[go: up one dir, main page]

WO2010073843A1 - 無線通信システム、基地局、無線通信方法、プログラム - Google Patents

無線通信システム、基地局、無線通信方法、プログラム Download PDF

Info

Publication number
WO2010073843A1
WO2010073843A1 PCT/JP2009/069238 JP2009069238W WO2010073843A1 WO 2010073843 A1 WO2010073843 A1 WO 2010073843A1 JP 2009069238 W JP2009069238 W JP 2009069238W WO 2010073843 A1 WO2010073843 A1 WO 2010073843A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
rate
accommodated
physical rate
controlled
Prior art date
Application number
PCT/JP2009/069238
Other languages
English (en)
French (fr)
Inventor
健生 仁木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to CN200980150202.1A priority Critical patent/CN102246576B/zh
Priority to EP09834647.1A priority patent/EP2362703A4/en
Priority to US13/124,676 priority patent/US8767538B2/en
Publication of WO2010073843A1 publication Critical patent/WO2010073843A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/22Negotiating communication rate

Definitions

  • the present invention relates to a wireless communication system, a base station, a wireless communication method, and a program.
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX System Profile is formulated based on IEEE (Institute of Electrical and Electronic Engineers) 802.16e standard.
  • IEEE Institute of Electrical and Electronic Engineers 802.16e standard.
  • a WiMAX wireless communication system is disclosed in Patent Document 1, for example.
  • a WiMAX wireless communication system data transmission / reception is performed in sub-frame units, an OFDMA (Orthogonal Frequency Multiple Access) method is adopted as a multiple access method, and a TDD (Time Division) method is used as a duplex method. Duplex) method is adopted.
  • OFDMA Orthogonal Frequency Multiple Access
  • TDD Time Division
  • Duplex Duplex
  • the OFDMA system is a subchannel in the frequency direction and a symbol in the time direction, and a band is provided to the terminal MS (Mobile Station) in units of slots representing the divided areas. Is a method of assigning.
  • the TDD system uses the same frequency for DL (Down Link) link and UL (Up Link) link between BS (Base Station) and MS, which are base stations, and DL subframe and UL sub on the time axis. This is a method of switching frames.
  • the WiMAX frame structure is configured such that the DL subframe and the UL subframe can be switched on the time axis (TDD method).
  • TTD method A gap time called TTG (Transmit / Receive Transition Gap) and RTG (Receive / Transmit Transition Gap) exists between the DL subframe and the UL subframe.
  • a band is allocated to the MS in slot units, and data is transmitted using the allocated band (OFDMA scheme).
  • a preamble area including a pilot signal is arranged at the head, and subsequently, a MAP area including a signal indicating which slot is allocated to each MS in the DL subframe and the UL subframe.
  • the subsequent area (DL Burst) is allocated to each MS as a band for transmitting DL data.
  • a ranging area including a ranging signal for executing ranging for adjusting timing, frequency, and power on the MS side is arranged at the head.
  • the area after this (UL Burst) is allocated to each MS as a band for transmitting UL data.
  • the WiMAX wireless communication system supports an adaptive modulation system.
  • the adaptive modulation scheme is a scheme that adaptively changes the modulation scheme and coding rate of DL data and UL data between the BS and the MS in accordance with the MS propagation environment.
  • a data transmission rate is defined according to a combination of a modulation method and a coding rate, and this data transmission rate is called a physical rate.
  • the WiMAX wireless communication system also supports the QoS (Quality of Service) class.
  • QoS Quality of Service
  • WiMAX wireless communication systems have specific QoS classes such as UGS (Unsolicited Grant Service), ERT-VR (Extended Real Time-Variable Rate Service), RT (Real Time) -VR, NRT (Non Real Time) -VR. Bandwidth guarantee is performed for MSs belonging to.
  • the lower diagram shows the positional relationship between the BS and the MS # 1 to MS # 3 belonging to the QoS class requiring bandwidth guarantee
  • the upper diagram shows the positional relationship shown in the lower diagram.
  • DL subframes transmitted from the BS to the MS # 1 to MS # 3 are shown (hereinafter the same in FIG. 3 and FIG. 6).
  • MS # 1 to MS # 3 are located near the BS, that is, near the center of the cell in the initial state (state 1).
  • the MS can transmit data at high physical rate when it is near the center of the cell. Therefore, in state 1, the BS uses, for example, a high physical rate 16QAM (Quadrature Amplitude Modulation) 3/4 (the first half is the modulation method) as a combination of the modulation methods and coding rates of MS # 1 to MS # 3. The latter half indicates the coding rate, and the same applies hereinafter.
  • 16QAM Quadrature Amplitude Modulation
  • an area to which 16QAM 3/4 is applied is referred to as a 16QAM area.
  • the number of slots required for bandwidth guarantee varies depending on the physical rate, and a larger number of slots is required at a low physical rate.
  • the number of slots required for bandwidth guarantee of MS # 1 to MS # 3 is small. Therefore, the BS can accommodate all of MS # 1 to MS # 3, and the bandwidth of the DL subframe is increased.
  • MS # 1 leaves the 16QAM area and moves in the cell edge direction (state 2).
  • the BS applies, for example, QPSK (Quadrature Phase Shift Keying) 1/2 of a low physical rate as a combination of the modulation method and coding rate of MS # 1 by adaptive modulation.
  • QPSK Quadrature Phase Shift Keying
  • an area to which QPSK 1/2 is applied is referred to as a QPSK area.
  • QPSK 1/2 applied to MS # 1 is a low physical rate, the number of slots necessary for bandwidth guarantee of MS # 1 increases.
  • MS # 2 has moved from the 16QAM area to the QPSK area (state 3).
  • the BS applies QPSK 1/2 with a low physical rate as a combination of the modulation scheme of MS # 2 and the coding rate by adaptive modulation.
  • state 2 since there is not enough bandwidth in the DL subframe, in state 3, the BS cannot allocate a band corresponding to the physical rate of QPSK 1/2 to MS # 2, and MS # 2 The physical rate will decrease. Further, since there is no slot to be assigned to MS # 3, it is not possible to assign a slot until the next subframe.
  • Admission Control refers to admission control for adaptive modulation.
  • MSs belonging to a QoS class that requires band guarantee among MSs that perform adaptive modulation are controlled, and the MSs to be controlled are controlled.
  • MS # 1 to MS # 3 are located in the 16QAM area in the initial state (state 1), as in FIG. At this time, bands are allocated to MS # 1 to MS # 3, as in FIG. 2, and there is a lot of available bandwidth.
  • MS # 1 has moved from the 16QAM area to the QPSK area (state 2).
  • the BS executes Admission Control for MS # 1, and when adaptive modulation is performed with QPSK 1/2 for MS # 1 in Admission Control, it corresponds to the physical rate of QPSK 1/2. It is determined whether or not the bandwidth can be assigned to MS # 1. At this time, in state 1, since there is a lot of bandwidth in the DL subframe, the BS determines that bandwidth can be allocated for MS # 1 and can be accommodated in its own station. Therefore, the BS accommodates all the MS # 1 to MS # 3 even in the state 2. However, since MS # 1 occupies the bandwidth, the DL subframe bandwidth is reduced.
  • MS # 2 has moved from the 16QAM area to the QPSK area (state 3).
  • the BS executes the Admission Control for MS # 2 as in the case of MS # 1.
  • state 2 since the bandwidth of the DL subframe is small, the BS determines that it is impossible to allocate the bandwidth to MS # 2.
