions 2, 4 and 2, 5 , 3, 5 are particularly preferred. In the formula [1], X 1 is —CO— or —CONH—.
- X 2 is an alkylene group having 1 to 5 carbon atoms or a non-aromatic heterocyclic ring containing a nitrogen atom.
- the alkylene group may be linear or branched.
- the alkylene group preferably has 1 to 3 carbon atoms.
- X 2 is a non-aromatic heterocyclic ring containing a nitrogen atom
- examples include a pyrrolidine ring, a piperidine ring, a piperazine ring, a pyrazolidine ring, a quinuclidine ring, and an imidazolidine ring.
- a non-aromatic heterocyclic ring having a 5-membered ring or a 6-membered ring is preferable because good alignment can be obtained when a liquid crystal alignment film is used.
- the non-aromatic heterocycle contains two nitrogen atoms
- ionic impurities in the liquid crystal are adsorbed at the liquid crystal alignment film interface, and the liquid crystal display device has good electrical characteristics. It is desirable to keep.
- a piperazine ring is particularly preferable as the non-aromatic heterocyclic ring containing a nitrogen atom.
- X 3 is a 5-membered or 6-membered aromatic heterocyclic ring containing two nitrogen atoms, which may be substituted with an alkyl group having 1 to 5 carbon atoms.
- 5-membered or 6-membered aromatic heterocycles containing two nitrogen atoms include imidazole ring, pyrazole ring, pyrazine ring, pyrimidine ring and pyridazine ring. Among them, imidazole ring and pyrazine A ring or a pyrimidine ring is preferred.
- the aromatic heterocycle in X 3 is substituted with an alkyl group, the alkyl group preferably has 1 to 3 carbon atoms.
- the specific diamine compound of the present invention can be obtained by synthesizing a dinitro compound represented by the formula [3], further reducing the nitro group of the dinitro compound and converting it to an amino group.
- a dinitro compound represented by the formula [3] There is no particular limitation on the method for reducing the dinitro compound, and usually palladium-carbon, platinum oxide, Raney nickel, platinum black, rhodium-alumina, platinum sulfide carbon, etc. are used as a catalyst, ethyl acetate, toluene, tetrahydrofuran, dioxane, There is a method in which hydrogen gas, hydrazine, hydrogen chloride, or the like is used in an alcohol-based solvent.
- X 1 , X 2 , and X 3 in the formula [ 3 ] have the same definition as in the formula [1].
- Dinitro compound represented by the formula [3] via the X 1 against dinitrobenzene -X 2 -X 3 can be obtained by a method of attaching, for example, X 1 is an amide bond (-CONH- ), A method of reacting dinitrobenzene chloride with an amino compound containing X 2 and X 3 in the presence of alkali.
- X 1 is a reverse amide bond (—HNCO—)
- a method of reacting an amino group-containing nitrobenzene and an acid chloride containing X 2 and X 3 in the presence of an alkali can be mentioned.
- Examples of the dinitrobenzene acid chloride include 3,5-dinitrobenzoic acid chloride, 3,5-dinitrobenzoic acid, 2,4-dinitrobenzoic acid chloride, 3,5-dinitrobenzyl chloride, and 2,4-dinitrobenzyl chloride.
- Examples of the amino group-containing nitrobenzene include 2,4-dinitroaniline, 3,5-dinitroaniline, 2,6-dinitroaniline and the like. In consideration of availability of raw materials and reaction, one or more kinds can be selected and used.
- the polymer of the present invention is a polyamic acid obtained by reaction of a diamine component containing a specific diamine compound and tetracarboxylic dianhydride and a polyimide obtained by dehydrating and ring-closing this polyamic acid. Any of these polyamic acids and polyimides are useful as a polymer for obtaining a liquid crystal alignment film.
- the liquid crystal alignment film obtained using the polymer of the present invention has a higher voltage holding ratio as the content ratio of the specific diamine compound in the diamine component increases, and even after being exposed to a high temperature for a long time, The residual charge accumulated by the DC voltage is alleviated faster.
- the diamine component is the specific diamine compound. Furthermore, it is preferable that 5 mol% or more of a diamine component is a specific diamine compound, More preferably, it is 10 mol% or more. Although 100 mol% of the diamine component may be a specific diamine compound, the specific diamine compound is preferably 80 mol% or less of the diamine component, more preferably, from the viewpoint of uniform coatability when applying the liquid crystal aligning agent. It is 40 mol% or less.
- ⁇ Diamine compound having a carboxyl group in the molecule when a diamine compound having a carboxyl group in the molecule is used together with the specific diamine compound as the diamine component, an aromatic heterocyclic ring having two nitrogen atoms of the specific diamine compound is present in the molecule.
- the carboxyl group of the diamine compound having a carboxyl group is linked with an electrostatic interaction such as salt formation or hydrogen bond, charge transfer occurs between the carboxyl group and the nitrogen-containing aromatic heterocycle. Therefore, the charge transferred to the nitrogen-containing aromatic heterocyclic moiety can efficiently move within and between the molecules of the copolymer, and as a result, the liquid crystal alignment treatment agent obtained in this case is a liquid crystal alignment film.
- the voltage holding ratio is high, and even after being exposed to a high temperature for a long time, there is an effect that the residual charge accumulated by the DC voltage is relaxed and faster.
- the specific structure of the diamine compound having a carboxyl group in the molecule is not particularly limited, but a compound represented by the formula [2] is preferable.
- X 5 is an organic group having an aromatic ring having 6 to 30 carbon atoms, and n is an integer of 1 to 4. If the formula [2] is specifically shown, the structures of the following formulas [3] to [7] can be mentioned.
- m1 is an integer of 1 to 4
- X 6 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, — CF 2 —, —C (CF 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 — , -COO-, -OCO-, -CON (CH 3 )-, or -N (CH 3 ) CO-
- m2 and m3 are each an integer of 0 to 4
- m2 + m3 is an integer of 1 to 4
- m4 and m5 are each an integer of 1 to 5
- X 7 is a linear or branched alkyl group having 1 to 5 carbon atoms, and m6
- X 8 is a single bond, -CH 2 -, - C 2 H 4 -, - C (CH 3) 2 -, - CF 2 -, - C (CF 3 2 -, - O -, - CO -, - NH -, - N (CH 3) -, - CONH -, - NHCO -, - CH 2 O -, - OCH2 -, - COO -, - OCO -, - CON (CH 3 ) — or —N (CH 3 ) CO—, and m7 represents an integer of 1 to 4.
