WO2010053131A1 - 高周波回路、高周波部品、及びマルチバンド通信装置 - Google Patents
高周波回路、高周波部品、及びマルチバンド通信装置 Download PDFInfo
- Publication number
- WO2010053131A1 WO2010053131A1 PCT/JP2009/068918 JP2009068918W WO2010053131A1 WO 2010053131 A1 WO2010053131 A1 WO 2010053131A1 JP 2009068918 W JP2009068918 W JP 2009068918W WO 2010053131 A1 WO2010053131 A1 WO 2010053131A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- filter
- frequency
- antenna
- transmission
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 110
- 230000005540 biological transmission Effects 0.000 claims abstract description 88
- 239000000758 substrate Substances 0.000 claims description 62
- 230000001939 inductive effect Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 description 12
- 238000002955 isolation Methods 0.000 description 12
- 230000003071 parasitic effect Effects 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 6
- 238000010897 surface acoustic wave method Methods 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 102000006463 Talin Human genes 0.000 description 4
- 108010083809 Talin Proteins 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/005—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
- H04B1/0053—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band
- H04B1/006—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band using switches for selecting the desired band
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/38—Impedance-matching networks
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/46—Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H7/461—Networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source particularly adapted for use in common antenna systems
Definitions
- the present invention relates to a high-frequency circuit that is used in a multiband radio apparatus and performs switching of input / output signals, and more particularly, a high-frequency circuit using a single-pole double-throw switch circuit in which a plurality of field effect transistors FET are connected in parallel, and the high frequency
- the present invention relates to a high-frequency component having a circuit and a multiband communication apparatus including the high-frequency component.
- GSM850 / 900 (824-960 MHz), DCS (1710-1850 MHz), PCS (1850-1990 MHz), UMTS (Band1: and1920-) 2170 MHz, Band2: 1850 to 1990 MHz, Band3: 1710 to 1880 MHz, Band4: ⁇ 1710 to 2155 MHz, Band5: 824 to 894 MHz, Band6: 830 to 885 MHz, Band7: 2500 to 2690 MHz, Band8: 880 to 960 MHz, Band9: 1749.9 to 1879.9 MHz, Band10: 1710 to 2170 MHz).
- the frequency of DCS Digital Cellular System
- PCS Personal Communication Services
- UMTS Band1 Universal Mobile Telecommunications System
- GSM Global System for Mobile Communications
- Japanese Patent Laid-Open No. 2005-123740 discloses a high-frequency switch module shown in FIG. 26 having a single-pole five-throw switch circuit using an FET switch circuit.
- the high-frequency switch module 20 includes a switch element 10 including a single-pole five-throw switch circuit 10a and a decoder 10b, low-pass filter circuits 15a and 15b, band-pass filter circuits 15c, 15d, and 15e, and an ESD protection circuit 18. Used for triple-band mobile phones.
- the single-pole five-throw switch circuit 10a is a parallel connection of single-pole single-throw FET switch circuits having the same circuit configuration, and a transmission connected to a common terminal a connected to the antenna ANT, a transmission / reception circuit, and the like. Terminals b, c and receiving terminals d, e, f are provided.
- FIG. 28 shows a configuration of the FET switch circuit Q1 as an example of the FET switch circuit.
- the FET switch circuit Q1 includes a signal input terminal 250a, a signal output terminal 250b, and a control terminal Vc1 that applies a voltage for controlling ON / OFF.
- the resistor R is connected to prevent leakage current.
- one FET is provided.
- a configuration in which two or more FETs are connected in series to reduce the equivalent capacitance when OFF is also possible.
- FET Q1-1 connected to input terminal 250a and output terminal 250b and shunt-connected FET Q1-2 may be provided so as to improve isolation characteristics between ports (FIG. 31).
- control terminals Vc1 and Vc2 for applying a voltage for controlling the ON / OFF state via a resistor R for preventing leakage current are arranged.
- Q1-1 is turned on and Q1-2 is turned off (FIG. 32).
- Q1-1 is turned off and Q1-2 is turned on (FIG. 33).
- the equivalent capacitance of Q1-1 or Q1-2 is connected to the input terminal 250a, and more equivalent capacitance is added than the FET switch circuit shown in FIG.
- the single-pole double-throw switch circuit 10a may be configured by combining different FET switch circuits.
- the FET switch circuit shown in FIG. 28 is used for one signal path, and the FET shown in FIG. 31 is used for another signal path.
- a switch circuit may be used.
- FIG. 29 shows an equivalent circuit of the single-pole five-throw switch circuit 10a when the common terminal a and the transmission terminal b are connected
- FIG. 30 shows an equivalent circuit when the equivalent capacitance in the OFF state is synthesized.
- the FET switch is equivalent to the resistor R in the ON state and is equivalent to the capacitance Coff in the OFF state.
- the FET switch of any signal path is controlled to be in the ON state, and the common terminal a is connected to any one of the transmission terminals b and c and the reception terminals e, f, and g.
- the transmission terminals b and c and the reception terminals d, e, and f are connected to load impedances Zlb to Zlf, respectively.
- Japanese Patent Application Laid-Open No. 2008-124556 proposes impedance matching by connecting inductors in series to the ports on the common terminal side and the other terminal side.
- Japanese Patent Application Laid-Open No. 2008-124556 does not consider any case where the equivalent capacitance due to the FET switch circuit varies depending on the signal path.
- Wireless communication devices such as mobile phones operate with different power as well as different frequency bands depending on the communication system.
- the maximum transmission power of GSM850 / 900 is larger than that of other communication systems, and DCS, PCS, and UMTS transmit and receive with different power.
- the configuration of the FET switch is changed for each signal path such as adjustment of the gate width, parallel connection of capacitance between the gate and the source or drain, and the like.
- the equivalent capacitance of the FET switch circuit is also different for each signal path, and the change (shift) in impedance due to the equivalent capacitance is also different for each signal path.
- the effect is greater in higher-order frequency bands such as PCS and UMTS than in fundamental frequency bands such as GSM.
- Japanese Patent Laid-Open No. 2008-124556 describes that the return loss can be finely adjusted depending on the position of the inductor when the required return loss standard is different for each signal path.
- the inductor is constituted by bonding wires, a plurality of bonding wires cross or approach each other, thereby causing interference between signal paths, resulting in degradation of isolation characteristics and impedance deviation due to parasitic reactance.
- transistors and inductors on a silicon substrate (IPD: Integrated Passive Device).
- IPD Integrated Passive Device
- an object of the present invention is a high frequency circuit including a single pole double throw switch circuit for switching a connection between an antenna and a transmission / reception circuit in accordance with signals of a plurality of communication systems, Even if the equivalent capacitances are different, the impedance deviation of each signal path can be easily suppressed, and the degradation of the isolation characteristics and signal loss characteristics hardly occurs. It is to provide a high-frequency circuit with improved characteristics.
- Another object of the present invention is to provide a high-frequency circuit having the above characteristics and having a small number of signal paths with respect to the number of communication systems handled by a single pole double throw switch circuit.
- Still another object of the present invention is to provide a high-frequency component having such a high-frequency circuit.
- Still another object of the present invention is to provide a multiband communication apparatus having such a high-frequency component.
- the high-frequency circuit of the present invention is used in a multiband-compatible radio device, and switches the connection between an antenna and a transmission / reception circuit in accordance with signals of a plurality of communication systems.
- a single pole double throw switch circuit in which an FET switch circuit is arranged between a common port connected to the antenna side circuit and a plurality of single ports connected to the transmission / reception circuit, and a first matching connected to the common port Circuit and
- the first matching circuit includes a first inductance element connected in series to a signal path between the antenna and the common port; a first capacitance element connected to the antenna side of the first inductance element and grounded;
- the first inductance element makes inductive the impedance of the single pole double throw switch circuit when the single port side is viewed from the antenna side, and the first capacitance element includes the antenna side circuit and the transmission / reception It is characterized by adjusting impedance matching with a circuit.
- the single-pole double-throw switch circuit is preferably one packaged with a plurality of FET switch circuits and a decoder that decodes FET ON / OFF switching signals into control voltages.
- the single pole double throw switch circuit is preferably made of a bare chip state or a sealed semiconductor.
- the impedance viewed from the antenna side in the signal path of the single-pole double-throw switch circuit through which at least the higher-order frequency band passes is inductive.
- the impedance of the single pole double throw switch circuit is inductive even in the fundamental frequency band.
- the impedance is concentrated to a standardized impedance (for example, 50 ⁇ ) according to the antenna side circuit and the transmission / reception circuit in the frequency band of the high frequency signal. Can do.
- the capacitance value of the first capacitance element is set in consideration of the combined capacitance of the equivalent capacitance when the FET switch that is the ground capacitance of the single pole double throw switch circuit is OFF.
- the capacitance value of the first capacitance element is preferably set in a mode in which a signal path of a communication system in a higher-order frequency band is connected (the influence of the capacitance element is significant), and the signal path of the communication system using the highest frequency It is more preferable to set the mode in the connection mode.
- the capacitance value of the first capacitance element is set for the signal path of the communication system of the higher frequency band that has the largest combined capacity It is preferable to do this.
- the filter circuit is disposed in a path between at least one of the single ports and the corresponding transmission / reception circuit, and is connected to a signal path between the single port and the filter circuit.
- a second matching circuit wherein at least one of the filter circuits is a band pass filter, and the second matching circuit includes a second inductance element connected in series with the signal path or between the ground and the ground. Is preferred.
- the second inductance element In order to suppress the loss (insertion loss) of the signal passing through the signal path, it is preferable to connect the second inductance element to the ground.
- the band-pass filter used for the filter circuit is preferably a SAW (Surface Acoustic Wave) filter, a BAW (Bulk Acoustic Wave) filter, or a BPAW (Buried Propagating layer Acoustic Band) filter.
- BAW filters include FBAR type (Film Bulk Acoustic Resonator) and SMR type (Solid Mounted Resonator).
- the SAW filter and BAW filter may be packaged together with a low noise amplifier.
- the high-frequency circuit of the present invention has an LC filter circuit disposed between at least one of the single ports and the corresponding transmission / reception circuit, and the LC filter circuit includes a third inductance element and a second capacitance element. It is preferable to do this.
- the LC filter circuit having the third inductance element and the second capacitance element functions exclusively as a low-pass filter, a band-pass filter, or a notch filter that excludes harmonics contained in the signal. In the case of the low-pass filter, it also functions as a matching circuit between the single pole double throw switch circuit and the transmission circuit.
- Multiple access systems in multiple communication systems include TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access).
- a high-frequency circuit includes a filter circuit (band-pass filter) connected between a first single port and a first receiving circuit corresponding to a first TDMA communication system, and a second LC filter circuit connected between the single port and the first transmission circuit corresponding to the first and second TDMA communication systems, the third single port, the second TDMA communication system, and the CDMA system.
- a filter circuit band-pass filter
- a filter circuit (first duplexer) connected between a second receiving circuit corresponding to the first communication system and a second transmitting circuit corresponding to the first communication system of the CDMA system, and a fourth single port;
- a filter circuit (second duplexer) connected between the third receiver circuit corresponding to the second CDMA communication system and the third transmitter circuit corresponding to the second CDMA communication system;
- Single pole double throw The second matching circuit in at least one path between the first single port of the switch circuit and the band pass filter, between the third single port and the first duplexer, and between the fourth single port and the second duplexer. Is connected.
- the first and second duplexers demultiplex a transmission signal and a reception signal of a communication system using a CDMA system as a multiple access system, and are preferably formed by connecting bandpass filters having different pass bands in parallel.
- SAW filters and / or BAW filters are preferably connected in parallel and packaged in one package.
- the single-pole four-throw switch can be used as the single-pole double-throw switch circuit. Since the number of FET switches in the single-pole double-throw switch circuit can be reduced, the equivalent capacitance is reduced, and the change (shift) in impedance in each signal path can be reduced.