  • MS # 2 which cannot use an appropriate physical rate, frequently encounters communication errors and falls off the BS entry. In this case, MS # 2 is unfair because it has the same priority as MS # 1.
  • the BS when executing Admission Control, the BS is premised on operating at QPSK 1/2 with the lowest physical rate for all MSs.
  • an object of the present invention is to provide a wireless communication system, a base station, a wireless communication method, and a program that solve the above-described problems.
  • the wireless communication system of the present invention includes: The adaptive modulation is performed on a terminal to be controlled and belonging to a QoS (Quality of Service) class that requires bandwidth guarantee among terminals that perform adaptive modulation that adaptively changes a combination of a modulation scheme and a coding rate.
  • QoS Quality of Service
  • a base station that executes control to determine whether or not it can be accommodated in the own station when executed, The base station For each combination, the allowable throughput of each terminal when a predetermined number of terminals are accommodated in its own station is calculated in advance, and for the terminal to be controlled, the minimum guaranteed rate of the terminal is compared with the allowable throughput, A determination unit that determines a minimum physical rate for performing bandwidth guarantee based on the comparison result; A control unit that executes the control on the premise that adaptive modulation is performed at the lowest physical rate determined by the determination unit for the terminal to be controlled.
  • the base station of the present invention Among the terminals that perform adaptive modulation that adaptively changes the combination of modulation scheme and coding rate, the terminal to be controlled that belongs to the QoS class that requires band guarantee is accommodated in its own station when the adaptive modulation is performed.
  • a base station that executes control for determining whether or not it is possible, For each combination, the allowable throughput of each terminal when a predetermined number of terminals are accommodated in its own station is calculated in advance, and for the terminal to be controlled, the minimum guaranteed rate of the terminal is compared with the allowable throughput, A determination unit that determines a minimum physical rate for performing bandwidth guarantee based on the comparison result; A control unit that executes the control on the premise that adaptive modulation is performed at the lowest physical rate determined by the determination unit for the terminal to be controlled.
  • the wireless communication method of the present invention includes: Among the terminals that perform adaptive modulation that adaptively changes the combination of modulation scheme and coding rate, the terminal to be controlled that belongs to the QoS class that requires band guarantee is accommodated in its own station when the adaptive modulation is performed.
  • a wireless communication method by a base station that executes control to determine whether or not possible, For each combination, the allowable throughput of each terminal when a predetermined number of terminals are accommodated in its own station is calculated in advance, and for the terminal to be controlled, the minimum guaranteed rate of the terminal is compared with the allowable throughput, A determination step for determining a minimum physical rate for performing bandwidth guarantee based on the comparison result; A control step of executing the control on the premise that adaptive modulation is executed at the determined minimum physical rate for the terminal to be controlled.
  • the program of the present invention Among the terminals that perform adaptive modulation that adaptively changes the combination of modulation scheme and coding rate, the terminal to be controlled that belongs to the QoS class that requires band guarantee is accommodated in its own station when the adaptive modulation is performed.
  • the base station that executes control to determine whether or not it is possible For each combination, the allowable throughput of each terminal when a predetermined number of terminals are accommodated in its own station is calculated in advance, and for the terminal to be controlled, the minimum guaranteed rate of the terminal is compared with the allowable throughput, A determination procedure for determining a minimum physical rate for performing bandwidth guarantee based on the comparison result; A control procedure for executing the control on the premise that adaptive modulation is executed at the determined minimum physical rate for the terminal to be controlled.
  • the minimum guaranteed rate of the control target terminal in the control for determining whether or not the control target terminal belonging to the QoS class requiring bandwidth guarantee can be accommodated in the own station when adaptive modulation is performed. It is assumed that the system is operated at the minimum physical rate according to the system.
  • the terminal to be controlled is guaranteed a band corresponding to the minimum physical rate based on the minimum guaranteed rate and can allow a service based on the minimum physical rate.
  • control is performed even when a terminal requiring a high physical rate is accommodated or when the above control is executed. An effect is obtained that it is possible to avoid that the target terminal occupies the band.
  • FIG. 5 is a diagram illustrating an example of adaptive modulation operation in the wireless communication system illustrated in FIG. 4.
  • FIG. 5 is a diagram illustrating an example of a minimum physical rate determination method in a minimum physical rate determination unit illustrated in FIG. 4.
  • the wireless communication system is a WiMAX wireless communication system
  • the present invention is not limited to this.
  • the wireless communication system of the present embodiment includes a BS as a base station and MSs # 1 to # 3 as terminals.
  • the number of BSs and MSs is one and three for simplification of explanation, but the present invention is not limited to this. Further, it is assumed that the MSs # 1 to # 3 are terminals belonging to a QoS class that requires bandwidth guarantee.
  • the BS has a wireless communication unit 11 and a base station operation unit 12.
  • the wireless communication unit 11 performs wireless communication with the MSs # 1 to # 3.
  • the base station operation unit 12 includes a minimum physical rate determination unit 13 and an admission control unit 14 serving as a control unit.
  • the lowest physical rate determination unit 13 determines the lowest physical rate, which is the lowest physical rate for performing bandwidth guarantee, for each of the MSs # 1 to # 3. A method for determining the minimum physical rate will be described later.
  • the Admission Control unit 14 executes adaptive modulation at the lowest physical rate determined by the lowest physical rate determination unit 13 for the control target MS belonging to the QoS requiring bandwidth guarantee among the MSs that perform adaptive modulation. If it is assumed, Admission Control is executed to determine whether the mobile station can be accommodated.
  • the Admission Control unit 14 determines that the control target MS can be accommodated in the own station if it can allocate a band according to the minimum physical rate determined by the minimum physical rate determination unit 13.
  • the base station operation unit 12 has means equivalent to a BS generally used in a WiMAX wireless communication system.
  • a BS generally used in a WiMAX wireless communication system.