- X 6 is a single bond, —CH 2 —, —C 2 H 4 —, —C (CH 3 ) 2 —, —O—, —CO—, —NH—, —N (CH 3 ) —, —CONH—, —NHCO—, —COO—, or —
- X 8 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO—, or —OCO—, wherein m7 is an integer of 1 to 2.
- diamine compound represented by the formulas [3] to [7] include the compounds of the following formulas [8] to [18].
- X 9 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O—, —OCH 2 —, —COO.
- X 10 is a single bond, —CH 2 —, —O—, —CO—, —NH—, —CONH—, —NHCO—, —CH 2 O —, —OCH 2 —, —COO—, or —OCO—.
- examples of the diamine side chain include diamine compounds having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and a cyclic substituent composed thereof.
- Specific examples of the diamine compound include diamine compounds represented by the following formulas [DA1] to [DA26].
- R 1 is an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
- R 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
- R 3 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
- R 4 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
- R 5 represents 1 carbon atom.
- R 6 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 — or —CH 2 —, wherein R 7 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group, or a fluorine-containing alkoxy group.
- R 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 —, —CH 2 —, —O—, or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group. is there.
- diaminosiloxane represented by the following formula [DA27] and the like are also included.
- m is an integer of 1 to 10.
- Other diamine compounds may be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
- tetracarboxylic dianhydride The tetracarboxylic dianhydride reacted with the diamine component to obtain the polyamic acid of the present invention is not particularly limited.
- the preferable specific example is given below.
- the tetracarboxylic dianhydride can be used alone or in combination of two or more depending on the liquid crystal alignment properties, voltage holding characteristics, accumulated charge, and the like when the liquid crystal alignment film is formed.
- a known synthesis method can be used.
- tetracarboxylic dianhydride and a diamine component are reacted in an organic solvent.
- the reaction between the tetracarboxylic dianhydride and the diamine component is advantageous in that it proceeds relatively easily in an organic solvent and no by-product is generated.
- the organic solvent used for the reaction between the tetracarboxylic dianhydride and the diamine component is not particularly limited as long as the produced polyamic acid dissolves. Specific examples are given below.
- a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component. Any of these methods may be used.
- the tetracarboxylic dianhydride or diamine component consists of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. May be mixed to form a high molecular weight product.
- the polymerization temperature at that time can be selected from -20 ° C. to 150 ° C., but is preferably in the range of ⁇ 5 ° C. to 100 ° C.
- the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
- the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
- the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2. Similar to the normal polymerization reaction, the molecular weight of the polyamic acid produced increases as the molar ratio approaches 1.0.
- the polyimide of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
- the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
- Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
- the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
- the catalytic imidation of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the polyamic acid solution and stirring at -20 ° C to 250 ° C, preferably 0 ° C to 180 ° C.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
- the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine, and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
- Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy.
- the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
- the reaction solution may be poured into a poor solvent and precipitated.
- the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
- the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
- the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced.
- the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
- the molecular weight of the polyamic acid and the polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability when forming the coating film, and the uniformity of the coating film.
- the weight average molecular weight measured by the Permeation Chromatography method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
- the liquid crystal aligning agent of this invention is a coating liquid for forming a liquid crystal aligning film, and is a solution in which a polymer component for forming a polymer film is dissolved in a solvent.
- the polymer component includes at least one polymer of the polymer of the present invention described above.
- the content of the polymer component is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and particularly preferably 3% by mass to 10% by mass in the liquid crystal aligning agent.
- all of the above polymer components may be the polymer of the present invention, and may contain other polymers as long as the effects of the present invention are not impaired.
- the content thereof is preferably 0.05 to 4 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 1 part by mass of the polymer of the present invention. It is.
- the other polymer examples include a polyamic acid obtained by using a diamine compound other than the specific diamine compound as a diamine component to be reacted with a tetracarboxylic dianhydride component, or a polyimide obtained by imidizing the polyamic acid.
- the solvent used in the liquid crystal aligning agent of the present invention is preferably an organic solvent that dissolves the polymer component, and specific examples thereof are given below.
- the liquid crystal aligning agent of this invention may contain components other than the above.
- examples thereof include solvents and compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, and compounds that improve the adhesion between the liquid crystal alignment film and the substrate.
- examples of the solvent that improves the uniformity of the film thickness and the surface smoothness include poor solvents that have low solubility in the polymer component in the liquid crystal aligning agent. Specific examples of the poor solvent include the following.
- the poor solvent may be used alone or in combination.
- the poor solvent is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the total amount of the solvent contained in the liquid crystal aligning agent.
- the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonionic surfactant.
- F-top EF301, EF303, EF352 manufactured by Tochem Products
- MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
- Florard FC430, FC431 manufactured by Sumitomo 3M
- Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
- the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. is there.
- the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
- the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent, More preferably, it is 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
- the liquid crystal alignment treatment agent of the present invention is a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film as long as the effects of the present invention are not impaired. A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
- the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film without applying an alignment treatment after being applied and baked on a substrate and then subjected to an alignment treatment by rubbing treatment, light irradiation, or the like.
- the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used.
- a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
- an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
- the method for applying the liquid crystal alignment treatment agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and ink jet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
- Firing after applying the liquid crystal aligning agent on the substrate is performed at 50 ° C. to 300 ° C., preferably 80 ° C. to 250 ° C. by a heating means such as a hot plate, and the solvent is evaporated to form a coating film. Can do. If the thickness of the coating film formed after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. The thickness is preferably 10 to 100 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
- the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
- liquid crystal cell production prepare a pair of substrates on which a liquid crystal alignment film is formed, spread a spacer on the liquid crystal alignment film of one substrate, and make the liquid crystal alignment film surface inside, Examples include a method in which the other substrate is attached and liquid crystal is injected under reduced pressure, or a method in which the substrate is attached to the surface after the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed, and the like is sealed.
- the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
- the liquid crystal display device manufactured using the liquid crystal aligning agent of the present invention has excellent reliability and can be suitably used for a large-screen, high-definition liquid crystal television.
- the molecular weight of polyimide in the synthesis example was measured as follows using a normal temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Showa Denko KK and a column (KD-803, KD-805) manufactured by Shodex. .
- GPC normal temperature gel permeation chromatography
- the imidation ratio of polyimide in the synthesis example was measured as follows. Add 20 mg of polyimide powder to an NMR sample tube (NMR sampling tube standard ⁇ 5 manufactured by Kusano Kagaku Co., Ltd.) and add 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d6, 0.05% TMS (tetramethylsilane) mixture). The solution was completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) manufactured by JEOL Datum.
