WO2010050035A1 - 光電変換装置の製造方法 - Google Patents
光電変換装置の製造方法 Download PDFInfo
- Publication number
- WO2010050035A1 WO2010050035A1 PCT/JP2008/069803 JP2008069803W WO2010050035A1 WO 2010050035 A1 WO2010050035 A1 WO 2010050035A1 JP 2008069803 W JP2008069803 W JP 2008069803W WO 2010050035 A1 WO2010050035 A1 WO 2010050035A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- film
- forming step
- photoelectric conversion
- amorphous silicon
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F19/00—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules
- H10F19/30—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells
- H10F19/31—Integrated devices, or assemblies of multiple devices, comprising at least one photovoltaic cell covered by group H10F10/00, e.g. photovoltaic modules comprising thin-film photovoltaic cells having multiple laterally adjacent thin-film photovoltaic cells deposited on the same substrate
- H10F19/33—Patterning processes to connect the photovoltaic cells, e.g. laser cutting of conductive or active layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/162—Non-monocrystalline materials, e.g. semiconductor particles embedded in insulating materials
- H10F77/166—Amorphous semiconductors
- H10F77/1662—Amorphous semiconductors including only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a method for manufacturing a photoelectric conversion device, and more particularly to a solar cell using silicon as a power generation layer.
- a photoelectric conversion device that receives light and converts it into electric power is known.
- a solar cell is known as such a photoelectric conversion device.
- thin-film solar cells that use a thin-film silicon layer as a power generation layer are manufactured for large-area substrates that can reduce the material cost of silicon because the power generation layer is thin. The film is attracting attention because it can be used to obtain a large-area product.
- FIG. 1 is a schematic cross-sectional view showing an example of such a thin film solar cell.
- This thin film solar cell includes a substrate 101, a transparent electrode layer 102, a photoelectric conversion layer 103, and a back electrode layer 104.
- the photoelectric conversion layer 103 includes a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer, and has a structure in which the layers are stacked in this order from the transparent electrode layer 102 side.
- the transparent electrode layer 102 is formed on the substrate 101. Subsequently, a p-type amorphous silicon layer, an i-type amorphous silicon layer, and an n-type amorphous silicon layer are sequentially formed on the transparent electrode layer 102 as the photoelectric conversion layer 103. Then, the back electrode layer 104 is formed on the n-type amorphous silicon layer.
- the photoelectric conversion layer 103 is formed by a vapor phase growth method such as a plasma CVD method.
- the photoelectric conversion layer 103 which is a layer that converts light into electric power.
- Patent Document 1 can be cited as a technique for devising the photoelectric conversion layer.
- Patent Document 1 describes that in a pin-type amorphous Si solar cell having a p-type layer, an i-type layer, and an n-type layer formed on a transparent electrode, the layer on the transparent electrode side has a three-layer structure. Has been. In addition, it is described that the central layer of the three-layer structure is an a-Si: H layer, and the other two layers are an a-SiC: H layer and an a-SiN: H layer, respectively. In addition, it is described that the thickness of the two layers is smaller in the layer on the i-type layer side than the thickness of the central layer. According to Patent Document 1, by adopting the above-described configuration, impurity diffusion is suppressed and cell characteristics are improved.
- Patent Document 2 when an i-type microcrystalline semiconductor layer is provided over an n-type silicon-based semiconductor layer, the n-type silicon-based semiconductor layer is divided into an n-type amorphous semiconductor layer and an n-type microcrystalline semiconductor layer. It is described that it is set as the laminated structure of.
- the n-type silicon semiconductor layer has a two-layer structure, the crystallization rate of the i-type microcrystalline semiconductor layer stacked thereon can be easily controlled.
- microcrystalline silicon is mixed in an n-type amorphous silicon layer in order to improve battery performance. It is done. That is, when the crystallization rate of the n-type amorphous silicon layer is increased, the short circuit current is improved and the battery performance is improved.
- the microcrystalline silicon is a layer partially existing in the amorphous silicon layer, it is described as an amorphous silicon layer as long as the film characteristics are mainly in an amorphous state.
- the crystallization rate of the n-type amorphous silicon layer depends on the state of the underlying material. For example, the crystallization rate differs between the case where a glass substrate is used as a base and the case where an i-type amorphous silicon layer is used as a base as shown in FIG. In addition, when the glass substrate is used as a base, crystallization is less likely than when the i-type amorphous silicon layer is used as a base.
- the crystallization rate also depends on the film forming conditions. When film formation is performed by the plasma CVD method, the crystallization rate can be controlled by changing the dilution rate of the material gas and the distance between the electrode substrates. However, when film forming conditions that increase the crystallization rate are selected, there is a tendency that the film forming speed is remarkably lowered to lower the productivity, or the film thickness distribution is deteriorated to adversely deteriorate the performance.
- Patent Document 1 The technique described in Patent Document 1 described above is a technique for improving cell characteristics by suppressing impurity diffusion.
- the i-type amorphous silicon layer When the i-type amorphous silicon layer is used as a base, the crystallization rate is easily increased as compared with the case where a glass substrate is used as a base, but it is not sufficient.
- Japanese Patent Application Laid-Open No. H10-228561 does not describe that when the n layer is formed on the i-type amorphous silicon layer, the crystallization rate of the n layer and the film forming speed are both compatible.
- Patent Document 2 described above describes a case where an i layer is formed on an n layer. However, when an n layer is formed on an i-type amorphous silicon layer, the crystallization of the n layer is performed. It is not described about making the rate and the film forming speed compatible.
- an object of the present invention is to provide a photoelectric conversion device capable of obtaining a desired crystallization rate without greatly extending the film formation time when an n-type amorphous silicon layer is provided on an i-type amorphous silicon layer. It is to provide a manufacturing method.
- the photoelectric conversion device manufacturing method of the present invention includes a p-layer formation step (step S21) for forming a p-type amorphous silicon layer (3P), and an i-type amorphous silicon layer (3P) on the p-type amorphous silicon layer (3P).
- 3I) forming an i layer (step S22), and forming an n type amorphous silicon layer (3N) on the i type amorphous silicon layer (3I) (step S23).
- the n layer forming step (S23) includes a first n layer forming step (step S23-1) for forming a first n layer (3N-1) on the i-type amorphous silicon layer (3I), and a first n layer (3N).
- the film forming conditions in the first n layer forming step (S23-1) are such that the crystallization rate is higher when the film is formed on the same base substrate than the film forming conditions in the second n layer forming step (S23-2). It is a condition.
- the n layer has a two-layer structure.
- the first n layer manufactured under conditions that increase the crystallization rate is used as a base, the crystallization rate can be easily increased.
- the second n layer can be obtained at a desired crystallization rate without reducing the film forming speed of the second n layer. That is, by using the first n layer as a base for depositing the second n layer, the second n layer having a high crystallization rate can be obtained even at a high deposition rate.
- the n-layer formation step (S23) is preferably performed by a high-frequency plasma CVD method in which a material gas is supplied to generate plasma to form a film.