- a third matching circuit including a fourth inductance element may be connected between the first duplexer and the second transmission circuit.
- a reception signal of a communication system using the TDMA scheme is passed through a bandpass filter (excluding a duplexer), and a transmission signal of the communication system using the TDMA scheme is passed through an LC filter circuit.
- the transmission / reception signal of the communication system using the CDMA system is passed through a single port to which the bandpass filter and the LC filter are not connected or a single port to which the duplexer is connected.
- a switch element, a filter element, and a reactance element are mounted on an insulating substrate (a resin substrate such as a glass epoxy substrate or a ceramic substrate).
- insulating substrate a resin substrate such as a glass epoxy substrate or a ceramic substrate.
- reactance elements (coils and capacitors) constituting the matching circuit and the LC filter circuit are configured by electrode patterns in the multilayer body, and the filter element and the switch element are mounted on the multilayer body.
- via holes and ground electrodes that connect between electrode patterns formed in different layers in the laminate between the circuit patterns, and to form a coil. It is preferable that the electrode pattern does not overlap with the electrode pattern of a circuit element having a different direction in the stacking direction. Further, it is preferable that the semiconductor elements constituting the amplifier and the like constituting the transmission / reception circuit are mounted on the laminate, and the matching circuit is incorporated in the laminate.
- the first high-frequency component of the present invention is used in a multi-band wireless device, and is configured by configuring a high-frequency circuit that switches connection between an antenna and a transmission / reception circuit in response to signals from a plurality of communication systems on an insulating substrate.
- a single-pole double-throw switch circuit in which an FET switch circuit is disposed between a common port connected to the antenna and a plurality of single ports connected to the transmission / reception circuit; and a first matching circuit connected to the common port;
- a filter circuit disposed in a path between the single port and the transmission / reception circuit, and at least one of the filter circuits is a band-pass filter;
- the first matching circuit is connected in series to a first inductance element connected in series to a signal path between the antenna and a common port of the single-pole double-throw switch circuit, and is connected to the antenna side of the first inductance element and grounded Comprising a first capacitance element;
- a plurality of filter terminals connected to the filter circuit are arranged in parallel on the first side of the bottom surface of the switch element having the single-pole double-throw switch circuit,
- a filter element constituting the filter circuit is mounted on the upper surface of the insulating substrate in proximity to the first side of the switch element, The switch element and the filter element
- the switch element and the filter element By arranging the switch element and the filter element close to each other, the parasitic reactance due to the connection line is suppressed, and it becomes easy to suppress the deviation of the impedance of each signal path by the first matching circuit.
- the switch element has an antenna terminal on a second side adjacent to the first side, and the first inductance element of the first matching circuit is the second side of the switch element on the multilayer substrate. It is preferable that the switch element and the first inductance element are connected by a connection line formed in the insulating substrate.
- the first inductance element arranged in series in the signal path is preferably a high-Q chip inductor.
- the connection lines do not come close to each other, so that deterioration of the isolation characteristic and the signal loss characteristic can be suppressed.
- the mounting area on the insulating substrate can be used effectively by arranging the filter element close to the switching element on one side of the switching element and mounting the inductance element in the empty area next to the filtering element. High frequency components can be miniaturized.
- the second high-frequency component of the present invention is used in a multi-band wireless device, and a high-frequency circuit that switches connection between an antenna and a transmission / reception circuit according to signals of a plurality of communication systems is configured on an insulating substrate.
- a single-pole double-throw switch circuit in which an FET switch circuit is disposed between a common port connected to the antenna and a plurality of single ports connected to the transmission / reception circuit; and a first matching circuit connected to the common port;
- a filter circuit disposed between the single port and the transmission / reception circuit, wherein at least one of the filter circuits is a bandpass filter;
- the first matching circuit includes a first inductance element connected in series to a signal path between the antenna and the common port; a first capacitance element connected to the antenna side of the first inductance element and grounded; Comprising On the bottom surface of the switch element having the single-pole double-throw switch circuit, a plurality of filter terminals connected to the filter circuit are arranged in parallel, and an
- the third high-frequency component of the present invention is used in a multi-band wireless device, and is configured by configuring an insulating substrate with a high-frequency circuit that switches connection between an antenna and a transmission / reception circuit in accordance with signals of a plurality of communication systems.
- a single-pole double-throw switch circuit in which an FET switch circuit is disposed between a common port connected to the antenna and a plurality of single ports connected to the transmission / reception circuit; and a first matching circuit connected to the common port;
- a filter circuit disposed between the single port and the transmission / reception circuit, wherein at least one of the filter circuits is a bandpass filter;
- the first matching circuit is connected in series to a first inductance element connected in series to a signal path between an antenna and a common port of the single-pole double-throw switch circuit, and is connected to the antenna side of the first inductance element and grounded.
- a first capacitance element On the bottom surface of the switch element having the single-pole double-throw switch circuit, a plurality of filter terminals connected to the filter circuit are arranged in parallel, and an antenna terminal connected to the antenna is formed, On the upper surface of the insulating substrate, the switch element, the filter element constituting the filter circuit, and the first inductance element constituting the first matching circuit are mounted close to each other, The switch element and the filter element, and the switch element and the first inductance element are each connected by a connection line formed in a multilayer insulating substrate, A layer in which a ground electrode is formed is disposed between the connection lines formed in different layers.
- connection lines of the respective circuit elements do not come close to each other, and the deterioration of the isolation characteristics and the signal loss characteristics can be prevented.
- the first to third high-frequency components have a second matching circuit in a signal path between the single port and the filter circuit, and the second matching circuit includes a second inductance element connected to the signal path.
- the two-inductance element is preferably formed below the filter element with an electrode pattern in an insulating substrate.
- the electrode pattern is preferably formed over a plurality of layers, for example, in a meander shape or a coil shape. In a multilayer laminated substrate, the electrode patterns on different layers are connected by via holes.
- the electrode pattern of the second inductance element is formed so as not to overlap the electrode pattern of other circuit elements in the region sandwiched between the upper and lower ground electrodes. Is preferred.
- the electrode patterns of the second inductance elements connected to different signal paths are preferably formed so as not to overlap each other.
- the first to third high-frequency components have an LC filter circuit between at least one of the single ports and the corresponding transmission / reception circuit, and the LC filter circuit includes a third inductance element and a second capacitance element, The third inductance element and the second capacitance element are preferably formed below the switch element in an electrode pattern in an insulating substrate.
- the electrode patterns for the third inductance element and the second capacitance element are preferably formed in different layers.
- an electrode pattern for forming an inductance element is made thicker than an electrode pattern for forming a capacitance element in order to lower the resistance value.
- a plurality of terminals including a high-frequency terminal for connection to the antenna and the transmission / reception circuit are provided on the bottom surface (back surface) of the insulating substrate. It is preferable to arrange a high-frequency terminal connected to the receiving circuit on one side of the bottom surface of the insulating substrate. With such terminal arrangement, the connection line between the filter element and the receiving circuit arranged on the upper surface of the insulating substrate in each signal path can be shortened, and signal loss and the like can be suppressed. If the filter element is of the unbalanced input-balanced output type, the length of the balanced signal path from the filter circuit to the high frequency terminal can be made approximately equal by arranging the high frequency terminals that output balanced signals next to each other. Does not degrade the phase balance.
- An antenna terminal is formed on the other side of the switch element, and the connection between the antenna terminal and the first matching circuit and the connection between the reception terminal and the filter terminal are not overlapped in the stacking direction by connection lines in the multilayer insulating substrate. It is preferable to do so. Also in this case, since the connection lines are not close to each other, the isolation characteristic and the signal loss characteristic are hardly deteriorated. Moreover, it becomes easy to suppress the parasitic reactance between the connection lines and suppress the deviation of the impedance of each signal path by the first matching circuit.
- the multiband communication device of the present invention is characterized by comprising the above-described high-frequency circuit unit.
- the high frequency circuit corresponds to each communication system and is connected to a transmission / reception circuit including an amplifier and a mixer.
- the transmission / reception circuit may be packaged together with an amplifier, an auto power control circuit, and the like.
- the present invention in a high-frequency circuit using a single-pole double-throw switch circuit, even when the equivalent capacitance of the FET switch is different between signal paths, it is possible to easily suppress a deviation in impedance of each signal path, It is possible to prevent the deterioration of the signal loss characteristic and thereby improve the VSWR characteristic in the higher frequency band.
- 6 is a Smith chart of impedance viewed from a single port when a TDMA transmission path is controlled to be in an ON state in a single-pole six-throw switch circuit.
- 6 is a Smith chart of impedance viewed from a common port when a TDMA reception path is controlled to be in an ON state in a single-pole six-throw switch circuit.
- 6 is a Smith chart of impedance viewed from a single port when a TDMA reception path is controlled to be in an ON state in a single-pole six-throw switch circuit.
- 5 is a Smith chart of impedance viewed from a common port side when a CDMA transmission / reception path is controlled to be ON in a single-pole six-throw switch circuit in which inductance elements are connected in series on the common port side.
- 6 is a Smith chart of impedance viewed from a single port side when a CDMA transmission / reception path is controlled to be ON in a single-pole six-throw switch circuit in which inductance elements are connected in series on the common port side.
- 5 is a Smith chart of impedance viewed from the common port side when the TDMA transmission path is controlled to be ON in a single-pole six-throw switch circuit in which inductance elements are connected in series on the common port side.
- 5 is a Smith chart of impedance viewed from a single port side when a TDMA transmission path is controlled to be ON in a single-pole six-throw switch circuit in which inductance elements are connected in series on the common port side.
- 5 is a Smith chart of impedance viewed from the common port side when the TDMA reception path is controlled to be ON in a single-pole six-throw switch circuit in which inductance elements are connected in series on the common port side.
- 5 is a Smith chart of impedance viewed from a single port side when a TDMA reception path is controlled to be ON in a single-pole six-throw switch circuit in which inductance elements are connected in series on the common port side.
- 5 is a Smith chart of impedance viewed from the common port side when the CDMA transmission / reception path is controlled to be ON in the single-pole six-throw switch circuit in which the first matching circuit is connected to the common port side.
- 6 is a Smith chart of impedance viewed from a single port side when a CDMA transmission / reception path is controlled to be ON in a single-pole six-throw switch circuit in which a first matching circuit is connected to a common port side.
- 6 is a Smith chart of impedance viewed from the common port side when the TDMA transmission path is controlled to be in an ON state in the single-pole six-throw switch circuit in which the first matching circuit is connected to the common port side.
- 5 is a Smith chart of impedance viewed from a single port side when a TDMA transmission path is controlled to be in an ON state in a single-pole six-throw switch circuit in which a first matching circuit is connected to a common port side.
- 5 is a Smith chart of impedance viewed from the common port side when the TDMA reception path is controlled to be ON in the single-pole six-throw switch circuit in which the first matching circuit is connected to the common port side.
- 5 is a Smith chart of impedance viewed from a single port side when a TDMA reception path is controlled to be in an ON state in a single-pole six-throw switch circuit in which a first matching circuit is connected to the common port side.
- 6 is a graph showing VSWR characteristics on the single port side in a CDMA [UMTS] path in the high-frequency circuit and single-pole six-throw switch circuit of the present invention.
- 6 is a graph showing VSWR characteristics on the common port side in a TDMA path [DCS / PCSTx] in the high-frequency circuit and single-pole six-throw switch circuit of the present invention.
- 6 is a graph showing VSWR characteristics on the single port side in a TDMA path [DCS / PCSTx] in the high-frequency circuit and single-pole six-throw switch circuit of the present invention. It is a block diagram which shows the high frequency circuit by the other Example of this invention.