- JNW-ECA500 JNW-ECA500
- the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It calculated
- Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
- x is a proton peak integrated value derived from NH group of amic acid
- y is a peak integrated value of reference proton
- ⁇ is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
- Example 4 BODA (3.24 g, 13.0 mmol), p-PDA (0.65 g, 6.01 mmol), PCH7DAB (3.30 g, 8.67 mmol), and the diamine compound (4) obtained in Example 1 (0) .68 g, 2.62 mmol) were mixed in NMP (14.5 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (11.9 g) were added.
- the polyamic acid solution (A) (concentration: 24.8% by mass) was obtained by reacting at 6 ° C. for 6 hours.
- the number average molecular weight of this polyamic acid was 22,800, and the weight average molecular weight was 53,900.
- NMP was added to the polyamic acid solution (A) (20.0 g) obtained in Example 4 to dilute the polyamic acid concentration to 6% by mass, and then acetic anhydride (2.65 g) and pyridine ( 2.07 g) was added and reacted at 80 ° C. for 2 hours.
- This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration.
- This deposit was wash
- Example 6 BODA (3.25 g, 13.0 mmol), DBA (0.52 g, 3.42 mmol), PCH7DAB (3.30 g, 8.67 mmol), and the diamine compound (4) obtained in Example 1 (1.36 g) , 5.24 mmol) in NMP (15.5 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.34 mmol) and NMP (12.7 g) were added, and Reaction was performed for 6 hours to obtain a polyamic acid solution (C) (concentration: 24.8% by mass). The number average molecular weight of this polyamic acid was 24,100, and the weight average molecular weight was 55,500.
- C polyamic acid solution
- Example 7 After adding NMP to the polyamic acid solution (C) (20.1 g) obtained in Example 6 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.66 g) and pyridine ( 2.07 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was put into methanol (350 ml), and the resulting precipitate was separated by filtration. This deposit was wash
- Example 8 BODA (3.15 g, 12.6 mmol), p-PDA (1.01 g, 9.34 mmol), AP18 (1.25 g, 3.32 mmol), and the diamine compound (7) obtained in Example 2 (1) .10 g, 4.28 mmol) were mixed in NMP (8.35 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (6.83 g) were added. The polyamic acid solution was obtained by reacting at 6 ° C. for 6 hours. The number average molecular weight of this polyamic acid was 21,500, and the weight average molecular weight was 52,400.
- Example 9 BODA (3.22 g, 12.9 mmol), DBA (0.79 g, 5.19 mmol), PCH7DAB (3.22 g, 8.46 mmol), and the diamine compound (7) obtained in Example 2 (0.92 g) , 3.58 mmol) in NMP (13.5 g) and reacted at 80 ° C. for 5 hours, then CBDA (0.85 g, 4.34 mmol) and NMP (11.0 g) were added, and Reaction was performed for 6 hours to obtain a polyamic acid solution.
- the number average molecular weight of this polyamic acid was 23,700, and the weight average molecular weight was 54,000.
- Example 10 ⁇ Example 10> BODA (2.97 g, 11.9 mmol), p-PDA (0.70 g, 6.47 mmol), PCH7DAB (3.06 g, 8.04 mmol), and the diamine compound (10) obtained in Example 3 (0 .51 g, 1.71 mmol) were mixed in NMP (12.6 g) and reacted at 80 ° C. for 5 hours, and then CBDA (0.85 g, 4.34 mmol) and NMP (10.3 g) were added. The reaction was carried out at 6 ° C. for 6 hours to obtain a polyamic acid solution (G) (concentration: 26.1% by mass). The number average molecular weight of this polyamic acid was 21,200, and the weight average molecular weight was 52,100.
- G polyamic acid solution
- Example 11 After adding NMP to the polyamic acid solution (G) (20.0 g) obtained in Example 10 and diluting the polyamic acid concentration to 6% by mass, acetic anhydride (2.67 g) and pyridine ( 2.05 g) was added and reacted at 80 ° C. for 2 hours. This reaction solution was poured into methanol (360 ml), and the resulting precipitate was filtered off. This deposit was wash
- Tables 3 and 4 collectively show reaction conditions (moles of each component) and imidation ratios of Examples 4 to 11 and Synthesis Examples 3 to 6 (synthesis of polyamic acid and polyimide).
- Example 12 NMP (10.2 g) and BCS (20.0 g) were added to the polyamic acid solution [A] (10.0 g) obtained in Example 4, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment.
- Agent [1] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- [Production of liquid crystal cell] The liquid crystal alignment treatment agent [1] obtained above is spin-coated on the ITO surface of the substrate with 3 cm ⁇ 4 cm (vertical ⁇ horizontal) ITO electrodes, and baked in a hot air circulation oven at 80 ° C. for 5 minutes and 210 ° C. for 1 hour. A polyimide coating film having a thickness of 100 nm was prepared.
- This substrate with a liquid crystal alignment film is subjected to a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm.
- a rubbing treatment with a roll diameter 120 mm, a rayon cloth rubbing device under the conditions of a rotation speed of 300 rpm, a roll traveling speed of 20 mm / sec, and an indentation amount of 0.3 mm.
- Two substrates with this liquid crystal alignment film were prepared, and a 6 ⁇ m bead spacer was sprayed on the surface of one liquid crystal alignment film, and then a sealant was printed thereon.
- the other prepared substrate was bonded so that the liquid crystal alignment film surface was on the inside and the rubbing direction was reversed, and then the sealing agent was cured to produce an empty cell.
- Liquid crystal MLC-6608 (manufactured by Merck Japan Ltd.) was injected into this empty cell by a reduced pressure injection method to obtain an antiparallel aligned nematic liquid crystal cell.
- [Evaluation of voltage holding ratio] A voltage of 4 V is applied to the liquid crystal cell obtained above at a temperature of 80 ° C. for 60 ⁇ s, the voltage after 16.67 ms and 1667 ms is measured, and the voltage holding ratio (%) As calculated. The results are shown in Table 5.
- [Evaluation of relaxation of residual charge] A DC voltage of 10 V was applied to the liquid crystal cell after measuring the voltage holding ratio for 30 minutes and short-circuited for 1 second, and then the potential generated in the liquid crystal cell was measured for 1800 seconds.
- liquid crystal aligning agents obtained in the following Examples 13 to 19 and Comparative Examples 1 to 4, as in Example 12, liquid crystal cells were prepared using these liquid crystal aligning agents, and each liquid crystal The cell was evaluated. The results are summarized in Table 5 and Table 6.
