[go: up one dir, main page]

WO2010123337A1 - Complejo de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves - Google Patents

Complejo de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves Download PDF

Info

Publication number
WO2010123337A1
WO2010123337A1 PCT/MX2009/000038 MX2009000038W WO2010123337A1 WO 2010123337 A1 WO2010123337 A1 WO 2010123337A1 MX 2009000038 W MX2009000038 W MX 2009000038W WO 2010123337 A1 WO2010123337 A1 WO 2010123337A1
Authority
WO
WIPO (PCT)
Prior art keywords
enr
enrofloxacin
birds
complexes
group
Prior art date
Application number
PCT/MX2009/000038
Other languages
English (en)
French (fr)
Inventor
LOPEZ Héctor Salvador SUMANO
Olivera Lila Gutierrez
Original Assignee
Weisepharm S.A De C.V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weisepharm S.A De C.V filed Critical Weisepharm S.A De C.V
Priority to PCT/MX2009/000038 priority Critical patent/WO2010123337A1/es
Publication of WO2010123337A1 publication Critical patent/WO2010123337A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin

Definitions

  • the present invention relates to the preparation and use of enrofloxacin (ENR) metal complexes, of the ENR-Mg type; ENR-Fe; ENR-Mn; ENR-Cu; ENR-Co; ENR-Ni; ENR-Ca; ENR-Zn, ENR-Cd and ENR-UO 2 , to achieve optimal oral and parenteral bioavailability by increasing the value of the maximum plasma concentration (Cmax and AUC), prolonged the time of stay and therefore the activity of the antibacterial in commercial birds , ruminants, pigs, dogs, cats, horses and other companion species and commercially exploited for meat and / or eggs such as ducks, ostriches, etc.
  • ENR enrofloxacin
  • the complexes described allow to significantly increase the oral bioavailability (F) of the antibacterial in chicken for fattening, egg-producing birds, egg-progenitor birds for the production of papillelle chicken and "grandmothers" (progenitor-producing birds), ducks, turkeys, geese, quail, ostriches and other commercial birds, as well as pigs at all stages , Dogs and cats.
  • F oral bioavailability
  • They also allow unprecedented pharmacokinetics parenterally in: sheep and goats of all ages and bovine meat or milk producers and in avian species, in dogs, in cats and horses, thus optimizing their potential effectiveness and thereby reducing to the maximum the waste of this active principle due to low F.
  • Iluorquinolones are a group of synthetic antibacterial agents used in both human and veterinary medicine for the treatment of a variety of infectious diseases. Although many of them have been synthesized, the best known in veterinary medicine include: amifloxacin, ciprofloxacin, danofloxacin, enrofloxacin, marbofloxacin, norfloxacin and sarafloxacin (Adv. Drug Delivery Reviews 54: 871-882). Others, such as premafloxacin, fleroxaci ⁇ a and difloxacin have had a less impressive income in veterinary medicine.
  • Enrichofloxacin acts in a concentration-dependent manner, exerting a rapid bactericidal effect against aerobic Gram-negative bacteria and mycoplasmas, including some that are resistant to other antibacterials and quinolones and first and second generation fluoroquinolones ⁇ Journal o / AOAC Int. 79; 397-404).
  • Enrichofloxacin is partially inactivated, less than most antibacterials, in the presence of serum, milk and other organic fluids, it acts independently of the size of the inoculum and can exert antibacterial effect at the intracellular level. (FAO. Rome 2004).
  • Enrichofloxacin acts directly by inhibiting the effect of making DNA linear and blocking the negative torsion that bacterial DNA suffers from the action of topoisomerase IV enzymes and DNA gyrase.
  • a complex is formed that causes an irreparable break in the DNA.
  • bacterial autotoxic proteins are not synthesized as in the case of nalidixic acid. Spheroplasts form quickly and the bacteria are destroyed (British Poultry ScL 49 (5) 619-624). How enrofloxacin acts on subunits A and B of topoisomerase ⁇ in addition to IV, less resistance is generated than with other quinolones (EMEA, 1999, Annex IV).
  • preventive fluoroquinolone concentrations of imitators refers to the concentrations of antibiotic required to inhibit the growth of pre-existing mimics in a bacterial population and thereby prevents the selection and emergence of resistant strains.
  • Enrichofloxacin can accumulate in phagosites and apparently stimulates them. It is eliminated mainly by renal excretion, undergoes hepatic biotransformation with partial biliary excretion (Poultry Digest 56; 18-23).
  • enrofloxacin Transepithelial removal (extrusion pumps) through the gastrointestinal wall (GI) generates high concentrations in the GI lumen.
  • enterohepatic circulation of enrofloxacin may occur.
  • the enrofloxacin is partially metabolized to ciprofloxacin, its main active metabolite and some of its inactive or low activity metabolites are: I) congeners of enrofloxacin 3-, 6-, and 8-hydroxylate, which have no or very low antibacterial activity ; (D) congeners 5, 6- (or 6, 8-), 5, 8-, and 7, 8-dihydroxylate, which undergo an oxidative transformation; (ID) derivatives of anthranilic acid, which directly has a cleft of the heterocyclic ring of enrofloxacin; and (TV) 1-ethylpiperazin, the congener amino-7, and disethene-enrofloxacin, which represent both the degradation molecule and the elimination of
  • enrofloxacin after intravenous injection, is ideally suited to a two-compartment model, in which it is first distributed in perfused organs and blood (rapid distribution phase) and subsequently distributed to tissues. Its apparent volumes of distribution are high, indicating an efficient distribution of enrofloxacin outside the plasma. In the liver the maximum concentrations of enrofloxacin are reached, followed by lung and kidney and the lowest in the brain. In most species, enrofloxacin lowers its concentrations below therapeutic levels in 12-24 hours and disappears completely from all the tissue after 3 days.
  • Vancutsem et al. reported that the time of appearance of the plasma concentration peak (Tmax) of enrofloxacin administered orally to horses, dogs, turkeys, chickens and fears was 0.5; 0.9; 1.4; 2.5 and 5.4 hours, respectively and the Cmax values in these species at doses of 10 mg / kg show figures that fluctuate between 2.5 and 4 ⁇ g / mL, but no more.
  • enrofloxacin In sheep, the bioavailability of enrofloxacin is low after oral administration, requiring the use of larger doses by this route to achieve therapeutic success if Cmax is considered as an important variable and should be 10 to 12 times higher than the value of the WCC. However, it is quickly and almost completely absorbed and distributed after its im injection (bioavailability greater than 85%). The maximum plasma concentration is rapidly reached and remains high for several hours, exceeding the minimum inhibitory concentrations for most pathogens. In horses, a species in which other fluorquinolones have not shown good oral absorption, enrofloxacin has a bioavailability of approximately 60%, reaching effective concentrations in plasma and tissues, even in animals not fasted.
  • ENR preparations of doubtful quality 13, 30
  • non-bioequivalent which are evidently shortening the useful life of the last antibacterial with a significant veterinary impact, have proliferated in the national and international market.
  • management practices for this drug that result in low plasma concentrations (low AUC) or low Cmax.
