WO2011007777A1 - Iii族窒化物半導体光素子、エピタキシャル基板 - Google Patents
Iii族窒化物半導体光素子、エピタキシャル基板 Download PDFInfo
- Publication number
- WO2011007777A1 WO2011007777A1 PCT/JP2010/061839 JP2010061839W WO2011007777A1 WO 2011007777 A1 WO2011007777 A1 WO 2011007777A1 JP 2010061839 W JP2010061839 W JP 2010061839W WO 2011007777 A1 WO2011007777 A1 WO 2011007777A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- gallium nitride
- group iii
- based semiconductor
- type gallium
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 355
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 138
- 230000003287 optical effect Effects 0.000 title claims abstract description 115
- 239000000758 substrate Substances 0.000 title claims description 128
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 172
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 170
- 239000002019 doping agent Substances 0.000 claims abstract description 82
- 239000011777 magnesium Substances 0.000 claims abstract description 44
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 41
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 37
- 229910002601 GaN Inorganic materials 0.000 claims description 273
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 204
- 230000004888 barrier function Effects 0.000 claims description 27
- 229910002704 AlGaN Inorganic materials 0.000 claims description 15
- 239000000470 constituent Substances 0.000 claims description 8
- 229910052738 indium Inorganic materials 0.000 claims description 7
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 7
- -1 InGaN Inorganic materials 0.000 claims description 5
- 230000000903 blocking effect Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 367
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 17
- 238000005253 cladding Methods 0.000 description 16
- 229910021529 ammonia Inorganic materials 0.000 description 13
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000013078 crystal Substances 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 230000004913 activation Effects 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 125000004429 atom Chemical group 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 4
- QBJCZLXULXFYCK-UHFFFAOYSA-N magnesium;cyclopenta-1,3-diene Chemical compound [Mg+2].C1C=CC=[C-]1.C1C=CC=[C-]1 QBJCZLXULXFYCK-UHFFFAOYSA-N 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 229910000077 silane Inorganic materials 0.000 description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
- H01S5/320275—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth semi-polar orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/0014—Measuring characteristics or properties thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2009—Confining in the direction perpendicular to the layer structure by using electron barrier layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2018—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
- H01S5/2031—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3054—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3211—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
- H01S5/3213—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities asymmetric clading layers
Definitions
- the present invention relates to a group III nitride semiconductor optical device and an epitaxial substrate for the group III nitride semiconductor optical device.
- Non-Patent Document 1 describes that (1-101) plane GaN is uniformly grown on a silicon substrate. This GaN was grown on a combination of striped GaN grown by a selective metal organic vapor phase epitaxy method on an (001) plane silicon substrate of 7 degrees off through an AlN intermediate layer. Three types of samples (A), (B), and (C) were produced. Sample (A) contains GaN grown on an LT-AlN interlayer. Sample (B) comprises Al 0.1 Ga 0.9 N layer of 30 nm. Sample (C) contains GaN grown without an LT-AlN interlayer. Three types of samples (A), (B), and (C) were subjected to hole measurement. Sample (A) showed p conductivity and sample (B) showed n conductivity.
- Non-Patent Document 1 describes as follows: Samples (A) and (B) include a GaN / AlN / Si heterojunction, and conduction in the heterojunction is conducted in samples (A) and (B). Presumed to be the main one of sex.
- Non-Patent Document 2 describes that (1-101) plane GaN is uniformly grown on a silicon substrate. This GaN was grown on a combination of striped GaN grown by a selective metal organic vapor phase epitaxy method on an (001) plane silicon substrate of 7 degrees off through an AlN intermediate layer. Magnesium was added to the (1-101) plane GaN. The dopant gas EtCp 2 Mg was used for magnesium addition. In the addition region where the dopant gas / gallium source molar ratio (EtCp 2 Mg / TMG) is less than 2 ⁇ 10 ⁇ 3 , the hole concentration in the GaN film decreases as the amount of dopant gas added increases.
- EtCp 2 Mg / TMG the dopant gas / gallium source molar ratio
- Non-Patent Document 2 explains this phenomenon by referring to the fact that the (1-101) plane GaN is a nitrogen plane, but the c plane GaN is a Ga plane.
- Non-Patent Document 3 describes that (1-101) plane and (11-22) plane GaN are uniformly grown on a silicon substrate. Carbon is added in the growth of GaN using the dopant gas C 2 H 2 . The addition of carbon to (11-22) plane GaN has an effect different from the addition of carbon to (1-101) plane GaN.
- Non-Patent Documents 1 to 3 Some of the authors of Non-Patent Documents 1 to 3 are common.
- Patent Document 1 describes increasing the electric resistance of a GaN film by increasing the carbon concentration.
- Non-Patent Documents 1 to 3 striped GaN coalescence grown by selective metal organic vapor phase epitaxy on an (001) plane silicon substrate of 7 degrees off through an AlN intermediate layer
- GaN is likely to contain threading dislocations at a high density. Therefore, the conductivity is complicated in the crystallographic structure of the GaN compound described in Non-Patent Documents 1 to 3.
- Patent Document 1 high resistance is realized by adding carbon to the GaN film.
- Non-Patent Documents 1 to 3 and Patent Document 1 the behavior of carbon in a gallium nitride semiconductor is complicated.
- carbon can be stably used as a p-type dopant in a gallium nitride semiconductor.
- An object of the present invention is to provide a group III nitride semiconductor optical device including a p-type gallium nitride based semiconductor layer with reduced resistance, and to provide an epitaxial substrate for the group III nitride semiconductor optical device. For the purpose.
- a group III nitride semiconductor optical device includes (a) a group III nitride semiconductor, which is zero with respect to a reference plane orthogonal to a reference axis extending in the c-axis direction of the group III nitride semiconductor.
- a support having a major surface forming a larger angle; (b) an n-type gallium nitride based semiconductor layer provided on the major surface of the support; and (c) provided on the major surface of the support.
- a magnesium-added p-type gallium nitride semiconductor layer and (d) provided between the n-type gallium nitride semiconductor layer and the p-type gallium nitride semiconductor layer on the main surface of the support. And an active layer.
- the angle is in a range of not less than 40 degrees and not more than 140 degrees, the main surface shows one of semipolar and nonpolar, the p-type gallium nitride based semiconductor layer contains carbon as a p-type dopant, and the p-type
- the carbon concentration of the gallium nitride based semiconductor layer is 2 ⁇ 10 16 cm ⁇ 3 or more, and the carbon concentration of the p-type gallium nitride based semiconductor layer is 1 ⁇ 10 19 cm ⁇ 3 or less.
- An epitaxial substrate for a group III nitride semiconductor optical device includes (a) a group III nitride semiconductor, and is orthogonal to a reference axis extending in the c-axis direction of the group III nitride semiconductor.
- a group III nitride semiconductor substrate having a main surface forming an angle larger than zero with respect to a reference plane; and (b) an n-type gallium nitride based semiconductor layer provided on the main surface of the group III nitride semiconductor substrate; (C) a magnesium-added p-type gallium nitride based semiconductor layer provided on the main surface of the group III nitride semiconductor substrate; and (d) n on the main surface of the group III nitride semiconductor substrate.
- An active layer provided between the p-type gallium nitride semiconductor layer and the p-type gallium nitride semiconductor layer.
- the angle is in a range of not less than 40 degrees and not more than 140 degrees, the main surface shows one of semipolar and nonpolar, the p-type gallium nitride based semiconductor layer contains carbon as a p-type dopant, and the p-type
- the carbon concentration of the gallium nitride based semiconductor layer is 2 ⁇ 10 16 cm ⁇ 3 or more, and the carbon concentration of the p-type gallium nitride based semiconductor layer is 1 ⁇ 10 19 cm ⁇ 3 or less.
- the p-type gallium nitride based semiconductor layer is provided on the main surface of the support or the substrate, and the main surface has a temperature of 40 degrees to 140 degrees. It forms an angle with the c-plane at an angle in the range. In this angle range, carbon added to the p-type gallium nitride semiconductor layer functions stably as a p-type dopant. Moreover, since the p-type gallium nitride based semiconductor layer contains both carbon and magnesium that act as p-type dopants, holes are provided from both carbon and magnesium.
- the active layer includes well layers and barrier layers alternately arranged in the direction of the normal axis of the main surface of the support,
- the barrier layer is made of a gallium nitride based semiconductor, the thickness of the barrier layer is larger than the thickness of the well layer, the well layer is made of a gallium nitride based semiconductor containing In as a constituent element, and the carbon of the well layer
- the concentration can be 1 ⁇ 10 17 cm ⁇ 3 or less.
- the carbon concentration of the well layer is 1 ⁇ 10 17 cm ⁇ 3 or less, the carbon as the p-type dopant substantially contributes to the emission characteristics of the active layer. It does not affect.
- the carbon concentration of the n-type gallium nitride based semiconductor layer is lower than the carbon concentration of the p-type gallium nitride based semiconductor layer, and the n-type gallium nitride
- the n-type semiconductor layer contains an n-type dopant, and the n-type dopant concentration of the n-type gallium nitride semiconductor layer is higher than the carbon concentration of the n-type gallium nitride semiconductor layer.
- the n-type dopant concentration of the n-type gallium nitride semiconductor layer is higher than the carbon concentration of the n-type gallium nitride semiconductor layer.
- carbon acts as a p-type dopant, carbon as a p-type dopant does not substantially affect the n conductivity type of the n-type gallium nitride based semiconductor layer.
- the carbon concentration of the n-type gallium nitride based semiconductor layer is preferably 1 ⁇ 10 18 cm ⁇ 3 or less.
- the electron concentration of the n-type gallium nitride based semiconductor layer is sufficiently high under the normal concentration of the n-type dopant.
- the n-type gallium nitride based semiconductor layer can be composed of at least one of InAlGaN and AlGaN. According to the present group III nitride semiconductor optical device and epitaxial substrate, carbon as a p-type dopant does not substantially affect the n conductivity type of these gallium nitride semiconductors.
- the n-type gallium nitride based semiconductor layer is preferably InAlGaN. According to the group III nitride semiconductor optical device and the epitaxial substrate, appropriate conductivity and desired strain can be provided to the n-type gallium nitride-based semiconductor layer.
- the carbon concentration in the p-type gallium nitride semiconductor layer can be higher than the magnesium concentration in the p-type gallium nitride semiconductor layer.
- the activation energy of carbon is smaller than the activation energy of magnesium, so that the amount of magnesium added to provide a desired hole concentration does not increase.
- a group III nitride semiconductor optical device and an epitaxial substrate according to the above aspect of the present invention are provided between the p-type gallium nitride semiconductor layer and the active layer, and the first optical guide layer made of a gallium nitride semiconductor. And a second light guide layer provided between the n-type gallium nitride semiconductor layer and the active layer and made of a gallium nitride semiconductor.