- Example 13 NMP (36.3 g) was added to the polyimide powder [B] (5.1 g) obtained in Example 5, and dissolved by stirring at 70 ° C. for 40 hours. NMP (18.1 g) and BCS (25.6 g) were added to this solution, and the mixture was stirred at 25 ° C. for 2 hours to obtain a liquid crystal aligning agent [2]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- Example 14 NMP (10.2 g) and BCS (20.0 g) were added to the polyamic acid solution [C] (10.0 g) obtained in Example 6, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [3] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- Example 15 NMP (30.3 g) was added to the polyimide powder [D] (5.0 g) obtained in Example 7 and dissolved by stirring at 70 ° C. for 40 hours. NMP (14.8g) and BCS (33.8g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid-crystal aligning agent [4]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- NMP 33.0 g was added to the polyimide powder [E] (5.1 g) obtained in Example 8, and dissolved by stirring at 70 ° C. for 40 hours.
- Example 17 NMP (34.5 g) was added to the polyimide powder [F] (5.2 g) obtained in Example 9, and dissolved by stirring at 70 ° C. for 40 hours. NMP (16.5g) and BCS (30.3g) were added to this solution, and the liquid-crystal aligning agent [6] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- Example 18 NMP (15.6 g) and BCS (17.1 g) were added to the polyamic acid solution [G] (10.0 g) obtained in Example 10, and the mixture was stirred at 25 ° C. for 2 hours, thereby liquid crystal alignment treatment. Agent [7] was obtained. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- Example 19 NMP (35.5 g) was added to the polyimide powder [H] (5.0 g) obtained in Example 11, and dissolved by stirring at 70 ° C. for 40 hours. NMP (17.8g) and BCS (25.1g) were added to this solution, and it stirred at 25 degreeC for 2 hours, and obtained liquid-crystal aligning agent [8]. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- NMP (34.5 g) was added to the polyimide powder [L] (4.5 g) obtained in Synthesis Example 6 and dissolved by stirring at 70 ° C. for 40 hours.
- NMP (17.2g) and BCS (18.8g) were added to this solution, and the liquid-crystal aligning agent [12] was obtained by stirring at 25 degreeC for 2 hours. Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the polymer component was uniformly dissolved.
- the liquid crystal aligning agent containing the diamine compound of the present invention has a high voltage holding ratio when it is formed into a liquid crystal alignment film, and alleviates charges accumulated by direct current voltage even after being exposed to a high temperature for a long time. Can be obtained. Furthermore, a highly reliable liquid crystal display element that can withstand long-term use in a severe use environment can be provided. As a result, it is useful for TN elements, STN elements, TFT liquid crystal elements, and liquid crystal display elements of vertical alignment type and horizontal alignment type (IPS).
- IPS vertical alignment type and horizontal alignment type
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Liquid Crystal (AREA)
Abstract
Description
さらに、本発明の目的は、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が早い液晶配向膜を得ることができる液晶配向処理剤、及び過酷な使用環境での長期使用に耐えうる信頼性の高い液晶表示素子を提供することにある。
(1)下記式[1]のジアミン化合物。
(2)前記芳香族複素環が、イミダゾール環、ピラジン環、又はピリミジン環である上記(1)に記載のジアミン化合物。
(3)前記窒素原子を含有する非芳香族複素環が、ピペラジン環である上記(1)又は(2)に記載のジアミン化合物。
(4)上記(1)~(3)のいずれかに記載のジアミン化合物を含むジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(5)前記ジアミン成分中に、上記(1)~(3)のいずれかに記載のジアミン化合物が1~80モル%含まれる上記(4)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(6)前記ジアミン成分中に、分子内にカルボキシル基を含有するジアミン化合物が含まれる上記(4)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(7)前記ジアミン成分中に、上記(1)~(3)のいずれかに記載のジアミンの1モルに対して、分子内にカルボキシル基を有するジアミン化合物が、0.01~99モル含まれる上記(6)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
(8)前記分子内にカルボキシル基を有するジアミン化合物が、下記の式[2]で表されるジアミンである上記(6)又は(7)に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
かくして、本発明の本発明のジアミン化合物を使用したポリアミド酸及び/又はポリイミド重合体を含む液晶配向処理剤から得られる液晶配向膜を有する液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビ等に好適に使用できる。
本発明の特定ジアミン化合物は、下記の式[1]で表される。
式[1]中、X1は-CO-又は-CONH-である。
式[1]中、X2は炭素数1~5のアルキレン基、又は窒素原子を含有する非芳香族複素環である。
X2が炭素数1~5のアルキレン基である場合は、該アルキレン基は直鎖状でもよいし、分岐していてもよい。特に、アルキレン基の炭素数は1~3が好ましい。
X2は、X3中の窒素原子又は前記窒素原子に隣接する原子、好ましくは炭素原子と結合していると、液晶表示素子において直流電圧により蓄積する残留電荷の緩和を早くする効果を奏し易いため好ましい。
本発明の式[1]で表される特定ジアミン化合物を製造する方法は特に限定されないが、好ましい方法としては以下の方法が挙げられる。
本発明の重合体は、特定ジアミン化合物を含有するジアミン成分とテトラカルボン酸二無水物との反応によって得られるポリアミド酸及びこのポリアミド酸を脱水閉環させて得られるポリイミドである。これらのポリアミド酸及びポリイミドのいずれもが、液晶配向膜を得るための重合体として有用である。