  • the administration of enrofloxacin in drinking water or in pig feed dosages in drinking water in commercial birds without previously restricting it; dosage of enrofloxacin in premix in this species (80); use of hard water as a vehicle in broilers (28); Pharmaceutical preparations that are far from bioequivalent in cattle.
  • Good management of enrofloxacin may increase its bioavailability.
  • the dosage of enrofloxacin in birds can be optimized and achieve maximum doses in the minimum amount of time (bolus dose) by increasing the concentration in the water tank of O l to 0.2% (without modifying the dose of 10 mg / kg); achieving bioequivalent preparations and ideally improving the bioavailability of enrofloxacin in general.
  • the best results with good handling are NOT compared with the extraordinary Cmax values achieved in birds with the ENR-metal complexes object of the present invention and the same applies to pigs in drinking water, in cats and dogs in capsules or syrups or in all species, including such and ruminants and horses and others, via im or sc
  • the pharmacokinetics for the ideal ENR should be that which achieves maximum plasma concentrations (from 10 to 12 times the MIC) at its plasma peak (Cmax) with the highest possible bioavailability (F> 100a) and ideally achieve Cmax on several occasions vg : Cmaxi, Cmax2, etc. (AUC24 / CMI> 125) That is, to achieve the modification of the pharmacokinetics of enrofloxacin to obtain the so-called "preventive enrofloxacin concentrations of mutants" and as a consequence of "maximum bactericidal efficacy".
  • the ENR-Metal complexes object of the present invention manage to overcome the indicated deficiencies.
  • the ideal Cmax and AUC values are: Cmax (maximum plasma concentration)> 12 times the MIC (minimum inhibitory concentration in the laboratory or AUC (area under the plasma enrofloxacin concentration vs. time curve) / MIC> 125 ..
  • the enrofloxacin-metal complexes disclosed in the present application achieve higher values by up to 230 % in bioavailability and up to 80% higher in Cmax.
  • Figure 2 shows the serum concentration profiles of enrofloxacin vs. time in dogs after application of enrofloxacin Mg. and of the original enrofloxacin, administered via SC and orally at doses of 5 mg / kg.
  • Figure 3 shows the serum concentration profiles of enrofloxacin vs. Time in horses Quarter Mile after application of enrofloxacin Mg. and of the original enrofloxacin, administered via SC and orally at doses of 10 and 5 mg / kg.
  • Figure 4 shows the concentration profiles of enrofloxacin vs. time in cattle after application of enrofloxacin Mg. and of the original enrofloxacin, administered via SC at a dose of 10 mg / kg.
  • Figure 5 shows the concentration profiles of enrofloxacin vs. time in pigs after application of enrofloxacin Mg and original enrofloxacin, administered via IM and orally at doses of 5 and 10 mg / kg respectively.
  • Figure 6 shows the concentration profiles of enrofloxacin vs. time in goats after the application of enrofloxacin Mg. and of the pioneer reference enrofloxacin, administered via SC at a dose of 10 mg / kg.
  • Figure 7 shows the concentration profiles of enrofloxacin vs. time in sheep after application of enrofloxacin Mg. and of the original enrofloxacin, administered via SC at a dose of 10 mg / kg.
  • the ENR-metal complexes object of the present invention are prepared following the procedure described below:
  • enrofloxacin To a previously defined amount of enrofloxacin is added 30 to 35% by weight of an inorganic salt of the group of metals consisting of Mg 2+ , Fe 2+ , Co 2+ , Ni 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Ca 2+ , Cd 2+ and UO 2 2+ , and add 5 times the enrofloxacin weight of double-distilled water. Shake until you get a milky suspension.
  • the enrofloxacin weight of a strong inorganic acid is rapidly added 3 times, selected from the group of phosphoric, nitric, sulfuric, hydrogen sulfide, hydrofluoric, hydrochloric, hydrobromic, iodhydric and the like, preferably of the halogen acids and more preferably 35% hydrochloric acid, adjusting the pH of the mixture to approximately 3, stir for approximately 3 hours to homogenize the suspension formed.
  • Filter and dry in vacuo the solid obtained is mixed with anhydrous ethyl alcohol under stirring, filtered and washed twice with anhydrous acetone, filtered and dried under vacuum for 6 hours. Once the solid is dry, it is pulverized and micronized. The yield is between 70-90%.
  • ENR-Mg 10 g of quality enrofloxacin was mixed with 3 g of anhydrous magnesium hydroxide, mixed in a beaker with 50 mL of double-distilled deionized water. Stir until a milky-looking suspension is obtained. 30 mL of 35% HCl are quickly added and the pH is adjusted to 3. It was stirred for about 3 hours, obtaining a homogeneous suspension without lumps, a little yellowish-white and slightly pearly. It is filtered in a paper filter on a porcelain filter and in Kitazato Flask to vacuum until it dries. The powder-stone obtained is washed with 50 mL of ethyl alcohol only once by pouring it into a beaker using magnetic stirring. It is dried again as in the previous step and the powder-stone obtained is washed with anhydrous acetone twice with 50 mL pouring it into a beaker using magnetic stirring and vacuum drying.
  • the product obtained was used for oral, subcutaneous and intramuscular administration in biological tests.
  • the Cmax variable is required to be 10 12 times greater than the MIC value of the pathogen involved and that AUC / MIC is greater than 120 for Gram bacteria - and 30 to 50 for Gram +.
  • Enrichofloxacin is not commonly used in horses, although substantial evidence has been accumulated to be able to indicate it for 3-5 days in a row in adults of this species without any side effects. However, it is still contraindicated in foals because their joints can be affected by the demineralization of joint surfaces and deforming arthritis. Therefore, the pharmacokinetics PO of enrofloxacin-Mg in horses is presented here.
  • ENR metal complexes with Fe 2+ , Co 2+ , Ni 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Ca 2+ , Cd 2+ and UO 2 2+ can easily be prepared by a technician With knowledge in the field of chemistry following the procedure described here, in the same way, you can apply them following the description of the described invention, obtaining the same or similar results.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

La presente invención se refiere al campo de la medicina veterinaria, particularmente a los antibacterianos derivados de las fluorquinolonas particularmente a una serie de sales de enrofloxacina del tipo ENR-Mg; ENR-Fe; ENR-Mn; ENR-Cu; ENR-Co; ENR-Ni; ENR-Ca; ENR-Zn, ENR-Cd y ENR-UO2, y que bajo esta nueva forma química la enrofloxacina alcanza una biodipsonibilidad muy superior a la de la enrofloxacina base o sal clorhidrato y que además se logra una prolongación de sus estancia en el organismo de las aves, los cerdos, los bovinos, los caprinos, los ovinos, los caninos, los felinos y los equinos. También estas sales pierden casi la totalidad del sabor amargo característico de la enrofloxacina base o del clorhidrato. Asimismo, el aumento en el tiempo medio de retención y por ello del tiempo en el que se logran concentraciones consideradas terapéuticas se prolonga en todas las especies mencionadas.

Description

COMPLEJOS DE ENROFLOXACINA CON MÁXIMO TIEMPO DE RESIDENCIA EN PLASMA DE MAMÍFEROS Y AVES
CAMPO TÉCNICO DE LA INVENCIÓN
La presente invención se refiere a la preparación y uso de complejos metálicos de enrofloxacina (ENR), del tipo ENR-Mg; ENR-Fe; ENR-Mn; ENR-Cu; ENR-Co; ENR-Ni; ENR-Ca; ENR-Zn, ENR-Cd y ENR-UO2, para lograr una óptima biodisponibilidad oral y parenteral aumentando el valor de la concentración plasmática máxima ( Cmax y AUC), prolongado el tiempo de estancia y por ende la actividad del antibacteriano en aves comerciales, rumiantes, cerdos, perros, gatos, equinos y otras especies de compañía y comercialmente explotadas para carne y/o huevo como patos, avestruces, etc.. Los complejos que se describen permiten incrementar notablemente la biodisponibilidad (F) oral del antibacteriano en pollo de engorda, aves productoras de huevo, aves progenitoras de huevo para producción de pollo paπϊllero y "abuelas" (aves productoras de progenitoras), patos, pavos, gansos, codornices, avestruces y otras aves comerciales, así como en cerdos en todas sus etapas, perros y gatos. Permiten también farmacocinéticas sin precedentes por vía parenteral en: borregos y cabras de todas las edades y bovinos productores de carne o de leche y en las especies aviares, en perros, en gatos y equinos, optimizando así su potencial eficacia y con ello reduciendo al máximo el desperdicio de este principio activo por baja F. Además minimiza la generación de cepas resistentes de bacterias sensibles por optimización de la relación entre farmacocinética/farmacodinamia (PK/PD) del antibacteriano. Por añadidura, los complejos de ENR-metal enmascaran el sabor y por tanto permiten su aceptación en cerdos cuando la administración es por vía oral en el agua de bebida y evitan su rechazo y salivación en gatos.
ANTECEDENTESDELAINVENCIÓN
Las íluorquinolonas son un grupo de agentes antibacterianos sintéticos usados en medicina tanto humana como veterinaria para el tratamiento de una variedad de enfermedades infecciosas. Aunque se han sintetizado muchas de ellas, las más conocidas en medicina veterinaria incluyen: amifloxacina, ciprofloxacina, danofloxacina, enrofloxacina, marbofloxacina, norfloxacina y sarafloxacina (Adv. Drug Delivery Reviews 54:871-882). Otras, como la premafloxacina, fleroxaciπa y difloxacina han tenido un ingreso menos impactante dentro de la medicina veterinaria. Sin embargo, el fármaco que revolucionó la terapéutica de enfermedades bacterianas en medicina veterinaria fue y aún es la enrofloxacina, desarrollada en los años 80 para su uso exclusivo en medicina veterinaria. Tanto en la década de los 80's como de los 90's y aún a la fecha se hace evidente el incremento constante en el uso de este agente antibacteriano. Las razones son: elevada potencia antibacteriana, rápida destrucción bacteriana en cuestión de minutos independientemente del tamaño del inoculo y actividad bactericida con tan solo 2 - 3 veces el valor de la concentración mínima inhibitoria.
Propiedades fisicoquímicas de la enrofloxacina.
La enrofloxacina actúa de manera dependiente de la concentración, ejerciendo un rápido efecto bactericida contra bacterias Gram negativas aerobias y micoplasmas, incluyendo algunas que son resistentes a otros antibacterianos y a quinolonas y fluoroquinolonas de primera y segunda generación {Journal o/AOAC Int. 79; 397-404).
La enrofloxacina se inactiva parcialmente, menos que la mayoría de los antibacterianos, en presencia de suero, leche y otros fluidos orgánicos, actúa independientemente del tamaño del inoculo y pueden ejercer efecto antibacteriano a nivel intracelular. (FAO. Roma 2004).
Mecanismo de acción de la enrofloxacina
La enrofloxacina actúa directamente inhibiendo el efecto de volver linear el ADN y bloqueo de la torsión negativa que sufre el ADN bacteriano por la acción de las enzimas topoisomerasa IV y ADN girasa. Además, con la administración de enrofloxacina se forma un complejo que provoca una ruptura irreparable en el ADN. A diferencia de las quinolonas de primera generación no se sintetizan proteínas autotóxicas bacterianas como en el caso del ácido nalidíxico. Se forman esferoplastos rápidamente y la bacteria se destruye (British Poultry ScL 49 (5) 619-624). Como la enrofloxacina actúa sobre las subunidades A y B de la topoisomerasa π además de la IV, se generan menos resistencias que con otras quinolonas (EMEA, 1999, Anexo IV).
Los efectos de la enrofloxacina como inhibidora metabólica, como destructora del material genético y de la misma ADN-girasa, son dependientes de la concentración. Por eso, a mayor concentración, menor Ia posibilidad de que se recuperen las bacterias imitantes y con ello se logra una mayor eficacia antibacteriana y se evita la selección de imitantes. (Current Opinión in Microbiology, 5; 472-477).
De tal suerte que el efecto antibacteriano óptimo de la enrofloxacina es a elevadas concentraciones (Cmax elevada) y durante el mayor tiempo posible entre dosis (área bajo la curva de concentración de enrofloxacina en el plasma vs. tiempo, AUC, elevada) (The Veterinary Record 2002, 16; 350-353). Además posee efecto postantibiótico de 1 a 4 horas contra S. intermedius, P. multocida, E. coli, P. aeruginosa, S. typhimurium y S. Aureus (J. ofFoodProtec. 2004, 67(5) ¡980-992).
Se considera que las resistencias a la enrofloxacina se dan aproximadamente en una de cada 1 x 109 bacterias. Estas mutaciones, a veces denominadas ligeras, son suficientes para mantener la infección en fluidos y tejidos de un individuo que reciben dosis convencionales de enrofloxacina. A partir de esta noción surgió el término de
"concentraciones de fluoroquinolonas preventivas de imitantes", que hace referencia a las concentraciones de antibiótico requeridas para inhibir el crecimiento de imitantes preexistentes en una población bacteriana y con lo cual se previene la selección y surgimiento de cepas resistentes.
Las fluorquinolonas en general tienen una absorción oral en animales de regular a buena (con la excepción de los rumiantes y probablemente de los equinos) v.g. 60% en aves y 75% en perros y una absorción parenteral buena (mayor al 80%). No obstante estas cifras dejan lugar para mejorar esta variable. Las vidas medias de eliminación fluctúan entre especies pero en general son de 3 horas hasta 10 horas y se distribuyen bien a diversos tejidos con valores de volumen de distribución área de 2 á 4 L/kg, dependiendo la especie. La enrofloxacina puede acumularse en fagositos y al parecer los estimula. Se elimina fundamentalmente por excreción renal, sufre biotransformación hepática con excreción biliar parcial (Poultry Digest 56; 18-23). Posiblemente exista algo de biotransformación en otros sitios como la ubre o los macrófagos y se sabe que también a nivel del epitelio intestinal. El efecto de primer paso hepático es, aproximadamente del 7 al 20 %. Las rutas metabólicas comunes de estos agentes incluyendo a la enrofloxacina son la de alquilación, glucuronización, oxidación, sulfoxidación, acetilación y ruptura del anillo piperazínico. En animales ocurre filtración glomerular para la fracción no ligada y también secreción tubular activa (Adv. Drug Delivery Reviews, 54; 825-850), lo que permite que se logren altas concentraciones urinarias. El proceso de secreción tubular es sensible al Probenecid y la excreción urinaria disminuye en el fallo renal. La eliminación transepitelial (bombas de extrusión) a través de la pared gastrointestinal (GI) genera concentraciones elevadas en el lumen GI. Además, existen indicios de que puede ocurrir circulación enterohepática de la enrofloxacina. La enrofloxacina se metaboliza parcialmente a ciprofloxacina, su principal metabolito activo y algunos de sus metabolitos inactivos o con baja actividad son: I) congéneres de enrofloxacina 3-, 6-, y 8-hidroxilato, los cuales poseen una nula o muy baja actividad antibacteriana; (D) congéneres 5, 6- (ó 6, 8-), 5, 8-, y 7, 8 - dihidroxilato, los cuales sufren una transformación oxidativa; (ID) derivados del ácido antranílico, que tiene directamente una hendidura del anillo heterocíclico de la enrofloxacina; y (TV) 1-etilpiperazin, el congénere amino-7, y desetilen-enrofloxacina, que representan tanto la molécula de degradación como de eliminación del segmento piperazinilo. La evaluación de la farmacocinética de enrofloxacina, después de inyección intravenosa se ajusta idealmente a un modelo de dos compartimientos, en el que primero se distribuye en órganos perfundidos y sangre (fase de distribución rápida) y posteriormente se distribuye a tejidos. Sus volúmenes aparentes de distribución son elevados, lo que indica una eficiente distribución de enrofloxacina fuera del plasma. En el hígado se alcanzan las concentraciones máximas de enrofloxacina, seguido de pulmón y riñon y la más baja en cerebro. En la mayoría de las especies la enrofloxacina baja sus concentraciones por debajo de las terapéuticas en 12 - 24 horas y desaparece completamente de todo el tejido después de 3 días.
Vancutsem y col. (J. ofFood Protec. 2004) informaron que el tiempo de aparición del pico de concentración plasmática (Tmax) de enrofloxacina administrada en forma oral a caballos, perros, pavos, pollos y temeros fue de 0,5; 0,9; 1,4; 2,5 y 5,4 horas, respectivamente y los valores de Cmax en la estas especies a dosis de 10 mg/kg aclanzan cifras que fluctúan entre 2.5 y 4 μg/mL, pero no más. Scheer (Pharmacotherapy 1999, 19; 404-415) encontró que la enrofloxacina es fácil y rápidamente absorbida luego de la administración parenteral en terneros, cerdos, perros, gatos, pollos y pavos, alcanzándose concentraciones máximas dentro de las 0.5 a 2 horas y nuevamente los valores de Cmax fluctúan alrededor de 3 μg/mL. La absorción oral de enrofloxacina en bovinos es pobre (aproximadamente del 10 %). Aunque los terneros prerumiantes presentan las mismas pautas de absorción oral que las especies monogástricas, aunque se prefiera en ellos la vía parenteral. Si es necesaria la vía oral debe considerarse que los minerales presentes en los sustitutos lácteos pueden producir Ia quelación del antimicrobiano y se ha informado que las aguas duras reducen su F en aves. Por otra parte, se ha reportado una reducción temporaria de la densidad, viabilidad y actividad de los protozoos del rumen, con cierta depresión del metabolismo ruminal, luego de la administración oral de enrofloxacina. En bovinos la enrofloxacina es extensamente absorbida luego de su administración subcutánea, con una biodisponibilidad mayor al 90 %. En vacas lecheras alcanzan concentraciones plasmáticas máximas (similares tanto para administración por la vía subcutánea, s.c., como vía intramiscular, i.m.) dentro de las primeras 4 horas y los valores de Cmax alcanzan los 2.5 - 3.6 μg/mL. En un ensayo la biodisponibilidad fue del 82 % luego de la administración I M, y del 100 luego de la administración s.c. En terneros la absorción es rápida, con una biodisponibilidad sistémica virtualmente completa, tanto por la vía s.c. como i.m.. En ovinos la biodisponibilidad de la enrofloxacina es baja luego de la administración oral, exigiendo el uso de dosis mayores por esta vía para alcanzar el éxito terapéutico si se considera a la Cmax como variable importante y que debe ser de 10 a 12 veces superior al valor de la CMI. Sin embargo, es rápida y casi completamente absorbida y distribuida luego de su inyección i.m. (biodisponibilidad mayor al 85 %). La concentración plasmática máxima es rápidamente alcanzada y permanece alta varías horas, superando las concentraciones inhibitorias mínimas para la mayoría de los patógenos. En equinos, especie en la cual, otras fluorquinolonas no han demostrado buena absorción por vía oral, la enrofloxacina tiene una biodisponibilidad de aproximadamente 60 %, alcanzando concentraciones eficaces en plasma y tejidos, aún en animales no sometidos a ayuno. La absorción por vía i.m. es más lenta en esta especie, aparentemente debido al efecto irritante del preparado sobre el sitio de inyección ya que la enrofloxacina se diluye en preparados de KOH a un pH del 10.4 o más. La biodisponibilidad del fármaco es alta tanto en cerdos sometidos a ayuno como en los que reciben alimentos en el momento de la administración. Siempre que el consumo de alimentos no se encuentre afectado, la medicación con enrofloxacina en la ración provee, dentro de las 2 a 4 horas, concentraciones séricas y tisulares ligeramente por encima de la CMI de ciertos patógenos importantes en estos animales. Sin embargo, dado que es un antibacteriano concentración-dependiente se prefiere que no se use esta vía. En contraste, la administración intramuscular permite una rápida absorción, con una biodisponibilidad mayor al 90 %.
OBJETO DE LA INVENCIÓN
Por lo tanto sería ideal para el manejo de grandes hatos contar con una enrofloxacina soluble en agua y lo suficientemente insípida como para que no fuera rechazada por cerdos y que lograra valores de Cmax, AUC y F de al menos la misma magnitud que cuando se le inyecta IM. La absorción de la enrofloxacina por vía oral en pollos, logra una biodisponibilidad cercana al 60 % y esto se traduce en valores de Tmax de 1 - 2 y hasta 3 horas y Cmax de 2 a 3 μg/mL en el mejor de los casos cuando se cuenta con dosis bolo (restringiendo el agua 1 hora), purgados los sistemas de agua y con la mejor enrofloxacina dado que hay notables diferencias en los preparados disponibles en el mercado.
Hace ya más de dos décadas que no se genera un grupo antibacteriano nuevo para la medicina veterinaria, aunque se pueden destacar algunos derivados de grupos ya conocidos como la tulatromicina (macrólido) y Ia cefovecina (cefalosporina). Se estima, por parte de la industria farmacéutica, que para producir un antibacteriano novedoso y al menos tan potente como la enrofloxacina, se requeriría una inversión muy elevada y un riesgo financiero también desproporcionado, amén de un periodo de investigación de 5 - 10 años. Evidentemente, esto representa un capital de alto riesgo financiero que ha parado literalmente a la Industria Farmacéutica Veterinaria en los países avanzados. De tal suerte, es poco probable que en el corto o mediano plazo se genere un grupo de antibacterianos que iguale o supere la potencia de la enrofloxacina, utilizada ya por más de dos décadas en Latinoamérica y muchas partes del mundo.
Han proliferado en el mercado tanto nacional como internacional preparados de ENR de dudosa calidad (13, 30), no bioequivalentes que evidentemente están acortando la vida útil del último antibacteriano de impacto importante en veterinaria. Adicionalmente, existen prácticas de manejo de este fármaco que resultan en concentraciones plasmáticas bajas (bajo AUC) o con bajo Cmax. Por ejemplo la administración de enrofloxacina en el agua de bebida o en el alimento a cerdos; dosificaciones en el agua de bebida en aves comerciales sin restringirla previamente; dosificación de la enrofloxacina en premezcla en esta especie (80); uso de aguas duras como vehículo en pollo de engorda (28); preparados farmacéuticos que distan mucho de ser bioequivalentes en bovinos.
Un buen manejo de la enrofloxacina puede aumentar su biodiponibilidad. Por ejemplo, la dosificación de la enrofloxacina en aves puede optimizarse y lograr dosis máximas en el mínimo de tiempo (dosis bolo) aumentando la concentración en el tinaco de O l a 0.2% (sin modificar la dosis de 10 mg/kg); logrando preparados bioequivalentes e idealmente mejorando la biodisponibilidad de la enrofloxacina en general. Sin embargo, los mejores resultados con un buen manejo NO se comparan con los valores extraordinarios de Cmax logrados en aves con los complejos ENR-metales objeto de la presente invención y lo mismo aplica para cerdos en el agua de bebida, en gatos y perros en cápsulas o jarabes o en todas las especies, incluyendo a las dichas y a los rumiantes y caballos y otras, por vía i.m o s.c.
La farmacocinética para la ENR ideal debe ser aquella que logra concentraciones plasmáticas máximas (de 10 a 12 veces la CMI) en su pico plasmático (Cmax) con la, mayor biodisponibilidad posible (F > 100a) e idealmente lograr la Cmax en varias ocasiones v.g: Cmaxi, Cmax2, etc. (AUC24/CMI > 125) Esto es, lograr la modificación de la farmacocinética de la enrofloxacina para obtener las denominadas "concentraciones de enrofloxacina preventivas de mutantes" y por consecuencia de "máxima eficacia bactericida".
Los complejos ENR-Metal objeto de la presente invención logran superar las deficiencias señaladas. Como ya se ha mencionado, se ha postulado que los valores de Cmax y AUC ideales son: Cmax (concentración plasmática máxima) > 12 veces la CMI (concentración mínima inhibitoria en el laboratorio o AUC (área bajo la curva de concentración de enrofloxacina en el plasma vs. tiempo )/CMI > 125.. Los complejos de enrofloxacina-metal divulgados en la presente solicitud, logran valores superiores hasta en un 230% en biodisponibilidad y hasta un 80% superior en Cmax.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
En las figuras que se presentan se muestran las gráficas de las farmacocinéticas de enrofloxacina-magnesio en cerdos, aves y perros administrada por vía oral y posteriormente se presentan las cinéticas en perros, cerdos y cabras y vacas administrada por la vía subcutánea.
En la Figura 1, se muestran los perfiles séricos de concentración de enrofloxacina vs. tiempo en pollo de engorda después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía PO a dosis de 10 mg/kg.
La Figura 2, muestra los perfiles séricos de concentración de enrofloxacina vs. tiempo en perros después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC y oral a dosis de 5 mg/kg.
La Figura 3, muestra los perfiles séricos de concentración de enrofloxacina vs. tiempo en caballos Cuarto de Milla después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC y oral a dosis de 10 y 5 mg/kg. La Figura 4, muestra los perfiles de concentración de enrofloxacina vs. tiempo en bovinos después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC a dosis de 10 mg/kg.
La Figura 5, muestra los perfiles de concentración de enrofloxacina vs. tiempo en cerdos después de la aplicación de la enrofloxacina Mg y de la enrofloxacina original, administradas vía IM y oral a dosis de 5 y 10 mg/kg respectivamente .
La Figura 6, muestra los perfiles de concentración de enrofloxacina vs. tiempo en caprinos después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina pionera de referencia, administradas vía SC a dosis de 10 mg/kg.
La Figura 7, muestra los perfiles de concentración de enrofloxacina vs. tiempo en ovinos después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC a dosis de 10 mg/kg. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN:
Los complejos ENR-metal objeto de Ia presente invención se preparan siguiendo el procedimiento descrito a continuación:
A una cantidad previamente definida de enrofloxacina se le agrega del 30 al 35% en peso de una sal inorgánica del grupo de metales consistente de Mg2+, Fe2+, Co2+, Ni2+, Zn2+, Mn2+, Cu2+, Ca2+, Cd2+ y UO2 2+, y adicionar 5 veces el peso de enrofloxacina de agua bidestilada-desionizada. Agitar hasta obtener una suspensión lechosa. A esta suspensión se agregan rápidamente 3 veces el peso enrofloxacina de un ácido inorgánico fuerte, seleccionado del grupo de ácido fosfórico, nítrico, sulfúrico, sulfhídrico, fluorhídrico, clorhídrico, bromihídrico, iodhídrico y similares, preferentemente de los ácidos de los halógenos y más preferentemente ácido clorhídrico al 35%, ajustando el pH de la mezcla a aproximadamente 3, agitar durante aproximadamente 3 horas para homogenizar la suspensión formada. Se filtra y seca al vacío, el sólido obtenido se mezcla con alcohol etílico anhidro bajo agitación, se filtra y se lava dos veces con acetona anhidra, se filtra y se seca al vacío durante 6 horas. Una vez seco el sólido se pulveriza y microniza. El rendimiento es de entre el 70-90%.
FARMACOCINETICA DE ENROFLOXACINA-Mg EN AVES COMERCIALES
Ejemplo: Se preparó el complejo ENRQ-MG de acuerdo al procedimiento descrito, la cual fue empleada para ejemplificar la farmacocinética en aves domésticas de los complejos metálicos de ENR objeto de la presente invención.
Preparación de ENR-Mg A 10 g de enrofloxacina de calidad se mezclo con 3 g de hidróxido de magnesio anhidro, se mezclaron en vaso de precipitados con 50 mL de agua bidestilada-desionizada. Se agita hasta obtener una suspensión de aspecto lechoso. Se agregan rápidamente 30 mL de HCl al 35% y se ajusta el pH a 3. Se agitó durante aproimadamente 3 horas, obteniendo una suspensión homogénea sin grumos, blanco-amarillento un poco y aperlado. Se filtra en filtro de papel sobre un filtro de porcelana y en Matraz de Kitazato para hacer vacío hasta que se seca. El polvo-piedra obtenido se lava con 50 mL de alcohol etílico una sola vez vertiéndolo en un vaso de precipitados usando agitación magnética, Se vuelve a desecar como en el paso anterior y el polvo-piedra obtenido se lava con acetona anhidra dos veces con 50 mL vertiéndolo en un vaso de precipitados usando agitación magnética y desecando al vacío.
Se deja secar al vacío por aproximadamente 6 horas, se muele al final y tamiza al grado de micronización deseado.
El producto obtenido se utilizo para su administración oral, subcutánea e intramuscular en las pruebas biológicas.
Considerando que la enrofloxacina es habitualmente utilizada en pollo de engorda a dosis de 10 mg/kg en el agua de bebida, así como el hecho de que los datos de farmacocinética indican que para la enrofloxacina funcione óptimamente se requiere que la variable Cmax sea de 10 a 12 veces mayor que el valor de CMI del patógeno involucrado y que AUC/CMI sea mayor 120 para bacterias Gram — y de 30 a 50 para las Gram +.
Material y métodos
A continuación se muestran los materiales y métodos empleados en los estudios de la farmacocinética PO de la enroflaxina-Mg en pollos de engorda:
Figure imgf000011_0001
Resultados
En la figura 1 y cuadro 1 se presentan los resultados obtenidos para la enrofloxacina-Mg por vía oral y el comparativo con el producto original. En el cuadro 2 se presentan los valores farmacocinéticas obtenido en los 2 grupos.
Cuadro 1. Perfiles séricos de concentración de enrofloxacina vs. tiempo en caballos Cuarto de Milla después de la aplicación de la enrofloxacina Mg y de la enrofloxacina original, administradas vía SC y oral a dosis de 10 y 5 mg/kg.
Figure imgf000012_0001
Cuadro 2. Valores farmacocinéticos de los 2 grupos de enrofloxacina en pollo de engorda a dosis de 10 mg/kg
Figure imgf000012_0002
Farmacocinética de enrofloxacina-Mg PO administrada vía SC y PO en perros
Material y métodos
Se resumen los materiales y métodos de la siguiente manera:
Figure imgf000013_0001
Resultados
En la figura 2 y cuadro 3 se presentan los resultados obtenidos para la enrofloxacina-Mg por las dos vías utilizada y el comparativo con el producto original. En el cuadro 4 se presentan los valores farmacocinéticas obtenido en los 4 grupos.
Cuadro 3. Perfiles séricos de concentración de enrofloxacina vs. tiempo en perros después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC y oral a dosis de S mg/kg.
Figure imgf000014_0001
Cuadro 4. Valores farmacocinéticos de los 4 grupos de enrofloxacina en perros
Figure imgf000014_0002
Farmacocinética de la enrofloxacina-Mg PO administrada vía SC en caballos
La enrofloxacina no es habitualmente utilizada en equinos, aunque se ha acumulado evidencia sustancial para poder indicarla por 3 - 5 días seguidos en los adultos de esta especie sin que se manifiesten efectos colaterales. No obstante sigue contraindicada en potros pues se pueden ver afectadas sus articulaciones por la desmineralización de las superficies articulares y artritis deformante. Por lo anterior se presenta aquí la farmacocinética PO de la enrofloxacina-Mg en caballos.
Material y métodos
Se resumen los materiales y métodos de la siguiente manera:
Figure imgf000015_0001
Resultados
En la figura 3 y cuadro 5 se presentan los resultados obtenidos para la enrofloxacina-Mg por las dos vías utilizada y el comparativo con el producto original. En el cuadro 6 se presentan los valores farmacocinéticas obtenido en los 4 grupos.
Cuadro 5. Perfiles séricos de concentración de enrofloxacina vs. tiempo en caballos Cuarto de NfUIa después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC y oral a dosis de 10 y 5 mg/kg.
Figure imgf000016_0001
Cuadro 6. Valores farmacocinéticos de los 4 grupos de enrofloxacina en caballos
Cuarto de Milla
Figure imgf000016_0002
Farmacocinética de la enrofloxarína-Mg administrado víia SC en bovinos
Material y métodos
Se resumen los materiales y métodos de la siguiente manera.
Figure imgf000016_0003
Figure imgf000017_0001
Resultados
En la figura 4 y cuadro 7 se presentan los resultados obtenidos para la enrofloxacina-Mg por vía SC y el comparativo con el producto original. En el cuadro 8 se presentan los valores farmacocinéticas obtenido en los 2 grupos.
Cuadro 7. Perfiles séricos de concentración de enrofloxacina vs. tiempo en caballos Cuarto de Milla después de la aplicación de Ia enrofloxacina Mg. y de la enrofloxacina r original, administradas vía SC y oral a dosis de 10 y 10 mg/kg.
Figure imgf000017_0002
Cuadro 8 Valores farmacocinéticos de los 4 grupos de enrofloxacina en caballos
Cuarto de Milla
Figure imgf000018_0001
Farmacocinética de Ia enrofloxacina-Mg administrada vía DVf y PO en cerdos
Material y métodos
Se resumen los materiales y métodos de la siguiente manera.
Figure imgf000018_0002
Resultados
En la figura 5 y cuadro 9 se presentan los resultados obtenidos para la enrofloxacina-Mg por las dos vías utilizada y el comparativo con el producto original. En el cuadro 10 se presentan los valores farmacocinéticas obtenido en los 4 grupos. Cuadro 9. Perfiles séricos de concentración de enrofloxacina vs. tiempo en cerdos después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía IM y oral a dosis de 5 y 10 mg/kg respectivamente .
Figure imgf000019_0001
Cuadro 10. Valores farmacocinéticos de los 4 grupos de enrofloxacina en cerdos
Figure imgf000019_0002
Farmacocinética de la enrofloxacina-mg administrado via se en cabras
Material y métodos
Se resumen los materiales y métodos de la siguiente manera:
Figure imgf000019_0003
Figure imgf000020_0001
Resultados
En la figura 6 y cuadro 11 se presentan los resultados obtenidos para la enrofloxacina-Mg por vía SC y el comparativo con el producto original. En el cuadro 12 se presentan los valores farmacocinéticas obtenido en los 2 grupos.
Cuadro 11. Perfiles séricos de concentración de enrofloxacina vs. tiempo en cabras criollos después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC 10 mg/kg.
Figure imgf000020_0002
Cuadro 12. Valores farmacocinéticos de los 12 grupos de enrofloxacina en cabras
Figure imgf000021_0001
Farmacocinética de la enrofloxacina-Mg administrada vía SCen borregos
Material y métodos
Se resumen los materiales y métodos de la siguiente manera:
Figure imgf000021_0002
Resultados
En la figura 7 y cuadro 13 se presentan los resultados obtenidos para la enrofloxacina-Mg por vía SC y el comparativo con el producto original. En el cuadro 14 se presentan los valores farmacocinéticas obtenido en los 2 grupos.
Cuadro 13. Perfiles séricos de concentración de enrofloxacina vs. tiempo en borregos criollos después de la aplicación de la enrofloxacina Mg. y de la enrofloxacina original, administradas vía SC 10 mg/kg.
Figure imgf000022_0001
Cuadro 14. Valores farmacocinéticos de los 2 grupos de enrofloxacina en en borregos criollos
Figure imgf000022_0002
Los complejos metálicos de ENR con Fe2+, Co2+, Ni2+, Zn2+, Mn2+, Cu2+, Ca2+, Cd2+ y UO2 2+, pueden ser fácilmente preparados por un técnico con conocimientos en el campo de la química siguiendo el procedimiento aquí descrito, de igual manera, podrá aplicarlos siguiendo la descripción de la invención descrita, obteniendo resultados iguales o semejantes.

Claims

REIVINDICACIONES
Una vez que se ha descrito de manera suficiente nuestra invención se considera como una novedad y por lo tanto se reclama como de propiedad exclusiva, lo contenido en las siguientes reivindicaciones: 1. Proceso para la obtención de complejos metálicos de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves, en donde dicho procedimiento se caracteriza por las siguientes etapas: a) a una cantidad previamente definida de enrofloxacina se le agrega del 30 al 35% en peso de una sal inorgánica del grupo de metales consistente de Mg2+, Fe2+, Co2+, Ni2+, Zn2+, Mn2+, Cu2+, Ca2+, Cd2+ y UO2 2+; b) adicionar 5 veces el peso de enrofloxacina de agua bidestilada- desionizada; c) agitar hasta obtener una suspensión lechosa. d) agregar rápidamente 3 veces el peso enrofloxacina de un ácido inorgánico fuerte, seleccionado del grupo de ácido fosfórico, nítrico, sulfúrico, sulfhídrico, fluorhídrico, clorhídrico, bromihídríco, iodhídrico y similares, preferentemente de los ácidos del grupo de los halógenos y más preferentemente ácido clorhídrico al 35%; e) ajustar el pH de la mezcla a aproximadamente 3; f) agitar durante aproximadamente 3 horas para homogenizar la suspensión formada; filtrar y secar al vacío; g) mezclar con alcohol etílico anhidro bajo agitación, filtrar y lavar dos veces con acetona anhidra; h) filtrar y secar al vacío durante 6 horas; i) el sólido seco se pulveriza y microniza.
2. El proceso según la reivindicación 1, caracterizado porque se obtiene un complejos metálicos de enrofloxacina seleccionado del grupo que consiste de: ENR-Mg; ENR-Fe; ENR-Mn; ENR-Cu; ENR-Co; ENR-Ni; ENR-Ca; ENR-Zn, ENR-Cd y ENR- UO2
3. El proceso según la reivindicación 1 caracterizado porque el ácido inorgánico utilizado es ácido clorhídrico al 35%.
4. El proceso según la reivindicación 1, caracterizado porque las sales inorgánicas de Mg2+, Fe2+, Co2+, Ni2+, Zn2+, Mn2+, Cu2+, Ca2+, Cd2+ y UO2 2+, son seleccionadas del grupo que consistes de hidróxidos, sulfates, cloruros, óxidos, fosfatos, nitratos y semejantes.
5 - El proceso según la reivindicación 1, caracterizado porque el rendimiento es del
70 al 90% del complejo metálico de enrofloxacina.
6 - Un complejo metálico de enrofloxacina seleccionado del grupo que consiste de ENR-Mg; ENR-Fe; ENR-Mn; ENR-Cu; ENR-Co; ENR-Ni; ENR-Ca; ENR-Zn, ENR-Cd y ENR-UO2, caracterizado porque se prepara según el procedimiento descrito en cualquiera de las reivindicaciones 1 a 5.
7. El uso de los complejos de enrofloxacina de la reivindicación 6, caracterizado porque permiten lograr una óptima biodisponibilidad aumentando el valor de la concentración plasmática máxima ( Cmax), prolongado el tiempo de estancia y por consecuencia la actividad antibacteriana en aves comerciales, rumiantes, cerdos, perros, gatos, equinos y otras especies de compañía y comercialmente explotadas para carne y/o huevo como patos, avestruces, entre otros.
8. El uso de los complejos de enrofloxacina de la reivindicación 7, caracterizado porque la variable Cmax es de 10 a 12 veces mayor que el valor de CMI del patógeno y que AUC/CMI es mayor 120 para bacterias Gran - y de 30 a 50 para las Gram +.
9. El uso de los complejos de enrofloxacina de la reivindicación 6, caracterizado porque los complejos de ENR-metal enmascaran el sabor y por tanto permiten su aceptación en cerdos cuando la admiistración es por vía oral en el agua de bebida y evitan su rechazo y salivación en gatos.
10. El uso de los complejos de enrofloxacina para la elaboración de medicamentos que permiten lograr un máximo tiempo de residencia en plasma de mamíferos y aves, en donde dichos medicamentos se elaboran para su administración por vía oral, subcutánea e intramuscular
PCT/MX2009/000038 2009-04-24 2009-04-24 Complejo de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves WO2010123337A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2009/000038 WO2010123337A1 (es) 2009-04-24 2009-04-24 Complejo de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2009/000038 WO2010123337A1 (es) 2009-04-24 2009-04-24 Complejo de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves

Publications (1)

Publication Number Publication Date
WO2010123337A1 true WO2010123337A1 (es) 2010-10-28

Family

ID=43011287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2009/000038 WO2010123337A1 (es) 2009-04-24 2009-04-24 Complejo de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves

Country Status (1)

Country Link
WO (1) WO2010123337A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088305A1 (es) * 2013-12-11 2015-06-18 Universidad Nacional Autónoma de México Complejo recristalizado de clorhidrato de enrofloxacina dihidratado, y metodo para obtener el mismo
EP2992884A4 (en) * 2013-05-03 2016-06-22 Guangzhou Insighter Biotechnology Co Ltd USE OF ENROFLOXACIN SALT IN THE PREPARATION OF ORAL PREPARATION FOR PIGS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197548A1 (en) * 2006-02-17 2007-08-23 Murthy Yerramilli V S Fluoroquinolone compositions

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070197548A1 (en) * 2006-02-17 2007-08-23 Murthy Yerramilli V S Fluoroquinolone compositions

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EFTHIMIADOU, E. K. ET AL.: "Mononuclear metal complexes of the second-generation quinolone antibacterial agent enrofloxacin: Synthesis, structure, antibacterial activity and interaction with DNA", POLYHEDRON, vol. 27, 2008, pages 1729 - 1738, XP022586713, DOI: doi:10.1016/j.poly.2008.02.006 *
EFTHIMIADOU, E. K. ET AL.: "Neutral and cationic mononuclear copper(II) complexes with enrofloxacin: Structure and biological activity", JOURNAL OF INORGANIC BIOCHEMISTRY, vol. 100, 2006, pages 1378 - 1388, XP025038293, DOI: doi:10.1016/j.jinorgbio.2006.03.013 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2992884A4 (en) * 2013-05-03 2016-06-22 Guangzhou Insighter Biotechnology Co Ltd USE OF ENROFLOXACIN SALT IN THE PREPARATION OF ORAL PREPARATION FOR PIGS
WO2015088305A1 (es) * 2013-12-11 2015-06-18 Universidad Nacional Autónoma de México Complejo recristalizado de clorhidrato de enrofloxacina dihidratado, y metodo para obtener el mismo

Similar Documents

Publication Publication Date Title
CN102397552B (zh) 一种含喹诺酮类的药物复合制剂及其制备方法和应用
US20070141162A1 (en) Injectable compositions for the controlled delivery of pharmacologically active compound
RU2527327C2 (ru) Лекарственные средства, содержащие фторхинолоны
US20130005714A1 (en) Water-Soluble Meloxicam Granules
ES2319115T3 (es) Preparaciones farmaceuticas para la administracion por via oral que contienen resinas de intercambio ionico cargadas con pradofloxacino asi como agentes gelificantes intrinsecamente viscosos como agentes espesantes.
US20040180092A1 (en) Water-soluble meloxicam granules
US20190247305A1 (en) Oral suspension comprising telmisartan
EP1682144B1 (de) Geschmacksstoffhaltige arzneimittelformulierungen mit verbesserten pharmazeutischen eigenschaften
KR20130080422A (ko) 엔로플록사신의 주사제 및 그의 제조방법
CN105193709B (zh) 一种恩诺沙星注射液及其制备方法
WO2010123337A1 (es) Complejo de enrofloxacina con máximo tiempo de residencia en plasma de mamíferos y aves
TW200808373A (en) Liquid drug formulation
CN116056704A (zh) 吡喹酮制剂
RU2413514C2 (ru) Лечение мастита с помощью энрофлоксацина
CN103536604B (zh) 一种可湿性联磺甲氧苄啶粉及其制备方法
JP2020040978A (ja) サルコイドーシスを処置するための1,3−プロパンジスルホン酸またはその薬学的に許容される塩の使用
CN101199520A (zh) 含丙磺舒的兽用β-内酰胺类抗生素复方制剂
CN104983686A (zh) 畜禽用美洛昔康可溶性粉剂及其制备方法
CN108740356A (zh) 月桂酰精氨酸乙酯衍生物作为饲料添加剂的用途
RU2722272C1 (ru) Средство для лечения и профилактики нематодозов и цестодозов у мелких домашних животных
CN108976151B (zh) 月桂酰精氨酸乙酯衍生物和作为动物用抗菌剂的用途
CA3131336A1 (en) Pregabalin formulations and use thereof
US11970437B1 (en) 8-((4-hydroxynaphthalen-1-yl)diazenyl)naphthalene-1,3-disulfonic acid as an antioxidant compound
CN104288152A (zh) 一种兽用复方硫酸小檗碱注射剂及其制备方法
ES2369138T3 (es) Composiciones para aplicaciones veterinarias y médicas.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.03.12)

122 Ep: pct application non-entry in european phase

Ref document number: 09843719

Country of ref document: EP

Kind code of ref document: A1