- the film forming speed in the first n layer forming step (S23-1) is slower than the film forming speed in the second n layer forming step.
- the first n layer is formed at a low speed, the density of ions in the plasma and the energy incident on the film forming surface are reduced, so that damage to the film forming portion where the film is grown can be suppressed.
- the second n layer can be obtained as a second n layer having a high crystallization rate even at a high film forming speed due to the influence of the first n layer which is a good underlayer. It is preferable to form the first n layer under conditions that facilitate a high crystallization rate.
- the doping rate of the element-containing gas is smaller than the doping rate of the impurity element-containing gas in the first n layer forming step (S23-1). Increasing the doping rate promotes the formation of a film to be n-type. When n-type conversion is promoted, a high crystallization rate is easily obtained. However, when the doping rate is increased, the light transmittance is lowered and the performance of the solar cell is decreased.
- the doping rate in the second n layer is made smaller than the doping rate in the first n layer (the doping rate of the first n layer). It is preferable to increase the crystallization rate while maintaining the light transmittance of the entire n layer. In other words, it is preferable to form the first n layer under conditions that facilitate a higher crystallization rate than the second n layer.
- the dilution rate by the dilution gas in the second n layer formation step is the dilution rate in the first n layer formation step.
- H 2 when H 2 is used as the dilution gas, the amount of H 2 taken into the film increases if the dilution rate is high. When the amount of H 2 taken into the film is large, the film growth becomes dense and the film is easily crystallized.
- the second n layer is a good underlayer of the first n layer. Due to the influence, the second n layer having a high crystallization rate can be obtained. In other words, it is preferable to form the first n layer under conditions that facilitate a higher crystallization rate than the second n layer.
- the second n layer forming step it is preferable to perform film formation under a lower pressure than in the first n layer forming step.
- first n layer is formed under high pressure
- collision of H 2 in the plasma is promoted, and H 2 is easily taken into the film. Therefore, when film formation is performed under high pressure, crystallization is promoted.
- the pressure is high, the film distribution tends to deteriorate, and the performance of the solar cell may be reduced.
- the second n layer forming step by performing the second n layer forming step under a lower pressure than the first n layer forming step (the first n layer forming step is performed under a higher pressure than the second n layer forming step), the first n layer that is the base layer Thus, the second n layer having a high crystallization rate can be obtained. It is preferable to form the first n layer under conditions that facilitate a higher crystallization rate than the second n layer.
- the high frequency power for decomposing the material gas is generated by generating plasma with higher high frequency power (RF power) than in the first n layer forming step.
- RF power high frequency power
- the first n layer is formed with low RF power
- damage to the film is reduced and crystallization is promoted.
- the film forming speed decreases. That is, the second n layer forming step is performed with a higher RF power than the first n layer forming step (the first n layer forming step is set to a low RF power), whereby the second n layer is a good underlayer of the first n layer. Due to the influence, the second n layer having a high crystallization rate can be obtained even at a high film forming speed. It is preferable to form the first n layer under conditions that facilitate a higher crystallization rate than the second n layer.
- the thickness of the film formed in the second n layer forming step is preferably larger than the thickness of the film formed in the first n layer forming step.
- the film thickness of the first n layer which slows the film formation speed due to the film forming conditions for increasing the crystallization rate, is thin, so that the time required to form the first n layer can be shortened.
- the second n layer having a high crystallization rate can be obtained even at a high film forming speed due to the influence of the first n layer which is a good underlayer. This is preferable because the time required to form the entire n layer is not significantly extended and the productivity is not lowered.
- the n layer forming step (S23) is further performed before the first n layer forming step (S23-1), and the surface of the i-type amorphous silicon layer is exposed to a material gas without generating plasma.
- An exposure step By performing the gas exposure step, the concentration of the material gas in the film forming chamber can be stabilized. Thus, the film can be uniformly formed in the subsequent film forming steps (S23-1 and 23-2).
- exposure to the material gas stabilizes the substrate temperature at the deposition temperature, and removes impurities adsorbed on the surface without damaging the surface of the i-type amorphous silicon layer by ion bombardment during plasma generation.
- a desired crystallization rate can be obtained without greatly reducing the film forming speed and extending the film forming time.
- FIG. 2 is a schematic cross-sectional view showing a configuration of a thin film solar cell module manufactured by the method for manufacturing a thin film solar cell (photoelectric conversion device) of the present embodiment.
- This thin-film solar cell module is a silicon-based solar cell, and includes a substrate 1, a transparent electrode layer 2, a photoelectric conversion layer 3, and a back electrode layer 4.
- the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4 are laminated in this order on the back surface (surface opposite to the light receiving surface) of the substrate 1.
- the silicon-based is a generic name including silicon (Si), silicon carbide (SiC), and silicon germanium (SiGe).
- Si silicon carbide
- SiGe silicon germanium
- the substrate 1 is for supporting the solar cell film (the transparent electrode layer 2, the photoelectric conversion layer 3, and the back electrode layer 4).
- a light-transmitting substrate is used as the substrate 1.
- a glass substrate can be used as the substrate 1.
- the transparent electrode layer 2 is a highly transparent conductor.
- an oxide such as ZnO 2 or SnO 2 can be used.
- the back electrode layer 4 it is preferable to use a material that reflects light in order to reflect light that could not be absorbed by the photoelectric conversion layer and enter the photoelectric conversion layer 3 again.
- a material that reflects light in order to reflect light that could not be absorbed by the photoelectric conversion layer and enter the photoelectric conversion layer 3 again.
- an Ag film or the like can be used as the back electrode layer 4.
- the photoelectric conversion layer 3 is a layer that converts light into electric power.
- the photoelectric conversion layer 3 is a semiconductor layer containing amorphous silicon.
- the photoelectric conversion layer 3 includes a p-type amorphous silicon layer 3P (hereinafter referred to as p-layer 3P), an i-type amorphous silicon layer 3I (hereinafter referred to as i-layer 3I), and an n-type amorphous silicon layer 3N (hereinafter referred to as the transparent electrode layer 2). , N layer 3N) are stacked in this order.
- the present invention is not limited to this example as long as the photoelectric conversion layer includes a pin-type amorphous silicon layer.
- a multi-junction type (tandem type) solar cell in which an amorphous silicon solar cell, a crystalline silicon solar cell, or a silicon germanium solar cell is laminated in one to a plurality of layers may be used.
- the p layer 3P is, for example, a layer obtained by doping amorphous silicon with impurity atoms such as boron.
- the i layer 3I is, for example, an intrinsic amorphous silicon layer.
- the n layer 3N is a layer in which amorphous and microcrystals are mixed.
- the n layer 3N is doped with impurity atoms such as phosphorus.
- the n layer 3N has a two-layer structure of a first n layer 3N-1 in contact with the i layer 3I and a second layer 3N-2 provided on the first n layer 3N-1.
- the first n layer and the second n layer are layers formed under different film forming conditions.