本発明の重合体を用いて得られる液晶配向膜は、上記ジアミン成分における特定ジアミン化合物の含有割合が多くなるほど、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和が早くなる。
上記した特性を高める目的では、ジアミン成分の1モル%以上が特定ジアミン化合物であることが好ましい。更には、ジアミン成分の5モル%以上が特定ジアミン化合物であることが好ましく、より好ましくは10モル%以上である。
ジアミン成分の100モル%が特定ジアミン化合物であってもよいが、液晶配向処理剤を塗布する際の均一塗布性の観点から、特定ジアミン化合物はジアミン成分の80モル%以下が好ましく、より好ましくは40モル%以下である。
本発明において、ジアミン成分として、特定ジアミン化合物とともに、分子内にカルボキシル基を有するジアミン化合物を使用した場合には、上記特定ジアミン化合物の有する窒素原子を2つ有する芳香族複素環が、分子内にカルボキシル基を有するジアミン化合物の有するカルボキシル基と、塩形成や水素結合といった静電的相互作用で結ばれることにより、カルボキシル基と窒素含有芳香族複素環との間で電荷の移動が起こる。そのため、窒素含有芳香族複素環部位に移動した電荷は、効率的に共重合体の分子内、分子間を移動でき、その結果、この場合に得られる液晶配向処理剤は、液晶配向膜にした際、電圧保持率が高く、かつ高温下に長時間曝された後であっても、直流電圧により蓄積する残留電荷の緩和さらに速いという効果を奏する。
本発明においては、本発明の効果を損なわない限りにおいて、特定ジアミン化合物、及び上記分子内にカルボキシル基を有するジアミン化合物に加えて、その他のジアミン化合物を、ジアミン成分として併用することができる。その具体例を以下に挙げる。
その他のジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
本発明のポリアミド酸を得るためにジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その好ましい具体例を以下に挙げる。
ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,5,6-アントラセンテトラカルボン酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、2,3,3',4-ビフェニルテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸二無水物、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、オキシジフタルテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロヘプタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロへキシルコハク酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸二無水物、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸二無水物、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸二無水物、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸二無水物、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等が挙げられる。
テトラカルボン酸二無水物とジアミン成分との反応により、本発明のポリアミド酸を得るにあたっては、公知の合成手法を用いることができる。一般的にはテトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミン成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
テトラカルボン酸二無水物とジアミン成分との反応に用いる有機溶媒としては、生成したポリアミド酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、テトラカルボン酸二無水物又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
本発明のポリイミドは、前記のポリアミド酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
本発明のポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
ポリアミド酸をイミド化させる方法としては、ポリアミド酸の溶液をそのまま加熱する熱イミド化、ポリアミド酸の溶液に触媒を添加する触媒イミド化が挙げられる。
ポリアミド酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、高分子被膜を形成するための高分子成分が溶媒中に溶解した溶液である。ここで、前記の高分子成分には、上記した本発明の重合体の少なくとも一種の重合体が含まれる。その際、高分子成分の含有量は、液晶配向処理剤中、1質量%~20質量%が好ましく、より好ましくは3質量%~15質量%、特に好ましくは3~10質量%である。
本発明の液晶配向処理剤に用いる溶媒は、高分子成分を溶解させる有機溶媒が好ましく、その具体例を以下に挙げる。
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
膜厚の均一性や表面平滑性を向上させる溶媒としては、液晶配向処理剤中の高分子成分に対する溶解性が小さい貧溶媒が挙げられる。貧溶媒の具体例としては次のものが挙げられる。
膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N',N',-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N',N',-テトラグリシジル-4、4'-ジアミノジフェニルメタンなどが挙げられる。
本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。
本発明の液晶配向処理剤は、基板上に塗布、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜として用いることができる。この際、用いる基板としては透明性の高い基板であれば特に限定されず、ガラス基板、若しくはアクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。
本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。
[ジアミン化合物の合成]
<実施例1>
ジアミン化合物(4)の合成
1H-NMR(1H核磁気共鳴分光)(400MHz,DMSO-d6,δ(ppm)):9.21(1H,t),9.05(2H,d),8.97(1H,t),7.66(1H,s),7.22(1H,s),6.90(1H,s),4.05(2H,t),3.31(2H,q),2.01(2H,tt).
1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.05(1H,t),7.62(1H,t),
7.16(1H,t),6.85(1H,t),6.16(2H,d),5.89(1H,t),4.82(4H,broad),
3.94(2H,t),3.43(2H,q),1.85(2H,tt).
ジアミン化合物(7)の合成
1H-NMR(400MHz,DMSO-d6,δ(ppm)):9.87(1H,broad),9.10(2H,d),
8.97(1H,t),8.57(1H,d),8.50(1H,t),4.65(2H,s),2.84(3H,s).
1H-NMR(400MHz,DMSO-d6,δppm):8.60(1H,t),8.42(1H,m),
8.38(1H,d),6.22(2H,d),5.92(1H,t),4.84(4H,s),4.43(2H,d), 2.43(3H,s).
ジアミン化合物(10)の合成
1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.88(1H,t),8.70(2H,d),8.40(2H,t),6.68(1H,t),3.9(2H,broad),3.75(4H,broad),3.42(2H,broad).
1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.35(2H,d),6.63(1H,t),5.82(1H,t),5.75(2H,d),4.86(4H,s),3.70(4H,broad),3.49(4H,broad).
ジアミン化合物(13)の合成
1H-NMR(400MHz,DMSO-d6,δ(ppm)):9.75(1H,broad),9.10(2H,s),
8.97-8.92(1H,m),7.40-7.22(5H,m),4.59-4.52(2H,m).
1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.55(1H,broad),7.34-7.17(5H,m),6.28(2H,s),6.98-6.94(1H,m),4.85-4.74(4H,broad),4.42-4.35(2H,m).
ジアミン化合物(16)の合成
1H-NMR(400MHz,DMSO-d6,δ(ppm)):9.76(1H,t),9.09-9.02(2H,m),
8.99-8.93(1H,m),8.50(1H,broad),7.64-7.60(1H,m),7.36-7.32(1H,m),7.20-7.14(1H,m),4.57(2H,s),3.35(2H,s).
1H-NMR(400MHz,DMSO-d6,δ(ppm)):8.64(1H,t),8.50(1H,d),
8.44(1H,d),7.67(1H,d),7.34(1H,q),6.23(2H,d),5.94(1H,s), 4.87(4H,s),4.39(2H,d).