- FIG. 1 shows a high-frequency circuit according to a first embodiment of the present invention
- FIG. 2 shows three TDMA communication systems (GSM, PCS, and DCS) using the high-frequency circuit as a multiple access system.
- GSM Global System for Mobile Communications
- PCS PCS
- DCS DCS
- UMTS CDMA communication system
- the switch circuit may include a decoder, but is omitted in the figure.
- the high-frequency circuit 20 including the single-pole six-throw switch circuit 10a includes a multiband antenna ANT, a high-frequency amplifier PA1 and a low-noise amplifier LNA1, which are front ends (transmission / reception circuits) for the first communication system (UMTS), High-frequency amplifier PA2 and low-noise amplifier LNA2 that are front ends for the second communication system (GSM), high-frequency amplifier PA3 and low-noise amplifier LNA3 that are front-ends for the third communication system (DCS), and fourth communication system (PCS) ), which is provided between the high-frequency amplifier PA3 and the low-noise amplifier LNA4, which are front ends for switching between transmission and reception signals of each communication system.
- the high frequency amplifier PA3 is shared by the DCS and the PCS, but the high frequency amplifier may be shared by the UMTS and the DCS.
- the single-pole six-throw switch circuit 10a is mainly composed of FET switch circuits Q1 to Q6 composed of field-effect transistor FETs. In order to improve power durability and isolation characteristics, multiple FETs may be connected in series, or FETs may be placed between the FET and ground.
- an inductance element LESD for preventing electrostatic surge is connected between the common port a of the single pole 6 throw switch circuit 10a and the ground.
- the inductance element LESD has an impedance characteristic that does not affect each communication system, and has an inductance of 20 to 50 ⁇ ⁇ nH so as to attenuate a large surge voltage from DC to 300 MHz.
- All drains (or sources) of the FET switch circuits Q1 to Q6 are connected to the common port a, and the common port a is connected to the multiband antenna ANT via the first matching circuit 50.
- the source (or drain) of the FET switch circuit is connected to each of the individual ports b to g.
- the first single port b is connected to the high frequency amplifier PA1 and the low noise amplifier LNA1 for the first communication system (UMTS) via the duplexer 28.
- the second and third independent ports c and d are for the high frequency amplifier PA2 for the second communication system (GSM) and the third and fourth communication systems (DCS and PCS) via the LC filter circuits 15a and 15b, respectively.
- the fourth to sixth single ports e to g are connected to low noise amplifiers LNA2 to LNA4 for second to fourth communication systems (GSM, DCS, PCS) via band pass filters 15c to 15e, respectively.
- Second matching circuits 60a and 60b are provided between the single-pole six-throw switch circuit 10a and the bandpass filters 15d and 15e, respectively.
- the second matching circuits 60a and 60b are connected to the second inductance elements L2a and L2b, respectively. It has.
- unbalanced input-balanced output SAW filters are used as the bandpass filters 15c to 15e, and inductance elements L10, L20, and L30 are arranged between the balanced output terminals to adjust the phase balance and amplitude balance.
- a capacitance element may be disposed between the balanced output terminals, or a reactance element may be disposed between each balanced output terminal and the ground.
- the gate of the field effect transistor constituting each FET switch circuit is connected to a control voltage terminal via a resistor (not shown).
- Table 1 shows the connection state of the high-frequency circuit depending on the control voltage applied to the gate.
- the operation modes of the communication systems UMTS, GSM, DCS, and PCS of the multiband communication apparatus are a transmission mode in the case of Tx, a reception mode in the case of Rx, and a transmission or reception mode in the case of TRx.
- UMTS first communication system
- a voltage for turning on the FET of the FET switch circuit Q1 is given from an external circuit (not shown), and the FET switch circuits Q2 ⁇ A voltage is applied to turn off the Q6 FET.
- the UMTS transmission signal output from the front end 110 is radiated from the multiband antenna ANT.
- UMTS When receiving in the first communication system (UMTS), a voltage for turning on the FET of the FET switch circuit Q1 is similarly applied from an external circuit (not shown) and the FET circuit switches Q2 to Q2 A voltage is applied to turn off the Q6 FET.
- the UMTS reception signal incident on the multiband antenna ANT passes through the single-pole six-throw switch circuit and duplexer 28 and is input to the front end 110, amplified by the low-noise amplifier LNA1 of the front end 110, and received at the subsequent stage. The signal is input to a circuit (not shown) and demodulated.
- any one of the four communication systems is used.
- a communication system such as GSM or DCS while performing data communication using UMTS
- ports a and b are connected,
- the FET switch circuit is controlled so as to connect any of the other paths.
- the FET switch circuit connected in series to the connection unnecessary path is controlled to be in the OFF state.
- FIG. 3 shows an equivalent circuit of a high-frequency circuit including a single-pole six-throw switch circuit 10a, a first matching circuit 50, second matching circuits 60a and 60b, and LC filter circuits 15a and 15b.
- each LC filter circuit is a multi-stage consisting of third inductance elements L3a, L3b, L4a, L4b and second capacitance elements C21a, C21b, C22a, C22b, C22c, C24a, C24b, C25a, C25b, C25c.
- it is a ⁇ -type low-pass filter, it may be a single-stage filter, a band-pass filter circuit, a notch filter circuit, or the like.
- a capacitance element may be connected in parallel with the second inductance elements L2a and L2b connected to the shunt path. According to such a configuration, the inductance of the second inductance elements L2a and L2b can be reduced, and the degree of freedom in selecting and configuring the inductance elements is increased.
- FIG. 4 shows an equivalent circuit of the single-pole six-throw switch circuit 10a when the FET switch circuit Q1 is turned on and the FET switch circuits Q2 to Q6 are controlled to be turned off and the ports a and b are connected.
- RonQ1 is a resistance component of the FET switch circuit Q1 in the ON state
- Coff1 is an equivalent capacitance component obtained by synthesizing the equivalent capacitances CoffQ2 to CoffQ6 of the FET switch circuits Q2 to Q6 in the OFF state.
- Other paths can also be represented by similar equivalent circuits with different equivalent capacitance components.
- Each signal path of the single pole 6 throw switch circuit 10a was measured with a network analyzer to obtain a Smith chart.
- a sample in which a single-pole six-throw switch circuit element was mounted on a resin substrate was used.
- an element with an obvious S parameter is used, it can be analyzed using a circuit simulator.
- FIGS. 8 to 10 show Smith charts of impedance when the single-pole six-throw switch circuit 10a is used alone.
- FIGS. 8A and 8B show impedances viewed from the common port a side and the first single port b side when the ports a and b are connected, respectively.
- FIGS. 9 (a) and 9 (b) show impedances viewed from the common port a side and the third single port d side when the ports ad are connected.
- FIGS. 10 (a) and 10 (b) show impedances viewed from the common port a side and the fifth single port f side when the ports a and f are connected, respectively.
- the impedance viewed from the common port side and the single port side decreased as the frequency increased and deviated from the standardized impedance (50 ⁇ ).
- the increase of VSWR and insertion loss was confirmed especially in the higher frequency band.
- the impedance locus differs depending on the connected single port.
- the equivalent capacitance component Coff1 is about 0.5 pF.
- FIG. 5 shows an equivalent circuit when the ports a and b are connected by controlling the FET switch circuit Q1 to the ON state and the FET switch circuits Q2 to Q6 to the OFF state.
- FIGS. 11 to 13 show Smith charts of impedance when an inductance element of 2.2 nH is connected in series to the common port a side of the single-pole six-throw switch circuit 10a.
- FIGS. 11 (a) and 11 (b) show impedances viewed from the common port a 'side and the first single port b side when the ports a and b are connected, respectively.
- FIGS. 13A and 13B show impedances viewed from the common port a 'side and the fifth single port f side when the ports a and f are connected.
- the common port side showed inductive impedance and the single port side showed capacitive impedance in the high-order frequency band.
- FIG. 6 shows a first matching circuit 50 (a first inductance element L1 connected in series to the common port a side and a grounded second connected to the multiband antenna circuit side) on the common port a side of the single-pole six-throw switch circuit 10a.
- 1 shows an equivalent circuit to which a single capacitance element C1 is connected.
- the ports a and b are connected by controlling the FET switch circuit Q1 to the ON state and the FET switch circuits Q2 to Q6 to the OFF state.
- the first inductance element L1 connected in series to the common port a side of the single-pole six-throw switch circuit 10a is 2.2 nH, and the first inductance element L1 is connected to the multiband antenna circuit side of the first inductance element L1.
- FIGS. 14 (a) and 14 (b) show impedances viewed from the common port a 'side and the first single port b side when the ports a and b are connected, respectively.
- FIG. 15 (a) and FIG. 15 (b) respectively show the impedances seen from the common port a 'side and the third single port d side when the ports ad are connected.
- FIG. 16 (a) b and FIG. 16 (b) show the impedance viewed from the common port a 'side and the fifth single port f side when the ports a-f are connected.
- the impedance of the common port side and the single port side can be concentrated to 50 ⁇ in the higher frequency band than when the single-pole 6-throw switch circuit alone or only the inductance element is connected to the common port a side. It was.
- the first matching circuit 50 including the first inductance element L1 and the first capacitance element C1 is provided on the common port a side of the single-pole six-throw switch circuit 10a. In either case, the impedance was well concentrated at 50 ⁇ .
- FIG. 7 shows an example in which the first matching circuit 50 is provided on the common port a side of the single-pole six-throw switch circuit 10a, and the second matching circuit 60a (grounded second inductance element L2a) is provided on the fifth single port f side.
- the equivalent circuit of is shown.
- the ports a and f are connected by controlling the FET switch circuit Q5 of the single-pole six-throw switch circuit 10a to the ON state and the FET switch circuits Q1 to Q4 and Q6 to the OFF state.
- RonQ5 is a resistance component of the FET switch circuit Q5 in the ON state
- Coff3 is an equivalent capacitance component in which the equivalent capacitances CoffQ1 to CoffQ4 and CoffQ6 of the FET switches Q1 to Q4 and Q6 in the OFF state are combined.
- FIGS. 17 (a) and 17 (b) show impedances viewed from the common port a 'and the fifth single port f' when the ports a and f are connected, respectively.
- the second matching circuit 60a made of a grounded inductance element, the impedance on the common port side and the single port side can be concentrated to 50 ⁇ .
- the impedance in the above state is summarized in Table 2 and Table 3. It can be seen that the impedance at each port is further matched to 50 ⁇ by providing the first matching circuit or the first matching circuit + second matching circuit in the single-pole six-throw switch circuit.
- Figures 18 (a) and 18 (b) VS show the VSWR characteristics on the common port side and single port side in the UMTS route, respectively.
- Fig. 19 (a) and Fig. 19 (b) show the common port side in the DCS Rx route. And the VSWR characteristics on the single port side are shown.
- the solid line shows the VSWR characteristic in the example in which the first matching circuit 50 is provided
- the broken line shows the VSWR characteristic in the comparative example using the single-pole six-throw switch circuit 10a alone.
- the frequency band of the low VSWR is wider than that of the single-pole 6-throw switch circuit alone, and a VSWR of 1.3 or less is obtained in the wide frequency band of 824 to 2170 MHz.
- FIG. 20 shows a multiband communication device for two communication systems using TDMA (GSM850, GSM900) and two communication systems using CDMA (UMTS Band1, Band5).
- 4 shows a high-frequency circuit according to a second embodiment of the present invention used in a quad-band mobile phone.
- the single pole double throw switch circuit may comprise a decoder.
- the high-frequency circuit 20 including the single-pole four-throw switch circuit 10a includes a multiband antenna ANT, a high-frequency amplifier PA1 and a low-noise amplifier LNA2 that are front ends for a first CDMA communication system (UMTS Band5), and a CDMA system.