- At least a portion of the first light guide layer includes magnesium as a p-type dopant, the carbon concentration of the first light guide layer is 1 ⁇ 10 17 cm ⁇ 3 or less, and the magnesium in the first light guide layer is The concentration is 1 ⁇ 10 17 cm ⁇ 3 or less, and the carbon concentration of the second light guide layer is 1 ⁇ 10 17 cm ⁇ 3 or less.
- carrier generation by carbon can be reduced, so that light absorption by free carriers can be reduced.
- the active layer includes a quantum well structure provided to generate light having a wavelength of 430 nm to 600 nm.
- the group III nitride semiconductor optical device may further include an electron block layer provided between the active layer and the p-type gallium nitride based semiconductor layer.
- the first light guide layer includes a first InGaN layer provided between the electron block layer and the active layer, and the second light guide layer includes the active layer and the n-type gallium nitride system.
- a second InGaN layer provided between the semiconductor layers is included.
- the group III nitride semiconductor optical device and the epitaxial substrate it is possible to provide a waveguide structure suitable for a light emitting device that generates light having a relatively long wavelength.
- the n-type gallium nitride semiconductor layer, the active layer, and the p-type gallium nitride semiconductor layer are formed on the main surface of the support.
- the p-type gallium nitride based semiconductor layer is arranged on the main surface of the active layer, and the main surface of the active layer is 40 degrees or more and 140 degrees or less with respect to the reference plane.
- the active layer is provided on a main surface of the n-type gallium nitride based semiconductor layer. According to this group III nitride semiconductor optical device and epitaxial substrate, the technical contribution of carbon as a p-type dopant can be obtained.
- the group III nitride semiconductor optical device and epitaxial substrate according to the above aspect of the present invention further include a contact layer provided on the main surface of the p-type gallium nitride semiconductor layer and made of a p-type gallium nitride semiconductor. it can.
- the carbon concentration of the contact layer is 2 ⁇ 10 16 cm ⁇ 3 or more, and the carbon concentration of the contact layer is 1 ⁇ 10 19 cm ⁇ 3 or less. According to this group III nitride semiconductor optical device and epitaxial substrate, the technical contribution of carbon as a p-type dopant can be obtained also in the contact layer.
- the group III nitride semiconductor optical device may further include a first electrode in contact with the contact layer.
- the contact layer contains both carbon and magnesium as p-type dopants, the contact layer can make good electrical contact with the electrode.
- the reference axis extending in the c-axis direction is ⁇ 15 based on the ⁇ 11-20> direction of the group III nitride semiconductor of the support.
- the angle between the main surface of the support and the reference plane orthogonal to the reference axis extending in the c-axis direction is in the range of 59 degrees to 121 degrees. It is good to be.
- the probability that carbon can act as a p-type dopant can be further increased.
- the reference axis extending in the c-axis direction is ⁇ 15 based on the ⁇ 11-20> direction of the group III nitride semiconductor of the support.
- the angle formed between the main surface of the support and the reference plane orthogonal to the reference axis extending in the c-axis direction is 70 degrees to 80 degrees or 100 degrees. It is preferable that the range is 110 degrees or less. According to this group III nitride semiconductor optical device and epitaxial substrate, the probability that carbon can act as a p-type dopant can be further increased.
- the reference axis extending in the c-axis direction is ⁇ 15 based on the ⁇ 1-100> direction of the group III nitride semiconductor of the support.
- the angle formed between the main surface of the support and the reference plane orthogonal to the reference axis extending in the c-axis direction is in the range of not less than 63 degrees and not more than 117 degrees. It is good to be. According to this group III nitride semiconductor optical device and epitaxial substrate, the probability that carbon can act as a p-type dopant can be further increased.
- the reference axis extending in the c-axis direction is ⁇ 15 based on the ⁇ 1-100> direction of the group III nitride semiconductor of the support.
- the finite angle between the main surface of the support and the reference plane orthogonal to the reference axis extending in the c-axis direction is 70 degrees to 80 degrees or It is preferable that the angle be in the range of 100 degrees to 110 degrees. According to this group III nitride semiconductor optical device and epitaxial substrate, the probability that carbon can act as a p-type dopant can be further increased.
- the main surface of the support is ⁇ 11-22 ⁇ , ⁇ 11-21 ⁇ , ⁇ 11-20 ⁇ , ⁇ 11-2 ⁇ 1 ⁇ and ⁇ 11-2-1 ⁇ are preferably in the range of ⁇ 4 degrees to +4 degrees. According to this group III nitride semiconductor optical device and epitaxial substrate, the probability that carbon can act as a p-type dopant can be further increased.
- the surface index of the main surface of the support is ⁇ 11-22 ⁇ , ⁇ 11-21 ⁇ , ⁇ 11-20 ⁇ , ⁇ 11-20 ⁇ , ⁇ 11-20 ⁇ 11-2-1 ⁇ and ⁇ 11-2-1 ⁇ . According to this group III nitride semiconductor optical device and epitaxial substrate, these plane indices can further increase the probability that carbon can act as a p-type dopant.
- the main surface of the support is ⁇ 10-11 ⁇ , ⁇ 20-21 ⁇ , ⁇ 10-10 ⁇ , ⁇ 20-2 ⁇ 1 ⁇ and ⁇ 10-1-1 ⁇ can be in the range of ⁇ 4 degrees to +4 degrees.
- carbon can act as a p-type dopant in these angular ranges.
- the plane index of the main surface of the support is ⁇ 10-11 ⁇ , ⁇ 20-21 ⁇ , ⁇ 10-10 ⁇ , ⁇ 10-10 ⁇ , Any one of 20-2-1 ⁇ and ⁇ 10-1-1 ⁇ is preferable.
- these plane indices are considered to have an arrangement of constituent atoms suitable for carbon to act as a p-type dopant.
- the threading dislocation density of the support is 1 ⁇ 10 7 cm ⁇ 2 or less, and the support is made of any one of GaN, InGaN, AlGaN, and InAlGaN. Can be.
- the support has a threading dislocation density of 1 ⁇ 10 7 cm ⁇ 2 or less, and the support can be made of any one of GaN, InGaN, AlGaN, and InAlGaN. .
- the threading dislocation activates the p-type dopant. Can be reduced.
- the support is preferably made of GaN.
- the substrate is preferably made of GaN. Low dislocation GaN substrates are available.
- the group III nitride semiconductor optical device according to the above aspect of the present invention may further include a second electrode in contact with the back surface of the support.
- the said support body shows electroconductivity.
- the support can provide an epitaxial region in which carbon can act as a p-type dopant, and can provide good electrical contact.
- the p-type gallium nitride based semiconductor layer can be made of at least one of InAlGaN and AlGaN. According to the group III nitride semiconductor optical device and the epitaxial substrate, carbon as a p-type dopant effectively acts on the p conductivity type of these gallium nitride based semiconductors.
- the p-type gallium nitride based semiconductor layer is preferably made of InAlGaN. According to the group III nitride semiconductor optical device and the epitaxial substrate, appropriate conductivity and desired strain can be provided.
- the active layer includes well layers and barrier layers alternately arranged in the direction of the normal axis of the main surface of the support,
- the barrier layer is made of a gallium nitride based semiconductor, the thickness of the barrier layer is larger than the thickness of the well layer, the well layer is made of a gallium nitride based semiconductor containing In as a constituent element, and the carbon of the well layer
- the concentration is 1 ⁇ 10 17 cm ⁇ 3 or less, the carbon concentration of the n-type gallium nitride based semiconductor layer is lower than the carbon concentration of the p-type gallium nitride based semiconductor layer, and the n-type gallium nitride based semiconductor layer is n
- the n-type dopant concentration of the n-type gallium nitride semiconductor layer is higher than the carbon concentration of the n-type gallium nitride semiconductor layer.
- this epitaxial substrate it is possible to obtain a technical contribution due to carbon as a p-type dopant, and to reduce the influence of carbon in the n-type gallium nitride based semiconductor layer and the active layer.
- a group III nitride semiconductor optical device including a p-type gallium nitride based semiconductor layer with reduced resistance is provided.
- the present invention also provides an epitaxial substrate for this group III nitride semiconductor optical device.
- FIG. 1 is a drawing showing a group III nitride semiconductor optical device according to an embodiment of the present invention.
- FIG. 2 is a drawing showing carbon profiles obtained by investigating the carbon concentration of gallium nitride grown on semipolar plane GaN under various growth conditions using metal organic vapor phase epitaxy using secondary ion mass spectrometry.
- FIG. 3 is a drawing showing the relationship between the growth conditions used in the growth conditions (1) to (10) of gallium nitride in FIG. 2 and the carbon concentration in gallium nitride.
- FIG. 4 is a drawing showing the relationship between the carbon concentration in the grown GaN film, the growth temperature, and V / III.
- FIG. 5 is a drawing schematically showing main steps in a method for producing a group III nitride semiconductor optical device and an epitaxial substrate.
- FIG. 6 is a drawing schematically showing main steps in a method for producing a group III nitride semiconductor optical device and an epitaxial substrate.
- FIG. 7 is a drawing schematically showing main steps in a method for producing a group III nitride semiconductor optical device and an epitaxial substrate.
- FIG. 8 is a drawing showing a laser diode structure (LD1) and its epitaxial substrate according to the present embodiment.
- FIG. 9 is a drawing showing SIMS profiles of elements of indium, carbon, aluminum, and magnesium in the epitaxial substrate EP.
- FIG. 10 is a drawing showing SIMS profiles of elements of indium, carbon, aluminum, and magnesium in another epitaxial substrate.
- FIG. 11 is a drawing schematically showing an atomic arrangement in the ⁇ 10-11 ⁇ plane.
- FIG. 12 is a drawing schematically showing an atomic arrangement in the ⁇ 20-21 ⁇ plane.
- FIG. 13 is a drawing schematically showing an atomic arrangement in the ⁇ 1014 ⁇ plane.
- FIG. 1 is a drawing showing a group III nitride semiconductor optical device according to an embodiment of the present invention.
- the group III nitride semiconductor optical device can be a semiconductor light emitting device such as a semiconductor laser or a light emitting diode.
- the semiconductor stack shown in FIG. 1 shows the structure of an epitaxial substrate for a semiconductor light emitting device. Referring to FIG. 1, an orthogonal coordinate system S is shown.
- the group III nitride semiconductor optical device 11 includes a support 13, an n-type gallium nitride semiconductor layer 15, a p-type gallium nitride semiconductor layer 17, and an active layer 19.
- the support 13 is made of a group III nitride semiconductor.
- Group III nitride semiconductor is made of In S Al T Ga 1-S -T N (0 ⁇ S ⁇ 1,0 ⁇ T ⁇ 1, S + T ⁇ 1), it is also, for example, GaN, InGaN, AlGaN, InAlGaN or the like be able to.
- the support 13 has a main surface 13a and a back surface 13b, and the normal axis Nx in the normal direction of the main surface 13a (the direction indicated by the normal vector NV) is in the positive direction of the z axis.