以下に使用したテトラカルボン酸二無水物などの化合物の略号を示した。
(テトラカルボン酸二無水物)
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
DBA:3,5-ジアミノ安息香酸
p-PDA:p-フェニレンジアミン
AP18::1,3-ジアミノ-4-オクタデシルオキシベンゼン
PCH7DAB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロへキシル)フェノキシ〕ベンゼン
合成例におけるポリイミドの分子量は、昭和電工社製 常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い、以下のようにして測定した。
カラム温度:50℃
溶離液:N,N’-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
合成例におけるポリイミドのイミド化率は次のようにして測定した。
ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
BODA(3.24g,13.0mmol)、p-PDA(0.65g,6.01mmol)、PCH7DAB(3.30g,8.67mmol)、及び実施例1で得られたジアミン化合物(4)(0.68g,2.62mmol)をNMP(14.5g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(11.9g)を加え、40℃で6時間反応させてポリアミド酸溶液(A)(濃度:24.8質量%)を得た。このポリアミド酸の数平均分子量は22,800、重量平均分子量は53,900であった。
実施例4で得たポリアミド酸溶液(A)(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,800、重量平均分子量は49,500であった。
BODA(3.25g,13.0mmol)、DBA(0.52g,3.42mmol)、PCH7DAB(3.30g,8.67mmol)、及び実施例1で得られたジアミン化合物(4)(1.36g,5.24mmol)をNMP(15.5g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(12.7g)を加え、40℃で6時間反応させポリアミド酸溶液(C)(濃度:24.8質量%)を得た。このポリアミド酸の数平均分子量は24,100、重量平均分子量は55,500であった。
実施例6で得たポリアミド酸溶液(C)(20.1g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.66g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(D)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は19,900、重量平均分子量は51,500であった。
BODA(3.15g,12.6mmol)、p-PDA(1.01g,9.34mmol)、AP18(1.25g,3.32mmol)、及び実施例2で得られたジアミン化合物(7)(1.10g,4.28mmol)をNMP(8.35g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(6.83g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。このポリアミド酸の数平均分子量は21,500、重量平均分子量は52,400であった。
得られたポリアミド酸溶液(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(E)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,100、重量平均分子量は48,700であった。
BODA(3.22g,12.9mmol)、DBA(0.79g,5.19mmol)、PCH7DAB(3.22g,8.46mmol)、及び実施例2で得られたジアミン化合物(7)(0.92g,3.58mmol)をNMP(13.5g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(11.0g)を加え、40℃で6時間反応させポリアミド酸溶液を得た。このポリアミド酸の数平均分子量は23,700、重量平均分子量は54,000であった。
得られたポリアミド酸溶液(20.1g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.07g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(F)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は19,900、重量平均分子量は49,800であった。
BODA(2.97g,11.9mmol)、p-PDA(0.70g,6.47mmol)、PCH7DAB(3.06g,8.04mmol)、及び実施例3で得られたジアミン化合物(10)(0.51g,1.71mmol)をNMP(12.6g)中で混合し、80℃で5時間反応させた後、CBDA(0.85g,4.34mmol)とNMP(10.3g)を加え、40℃で6時間反応させポリアミド酸溶液(G)(濃度:26.1質量%)を得た。このポリアミド酸の数平均分子量は21,200、重量平均分子量は52,100であった。
実施例10で得たポリアミド酸溶液(G)(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.67g)、及びピリジン(2.05g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(360ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(H)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,100、重量平均分子量は48,500であった。
BODA(3.22g,12.9mmol)、p-PDA(0.65g,6.00mmol)、PCH7DAB(3.26g,8.57mmol)、及び合成例1で得られたジアミン化合物(13)(0.62g,2.56mmol)をNMP(15.2g)中で混合し、80℃で5時間反応させた後、CBDA(0.84g,4.28mmol)とNMP(11.1g)を加え、40℃で6時間反応させポリアミド酸溶液(I)(濃度:24.6質量%)を得た。このポリアミド酸の数平均分子量は22,100、重量平均分子量は53,200であった。
合成例3で得たポリアミド酸溶液(I)(20.1g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.68g)、及びピリジン(2.04g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(350ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(J)を得た。このポリイミドのイミド化率は41%であり、数平均分子量は18,400、重量平均分子量は49,100であった。
BODA(3.29g,13.2mmol)、p-PDA(0.67g,6.14mmol)、PCH7DAB(3.34g,8.77mmol)、及び合成例2で得られたジアミン化合物(16)(0.68g,2.79mmol)をNMP(15.0g)中で混合し、80℃で5時間反応させた後、CBDA(0.86g,4.39mmol)とNMP(11.5g)を加え、40℃で6時間反応させポリアミド酸溶液(K)(濃度:25.0質量%)を得た。このポリアミド酸の数平均分子量は22,600、重量平均分子量は54,900であった。
合成例5で得たポリアミド酸溶液(K)(20.0g)にNMPを加え、ポリアミド酸の濃度を6質量%に希釈した後、イミド化触媒として無水酢酸(2.65g)、及びピリジン(2.08g)を加え、80℃で2時間反応させた。この反応溶液をメタノール(320ml)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(L)を得た。このポリイミドのイミド化率は40%であり、数平均分子量は18,900、重量平均分子量は49,200であった。
実施例4で得られたポリアミド酸溶液[A](10.0g)にNMP(10.2g)、及びBCS(20.0g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[1]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
[液晶セルの作製]
上記で得た液晶配向処理剤[1]を3cm×4cm(縦×横)ITO電極付き基板のITO面にスピンコートし、80℃で5分間、210℃の熱風循環式オーブンで1時間焼成を行い、膜厚100nmのポリイミド塗膜を作製した。
この液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのビーズスペーサーを散布した後、その上からシール剤を印刷した。用意したもう1枚の基板を、液晶配向膜面を内側にし、ラビング方向が逆向きになるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク・ジャパン社製)を注入し、アンチパラレル配向のネマチック液晶セルを得た。
[電圧保持率の評価]
上記で得られた液晶セルに、80℃の温度下で4Vの電圧を60μs印加し、16.67ms後及び1667ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(%)として計算した。結果は、表5に示す。
[残留電荷の緩和の評価]
電圧保持率測定後の液晶セルに、直流電圧10Vを30分印加し、1秒間短絡させた後、液晶セル内に発生している電位を1800秒間測定した。そして、50秒後及び1000秒後の残留電荷(V)を測定した。なお、測定には東陽テクニカ社製6254型液晶物性評価装置を用いた。結果は、表6に示す。
[高温放置後の評価]
残留電荷測定後の液晶セルを、100℃に設定した高温槽に7日間放置した後、電圧保持率及び残留電荷の測定を行った。結果は、後述する表5及び表6に示す。
実施例5で得られたポリイミド粉末[B](5.1g)にNMP(36.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(18.1g)、及びBCS(25.6g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[2]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
実施例6で得られたポリアミド酸溶液[C](10.0g)にNMP(10.2g)、及びBCS(20.0g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[3]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
実施例7で得られたポリイミド粉末[D](5.0g)にNMP(30.3g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(14.8g)、及びBCS(33.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[4]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
実施例8で得られたポリイミド粉末[E](5.1g)にNMP(33.0g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.1g)、及びBCS(29.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[5]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