- the film thickness of the second n layer 3N-2 is larger than the film thickness of the first n layer 3N-1.
- FIG. 3 is a flowchart showing the overall flow of the method for manufacturing a thin film solar cell.
- the transparent electrode layer 2 is formed on the substrate 1 (step S10).
- the photoelectric conversion layer 3 is formed on the transparent electrode layer 2 (step S20).
- the p layer 3P is first formed (step S21), the i layer 3I is then formed (step S22), and the n layer 3N is further formed (step S23).
- the back electrode layer 4 is formed on the photoelectric conversion layer 3 (step S30).
- step S21 to 23 film formation is performed by the plasma CVD method.
- the substrate 1 is placed in a film forming chamber having a pair of electrodes. Then, high-frequency power is supplied between the pair of electrodes while introducing the material gas into the film forming chamber. Thereby, plasma discharge occurs in the film forming chamber, the material gas is excited, and the substrate is formed.
- a p-layer 3P is manufactured by using a source gas made of SiH 4 (silane-containing gas) and B 2 H 6 (impurity element-containing gas) diluted with H 2 (dilution gas) as a material gas.
- a source gas made of SiH 4 (silane-containing gas) and B 2 H 6 (impurity element-containing gas) diluted with H 2 (dilution gas) as a material gas.
- the silane-containing gas, the impurity element-containing gas, and the dilution gas in this step are not limited to the materials described above, and other gases can be used.
- the i layer 3I is formed using a material gas obtained by diluting SiH 4 (source gas) with H 2 (dilution gas).
- source gas diluting SiH 4
- H 2 dilution gas
- the raw material gas and dilution gas in this step it is not limited to the above-mentioned material, It is also possible to use other gas which can exhibit the same effect.
- an n layer 3N is formed using a source gas made of SiH 4 (silane-containing gas) and PH 3 (impurity element-containing gas) diluted with H 2 (dilution gas) as a material gas.
- a source gas made of SiH 4 (silane-containing gas) and PH 3 (impurity element-containing gas) diluted with H 2 (dilution gas) as a material gas.
- the first n layer 3N-1 is formed (step S23-1), and then the second n layer 3N-2 is formed (step S23-2).
- the silane-containing gas, the impurity element-containing gas, and the dilution gas in this step are not limited to the above-described materials, and other gases that can exhibit the same effect can be used.
- the operation in step S23 is devised. That is, the film forming conditions in S23-1 are set such that the crystallization rate is higher when the base is the same as the film forming conditions in S23-2. Further, as described above, the film formation is performed so that the film thickness of the second n layer 3N-2 is larger than the film thickness of the first n layer 3N-2. Note that the film forming conditions in step S23-2 are continuously changed from the film forming conditions in step S23-1. That is, the introduction of the material gas into the film forming chamber and the generation of plasma are not stopped. As a result, the interface between the first n layer 3N-1 and the second n layer 3N-2 becomes continuous, and it is possible to suppress the deterioration of the electrical and optical characteristics.
- the film forming conditions for increasing the crystallization rate of the first n layer 3N-1 will be described.
- the film forming speed in S23-1 slower than the film forming speed in S23-2
- the film forming conditions in S23-1 are such conditions that the crystallization rate becomes higher when compared with the same base. It can be.
- the conditions for increasing the crystallization rate are preferably a Raman ratio of 4 or more of the film deposited on the glass substrate.
- Raman ratio of crystalline Si of 520 cm -1 in Raman spectroscopy rated intensity and 480 cm -1 in the amorphous silicon ratio of the intensity of the (amorphous Si) (intensity of the intensity / amorphous Si crystal Si)
- the back electrode of the photoelectric conversion device is dissolved and removed with a solvent such as hydrogen peroxide solution to obtain a specimen.
- measurement light is irradiated from the film surface side of the n-layer film formed on the glass substrate.
- a laser single color is used, and for example, a double wave (wavelength: 532 nm) of YAG laser light is preferably used.
- the n-layer film When measurement light is incident from the film surface side of the n-layer film, Raman scattering is observed, but the measurement light and a part of the scattered light are absorbed in the n-layer film. Therefore, for example, when a double wave of YAG laser light is used as measurement light, information from the incident surface to a depth of about 0.1 ⁇ m can be obtained.
- the i-layer, p-layer, and transparent electrode layer are formed between the n-layer film and the glass substrate, the status of the n-layer film is estimated by subtracting the separately measured value as the background. You can also.
- the Raman ratio is distributed on the film formed on the glass substrate by the film forming apparatus structure or the like in the film formation. For example, there is a local Raman ratio distribution due to a change in the raw material gas composition on the surface of the substrate during film formation, and an overall Raman ratio distribution due to plasma or temperature distribution. For this reason, it evaluates as a whole average value as much as possible on the board
- the first n layer 3N-1 can be used as a base film for obtaining a high crystallization rate.
- the crystallization rate of the second n layer 3N-2 can be increased as compared with the case where the film is formed directly on the i layer 3I under the same conditions.
- the crystallization rate can be increased as the entire n layer 3N, and the battery performance can be improved.
- the thickness of the first n layer 3N-1 need only be able to function as a base film having a high crystallization rate, and therefore does not need to be thick, and can be made thinner than the second n layer 3N-2. Accordingly, the time required for forming the first n layer 3N-1 is not greatly extended despite the low film forming conditions. On the other hand, since the second n layer 3N-2 can be formed at a high speed while maintaining a high crystallization rate, the time required for forming the entire n layer 3N can be equal or shortened.
- FIG. 4 is a graph showing the relationship between the film thickness ratio between the first n layer 3N-1 and the second n layer 3N-2, the production amount (film forming speed), and the performance (power generation efficiency).
- white square plots indicate performance
- black diamond plots indicate production.
- Each of the performance and the production amount is shown as a relative value when the target value is 1 or more.
- increasing the film thickness ratio of the first n-layer 3N-1 also improves the performance because the crystallization rate of the n-layer film increases, but the production volume decreases. Go.
- the film thickness ratio of the first n layer 3N-1 (the first n layer / (the first n layer + the second n layer)) is larger than 0 and smaller than 0.5, both the performance and the production amount are targeted. Satisfy value. Therefore, by making the film thickness of the second n layer 3N-2 larger than that of the first n layer 3N-1, a high performance thin film solar cell can be obtained while maintaining a high production amount.
- the crystallization rate of the n layer 3 can be increased without slowing down the film forming speed, and the battery performance can be improved.
- FIGS. 5A to 5D are schematic views showing an embodiment of a method for manufacturing a solar cell panel according to the present invention.
- SnO 2 tin oxide film
- an alkali barrier film (not shown) may be formed between the substrate 1 and the transparent electrode film in addition to the transparent electrode film.
- a silicon oxide film SiO 2
- the photoelectric conversion layer 3 is formed on the transparent conductive layer 2 using SiH 4 gas and H 2 gas as main raw materials.