- UMTS Band5 UMTS Band5
- High-frequency amplifier PA2 and low-noise amplifier LNA3 which are front ends for the second communication system (UMTS Band1)
- high-frequency amplifier PA3 and low-noise amplifier LNA1 which are front-ends for the first TDMA communication system (GSM900)
- GSM900 high-frequency amplifier PA3 and low-noise amplifier LNA2
- GSM850 second communication system
- the first single port b is connected to the low noise amplifier LNA1 for the first TDMA communication system (GSM900) via the second matching circuit 60a and the band pass filter 15a.
- the second single port e is connected to a high-frequency amplifier PA3 shared by the first TDMA communication system (GSM900) and the second communication system (GSM850) via the LC filter circuit 15d.
- the third single port c is connected to the high-frequency amplifier PA1 for the first CDMA communication system (UMTS Band5), the first CDMA communication system, and the TDMA via the second matching circuit 60b and the first duplexer 15b. It is connected to the low noise amplifier LNA2 shared by the second communication system (GSM850).
- the fourth single port d is connected to the high-frequency amplifier PA2 for the second CDMA communication system (UMTS Band1) via the second matching circuit 60c and the second duplexer 15c, and the low noise for the second CDMA communication system. Connected to amplifier LNA3.
- an unbalanced input-balanced output SAW filter or BAW filter or BPAW filter is used as the bandpass filter 15a and duplexers 15b, 15c, and inductance elements L10 to L30 for impedance adjustment are provided between the balanced output terminals. It is arranged.
- the gates of the FETs constituting the FET switches Q1 to Q4 are connected to a control voltage terminal (not shown) through a resistor (not shown).
- Table 4 summarizes the connection state of the high-frequency circuit depending on the control voltage applied to the gate.
- UMTS Band5 when transmitting in the first CDMA communication system (UMTS Band5), a voltage is applied from an external circuit (not shown) to turn on the FET of the FET switch circuit Q2 (ON). A voltage is applied to turn off the FET of the FET switch circuits Q1, Q3, and Q4 (OFF).
- the transmission signal of UMTS Band5 output from the front end including the high-frequency amplifier PA1 passes through the duplexer circuit 15b and the single-pole four-throw switch circuit 10a, so that the multiband antenna Radiated from ANT.
- the FET switch Q1 , Q3, and Q4 FETs are turned off (OFF).
- the UMTS reception signal from the multiband antenna ANT passes through the single-pole four-throw switch circuit 10a and the duplexer 15b, is input to the low-noise amplifier LNA2, is amplified there, and is received by a subsequent receiving circuit (not shown). ) And is demodulated.
- a voltage is applied to turn on the FET of the FET switch Q4 and the FETs of the FET switch circuits Q1 to Q3 are turned off (OFF). ) Is given.
- a voltage for turning on the FET of the FET switch circuit Q2 is given, and a voltage for turning off the FETs of the FET switches Q1, Q3, and Q4 is given.
- FIG. 21 shows an equivalent circuit of a high-frequency circuit including a single-pole four-throw switch circuit 10a, a first matching circuit 50, second matching circuits 60a to 60c, and an LC filter circuit 15d.
- the equivalent capacity when the FET switch circuit is OFF is reduced.
- the first matching circuit 50 connected to the common port a can concentrate the impedance viewed from the common port side and the single port side to 50 ⁇ .
- the impedance viewed from the single port side can be adjusted by the second matching circuits 60a, 60b, 60c including the grounded inductance elements L2a, L2b, L2c.
- the frequency band of low VSWR was broadened compared to the case of only a single-pole four-throw switch circuit, and a VSWR of 1.3 or less was obtained in a wide frequency band of 824 to 2170 MHz.
- FIG. 22 shows still another example of the high-frequency circuit of the present invention used in a multiband communication apparatus.
- the high-frequency circuit 20 in this example is a single pole of a multiple access system using four communication systems GSM850, GSM900, GSM1800, GSM1900 using the TDMA system and three communication systems UMTS Band1, Band2, Band5 using the CDMA system.
- a seven-throw switch circuit 10a is provided.
- the high-frequency circuit 20 includes a multiband antenna ANT, a high-frequency amplifier PA1 and a low-noise amplifier LNA3 which are front ends for the first CDMA communication system (UMTS Band5), and a second CDMA communication system (UMTS Band1).
- PCS frontend credit system
- the low-noise amplifier LNA3 is shared by the first CDMA communication system (UMTS Band5) and the second TDMA communication system (GSM850), and the low-noise amplifier LNA4 is used by the third CDMA communication system (UMTS).
- Band2 and TDMA type third communication system (PCS)
- high frequency amplifier PA4 is shared by TDMA type first and second communication systems (GSM850 / GSM900)
- high frequency amplifier PA5 is TDMA type first communication system. Shared by third and fourth communication systems (DCS / PCS).
- second matching circuits 60a, 60b, and 60c are connected between the single ports c, d, and f of the single-pole seven-throw switch circuit 10a and the band-pass filter 15b and the duplexers 15c and 15e, respectively.
- Third matching circuits 70a and 70b are connected between 15c and 15d and the high-frequency amplifiers PA1 and PA2 of the transmission circuit, respectively.
- the received signal has lower power than the transmitted signal, and when the received signal is handled as a balanced signal, characteristics such as phase balance and amplitude balance of the signal may be impaired due to reactance parasitic on the connection line. Therefore, the bandpass filter and the receiving terminal of the duplexer are concentrated in a part of the region, and the connection line with the receiving circuit is shortened as much as possible.
- the connection line between the duplexer and the transmission circuit tends to be long. As the connection line becomes longer, the reactance increases and impedance mismatching is likely to occur. In particular, the parasitic capacitance formed with the ground tends to increase. In this example, the influence of the parasitic capacitance is reduced by connecting the third matching circuits 70a and 70b having the grounded inductance elements L4a and L4b between the duplexers 15c and 15d and the transmission circuit.
- the impedance deviation due to the equivalent capacitance is reduced, and the first matching circuit 50 connected to the common port allows the common port side and the single port side respectively.
- the seen impedance can be concentrated to 50 ⁇ . Therefore, the frequency band of the low VSWR was broader than that of the single pole 7 throw switch circuit alone, and a VSWR of 1.3 or less was obtained in the wide frequency band of 824 to 2170 ⁇ MHz.
- FIGS. 24 and 25 show an example in which a multiband high-frequency circuit having the equivalent circuit shown in FIG. 23 is formed on an insulating substrate (laminated substrate).
- the switch element 10 the filter elements 15c to 15f, and the first inductance element L1 of the first matching circuit 50 are mounted on the upper surface of the multilayer substrate 100, and the LC filter circuits 15a and 15b and the second matching circuits 60a and 60b are mounted.
- FIG. 25 shows the internal structure of the multilayer substrate 100.
- the multilayer substrate 100 is made of a ceramic dielectric that can be sintered at a low temperature of 1000 ° C.
- a ground electrode G covering almost the entire surface is formed on the surface of the lowermost green sheet 12, and a high-frequency terminal for mounting on a circuit board is formed on the back surface.
- the high-frequency terminal is an antenna terminal ANT connected to the antenna side circuit, transmission terminals Tx1, Tx2 for receiving transmission signals, receiving terminals Rx1, Rx2, Rx3, Rx4 for outputting balanced signals, a ground terminal G, and a switch circuit
- Power supply terminals (control terminals) U1 to U3, Vc1 to Vc4, and Vdd for control are connected to the electrode pattern on the upper green sheet via via holes (indicated by black circles) formed in the green sheet. ing.
- the terminal electrodes are LGA (Land Grid Array), but BGA (Ball Grid Array) or the like can also be adopted.
- the reception terminals Rx1, Rx2, Rx3, and Rx4 are a pair of balanced terminals, and are arranged in parallel on one side of the multilayer substrate 100.
- the LC filter circuits 15a and 15b, the first capacitance element C1 of the first matching circuit 50, and the second inductance elements of the second matching circuits 60a and 60b are electrodes. It is formed by a pattern and connected through a via hole.
- the green sheet 2 is formed with connection lines SS1 to SS4 and SL2 that connect the switch element 10, the filter elements 15c to 15d, and the first inductance element L1 of the first matching circuit 50 mounted on the upper surface of the multilayer substrate 100. ing.
- the green sheet 1 is formed with a plurality of land electrodes for mounting elements.
- the rectangular switch element 10 includes a single-pole six-throw switch circuit 10a and a decoder 10b formed on a silicon substrate, and a plurality of filter terminals (receive terminals) connected to the filter elements 15c to 15f on the first side thereof R1 to R4 are juxtaposed, antenna terminals AN connected to the first matching circuit 50 on the second side adjacent to the first side in the clockwise direction, and filter terminals connected to the LC filter circuits 15a and 15b ( (Transmission terminals) T1 and T2 are juxtaposed, and control terminals U1 to U3 are juxtaposed on the third side adjacent to the second side in the clockwise direction, and clockwise on the third side.
- Control terminals Vc1 to Vc4 and Vdd are arranged side by side on the adjacent fourth side.
- the ground terminal G is disposed at a position where interference between the terminals is suppressed, such as between the filter terminals R1 to R4 and the LC filter terminals T1 and T2.
- the filter elements 15c to 15f arranged close to the switch element 10 on the multilayer substrate 100 include unbalanced terminals PS1 to PS4 connected to the filter terminals R1 to R4 of the switch element 10 and balanced to output a balanced signal.
- Terminals RX1 +, RX1-, RX2 +, RX2-, RX3 +, RX3-, RX4 +, RX4- and ground terminal G are formed, and filter terminals R1 to R4 and unbalanced terminals PS1 to PS4 are connected lines SS1 to SS4 Connected with. Since the switch element 10 and the filter elements 15c to 15d are arranged close to each other, the connection lines SS1 to SS4 can be short, and generation of unnecessary parasitic reactance can be suppressed.
- the one end side tp1, tp2 of the connection lines SS1, SS2 is connected to the electrode pattern of the second inductance element of the second matching circuit 50 formed in the lower layer by a via hole.
- the balanced terminals RX1 +, RX1-, RX2 +, RX2-, RX3 +, RX3-, RX4 +, RX4- of the filter elements 15c to 15f are reception terminals on the bottom surface of the multilayer substrate 100 through very short connection lines SA1 to SA7 and via holes. Connect to Rx1, Rx2, Rx3, Rx4.
- each of the filter elements 15c and 15d and the filter elements 15e and 15f constitutes one part.
- each filter element may be a separate part or four filter elements may be combined into one part.
- the first inductance element L1 of the first matching circuit 50 is disposed on the land electrodes ap1 and ap2 adjacent to the switch element 10 on the multilayer substrate 100.
- the land electrode ap1 is connected to the antenna terminal ANT on the bottom surface of the multilayer substrate 100 via the connection line SL1 and the via hole, and the land electrode ap2 is connected to the antenna terminal AN of the switch element 10 via the connection line SL2, It is connected to the inductance element LESD mounted on the land electrodes ap3 and ap4 via the connection line SL2.
- the first inductance element L1 is arranged on the multilayer substrate 100 in the vicinity of the side (second side) different from the side (first side) of the switch element 10 where the filter elements 15c to 15d are close to each other. Since the lines do not come close to each other, it is possible to prevent deterioration of isolation characteristics and signal loss characteristics. Further, by forming the connection line so as not to overlap in the stacking direction, it is possible to prevent deterioration of the isolation characteristic and the signal loss characteristic.
- the electrode patterns and connection lines that form the three-dimensional high-frequency circuit formed in the multilayer substrate 100 are separated by the ground electrode G or do not overlap in the stacking direction so as to prevent unnecessary electromagnetic interference.
- the LC filter circuits 15a and 15b, the second inductance elements of the second matching circuits 60a and 60b, and the electrode pattern forming the first capacitance element of the first matching circuit 50 are arranged so as not to overlap in the stacking direction. Has been.
- the ceramic dielectric for example, Al, Si and Sr as main components, Ti, Bi, Cu, Mn, Na, K and the like as ceramics, Al, Si and Sr as main components, Ca, Pb, Examples thereof include ceramics containing Na, K and the like as composite components, ceramics containing Al, Mg, Si and Gd, and ceramics containing Al, Si, Zr and Mg.
- the dielectric constant of the ceramic dielectric is preferably about 5 to 15.
- a resin or a resin / ceramic composite material may be used.
- an electrode pattern may be formed by a high-temperature sinterable metal conductor such as tungsten or molybdenum on a substrate mainly made of Al 2 O 3 by HTCC (high temperature co-fired ceramic) technology.
- the FET switch circuit constituting the switch element 10 is not particularly limited, and GaAs-FET, CMOS-FET, or the like can be used. Further, it may be used in a bare state and sealed with a resin or a tube. Such a high-frequency component is suitable for miniaturization. A high frequency amplifier, a low noise amplifier, or the like of the transmission / reception circuit may be combined with the laminated substrate 100.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Transceivers (AREA)
- Electronic Switches (AREA)
- Logic Circuits (AREA)
Abstract
Description
アンテナ側回路に接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路とを有し、
前記第一整合回路は、前記アンテナと前記共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子とを含み、前記第一インダクタンス素子は前記アンテナ側から前記単独ポート側を見たときの前記単極複投スイッチ回路のインピーダンスを誘導性にし、前記第一キャパシタンス素子は前記アンテナ側回路及び前記送信受信回路とのインピーダンス整合を調整することを特徴とする。
アンテナに接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路と、前記単独ポートと送信受信回路との間の経路に配置されたフィルタ回路とを有し、前記フィルタ回路の少なくとも1つはバンドパスフィルタであり、
前記第一整合回路は、アンテナと単極複投スイッチ回路の共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子を具備し、
前記単極複投スイッチ回路を有するスイッチ素子の底面の第一の辺側に前記フィルタ回路と接続する複数のフィルタ端子が並設されており、
前記絶縁基板の上面に前記フィルタ回路を構成するフィルタ素子が前記スイッチ素子の前記第一の辺に近接して実装されており、
前記スイッチ素子と前記フィルタ素子は前記絶縁基板内に形成された接続線路により接続されていることを特徴とする。
アンテナに接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路と、前記単独ポートと前記送信受信回路との間の配置されたフィルタ回路とを有し、前記フィルタ回路の少なくとも1つはバンドパスフィルタであり、
前記第一整合回路は、前記アンテナと前記共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子とを具備し、
前記単極複投スイッチ回路を有するスイッチ素子の底面には、前記フィルタ回路と接続する複数のフィルタ端子が並設されているとともに、前記アンテナと接続するアンテナ端子が形成されており、
前記絶縁基板の上面には、前記スイッチ素子、前記フィルタ回路を構成するフィルタ素子及び前記第一整合回路を構成する第一インダクタンス素子が近接して実装されており、
前記スイッチ素子と前記フィルタ素子、及び前記スイッチ素子と前記第一インダクタンス素子とはそれぞれ前記絶縁基板内に積層方向に重なり合わないように形成された接続線路で接続されていることを特徴とする。
アンテナに接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路と、前記単独ポートと送信受信回路との間に配置されたフィルタ回路とを有し、前記フィルタ回路の少なくとも1つはバンドパスフィルタであり、
前記第一整合回路は、アンテナと前記単極複投スイッチ回路の共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子とを具備し、
前記単極複投スイッチ回路を有するスイッチ素子の底面には、前記フィルタ回路と接続する複数のフィルタ端子が並設されているとともに、前記アンテナと接続するアンテナ端子が形成されており、
前記絶縁基板の上面には、前記スイッチ素子、前記フィルタ回路を構成するフィルタ素子及び前記第一整合回路を構成する第一インダクタンス素子が近接して実装されており、
前記スイッチ素子と前記フィルタ素子、及び前記スイッチ素子と前記第一インダクタンス素子とはそれぞれ多層の絶縁基板内に形成された接続線路で接続されており、
異なる層に形成された前記接続線路の間にグランド電極が形成された層が配置されていることを特徴とする。
図1は本発明の第一の実施例による高周波回路を示し、図2はその高周波回路を多元接続方式としてTDMA方式の3つの通信システム(GSM、PCS及びDCS)とCDMA方式の1つの通信システム(UMTS)とを用いたクワッドバンド携帯電話機(マルチバンド通信装置)に用いた場合の等価回路を示す。なお、スイッチ回路はデコーダを含んでも良いが、図では省略されている。
図20は、マルチバンド通信装置として、TDMA方式を用いた2つの通信システム(GSM850、GSM900)及びCDMA方式を用いた2つの通信システム(UMTS Band1、Band5)用のクワッドバンド携帯電話機に用いられる本発明の第二の実施例による高周波回路を示す。単極複投スイッチ回路はデコーダを具備しても良い。
図23に示す等価回路を有するマルチバンド高周波回路を絶縁基板(積層基板)に構成した例を図24及び図25に示す。図24は、スイッチ素子10、フィルタ素子15c~15f、及び第一整合回路50の第一インダクタンス素子L1を積層基板100の上面に実装し、LCフィルタ回路15a,15b、第二整合回路60a,60b等を積層基板100の内部に設けたマルチバンド高周波部品の上面外観を示し、図25はその積層基板100の内部構造を示す。積層基板100は、例えば1000℃以下の低温で焼結可能なセラミック誘電体からなり、Ag,Cu等の導電ペーストを印刷してなる厚さ10~200μmの電極パターンを形成した複数のセラミックグリーンシートを積層し、一体的に焼結することにより製造することができる。
Claims (18)
- マルチバンド対応の無線装置に用いられ、複数の通信システムの信号に応じてアンテナと送信受信回路との間の接続を切り替える高周波回路であって、
アンテナ側回路に接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路とを有し、
前記第一整合回路は、前記アンテナと前記共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子とを含み、前記第一インダクタンス素子は前記アンテナ側から前記単独ポート側を見たときの前記単極複投スイッチ回路のインピーダンスを誘導性にし、前記第一キャパシタンス素子は前記アンテナ側回路及び前記送信受信回路とのインピーダンス整合を調整することを特徴とする高周波回路。 - 請求項1に記載の高周波回路において、前記単独ポートの少なくとも1つと各対応する送信受信回路との間に配置されたフィルタ回路と、前記単独ポートと前記フィルタ回路との間に配置された少なくとも1つの第二整合回路とを有し、前記フィルタ回路の少なくとも1つはバンドパスフィルタであり、前記第二整合回路は信号経路に直列に又はグランドとの間に接続された第二インダクタンス素子を具備することを特徴とする高周波回路。
- 請求項1又は2に記載の高周波回路において、前記単独ポートの少なくとも1つと各対応する送信受信回路との間に配置されたLCフィルタ回路を有し、前記LCフィルタ回路は第三インダクタンス素子及び第二キャパシタンス素子を具備することを特徴とする高周波回路。
- 請求項1~3のいずれかに記載の高周波回路において、前記複数の通信システムにおける多元接続方式がTDMA方式(Time Division Multiple Access)及びCDMA方式(Code Division Multiple Access)を含むことを特徴とする高周波回路。
- 請求項4に記載の高周波回路において、
第一単独ポートとTDMA方式の第一の通信システムに対応する第一受信回路との間に接続されたバンドパスフィルタと、
第二単独ポートとTDMA方式の第一及び第二の通信システムに対応する第一送信回路との間に接続されたLCフィルタ回路と、
第三単独ポートとTDMA方式の第二の通信システム及びCDMA方式の第一の通信システムに対応した第二受信回路、及びCDMA方式の第一の通信システムに対応した第二送信回路との間に接続された第一デュプレクサと、
第四単独ポートとCDMA方式の第二の通信システムに対応した第三受信回路及びCDMA方式の第二の通信システムに対応した第三送信回路との間に接続された第二デュプレクサとを備え、
前記単極複投スイッチ回路の前記第一単独ポートと前記バンドパスフィルタとの間、前記第三単独ポートと前記第一デュプレクサとの間、前記第四単独ポートと前記第二デュプレクサとの間の少なくとも一つの経路に、前記第二整合回路が接続されていることを特徴とする高周波回路。 - 請求項5に記載の高周波回路において、前記第一デュプレクサと前記第二送信回路との間に、第四インダクタンス素子を含む第三整合回路が配置されていることを特徴とする高周波回路。
- マルチバンドの無線装置に用いられ、複数の通信システムの信号に応じてアンテナと送信受信回路との間の接続を切り替える高周波回路を絶縁基板に構成した高周波部品であって、
前記高周波回路は、アンテナに接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路と、前記単独ポートと送信受信回路との間の経路に配置されたフィルタ回路とを有し、前記フィルタ回路の少なくとも1つはバンドパスフィルタであり、
前記第一整合回路は、アンテナと単極複投スイッチ回路の共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子を具備し、
前記単極複投スイッチ回路を有するスイッチ素子の底面の第一の辺側に前記フィルタ回路と接続する複数のフィルタ端子が並設されており、
前記絶縁基板の上面に前記フィルタ回路を構成するフィルタ素子が、前記スイッチ素子の前記第一の辺に近接して実装されており、
前記スイッチ素子と前記フィルタ素子は前記絶縁基板内に形成された接続線路により接続されていることを特徴とする高周波部品。 - 請求項7に記載の高周波部品において、前記スイッチ素子は前記第一の辺側に隣接する第二の辺側にアンテナ端子を有し、前記第一整合回路の第一インダクタンス素子は前記積層基板上で前記スイッチ素子の前記第二の辺に近接する位置に実装されており、前記スイッチ素子と前記第一インダクタンス素子は前記絶縁基板内に形成された接続線路により接続されていることを特徴とする高周波部品。
- マルチバンドの無線装置に用いられ、複数の通信システムの信号に応じてアンテナと送信受信回路との間の接続を切り替える高周波回路を絶縁基板に構成した高周波部品であって、
前記高周波回路は、アンテナに接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路と、前記単独ポートと前記送信受信回路との間の配置されたフィルタ回路とを有し、前記フィルタ回路の少なくとも1つはバンドパスフィルタであり、
前記第一整合回路は、前記アンテナと前記共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子とを具備し、
前記単極複投スイッチ回路を有するスイッチ素子の底面には、前記フィルタ回路と接続する複数のフィルタ端子が並設されているとともに、前記アンテナと接続するアンテナ端子が形成されており、
前記絶縁基板の上面には、前記スイッチ素子、前記フィルタ回路を構成するフィルタ素子及び前記第一整合回路を構成する第一インダクタンス素子が近接して実装されており、
前記スイッチ素子と前記フィルタ素子、及び前記スイッチ素子と前記第一インダクタンス素子とはそれぞれ前記絶縁基板内に積層方向に重なり合わないように形成された接続線路で接続されていることを特徴とする高周波部品。 - マルチバンドの無線装置に用いられ、複数の通信システムの信号に応じてアンテナと送信受信回路との間の接続を切り替える高周波回路を絶縁基板に構成した高周波部品であって、
前記高周波回路は、アンテナに接続される共通ポートと送信受信回路と接続される複数の単独ポートとの間にFETスイッチ回路が配置された単極複投スイッチ回路と、前記共通ポートに接続された第一整合回路と、前記単独ポートと送信受信回路との間に配置されたフィルタ回路とを有し、前記フィルタ回路の少なくとも1つはバンドパスフィルタであり、
前記第一整合回路は、アンテナと前記単極複投スイッチ回路の共通ポートとの間の信号経路に直列接続された第一インダクタンス素子と、前記第一インダクタンス素子のアンテナ側に接続され、接地された第一キャパシタンス素子とを具備し、
前記単極複投スイッチ回路を有するスイッチ素子の底面には、前記フィルタ回路と接続する複数のフィルタ端子が並設されているとともに、前記アンテナと接続するアンテナ端子が形成されており、
前記絶縁基板の上面には、前記スイッチ素子、前記フィルタ回路を構成するフィルタ素子及び前記第一整合回路を構成する第一インダクタンス素子が近接して実装されており、
前記スイッチ素子と前記フィルタ素子、及び前記スイッチ素子と前記第一インダクタンス素子とはそれぞれ多層の絶縁基板内に形成された接続線路で接続されており、
異なる層に形成された前記接続線路の間にグランド電極が形成された層が配置されていることを特徴とする高周波部品。 - 請求項7~10に記載の高周波部品において、前記単独ポートと前記フィルタ回路との間の信号経路に接続された第二インダクタンス素子を含む第二整合回路を有し、前記第二インダクタンス素子は絶縁基板内の電極パターンにより、前記フィルタ素子より下方に形成されていることを特徴とする高周波部品。
- 請求項11に記載の高周波部品において、異なる信号経路に接続された第二インダクタンス素子の電極パターンが積層方向に重なり合わないことを特徴とする高周波部品。
- 請求項7~12のいずれかに記載の高周波部品において、前記単独ポートの少なくとも1つと各対応する送信受信回路との間の経路に配置されたLCフィルタ回路を有し、前記LCフィルタ回路は第三インダクタンス素子及び第二キャパシタンス素子を有し、前記第三インダクタンス素子及び前記第二キャパシタンス素子は前記絶縁基板内の電極パターンにより前記スイッチ素子の下方に形成されていることを特徴とする高周波部品。
- 請求項13に記載の高周波部品において、異なる信号経路に接続されたLCフィルタ回路の電極パターンが積層方向に重なり合わないことを特徴とする高周波部品。
- 請求項7~14のいずれかに記載の高周波部品において、前記絶縁基板の底面には、アンテナ及び送信受信回路との接続のための高周波端子を含む複数の端子が設けられており、前記絶縁基板の一辺側に受信回路と接続する複数の高周波端子が並設されていることを特徴とする高周波部品。
- 請求項9~15のいずれかに記載の高周波部品において、前記絶縁基板の底面には、アンテナ及び送信受信回路との接続のための高周波端子を含む複数の端子が設けられており、前記絶縁基板の一辺側に受信回路と接続する複数の高周波端子が並設されており、他の辺にアンテナと接続するアンテナ端子がグランド端子に隣接して形成されており、前記アンテナ端子と前記第一整合回路との接続、前記受信端子と前記フィルタ端子との接続はそれぞれ前記絶縁基板内の接続線路により接続されており、前記アンテナ端子と前記スイッチ素子との間の接続線路と、前記受信端子と前記フィルタ素子との間の接続線路は積層方向に重なり合わないことを特徴とする高周波部品。
- 請求項1~6のいずれかに記載の高周波回路を用いたことを特徴とするマルチバンド無線通信装置。
- 請求項7~16のいずれかに記載の高周波部品を用いたことを特徴とするマルチバンド無線通信装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/127,890 US8803632B2 (en) | 2008-11-05 | 2009-11-05 | High-frequency circuit, high-frequency device, and multiband communications apparatus |
JP2010536790A JP5316544B2 (ja) | 2008-11-05 | 2009-11-05 | 高周波回路、高周波部品、及びマルチバンド通信装置 |
EP09824830.5A EP2352229A4 (en) | 2008-11-05 | 2009-11-05 | HIGH FREQUENCY SWITCHING, HIGH FREQUENCY ELEMENT AND MULTI-BAND COMMUNICATION DEVICE |
CN2009801443057A CN102204100B (zh) | 2008-11-05 | 2009-11-05 | 高频电路、高频部件及多频带通信装置 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-284283 | 2008-11-05 | ||
JP2008284283 | 2008-11-05 | ||
JP2008-304034 | 2008-11-28 | ||
JP2008304034 | 2008-11-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010053131A1 true WO2010053131A1 (ja) | 2010-05-14 |
Family
ID=42152938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/068918 WO2010053131A1 (ja) | 2008-11-05 | 2009-11-05 | 高周波回路、高周波部品、及びマルチバンド通信装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8803632B2 (ja) |
EP (1) | EP2352229A4 (ja) |
JP (1) | JP5316544B2 (ja) |
CN (1) | CN102204100B (ja) |
WO (1) | WO2010053131A1 (ja) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011150970A1 (en) * | 2010-06-03 | 2011-12-08 | Laird Technologies Ab | Switching arrangement for an antenna device |
WO2012014643A1 (ja) * | 2010-07-27 | 2012-02-02 | 株式会社村田製作所 | 高周波モジュール |
JP2012054635A (ja) * | 2010-08-31 | 2012-03-15 | Hitachi Metals Ltd | 高周波回路、高周波部品及び通信装置 |
JP2012080160A (ja) * | 2010-09-30 | 2012-04-19 | Hitachi Metals Ltd | 高周波回路部品、及び通信装置 |
WO2012100579A1 (zh) * | 2011-01-28 | 2012-08-02 | 中兴通讯股份有限公司 | 处理射频信号的方法、装置和设备 |
WO2012117992A1 (ja) * | 2011-03-02 | 2012-09-07 | 株式会社村田製作所 | 高周波モジュール |
CN102891698A (zh) * | 2011-07-19 | 2013-01-23 | 英飞凌科技股份有限公司 | 具有天线开关和带阻滤波器的电路装置以及对应方法 |
US20130176916A1 (en) * | 2010-09-29 | 2013-07-11 | Murata Manufacturing Co., Ltd. | High-frequency module |
WO2013125362A1 (ja) * | 2012-02-21 | 2013-08-29 | 株式会社村田製作所 | 高周波スイッチモジュール |
EP2662985A1 (en) * | 2011-01-06 | 2013-11-13 | Murata Manufacturing Co., Ltd. | High-frequency module |
US20130300517A1 (en) * | 2012-05-09 | 2013-11-14 | Murata Manufacturing Co., Ltd. | Switch module |
JP2013236166A (ja) * | 2012-05-07 | 2013-11-21 | Murata Mfg Co Ltd | 高周波モジュール |
JP2013545325A (ja) * | 2010-09-27 | 2013-12-19 | エプコス アーゲー | 回路配置 |
US20140002209A1 (en) * | 2011-03-24 | 2014-01-02 | Murata Manufacturing Co., Ltd. | High-frequency module |
JP2016054515A (ja) * | 2011-08-08 | 2016-04-14 | スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 | フィルタモジュール |
WO2016133028A1 (ja) * | 2015-02-20 | 2016-08-25 | 株式会社村田製作所 | 高周波フィルタ、高周波フロントエンド回路、通信機器、および、高周波フィルタの設計方法 |
JP2017038352A (ja) * | 2015-08-10 | 2017-02-16 | 株式会社村田製作所 | スイッチモジュール、フロントエンドモジュールおよびスイッチモジュールの駆動方法 |
JP2017510130A (ja) * | 2014-01-17 | 2017-04-06 | クアルコム,インコーポレイテッド | 切替え可能なアンテナアレイ |
JP2017098632A (ja) * | 2015-11-18 | 2017-06-01 | 株式会社村田製作所 | 高周波モジュール及び通信装置 |
JP2017204761A (ja) * | 2016-05-12 | 2017-11-16 | 株式会社村田製作所 | スイッチモジュール |
WO2018061782A1 (ja) * | 2016-09-27 | 2018-04-05 | 株式会社村田製作所 | 高周波フロントエンド回路及び通信装置 |
WO2018088410A1 (ja) * | 2016-11-11 | 2018-05-17 | 株式会社村田製作所 | スイッチic、高周波モジュールおよび通信装置 |
US10153803B2 (en) | 2016-09-20 | 2018-12-11 | Kabushiki Kaisha Toshiba | Receiving circuit, wireless communication module, and wireless communication device |
WO2019172033A1 (ja) * | 2018-03-08 | 2019-09-12 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路および通信装置 |
JP2020537419A (ja) * | 2017-10-12 | 2020-12-17 | エイブイエックス・アンテナ・インコーポレーテッド | Rf信号アグリゲータおよびそれを実装するアンテナシステム |
US10944382B2 (en) | 2016-05-12 | 2021-03-09 | Murata Manufacturing Co., Ltd. | Switch module |
CN112615630A (zh) * | 2020-12-08 | 2021-04-06 | 惠州Tcl移动通信有限公司 | 一种提高射频隔离度的电路、方法及移动终端 |
US11329630B2 (en) | 2016-05-12 | 2022-05-10 | Murata Manufacturing Co., Ltd. | Switch module |
WO2022239601A1 (ja) * | 2021-05-14 | 2022-11-17 | 株式会社村田製作所 | スイッチ装置およびフロントエンド回路 |
Families Citing this family (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101271108B1 (ko) * | 2009-01-29 | 2013-06-04 | 가부시키가이샤 무라타 세이사쿠쇼 | 듀플렉서 모듈 |
JP2011250099A (ja) * | 2010-05-26 | 2011-12-08 | Fujitsu Ten Ltd | アンテナアンプ装置、及びアンテナ装置 |
CN103828249B (zh) * | 2011-09-26 | 2016-08-17 | 株式会社村田制作所 | 高频模块 |
JP5375925B2 (ja) * | 2011-11-01 | 2013-12-25 | 株式会社デンソー | 無線通信機 |
WO2013094535A1 (ja) * | 2011-12-20 | 2013-06-27 | 株式会社村田製作所 | 高周波モジュール |
US9356643B2 (en) | 2011-12-29 | 2016-05-31 | Rf Micro Devices, Inc. | RF duplexing device |
US9319208B2 (en) * | 2012-01-10 | 2016-04-19 | Rf Micro Devices, Inc. | RF duplexing device |
WO2013119181A1 (en) * | 2012-02-06 | 2013-08-15 | Nanyang Technological University | A switch |
CN103327726A (zh) * | 2012-03-19 | 2013-09-25 | 鸿富锦精密工业(深圳)有限公司 | 电子装置及其印刷电路板的布局结构 |
CN102637964A (zh) * | 2012-04-28 | 2012-08-15 | 上海华勤通讯技术有限公司 | 天线系统及其移动终端 |
US8824982B2 (en) * | 2012-06-27 | 2014-09-02 | Intel Corporation | Time-variant antenna enabled by switched capacitor array on silicon |
DE102012211312A1 (de) | 2012-06-29 | 2014-01-02 | Siemens Aktiengesellschaft | Verfahren zum gleichzeitigen Übertragen von mindestens zwei hochfrequenten Übertragungssignalen über eine gemeinsame Hochfrequenzleitung, Signalübertragungsvorrichtung und Magnetresonanztomograph |
TWI552431B (zh) * | 2012-09-04 | 2016-10-01 | 深圳市華星光電技術有限公司 | 具備可切換天線之通訊裝置 |
US9240811B2 (en) | 2012-10-23 | 2016-01-19 | Intel Deutschland Gmbh | Switched duplexer front end |
JP5983773B2 (ja) * | 2012-12-26 | 2016-09-06 | 株式会社村田製作所 | スイッチモジュール |
JP6112654B2 (ja) * | 2013-01-29 | 2017-04-12 | 太陽誘電株式会社 | モジュール |
CN103199829B (zh) * | 2013-02-28 | 2016-05-04 | 广东宽普科技股份有限公司 | 一种提升射频开关功率能力的装置 |
US9444417B2 (en) | 2013-03-15 | 2016-09-13 | Qorvo Us, Inc. | Weakly coupled RF network based power amplifier architecture |
US9859863B2 (en) | 2013-03-15 | 2018-01-02 | Qorvo Us, Inc. | RF filter structure for antenna diversity and beam forming |
US9628045B2 (en) | 2013-08-01 | 2017-04-18 | Qorvo Us, Inc. | Cooperative tunable RF filters |
US12224096B2 (en) | 2013-03-15 | 2025-02-11 | Qorvo Us, Inc. | Advanced 3D inductor structures with confined magnetic field |
US9825656B2 (en) * | 2013-08-01 | 2017-11-21 | Qorvo Us, Inc. | Weakly coupled tunable RF transmitter architecture |
US9899133B2 (en) | 2013-08-01 | 2018-02-20 | Qorvo Us, Inc. | Advanced 3D inductor structures with confined magnetic field |
US9774311B2 (en) | 2013-03-15 | 2017-09-26 | Qorvo Us, Inc. | Filtering characteristic adjustments of weakly coupled tunable RF filters |
US9871499B2 (en) | 2013-03-15 | 2018-01-16 | Qorvo Us, Inc. | Multi-band impedance tuners using weakly-coupled LC resonators |
WO2014145633A1 (en) | 2013-03-15 | 2014-09-18 | Rf Micro Devices, Inc. | Weakly coupled based harmonic rejection filter for feedback linearization power amplifier |
US9780756B2 (en) | 2013-08-01 | 2017-10-03 | Qorvo Us, Inc. | Calibration for a tunable RF filter structure |
US9755671B2 (en) | 2013-08-01 | 2017-09-05 | Qorvo Us, Inc. | VSWR detector for a tunable filter structure |
US9614490B2 (en) | 2013-06-06 | 2017-04-04 | Qorvo Us, Inc. | Multi-band interference optimization |
US9685928B2 (en) | 2013-08-01 | 2017-06-20 | Qorvo Us, Inc. | Interference rejection RF filters |
US9705478B2 (en) | 2013-08-01 | 2017-07-11 | Qorvo Us, Inc. | Weakly coupled tunable RF receiver architecture |
US9966981B2 (en) | 2013-06-06 | 2018-05-08 | Qorvo Us, Inc. | Passive acoustic resonator based RF receiver |
US9780817B2 (en) | 2013-06-06 | 2017-10-03 | Qorvo Us, Inc. | RX shunt switching element-based RF front-end circuit |
US9800282B2 (en) | 2013-06-06 | 2017-10-24 | Qorvo Us, Inc. | Passive voltage-gain network |
US9705542B2 (en) | 2013-06-06 | 2017-07-11 | Qorvo Us, Inc. | Reconfigurable RF filter |
US20150028963A1 (en) * | 2013-07-23 | 2015-01-29 | Taiyo Yuden Co., Ltd. | Electronic circuit |
CN104425872A (zh) * | 2013-08-26 | 2015-03-18 | 联想(北京)有限公司 | 一种天线及电子设备 |
CN105556741A (zh) * | 2013-09-17 | 2016-05-04 | 株式会社村田制作所 | 高频模块及通信装置 |
US9621327B2 (en) * | 2013-09-17 | 2017-04-11 | Skyworks Solutions, Inc. | Systems and methods related to carrier aggregation front-end module applications |
JP2015061198A (ja) * | 2013-09-18 | 2015-03-30 | 太陽誘電株式会社 | 電子回路 |
US9300286B2 (en) * | 2013-09-27 | 2016-03-29 | Peregrine Semiconductor Corporation | Antenna transmit receive switch |
US9641201B2 (en) | 2014-04-29 | 2017-05-02 | Infineon Technologies Ag | System and method for a radio frequency integrated circuit |
US9728330B2 (en) * | 2014-07-03 | 2017-08-08 | Ferfics Limited | Radio frequency switching system with improved linearity |
US10312960B2 (en) * | 2014-08-12 | 2019-06-04 | Qorvo Us, Inc. | Switchable RF transmit/receive multiplexer |
US9960802B2 (en) * | 2014-10-27 | 2018-05-01 | Skyworks Solutions, Inc. | Devices and methods related to interfaces for radio-frequency modules |
CN105846847A (zh) * | 2015-01-13 | 2016-08-10 | 中兴通讯股份有限公司 | 一种多模终端的射频电路及多模终端 |
WO2016125720A1 (ja) * | 2015-02-05 | 2016-08-11 | 株式会社村田製作所 | 高周波スイッチモジュール |
TWI544678B (zh) | 2015-02-13 | 2016-08-01 | 立積電子股份有限公司 | 單刀多擲開關 |
US10340704B2 (en) | 2015-02-13 | 2019-07-02 | Richwave Technology Corp. | Switch device with a wide bandwidth |
CN107710608B (zh) * | 2015-06-24 | 2021-02-09 | 株式会社村田制作所 | 分波电路 |
US9973173B2 (en) * | 2015-06-30 | 2018-05-15 | Qorvo Us, Inc. | Switch topology for switching filters multiplexers |
US10796835B2 (en) | 2015-08-24 | 2020-10-06 | Qorvo Us, Inc. | Stacked laminate inductors for high module volume utilization and performance-cost-size-processing-time tradeoff |
JP6471810B2 (ja) * | 2015-11-04 | 2019-02-20 | 株式会社村田製作所 | 分波装置及びその設計方法 |
CN108604890B (zh) * | 2016-02-08 | 2022-06-21 | 株式会社村田制作所 | 高频前端电路以及通信装置 |
US10263647B2 (en) * | 2016-04-09 | 2019-04-16 | Skyworks Solutions, Inc. | Multiplexing architectures for wireless applications |
WO2017199690A1 (ja) * | 2016-05-20 | 2017-11-23 | 株式会社村田製作所 | インピーダンス整合回路、高周波フロントエンド回路および通信装置 |
CN105933491B (zh) * | 2016-06-27 | 2020-02-07 | 北京小米移动软件有限公司 | 测试方法、测试装置、测试天线及测试系统 |
JP6635198B2 (ja) * | 2016-06-30 | 2020-01-22 | 株式会社村田製作所 | 高周波モジュール、マルチプレクサおよびマルチフィルタ |
CN107689778B (zh) * | 2016-08-05 | 2022-03-01 | 株式会社村田制作所 | 高频模块以及通信装置 |
TWI652913B (zh) * | 2016-10-28 | 2019-03-01 | 絡達科技股份有限公司 | 多模多頻之收發器、射頻前端電路及應用其之射頻系統 |
US11139238B2 (en) | 2016-12-07 | 2021-10-05 | Qorvo Us, Inc. | High Q factor inductor structure |
KR102559978B1 (ko) * | 2017-02-21 | 2023-07-26 | 삼성전자 주식회사 | 복수의 주파수 밴드들을 이용한 d2d 통신을 지원하는 프론트 엔드 모듈과 그를 구비한 전자 장치 |
WO2018168653A1 (ja) * | 2017-03-14 | 2018-09-20 | 株式会社村田製作所 | 高周波モジュール |
CN110402546B (zh) * | 2017-03-15 | 2021-06-04 | 株式会社村田制作所 | 高频模块以及通信装置 |
CN110476358B (zh) * | 2017-03-30 | 2021-04-27 | 株式会社村田制作所 | 高频模块 |
JP6687161B2 (ja) * | 2017-06-28 | 2020-04-22 | 株式会社村田製作所 | スイッチモジュール |
CN111095793B (zh) * | 2017-09-08 | 2023-06-30 | 株式会社村田制作所 | 多工器、高频前端电路以及通信装置 |
WO2019188290A1 (ja) * | 2018-03-29 | 2019-10-03 | 株式会社村田製作所 | 高周波フロントエンド回路 |
CN111937233B (zh) * | 2018-03-30 | 2022-04-19 | 株式会社村田制作所 | 天线模块和搭载该天线模块的通信装置 |
US10727894B2 (en) * | 2018-04-30 | 2020-07-28 | Skyworks Solutions, Inc. | Front end systems with switched termination for enhanced intermodulation distortion performance |
WO2020003640A1 (ja) * | 2018-06-25 | 2020-01-02 | 株式会社村田製作所 | フロントエンド回路 |
CN109121284A (zh) * | 2018-09-05 | 2019-01-01 | 深圳市华讯方舟太赫兹科技有限公司 | 应用于毫米波安检设备的单刀多掷开关电路板 |
CN109361831A (zh) * | 2018-10-31 | 2019-02-19 | 宁波环球广电科技有限公司 | 高精度多频带电控均衡电路 |
JP2020088643A (ja) * | 2018-11-27 | 2020-06-04 | 住友電気工業株式会社 | 単極双投スイッチ |
CN114641937B (zh) * | 2019-11-20 | 2023-08-08 | 株式会社村田制作所 | 高频电路、高频前端电路以及通信装置 |
CN112968710A (zh) * | 2019-12-13 | 2021-06-15 | 航天信息股份有限公司 | 一种多频段的射频电路 |
JP2021097322A (ja) * | 2019-12-17 | 2021-06-24 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
JP2021100213A (ja) * | 2019-12-23 | 2021-07-01 | 株式会社村田製作所 | 高周波モジュール及び通信装置 |
JP2021145282A (ja) * | 2020-03-13 | 2021-09-24 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
JP2021158554A (ja) * | 2020-03-27 | 2021-10-07 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
JP2021158556A (ja) * | 2020-03-27 | 2021-10-07 | 株式会社村田製作所 | 高周波モジュールおよび通信装置 |
CN112688651B (zh) * | 2020-11-30 | 2022-10-11 | 中国电子科技集团公司第五十五研究所 | 具有高谐波抑制单刀多掷开关 |
TWI810037B (zh) * | 2022-08-24 | 2023-07-21 | 三友電子股份有限公司 | 表面聲波多工器 |
CN118473443A (zh) * | 2023-12-29 | 2024-08-09 | 荣耀终端有限公司 | 移相电路、天线馈电控制方法、射频前端模组和电子设备 |
CN117713870B (zh) * | 2024-02-06 | 2024-06-07 | 深圳飞骧科技股份有限公司 | 多天线射频收发开关电路及射频芯片 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223021A (ja) | 1994-12-16 | 1996-08-30 | Matsushita Electric Ind Co Ltd | 1入力多出力スイッチ及び多入力1出力スイッチ |
JPH1093471A (ja) * | 1996-09-11 | 1998-04-10 | Murata Mfg Co Ltd | 信号切換えスイッチ |
JP2005020140A (ja) * | 2003-06-24 | 2005-01-20 | Ngk Spark Plug Co Ltd | アンテナスイッチモジュール及びそれを用いた無線電話通信装置 |
JP2005123740A (ja) | 2003-10-14 | 2005-05-12 | Fujitsu Media Device Kk | 高周波スイッチモジュール |
JP2008124556A (ja) | 2006-11-08 | 2008-05-29 | Nec Electronics Corp | スイッチ回路および半導体装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3798855B2 (ja) * | 1996-09-11 | 2006-07-19 | 株式会社村田製作所 | 信号切換えスイッチ |
WO2003015301A1 (en) * | 2001-08-10 | 2003-02-20 | Hitachi Metals, Ltd. | Bypass filter, multi-band antenna switch circuit, and layered module composite part and communication device using them |
US6995630B2 (en) * | 2001-10-24 | 2006-02-07 | Matsushita Electric Industrial Co., Ltd. | High-frequency compound switch module and communication terminal using it |
CN1327733C (zh) * | 2002-08-08 | 2007-07-18 | 松下电器产业株式会社 | 高频器件 |
US7076216B2 (en) * | 2002-09-17 | 2006-07-11 | Hitachi Metals, Ltd. | High-frequency device, high-frequency module and communications device comprising them |
US7359677B2 (en) * | 2005-06-10 | 2008-04-15 | Sige Semiconductor Inc. | Device and methods for high isolation and interference suppression switch-filter |
KR100747978B1 (ko) * | 2005-06-17 | 2007-08-08 | 엘지이노텍 주식회사 | 프론트 앤드 모듈 및 그 제조방법 |
JP4710977B2 (ja) * | 2006-12-19 | 2011-06-29 | 日立金属株式会社 | 高周波回路、高周波部品、及び通信装置 |
-
2009
- 2009-11-05 CN CN2009801443057A patent/CN102204100B/zh active Active
- 2009-11-05 JP JP2010536790A patent/JP5316544B2/ja active Active
- 2009-11-05 US US13/127,890 patent/US8803632B2/en active Active
- 2009-11-05 EP EP09824830.5A patent/EP2352229A4/en not_active Withdrawn
- 2009-11-05 WO PCT/JP2009/068918 patent/WO2010053131A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08223021A (ja) | 1994-12-16 | 1996-08-30 | Matsushita Electric Ind Co Ltd | 1入力多出力スイッチ及び多入力1出力スイッチ |
JPH1093471A (ja) * | 1996-09-11 | 1998-04-10 | Murata Mfg Co Ltd | 信号切換えスイッチ |
JP2005020140A (ja) * | 2003-06-24 | 2005-01-20 | Ngk Spark Plug Co Ltd | アンテナスイッチモジュール及びそれを用いた無線電話通信装置 |
JP2005123740A (ja) | 2003-10-14 | 2005-05-12 | Fujitsu Media Device Kk | 高周波スイッチモジュール |
JP2008124556A (ja) | 2006-11-08 | 2008-05-29 | Nec Electronics Corp | スイッチ回路および半導体装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2352229A4 * |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011150970A1 (en) * | 2010-06-03 | 2011-12-08 | Laird Technologies Ab | Switching arrangement for an antenna device |
WO2012014643A1 (ja) * | 2010-07-27 | 2012-02-02 | 株式会社村田製作所 | 高周波モジュール |
US9071227B2 (en) | 2010-07-27 | 2015-06-30 | Murata Manufacturing Co. Ltd. | High-frequency module |
CN103026622A (zh) * | 2010-07-27 | 2013-04-03 | 株式会社村田制作所 | 高频模块 |
JP5516738B2 (ja) * | 2010-07-27 | 2014-06-11 | 株式会社村田製作所 | 高周波モジュール |
JP2012054635A (ja) * | 2010-08-31 | 2012-03-15 | Hitachi Metals Ltd | 高周波回路、高周波部品及び通信装置 |
JP2015159546A (ja) * | 2010-09-27 | 2015-09-03 | エプコス アーゲーEpcos Ag | 回路配置 |
US9240622B2 (en) | 2010-09-27 | 2016-01-19 | Epcos Ag | Circuit arrangement including hybrids and duplexers between antenna, transmission and reception ports |
JP2013545325A (ja) * | 2010-09-27 | 2013-12-19 | エプコス アーゲー | 回路配置 |
US20130176916A1 (en) * | 2010-09-29 | 2013-07-11 | Murata Manufacturing Co., Ltd. | High-frequency module |
US9077439B2 (en) * | 2010-09-29 | 2015-07-07 | Murata Manufacturing Co., Ltd. | High-frequency module |
JP2012080160A (ja) * | 2010-09-30 | 2012-04-19 | Hitachi Metals Ltd | 高周波回路部品、及び通信装置 |
EP2662985A1 (en) * | 2011-01-06 | 2013-11-13 | Murata Manufacturing Co., Ltd. | High-frequency module |
EP2662985A4 (en) * | 2011-01-06 | 2017-03-29 | Murata Manufacturing Co., Ltd. | High-frequency module |
WO2012100579A1 (zh) * | 2011-01-28 | 2012-08-02 | 中兴通讯股份有限公司 | 处理射频信号的方法、装置和设备 |
US9319092B2 (en) | 2011-03-02 | 2016-04-19 | Murata Manufacturing Co., Ltd. | High-frequency module |
JPWO2012117992A1 (ja) * | 2011-03-02 | 2014-07-07 | 株式会社村田製作所 | 高周波モジュール |
JP5648736B2 (ja) * | 2011-03-02 | 2015-01-07 | 株式会社村田製作所 | 高周波モジュール |
WO2012117992A1 (ja) * | 2011-03-02 | 2012-09-07 | 株式会社村田製作所 | 高周波モジュール |
US20140002209A1 (en) * | 2011-03-24 | 2014-01-02 | Murata Manufacturing Co., Ltd. | High-frequency module |
US9300019B2 (en) * | 2011-03-24 | 2016-03-29 | Murata Manufacturing Co., Ltd. | High-frequency module |
CN102891698A (zh) * | 2011-07-19 | 2013-01-23 | 英飞凌科技股份有限公司 | 具有天线开关和带阻滤波器的电路装置以及对应方法 |
US8970323B2 (en) | 2011-07-19 | 2015-03-03 | Infineon Technologies Ag | Circuit arrangement with an antenna switch and a bandstop filter and corresponding method |
JP2016054515A (ja) * | 2011-08-08 | 2016-04-14 | スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 | フィルタモジュール |
US9240383B2 (en) | 2012-02-21 | 2016-01-19 | Murata Manufacturing Co., Ltd. | High frequency switch module |
WO2013125362A1 (ja) * | 2012-02-21 | 2013-08-29 | 株式会社村田製作所 | 高周波スイッチモジュール |
JP5610099B2 (ja) * | 2012-02-21 | 2014-10-22 | 株式会社村田製作所 | 高周波スイッチモジュール |
US9166285B2 (en) | 2012-05-07 | 2015-10-20 | Murata Manufacturing Co., Ltd. | High-frequency module |
JP2013236166A (ja) * | 2012-05-07 | 2013-11-21 | Murata Mfg Co Ltd | 高周波モジュール |
US20130300517A1 (en) * | 2012-05-09 | 2013-11-14 | Murata Manufacturing Co., Ltd. | Switch module |
US9263780B2 (en) * | 2012-05-09 | 2016-02-16 | Murata Manufacturing Co., Ltd. | Switch module |
JP2017510130A (ja) * | 2014-01-17 | 2017-04-06 | クアルコム,インコーポレイテッド | 切替え可能なアンテナアレイ |
US10164585B2 (en) | 2015-02-20 | 2018-12-25 | Murata Manufacturing Co., Ltd. | Radio frequency filter, radio frequency front-end circuit, communication device, and design method for radio frequency filter |
WO2016133028A1 (ja) * | 2015-02-20 | 2016-08-25 | 株式会社村田製作所 | 高周波フィルタ、高周波フロントエンド回路、通信機器、および、高周波フィルタの設計方法 |
JP2017038352A (ja) * | 2015-08-10 | 2017-02-16 | 株式会社村田製作所 | スイッチモジュール、フロントエンドモジュールおよびスイッチモジュールの駆動方法 |
JP2017098632A (ja) * | 2015-11-18 | 2017-06-01 | 株式会社村田製作所 | 高周波モジュール及び通信装置 |
US10944382B2 (en) | 2016-05-12 | 2021-03-09 | Murata Manufacturing Co., Ltd. | Switch module |
JP2017204761A (ja) * | 2016-05-12 | 2017-11-16 | 株式会社村田製作所 | スイッチモジュール |
US11362644B2 (en) | 2016-05-12 | 2022-06-14 | Murata Manufacturing Co., Ltd. | Switch module |
US11329630B2 (en) | 2016-05-12 | 2022-05-10 | Murata Manufacturing Co., Ltd. | Switch module |
US10153803B2 (en) | 2016-09-20 | 2018-12-11 | Kabushiki Kaisha Toshiba | Receiving circuit, wireless communication module, and wireless communication device |
WO2018061782A1 (ja) * | 2016-09-27 | 2018-04-05 | 株式会社村田製作所 | 高周波フロントエンド回路及び通信装置 |
US10686421B2 (en) | 2016-09-27 | 2020-06-16 | Murata Manufacturing Co., Ltd. | Radio frequency front end circuit and communication apparatus |
WO2018088410A1 (ja) * | 2016-11-11 | 2018-05-17 | 株式会社村田製作所 | スイッチic、高周波モジュールおよび通信装置 |
US10840956B2 (en) | 2016-11-11 | 2020-11-17 | Murata Manufacturing Co., Ltd. | Switch IC, high-frequency module, and communication apparatus |
JP2020537419A (ja) * | 2017-10-12 | 2020-12-17 | エイブイエックス・アンテナ・インコーポレーテッド | Rf信号アグリゲータおよびそれを実装するアンテナシステム |
US11671069B2 (en) | 2017-10-12 | 2023-06-06 | KYOCERA AVX Components (San Diego), Inc. | RF signal aggregator and antenna system implementing the same |
WO2019172033A1 (ja) * | 2018-03-08 | 2019-09-12 | 株式会社村田製作所 | マルチプレクサ、高周波フロントエンド回路および通信装置 |
US12040822B2 (en) | 2018-03-08 | 2024-07-16 | Murata Manufacturing Co., Ltd. | Multiplexer, radio frequency front-end circuit, and communication device |
CN112615630A (zh) * | 2020-12-08 | 2021-04-06 | 惠州Tcl移动通信有限公司 | 一种提高射频隔离度的电路、方法及移动终端 |
CN112615630B (zh) * | 2020-12-08 | 2022-07-08 | 惠州Tcl移动通信有限公司 | 一种提高射频隔离度的电路、方法及移动终端 |
WO2022239601A1 (ja) * | 2021-05-14 | 2022-11-17 | 株式会社村田製作所 | スイッチ装置およびフロントエンド回路 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010053131A1 (ja) | 2012-04-05 |
CN102204100B (zh) | 2013-12-25 |
EP2352229A1 (en) | 2011-08-03 |
EP2352229A4 (en) | 2014-11-26 |
US8803632B2 (en) | 2014-08-12 |
JP5316544B2 (ja) | 2013-10-16 |
CN102204100A (zh) | 2011-09-28 |
US20110260806A1 (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5316544B2 (ja) | 高周波回路、高周波部品、及びマルチバンド通信装置 | |
US7242268B2 (en) | Unbalanced-balanced multiband filter module | |
JP6471810B2 (ja) | 分波装置及びその設計方法 | |
KR101680927B1 (ko) | 고주파 회로, 고주파 회로 부품 및 통신 장치 | |
KR102395710B1 (ko) | 고주파 모듈 및 통신 장치 | |
US7696842B2 (en) | Composite high-frequency component and mobile communication apparatus | |
JP5029946B2 (ja) | スイッチモジュール | |
JP3810011B2 (ja) | 高周波スイッチモジュールおよび高周波スイッチモジュール用多層基板 | |
JP2004166258A (ja) | 平衡−不平衡型マルチバンドフィルタモジュール | |
WO2003065604A1 (fr) | Circuit de commutation et partie haute frequence composite | |
US20090128254A1 (en) | High frequency electronic component | |
US20130176915A1 (en) | High-frequency module | |
JP4702622B2 (ja) | スイッチモジュール | |
JP5582400B2 (ja) | 高周波回路部品、及び通信装置 | |
JP5041285B2 (ja) | 高周波部品 | |
KR102499032B1 (ko) | 고주파 모듈 및 통신 장치 | |
CN213879810U (zh) | 高频模块和通信装置 | |
JP2004140696A (ja) | 高周波スイッチ回路およびこれを用いたアンテナスイッチモジュール、アンテナスイッチ積層モジュールならびに通信装置 | |
JP4465286B2 (ja) | 高周波選択回路、高周波モジュール及び無線通信装置 | |
JP4702620B2 (ja) | 高周波スイッチモジュール | |
JP3729396B2 (ja) | 高周波部品 | |
KR102452114B1 (ko) | 고주파 모듈 및 통신 장치 | |
US11418226B2 (en) | Radio frequency module and communication device | |
JP2003142981A5 (ja) | ||
KR20210116233A (ko) | 고주파 모듈 및 통신 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980144305.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09824830 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010536790 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2009824830 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009824830 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13127890 Country of ref document: US |