  • such means are not an essential part of the present invention, and since well-known means can be used, detailed description thereof is omitted.
  • MS # 1 has a wireless communication unit 21 and a terminal operation unit 22. Although not shown, MS # 2 and # 3 also have the same means as MS # 1.
  • the wireless communication unit 21 performs wireless communication with the BS.
  • the terminal operation unit 22 has means equivalent to an MS generally used in a WiMAX wireless communication system.
  • such means are not an essential part of the present invention, and since well-known means can be used, detailed description thereof is omitted.
  • the BS performs network entry processing for entering MS # 1 into an ASN (Access Service Network) and CSN (Connectivity Service Network) (not shown) with MS # 1 (step S201).
  • ASN Access Service Network
  • CSN Connectionivity Service Network
  • the BS provides MS # 1 with information on additional information (eg, the minimum guaranteed traffic rate of MS # 1) that is required when providing services to MS # 1. Etc.), a DSA (Dynamic Service Addition) -REQ (Request) message is transmitted (step S202).
  • additional information eg, the minimum guaranteed traffic rate of MS # 1
  • DSA Dynamic Service Addition
  • REQ Request
  • MS # 1 transmits a DSA-RSP (Response) message to the BS as a response to the DSA-REQ message (step S203).
  • DSA-RSP Response
  • the MSA adds the additional information to be changed to the DSA-RSP message and sends it back to the BS.
  • the DSA-RSP Only the message body is returned to the BS.
  • the BS transmits a DSA-ACK (Acknowledgement) message to the effect that the reception of the DSA-RSP message is completed to MS # 1 (step S204).
  • DSA-ACK Acknowledgement
  • MS # 1 to MS # 3 are located in the 16QAM area in the initial state (state 1).
  • the BS has already completed the above-described service flow generation process with each MS # 1 to MS # 3.
  • the minimum physical rate determination unit 13 of the BS allows permissible throughput that represents the throughput that can be secured in each MS when the number of MSs accommodated in the BS is accommodated in advance for each combination of modulation scheme and coding rate. For each of the MSs # 1 to # 3, when the service flow generation process is completed, the allowable throughput and the minimum guaranteed rate are compared, and the minimum physical rate is determined based on the comparison result.
  • the minimum physical rate is determined under the following conditions.
  • the minimum physical rate determination unit 13 obtains the upper limit number of slots per MS when 4 BSs are accommodated in the BS.
  • the number of usable slots is 390, so the upper limit is 97 slots.
  • the upper limit is 43 slots.
  • the minimum physical rate determination unit 13 calculates the allowable throughput when 4 assumed MSs are accommodated in the BS for each combination of modulation scheme and coding rate.
  • the allowable throughput is calculated for each of DL and UL according to the following formula (1).
  • “8” is a coefficient for converting bytes into bits.
  • the minimum physical rate determination unit 13 compares the allowable throughput of each combination with the minimum guaranteed rate for each of DL and UL, and determines the minimum physical rate based on the comparison result.
  • the minimum guaranteed rate is 1 Mbps.
  • the minimum allowable throughput that satisfies this minimum guaranteed rate is the allowable throughput of QPSK 3/4. Therefore, the minimum physical rate of DL is determined to be a physical rate of QPSK 3/4.
  • the minimum guaranteed rate is 500 kbps, and the minimum allowable throughput that satisfies this minimum guaranteed rate is the allowable throughput of QPSK 3/4. Therefore, the minimum physical rate of UL is also determined to be a physical rate of QPSK 3/4.
  • the minimum physical rate determination unit 13 may monitor the number of MSs actually accommodated in the BS and determine the assumed accommodation number based on the monitoring result. For example, it is conceivable to monitor the number of MSs regularly and determine the average number of units in a certain period as the assumed number of units.
  • the bandwidth required when the Admission Control is generated can be estimated in advance by using the minimum physical rate determined by the minimum physical rate determination unit 13, as shown in FIG. become that way.
  • the Admission Control unit 14 of the BS executes the Admission Control on the premise that adaptive modulation is performed at the lowest physical rate determined by the lowest physical rate determining unit 13 for the MS # 1.
  • the minimum physical rate assumed at this time is not a uniform physical rate of QPSK 1/2, but a minimum physical rate corresponding to the minimum guaranteed rate of MS # 1. Therefore, MS # 1 is guaranteed a band according to the minimum physical rate, and can accept a service based on the minimum physical rate.
  • the minimum physical rate is higher than the physical rate of QPSK 1/2, the number of slots required for guaranteeing the bandwidth of MS # 1 does not increase compared to the number of slots in the case of QPSK 1/2. Therefore, even if adaptive modulation is performed on MS # 1, MS # 1 can be accommodated, and it is avoided that MS # 1 occupies a band.
  • MS # 2 has moved from the 16QAM area to the QPSK area (state 3).
  • the Admission Control unit 14 of the BS executes the Admission Control on the premise that adaptive modulation is performed at the lowest physical rate determined by the lowest physical rate determining unit 13 for MS # 2.
  • the minimum physical rate assumed at this time is not uniformly the physical rate of QPSK 1/2, but the minimum physical rate corresponding to the minimum guaranteed rate of MS # 2. Become. Therefore, MS # 2 is guaranteed a band according to the minimum physical rate, and can accept a service based on the minimum physical rate.
  • MS # 1 does not occupy the band. Therefore, even if adaptive modulation is performed on MS # 2, MS # 2 can be accommodated, and unfairness does not occur between MS # 1 and MS # 2. Further, since it is avoided that MS # 1 and MS # 2 occupy a band, it is possible to allocate a band to MS # 3.
  • the BS calculates the allowable throughput of each MS when the BS accommodates the assumed number of MSs, and controls the Admission Control.
  • the minimum physical rate is determined based on a comparison result between the minimum guaranteed rate of the MS and the allowable throughput, and the Admission Control is executed on the assumption that adaptive modulation is performed at the determined minimum physical rate.
  • the minimum physical rate assumed in the Admission Control is not uniformly a physical rate of QPSK 1/2, but a minimum physical rate corresponding to the minimum guaranteed rate of the MS to be controlled. Therefore, the control target MS is guaranteed a band according to the minimum physical rate, and can allow a service based on the minimum physical rate.
  • the control target MS can be prevented from occupying a band.
  • the band is compressed and adaptive modulation is not performed. It is possible to reduce the possibility that unfairness such as failure to enter and entry will occur. Further, since an extra bandwidth is generated, the extra bandwidth can be assigned to an MS belonging to a QoS class such as BE (Best Effort Service) that does not require bandwidth guarantee.
  • BE Best Effort Service
  • the method performed in the BS of the present invention may be applied to a program for causing a computer to execute.
  • the program can be stored in a storage medium and can be provided to the outside via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

 本発明の基地局は、変調方式および符号化率の組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、制御対象の端末について、当該端末の最低保証レートを許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定部と、制御対象の端末について、決定部で決定された最低の物理レートで適応変調を実行することを前提として上記制御を実行する制御部と、を有する。

Description

無線通信システム、基地局、無線通信方法、プログラム
 本発明は、無線通信システム、基地局、無線通信方法、プログラムに関する。
 WiMAX(Worldwide Interoperability for Microwave Access) Forumでは、IEEE(Institute of Electrical and Electronic Engineers)802.16e標準を基に、WiMAX System Profileが策定されている。WiMAXの無線通信システムは、例えば、特許文献1に開示されている。
 WiMAXの無線通信システムでは、データの送受信がサブフレーム(Sub-frame)単位で行われ、多元接続方式にOFDMA(Orthogonal Frequency Division Multiple Access)方式が採用され、また、複信方式にTDD(Time Division Duplex)方式が採用されている。
 OFDMA方式とは、周波数方向をサブチャネル(subchannel)で、時間方向をシンボル(symbol)でそれぞれ区切り、この区切られた領域を表すスロット(Slot)単位で、端末であるMS(Mobile Station)に帯域を割り当てる方式である。
 TDD方式とは、基地局であるBS(Base Station)とMSとの間のDL(Down Link)リンクおよびUL(Up Link)リンクに同一の周波数を用いて、時間軸でDLサブフレームおよびULサブフレームを切り替える方式である。
 ここで、WiMAXの無線通信システムにおけるフレーム構造の概略について、図1を参照して説明する。
 図1を参照すると、WiMAXのフレーム構造は、時間軸でDLサブフレームおよびULサブフレームが切り替えられる構造になっている(TDD方式)。なお、DLサブフレームとULサブフレームとの間には、TTG(Transmit/Receive Transition Gap)およびRTG(Receive/Transmit Transition Gap)と呼ばれるギャップ時間が存在する。
 DLサブフレームおよびULサブフレームでは、帯域をスロット単位でMSに割り当て、その割り当てた帯域を用いてデータが送信される(OFDMA方式)。
 DLサブフレームは、先頭に、Pilot信号を含むPreamble領域が配置され、続いて、DLサブフレームおよびULサブフレームにおいて各MSにどのスロットを割り当てたかを示す信号を含むMAP領域等が配置される。これ以降の領域(DL Burst)がDLデータを送信するための帯域として各MSに割り当てられる。
 一方、ULサブフレームは、先頭に、MS側でタイミング、周波数、パワーを調整するRangingを実行するためのRanging信号を含むRanging領域等が配置される。これ以降の領域(UL Burst)がULデータを送信するための帯域として各MSに割り当てられる。
 また、WiMAXの無線通信システムは、適応変調方式に対応している。適応変調方式とは、MSの伝搬環境に応じて、BSとMS間のDLデータおよびULデータの変調方式および符号化率を適応的に変更する方式である。また、WiMAXでは、変調方式および符号化率の組み合わせに応じたデータ伝送速度が規定されており、このデータ伝送速度は物理レートと称されている。
 また、WiMAXの無線通信システムは、QoS(Quality of Service)クラスにも対応している。すなわち、WiMAXの無線通信システムでは、UGS(Unsolicited Grant Service)、ERT-VR(Extended Real Time-Variable Rate Service)、RT(Real Time)-VR、NRT(Non Real Time)-VRといった特定のQoSクラスに属するMSに対して帯域保証を行う。
 ここで、WiMAXの無線通信システムにおいて、帯域保証が必要となるQoSクラスに属するMSに対する適応変調動作について、図2を参照して説明する。
 なお、図2において、下図は、BSと、帯域保証が必要となるQoSクラスに属するMS#1~MS#3との位置関係を示し、また、上図は、下図の位置関係にある状態で、BSからMS#1~MS#3へ送信されるDLサブフレームを示している(以下、図3および図6において同じ)。
 図2を参照すると、MS#1~MS#3は、初期状態では、BSの近く、すなわちセルの中心近くに位置しているとする(状態1)。
 MSは、セルの中心近くにいる時に、高物理レートでデータの伝送を行うことができる。そのため、状態1では、BSは、MS#1~MS#3の変調方式および符号化率の組み合わせとして、例えば、高物理レートの16QAM(Quadrature Amplitude Modulation) 3/4(前半部分が変調方式を、後半部分が符号化率を示す。以下、同じ)を適用する。以下、16QAM 3/4が適用されるエリアを16QAMエリアと称する。
 また、帯域保証に必要となるスロット数は、物理レートに応じて異なり、低物理レートの時に、より多くのスロット数が必要となる。状態1では、MS#1~MS#3に適用する16QAM 3/4が高物理レートであるため、MS#1~MS#3の帯域保証に必要となるスロット数は少ない。そのため、BSは、MS#1~MS#3を全て収容可能であり、また、DLサブフレームの帯域の空きは多くなっている。
 続いて、MS#1が、16QAMエリアを出て、セルのエッジ方向に向けて移動したとする(状態2)。
 すると、BSは、適応変調により、MS#1の変調方式および符号化率の組み合わせとして、例えば、低物理レートのQPSK(Quadrature Phase Shift Keying) 1/2を適用する。以下、QPSK 1/2が適用されるエリアをQPSKエリアと称する。また、MS#1に適用するQPSK 1/2は低物理レートであるため、MS#1の帯域保証に必要となるスロット数は増える。
 ただし、状態1では、DLサブフレームに帯域の空きが多いため、状態2で、MS#1の帯域保証に必要となるスロット数が増えてもなお、BSは、MS#1~MS#3を全て収容可能である。しかし、MS#1が帯域を占有するため、DLサブフレームの帯域の空きは少なくなる。
 続いて、MS#2が、16QAMエリアからQPSKエリアに移動したとする(状態3)。
 すると、BSは、適応変調により、MS#2の変調方式および符号化率の組み合わせとして低物理レートのQPSK 1/2を適用する。
 しかし、状態2では、DLサブフレームに帯域の空きが少ないため、状態3で、BSは、QPSK 1/2の物理レートに応じた帯域をMS#2に割り当てることができず、MS#2の物理レートが低下してしまう。また、MS#3に対しては、割り当てるスロットがないため、次のサブフレームまでスロットを割り当てることができない。
 そこで、WiMAXの無線通信システムでは、上述した問題を回避すべく、BSにおいて、Admission Controlと称される制御を行うことが可能である。ここでいうAdmission Controlとは、適応変調に対する受付制御のことであり、BSにおいて、適応変調を実行するMSのうち帯域保証が必要となるQoSクラスに属するMSを制御対象とし、その制御対象のMSについて、適応変調を実行した場合に自局に収容可能か否かを判定する制御をいう。判定の結果、収容不可能と判断されたMSに対しては、BSは物理レートの変更を実施しない。
 ここで、WiMAXの無線通信システムにおいて、帯域保証が必要となるQoSクラスに属するMSに対する、Admission Controlを伴う適応変調動作について、図3を参照して説明する。なお、図3において、下図の位置関係は図2と同様である。
 図3を参照すると、MS#1~MS#3は、図2と同様に、初期状態では、16QAMエリアに位置しているとする(状態1)。このとき、MS#1~MS#3に対しては、図2と同様に、帯域が割り当てられており、帯域の空きは多くなっている。
 続いて、MS#1が、16QAMエリアからQPSKエリアに移動したとする(状態2)。
 すると、BSは、MS#1に対してAdmission Controlを実行し、Admission Controlにおいて、MS#1に対してQPSK 1/2で適応変調を実行した場合に、QPSK 1/2の物理レートに応じた帯域をMS#1に割り当て可能であるか否かを判定する。このとき、状態1では、DLサブフレームに帯域の空きが多いため、BSは、MS#1について、帯域の割り当て可能で、自局に収容可能と判定する。よって、BSは、状態2でも、MS#1~MS#3を全て収容する。しかし、MS#1が帯域を占有するため、DLサブフレームの帯域の空きは少なくなる。
 続いて、MS#2が、16QAMエリアからQPSKエリアに移動したとする(状態3)。
 すると、BSは、MS#1の場合と同様に、MS#2に対してAdmission Controlを実行する。しかし、状態2では、DLサブフレームの帯域の空きが少ないため、BSは、MS#2への帯域の割り当てが不可能と判定する。これにより、適切な物理レートを使用できなくなったMS#2は、通信エラーが多発し、BSのエントリから外れてしまう。この場合、MS#2は、MS#1と優先度が同じであるので、不公平である。
特開2007-266719号公報
 上述したように、WiMAXの無線通信システムにおいて、Admission Controlを実行する場合、BSは、全てのMSについて一律に物理レートが最低のQPSK 1/2で運用することを前提としていた。
 したがって、あるMSがセルのエッジに位置する場合、物理レートが最低のQPSK 1/2に応じた帯域を保証することは可能であるものの、その反面、QPSK 1/2よりも大きな物理レートを前提としたサービスが許容できなくなってしまうという課題がある。
 また、物理レートが最低のQPSK 1/2での運用を前提とするため、高い物理レートを必要とするMSを収容した場合、Admission Controlを実行した場合においても、残りのMSは、帯域が圧迫され、適応変調ができなくなり、エントリから外れる等の不公平さが生じることがあるという課題がある。
 そこで、本発明の目的は、上述した課題を解決する無線通信システム、基地局、無線通信方法、プログラムを提供することにある。
 本発明の無線通信システムは、
 端末と、変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoS(Quality of Service)クラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局と、を有してなる無線通信システムであって、
 前記基地局は、
 前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定部と、
 前記制御対象の端末について、前記決定部で決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する。
 本発明の基地局は、
 変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局であって、
 前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定部と、
 前記制御対象の端末について、前記決定部で決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する。
 本発明の無線通信方法は、
 変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局による無線通信方法であって、
 前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定ステップと、
 前記制御対象の端末について、前記決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御ステップと、を有する。
 本発明のプログラムは、
 変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局に、
 前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定手順と、
 前記制御対象の端末について、前記決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御手順と、を実行させる。
 本発明においては、帯域保証が必要となるQoSクラスに属する制御対象の端末について、適応変調を実行した場合に自局に収容可能か否かを判定する制御において、制御対象の端末の最低保証レートに応じた最低限の物理レートで運用することを前提としている。
 そのため、制御対象の端末は、最低保障レートに基づく最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができるという効果が得られる。
 また、制御対象の端末の最低保証レートに応じた最低限の物理レートでの運用を前提とするため、高い物理レートを必要とする端末を収容した場合、上記制御を実行した場合においても、制御対象の端末が帯域を占有することを回避することができるという効果が得られる。
WiMAXのフレーム構造を説明する図である。 関連する無線通信システムにおける適応変調動作の一例を説明する図である。 関連する無線通信システムにおける適応変調動作の他の例を説明する図である。 本発明の一実施形態の無線通信システムの構成を示すブロック図である。 図4に示した無線通信システムにおける、ネットワークエントリ処理からサービスフロー生成処理までの動作の一例を説明するフローチャートである。 図4に示した無線通信システムにおける適応変調動作の一例を説明する図である。 図4に示した最低物理レート決定部における最低物理レートの決定方法の一例を説明する図である。
 以下に、本発明を実施するための最良の形態について図面を参照して説明する。
 なお、以下の実施形態では、無線通信システムが、WiMAXの無線通信システムである場合を例に挙げて説明するが、本発明はこれに限定されない。
 図4に示すように、本実施形態の無線通信システムは、基地局であるBSと、端末であるMS#1~#3と、を有している。なお、図4においては、説明を簡単にするため、BSとMSの台数を、それぞれ1台と3台としたが、本発明はこれに限定されない。また、MS#1~#3は、帯域保証が必要となるQoSクラスに属する端末であるとする。
 BSは、無線通信部11と、基地局動作部12と、を有している。
 無線通信部11は、MS#1~#3との間で無線通信を行う。
 基地局動作部12は、最低物理レート決定部13と、制御部となるAdmission Control部14と、を有している。
 最低物理レート決定部13は、MS#1~#3ごとに、帯域保証を行う最低の物理レートである最低物理レートを決定する。なお、最低物理レートの決定方法は後述する。
 Admission Control部14は、適応変調を実行するMSのうち帯域保証が必要となるQoSに属する制御対象のMSについて、最低物理レート決定部13で決定された最低物理レートで適応変調を実行することを前提とした場合に、自局に収容可能か否かを判定するAdmission Controlを実行する。
 具体的には、Admission Control部14は、制御対象のMSについて、最低物理レート決定部13で決定された最低物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する。
 その他にも、基地局動作部12は、図示していないが、WiMAXの無線通信システムにおいて一般的に用いられているBSと同等の手段を有している。例えば、MS#1~#3との間でネットワークエントリ処理を実行する手段や、MS#1~#3との間でサービスフロー(Service Flow)を生成する手段等である。ただし、こうした手段は、本発明の本質的部分ではなく、また、周知の手段を利用できるので、詳細な説明を省略する。
 MS#1は、無線通信部21と、端末動作部22と、を有している。図示していないが、MS#2,#3も、MS#1と同様の手段を有している。
 無線通信部21は、BSとの間で無線通信を行う。
 端末動作部22は、図示していないが、WiMAXの無線通信システムにおいて一般的に用いられているMSと同等の手段を有している。例えば、BSとの間でネットワークエントリ処理を実行する手段や、BSとの間でサービスフローを生成する手段等である。ただし、こうした手段は、本発明の本質的部分ではなく、また、周知の手段を利用できるので、詳細な説明を省略する。
 以下、本実施形態の無線通信システムの動作について説明する。
 [サービスフローを生成するまでの動作]
 最初に、BSとMS#1~#3との間でサービスフローを生成するまでの動作について、図5を参照して説明する。ここでは、BSとMS#1との間でサービスフローを生成する場合を例に挙げる。
 まず、BSは、MS#1との間で、MS#1を不図示のASN(Access Service Network)およびCSN(Connectivity Service Network)へエントリさせるためのネットワークエントリ処理を行う(ステップS201)。
 ネットワークエントリ処理が完了すると、サービスフロー生成処理に移行する。
 サービスフロー生成処理においては、まず、BSは、MS#1に対し、MS#1へのサービス提供時に必要となる付加情報(例えば、MS#1の最低保証レート(Minimum reserved traffic rate))の情報等)を含むDSA(Dynamic Service Addition)-REQ(Request)メッセージを送信する(ステップS202)。
 これを受けて、MS#1は、BSに対し、DSA-REQメッセージに対する応答として、DSA-RSP(Response)メッセージを送信する(ステップS203)。なお、MS#1は、BSから指定された付加情報を変更したい場合には、変更する付加情報をDSA-RSPメッセージに含めてBSに返信し、付加情報を変更しない場合には、DSA-RSPメッセージ本体のみをBSに返信する。
 その後、BSは、MS#1に対し、DSA-RSPメッセージの受信が完了した旨のDSA-ACK(Acknowledgement)メッセージを送信する(ステップS204)。
 以上で、サービスフロー生成処理が完了する。
 [Admission Controlを伴う適応変調動作]
 次に、Admission Controlを伴う適応変調動作について、図6を参照して説明する。なお、図6において、下図の位置関係は図2および図3と同様である。
 図6を参照すると、MS#1~MS#3は、初期状態では、16QAMエリアに位置しているとする(状態1)。
 このとき、BSは、各MS#1~MS#3との間で上述のサービスフロー生成処理がすでに完了している。
 そこで、BSの最低物理レート決定部13は、事前に、変調方式および符号化率の組み合わせごとに、BSに想定する収容台数だけMSを収容した場合に各MSで確保可能なスループットを表す許容スループットを算出しておき、各MS#1~#3について、サービスフロー生成処理が完了した時点で、許容スループットと最低保証レートとを比較し、その比較結果に基づいて最低物理レートを決定する。
 ここで、最低物理レートの決定方法について、図7を参照して詳細に説明する。
 ここでは、以下の条件で、最低物理レートを決定するものとする。
 (条件)
・無線通信システムで使用する周波数帯域=10MHz
・MSの想定収容台数=4台
・DLサブフレームとULサブフレームのシンボル比であるDL:UL比=29:18
・制御対象のMSに提供するDLの最低保証レート=1Mbps
・制御対象のMSに提供するULの最低保証レート=500kbps
 まず、最低物理レート決定部13は、DLサブフレームおよびULサブフレーム中の使用可能なスロット数を求める。
 ここでは、DLサブフレームのうち13シンボル×30サブチャネル分の390スロット、ULサブフレームのうち5シンボル×35サブチャネル分の175スロットが、MSへの帯域割り当てに使用可能であるものとする。
 次に、最低物理レート決定部13は、BSに想定収容台数4台のMSを収容した場合のMS1台あたりの上限のスロット数を求める。
 ここでは、DLサブフレームの場合、使用可能なスロット数は390であるので、上限は97スロットとなる。また、ULサブフレームの場合、使用可能なスロット数は175であるので、上限は43スロットとなる。
 次に、最低物理レート決定部13は、変調方式および符号化率の組み合わせごとに、BSに想定収容台数4台のMSを収容した場合の許容スループットを算出する。
 ここでは、各組み合わせで1スロットに割り当て可能なバイト数=A、BSとMS間で1sあたりに送信されるフレーム数=200とし、さらに上記で求めたMS1台あたりの上限のスロット数を用い、次の数式(1)により、DLおよびULのそれぞれについて許容スループットを算出する。ここで、“8”はバイトをビットに換算するための係数である。
 (MS1台あたりの上限のスロット数)×A×200×8・・・(1)
 その後、最低物理レート決定部13は、DLおよびULのそれぞれについて、各組み合わせの許容スループットと最低保証レートとを比較し、その比較結果に基づいて最低物理レートを決定する。
 ここでは、DLの場合、最低保証レートは1Mbpsである。この最低保証レートを満たす最低の許容スループットは、QPSK 3/4の許容スループットとなる。よって、DLの最低物理レートは、QPSK 3/4の物理レートに決定される。同様に、ULの場合、最低保証レートは500kbpsであり、この最低保証レートを満たす最低の許容スループットは、QPSK 3/4の許容スループットとなる。よって、ULの最低物理レートも、QPSK 3/4の物理レートに決定される。
 なお、最低物理レート決定部13は、BSに実際に収容されているMSの台数をモニタし、そのモニタ結果を基に想定収容台数を決定してもよい。例えば、MSの台数を定期的にモニタし、一定期間における平均台数を想定収容台数に決定することが考えられる。
 したがって、各MS#1~MS#3について、Admission Controlが発生した場合に必要となる帯域は、最低物理レート決定部13で決定された最低物理レートを用いることで予め見積もることができ、図6のようになる。
 再度図6を参照すると、続いて、MS#1が、16QAMエリアからQPSKエリアに移動したとする(状態2)。
 すると、BSのAdmission Control部14は、MS#1について、最低物理レート決定部13で決定された最低物理レートで適応変調を実行することを前提として、Admission Controlを実行する。
 このときに前提とする最低物理レートは、一律にQPSK 1/2の物理レートとはならず、MS#1の最低保証レートに応じた最低限の物理レートになる。そのため、MS#1は、最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができる。
 また、その最低物理レートがQPSK 1/2の物理レートよりも高ければ、MS#1の帯域保証に必要となるスロット数は、QPSK 1/2の場合のスロット数と比較して多くはならない。よって、MS#1に対する適応変調を行っても、MS#1を収容可能であり、また、MS#1が帯域を占有することは回避される。
 続いて、MS#2が、16QAMエリアからQPSKエリアに移動したとする(状態3)。
 すると、BSのAdmission Control部14は、MS#2について、最低物理レート決定部13で決定された最低物理レートで適応変調を実行することを前提として、Admission Controlを実行する。
 このときに前提とする最低物理レートも、MS#1の場合と同様に、一律にQPSK 1/2の物理レートとはならず、MS#2の最低保証レートに応じた最低限の物理レートになる。そのため、MS#2は、最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができる。
 また、その最低物理レートがQPSK 1/2の物理レートよりも高ければ、MS#1の場合と同様に、MS#2の帯域保証に必要となるスロット数は、QPSK 1/2の場合のスロット数と比較して多くはならない。また、状態2ではMS#1が帯域を占有していない。よって、MS#2に対する適応変調を行っても、MS#2を収容可能であり、MS#1とMS#2との間に不公平さは生じない。また、MS#1およびMS#2が帯域を占有することが回避されるため、MS#3にも帯域を割り当てることができる。
 上述したように本実施形態においては、BSは、変調方式および符号化率の組み合わせごとに、BSに想定収容台数のMSを収容した場合の各MSの許容スループットを予め算出し、Admission Controlの制御対象のMSについて、そのMSの最低保証レートと許容スループットとの比較結果に基づいて最低物理レートを決定し、決定した最低物理レートで適応変調を実行することを前提としてAdmission Controlを実行する。
 このように、Admission Controlにおいて前提とする最低物理レートは、一律にQPSK 1/2の物理レートとはならず、制御対象のMSの最低保証レートに応じた最低限の物理レートになる。そのため、制御対象のMSは、最低物理レートに応じた帯域が保証され、その最低物理レートを前提としたサービスを許容することができる。
 また、その最低物理レートがQPSK 1/2の物理レートよりも高ければ、制御対象のMSの帯域保証に必要となるスロット数は、QPSK 1/2の場合のスロット数と比較して多くはならない。よって、制御対象のMSに対する適応変調を行っても、制御対象のMSが帯域を占有することを回避することができる。
 また、制御対象のMSによる帯域の占有を回避できるため、高い物理レートを必要とするMSを収容した場合、Admission Controlを実行した場合においても、残りのMSが、帯域が圧迫され、適応変調ができなくなり、エントリから外れる等の不公平さが生じる可能性を低減できる。また、余剰な帯域が生じるため、その余剰な帯域を、帯域保証を必要としないBE(Best Effort Service)等のQoSクラスに属するMSに割り当てることもできる。
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解し得る様々な変更をすることができる。
 例えば、本発明のBSにて行われる方法は、コンピュータに実行させるためのプログラムに適用してもよい。また、そのプログラムを記憶媒体に格納することも可能であり、ネットワークを介して外部に提供することも可能である。
 本出願は、2008年12月22日に出願された日本出願特願2008-325449を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (16)

  1.  端末と、変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoS(Quality of Service)クラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局と、を有してなる無線通信システムであって、
     前記基地局は、
     前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定部と、
     前記制御対象の端末について、前記決定部で決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する無線通信システム。
  2.  前記決定部は、前記組み合わせのうち、前記最低保証レートを満たす最低の許容スループットとなる組み合わせを特定し、特定した組み合わせの物理レートを前記最低の物理レートに決定する、請求項1に記載の無線通信システム。
  3.  前記制御部は、前記制御対象の端末について、前記決定部で決定された最低の物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項1または2に記載の無線通信システム。
  4.  前記決定部は、自局に実際に収容されている端末の台数をモニタし、該モニタ結果を基に前記所定の収容台数を決定する、請求項1から3のいずれか1項に記載の無線通信システム。
  5.  変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局であって、
     前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定部と、
     前記制御対象の端末について、前記決定部で決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御部と、を有する基地局。
  6.  前記決定部は、前記組み合わせのうち、前記最低保証レートを満たす最低の許容スループットとなる組み合わせを特定し、特定した組み合わせの物理レートを前記最低の物理レートに決定する、請求項5に記載の基地局。
  7.  前記制御部は、前記制御対象の端末について、前記決定部で決定された最低の物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項5または6に記載の基地局。
  8.  前記決定部は、自局に実際に収容されている端末の台数をモニタし、該モニタ結果を基に前記所定の収容台数を決定する、請求項5から7のいずれか1項に記載の基地局。
  9.  変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局による無線通信方法であって、
     前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定ステップと、
     前記制御対象の端末について、前記決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御ステップと、を有する無線通信方法。
  10.  前記決定ステップでは、前記組み合わせのうち、前記最低保証レートを満たす最低の許容スループットとなる組み合わせを特定し、特定した組み合わせの物理レートを前記最低の物理レートに決定する、請求項9に記載の無線通信方法。
  11.  前記制御ステップでは、前記制御対象の端末について、前記決定された最低の物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項9または10に記載の無線通信方法。
  12.  前記決定ステップでは、自局に実際に収容されている端末の台数をモニタし、該モニタ結果を基に前記所定の収容台数を決定する、請求項9から11のいずれか1項に記載の無線通信方法。
  13.  変調方式および符号化率の組み合わせを適応的に変更する適応変調を実行する端末のうち帯域保証が必要となるQoSクラスに属する制御対象の端末について、前記適応変調を実行した場合に自局に収容可能か否かを判定する制御を実行する基地局に、
     前記組み合わせごとに、自局に所定の収容台数の端末を収容した場合における各端末の許容スループットを予め算出し、前記制御対象の端末について、当該端末の最低保証レートを前記許容スループットと比較し、該比較結果を基に帯域保証を行う最低の物理レートを決定する決定手順と、
     前記制御対象の端末について、前記決定された最低の物理レートで適応変調を実行することを前提として前記制御を実行する制御手順と、を実行させるプログラム。
  14.  前記決定手順では、前記組み合わせのうち、前記最低保証レートを満たす最低の許容スループットとなる組み合わせを特定し、特定した組み合わせの物理レートを前記最低の物理レートに決定する、請求項13に記載のプログラム。
  15.  前記制御手順では、前記制御対象の端末について、前記決定された最低の物理レートに応じた帯域を割り当て可能であれば、自局に収容可能と判定する、請求項13または14に記載のプログラム。
  16.  前記決定手順では、自局に実際に収容されている端末の台数をモニタし、該モニタ結果を基に前記所定の収容台数を決定する、請求項13から15のいずれか1項に記載のプログラム。
PCT/JP2009/069238 2008-12-22 2009-11-12 無線通信システム、基地局、無線通信方法、プログラム WO2010073843A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980150202.1A CN102246576B (zh) 2008-12-22 2009-11-12 无线通信系统、基站、无线通信方法及程序
EP09834647.1A EP2362703A4 (en) 2008-12-22 2009-11-12 WIRELESS COMMUNICATION SYSTEM, BASE STATION, WIRELESS COMMUNICATION METHOD, PROGRAM
US13/124,676 US8767538B2 (en) 2008-12-22 2009-11-12 Radio communication systems, base stations, radio communication methods, and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-325449 2008-12-22
JP2008325449A JP4911168B2 (ja) 2008-12-22 2008-12-22 無線通信システム、基地局、無線通信方法、プログラム

Publications (1)

Publication Number Publication Date
WO2010073843A1 true WO2010073843A1 (ja) 2010-07-01

Family

ID=42287465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069238 WO2010073843A1 (ja) 2008-12-22 2009-11-12 無線通信システム、基地局、無線通信方法、プログラム

Country Status (6)

Country Link
US (1) US8767538B2 (ja)
EP (1) EP2362703A4 (ja)
JP (1) JP4911168B2 (ja)
CN (1) CN102246576B (ja)
TW (1) TWI416966B (ja)
WO (1) WO2010073843A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176394B2 (ja) * 2014-05-07 2017-08-09 日本電気株式会社 ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム
JP5733449B1 (ja) * 2014-05-07 2015-06-10 日本電気株式会社 ノード、マスタ装置、ならびに通信制御システム、方法およびプログラム
EP3806378B1 (en) * 2015-08-14 2024-10-02 Sun Patent Trust Modulation order adaptation for partial subframes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259447A (ja) * 2002-02-28 2003-09-12 Ntt Docomo Inc 適応無線パラメータ制御方法、QoS制御装置、基地局及び無線通信システム
WO2008041291A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Base station device
JP2008193648A (ja) * 2007-01-09 2008-08-21 Ntt Docomo Inc 基地局、通信端末、送信方法及び受信方法
JP2008252514A (ja) * 2007-03-30 2008-10-16 Kddi Corp 無線パケット制御装置、無線パケット制御方法、および無線通信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1741412B (zh) * 2004-08-27 2011-06-08 清华大学 无线网络中子信道分配的方法
TW200704221A (en) * 2005-04-01 2007-01-16 Interdigital Tech Corp Method and apparatus for admission control and resource tracking in a wireless communication system
KR20070072795A (ko) * 2006-01-02 2007-07-05 삼성전자주식회사 통신 시스템에서 스케쥴링 방법 및 시스템
JP4644619B2 (ja) 2006-03-27 2011-03-02 富士通株式会社 基地局装置、端末および帯域制御方法
KR100928678B1 (ko) * 2006-10-02 2009-11-27 삼성전자주식회사 광대역 무선 접속 시스템의 연결 수락 제어 방법 및 장치
US9155118B2 (en) * 2007-01-22 2015-10-06 Qualcomm Incorporated Multi-link support for network based mobility management systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003259447A (ja) * 2002-02-28 2003-09-12 Ntt Docomo Inc 適応無線パラメータ制御方法、QoS制御装置、基地局及び無線通信システム
WO2008041291A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Base station device
JP2008193648A (ja) * 2007-01-09 2008-08-21 Ntt Docomo Inc 基地局、通信端末、送信方法及び受信方法
JP2008252514A (ja) * 2007-03-30 2008-10-16 Kddi Corp 無線パケット制御装置、無線パケット制御方法、および無線通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2362703A4 *

Also Published As

Publication number Publication date
JP4911168B2 (ja) 2012-04-04
EP2362703A4 (en) 2016-07-06
TWI416966B (zh) 2013-11-21
CN102246576A (zh) 2011-11-16
US8767538B2 (en) 2014-07-01
TW201108777A (en) 2011-03-01
CN102246576B (zh) 2014-03-12
US20110255435A1 (en) 2011-10-20
JP2010147991A (ja) 2010-07-01
EP2362703A1 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US12225437B2 (en) V2X communication method and V2X communications apparatus
JP4851590B2 (ja) モバイル通信を実施する装置、システムおよび方法
EP2101448B1 (en) Apparatus and method for admission control for service flow in broadband wireless access communication system using multi-hop relay scheme
EP1943778B1 (en) Improved uplink throughput for wireless network interfaces
US20050117536A1 (en) System and method for transmitting and receiving resource allocation information in a wireless communication system
US20100238895A1 (en) Scheduling Method, Wireless Base Station, And Wireless Terminal
WO2009148749A2 (en) Channel quality reporting in a wireless communication system
US20120099512A1 (en) Radio communication system, radio base station, and radio communication method
EP2294747A1 (en) Scheduling of data transmissions in multi-carrier data transmission networks
US8570947B2 (en) Scheduling method in wireless communication system using relay station
CN113475033A (zh) 5g无线通信系统中用于传输物理下行链路控制信道的基于位置的corset配置
WO2021151481A1 (en) Communication control mechanism using full duplex communication connection
US20110317644A1 (en) Method and apparatus for transmitting and receiving resource allocation scheme information in a wireless communication system
JP4507021B2 (ja) 無線通信システム、基地局、無線通信方法、プログラム
WO2010073843A1 (ja) 無線通信システム、基地局、無線通信方法、プログラム
JP3851202B2 (ja) 無線通信装置および無線通信方法
KR101517617B1 (ko) 이동 통신 시스템에서 프레임 운용 방법 및 그 시스템
JP5544398B2 (ja) マルチホップ中継方式を使用する広帯域無線アクセス通信システムにおけるサービスフローのための受付制御装置及び方法
WO2010070997A1 (ja) 無線通信システム、基地局、無線通信方法、プログラム
JP5471961B2 (ja) 無線端末および無線通信方法
WO2010073679A1 (ja) 無線基地局、無線リソース割り当て方法および無線通信システム
WO2006059827A1 (en) Methods for managing the band adaptive modulation and coding (band amc) in portable internet system
Sambale et al. Increasing the VoIP capacity of WiMAX systems through persistent resource allocation
CN110636619A (zh) 上行复用传输功率的配置方法及上行复用的数据传输方法
KR20060133070A (ko) 최소 리소스 파라미터로 스케줄링 알고리즘을 수행하는방법 및 스케줄러

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980150202.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834647

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009834647

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009834647

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13124676

Country of ref document: US