- the photoelectric conversion layer 3 is a p-layer: B-doped amorphous SiC and a film thickness of 10 nm to 30 nm, an i-layer: amorphous Si and a film thickness of 200-350 nm, and an n-layer: P-doped microcrystalline Si.
- the film thickness is 30 nm to 50 nm.
- a buffer layer may be provided between the p layer film and the i layer film in order to improve the interface characteristics.
- the n layer is formed by changing the film forming conditions between the first n layer and the second n layer.
- FIG. 5A (e) The substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode-pumped YAG laser is incident from the film surface side of the photoelectric conversion layer 3 as shown by the arrow in the figure.
- Pulse oscillation 10 to 20 kHz
- the laser power is adjusted so as to be suitable for the processing speed
- laser etching is performed so that the groove 6 is formed on the side of about 100 to 150 ⁇ m of the laser etching line of the transparent electrode layer.
- the position of the laser etching line is selected in consideration of positioning intersection so as not to intersect with the etching line in the previous process.
- the back electrode layer 4 is formed by stacking an Ag film: 200 to 500 nm and a Ti film having a high anticorrosion effect: 10 to 20 nm in this order as a protective film.
- a GZO (Ga doped ZnO) film is formed between the photoelectric conversion layer 3 and the back electrode layer 4 to a thickness of 50 to 100 nm, a sputtering apparatus. May be provided by forming a film.
- FIG. 5B (b) The substrate 1 is placed on the XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is incident from the substrate 1 side as indicated by the arrow in the figure.
- the laser light is absorbed by the photoelectric conversion layer 3, and the back electrode layer 4 is exploded and removed using the high gas vapor pressure generated at this time.
- Pulse oscillation 1 to 10 kHz, the laser power is adjusted so as to be suitable for the processing speed, and laser etching is performed on the lateral side of about 250 to 400 ⁇ m of the laser etching line of the transparent electrode layer 2 so as to form the groove 7. .
- the power generation region is divided to eliminate the influence that the serial connection portion due to laser etching is likely to be short-circuited at the film edge around the substrate edge.
- the substrate 1 is placed on an XY table, and the second harmonic (532 nm) of the laser diode pumped YAG laser is incident from the substrate 1 side.
- the laser light is absorbed by the transparent electrode layer 2 and the photoelectric conversion layer 3, and the back electrode layer 4 explodes using the high gas vapor pressure generated at this time, and the back electrode layer 4 / photoelectric conversion layer 3 / transparent electrode layer 2 is removed.
- Pulse oscillation 1 to 10 kHz
- the laser power is adjusted so as to be suitable for the processing speed, and the position of 5 to 20 mm from the end of the substrate 1 is placed in the X-direction insulating groove 8 as shown in FIG. 5C (a).
- Laser etching to form At this time, the Y-direction insulating groove does not need to be provided because the film surface polishing removal process in the peripheral region of the substrate 1 is performed in a later step.
- the insulating groove 8 exhibits an effective effect in suppressing the intrusion of external moisture from the end of the solar cell panel into the solar cell module by terminating the etching at a position 5 to 10 mm from the end of the substrate 1. preferable.
- the laser beam in the above process is made into a YAG laser, there exists what can use a YVO4 laser, a fiber laser, etc. similarly.
- FIG. 5C (a: view from the solar cell film side, b: view from the substrate side of the light receiving surface):
- the laminated film around the substrate 1 (peripheral region 10) has a step and is easy to peel off. Remove.
- the X direction is closer to the substrate end than the insulating groove 8 provided in the step of FIG.
- FIG. 5D At the terminal box mounting portion, an opening through window is provided in the back sheet 11 and the current collector plate 12 is taken out. A plurality of layers of insulating materials are installed in the opening through window portion to suppress intrusion of moisture and the like from the outside.
- the copper foil 12 arranges an insulating sheet wider than the copper foil width.
- an adhesive filler sheet made of EVA (ethylene vinyl acetate copolymer) or the like is disposed so as to cover the entire solar cell module and not protrude from the substrate 1.
- EVA ethylene vinyl acetate copolymer
- the back sheet 11 has a three-layer structure of PET sheet / AL foil / PET sheet so that the waterproof and moisture proof effect is high. While the sheet up to the back sheet 11 is arranged at a predetermined position, the EVA is crosslinked and brought into close contact with the laminator while degassing the inside in a reduced pressure atmosphere and pressing at about 150 to 160 ° C.
- the present invention is not limited to this example as long as the photoelectric conversion layer includes a pin-type amorphous silicon layer.
- the same applies to other types of thin-film solar cells such as multi-junction (tandem) solar cells in which amorphous silicon solar cells, crystalline silicon solar cells, and silicon germanium solar cells are laminated in one to multiple layers. It is applicable to.
- the present invention can be similarly applied to a solar cell manufactured on a non-light-transmitting substrate such as a metal substrate or the like, on which light is incident from the side opposite to the substrate.
- step S23 the film forming conditions in the step of forming the n layer (step S23) are further devised compared to the first embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
- the doping rate of the impurity element when forming the first n layer 3N-1 (S23-1) is higher than that when forming the second n layer 3N-2 (S23-2). Make it high.
- the doping rate is represented by the volume ratio of the impurity element-containing gas to the silane-containing gas. That is, when SiH 4 is used as the silane-containing gas and PH 3 is used as the impurity element-containing gas, the doping rate is expressed as PH 3 / SiH 4 in volume ratio.
- the flow rate of SiH 4 is 500 (sccm) and the flow rate of PH 3 is 6 (sccm).
- PH 3 is actually diluted 1000 times with H 2 and introduced into the film forming chamber.
- the flow rate of SiH 4 is 400 (sccm)
- the flow rate of PH 3 is 4 (sccm).
- FIG. 6 is a graph showing the relationship between the doping rate, the deposition rate, and the conductivity of the deposited film when the n layer is deposited under a single deposition condition.
- the white square plot indicates the conductivity
- the black diamond plot indicates the film forming speed. Further, the conductivity and the film forming speed are shown as relative values when the target value is 1 or more.
- FIG. 7 is a graph showing the relationship between the conductivity of the n layer and the curvature factor (FF). As shown in FIG. 7, although the effect is small, if the conductivity of the n layer is high, the internal resistance of the battery is lowered, and the light transmittance is also improved because the crystallization rate is improved. , F.
- FF curvature factor
- the n-layer has a two-layer structure, and the crystallization rate of the first layer is increased by increasing the doping rate when forming the first n-layer 3N-1 of the first layer. Can do.
- the crystallization rate of the second n-layer 3N-2 as the second layer can be kept high as compared with the case where the film is formed directly on the i-layer. That is, the first n layer 3N-1 can be used as a base film for obtaining a high crystallization rate.
- the second n layer 3N-2 can maintain a high crystallization rate even in a state where the doping rate is lowered and the film forming speed is improved due to the influence of the first n layer 3N-1 as a good underlayer.