実施例9で得られたポリイミド粉末[F](5.2g)にNMP(34.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(16.5g)、及びBCS(30.3g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[6]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
実施例10で得られたポリアミド酸溶液[G](10.0g)にNMP(15.6g)、及びBCS(17.1g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[7]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
実施例11で得られたポリイミド粉末[H](5.0g)にNMP(35.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.8g)、及びBCS(25.1g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[8]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
合成例3で得られたポリアミド酸溶液[I](10.0g)にNMP(18.8g)、及びBCS(12.2g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[9]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
合成例4で得られたポリイミド粉末[J](4.7g)にNMP(38.6g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(19.4g)、及びBCS(15.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[10]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
合成例5で得られたポリアミド酸溶液[K](10.4g)にNMP(17.5g)、及びBCS(15.3g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[11]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された
合成例6で得られたポリイミド粉末[L](4.5g)にNMP(34.5g)を加え、70℃にて40時間攪拌して溶解させた。この溶液にNMP(17.2g)、及びBCS(18.8g)を加え、25℃にて2時間攪拌することにより、液晶配向処理剤[12]を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、高分子成分は均一に溶解していることが確認された。
なお、2009年7月21日に出願された日本特許出願2009-170396号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (12)
- 前記芳香族複素環が、イミダゾール環、ピラジン環、又はピリミジン環である請求項1に記載のジアミン化合物。
- 前記窒素原子を含有する非芳香族複素環が、ピペラジン環である請求項1又は2に記載のジアミン化合物。
- 請求項1~3のいずれかに記載のジアミン化合物を含むジアミン成分と、テトラカルボン酸二無水物成分とを反応させて得られるポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
- 前記ジアミン成分中に、請求項1~3のいずれかに記載のジアミン化合物が1~80モル%含まれる請求項4に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
- 前記ジアミン成分中に、分子内にカルボキシル基を含有するジアミン化合物が含まれる請求項4に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
- 前記ジアミン成分中に、請求項1~3のいずれかに記載のジアミン化合物の1モルに対して、分子内にカルボキシル基を有するジアミン化合物が、0.01~99モル含まれる請求項6に記載のポリアミド酸又は該ポリアミド酸をイミド化したポリイミド。
- 請求項4~8のいずれかに記載のポリアミド酸及び該ポリアミド酸をイミド化したポリイミドのうち少なくとも一方と、溶媒とを含有する液晶配向処理剤。
- 前記溶媒中の5~80質量%が貧溶媒である請求項9に記載の液晶配向処理剤。
- 請求項9又は10に記載の液晶配向処理剤から得られる液晶配向膜。
- 請求項11に記載の液晶配向膜を有する液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011523647A JP5729299B2 (ja) | 2009-07-21 | 2010-07-16 | ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤 |
CN201080043007.1A CN102574811B (zh) | 2009-07-21 | 2010-07-16 | 二胺化合物、聚酰胺酸、聚酰亚胺及液晶取向处理剂 |
KR1020177026552A KR102073458B1 (ko) | 2009-07-21 | 2010-07-16 | 디아민 화합물, 폴리아미드산, 폴리이미드 및 액정 배향 처리제 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-170396 | 2009-07-21 | ||
JP2009170396 | 2009-07-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011010619A1 true WO2011010619A1 (ja) | 2011-01-27 |
Family
ID=43499092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/062109 WO2011010619A1 (ja) | 2009-07-21 | 2010-07-16 | ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5729299B2 (ja) |
KR (2) | KR102073458B1 (ja) |
CN (1) | CN102574811B (ja) |
TW (1) | TWI477478B (ja) |
WO (1) | WO2011010619A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085891A (ja) * | 2009-09-16 | 2011-04-28 | Jsr Corp | 液晶配向剤および液晶表示素子 |
WO2012014898A1 (ja) * | 2010-07-26 | 2012-02-02 | 日産化学工業株式会社 | 液晶配向処理剤、液晶配向膜及び液晶表示素子 |
JP2012027429A (ja) * | 2010-07-21 | 2012-02-09 | Daxin Material Corp | 芳香族ジアミン化合物、それを用いて調製されたポリアミック酸とポリイミド、および液晶配向剤 |
WO2012121259A1 (ja) * | 2011-03-07 | 2012-09-13 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
WO2012121257A1 (ja) * | 2011-03-07 | 2012-09-13 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
CN102732262A (zh) * | 2011-04-14 | 2012-10-17 | 达兴材料股份有限公司 | 液晶配向剂 |
WO2012157982A2 (ko) * | 2011-05-18 | 2012-11-22 | 주식회사 동진쎄미켐 | 디아민 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자 |
WO2012165355A1 (ja) * | 2011-05-27 | 2012-12-06 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 |
WO2013108854A1 (ja) * | 2012-01-18 | 2013-07-25 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP2016079288A (ja) * | 2014-10-16 | 2016-05-16 | 日産化学工業株式会社 | 重合体、液晶配向剤、液晶配向膜及び液晶表示素子 |
US10696845B2 (en) * | 2015-03-27 | 2020-06-30 | Tokyo Ohka Kogyo Co., Ltd. | Energy-sensitive resin composition |
US10954340B2 (en) | 2015-08-07 | 2021-03-23 | Tokyo Ohka Kogyo Co., Ltd. | Polyimide precursor composition |
KR20220046514A (ko) | 2019-08-08 | 2022-04-14 | 닛산 가가쿠 가부시키가이샤 | 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102558096B (zh) * | 2010-12-30 | 2015-01-21 | 达兴材料股份有限公司 | 芳香族二胺化合物、使用此芳香族二胺化合物制备的聚酰胺酸与聚酰亚胺以及液晶配向剂 |
TWI499656B (zh) * | 2011-07-14 | 2015-09-11 | Nissan Chemical Ind Ltd | Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element |
TWI508998B (zh) * | 2012-10-03 | 2015-11-21 | Chi Mei Corp | Liquid crystal aligning agent and its application |
TWI494347B (zh) * | 2012-12-25 | 2015-08-01 | Taiwan Textile Res Inst | 二硝單體、二胺單體、聚醯亞胺以及經改質的聚醯亞胺 |
JP6627595B2 (ja) * | 2015-06-11 | 2020-01-08 | Jnc株式会社 | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 |
WO2017061575A1 (ja) * | 2015-10-07 | 2017-04-13 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
TWI687457B (zh) * | 2016-08-24 | 2020-03-11 | 奇美實業股份有限公司 | 液晶配向劑及其應用 |
CN109791333A (zh) * | 2016-10-07 | 2019-05-21 | 夏普株式会社 | Tft基板用液晶取向剂及液晶显示面板的制造方法 |
CN114958393B (zh) * | 2022-06-16 | 2023-09-05 | 长沙道尔顿电子材料有限公司 | 一种含氮芳香环结构聚酰胺酸液晶取向剂和液晶取向膜及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0876128A (ja) * | 1994-09-08 | 1996-03-22 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
JPH09316200A (ja) * | 1996-05-31 | 1997-12-09 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
JPH10104633A (ja) * | 1996-10-02 | 1998-04-24 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
WO2004048462A1 (ja) * | 2002-11-28 | 2004-06-10 | Jsr Corporation | 光硬化性樹脂組成物、それを用いた医療用具およびその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5444690B2 (ja) * | 2007-12-06 | 2014-03-19 | Jsr株式会社 | 液晶配向剤および液晶表示素子 |
CN101925634B (zh) * | 2008-01-25 | 2013-01-02 | 日产化学工业株式会社 | 二胺化合物、液晶取向处理剂及使用了该处理剂的液晶显示元件 |
-
2010
- 2010-07-16 CN CN201080043007.1A patent/CN102574811B/zh active Active
- 2010-07-16 JP JP2011523647A patent/JP5729299B2/ja active Active
- 2010-07-16 KR KR1020177026552A patent/KR102073458B1/ko active Active
- 2010-07-16 KR KR1020127004340A patent/KR20120037493A/ko active Application Filing
- 2010-07-16 WO PCT/JP2010/062109 patent/WO2011010619A1/ja active Application Filing
- 2010-07-21 TW TW099123970A patent/TWI477478B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0876128A (ja) * | 1994-09-08 | 1996-03-22 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
JPH09316200A (ja) * | 1996-05-31 | 1997-12-09 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
JPH10104633A (ja) * | 1996-10-02 | 1998-04-24 | Japan Synthetic Rubber Co Ltd | 液晶配向剤 |
WO2004048462A1 (ja) * | 2002-11-28 | 2004-06-10 | Jsr Corporation | 光硬化性樹脂組成物、それを用いた医療用具およびその製造方法 |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011085891A (ja) * | 2009-09-16 | 2011-04-28 | Jsr Corp | 液晶配向剤および液晶表示素子 |
JP2012027429A (ja) * | 2010-07-21 | 2012-02-09 | Daxin Material Corp | 芳香族ジアミン化合物、それを用いて調製されたポリアミック酸とポリイミド、および液晶配向剤 |
WO2012014898A1 (ja) * | 2010-07-26 | 2012-02-02 | 日産化学工業株式会社 | 液晶配向処理剤、液晶配向膜及び液晶表示素子 |
JP5904121B2 (ja) * | 2010-07-26 | 2016-04-13 | 日産化学工業株式会社 | 液晶配向処理剤、液晶配向膜及び液晶表示素子 |
CN103502312A (zh) * | 2011-03-07 | 2014-01-08 | 日产化学工业株式会社 | 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件 |
JPWO2012121257A1 (ja) * | 2011-03-07 | 2014-07-17 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
KR101878522B1 (ko) * | 2011-03-07 | 2018-07-13 | 닛산 가가쿠 고교 가부시키 가이샤 | 조성물, 액정 배향 처리제, 액정 배향막, 및 액정 표시 소자 |
JP6075286B2 (ja) * | 2011-03-07 | 2017-02-08 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
JP6003882B2 (ja) * | 2011-03-07 | 2016-10-05 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
WO2012121259A1 (ja) * | 2011-03-07 | 2012-09-13 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
CN103502312B (zh) * | 2011-03-07 | 2015-07-29 | 日产化学工业株式会社 | 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件 |
CN103492462A (zh) * | 2011-03-07 | 2014-01-01 | 日产化学工业株式会社 | 组合物、液晶取向处理剂、液晶取向膜及液晶显示元件 |
WO2012121257A1 (ja) * | 2011-03-07 | 2012-09-13 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
JPWO2012121259A1 (ja) * | 2011-03-07 | 2014-07-17 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜、及び液晶表示素子 |
CN102732262B (zh) * | 2011-04-14 | 2014-07-23 | 达兴材料股份有限公司 | 液晶配向剂 |
CN102732262A (zh) * | 2011-04-14 | 2012-10-17 | 达兴材料股份有限公司 | 液晶配向剂 |
JP2012226293A (ja) * | 2011-04-14 | 2012-11-15 | Daxin Material Corp | 液晶配向剤 |
WO2012157982A3 (ko) * | 2011-05-18 | 2013-01-24 | 주식회사 동진쎄미켐 | 디아민 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자 |
WO2012157982A2 (ko) * | 2011-05-18 | 2012-11-22 | 주식회사 동진쎄미켐 | 디아민 화합물, 이의 제조방법, 액정 배향제, 액정 배향막 및 액정 표시 소자 |
WO2012165355A1 (ja) * | 2011-05-27 | 2012-12-06 | 日産化学工業株式会社 | 組成物、液晶配向処理剤、液晶配向膜及び液晶表示素子 |
JPWO2013108854A1 (ja) * | 2012-01-18 | 2015-05-11 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
WO2013108854A1 (ja) * | 2012-01-18 | 2013-07-25 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP2016079288A (ja) * | 2014-10-16 | 2016-05-16 | 日産化学工業株式会社 | 重合体、液晶配向剤、液晶配向膜及び液晶表示素子 |
US10696845B2 (en) * | 2015-03-27 | 2020-06-30 | Tokyo Ohka Kogyo Co., Ltd. | Energy-sensitive resin composition |
US10954340B2 (en) | 2015-08-07 | 2021-03-23 | Tokyo Ohka Kogyo Co., Ltd. | Polyimide precursor composition |
KR20220046514A (ko) | 2019-08-08 | 2022-04-14 | 닛산 가가쿠 가부시키가이샤 | 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자 |
Also Published As
Publication number | Publication date |
---|---|
KR102073458B1 (ko) | 2020-02-04 |
CN102574811A (zh) | 2012-07-11 |
CN102574811B (zh) | 2015-09-09 |
TWI477478B (zh) | 2015-03-21 |
JPWO2011010619A1 (ja) | 2012-12-27 |
KR20170110172A (ko) | 2017-10-10 |
TW201118062A (en) | 2011-06-01 |
JP5729299B2 (ja) | 2015-06-03 |
KR20120037493A (ko) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5729299B2 (ja) | ジアミン化合物、ポリアミド酸、ポリイミド及び液晶配向処理剤 | |
JP5177150B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP5240207B2 (ja) | 液晶配向処理剤、及びそれを用いた液晶表示素子 | |
JP5382372B2 (ja) | 液晶配向処理剤及びそれを用いた液晶表示素子 | |
KR101826380B1 (ko) | 액정 배향 처리제, 액정 배향막 및 액정 표시 소자 | |
JP5663876B2 (ja) | 液晶配向処理剤、及びそれを用いた液晶表示素子 | |
JP5651953B2 (ja) | 液晶配向剤、及び液晶表示素子 | |
JP6233309B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JPWO2014208609A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子 | |
WO2013108854A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6065074B2 (ja) | ジアミン化合物、ポリイミド前駆体及びポリイミド | |
WO2013146890A1 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
KR20090076944A (ko) | 액정 배향 처리제 및 그것을 사용한 액정 표시 소자 | |
JP5614412B2 (ja) | 液晶配向処理剤、液晶配向膜、及びそれを用いた液晶表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080043007.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10802239 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011523647 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20127004340 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10802239 Country of ref document: EP Kind code of ref document: A1 |