- the main surface 13a forms a finite angle ALPHA that is greater than zero with respect to the reference plane Sc, and the reference plane Sc is in the c-axis direction (direction indicated by the c-axis vector VC) of the group III nitride semiconductor. It is orthogonal to the extending reference axis Cx.
- the angle ALPHA is 40 degrees or more and 140 degrees or less.
- the main surface 13a is either semipolar or nonpolar.
- the n-type gallium nitride based semiconductor layer 15 is provided on the main surface 13a of the support 13 and covers the main surface 13a.
- the p-type gallium nitride based semiconductor layer 17 is provided on the main surface 13a.
- the n-type gallium nitride semiconductor layer 15, the active layer 19, and the p-type gallium nitride semiconductor layer 17 are arranged in the direction of the normal axis Nx.
- the active layer 19 is provided between the n-type gallium nitride semiconductor layer 15 and the p-type gallium nitride semiconductor layer 17.
- magnesium is added to the p-type gallium nitride based semiconductor layer 17 as a p-type dopant
- silicon is added to the n-type gallium nitride based semiconductor layer 15 as an n-type dopant.
- the p-type gallium nitride based semiconductor layer 17 contains carbon as a p-type dopant.
- the carbon concentration of the p-type gallium nitride based semiconductor layer 17 is 2 ⁇ 10 16 cm ⁇ 3 or more, and holes can be provided by this concentration range.
- the carbon concentration is 1 ⁇ 10 19 cm ⁇ 3 or less, and this concentration range can reduce a decrease in the surface morphology of the semiconductor containing carbon as a p-type dopant.
- the p-type gallium nitride based semiconductor layer 17 is provided on the main surface 13a of the support 13, and the main surface 13a is in the range of 40 degrees to 140 degrees. It is inclined with respect to the c-plane at an angle. In the range of this inclination angle, when the p-type gallium nitride based semiconductor layer 17 on the main surface 13a contains carbon, the added carbon stably functions as a p-type dopant. Further, the p-type gallium nitride based semiconductor layer 17 contains carbon and magnesium that both act as p-type dopants. Hence, holes are provided from both carbon and magnesium. In addition, since the amount of magnesium added to provide a desired hole concentration can be reduced, a decrease in crystallinity due to magnesium addition can be avoided.
- the p-type gallium nitride based semiconductor layer 17 can be composed of at least one of an InAlGaN layer and an AlGaN layer. Regarding the p-conductivity type of these gallium nitride semiconductors, carbon as a p-type dopant acts effectively.
- the p-type gallium nitride based semiconductor layer 17 is preferably made of InAlGaN. InAlGaN can provide appropriate electrical conductivity and desired strain.
- the active layer 19 can have a single quantum well structure or a multiple quantum well structure, but is not limited to these structures.
- the active layer 19 includes a barrier layer 23a and a well layer 23b.
- the barrier layers 23 a and the well layers 23 b are alternately arranged in the direction of the normal axis Nx of the main surface 13 a of the support 13.
- the barrier layer 23a is made of a gallium nitride based semiconductor, for example, GaN or InGaN.
- the well layer 23b is made of a gallium nitride based semiconductor containing In as a constituent element, for example, InGaN.
- the thickness DB of the barrier layer 23a is larger than the thickness DW of the well layer 23b.
- the carbon concentration of the well layer 23b can be 1 ⁇ 10 17 cm ⁇ 3 or less. Since the carbon concentration of the well layer is 1 ⁇ 10 17 cm ⁇ 3 or less, the carbon as the p-type dopant does not substantially affect the light emission characteristics of the active layer 19. In the n-type gallium nitride based semiconductor layer 15 and the active layer 19, the influence of carbon can be reduced.
- the carbon concentration of the n-type gallium nitride based semiconductor layer 15 is lower than the carbon concentration of the p-type gallium nitride based semiconductor layer 17.
- the n-type gallium nitride based semiconductor layer 15 includes an n-type dopant, and the n-type dopant concentration of the n-type gallium nitride based semiconductor layer 15 is higher than the carbon concentration of the n-type gallium nitride based semiconductor layer 15.
- the carbon in the n-type gallium nitride based semiconductor layer acts as a p-type dopant, the carbon as the p-type dopant does not substantially affect the n conductivity type of the n-type gallium nitride based semiconductor layer 15.
- the carbon concentration of the n-type gallium nitride based semiconductor layer 15 is preferably 1 ⁇ 10 18 cm ⁇ 3 or less. Under a normal n-type dopant addition concentration, the n-type gallium nitride based semiconductor layer has a sufficiently high electron concentration.
- the n-type gallium nitride based semiconductor layer 15 can be composed of at least one of an InAlGaN layer and an AlGaN layer. Carbon as a p-type dopant does not substantially affect the n conductivity type of these gallium nitride based semiconductors.
- the n-type gallium nitride based semiconductor layer 15 is InAlGaN, appropriate conductivity and desired strain can be provided to the n-type gallium nitride based semiconductor layer 15.
- the carbon concentration in the p-type gallium nitride based semiconductor layer 17 can be higher than the magnesium concentration in the p-type gallium nitride based semiconductor layer 17.
- the activation energy of carbon is smaller than the activation energy of magnesium, so that the magnesium concentration necessary to provide a desired hole concentration in the p-type gallium nitride based semiconductor layer 17 is obtained. The amount added does not increase.
- the group III nitride semiconductor optical device 11 is a semiconductor laser
- the p-type gallium nitride based semiconductor layer 17 serves as a cladding layer
- the n-type gallium nitride based semiconductor layer 15 serves as a cladding layer.
- the group III nitride semiconductor optical device 11 When the group III nitride semiconductor optical device 11 is a semiconductor laser, the group III nitride semiconductor optical device 11 includes a first light guide layer 25, which is a gallium nitride based semiconductor such as GaN or InGaN. Consists of.
- the first light guide layer 25 is provided between the p-type gallium nitride based semiconductor layer 17 and the active layer 19.
- the carbon concentration of the first light guide layer 25 can be 1 ⁇ 10 17 cm ⁇ 3 or less. According to the light guide layer 25, since the generation of carriers by carbon can be reduced, light absorption by free carriers can be reduced. If necessary, magnesium can be further added to at least a part of the first light guide layer 25, and the magnesium concentration is 1 ⁇ 10 17 cm ⁇ 3 or less. Note that magnesium may not be added to the first light guide layer 25.
- the first light guide layer 25 can be composed of one or a plurality of gallium nitride based semiconductor layers.
- the first light guide layer 25 may be composed of an InGaN layer 25a and a GaN layer 25b.
- the InGaN layer 25 a is located between the GaN layer 25 b and the active layer 19.
- the electron block layer 21 is provided between the p-type gallium nitride based semiconductor layer 17 and the active layer 19, and in FIG. 1, the electron block layer 21 is located between the InGaN layer 25a and the GaN layer 25b. To do.
- the material of the electron block layer 21 has a band gap larger than the band gap of the InGaN layer 25a and the GaN layer 25b, and the thickness of the electron block layer 21 is smaller than the thickness of the InGaN layer 25a and the thickness of the GaN layer 25b.
- the electron block layer 21 can be made of, for example, AlGaN.
- the group III nitride semiconductor optical device 11 When the group III nitride semiconductor optical device 11 is a semiconductor laser, the group III nitride semiconductor optical device 11 includes a second light guide layer 27, which is a gallium nitride based semiconductor such as GaN or InGaN. Consists of.
- the second light guide layer 27 is provided between the n-type gallium nitride based semiconductor layer 15 and the active layer 19.
- the carbon concentration of the second light guide layer 27 is 1 ⁇ 10 17 cm ⁇ 3 or less. Since the generation of carriers by carbon can be reduced, light absorption by free carriers can be reduced.
- the second light guide layer 27 can be composed of one or a plurality of gallium nitride based semiconductor layers.
- the second light guide layer 27 can be composed of an InGaN layer 27a and a GaN layer 27b.
- the InGaN layer 27 a is located between the GaN layer 27 b and the active layer 19.
- the active layer 19 is provided so as to generate light having a wavelength of 430 nm to 600 nm.
- the first light guide layer 25 includes an InGaN layer
- the second light guide layer 27 includes an InGaN layer.
- the active layer 19 is in contact with the InGaN layer of the first light guide layer 25 and the InGaN layer of the second light guide layer 27.
- the lamination of the InGaN layer of the first light guide layer 25, the active layer 19, and the InGaN layer of the second light guide layer 27 provides a waveguide core structure suitable for a light-emitting element that generates light having a relatively long wavelength. it can.
- the n-type gallium nitride based semiconductor layer 15, the light emitting layer 29, and the p-type gallium nitride based semiconductor layer 17 are arranged in the direction of the normal axis Nx of the main surface 13 a of the support 13.
- the light emitting layer 29 includes the active layer 19 and may further include light guide layers 25 and 27 if necessary.
- the p-type gallium nitride based semiconductor layer 17 (or the semiconductor layer 21) is provided on the main surface 19 a of the active layer 19, and this p-type gallium nitride based semiconductor layer is in contact with the main surface 29 a of the light emitting layer 29. .
- the main surface 19a of the light emitting layer 29 (similarly, the main surface 19a of the active layer 19) is inclined at an angle in the range of 40 degrees to 140 degrees with respect to the reference plane Sc. Since the p-type gallium nitride based semiconductor layer 17 is an epitaxial film epitaxially grown on a semipolar or nonpolar semiconductor region, the behavior of carbon in the epitaxial film epitaxially grown on a polar c-plane semiconductor region.
- the main surface 15a of the n-type gallium nitride based semiconductor layer 15 can be in the range of 40 degrees or more and 140 degrees or less with respect to the reference plane Sc. Since the light emitting layer 29 and the active layer 19 are provided on the main surface 15a of the n-type gallium nitride based semiconductor layer 15, the intensity of the piezo electric field in the light emitting layer 29 and the active layer 19 is semipolar depending on the surface orientation of the base. Small due to nonpolarity.
- the inclination of the main surface 15a of the n-type gallium nitride based semiconductor layer 15 can provide a base layer in which carbon can provide a technical contribution as a p-type dopant in the p-type gallium nitride based semiconductor layer 17.
- the group III nitride semiconductor optical device 11 can further include a contact layer 31.
- the contact layer 31 is provided on the main surface 17a of the p-type gallium nitride semiconductor layer 17, and is made of a p-type gallium nitride semiconductor.
- the carbon concentration of the contact layer 31 can be 2 ⁇ 10 16 cm ⁇ 3 or more. Also in the contact layer 31, the technical contribution of carbon as a p-type dopant can be obtained. Further, the carbon concentration of the contact layer 31 is 1 ⁇ 10 19 cm ⁇ 3 or less. The addition of carbon causes a reduction in crystal quality.
- the contact layer 31, the p-type gallium nitride based semiconductor layer 17, and the first light guide layer 25 can be provided with a ridge structure.
- the ridge structure extends in the direction of the axis Ax in the extending direction of the laser stripe.