- the electrical conductivity can be increased without reducing the production amount, and it becomes easy to satisfy the target values of both the film forming speed and the electrical conductivity.
- step S23 the film forming conditions in the step of forming the n layer (step S23) are further devised as compared with the above-described embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
- the dilution rate of the material gas is larger than that when forming the second n layer 3N-2 (S23-2). Make it high.
- the dilution rate is represented by the volume ratio (H 2 / SiH 4 ) of the dilution gas (H 2 ) to the silane-containing gas (SiH 4 ).
- the flow rate of SiH 4 is 500 (sccm), and the flow rate of H 2 is 37.5 ⁇ 10 3 ( sccm).
- the flow rate of SiH 4 is 400 (sccm) and the flow rate of H 2 is 20 ⁇ 10 3 (sccm).
- FIG. 8 is a graph showing the relationship between the dilution rate, the deposition rate, and the conductivity of the deposited film when the n layer is deposited under a single deposition condition.
- the white square plot indicates the conductivity
- the black diamond plot indicates the film forming speed.
- the dilution rate and the film forming speed are shown as relative values when the target value is 1 or more.
- the conductivity is improved.
- the curvature factor is improved and the battery performance is improved. That is, it can be seen from the graph of FIG. 8 that the battery performance improves as the dilution rate is increased.
- the reason why the conductivity is improved when the dilution rate is increased is considered to be that a film having a high crystallization rate is obtained. From this, it can be seen from the results of FIG. 8 that by increasing the dilution rate, a film having a high crystallization rate can be obtained although the film-forming speed is slowed.
- the n-layer has a two-layer structure, and the crystallization rate of the first layer is increased by increasing the dilution rate when forming the first n-layer 3N-1 of the first layer. Can do.
- the crystallization rate of the second n-layer 3N-2 as the second layer can be easily increased as compared with the case where the film is formed directly on the i-layer. Therefore, the second n layer 3N-2 can be formed at a high crystal ratio without reducing the film forming speed.
- the conductivity of the n layer 3 as a whole can be increased without substantially reducing the production amount, and it becomes easy to satisfy the target values of both the film forming speed and the conductivity.
- step S23 the film forming conditions in the step of forming the n layer (step S23) are further devised as compared with the above-described embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
- the film formation is performed under a higher pressure than when the second n layer 3N-2 is formed (S23-2).
- the pressure in the film forming chamber is 175 (Pa)
- the pressure in the film forming chamber is 125 ( Pa).
- the first n layer 3N-1 Under high pressure, collision of H 2 in the plasma is promoted, and H 2 is easily taken into the film. Therefore, when film formation is performed under high pressure, crystallization is promoted. However, when the pressure is high, a film having a high crystallization rate can be obtained, but the film distribution is likely to deteriorate, and conversely, the performance of the solar cell may be lowered. Therefore, by forming the first n layer 3N-1 under a higher pressure than the second n layer 3N-2, the film forming conditions of the first n layer 3N-1 are such that the crystallization rate is higher. It can be. As a result, as described in the first embodiment, the crystallization rate of the second n layer 3N-2 can be increased without lowering the deposition rate due to the influence of the first n layer as the underlayer. .
- step S23 the film forming conditions in the step of forming the n layer (step S23) are further devised as compared with the above-described embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
- the high-frequency power for decomposing the material gas is obtained when the first n layer 3N-1 is formed (S23-1) and when the second n layer 3N-2 is formed (S23-2).
- Plasma is generated by using a low-frequency lightning force (RF power) to form a film in the film forming chamber.
- RF power when the first n layer 3N-1 is formed is 2 (kW)
- the RF power when the second n layer 3N-2 is formed is 3 (kW). It is preferable to perform film formation by generating plasma with higher RF power than in the first n layer forming step.
- the first n layer is formed with low RF power, damage to the film is reduced and crystallization is promoted.
- the film forming speed decreases. That is, the second n layer forming step is performed with a higher RF power than the first n layer forming step (the first n layer forming step is set to a low RF power), whereby the second n layer having a high crystallization rate even at a high film formation rate. Can be obtained.
- the film forming conditions of the first n layer 3N-1 are such that the crystallization rate is higher. It can be a condition.
- the film formation is performed with a high RF power, so that the film formation can be performed at a high speed.
- the first n layer 3N-1 is a good underlayer, so that the crystallization rate is not lowered.
- the crystallization rate of the second n layer 3N-2 can be increased without reducing the film forming speed.
- step S23 the film forming conditions in the step of forming the n layer (step S23) are further devised as compared with the above-described embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
- a high frequency higher than that of the standard condition is set.
- a film is formed by applying electric power.
- the high frequency is preferably about 60 MHz to about 100 MHz because it has a high film forming speed and good film thickness distribution.
- step S23 the film forming conditions in the step of forming the n layer (step S23) are further devised as compared with the above-described embodiment. Since other points can be the same as those in the first embodiment, a detailed description thereof will be omitted.
- the gas exposure step is performed before the step of forming the first n layer 3N-1 (S23-1).
- the material gas used in S23-1 and S23-2 is introduced into the film forming chamber in which the substrate is arranged, and the pressure is high (for example, 150 Pa). That is, a silane-containing gas (SiH 4 ), a dilution gas (H 2 ), and an impurity-containing gas (PH 3 ) are introduced.
- SiH 4 silane-containing gas
- H 2 dilution gas
- PH 3 impurity-containing gas
- plasma is not generated in the film forming chamber.
- the gas exposure process is performed for 15 seconds, for example.
- the concentration of the material gas in the film forming chamber can be stabilized.
- the film can be uniformly formed in the subsequent film forming steps (S23-1 and 23-2).
- the substrate temperature can be stabilized at the film forming temperature, and the impurities adsorbed on the surface can be removed without damaging the surface of the i-type amorphous silicon layer 3I by ion bombardment as in plasma generation. It is possible to make conditions suitable for forming a film having a high crystallization rate. Thereby, the crystallization rate of the n-type amorphous silicon layer 3N can be increased.
- first to seventh embodiments can be used in combination as necessary.
- first n layer and the second n layer can be formed under the film forming conditions described below.
- the flow rate of SiH 4 (silane-containing gas) introduced into the film forming chamber is set to 500 (sccm).
- the flow rate of H 2 (dilution gas) introduced into the film forming chamber is 37.5 ⁇ 10 3 (sccm).
- the flow rate of PH 3 (impurity element-containing gas) introduced into the film forming chamber is 6 (sccm).
- the pressure in the film forming chamber is 175 (Pa).
- the power of the high frequency power applied at the time of film formation is 2 (kW).
- step S23-2 The flow rate of SiH 4 (silane-containing gas) introduced into the film forming chamber is set to 400 (sccm).
- the flow rate of H 2 (dilution gas) introduced into the film forming chamber is set to 20 ⁇ 10 3 (sccm).
- the flow rate of PH 3 (impurity element-containing gas) introduced into the film forming chamber is 4 (sccm).
- the pressure in the film forming chamber is set to 125 (Pa).
- film formation is performed under the conditions as described above, film formation is performed at a lower doping rate when forming the second n layer than when forming the first n layer.
- the film is formed at a lower dilution rate when the second n-layer is formed.
- the film is formed under a lower pressure when the second n-layer is formed.
- plasma is generated with high power to form the film.
- the first n layer 3N-1 can be obtained at a high crystallization rate by changing the doping rate, dilution rate, pressure, and power parameters during the first n layer deposition and the second n layer deposition. It can be a lower membrane for. Thereby, the crystallization ratio of the entire n layer 3N can be increased without reducing the productivity.
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
2 透明電極層
3 光電変換層
4 裏面電極層
5 溝
6 溝
7 溝
8 絶縁溝
9 太陽電池セル
10 周囲領域
11 バックシート
12 導電箔
13 端子箱
20 太陽電池パネル
図面を参照しつつ、本発明の第1の実施形態について説明する。図2は、本実施形態の薄膜太陽電池(光電変換装置)の製造方法によって製造される、薄膜太陽電池モジュールの構成を示す概略断面図である。この薄膜太陽電池モジュールは、シリコン系太陽電池であり、基板1と、透明電極層2と、光電変換層3と、裏面電極層4と、を備えている。透明電極層2、光電変換層3、及び裏面電極層4は、この順で基板1の裏面(光受光面の反対側の面)上に積層されている。なお、ここで、シリコン系とはシリコン(Si)やシリコンカーバイト(SiC)やシリコンゲルマニウム(SiGe)を含む総称である。また、以下の説明において、太陽電池モジュールにバックシート、端子箱等を取りつけたものを、太陽電池パネルとして記載する。
基板1としてソーダフロートガラス基板(1.4m×1.1m×板厚:4mm)を使用する。基板端面は破損防止にコーナー面取りやR面取り加工されていることが望ましい。(2)図5A(b):
透明電極層2として酸化錫膜(SnO2)を主成分とする透明電極膜を約500nm~800nm、熱CVD装置にて約500℃で製膜処理する。この際、透明電極膜の表面は適当な凹凸のあるテクスチャーが形成される。透明電極層2として、透明電極膜に加えて、基板1と透明電極膜との間にアルカリバリア膜(図示されず)を形成しても良い。アルカリバリア膜は、酸化シリコン膜(SiO2)を50nm~150nm、熱CVD装置にて約500℃で製膜処理する。
(3)図5A(c):
その後、基板1をX-Yテーブルに設置して、YAGレーザーの第1高調波(1064nm)を、図の矢印に示すように、透明電極膜の膜面側から入射する。加工速度に適切となるようにレーザーパワーを調整して、透明電極膜を太陽電池セル9の直列接続方向に対して垂直な方向へ、基板1とレーザー光を相対移動して、溝5を形成するように幅約6mm~15mmの短冊状にレーザーエッチングする。
(4)図5A(d):
プラズマCVD装置により、減圧雰囲気:30~1000Pa、基板温度:約200℃にて光電変換層3としてのアモルファスシリコン薄膜からなるp層膜/i層膜/n層膜を順次製膜する。光電変換層3は、SiH4ガスとH2ガスとを主原料に、透明導電層2の上に製膜される。太陽光の入射する側からp層、i層、n層がこの順で積層される。光電変換層3は本実施形態では、p層:BドープしたアモルファスSiCを主とし膜厚10nm~30nm、i層:アモルファスSiを主とし膜厚200nm~350nm、n層:Pドープした微結晶Siを主とし膜厚30nm~50nmである。またp層膜とi層膜の間には界面特性の向上のためにバッファー層を設けても良い。既述のように、n層は、第1n層と、第2n層とで製膜条件を変更して、製膜される。
基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、光電変換層3の膜面側から入射する。パルス発振:10~20kHzとして加工速度に適切となるようにレーザーパワーを調整して、透明電極層のレーザーエッチングラインの約100~150μmの横側を、溝6を形成するようにレーザーエッチングする。レーザーエッチングラインの位置は前工程でのエッチングラインと交差しないように位置決め交差を考慮して選定する。
裏面電極層4としてAg膜/Ti膜をスパッタリング装置により減圧雰囲気、約150℃にて順次製膜する。裏面電極層4は本実施形態では、Ag膜:200~500nm、これを保護するものとして防食効果の高いTi膜:10~20nmをこの順に積層する。n層と裏面電極層4との接触抵抗低減と光反射向上を目的に、光電変換層3と裏面電極層4との間にGZO(GaドープZnO)膜を膜厚:50~100nm、スパッタリング装置により製膜して設けても良い。
(7)図5B(b):
基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、図の矢印に示すように、基板1側から入射する。レーザー光が光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して除去される。パルス発振:1~10kHzとして加工速度に適切となるようにレーザーパワーを調整して、透明電極層2のレーザーエッチングラインの約250~400μmの横側を、溝7を形成するようにレーザーエッチングする。
(8)図5B(c)と図5C(a):
発電領域を区分して、基板端周辺の膜端部においてレーザーエッチングによる直列接続部分が短絡し易い影響を除去する。基板1をX-Yテーブルに設置して、レーザーダイオード励起YAGレーザーの第2高調波(532nm)を、基板1側から入射する。レーザー光が透明電極層2と光電変換層3で吸収され、このとき発生する高いガス蒸気圧を利用して裏面電極層4が爆裂して、裏面電極層4/光電変換層3/透明電極層2が除去される。パルス発振:1~10kHzとして加工速度に適切となるようにレーザーパワーを調整して、基板1の端部から5~20mmの位置を、図5C(a)に示すように、X方向絶縁溝8を形成するようにレーザーエッチングする。このとき、Y方向絶縁溝は後工程で基板1周囲領域の膜面研磨除去処理を行うので、設ける必要がない。
絶縁溝8は基板1の端より5~10mmの位置にてエッチングを終了させることにより、太陽電池パネル端部からの太陽電池モジュール内部への外部湿分浸入の抑制に、有効な効果を呈するので好ましい。
尚、以上までの工程におけるレーザー光はYAGレーザーとしているが、YVO4レーザーやファイバーレーザーなどが同様に使用できるものがある。
後工程のEVA等を介したバックシート11との健在な接着・シール面を確保するために、基板1周辺(周囲領域10)の積層膜は、段差があるとともに剥離し易いため、この膜を除去する。基板1の端から5~20mmで基板1の全周囲にわたり膜を除去するにあたり、X方向は前述の図5C(a)工程で設けた絶縁溝8よりも基板端側において、Y方向は基板端側部付近の溝5よりも基板端側において、裏面電極層4/光電変換層3/透明電極層2を、砥石研磨やブラスト研磨などを用いて除去を行う。
研磨屑や砥粒は基板1を洗浄処理して除去した。
(10)図5D(a、b):
端子箱取付け部分はバックシート11に開口貫通窓を設けて集電板12を取出す。この開口貫通窓部分には絶縁材を複数層を設置して外部からの湿分などの浸入を抑制する。
直列に並んだ一方端の太陽電池発電セル9と、他方端部の太陽電池発電セル9とから銅箔12を用いて集電して太陽電池パネル裏側の端子箱13部分から電力が取出せるように処理する。銅箔は各部との短絡を防止するために銅箔幅より広い絶縁シートを配置する。
集電用銅箔などが所定位置に配置された後に、太陽電池モジュールの全体を覆い、基板1からはみ出さないようにEVA(エチレン酢酸ビニル共重合体)等による接着充填材シートを配置する。
EVAの上に、防水効果の高いバックシート11を設置する。バックシート11は本実施形態では防水防湿効果が高いようにPETシート/AL箔/PETシートの3層構造よりなる。
バックシート11までを所定位置に配置したものを、ラミネータにより減圧雰囲気で内部の脱気を行い約150~160℃でプレスしながら、EVAを架橋させて密着させる。