- the group III nitride semiconductor optical device 11 can further include a first electrode 33 provided on the contact layer 31.
- the first electrode 33 makes contact with the contact layer 31 through the opening 35a of the insulating film 35 covering the surface of the epitaxial stack.
- the contact layer 31 since the contact layer 31 contains both carbon and magnesium as p-type dopants, the contact layer 31 can make good electrical contact with the electrode 33.
- the opening 35a of the insulating film 35 is located on the upper surface of the ridge structure, and the insulating film 35 covers the entire side surface of the ridge structure.
- the main surface 29a of the light emitting layer 29 (similarly, the main surface 19a of the active layer 19) is inclined at an angle in the range of 40 degrees to 140 degrees with respect to the reference plane Sc.
- the main surface 13 of the support 13 can be inclined in the a-axis direction indicated by the crystal orientation ⁇ 11-20>.
- This inclination angle is preferably in the range of not less than 59 degrees and not more than 121 degrees.
- the inclination angle is particularly preferably 70 degrees or more and 80 degrees or less, or the inclination angle is particularly preferably 100 degrees or more and 110 degrees or less. In these angular ranges, carbon can act as a p-type dopant.
- the reference axis extending in the c-axis direction can be inclined in the direction of ⁇ 15 degrees or more and +15 degrees or less with respect to the ⁇ 11-20> direction of the group III nitride semiconductor of the support 13.
- the inclination angle is preferably in the range of 59 degrees to 121 degrees. According to these angle ranges, the probability that carbon can work as a p-type dopant can be further increased.
- the inclination angle is preferably in the range of 70 degrees to 80 degrees. According to these angle ranges, the probability that carbon can work as a p-type dopant can be further increased.
- the main surface 29a of the light emitting layer 29 (similarly, the main surface 19a of the active layer 19) is inclined at an angle in the range of 40 degrees to 140 degrees with respect to the reference plane Sc.
- the main surface 13 of the support 13 can be inclined in the m-axis direction indicated by the crystal orientation ⁇ 1-100>.
- the inclination angle is preferably in the range of 63 degrees to 117 degrees.
- the inclination angle is particularly preferably 70 degrees or more and 80 degrees or less, or the inclination angle is particularly preferably 100 degrees or more and 110 degrees or less. In these angular ranges, carbon can act as a p-type dopant.
- the reference axis extending in the c-axis direction is preferably inclined in the range of ⁇ 15 degrees to +15 degrees with respect to the ⁇ 1-100> direction of the group III nitride semiconductor of the support 13.
- the inclination angle is preferably in the range of 63 degrees to 117 degrees. According to these angle ranges, the probability that carbon can work as a p-type dopant can be further increased.
- the inclination angle is particularly preferably 70 degrees or more and 80 degrees or less, or the inclination angle is particularly preferably 100 degrees or more and 110 degrees or less. In these angular ranges, carbon can act as a p-type dopant.
- the main surface 13 of the support 13 can be inclined in the a-axis direction indicated by the crystal orientation ⁇ 11-20>.
- the main surface 13 of the support 13 is ⁇ 11-22 ⁇ , ⁇ 11-21 ⁇ , ⁇ 11-20 ⁇ , ⁇ 11-2-1 ⁇ , and ⁇ 11-2-2 ⁇ .
- the angle is in the range of ⁇ 4 degrees to +4 degrees from any of the above surfaces. In these angular ranges, carbon can act as a p-type dopant.
- the surface index of the main surface 13a of the support 13 is any one of ⁇ 11-22 ⁇ , ⁇ 11-21 ⁇ , ⁇ 11-20 ⁇ , ⁇ 11-2-1 ⁇ , and ⁇ 11-2-2 ⁇ . It is good to be one.
- These plane indices are considered to have an arrangement of constituent atoms suitable for the action of carbon as a p-type dopant.
- the main surface 13 of the support 13 can be inclined in the m-axis direction indicated by the crystal orientation ⁇ 1-100>.
- the main surface 13a of the support 13 is ⁇ 10-11 ⁇ , ⁇ 20-21 ⁇ , ⁇ 10-10 ⁇ , ⁇ 20-2-1 ⁇ and ⁇ 10-1-1 ⁇ .
- the angle may be in the range of ⁇ 4 degrees to +4 degrees from any of the above surfaces. In these angular ranges, carbon can act as a p-type dopant.
- the surface index of the main surface 13 of the support 13 is any one of ⁇ 10-11 ⁇ , ⁇ 20-21 ⁇ , ⁇ 10-10 ⁇ , ⁇ 20-2-1 ⁇ and ⁇ 10-1-1 ⁇ . It should be one. These plane indices are considered to have an arrangement of constituent atoms suitable for the action of carbon as a p-type dopant.
- the threading dislocation density of the support 13 can be 1 ⁇ 10 7 cm ⁇ 2 or less. In a gallium nitride based semiconductor layer grown on a region having a threading dislocation density of 1 ⁇ 10 7 cm ⁇ 2 or less, the influence of threading dislocations on p-type dopant activation can be reduced.
- the support 13 can be made of any one of GaN, InGaN, AlGaN, and InAlGaN.
- a region of threading dislocation density of 1 ⁇ 10 7 cm ⁇ 2 or less can be provided in a portion of the support 13. In this low dislocation region, the influence on p-type dopant activation can be reduced. Therefore, this low threading dislocation density region is applicable to semiconductor lasers.
- a gallium nitride based semiconductor layer grown on a threading dislocation density region of 1 ⁇ 10 5 cm ⁇ 2 or less can further reduce the influence of p-type dopant activation due to threading dislocations.
- This threading dislocation density region can provide a substantially dislocation-free laser stripe. Since low dislocation GaN is available, the support 13 is preferably made of GaN.
- the support 13 can exhibit conductivity.
- the group III nitride semiconductor optical device 11 can further include a second electrode 37 that is in contact with the back surface 13 b of the support 13.
- the support 13 can provide an epitaxial region in which carbon can act as a p-type dopant and can provide good electrical contact to the n-type.
- FIG. 2 is a drawing showing carbon profiles obtained by investigating the carbon concentration of gallium nitride grown on semipolar plane GaN under various growth conditions using metal organic vapor phase epitaxy using secondary ion mass spectrometry.
- characteristic lines C and A represent a carbon concentration profile and an aluminum concentration, respectively.
- Aluminum is added so as to have a composition of 0.1% or less as a marker in order to show the change position of the growth conditions.
- FIG. 3 is a drawing showing the relationship between the growth conditions used in the growth conditions (1) to (10) of gallium nitride in FIG. 2 and the carbon concentration in gallium nitride.
- TMG trimethylgallium
- the unit of temperature is “Celsius”
- the unit of growth rate GR is “ ⁇ m / hour”
- the unit of flow rate of ammonia (NH 3 ) is “slm (liter unit per minute in the standard state). Flow rate)
- the unit of carbon concentration is“ cm ⁇ 3 ”.
- FIG. 3 shows V / III (molar flow ratio) and carbon concentration “C”. In the notation of carbon concentration, for example, “0.85E16” indicates 0.85 ⁇ 10 16 .
- FIG. 4 is a drawing showing the relationship between the carbon concentration in the grown GaN film, the growth temperature, and V / III.
- the carbon concentration monotonously decreases with increasing temperature within the growth temperature range (740 to 780 degrees Celsius to 820 degrees Celsius) at a growth rate of 0.21 ⁇ m / hour.
- the carbon concentration monotonously decreases as the V / III ratio increases under the condition of a growth temperature of 780 degrees Celsius.
- the carbon concentration of the p-type dopant can be controlled without supplying the carbon dopant.
- the carbon dopant can be supplied separately from the raw material. For example, a relatively high carbon concentration of 5 ⁇ 10 18 cm ⁇ 3 or more can be easily realized by supplying methane represented by the chemical formula CH 4 during growth.
- FIG. 8 is a drawing schematically showing a semiconductor laser in the present embodiment.
- an epitaxial substrate of the laser diode structure (LD1) shown in FIG. 8 was produced on a GaN substrate having a semipolar or nonpolar main surface.
- TMG trimethyl gallium
- TMI trimethyl indium
- TMA trimethyl aluminum
- NH 3 ammonia
- SiH 4 silane
- Cp 2 Mg biscyclopentadienyl magnesium
- a GaN substrate corresponding to an inclination angle within a range of an inclination angle of 63 degrees to less than 80 degrees was prepared.
- the prepared GaN substrate 51 is, for example, a principal surface inclined at an angle of 75 degrees in the m-axis direction from a plane orthogonal to the c-axis of hexagonal GaN.
- the inclined main surface 51a is shown as ⁇ 20-21 ⁇ plane. This main surface is mirror-polished. Epitaxial growth was performed on the GaN substrate 51 under the following conditions.
- step S101 for example, at a temperature of 1050 degrees Celsius and an in-furnace pressure of 27 kPa, heat treatment is performed for 10 minutes while flowing a heat treatment gas G0 containing ammonia and hydrogen (H 2 ) as shown in part (a) of FIG. went.
- a step-and-terrace structure defined by the off angle is formed on the surface of the GaN substrate 51.
- a GaN-based semiconductor region is grown.
- a source gas G1 containing TMG, TMA, TMI, ammonia, and silane is supplied to the growth reactor 10 at, for example, 1100 degrees Celsius, and as shown in FIG.
- a cladding layer 53 was grown.
- the n-type cladding layer 53 is, for example, a Si-doped InAlGaN layer.
- the thickness of the InAlGaN layer is, for example, 1.2 micrometers.
- the growth temperature is, for example, 900 degrees Celsius, its Al composition is, for example, 0.14, and its In composition is, for example, 0.03.
- the light guide layer 55 was grown on the n-type cladding layer 53.
- the light guide layer 55 includes, for example, a Si-doped GaN layer 55a and an undoped InGaN layer 55b, and the indium composition thereof can be 0.02.
- TMG, ammonia, and silane are supplied to the growth reactor 10, and the Si-doped GaN layer 55a is grown on the n-type cladding layer 53 at a growth temperature of 840 degrees Celsius.
- TMG, TMI, and ammonia are supplied to the growth reactor 10, and an undoped InGaN layer 55b is grown on the Si-doped GaN layer 55a at a growth temperature of 840 degrees Celsius.
- the thickness of the Si-doped GaN layer 55a is, for example, 200 nm
- the thickness of the undoped InGaN layer 55b is, for example, 65 nm.
- the active layer 57 is grown in step S104.
- TMG and ammonia are supplied to the growth reactor at a substrate temperature of 870 degrees Celsius, and a GaN-based semiconductor barrier layer is grown at this substrate temperature.
- the barrier layer is, for example, undoped GaN, and its thickness is 15 nm.
- the growth is interrupted and the substrate temperature is changed from 870 degrees Celsius to 830 degrees Celsius.
- T2 TMG, TMI, and ammonia are supplied to the growth reactor to grow an undoped InGaN well layer. Its thickness is 3 nm.
- the substrate temperature is changed from 830 degrees Celsius to 870 degrees Celsius while the supply of TMI is stopped and TMG and ammonia are supplied to the growth reactor. During this change, a part of the undoped GaN barrier layer is grown. After the temperature change is complete, the remainder of the undoped GaN barrier layer is grown. The thickness of the GaN barrier layer is 15 nm. Subsequently, the InGaN well layer and the GaN barrier layer are formed by repeatedly changing the substrate temperature of the barrier layer and growing the well layer. If necessary, the barrier layer can be made of InGaN.
- a light guide layer is grown on the active layer 57.
- TMG, TMI, and ammonia are supplied to the growth reactor 10, and as shown in FIG. 6B, an undoped InGaN layer 59 is formed on the active layer 57. Grows at a substrate temperature of 840 degrees Celsius. Its In composition is 0.02.
- step S106 the supply of TMG and TMI is stopped, and the substrate temperature is raised to 1100 degrees Celsius. At this temperature, TMG, TMA, ammonia, and biscyclopentadienyl magnesium are supplied to the growth reactor 10 to grow the electron blocking layer 61 as shown in FIG.
- the electron block layer 61 is, for example, AlGaN.
- the Al composition of the electron block layer 61 was 0.12.
- TMG, TMI, ammonia, biscyclopentadienyl magnesium are supplied to the growth reactor, and as shown in FIG.
- a p-type GaN layer 63 as a light guide layer is grown on the electron block layer 61.
- the substrate temperature is, for example, 1000 degrees Celsius.
- film formation conditions that increase carbon uptake can be used as compared with the growth of the n-type GaN layer 55a.
- the electron block layer 61 for example, film formation conditions that increase carbon uptake can be used as compared with the growth of the n-type GaN layer 55a. Further, the carbon concentration of the electron block layer 61 is preferably smaller than the carbon concentration of the p-type cladding layer grown later.
- the thickness of the undoped InGaN layer 59 is, for example, 65 nm
- the thickness of the Mg and C-doped electron blocking layer 61 is, for example, 20 nm
- the thickness of the Mg and C-doped GaN layer 63 is, for example, 200 nm.
- a GaN-based semiconductor region is grown on the light guide layer 63.
- the supply of TMG is stopped, and a gas containing TMG, TMA, TMI, ammonia, and biscyclopentadienylmagnesium is supplied to the growth reactor.
- the p-type cladding layer 65 is formed. grown.
- the substrate temperature of the p-type cladding layer 65 is, for example, 900 degrees and the thickness is, for example, 400 nm.
- the p-type cladding layer 65 is, for example, Mg and C-doped InAlGaN, its Al composition is, for example, 0.14, and its In composition is 0.03.
- film-forming conditions that increase the carbon uptake compared to the growth of the n-type cladding layer 53 can be used.
- the p-type contact layer 67 is made of, for example, Mg and C-doped GaN, InGaN or the like, and has a thickness of, for example, 50 nm.
- film formation conditions that increase carbon uptake can be used as compared with the growth of the n-type GaN layer 55a. After the film formation, the temperature of the growth furnace is lowered to room temperature to produce an epitaxial substrate EP.
- an electrode was formed on the epitaxial substrate EP.
- an insulating film 69 such as a silicon oxide film in which a contact window is formed by photolithography and etching is formed.
- the contact window 69a has, for example, a stripe shape, and its width is, for example, 10 micrometers.
- a p-electrode (Ni / Au) 71 a was formed on the p-type GaN contact layer 67. Thereafter, a p-pad electrode (Ti / Au) was formed.
- n-electrode (Ti / Al) 71b is formed on the back surface of the epitaxial substrate EP.
- a substrate product can be produced by performing an electrode annealing (for example, 550 degrees Celsius) procedure.
- Example 1 In the formation of this epitaxial substrate EP, the carbon concentration was increased by growing the V / III ratio during the growth of the p-type gallium nitride semiconductor. On the other hand, aside from this epitaxial substrate EP, another epitaxial substrate was produced which was produced by growth with a reduced V / III ratio during the growth of the p-type gallium nitride semiconductor. The carbon concentration of the p-type cladding layer of this other epitaxial substrate is lower than the carbon concentration of the p-type cladding layer of the epitaxial substrate EP.
- the semiconductor laser shown in FIG. 8 was produced as follows. A GaN piece was cut from a GaN ingot grown in the (0001) direction at an angle of 75 degrees to prepare a GaN substrate having a ⁇ 20-21 ⁇ plane. The following semiconductor layers were epitaxially grown on the main surface ( ⁇ 20-21 ⁇ plane) of the GaN semiconductor region of this GaN substrate. 75 degree off GaN substrate.
- n-type cladding layer Si-doped InAlGaN, substrate temperature 900 ° C., thickness 2 ⁇ m, Al composition 0.14, In composition 0.03.
- Light guide layer undoped GaN, substrate temperature 840 degrees, thickness 250 nm.
- Optical guide layer undoped InGaN, substrate temperature 840 degrees, thickness 100 nm, In composition 0.02. Active layer. Barrier layer: undoped GaN, substrate temperature 730 degrees, thickness 15 nm. Well layer: undoped InGaN, substrate temperature 730 degrees, thickness 3 nm, In composition 0.30. Optical guide layer: undoped InGaN, substrate temperature 840 degrees, thickness 50 nm, In composition 0.03. Light guide layer: undoped GaN, substrate temperature 840 degrees, thickness 250 nm. Electron blocking layer: Mg-doped AlGaN, substrate temperature 1000 degrees, thickness 20 nm, Al composition 0.12.
- p-type cladding layer Mg-doped InAlGaN, substrate temperature 900 degrees, thickness 400 nm, Al composition 0.14, In composition 0.03.
- p-type contact layer Mg-doped GaN, substrate temperature 900 ° C., thickness 50 nm.
- FIG. 9 is a drawing showing SIMS profiles of elements of indium, carbon, aluminum, and magnesium in the epitaxial substrate EP.
- FIG. 10 is a drawing showing SIMS profiles of elements of indium, carbon, aluminum, and magnesium in another epitaxial substrate. 9 and 10 show profiles P1 to P4 and Q1 to Q4 measured by secondary ion mass spectrometry. In the SIMS measurement, a magnetic field type SIMS apparatus was used. P1, Q1: Profile of indium. P2, Q2: Carbon profile. P3, Q3: Aluminum profile. P4, Q4: Magnesium profile.
- the carbon concentration of the p-type InAlGaN layer of the epitaxial substrate EP is 1 ⁇ 10 17 cm ⁇ 3
- the magnesium concentration of the p-type InAlGaN layer is It was 4 ⁇ 10 18 cm ⁇ 3 .
- the carbon concentration of the p-type InAlGaN layer of another epitaxial substrate was 1 ⁇ 10 16 cm ⁇ 3
- the magnesium concentration of the p-type InAlGaN layer was 6 ⁇ 10 18 cm ⁇ 3 .
- Example 2 A laser diode (LD) was manufactured using an epitaxial substrate (high carbon concentration) EP and another epitaxial substrate (low carbon concentration). After forming an SiO 2 insulating film on the surface of these epitaxial substrates, a stripe window having a width of 10 ⁇ m was formed on the insulating film by wet etching. A p-side electrode made of Ni / Au and a pad electrode made of Ti / Al were deposited. The back surface of each epitaxial substrate was polished to a thickness of 100 ⁇ m. An n-side electrode made of Ti / Al / Ti / Au was deposited on the polished back surface. A laser bar was produced from the substrate product thus produced. Each laser bar includes a resonant mirror.
- a dielectric multilayer film was coated on the end face of the laser bar by vacuum deposition.
- the dielectric multilayer film was configured by alternately laminating SiO 2 and TiO 2 .
- Each film thickness was adjusted in the range of 50 to 100 nm and designed so that the central wavelength of reflectance was in the range of 500 to 530 nm.
- the reflective surface on one side was set to 10 periods, the design value of reflectivity was designed to about 95%, the reflective surface on the other side was set to 6 periods, and the design value of reflectivity was about 80%.
- evaluation by energization was performed at room temperature.
- a pulse power source having a pulse width of 500 ns and a duty ratio of 0.1% was used, and electricity was applied by dropping a needle on the surface electrode.
- the optical output light emitted from the end face of the laser bar was detected by a photodiode, the optical output-current characteristic (LI characteristic) was examined, and the threshold current density was obtained.
- the emission wavelength the light emitted from the end face of the laser bar was passed through an optical fiber, the spectrum was measured using a spectrum analyzer as a detector, and the oscillation wavelength was determined.
- the voltage-current characteristic (VI characteristic) was measured using a four-point probe method. The average value of 10 LDs with good characteristics in each wafer is shown below.
- the influence of the dislocation density of the GaN substrate on the p-type carbon dopant will be described.
- the crystal quality of the epitaxial film is not high at present.
- the threading dislocation density of the heteroepitaxially grown film using the above-mentioned heterogeneous substrate is 1 ⁇ 10 7 cm ⁇ 2 or more.
- the carrier diffusion length is as small as 0.2 ⁇ m or less, highly efficient light emission is observed even in an InGaN active layer with a high dislocation density.
- the carrier diffusion length is 0.2 ⁇ m or more, and the dislocation density of the InGaN active layer forming this active layer is 1 ⁇ 10 7 cm ⁇ 2 or less.
- the light emitting element is a laser diode, further high quality is required with respect to the dislocation density, and the value is desirably 1 ⁇ 10 6 cm ⁇ 2 or less.
- the dislocation density needs to be 1 ⁇ 10 5 cm ⁇ 2 or less.
- the surface morphology during growth changes locally. Specifically, a depression is formed around the dislocation. For this reason, compared to a semiconductor region in which no dislocation exists in the epitaxial semiconductor region and the semipolar GaN surface grows uniformly and flatly, the amount of impurities taken up locally is different from the surroundings due to the depression in the vicinity of the dislocation. Become a thing. Therefore, although a low dislocation density is desirable, a semiconductor layer having a uniform impurity distribution can be grown. Specifically, if the dislocation density is 1 ⁇ 10 7 cm ⁇ 2 or less, the influence of local impurity distribution can be reduced. For this reason, the gallium nitride based semiconductor substrate preferably has a value equal to or lower than the above dislocation density.
- the ⁇ 20-21 ⁇ plane used in the examples is different from the nitrogen plane used in the prior art, and the GaN-based growth mechanism of the ⁇ 20-21 ⁇ plane in this case is a GaN-based plane of the ⁇ 10-11 ⁇ plane. It seems to be different from the growth mechanism.
- FIG. 11 is a drawing schematically showing an atomic arrangement in the semipolar ⁇ 10-11 ⁇ plane.
- FIG. 12 is a drawing schematically showing an atomic arrangement in the semipolar ⁇ 20-21 ⁇ plane.
- FIG. 13 is a drawing schematically showing an atomic arrangement in the ⁇ 10-14 ⁇ plane which is also a semipolar plane. As shown in FIG. 12, the atomic arrangement of the ⁇ 20-21 ⁇ plane is not a complete nitrogen termination plane.
- ⁇ 10-11 ⁇ plane All atoms on the outermost surface are nitrogen, and are nitrogen-terminated surfaces.
- ⁇ 20-21 ⁇ plane 2/3 of the outermost surface is Ga atoms, not a nitrogen termination plane.
- ⁇ 10-14 ⁇ plane 3/5 of the outermost surface is Ga atoms, not a nitrogen termination plane.
- the ⁇ 20-21 ⁇ plane is not a nitrogen termination plane, and according to the experiments by the inventors, in gallium nitride related to the ⁇ 20-21 ⁇ plane and the ⁇ 10-10 ⁇ plane, Behaves as a shallow acceptor. From this, the technical contribution by the shallow carbon acceptor according to the present embodiment is not due to the nitrogen termination surface.
- the Ga / N ratio in the ⁇ 10-14 ⁇ plane is close to the ⁇ 20-21 ⁇ Ga / N ratio.
- carbon does not become a shallow acceptor in the angular range near the ⁇ 10-14 ⁇ plane.
- the difference between the ⁇ 20-21 ⁇ plane and the ⁇ 10-14 ⁇ plane is considered to be due to the difference in the bond direction on the outermost surface when carbon is incorporated.
- a step appears when it is slightly inclined from the c-plane ⁇ 0001 ⁇ to the ⁇ 10-11 ⁇ plane.
- a step appears when it is slightly inclined from the ⁇ 10-11 ⁇ plane to the ⁇ 10-10 ⁇ plane.
- the difference in the nature of this step makes it possible to capture carbon efficiently and preferentially by the bond between carbon and the bond at the outermost surface, and the incorporated carbon forms a shallow acceptor. Therefore, the technical advantage according to the present embodiment can be obtained in the range of the plane orientation and the inclination angle that can provide the same or similar step as the step in the ⁇ 20-21 ⁇ plane.
- the lower limit of the carbon concentration is preferably 2 ⁇ 10 16 cm ⁇ 3 or more, and the upper limit thereof is preferably 1 ⁇ 10 19 cm ⁇ 3 or less.
- the upper limit of the carbon concentration is preferably 1 ⁇ 10 17 cm ⁇ 3 or less.
- the lower limit of the carbon concentration is preferably 2 ⁇ 10 16 cm ⁇ 3 or more, and the upper limit is preferably 1 ⁇ 10 18 cm ⁇ 3 or less.
- a group III nitride semiconductor optical device including a p-type gallium nitride based semiconductor layer with reduced resistance is provided. Further, according to the present embodiment, an epitaxial substrate for this group III nitride semiconductor optical device is provided.
- SYMBOLS 11 Group III nitride semiconductor optical element, 13 ... Support, 13a ... Main surface of support, 13b ... Back surface of support, 15 ... N-type gallium nitride semiconductor layer, 17 ... P-type gallium nitride semiconductor layer, 19 ... Active layer, 19a ... active layer main surface, 21 ... electron blocking layer, NV ... normal vector, Nx ... normal axis, ALPHA ... angle, VC ... c-axis vector, Cx ... reference axis, 23a ... barrier layer, 23b ... well Layers 25, 27 ... light guide layer, 25a ... InGaN layer, 25b ... GaN layer, 27a ...
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Biophysics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
このエピタキシャル基板EPの形成では、p型窒化ガリウム系半導体の成長中におけるV/III比を高くした成長によって、炭素濃度を増加させた。一方、このエピタキシャル基板EPとは別に、p型窒化ガリウム系半導体の成長中におけるV/III比を低くした成長で作製された別のエピタキシャル基板を作製した。この別のエピタキシャル基板のp型クラッド層の炭素濃度は、エピタキシャル基板EPのp型クラッド層の炭素濃度に比べて低い。
75度オフGaN基板。
n型クラッド層:SiドープInAlGaN、基板温度900度、厚さ2μm、Al組成0.14、In組成0.03。
光ガイド層:アンドープGaN、基板温度840度、厚さ250nm。
光ガイド層:アンドープInGaN、基板温度840度、厚さ100nm、In組成0.02。
活性層。
障壁層:アンドープGaN、基板温度730度、厚さ15nm。
井戸層:アンドープInGaN、基板温度730度、厚さ3nm、In組成0.30。
光ガイド層:アンドープInGaN、基板温度840度、厚さ50nm、In組成0.03。
光ガイド層:アンドープGaN、基板温度840度、厚さ250nm。
電子ブロック層:MgドープAlGaN、基板温度1000度、厚さ20nm、Al組成0.12。
p型クラッド層:MgドープInAlGaN、基板温度900度、厚さ400nm、Al組成0.14、In組成0.03。
p型コンタクト層:MgドープGaN、基板温度900度、厚さ50nm。
P1、Q1:インジウムのプロファイル。
P2、Q2:炭素のプロファイル。
P3、Q3:アルミニウムのプロファイル。
P4、Q4:マグネシウムのプロファイル。
エピタキシャル基板(高炭素濃度)EP及び別のエピタキシャル基板(低炭素濃度)を用いて、レーザダイオード(LD)を作製した。これらのエピタキシャル基板の表面にSiO2絶縁膜を成膜した後に、この絶縁膜に幅10μmのストライプ窓をウエットエッチングにより形成した。Ni/Auから成るp側電極とTi/Alから成るパッド電極を蒸着した。各エピタキシャル基板の裏面を研磨してその厚みを100umにした。研磨された裏面にはTi/Al/Ti/Auから成るn側電極を蒸着した。このように作製された基板生産物からレーザバーを作製した。個々のレーザバーは共振ミラーを含む。レーザバーの端面に真空蒸着法によって誘電体多層膜をコーティングした。誘電体多層膜は、SiO2とTiO2を交互に積層して構成した。膜厚はそれぞれ、50~100nmの範囲で調整して、反射率の中心波長が500~530nmの範囲になるように設計した。片側の反射面を10周期とし、反射率の設計値を約95%に設計し、もう片側の反射面を6周期とし、反射率の設計値を約80%とした。次に、通電による評価を室温にて行った。電源には、パルス幅500ns、デューティ比0.1%のパルス電源を用い、表面電極に針を落として通電した。光出力測定の際には、レーザバー端面からの発光をフォトダイオードによって検出して、光出力-電流特性(L-I特性)を調べ、閾値電流密度を求めた。発光波長を測定する際には、レーザバー端面からの発光を光ファイバに通し、検出器にスペクトルアナライザを用いてスペクトル測定を行い、発振波長を求めた。電圧-電流特性(V-I特性)の測定には、四探針法を用いて行った。各ウエハで特性の良好な10個のLDの平均値を以下に示す。
試料名、 閾値、 、閾値電圧、発振波長、素子抵抗。
高C濃度のLD:5kA/cm2、 5.2V、521nm、2Ω。
低C濃度のLD:15kA/cm2、7.2V、520nm、6Ω。
高C濃度のLDでは、p型半導体領域の全体にわたって、2×1016cm-3以上であった。一方、低C濃度のLDでは、p型半導体領域の全体にわたって、2×1016cm-3未満であった。
{10-11}面:最表面の原子は全て窒素であり、窒素終端面である。
{20-21}面:最表面の2/3はGa原子であり、窒素終端面ではない。
{10-14}面:最表面の3/5はGa原子であり、窒素終端面ではない。
図12に示されるように、{20-21}面は窒素終端面でなく、発明者らの実験によれば、{20-21}面や{10-10}面に係る窒化ガリウムにおいて、炭素が浅いアクセプタとして振舞う。このことから、本実施の形態に係る浅い炭素アクセプタによる技術的寄与は、窒素終端面に起因するものではない。
Claims (22)
- III族窒化物半導体光素子であって、
III族窒化物半導体からなり、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす主面を有する支持体と、
前記支持体の前記主面上に設けられたn型窒化ガリウム系半導体層と、
前記支持体の前記主面上に設けられ、マグネシウム添加のp型窒化ガリウム系半導体層と、
前記支持体の前記主面上において前記n型窒化ガリウム系半導体層と前記p型窒化ガリウム系半導体層との間に設けられた活性層と、
を備え、
前記有限の角度は40度以上140度以下の範囲にあり、
前記主面は半極性及び無極性のいずれか一方を示し、
前記p型窒化ガリウム系半導体層はp型ドーパントとして炭素を含み、
前記p型窒化ガリウム系半導体層の炭素濃度は2×1016cm-3以上であり、
前記p型窒化ガリウム系半導体層の炭素濃度は1×1019cm-3以下である、III族窒化物半導体光素子。 - 前記活性層は、前記支持体の前記主面の法線軸の方向に交互に配列された井戸層及び障壁層を含み、
前記障壁層は、窒化ガリウム系半導体からなり、
前記障壁層の厚さは前記井戸層の厚さより大きく、
前記井戸層は、構成元素としてインジウムを含む窒化ガリウム系半導体からなり、
前記井戸層の炭素濃度は、1×1017cm-3以下である、請求項1に記載されたIII族窒化物半導体光素子。 - 前記n型窒化ガリウム系半導体層の炭素濃度は前記p型窒化ガリウム系半導体層の炭素濃度より小さく、
前記n型窒化ガリウム系半導体層はn型ドーパントを含み、
前記n型窒化ガリウム系半導体層のn型ドーパント濃度は、前記n型窒化ガリウム系半導体層の炭素濃度より大きい、請求項1又は請求項2に記載されたIII族窒化物半導体光素子。 - 前記n型窒化ガリウム系半導体層の炭素濃度は1×1018cm-3以下である、請求項1~請求項3のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記n型窒化ガリウム系半導体層はInAlGaN又はAlGaNなる、請求項1~請求項4のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記p型窒化ガリウム系半導体層における前記炭素濃度は前記p型窒化ガリウム系半導体層におけるマグネシウム濃度より大きい、請求項1~請求項5のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記p型窒化ガリウム系半導体層と前記活性層との間に設けられ、窒化ガリウム系半導体からなる第1の光ガイド層と、
前記n型窒化ガリウム系半導体層と前記活性層との間に設けられ、窒化ガリウム系半導体からなる第2の光ガイド層と、
を更に備え、
前記第1の光ガイド層の少なくとも一部分はp型ドーパントとしてマグネシウムを含み、
前記第1の光ガイド層の炭素濃度は1×1017cm-3以下であり、
前記第1の光ガイド層におけるマグネシウム濃度は1×1017cm-3以下であり、
前記第2の光ガイド層の炭素濃度は1×1017cm-3以下である、請求項1~請求項6のいずれか一項に記載されたIII族窒化物半導体光素子。 - 前記活性層は、波長430nm以上600nm以下の光を発生するように設けられた量子井戸構造を含み、
当該III族窒化物半導体光素子は、前記活性層と前記p型窒化ガリウム系半導体層との間に設けられた電子ブロック層を更に備え、
前記第1の光ガイド層は、前記電子ブロック層と前記活性層と間に設けられた第1のInGaN層を含み、
前記第2の光ガイド層は、前記活性層と前記n型窒化ガリウム系半導体層との間に設けられた第2のInGaN層を含む、請求項7に記載されたIII族窒化物半導体光素子。 - 前記n型窒化ガリウム系半導体層、前記活性層及び前記p型窒化ガリウム系半導体層は、前記支持体の前記主面の法線方向に配列されており、
前記p型窒化ガリウム系半導体層は前記活性層の主面上に設けられ、
前記活性層の前記主面は、前記基準平面に対して40度以上140度以下の範囲にあり、
前記活性層は前記n型窒化ガリウム系半導体層の主面上に設けられる、請求項1~請求項8のいずれか一項に記載されたIII族窒化物半導体光素子。 - 前記p型窒化ガリウム系半導体層の主面上に設けられ、p型窒化ガリウム系半導体からなるコンタクト層と、
前記コンタクト層に接触を成す第1の電極と、
を更に備え、
前記コンタクト層はp型ドーパントとしてマグネシウムを含み、
前記コンタクト層の炭素濃度は2×1016cm-3以上であり、
前記コンタクト層の炭素濃度は1×1019cm-3以下である、請求項1~請求項9のいずれか一項に記載されたIII族窒化物半導体光素子。 - 前記c軸方向に延びる基準軸は、前記支持体のIII族窒化物半導体の<11-20>方向を基準に-15度以上+15度以下の範囲の向きに傾斜しており、前記支持体の主面とc軸方向に延びる基準軸に直交する基準平面とのなす前記有限の角度は、59度以上121度以下の範囲である、請求項1~請求項10のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記c軸方向に延びる基準軸は、前記支持体のIII族窒化物半導体の<1-100>方向を基準に-15度以上+15度以下の範囲の向きに傾斜しており、前記支持体の主面とc軸方向に延びる基準軸に直交する基準平面とのなす前記有限の角度は、63度以上117度以下の範囲である、請求項1~請求項10のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記支持体の前記主面は、{11-22}、{11-21}、{11-20}、{11-2-1}及び{11-2-2}のいずれかの面から-4度~+4度の範囲にある、請求項1~請求項11のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記支持体の前記主面の面指数は、{11-22}、{11-21}、{11-20}、{11-2-1}及び{11-2-2}のいずれか一つである、請求項1~請求項10及び請求項13のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記支持体の前記主面は、{10-11}、{20-21}、{10-10}、{20-2-1}及び{10-1-1}のいずれかの面から-4度~+4度の範囲にある、請求項1~請求項12のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記支持体の前記主面の面指数は、{10-11}、{20-21}、{10-10}、{20-2-1}及び{10-1-1}のいずれか一つである、請求項1~請求項12及び請求項15のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記支持体の貫通転位密度は、1×107cm-2以下であり、
前記支持体はGaN、InGaN、AlGaN及びInAlGaNのいずれかからなる、請求項1~請求項16のいずれか一項に記載されたIII族窒化物半導体光素子。 - 前記支持体の裏面に接触を成す第2の電極を更に備え、
前記支持体は導電性を示す、請求項1~請求項17のいずれか一項に記載されたIII族窒化物半導体光素子。 - 前記p型窒化ガリウム系半導体層はInAlGaN及びAlGaNの少なくともいずれかからなる、請求項1~請求項18のいずれか一項に記載されたIII族窒化物半導体光素子。
- 前記p型窒化ガリウム系半導体層はInAlGaNなる、請求項1~請求項19のいずれか一項に記載されたIII族窒化物半導体光素子。
- III族窒化物半導体光素子のためのエピタキシャル基板であって、
III族窒化物半導体からなり、該III族窒化物半導体のc軸方向に延びる基準軸に直交する基準平面に対して有限の角度をなす主面を有するIII族窒化物半導体基板と、
前記III族窒化物半導体基板の前記主面上に設けられたn型窒化ガリウム系半導体層と、
前記III族窒化物半導体基板の前記主面上に設けられ、マグネシウム添加のp型窒化ガリウム系半導体層と、
前記III族窒化物半導体基板の前記主面上において前記n型窒化ガリウム系半導体層と前記p型窒化ガリウム系半導体層との間に設けられた活性層と、
を備え、
前記有限の角度は40度以上140度以下の範囲にあり、
前記主面は半極性及び無極性のいずれか一方を示し、
前記p型窒化ガリウム系半導体層はp型ドーパントとして炭素を含み、
前記p型窒化ガリウム系半導体層の炭素濃度は2×1016cm-3以上であり、
前記p型窒化ガリウム系半導体層の炭素濃度は1×1019cm-3以下である、エピタキシャル基板。 - 前記活性層は、前記III族窒化物半導体基板の前記主面の法線軸の方向に交互に配列された井戸層及び障壁層を含み、
前記障壁層は、窒化ガリウム系半導体からなり、
前記障壁層の厚さは前記井戸層の厚さより大きく、
前記井戸層は、構成元素としてInを含む窒化ガリウム系半導体からなり、
前記井戸層の炭素濃度は、1×1017cm-3以下であり、
前記n型窒化ガリウム系半導体層の炭素濃度は前記p型窒化ガリウム系半導体層の炭素濃度より小さく、
前記n型窒化ガリウム系半導体層はn型ドーパントを含み、
前記n型窒化ガリウム系半導体層のn型ドーパント濃度は、前記n型窒化ガリウム系半導体層の炭素濃度より大きい、請求項21に記載されたエピタキシャル基板。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080031731.2A CN102474076B (zh) | 2009-07-15 | 2010-07-13 | Iii族氮化物半导体光元件、外延衬底 |
EP10799835A EP2456026A1 (en) | 2009-07-15 | 2010-07-13 | Group iii nitride semiconductor optical element and epitaxial substrate |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009167177A JP5635246B2 (ja) | 2009-07-15 | 2009-07-15 | Iii族窒化物半導体光素子及びエピタキシャル基板 |
JP2009-167177 | 2009-07-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011007777A1 true WO2011007777A1 (ja) | 2011-01-20 |
Family
ID=43449384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/061839 WO2011007777A1 (ja) | 2009-07-15 | 2010-07-13 | Iii族窒化物半導体光素子、エピタキシャル基板 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8304793B2 (ja) |
EP (1) | EP2456026A1 (ja) |
JP (1) | JP5635246B2 (ja) |
KR (1) | KR20120024955A (ja) |
CN (1) | CN102474076B (ja) |
TW (1) | TW201110414A (ja) |
WO (1) | WO2011007777A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156189A (ja) * | 2011-01-24 | 2012-08-16 | Sumitomo Electric Ind Ltd | 窒化ガリウム系半導体レーザ素子 |
WO2013061651A1 (ja) * | 2011-10-24 | 2013-05-02 | 住友電気工業株式会社 | 窒化物半導体発光素子 |
JP2014127708A (ja) * | 2012-12-27 | 2014-07-07 | Toshiba Corp | 半導体発光素子及び半導体発光素子の製造方法 |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007080896A (ja) * | 2005-09-12 | 2007-03-29 | Sanyo Electric Co Ltd | 半導体素子 |
JP5503574B2 (ja) * | 2011-02-21 | 2014-05-28 | 住友電気工業株式会社 | レーザダイオード |
JP5361925B2 (ja) * | 2011-03-08 | 2013-12-04 | 株式会社東芝 | 半導体発光素子およびその製造方法 |
WO2012157476A1 (ja) * | 2011-05-18 | 2012-11-22 | 住友電気工業株式会社 | 化合物半導体基板 |
JP2012248575A (ja) * | 2011-05-25 | 2012-12-13 | Sumitomo Electric Ind Ltd | 窒化物半導体レーザ素子、エピタキシャル基板、及び窒化物半導体レーザ素子を作製する方法 |
JP2013033930A (ja) * | 2011-06-29 | 2013-02-14 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体素子、及び、iii族窒化物半導体素子の製造方法 |
JP5252042B2 (ja) * | 2011-07-21 | 2013-07-31 | 住友電気工業株式会社 | Iii族窒化物半導体発光素子、及びiii族窒化物半導体発光素子を作製する方法 |
US8946788B2 (en) | 2011-08-04 | 2015-02-03 | Avogy, Inc. | Method and system for doping control in gallium nitride based devices |
JP5668647B2 (ja) * | 2011-09-06 | 2015-02-12 | 豊田合成株式会社 | Iii族窒化物半導体発光素子およびその製造方法 |
JP2013102043A (ja) * | 2011-11-08 | 2013-05-23 | Sumitomo Electric Ind Ltd | 半導体レーザ素子、及び、半導体レーザ素子の作製方法 |
JP5940355B2 (ja) | 2012-04-19 | 2016-06-29 | ソウル セミコンダクター カンパニー リミテッド | p型窒化物半導体層の製造方法 |
KR102062382B1 (ko) | 2012-04-19 | 2020-01-03 | 서울반도체 주식회사 | 반도체 장치 및 이를 제조하는 방법 |
JP5699983B2 (ja) * | 2012-04-27 | 2015-04-15 | 住友電気工業株式会社 | 窒化ガリウム系半導体を作製する方法、iii族窒化物半導体デバイスを作製する方法、及びiii族窒化物半導体デバイス |
WO2013165134A1 (en) * | 2012-05-01 | 2013-11-07 | Seoul Opto Device Co., Ltd. | Method for fabricating p-type aluminum gallium nitride semiconductor |
JP2014086507A (ja) * | 2012-10-22 | 2014-05-12 | Sumitomo Electric Ind Ltd | 窒化物半導体レーザ、窒化物半導体レーザを作製する方法 |
TWI511325B (zh) * | 2012-11-19 | 2015-12-01 | Genesis Photonics Inc | 氮化物半導體結構及半導體發光元件 |
TWI631727B (zh) * | 2012-11-19 | 2018-08-01 | 新世紀光電股份有限公司 | 氮化物半導體結構 |
TWI499080B (zh) | 2012-11-19 | 2015-09-01 | Genesis Photonics Inc | 氮化物半導體結構及半導體發光元件 |
TWI663745B (zh) * | 2012-11-19 | 2019-06-21 | 新世紀光電股份有限公司 | 氮化物半導體結構 |
TWI524551B (zh) | 2012-11-19 | 2016-03-01 | 新世紀光電股份有限公司 | 氮化物半導體結構及半導體發光元件 |
US10153394B2 (en) | 2012-11-19 | 2018-12-11 | Genesis Photonics Inc. | Semiconductor structure |
TWI535055B (zh) | 2012-11-19 | 2016-05-21 | 新世紀光電股份有限公司 | 氮化物半導體結構及半導體發光元件 |
TWI589018B (zh) * | 2012-11-19 | 2017-06-21 | 新世紀光電股份有限公司 | 氮化物半導體結構 |
CN107482097A (zh) * | 2013-01-25 | 2017-12-15 | 新世纪光电股份有限公司 | 氮化物半导体结构及半导体发光元件 |
CN108550670B (zh) * | 2013-01-25 | 2020-10-27 | 新世纪光电股份有限公司 | 氮化物半导体结构及半导体发光元件 |
CN103972341B (zh) * | 2013-01-25 | 2017-03-01 | 新世纪光电股份有限公司 | 氮化物半导体结构及半导体发光元件 |
CN107819059A (zh) * | 2013-01-25 | 2018-03-20 | 新世纪光电股份有限公司 | 氮化物半导体结构及半导体发光元件 |
JP6453542B2 (ja) | 2013-02-14 | 2019-01-16 | ソウル セミコンダクター カンパニー リミテッド | 半導体装置及びこれの製造方法 |
JP2015176936A (ja) * | 2014-03-13 | 2015-10-05 | 株式会社東芝 | 半導体装置 |
KR102223037B1 (ko) | 2014-10-01 | 2021-03-05 | 삼성전자주식회사 | 반도체 발광소자 제조방법 |
JP5953447B1 (ja) * | 2015-02-05 | 2016-07-20 | Dowaエレクトロニクス株式会社 | Iii族窒化物半導体発光素子およびその製造方法 |
JP6479615B2 (ja) * | 2015-09-14 | 2019-03-06 | 株式会社東芝 | 半導体装置の製造方法 |
JP6218791B2 (ja) * | 2015-10-28 | 2017-10-25 | シャープ株式会社 | 窒化物半導体レーザ素子 |
TWI581454B (zh) * | 2016-01-04 | 2017-05-01 | 錼創科技股份有限公司 | 半導體發光元件 |
TWI738640B (zh) | 2016-03-08 | 2021-09-11 | 新世紀光電股份有限公司 | 半導體結構 |
TWI717386B (zh) | 2016-09-19 | 2021-02-01 | 新世紀光電股份有限公司 | 含氮半導體元件 |
JP7043802B2 (ja) * | 2017-11-16 | 2022-03-30 | 住友電気工業株式会社 | 垂直共振型面発光レーザ、垂直共振型面発光レーザを作製する方法 |
EP3731355A4 (en) * | 2018-03-13 | 2021-10-27 | Fujikura Ltd. | OPTICAL SEMICONDUCTOR ELEMENT, STRUCTURE FOR FORMING AN OPTICAL SEMICONDUCTOR ELEMENT, AND PROCESS FOR MANUFACTURING A SEMICONDUCTOR OPTICAL ELEMENT IN WHICH THE SAID STRUCTURE IS USED |
JP7633938B2 (ja) * | 2019-10-09 | 2025-02-20 | パナソニックホールディングス株式会社 | 窒化物半導体デバイス |
JP7642553B2 (ja) | 2019-11-08 | 2025-03-10 | ヌヴォトンテクノロジージャパン株式会社 | 半導体発光素子、及び半導体発光素子の製造方法 |
CN111786259A (zh) * | 2020-08-25 | 2020-10-16 | 北京蓝海创芯智能科技有限公司 | 一种提高载流子注入效率的氮化镓基激光器外延结构及其制备方法 |
TWI839293B (zh) * | 2021-09-28 | 2024-04-11 | 晶元光電股份有限公司 | 發光元件及其製造方法 |
TWI816186B (zh) * | 2021-09-28 | 2023-09-21 | 晶元光電股份有限公司 | 發光元件及其製造方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008258503A (ja) * | 2007-04-06 | 2008-10-23 | Sumitomo Electric Ind Ltd | 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法 |
JP2009021279A (ja) | 2007-07-10 | 2009-01-29 | Hitachi Cable Ltd | 半導体エピタキシャルウエハ |
JP2009021361A (ja) * | 2007-07-11 | 2009-01-29 | Sumitomo Electric Ind Ltd | 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3269344B2 (ja) * | 1995-08-21 | 2002-03-25 | 松下電器産業株式会社 | 結晶成長方法および半導体発光素子 |
JP2003133246A (ja) * | 1996-01-19 | 2003-05-09 | Matsushita Electric Ind Co Ltd | 窒化ガリウム系化合物半導体発光素子及び窒化ガリウム系化合物半導体の製造方法 |
JP2000156544A (ja) * | 1998-09-17 | 2000-06-06 | Matsushita Electric Ind Co Ltd | 窒化物半導体素子の製造方法 |
JP3788444B2 (ja) | 2003-03-31 | 2006-06-21 | 日立電線株式会社 | 発光ダイオード及びその製造方法 |
US7239392B2 (en) * | 2003-05-22 | 2007-07-03 | Xitronix Corporation | Polarization modulation photoreflectance characterization of semiconductor electronic interfaces |
EP1900013A4 (en) | 2005-06-01 | 2010-09-01 | Univ California | TECHNOLOGY FOR GROWTH AND MANUFACTURE OF SEMIPOLARS (GA, AL, IN, B) N THIN FILMS, HETEROSTRUCTURES AND COMPONENTS |
JP5493861B2 (ja) | 2007-10-09 | 2014-05-14 | 株式会社リコー | Iii族窒化物結晶基板の製造方法 |
JP2009152448A (ja) | 2007-12-21 | 2009-07-09 | Dowa Electronics Materials Co Ltd | 窒化物半導体素子およびその製造方法 |
JP4375497B1 (ja) * | 2009-03-11 | 2009-12-02 | 住友電気工業株式会社 | Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法 |
-
2009
- 2009-07-15 JP JP2009167177A patent/JP5635246B2/ja active Active
-
2010
- 2010-07-13 CN CN201080031731.2A patent/CN102474076B/zh not_active Expired - Fee Related
- 2010-07-13 EP EP10799835A patent/EP2456026A1/en not_active Withdrawn
- 2010-07-13 KR KR1020127000699A patent/KR20120024955A/ko not_active Ceased
- 2010-07-13 WO PCT/JP2010/061839 patent/WO2011007777A1/ja active Application Filing
- 2010-07-14 US US12/836,117 patent/US8304793B2/en active Active
- 2010-07-15 TW TW099123335A patent/TW201110414A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008258503A (ja) * | 2007-04-06 | 2008-10-23 | Sumitomo Electric Ind Ltd | 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法 |
JP2009021279A (ja) | 2007-07-10 | 2009-01-29 | Hitachi Cable Ltd | 半導体エピタキシャルウエハ |
JP2009021361A (ja) * | 2007-07-11 | 2009-01-29 | Sumitomo Electric Ind Ltd | 窒化物系半導体発光素子、および窒化物系半導体発光素子を作製する方法 |
Non-Patent Citations (5)
Title |
---|
KUNIYOSHI OKAMOTO ET AL: "Continuous-Wave Operation of m-Plane InGaN Multiple Quantum Well Laser Diodes", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 46, no. 9, 2007, pages L187 - L189, XP009104051 * |
NOBUHIRO SAWAKI ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 298, 2007, pages 207 - 210 |
NOBUHIRO SAWAKI ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 311, 2009, pages 2867 - 2874 |
SAMANTHA C. CRUZ ET AL: "Crystallographic orientation dependence of dopant and impurity incorporation in GaN films grown by metalorganic chemical vapor deposition", JOURNAL OF CRYSTAL GROWTH, vol. 311, 2 June 2009 (2009-06-02), pages 3817 - 3823, XP026337339 * |
T. HIKOSAKA ET AL., APPLIED PHYSICS LETTERS, vol. 84, no. 23, 2004, pages 4717 - 4719 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012156189A (ja) * | 2011-01-24 | 2012-08-16 | Sumitomo Electric Ind Ltd | 窒化ガリウム系半導体レーザ素子 |
WO2013061651A1 (ja) * | 2011-10-24 | 2013-05-02 | 住友電気工業株式会社 | 窒化物半導体発光素子 |
JP2013093382A (ja) * | 2011-10-24 | 2013-05-16 | Sumitomo Electric Ind Ltd | 窒化物半導体発光素子 |
US8731016B2 (en) | 2011-10-24 | 2014-05-20 | Sumitomo Electric Industries, Ltd. | Nitride semiconductor light emitting device |
JP2014127708A (ja) * | 2012-12-27 | 2014-07-07 | Toshiba Corp | 半導体発光素子及び半導体発光素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5635246B2 (ja) | 2014-12-03 |
JP2011023541A (ja) | 2011-02-03 |
CN102474076B (zh) | 2014-06-18 |
US20110114916A1 (en) | 2011-05-19 |
EP2456026A1 (en) | 2012-05-23 |
CN102474076A (zh) | 2012-05-23 |
TW201110414A (en) | 2011-03-16 |
US8304793B2 (en) | 2012-11-06 |
KR20120024955A (ko) | 2012-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5635246B2 (ja) | Iii族窒化物半導体光素子及びエピタキシャル基板 | |
CN101919076B (zh) | Ⅲ族氮化物半导体器件、外延衬底及ⅲ族氮化物半导体器件的制作方法 | |
US6455877B1 (en) | III-N compound semiconductor device | |
US8067257B2 (en) | Nitride based semiconductor optical device, epitaxial wafer for nitride based semiconductor optical device, and method of fabricating semiconductor light-emitting device | |
JP5468709B2 (ja) | 窒化物半導体発光素子、光源及びその製造方法 | |
US8183071B2 (en) | Method for producing nitride semiconductor optical device and epitaxial wafer | |
US20110212560A1 (en) | Method for fabricating nitride semiconductor light emitting device and method for fabricating epitaxial wafer | |
TW201310705A (zh) | 第iii族氮化物半導體元件及第iii族氮化物半導體元件之製造方法 | |
CN101826581A (zh) | 氮化镓类半导体光元件及其制造方法、外延晶片 | |
JP2013232524A (ja) | 窒化ガリウム系半導体を作製する方法、iii族窒化物半導体デバイスを作製する方法、及びiii族窒化物半導体デバイス | |
US8477818B2 (en) | Gallium nitride-based semiconductor laser device, and method for fabricating gallium nitride-based semiconductor laser device | |
JP5310382B2 (ja) | Iii族窒化物半導体光素子、及びiii族窒化物半導体光素子を作製する方法 | |
JP2010212651A (ja) | Iii族窒化物半導体素子、エピタキシャル基板、及びiii族窒化物半導体素子を作製する方法 | |
JP2007189028A (ja) | p型窒化ガリウム系半導体の製造方法及びAlGaInN系発光素子の製造方法 | |
JP2009224602A (ja) | 窒化物半導体レーザ、窒化物半導体レーザを作製する方法、及び窒化物半導体レーザのためのエピタキシャルウエハ | |
KR100742989B1 (ko) | 질화갈륨계 발광 소자의 제조 방법 | |
JP2010067951A (ja) | 半導体発光素子を製造する方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080031731.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10799835 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127000699 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010799835 Country of ref document: EP |