太陽電池モジュールの裏側に端子箱13を接着剤で取付ける。
銅箔と端子箱13の出力ケーブルとをハンダ等で接続し、端子箱内部を封止剤(ポッティング剤)で充填して密閉する。これで太陽電池パネル20が完成する。
(12)図5D(c):
図5D(b)までの工程で形成された太陽電池パネル20について発電検査ならびに、所定の性能試験を行う。発電検査は、AM1.5、全天日射基準太陽光(1000W/m2)のソーラシミュレータを用いて行う。
(13)図5D(d):
発電検査(図5D(c))に前後して、外観検査をはじめ所定の性能検査を行う。
続いて、第2の実施形態について説明する。本実施形態では、第1の実施形態と比較して、n層を形成する工程(ステップS23)における製膜条件が更に工夫されている。これ以外の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。
続いて、第3の実施形態について説明する。本実施形態では、既述の実施形態と比較して、n層を形成する工程(ステップS23)における製膜条件が更に工夫されている。これ以外の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。
続いて、第4の実施形態について説明する。本実施形態では、既述の実施形態と比較して、n層を形成する工程(ステップS23)における製膜条件が更に工夫されている。これ以外の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。
続いて、第5の実施形態について説明する。本実施形態では、既述の実施形態と比較して、n層を形成する工程(ステップS23)における製膜条件が更に工夫されている。これ以外の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。
続いて、第6の実施形態について説明する。本実施形態では、既述の実施形態と比較して、n層を形成する工程(ステップS23)における製膜条件が更に工夫されている。これ以外の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。
続いて、第7の実施形態について説明する。本実施形態では、既述の実施形態と比較して、n層を形成する工程(ステップS23)における製膜条件が更に工夫されている。これ以外の点については、第1の実施形態と同様とすることができるので、詳細な説明は省略する。
以上の第1~7の実施形態は必要に応じて組み合わせて用いることも可能である。例えば、以下に述べるような製膜条件で、第1n層及び第2n層を製膜することもできる。
製膜室内に導入されるSiH4(シラン含有ガス)流量を、500(sccm)とする。
製膜室内に導入されるH2(希釈ガス)流量を、37.5×103(sccm)とする。
製膜室内に導入されるPH3(不純物元素含有ガス)流量を、6(sccm)とする。
製膜室内の圧力を175(Pa)とする。
製膜時に印加される高周波電力のパワーを2(kW)とする。
尚、このとき、ドーピング率は、PH3/SiH4=6/500=1,2%である。
また、希釈率は、H2/SiH4=37.5×103/500=75倍である。
製膜室内に導入されるSiH4(シラン含有ガス)流量を、400(sccm)とする。
製膜室内に導入されるH2(希釈ガス)流量を、20×103(sccm)とする。
製膜室内に導入されるPH3(不純物元素含有ガス)流量を、4(sccm)とする。
製膜室内の圧力を125(Pa)とする。
製膜時に印加される高周波電力のパワーを3(kW)とする。
尚、このとき、ドーピング率は、PH3/SiH4=4/400=1.0%である。
また、希釈率は、H2/SiH4=20×103/400=50倍である。
Claims (8)
- p型アモルファスシリコン層を製膜するp層形成工程と、
前記p型アモルファスシリコン層上に、i型アモルファスシリコン層を製膜するi層形成工程と、
前記i型アモルファスシリコン層上に、n型アモルファスシリコン層を製膜するn層形成工程と、を備え、
前記n層形成工程は、
前記i型アモルファスシリコン層上に、第1n層を製膜する第1n層形成工程と、
前記第1n層上に、第2n層を製膜する第2n層形成工程と、を備え、
前記第1n層形成工程の製膜条件は、前記第2n層形成工程における製膜条件よりも、同じ下地基板上に製膜した場合に結晶化率が高くなるような条件である
光電変換装置の製造方法。 - 請求項1に記載された光電変換装置の製造方法であって、
前記第1n層形成工程の製膜速度は、前記第2n層形成工程の製膜速度よりも遅い
光電変換装置の製造方法。 - 請求項1又は2に記載された光電変換装置の製造方法であって、
前記n層形成工程において、前記材料ガスは、シラン含有ガス及び不純物元素含有ガスを含む原料ガスを含んでおり、
前記第2n層形成工程において、前記シラン含有ガスに対する前記不純物元素含有ガスの含有率を示すドーピング率は、前記第1n層形成工程における前記不純物元素含有ガスのドーピング率よりも、少ない
光電変換装置の製造方法。 - 請求項1乃至3のいずれかに記載された光電変換装置の製造方法であって、
前記n層形成工程において、前記材料ガスは、更に、前記原料ガスを希釈するための水素ガスを含んでおり、
前記第2n層形成工程における前記水素ガスによる希釈率は、前記第1n層形成工程における希釈率よりも、少ない
光電変換装置の製造方法。 - 請求項1乃至4のいずれかに記載された光電変換装置の製造方法であって、
前記第2n層形成工程において、前記第1n層形成工程よりも低い圧力下で、製膜を行う
光電変換装置の製造方法。 - 請求項1乃至5のいずれかに記載された光電変換装置の製造方法であって、
前記第2n層形成工程において、前記材料ガスを分解する高周波電力は、前記第1n層形成工程よりも高い高周波電力でプラズマを発生させ、製膜を行う
光電変換装置の製造方法。 - 請求項1乃至6のいずれかに記載された光電変換装置の製造方法であって、
前記第2n層形成工程において製膜される膜の厚みは、前記第1n層形成工程において製膜される膜の厚みよりも、厚い
光電変換装置の製造方法。 - 請求項1乃至7のいずれかに記載された光電変換装置の製造方法であって、
前記n層形成工程は、更に、前記第1n層形成工程の前に実施され、前記i型アモルファスシリコン層の表面を、プラズマを発生させずに、前記材料ガスに曝すガス曝露工程、
を備える
光電変換装置の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/993,252 US8088641B2 (en) | 2008-10-30 | 2008-10-30 | Process for producing photovoltaic device |
KR1020107026416A KR20110008283A (ko) | 2008-10-30 | 2008-10-30 | 광전 변환 장치의 제조 방법 |
EP08877746A EP2315258A1 (en) | 2008-10-30 | 2008-10-30 | Process for producing photoelectric conversion apparatus |
PCT/JP2008/069803 WO2010050035A1 (ja) | 2008-10-30 | 2008-10-30 | 光電変換装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/069803 WO2010050035A1 (ja) | 2008-10-30 | 2008-10-30 | 光電変換装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010050035A1 true WO2010050035A1 (ja) | 2010-05-06 |
Family
ID=42128413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/069803 WO2010050035A1 (ja) | 2008-10-30 | 2008-10-30 | 光電変換装置の製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8088641B2 (ja) |
EP (1) | EP2315258A1 (ja) |
KR (1) | KR20110008283A (ja) |
WO (1) | WO2010050035A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4764469B2 (ja) * | 2008-10-31 | 2011-09-07 | 三菱重工業株式会社 | 光電変換装置及び光電変換装置の製造方法 |
TWI373851B (en) * | 2008-11-25 | 2012-10-01 | Nexpower Technology Corp | Stacked-layered thin film solar cell and manufacturing method thereof |
US10011920B2 (en) | 2011-02-23 | 2018-07-03 | International Business Machines Corporation | Low-temperature selective epitaxial growth of silicon for device integration |
US9059212B2 (en) | 2012-10-31 | 2015-06-16 | International Business Machines Corporation | Back-end transistors with highly doped low-temperature contacts |
US8912071B2 (en) * | 2012-12-06 | 2014-12-16 | International Business Machines Corporation | Selective emitter photovoltaic device |
US8642378B1 (en) | 2012-12-18 | 2014-02-04 | International Business Machines Corporation | Field-effect inter-digitated back contact photovoltaic device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0571195A (ja) | 1991-09-13 | 1993-03-23 | Matsushita Electric Works Ltd | 軒樋の化粧コーナー部材 |
JPH08306944A (ja) * | 1995-04-28 | 1996-11-22 | Sharp Corp | 薄膜太陽電池およびその製造方法 |
JPH0969640A (ja) * | 1995-08-31 | 1997-03-11 | Canon Inc | 光起電力素子 |
JPH11150283A (ja) * | 1997-11-19 | 1999-06-02 | Tdk Corp | 多結晶シリコン薄膜の製造方法 |
JP2005217046A (ja) * | 2004-01-28 | 2005-08-11 | Ishikawajima Harima Heavy Ind Co Ltd | 太陽電池パネル |
JP2005277303A (ja) * | 2004-03-26 | 2005-10-06 | Kaneka Corp | 積層型光電変換装置の製造方法 |
JP3710312B2 (ja) | 1998-01-26 | 2005-10-26 | キヤノン株式会社 | 光起電力素子及びその製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01145875A (ja) | 1987-12-02 | 1989-06-07 | Hitachi Ltd | アモルファスSi太陽電池 |
EP0831538A3 (en) * | 1996-09-19 | 1999-07-14 | Canon Kabushiki Kaisha | Photovoltaic element having a specific doped layer |
JP2005167264A (ja) | 1997-03-10 | 2005-06-23 | Canon Inc | 堆積膜形成方法、半導体素子の製造方法、及び光電変換素子の製造方法 |
JPH1154773A (ja) * | 1997-08-01 | 1999-02-26 | Canon Inc | 光起電力素子及びその製造方法 |
JP4674956B2 (ja) | 2000-11-13 | 2011-04-20 | シャープ株式会社 | 薄膜太陽電池およびその製造方法 |
JP2005307310A (ja) | 2004-04-23 | 2005-11-04 | Canon Inc | 堆積膜形成装置および堆積膜形成方法 |
CN101627478B (zh) * | 2007-02-16 | 2011-06-01 | 三菱重工业株式会社 | 光电转换装置及其制造方法 |
JP4875566B2 (ja) | 2007-08-09 | 2012-02-15 | 三菱重工業株式会社 | 光電変換装置の製造方法 |
-
2008
- 2008-10-30 EP EP08877746A patent/EP2315258A1/en not_active Withdrawn
- 2008-10-30 KR KR1020107026416A patent/KR20110008283A/ko not_active Ceased
- 2008-10-30 US US12/993,252 patent/US8088641B2/en not_active Expired - Fee Related
- 2008-10-30 WO PCT/JP2008/069803 patent/WO2010050035A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0571195A (ja) | 1991-09-13 | 1993-03-23 | Matsushita Electric Works Ltd | 軒樋の化粧コーナー部材 |
JPH08306944A (ja) * | 1995-04-28 | 1996-11-22 | Sharp Corp | 薄膜太陽電池およびその製造方法 |
JPH0969640A (ja) * | 1995-08-31 | 1997-03-11 | Canon Inc | 光起電力素子 |
JPH11150283A (ja) * | 1997-11-19 | 1999-06-02 | Tdk Corp | 多結晶シリコン薄膜の製造方法 |
JP3710312B2 (ja) | 1998-01-26 | 2005-10-26 | キヤノン株式会社 | 光起電力素子及びその製造方法 |
JP2005217046A (ja) * | 2004-01-28 | 2005-08-11 | Ishikawajima Harima Heavy Ind Co Ltd | 太陽電池パネル |
JP2005277303A (ja) * | 2004-03-26 | 2005-10-06 | Kaneka Corp | 積層型光電変換装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US8088641B2 (en) | 2012-01-03 |
EP2315258A1 (en) | 2011-04-27 |
KR20110008283A (ko) | 2011-01-26 |
US20110092012A1 (en) | 2011-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101779294B (zh) | 光电转换装置 | |
WO2010050035A1 (ja) | 光電変換装置の製造方法 | |
JP5022341B2 (ja) | 光電変換装置 | |
JP4764469B2 (ja) | 光電変換装置及び光電変換装置の製造方法 | |
WO2010052953A1 (ja) | 光電変換装置の製造方法及び光電変換装置 | |
JP4875566B2 (ja) | 光電変換装置の製造方法 | |
WO2011070805A1 (ja) | 光電変換装置の製造方法 | |
JP5308225B2 (ja) | 光電変換装置及びその製造方法 | |
WO2010064455A1 (ja) | 光電変換装置 | |
CN102197493B (zh) | 光电转换装置的制造方法及制膜装置 | |
CN102105992B (zh) | 光电转换装置的制造方法 | |
CN101755340B (zh) | 光电转换装置及其制造方法 | |
CN101765922A (zh) | 光电转换装置的制造方法及光电转换装置 | |
JP5308226B2 (ja) | 光電変換装置及びその製造方法 | |
JP2008251914A (ja) | 多接合型光電変換装置 | |
JP2010118695A (ja) | 光電変換装置及びその製造方法 | |
JP2011096848A (ja) | 光電変換装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08877746 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12993252 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008877746 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20107026416 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |