[go: up one dir, main page]

WO2010044188A1 - ナビゲーション装置 - Google Patents

ナビゲーション装置 Download PDF

Info

Publication number
WO2010044188A1
WO2010044188A1 PCT/JP2009/004635 JP2009004635W WO2010044188A1 WO 2010044188 A1 WO2010044188 A1 WO 2010044188A1 JP 2009004635 W JP2009004635 W JP 2009004635W WO 2010044188 A1 WO2010044188 A1 WO 2010044188A1
Authority
WO
WIPO (PCT)
Prior art keywords
lane
vehicle
distance
correction
branching
Prior art date
Application number
PCT/JP2009/004635
Other languages
English (en)
French (fr)
Inventor
三次達也
竹内千香子
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2010533789A priority Critical patent/JP4864161B2/ja
Priority to DE112009002300.2T priority patent/DE112009002300B4/de
Priority to US13/055,776 priority patent/US8200424B2/en
Priority to CN2009801361540A priority patent/CN102150015B/zh
Publication of WO2010044188A1 publication Critical patent/WO2010044188A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element

Definitions

  • the present invention relates to a navigation apparatus having a function of correcting a distance error in map matching.
  • dead reckoning using a result obtained by obtaining a traveling direction using a gyro sensor and a travel distance using a vehicle speed sensor is generally performed.
  • a reference point is first measured by GPS (Global Positioning System) or the like, a traveling vector from the point and a travel distance are calculated, and a movement vector is calculated.
  • the current position is obtained by adding to the reference position.
  • the position error is corrected by the GPS positioning result at an arbitrary time.
  • an error of about 10 m may occur even in GPS positioning, and even if the vehicle position is corrected using the GPS positioning result during dead reckoning, the exact position coordinates of the vehicle may not be obtained. is there.
  • the gyro sensor installed in the current car navigation system does not have angle detection accuracy that can handle all conditions during travel, and the detection result is straight ahead in narrow-angle branching or lane change of the vehicle. Difficult to distinguish. For this reason, it is difficult to quickly and accurately determine which direction the vehicle has traveled at the branch.
  • the travel route estimation device disclosed in Patent Document 1 when the vehicle is turning when passing an intersection (when the vehicle is turning right or left), the course of the vehicle is changed by the turn. In consideration of the fact that the vehicle cannot be accurately identified, if the vehicle is turning when exceeding a predetermined distance for determining whether or not the course has changed since entering the intersection, the travel path is estimated at that time. If the vehicle is not turning, it is determined that the vehicle has traveled straight and the travel path is estimated. In this way, even if the estimation of the travel path is prohibited when passing the intersection so that the travel path in which an error has occurred due to the branching of the vehicle is not used for vehicle control, the information on the travel path is quickly obtained after passing the intersection. Based vehicle control can be restored.
  • Patent Document 1 the inaccurate travel path estimated when the vehicle turns is not used for vehicle control, but the travel path is not estimated every time the vehicle branches at an intersection, and the travel error is accumulated. There is a possibility to make it.
  • the length of the vehicle varies depending on the vehicle type and application, and the installation position of the gyro sensor varies depending on the user, which is caused by the distance between the installation position of the gyro sensor and the start position of the vehicle. An error occurs.
  • the present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a navigation apparatus capable of performing map matching with high accuracy by appropriately correcting a distance error at a branch point of a vehicle or the like. Objective.
  • a navigation device is mounted on a moving body, and includes positioning means for measuring the position of the moving body, turning angle detecting means for detecting a turning angle of the moving body, and detecting a traveling lane of the moving body.
  • the mobile body starts to bend and ends at the branch point of the travel path based on the map data and the turning angle of the mobile body detected by the turning angle detecting means.
  • Turn determination means for determining the travel lane of the mobile body detected by the travel lane detection means and the determination result of the turn determination means, the travel path before and after the branch at the branch point of the mobile body
  • Driving lane information acquisition means for acquiring the lane width and the lane number assigned for each lane number of the driving path before and after branching from the map data, and the positioning Map matching the position of the mobile body measured at the stage on the road link of the travel path in the map data, and travel before and after branching of the mobile body at the branch point acquired by the travel lane information acquisition means From the lane width and lane number of the road and the turning angle of the moving body at the branch point detected by the turning angle detecting means, the position of the moving body on the road link and the branching that are map-matched And a matching correction unit that calculates a distance difference between the actual position of the moving body at a point and a perpendicular map position to the road link and corrects the position of the movable body to be the perpendicular map position.
  • the position and branch of the moving body on the road link that is map-matched from the lane width and lane number of the traveling road before and after the branching of the moving body at the branch point and the turning angle of the moving body at the branch point.
  • the distance difference between the actual position of the moving object at the point and the perpendicular map position to the road link is calculated, and the position of the moving object is corrected to be the perpendicular map position.
  • FIG. 1 is a block diagram showing a configuration of a navigation device according to Embodiment 1 of the present invention, and shows an example in which the present invention is applied to an in-vehicle navigation device.
  • a navigation device 1 according to Embodiment 1 is mounted on a moving body such as a vehicle, and includes a GPS receiver (positioning means) 2, a vehicle speed sensor 3, a gyro sensor (turning angle detection means) 4, a travel lane determination sensor (travel lane detection). Means) 5, sensor interface unit 6, locator 7, map database 8, memory 9, gyro input method setting unit (passage side setting unit) 10, gyro sensor arrangement distance setting unit (mounting distance setting unit) 11, and display unit 12.
  • a GPS receiver positioning means
  • vehicle speed sensor 3 a gyro sensor (turning angle detection means) 4
  • travel lane determination sensor travel lane detection
  • Means 5
  • sensor interface unit 6 locator 7, map database 8
  • memory memory
  • gyro input method setting unit (
  • the GPS receiver 2 is a component that receives time and position information of the own vehicle using radio navigation by receiving radio waves from GPS satellites.
  • the vehicle speed sensor 3 detects information related to the travel distance of the host vehicle using vehicle speed pulses.
  • the gyro sensor 4 is a sensor that measures the turning angle of the traveling vehicle using a gyroscope.
  • the traveling lane determination sensor 5 is a component that determines the traveling lane of the vehicle. For example, the traveling lane determination sensor 5 determines a white line of a road from a camera image captured by an in-vehicle camera, and identifies a road lane, DSRC (Dedicated Short Range It consists of sensors that determine lanes based on information from Communication.
  • DSRC Dedicated Short Range It
  • the sensor interface unit 6 is an interface between the GPS receiver 2 and various sensors 3 to 5 and the locator 7, and transmits information obtained by the GPS receiver 2 and various sensors 3 to 5 to the locator 7.
  • the locator 7 is a component that calculates the position and azimuth information estimated as the current position of the host vehicle using the information transmitted to the sensor interface unit 6, and includes a turn determination unit (turn determination unit) 7-1. , A turn start flag 7-2, an angle counter 7-3, a moving distance counter 7-4, a current position correction unit (matching correction unit) 7-5, and a travel lane determination unit (travel lane information acquisition unit) 7-6.
  • the turning determination unit 7-1 determines whether or not the host vehicle is bent based on the angle change between the arrays in the gyro angle arrays ⁇ (Tt) to ⁇ (T) acquired from the sensor interface unit 6 (whether the vehicle has turned). Or not).
  • T is the number of cycles for obtaining angle information from the sensor interface unit 6 after the turn determination unit 7-1 is started, and t is for determining a turn set in advance in the navigation device 1 according to the first embodiment. Sampling number.
  • the bend start flag 7-2 is set to a digital value of 1 when the vehicle reaches a branch point where the vehicle starts to bend, and is set to a digital value of 0 when the vehicle finishes turning.
  • the angle counter 7-3 is a counter to which the gyro angle ⁇ detected by the gyro sensor 4 is sequentially added from the start to the end of the turn of the host vehicle.
  • the movement distance counter 7-4 is a counter to which the movement distance ⁇ d detected by the vehicle speed sensor 3 is sequentially added from the start of the vehicle to the end of the turn.
  • the current location correction unit 7-5 is a component that corrects the vehicle position using the correction information acquired by the branch current location correction processing and the gyro sensor arrangement distance, and includes a branch current location correction unit 7-5a.
  • the branch current position correction unit 7-5a reads the lane number before branching of the vehicle, the road lane width before branching, the lane number after branching, and the road lane after branching read from the storage units 9-1 to 9-4 of the memory 9. Using the width, a correction distance for correcting the distance error at the vehicle position on the road link at the branch point recognized by the navigation device 1 is calculated.
  • the own vehicle position on the road link recognized by the navigation device 1 is the map database 8 in consideration of the own vehicle position measured by the GPS receiver 2 and the travel distance of the own vehicle detected by the vehicle speed sensor 3. It is the position corrected (map matching) on the road (road link) in the map in light of the map data.
  • the driving lane judging unit 7-6 uses the information acquired through the sensor interface unit 6 and the information in the map database 8 to determine the lane number before branching obtained at the point where the vehicle starts to bend and the point where the vehicle has finished bending,
  • the road lane width before branching, the lane number after branching, and the road lane width after branching are obtained and stored in the storage units 9-1 to 9-4 of the memory 9, respectively.
  • the map database 8 is a database that stores map data related to buildings and roads on the map, and includes road lane width, number of lanes, and branch point information as road map information.
  • the memory 9 is a memory mounted on the navigation device 1 according to the first embodiment.
  • the memory unit 9-1 stores the lane number B before branching of the host vehicle, and the lane width K of the road before branching of the host vehicle. It has a storage unit 9-2 for storing, a storage unit 9-3 for storing the lane number A after branching of the host vehicle, and a storage unit 9-4 for storing the lane width N of the road after branching of the host vehicle.
  • the gyro input method setting unit 10 is a component that displays a selection screen for left-hand traffic or right-hand traffic on the display unit 12 and provides a GUI (Graphical User Interface) that allows the user to select one, and right-hand traffic is selected. Then, the branch current position correction unit 7-5a is instructed to invert the value of the angle counter 7-3.
  • GUI Graphic User Interface
  • the gyro sensor arrangement distance setting unit 11 is a component that provides a GUI for inputting the arrangement distance of the gyro sensor 4 via the display unit 12. For example, “Enter the distance on the display screen of the display unit 12. When the user inputs the arrangement distance of the gyro sensor 4 using an input device (not shown), the branching position correction unit 7-5a is notified of the arrangement distance.
  • the display unit 12 includes a display device such as a liquid crystal display, and displays a navigation screen and the like.
  • FIG. 2 is a flowchart showing a flow of processing for initially setting whether the own vehicle is left-hand traffic or right-hand traffic with respect to the navigation device in FIG.
  • the gyro input method setting unit 10 displays a selection screen for left-hand traffic or right-hand traffic on the display screen of the display unit 12.
  • Step ST1 the gyro input method setting unit 10 shifts to a waiting state until the user answers an inquiry about left-hand traffic or right-hand traffic, that is, until either the left-hand traffic or the right-hand traffic is input using the input device.
  • the selection screen is continuously displayed on the display unit 12 (step ST2).
  • the gyro input method setting unit 10 determines whether left-hand traffic is selected (step ST3).
  • the gyro input method setting unit 10 ends the process as it is. In the navigation device 1, it is assumed that left-hand traffic is set by default.
  • the gyro input method setting unit 10 instructs the branch current position correction unit 7-5a to invert the value of the angle counter 7-3 (step ST4). Thereafter, the process is terminated.
  • FIG. 3 is a flowchart showing a flow of processing for initially setting the gyro sensor arrangement distance for the navigation apparatus in FIG.
  • the gyro sensor arrangement distance setting unit 11 displays a setting screen for setting the arrangement distance of the gyro sensor 4 on the display screen of the display unit 12. It is displayed (step ST1a). For example, a setting screen including a message “Please enter a distance” is displayed on the display unit 12.
  • the gyro sensor arrangement distance setting unit 11 shifts to a waiting state until the user inputs and inputs the arrangement distance of the gyro sensor 4, that is, until the user inputs the arrangement distance of the gyro sensor 4 using the input device.
  • the screen is continuously displayed on the display unit 12 (step ST2a).
  • the gyro sensor arrangement distance setting unit 11 sets the input arrangement distance of the gyro sensor 4 in the branch current position correction unit 7-5a (step ST3a). .
  • FIG. 4 is a diagram showing the relationship between the traveling vehicle and the gyro sensor arrangement distance.
  • FIG. 4 (a) shows the relationship between the vehicle size and the gyro sensor arrangement distance
  • FIG. 4C shows a case where the vehicle makes a right turn.
  • the position with the black star symbol is the installation position of the gyro sensor 4
  • the position with the white star symbol is the head position of the vehicle.
  • the above-described gyro sensor arrangement distance is the distances D1 and D2 between the position with the black star symbol and the position with the white star symbol.
  • the gyro sensor 4 is attached by the user even if the vehicles are the same size. May be different.
  • the gyro sensor arrangement distance D1 of the vehicle 13a with a long vehicle length is longer than the gyro sensor arrangement distance D2 of the vehicle 13b with a short vehicle length.
  • the travel distance error is generated by the gyro sensor arrangement distance. Therefore, as shown in FIGS.
  • FIG. 5 is a flowchart showing a flow of turning determination processing of the own vehicle by the navigation device in FIG.
  • the turning determination unit 7-1 in the locator 7 is started by a timer and periodically requests the sensor interface unit 6 to acquire angle information detected by the gyro sensor 4 via the sensor interface unit 6.
  • the turning determination unit 7-1 substitutes the gyro sensor angle ⁇ acquired as the angle information into the gyro angle array ⁇ (T) of the angle counter 7-3 (step ST1b). Note that T is the number of cycles for obtaining angle information from the sensor interface unit 6 after the turning determination unit 7-1 is activated.
  • the turning determination unit 7-1 monitors the value of the bend start flag 7-2 and determines whether or not the digital value 1 indicating the start of the turn of the host vehicle is set (step ST2b).
  • the turning determination unit 7-1 determines the gyro angle array ⁇ (T ⁇ t) of the angle counter 7-3.
  • ⁇ (T) To ⁇ (T), it is determined whether or not the vehicle is bent due to an angle change between the arrays (step ST3b).
  • t is the number of samplings for determining a preset turn in the navigation device 1 according to the first embodiment.
  • the turning determination unit 7-1 returns to the process of step ST3b again and is based on the angle change between the gyro angle arrays ⁇ (Tt) to ⁇ (T). Repeat the determination. If it is determined that the host vehicle is bent, the turn determination unit 7-1 reads road branch information from the map database 8, and determines whether or not the current position of the host vehicle is near the branch point (step ST4b). Here, if it is determined that the vehicle position is not a branch point, the turn determination unit 7-1 ends the turn determination.
  • step ST4b When it is determined in step ST4b that the vehicle position is a branch point, the turning determination unit 7-1 sets a digital value 1 to the bend start flag 7-2 (step ST5b), and the angle counter 7-3 The value is initialized to 0 (step ST6b), and the value of the movement distance counter 7-4 is also initialized to 0 (step ST7b), and then a bending start process described later with reference to FIG. 6 is started (step ST8b).
  • step ST2b if the value of the curve start flag 7-2 is 1, the turning determination unit 7-1 determines whether the angle counter 7-3 has a gyro angle array ⁇ (Tt) to ⁇ (T). Based on the change in angle between the arrays, it is determined whether or not the vehicle has finished bending (step ST9b). If it is determined that the bending has not been completed, the turning determination unit 7-1 uses the gyro angle ⁇ detected by the gyro sensor 4 acquired through the sensor interface unit 6 at this time as the gyro angle array of the angle counter 7-3. Add to ⁇ (step ST10b).
  • the turning determination unit 7-1 adds the movement distance ⁇ d of the own vehicle detected by the vehicle speed sensor 3 acquired through the sensor interface unit 6 to the movement distance counter 7-4 (step ST11b). Thereafter, the turning determination unit 7-1 returns to the process of step ST9b.
  • step ST9b If it is determined in step ST9b that the turn has been completed, the turning determination unit 7-1 initializes the value of the turn start flag 7-2 to 0 (step ST12b), and performs a turn end process to be described later with reference to FIG. Is started (step ST13b). When the turning end process is completed, the turning determination unit 7-1 activates the branch current position correction unit 7-5a and starts a branch current position correction process described later with reference to FIG. 8 (step ST14b). When this process is completed, the turning determination process is terminated.
  • FIG. 6 is a flowchart showing the flow of the bending start processing by the navigation device in FIG.
  • the turn determination unit 7-1 starts the turn start process (starts the turn start processing program)
  • the turn determination unit 7-1 instructs the travel lane determination unit 7-6 to acquire information on the travel lane of the host vehicle.
  • the travel lane determination unit 7-6 follows the instruction from the turn determination unit 7-1 and acquires sensor information (the own vehicle detected by the travel lane determination sensor 5) via the sensor interface unit 6 and the turn determination unit 7-1.
  • Lane number of the road on which the vehicle is traveling at the local point as information on the traveling lane at the current position of the vehicle, using the information identifying the traveling lane of the vehicle) and the information (branch point information) in the map database 8 Is stored in the storage unit 9-1 of the memory 9 as the pre-branch lane number B (step ST1c).
  • the traveling lane determining unit 7-6 specifies the lane width K of the road before branching at the local point of the vehicle based on the branching point information read from the map database 8, and the storage unit 9- 2 is stored (step ST2c), and the bend start process is terminated.
  • FIG. 7 is a flowchart showing the flow of the bending end processing by the navigation device in FIG.
  • the turn determination unit 7-1 starts the turn end processing (starts the turn end processing program)
  • the turn determination unit 7-1 instructs the travel lane determination unit 7-6 to acquire information on the travel lane of the host vehicle.
  • the travel lane determination unit 7-6 follows the instruction from the turn determination unit 7-1 and acquires sensor information (the own vehicle detected by the travel lane determination sensor 5) via the sensor interface unit 6 and the turn determination unit 7-1.
  • Lane number of the road on which the vehicle is traveling at the local point as information on the traveling lane at the current position of the vehicle, using the information identifying the traveling lane of the vehicle) and the information (branch point information) in the map database 8 Is stored in the storage unit 9-3 of the memory 9 as the post-branch lane number A (step ST1d).
  • the traveling lane determination unit 7-6 specifies the lane width N of the road after branching at the local point of the vehicle based on the branch point information read from the map database 8, and the storage unit 9- 4 is stored (step ST2d), and the bending end process is terminated.
  • FIG. 8 is a flowchart showing the flow of branch current location correction processing by the navigation device in FIG.
  • the turn determination unit 7-1 starts the branch current location correction process (starts the branch current location correction program)
  • the turn determination unit 7-1 instructs the branch current location correction unit 7-5a to compare and determine the lane numbers B and A before and after the branch. Put out.
  • the branch current position correction unit 7-5a reads the pre-branch lane number B and the post-branch lane number A from the storage units 9-1 and 9-3 of the memory 9 according to the instruction from the turning determination unit 7-1, and the pre-branch lane It is determined whether the branched lane number A is larger than the number B (whether the lane number after the turn is larger than before the vehicle is turned) (step ST1e).
  • the rightmost side (inner side) in the running direction is the first lane, and in order from the left side to the second lane, third lane,... ) Is the first lane, and the second lane, the third lane,...
  • tan ( ⁇ / 2) (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2) is selected (step ST2e).
  • the branch current position correction unit 7-5a reads the lane width N of the road after branching, the lane number B before branching, the lane number A after branching, and the sensor interface unit 6 read from the storage unit 9-4 of the memory 9. Using the gyro angle ⁇ acquired through the turning determination unit 7-1, the correction distance is calculated according to the selected calculation formula.
  • step ST1e determines whether the post-branch lane number A is smaller than the pre-branch lane number B. (Whether or not the lane number after the turn is smaller than before the turn of the host vehicle) is determined (step ST3e).
  • ( ⁇ / 2) (BA) (K / sin ⁇ ) + (N / 2) tan ( ⁇ / 2) is selected (step ST4e).
  • the branch current position correction unit 7-5a reads the lane width K of the road before branching, the lane width N of the road after branching, the lane number B before branching, and the lane after branching read from the storage unit 9-2 of the memory 9. Using the number A and the gyro angle ⁇ acquired through the sensor interface unit 6 and the turning determination unit 7-1, the correction distance is calculated according to the selected calculation formula.
  • the branch current position correction unit 7-5a reads the road lane width N after the branch read from the storage unit 9-4 of the memory 9, and the gyro acquired through the sensor interface unit 6 and the turn determination unit 7-1. Using the angle ⁇ , the correction distance is calculated according to the selected calculation formula.
  • step ST6e When the branch current location correction unit 7-5a calculates the correction distance using the calculation formula selected in any of step ST2e, step ST4e, and step ST5e, the current location correction unit 7- 5 (step ST6e).
  • FIG. 9 is a flowchart showing the flow of current location correction processing by the navigation device in FIG.
  • the current position correction unit 7-5 includes the vehicle position measured by the GPS receiver 2 via the sensor interface unit 6 and the turning determination unit 7-1, the travel distance of the vehicle detected by the vehicle speed sensor 3, and a map.
  • the map data of the database 8 is acquired, and the vehicle position measured by the GPS receiver 2 is compared with the map data of the map database 8 in consideration of the travel distance of the vehicle detected by the vehicle speed sensor 3 in the map. Find the map-matched position on the road link.
  • the current position correction unit 7-5 acquires the correction information (correction distance) from the branch current position correction unit 7-5a
  • the branch current position correction unit 7-5a with respect to the vehicle position map-matched as described above.
  • the correction distance acquired from the above is added to correct the vehicle position (step ST1f).
  • the current position correction unit 7-5 adds the value of the gyro sensor arrangement distance preset in the preprocessing to the branch current position correction unit 7-5a to the own vehicle position calculated in step ST1f.
  • the vehicle position is corrected (step ST2f).
  • the current position correction unit 7-5 displays the corrected vehicle position on the display screen of the display unit 12 (step ST3f).
  • FIG. 10 is a diagram illustrating the principle of deriving the calculation formula for the correction distance when the vehicle turns to the left with left-hand traffic.
  • the lane numbers are first lane, second lane,.
  • the white circle symbol is the actual vehicle position (assuming that the vehicle is traveling along the center line of the road indicated by a dashed line in FIG. 10), and the black star symbol is recognized by the navigation device 1.
  • the vehicle position on the road link at the branch point, and the black circle symbol is a correction position in consideration of the distance error at the branch point of the vehicle.
  • the position indicated by the black star symbol is determined by comparing the vehicle position measured by the GPS receiver 2 with the map data in the map database 8 in consideration of the travel distance of the vehicle detected by the vehicle speed sensor 3.
  • a road link that is corrected (map matching) on the road (road link) and passes through the position indicated by the black star symbol is called a matching link.
  • the road link before the branch has a contact point, and the arc defined by the turning angle of the vehicle (where the vehicle width is r) is in contact with the road link after the branch Is obtained as the vehicle position recognized by the navigation device 1 indicated by the black star symbol in FIG.
  • the error on the matching link of the actual vehicle position indicated by the white circle symbol is corrected. That is, the vehicle position indicated by the black circle symbol so that the vehicle position indicated by the black circle symbol corresponding to the perpendicular map from the actual vehicle position indicated by the white circle symbol to the matching link is displayed on the screen of the display unit 12.
  • the distance error from the position indicated by the black star symbol described above is corrected.
  • the gyro angle ⁇ is counted in the angle counter 7-3.
  • the lane number of lanes
  • the correction positions indicated by the black circle symbols are as follows: Divided into three patterns.
  • the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
  • the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
  • FIG. 11 is a diagram showing the derivation principle of the calculation formula for the correction distance when the vehicle turns to the right in left-hand traffic.
  • the lane numbers are first lane, second lane,.
  • the white circle symbol is the actual vehicle position
  • the black star symbol is the vehicle position on the matching link recognized by the navigation device 1
  • the black circle symbol is the correction position in consideration of the distance error at the branch point of the vehicle. It is.
  • the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
  • the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
  • Correction distance Y ⁇ (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
  • (AB) is 1 times (2-1), and in the case of 3 lanes or more, M is multiplied by (AB), so the formula for calculating the correction distance in case of (b) Can be expressed by the following relationship.
  • Correction distance (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
  • FIG. 12 is a diagram showing the derivation principle of the calculation formula for the correction distance when the vehicle turns to the left in right-hand traffic.
  • the lane numbers are first lane, second lane,.
  • the white circle symbol is the actual vehicle position
  • the black star symbol is the vehicle position on the matching link recognized by the navigation device 1
  • the black circle symbol is the correction position in consideration of the distance error at the branch point of the vehicle. It is.
  • the angle counter 7-3 counts the gyro angle - ⁇ .
  • the lane number of lanes
  • the correction positions indicated by the black circle symbols are as follows: Divided into three patterns.
  • (a) and (a ′) it is a case where the vehicle travels on the same lane before and after bending.
  • (a) is the case where the vehicle travels in the first lane even after turning in the first lane
  • (a ′) is the case where the vehicle travels in the second lane even after turning in the second lane. .
  • the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
  • the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
  • correction distance can be expressed by the following relationship.
  • Correction distance Y ⁇ (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
  • (AB) is 1 times (2-1)
  • M is multiplied by (AB)
  • Correction distance (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
  • FIG. 13 is a diagram showing the derivation principle of the calculation formula for the correction distance when the vehicle turns to the right in right-hand traffic.
  • the lane numbers are first lane, second lane,.
  • the white circle symbol is the actual vehicle position
  • the black star symbol is the vehicle position on the matching link recognized by the navigation device 1
  • the black circle symbol is the correction position in consideration of the distance error at the branch point of the vehicle. It is.
  • the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
  • the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
  • correction distance can be expressed by the following relationship.
  • Correction distance Y ⁇ (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
  • (AB) is 1 times (2-1)
  • M is multiplied by (AB)
  • Correction distance (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
  • required by the GPS positioning result can be correct
  • the information on the lanes before and after branching is obtained by determining the timing of the vehicle's start of bending and the timing of the end of bending, and using this to correct, correct the distance error at the branch point of the vehicle etc.
  • Highly accurate map matching can be performed.
  • the present invention can be applied to any navigation device that is used with a mobile object.
  • a motorcycle or a bicycle that can be equipped with a gyro sensor may be used.
  • the navigation device can correct the position of the moving body at the branch point obtained from the GPS positioning result to an accurate position in consideration of the turning at the branch point of the moving body. It is suitable for use in a navigation device having a function of correcting the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Abstract

 分岐点における自車の分岐前後の走行路のレーン幅K,N及びレーン番号B,Aと、分岐点における自車の旋回角Θとから、マップマッチングされた道路リンク上の自車位置と分岐点における自車の実位置から当該道路リンクへの垂線写像位置との距離差を算出し、自車位置が前記垂線写像位置となるように補正する。

Description

ナビゲーション装置
 この発明は、マップマッチングの距離誤差を補正する機能を有したナビゲーション装置に関するものである。
 従来のカーナビゲーションシステムにおけるロケータシステムでは、ジャイロセンサで進行方向を求め、車速センサで走行距離を求めて、その結果を用いるデッドレコニングが一般的に行われていた。このようなデッドレコニングでは、基準となる地点をGPS(Global Positioning System)等によって最初に測位しておき、その地点からの進行方向と走行距離とを求めて移動ベクトルを算出し、この移動ベクトルを基準位置に加算して現在位置を得る。この処理をナビゲーション走行中に繰り返すことにより、車両の走行軌跡を求めることができる。
 なお、ジャイロセンサや車速センサの測定誤差に起因する推定位置の誤差の累積を防ぐため、任意の時点でGPSの測位結果による位置誤差の補正が行われる。しかしながら、GPSの測位においても10m前後の誤差が生じることがあり、デッドレコニングの途中にGPSの測位結果を利用した車両位置の補正を行っても、車両の正確な位置座標が得られない場合がある。
 また、現行のカーナビゲーションシステムに搭載されているジャイロセンサは、走行中の全ての状態に対応可能な角度検出精度を有しておらず、検出結果が車両の狭角分岐や車線変更において直進と区別がつきにくい。このため、分岐において、車両がどちらの方向に進んだかを迅速かつ正確に判断することは困難であった。
 これに対して、例えば特許文献1に開示される走行路推定装置では、交差点を通過するときに車両が旋回している場合(車両が右左折している場合)、その旋回によって車両の進路が正確に特定できなくなることを考慮して、交差点に進入してから進路変更があったか否かを判断する所定距離を超えた際に車両が旋回していると、そのときは走行路の推定を行わず、車両が旋回していなければ直進したものと判断して走行路の推定を実行する。このようにすることで、車両の分岐によって誤差が生じた走行路を車両制御に用いないように交差点通過時に走行路の推定を禁止しても、交差点通過後、高速に、走行路の情報に基づく車両制御を復帰させることができる。
特開2006-3166号公報
 従来のナビゲーション装置では、車両等の分岐において進行方向を正確に判断することができなかったため、車両の分岐によるマップマッチングの距離誤差が生じていた。特に、車両が車線変更を頻繁に繰り返しても、従来では、車線変更したことを特定することができず、蛇行しても直線走行していると判断されるので、車線変更や蛇行における分岐の前後に測定した車両位置に誤差が生じる。
 また、特許文献1では、車両の旋回時に推定された不正確な走行路が車両制御に利用されることはないが、交差点で分岐する度に走行路が推定されず、返って走行誤差を累積させる可能性がある。
 さらに、マップマッチングにおいて、車両の長さが車種や用途によって区々であり、ユーザによってジャイロセンサの設置位置も異なるため、ジャイロセンサの設置位置と車両の先頭位置との間の距離分に起因した誤差が生じる。
 この発明は、上記のような課題を解決するためになされたもので、車両等の分岐点での距離誤差を適切に補正して精度の高いマップマッチングを行うことができるナビゲーション装置を得ることを目的とする。
 この発明に係るナビゲーション装置は、移動体に搭載され、前記移動体の位置を測定する測位手段と、前記移動体の旋回角を検出する旋回角検出手段と、前記移動体の走行レーンを検出する走行レーン検出手段とを備えたナビゲーション装置において、地図データ及び前記旋回角検出手段にて検出された前記移動体の旋回角に基づいて、走行路の分岐点における前記移動体の曲がり始め及び曲がり終わりを判定する旋回判定手段と、前記走行レーン検出手段にて検出された前記移動体の走行レーン及び前記旋回判定手段の判定結果を用いて、前記移動体の前記分岐点における分岐前後の走行路のレーン幅及び分岐前後の走行路のレーン数ごとに割り振られたレーン番号を、前記地図データから取得する走行レーン情報取得手段と、前記測位手段にて測位された前記移動体の位置を地図データにおける走行路の道路リンク上にマップマッチングするとともに、前記走行レーン情報取得手段にて取得された前記分岐点における前記移動体の分岐前後の走行路のレーン幅及びレーン番号と、前記旋回角検出手段にて検出された前記分岐点における前記移動体の旋回角とから、前記マップマッチングされた前記道路リンク上の前記移動体の位置と前記分岐点における前記移動体の実位置から当該道路リンクへの垂線写像位置との距離差を算出し、前記移動体の位置が前記垂線写像位置となるように補正するマッチング補正手段とを備えるものである。
 この発明によれば、分岐点における移動体の分岐前後の走行路のレーン幅及びレーン番号と、分岐点における移動体の旋回角とから、マップマッチングされた道路リンク上の移動体の位置と分岐点における移動体の実位置から当該道路リンクへの垂線写像位置との距離差を算出し、移動体の位置が前記垂線写像位置となるように補正する。このようにすることで、GPS測位結果によって求めた分岐点における移動体位置を、移動体の分岐点での旋回を考慮して正確な位置に補正することができるという効果がある。特に、移動体の曲がり始めのタイミングと曲がり終わりのタイミングを判定して分岐前後のレーンに関する情報を取得し、これを用いて補正するので、移動体の分岐点における距離誤差を適切に補正して精度の高いマップマッチングを行うことができる。
この発明の実施の形態1によるナビゲーション装置の構成を示すブロック図である。 図1中のナビゲーション装置に対して自車が左側通行であるか右側通行であるかを初期設定する処理の流れを示すフローチャートである。 図1中のナビゲーション装置に対してジャイロセンサの配置距離を初期設定する処理の流れを示すフローチャートである。 走行中の自車両とジャイロセンサ配置距離の関係を示す図である。 図1中のナビゲーション装置による自車の旋回判定処理の流れを示すフローチャートである。 図1中のナビゲーション装置による曲がり始め処理の流れを示すフローチャートである。 図1中のナビゲーション装置による曲がり終わり処理の流れを示すフローチャートである。 図1中のナビゲーション装置による分岐現在地補正処理の流れを示すフローチャートである。 図1中のナビゲーション装置による現在地補正処理の流れを示すフローチャートである。 左側通行で車両が左折する場合における補正距離の計算式の導出原理を示す図である。 左側通行で車両が右折する場合における補正距離の計算式の導出原理を示す図である。 右側通行で車両が左折する場合における補正距離の計算式の導出原理を示す図である。 右側通行で車両が右折する場合における補正距離の計算式の導出原理を示す図である。
 以下、この発明をより詳細に説明する為に、この発明を実施する為の形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1によるナビゲーション装置の構成を示すブロック図であり、本発明を車載ナビゲーション装置に適用した場合を例に示している。実施の形態1によるナビゲーション装置1は、車両等の移動体に搭載され、GPS受信機(測位手段)2、車速センサ3、ジャイロセンサ(旋回角検出手段)4、走行レーン判断センサ(走行レーン検出手段)5、センサインタフェース部6、ロケータ7、地図データベース8、メモリ9、ジャイロ入力方法設定部(通行側設定手段)10、ジャイロセンサ配置距離設定部(取り付け距離設定手段)11及び表示部12を備える。
 GPS受信機2は、GPS衛星からの電波受信による電波航法を用いて、時刻や自車の位置情報を受信する構成要素である。車速センサ3は、車速パルスを利用して自車の移動距離に関する情報を検出する。ジャイロセンサ4は、ジャイロスコープを利用して走行車両の旋回角を計測するセンサである。
 走行レーン判断センサ5は、車両の走行レーンを判断する構成要素であり、例えば車載カメラで撮影されたカメラ映像から道路の白線を判定して道路のレーンを特定するセンサや、DSRC(Dedicated Short Range Communication)からの情報を基に車線を判別するセンサなどから構成される。
 センサインタフェース部6は、GPS受信機2及び各種センサ3~5とロケータ7との間のインタフェースであり、GPS受信機2及び各種センサ3~5で得られた情報をロケータ7へ伝送する。
 ロケータ7は、センサインタフェース部6に伝送された情報を用いて、自車の現在位置として推定される位置と方位情報とを算出する構成要素であり、旋回判定部(旋回判定手段)7-1、曲がり始めフラグ7-2、角度カウンタ7-3、移動距離カウンタ7-4、現在地補正部(マッチング補正手段)7-5及び走行レーン判断部(走行レーン情報取得手段)7-6を備える。
 旋回判定部7-1は、センサインタフェース部6から取得したジャイロ角配列Θ(T-t)~Θ(T)における配列間の角度変化に基づいて、自車が曲がったか否か(旋回したか否か)を判定する。なお、Tは旋回判定部7-1が起動した後、センサインタフェース部6から角度情報を得る周期回数であり、tは実施の形態1によるナビゲーション装置1に予め設定された旋回を判定するためのサンプリング数である。
 曲がり始めフラグ7-2は、自車が曲がり始める分岐点に達した場合にデジタル値1が設定され、自車が曲がり終わるとデジタル値0が設定される。角度カウンタ7-3は、自車の曲がり始めから曲がり終わりまでにジャイロセンサ4によって検出されたジャイロ角ΔΘが順次加算されるカウンタである。移動距離カウンタ7-4は、自車の曲がり始めから曲がり終わりまでに車速センサ3によって検出された移動距離Δdが順次加算されるカウンタである。
 現在地補正部7-5は、分岐現在地補正処理にて取得された補正情報及びジャイロセンサ配置距離を用いて自車位置を補正する構成要素であり、分岐現在地補正部7-5aを備える。分岐現在地補正部7-5aは、メモリ9の各記憶部9-1~9-4から読み出した自車の分岐前レーン番号、分岐前の道路レーン幅、分岐後レーン番号、分岐後の道路レーン幅を用いて、ナビゲーション装置1で認識した分岐点での道路リンク上の自車位置における距離誤差を補正するための補正距離を算出する。
 なお、ナビゲーション装置1で認識した道路リンク上の自車位置とは、GPS受信機2で測位された自車位置を、車速センサ3で検出された自車の走行距離を考慮して地図データベース8の地図データに照らし合わせて地図における道路(道路リンク)上に補正(マップマッチング)した位置である。
 走行レーン判断部7-6は、センサインタフェース部6を介して取得した情報と地図データベース8の情報とを用いて、自車の曲がり始めた地点と曲がり終わった地点で得られる分岐前レーン番号、分岐前の道路レーン幅、分岐後レーン番号及び分岐後の道路レーン幅を求めてメモリ9の記憶部9-1~9-4へそれぞれ格納する。
 地図データベース8は、地図上の建造物や道路に関する地図データを格納するデータベースであり、道路地図情報として道路のレーン幅、レーン数、分岐点情報を備える。メモリ9は、実施の形態1によるナビゲーション装置1に搭載されたメモリであり、自車の分岐前のレーン番号Bを格納する記憶部9-1、自車の分岐前の道路のレーン幅Kを格納する記憶部9-2、自車の分岐後のレーン番号Aを格納する記憶部9-3、及び自車の分岐後の道路のレーン幅Nを格納する記憶部9-4を有する。
 ジャイロ入力方法設定部10は、左側通行か右側通行かの選択画面を表示部12に表示させ、ユーザにいずれかを選択させるGUI(Graphical User Interface)を提供する構成要素であり、右側通行が選択されると、角度カウンタ7-3の値を符号反転するように分岐現在地補正部7-5aに指示する。
 ジャイロセンサ配置距離設定部11は、表示部12を介してジャイロセンサ4の配置距離を入力するためのGUIを提供する構成要素であり、例えば表示部12の表示画面に「距離を入力して下さい」などのメッセージを表示させ、ユーザが不図示の入力装置を用いてジャイロセンサ4の配置距離を入力すると、この配置距離を分岐現在地補正部7-5aへ通知する。表示部12は、液晶ディスプレイのような表示装置を含んで構成され、ナビゲーション画面等を表示する。
 次に動作について説明する。
(1)ジャイロ入力方法の設定
 図2は、図1中のナビゲーション装置に対して自車が左側通行であるか右側通行であるかを初期設定する処理の流れを示すフローチャートである。
 先ず、ユーザが、不図示の入力装置を用いてジャイロ入力方法設定部10を起動させると、ジャイロ入力方法設定部10は、表示部12の表示画面上に左側通行又は右側通行の選択画面を表示させる(ステップST1)。この後、ジャイロ入力方法設定部10は、ユーザが左側通行か右側通行かの問い合わせに回答するまで、すなわち入力装置を用いて左側通行及び右側通行のうちのいずれかを入力するまで待ち状態に移行し、上記選択画面を表示部12に表示し続ける(ステップST2)。
 ユーザが入力装置を用いて左側通行か右側通行かの問い合わせに回答すると、ジャイロ入力方法設定部10は、左側通行が選択されたか否かを判定する(ステップST3)。ここで、左側通行が選択された場合、ジャイロ入力方法設定部10は、そのまま処理を終了する。なお、ナビゲーション装置1では、デフォルトで左側通行が設定されているものとする。一方、右側通行が選択された場合、ジャイロ入力方法設定部10は、角度カウンタ7-3の値を符号反転するよう、分岐現在地補正部7-5aに指示する(ステップST4)。この後、処理を終了する。
(2)ジャイロセンサ配置距離の設定
 図3は、図1中のナビゲーション装置に対してジャイロセンサの配置距離を初期設定する処理の流れを示すフローチャートである。
 ユーザが、不図示の入力装置を用いてジャイロセンサ配置距離設定部11を起動させると、ジャイロセンサ配置距離設定部11は、表示部12の表示画面上にジャイロセンサ4の配置距離の設定画面を表示させる(ステップST1a)。例えば、「距離を入力して下さい」というメッセージを含む設定画面を表示部12に表示させる。
 この後、ジャイロセンサ配置距離設定部11は、ユーザがジャイロセンサ4の配置距離を設定入力するまで、すなわち入力装置を用いてジャイロセンサ4の配置距離を入力するまで待ち状態に移行し、上記設定画面を表示部12に表示し続ける(ステップST2a)。ユーザが入力装置を用いてジャイロセンサ4の配置距離を入力すると、ジャイロセンサ配置距離設定部11は、入力されたジャイロセンサ4の配置距離を分岐現在地補正部7-5aに設定する(ステップST3a)。
 図4は、走行中の自車両とジャイロセンサ配置距離の関係を示す図であり、図4(a)は車両サイズとジャイロセンサ配置距離の関係を示しており、図4(b)は車両が左折する場合、図4(c)は車両が右折する場合を示している。なお、図4中に黒星記号を付した位置はジャイロセンサ4の設置位置であり、白星記号を付した位置が車両の先頭位置である。上述したジャイロセンサ配置距離は、この黒星記号を付した位置と白星記号を付した位置との間隔D1,D2である。
 図4(a)に示すように、ユーザが所有する車両のサイズは様々あり、車長が短い車も長い車もあり、また同一サイズの車両であってもユーザによってジャイロセンサ4の取り付け位置が異なる場合がある。例えば、車長が長い車両13aのジャイロセンサ配置距離D1は、車長が短い車両13bのジャイロセンサ配置距離D2よりも長い。このジャイロセンサ配置距離分だけ、走行距離の誤差が発生する。このため、図4(b)及び図4(c)に示すように、現在地補正部7-5が補正情報によって自車位置を補正する際、ジャイロセンサ4の設置位置と車両の先頭位置との間の距離分(ジャイロセンサ配置距離)を加算する必要がある。
(3)自車の旋回判定
 図2から図4までを用いて走行前に行う前処理を説明したが、以降では自車の走行中の処理について説明する。
 図5は、図1中のナビゲーション装置による自車の旋回判定処理の流れを示すフローチャートである。先ず、ロケータ7内の旋回判定部7-1は、タイマで起動して周期的にセンサインタフェース部6を要求し、センサインタフェース部6を介してジャイロセンサ4によって検出された角度情報を取得する。旋回判定部7-1は、角度情報として取得したジャイロセンサ角Θを角度カウンタ7-3のジャイロ角配列Θ(T)に代入する(ステップST1b)。なお、Tは、旋回判定部7-1が起動した後、センサインタフェース部6から角度情報を得る周期回数である。
 次に、旋回判定部7-1は、曲がり始めフラグ7-2の値をモニタして、自車の曲がり始めを示すデジタル値1が設定されているか否かを判定する(ステップST2b)。ここで、曲がり始めフラグ7-2の値が1ではなく、自車が曲がり始めていないと判定されると、旋回判定部7-1は、角度カウンタ7-3のジャイロ角配列Θ(T-t)からΘ(T)までの配列間の角度変化で自車が曲がったか否かを判定する(ステップST3b)。なお、tは実施の形態1によるナビゲーション装置1において予め設定された旋回を判定するためのサンプリング数である。
 自車が曲がっていないと判定すると、旋回判定部7-1は、再びステップST3bの処理に戻って、ジャイロ角配列Θ(T-t)からΘ(T)までの配列間の角度変化に基づく判定を繰り返す。また、自車が曲がったと判定すると、旋回判定部7-1は、地図データベース8から道路の分岐情報を読み出し、自車の現在位置が分岐点付近か否かを判定する(ステップST4b)。ここで、自車位置が分岐点でないと判定されると、旋回判定部7-1は、旋回判定を終了する。
 ステップST4bにおいて、自車位置が分岐点であると判定されると、旋回判定部7-1は、曲がり始めフラグ7-2にデジタル値1を設定し(ステップST5b)、角度カウンタ7-3の値を0に初期化(ステップST6b)し、移動距離カウンタ7-4の値も0に初期化(ステップST7b)した後、図6を用いて後述する曲がり始め処理を開始する(ステップST8b)。
 一方、ステップST2bにおいて、曲がり始めフラグ7-2の値が1であると、旋回判定部7-1は、角度カウンタ7-3のジャイロ角配列Θ(T-t)からΘ(T)までの配列間の角度変化に基づいて、自車が曲がり終わったか否かを判定する(ステップST9b)。ここで、曲がり終わっていないと判定すると、旋回判定部7-1は、このときセンサインタフェース部6を介して取得したジャイロセンサ4で検出されたジャイロ角ΔΘを角度カウンタ7-3のジャイロ角配列Θに加算する(ステップST10b)。さらに、旋回判定部7-1は、このときセンサインタフェース部6を介して取得した、車速センサ3で検出された自車の移動距離Δdを移動距離カウンタ7-4に加算する(ステップST11b)。この後、旋回判定部7-1は、ステップST9bの処理に戻る。
 また、ステップST9bで曲がり終わったと判定されると、旋回判定部7-1は、曲がり始めフラグ7-2の値を0に初期化(ステップST12b)し、図7を用いて後述する曲がり終わり処理を開始する(ステップST13b)。この曲がり終わり処理が完了すると、旋回判定部7-1は、分岐現在地補正部7-5aを起動して、図8を用いて後述する分岐現在地補正処理を開始する(ステップST14b)。この処理が完了すると、旋回判定処理を終了する。
(3-1)曲がり始め処理
 図6は、図1中のナビゲーション装置による曲がり始め処理の流れを示すフローチャートである。旋回判定部7-1は、曲がり始め処理を開始(曲がり始め処理用プログラムを起動)すると、走行レーン判断部7-6に対して自車の走行レーンに関する情報を取得するよう指示を出す。
 走行レーン判断部7-6は、旋回判定部7-1からの指示に従い、センサインタフェース部6及び旋回判定部7-1を介して取得したセンサ情報(走行レーン判断センサ5により検出された自車の走行レーンを特定する情報)と地図データベース8の情報(分岐点情報)とを用いて、自車の現在位置における走行レーンに関する情報として、自車が現地点で走行している道路のレーン番号を特定し、分岐前レーン番号Bとしてメモリ9の記憶部9-1に格納する(ステップST1c)。
 次に、走行レーン判断部7-6は、地図データベース8から読み出した分岐点情報に基づいて、自車の現地点における分岐前の道路のレーン幅Kを特定し、メモリ9の記憶部9-2に格納(ステップST2c)し、曲がり始め処理を終了する。
(3-2)曲がり終わり処理
 図7は、図1中のナビゲーション装置による曲がり終わり処理の流れを示すフローチャートである。旋回判定部7-1は、曲がり終わり処理を開始(曲がり終わり処理用プログラムを起動)すると、走行レーン判断部7-6に対して自車の走行レーンに関する情報を取得するよう指示を出す。
 走行レーン判断部7-6は、旋回判定部7-1からの指示に従い、センサインタフェース部6及び旋回判定部7-1を介して取得したセンサ情報(走行レーン判断センサ5により検出された自車の走行レーンを特定する情報)と地図データベース8の情報(分岐点情報)とを用いて、自車の現在位置における走行レーンに関する情報として、自車が現地点で走行している道路のレーン番号を特定し、分岐後レーン番号Aとしてメモリ9の記憶部9-3に格納する(ステップST1d)。
 次に、走行レーン判断部7-6は、地図データベース8から読み出した分岐点情報に基づいて、自車の現地点における分岐後の道路のレーン幅Nを特定し、メモリ9の記憶部9-4に格納(ステップST2d)し、曲がり終わり処理を終了する。
(3-3)分岐現在地補正処理
 図8は、図1中のナビゲーション装置による分岐現在地補正処理の流れを示すフローチャートである。旋回判定部7-1は、分岐現在地補正処理を開始(分岐現在地補正用プログラムを起動)すると、分岐現在地補正部7-5aに対して、分岐前後のレーン番号B,Aを比較判定するよう指示を出す。
 分岐現在地補正部7-5aは、旋回判定部7-1からの指示に従い、メモリ9の記憶部9-1,9-3から分岐前レーン番号B及び分岐後レーン番号Aを読み出し、分岐前レーン番号Bより分岐後レーン番号Aが大きいか否か(自車が曲がる前より曲がった後のレーン番号が大きいか否か)を判定する(ステップST1e)。なお、左側通行では、走行方向の最も右側(内側)が第1レーンであり、その左隣から順に第2レーン、第3レーン、・・・となり、右側通行では、走行方向の最も左側(内側)が第1レーンであり、その右隣から順に第2レーン、第3レーン、・・・となるものとする。
 ステップST1eにおいて分岐前レーン番号Bより分岐後レーン番号Aが大きい場合、分岐現在地補正部7-5aは、自車が曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合であると判断し、自車位置を補正する補正距離を算出する補正距離計算式として、補正距離=-(A-B)(N/tanβ)+(N/2)tan(β/2)=(B-A)(N/tanΘ)+(N/2)tan(Θ/2)を選択する(ステップST2e)。
 この後、分岐現在地補正部7-5aは、メモリ9の記憶部9-4から読み出した分岐後の道路のレーン幅N、分岐前レーン番号B、分岐後レーン番号A、及びセンサインタフェース部6及び旋回判定部7-1を介して取得したジャイロ角Θを用いて、上記選択した計算式に従い、補正距離を算出する。
 一方、ステップST1eにおいて分岐前レーン番号Bより分岐後レーン番号Aが大きくないと判定されると、分岐現在地補正部7-5aは、分岐前レーン番号Bより分岐後レーン番号Aが小さいか否か(自車が曲がる前より曲がった後のレーン番号が小さいか否か)を判定する(ステップST3e)。
 ここで、分岐前レーン番号Bより分岐後レーン番号Aが小さい場合、分岐現在地補正部7-5aは、自車が曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合であると判断し、自車位置を補正する補正距離を算出する補正距離計算式として、補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)=(B-A)(K/sinΘ)+(N/2)tan(Θ/2)を選択する(ステップST4e)。
 この後、分岐現在地補正部7-5aは、メモリ9の記憶部9-2から読み出した分岐前の道路のレーン幅K、分岐後の道路のレーン幅N、分岐前レーン番号B、分岐後レーン番号A、及びセンサインタフェース部6及び旋回判定部7-1を介して取得したジャイロ角Θを用いて、上記選択した計算式に従い、補正距離を算出する。
 ステップST3eにおいて、分岐前レーン番号Bより分岐後レーン番号Aが小さくないと判定すると、分岐現在地補正部7-5aは、分岐前レーン番号Bが分岐後レーン番号Aより大きくも小さくもない、すなわち分岐前レーン番号Bと分岐後レーン番号Aとが等しい場合か、レーン番号を特定できていない場合であると判断し、自車位置を補正する補正距離を算出する補正距離計算式として、補正距離=(N/2)tan(β/2)=(N/2)tan(Θ/2)を選択する(ステップST5e)。
 この後、分岐現在地補正部7-5aは、メモリ9の記憶部9-4から読み出した分岐後の道路のレーン幅N、及びセンサインタフェース部6及び旋回判定部7-1を介して取得したジャイロ角Θを用いて、上記選択した計算式に従い、補正距離を算出する。
 分岐現在地補正部7-5aは、ステップST2e、ステップST4e及びステップST5eのうちのいずれかで選択された計算式を用いて補正距離を算出すると、算出した補正距離を補正情報として現在地補正部7-5に引き渡す(ステップST6e)。
(4)現在地の補正処理
 図9は、図1中のナビゲーション装置による現在地補正処理の流れを示すフローチャートである。先ず、現在地補正部7-5は、センサインタフェース部6及び旋回判定部7-1を介してGPS受信機2で測位された自車位置、車速センサ3で検出された自車の走行距離及び地図データベース8の地図データを取得し、GPS受信機2で測位された自車位置を、車速センサ3で検出された自車の走行距離を考慮して地図データベース8の地図データに照らし合わせて地図における道路リンク上にマップマッチングした位置を求める。
 続いて、現在地補正部7-5は、分岐現在地補正部7-5aから補正情報(補正距離)を取得すると、上述のようにしてマップマッチングした自車位置に対し、分岐現在地補正部7-5aから取得した補正距離を加算して自車位置を補正する(ステップST1f)。
 次に、現在地補正部7-5は、ステップST1fで算出した自車位置に対して、分岐現在地補正部7-5aに前処理で予め設定されたジャイロセンサ配置距離の値を加算して、自車位置を補正する(ステップST2f)。この後、現在地補正部7-5は、表示部12の表示画面上に補正後の自車位置を表示する(ステップST3f)。
(5)補正距離計算式の導出
 上述のように、分岐現在地補正部7-5aには、車両の分岐前後での状況に応じた補正距離の計算式が予め設定される。これらの計算式は、下記のような状況を考慮して導出される。
(5-1)左側通行で車両が左折する場合
 図10は、左側通行で車両が左折する場合における補正距離の計算式の導出原理を示す図である。図10に示すように、左側通行の場合、レーン番号は右から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置(図10中で一点破線で示す道路の中央線に沿って車両が走行していると仮定した場合)であり、黒星記号はナビゲーション装置1で認識した分岐点における道路リンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
 なお、黒星記号で示す位置は、GPS受信機2で測位された自車位置を、車速センサ3で検出された自車の走行距離を考慮して地図データベース8の地図データに照らし合わせて地図における道路(道路リンク)上に補正(マップマッチング)した位置であり、この黒星記号で示す位置を通る道路リンクをマッチングリンクと呼ぶ。
 また、分岐点における車両位置をマップマッチングした場合、分岐前の道路リンクに接点を有し、車両の旋回角で規定される円弧(車両幅をrとする)が分岐後の道路リンクに接する位置が、図10中に黒星記号で示すナビゲーション装置1で認識された自車位置として求められる。
 この発明では、白丸記号で示す実際の自車位置のマッチングリンク上での誤差を補正する。すなわち、白丸記号で示す実際の自車位置からマッチングリンクへの垂線写像に相当する黒丸記号で示す自車位置が表示部12の画面上に表示されるように、黒丸記号で示す自車位置と上述した黒星記号で示す位置との距離誤差(マップマッチングにおける自車位置の分岐点での距離誤差)が補正される。
 左折の場合は、角度カウンタ7-3にジャイロ角Θがカウントされる。車線(レーン数)が2車線で左折した場合、考えられる実際の自車位置は、図10中に4つの白丸記号で示すように4パターンあるが、黒丸記号で示した補正位置は、下記の3つのパターンに分かれる。
(a)及び(a’)の場合
 曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
 曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
 曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
 3車線以上の場合、補正距離は、(a)又は(a’)の場合は変更がないが、(b)の場合はMを(A-B)倍し、(c)の場合はVを(B-A)倍して計算する。補正距離の計算には、分岐前の道路のレーン番号B、分岐後の道路のレーン番号A、分岐前の道路のレーン幅K、分岐後の道路のレーン幅N(分岐後の道路の中央線からの距離幅Lの2倍がNとなる)、分岐後の道路の中央線からの距離幅L及び角度カウンタ7-3の値βを用いる。
 補正距離の計算
(a)及び(a’)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。但し、Xは、車両幅をrとすると、X=rtan(Θ/2)で求められる。ここで、Z=Y-Xであることから、(Z+X)=(Y-X+X)となり、補正距離はYとなる。また、N=2Lであることを考慮すると、下記式のようになる。
 Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
 このように補正距離は正の値となるので、左折を進める方向に補正される。
 なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
 補正距離=(N/2)tan(β/2)となる。
(b)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離-(X+M-X-Z-X)だけ走行方向とは反対方向(負方向)に遅れた補正位置(黒丸記号)に補正する必要がある。ここで、補正距離Y=X+Zであり、Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であることを考慮すると、-M+X+Z=-M+Yとなる。
 従って、-M+Y=-M+Ltan(β/2)となり、M=N/tanΘ=N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。
 この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
 補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
 2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
 補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
(c)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離(V-X+X+Z+X)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、(V+Z+X)=V+(Y-X)+Xとなる。
 また、補正距離Y=V+Yとなり、Y=Ltan(Θ/2)=Ltan(β/2)であり、N=2L、V=K/sinΘ=K/sinβであることから、補正距離Yは下記式で表せる。
 Y=V+Y=(K/sinβ)+(N/2)tan(β/2)
 2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
 補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
(5-2)左側通行で車両が右折する場合
 図11は、左側通行で車両が右折する場合における補正距離の計算式の導出原理を示す図である。図11に示すように、左側通行の場合、レーン番号は右から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置であり、黒星記号はナビゲーション装置1で認識したマッチングリンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
 右折の場合は、角度カウンタ7-3にジャイロ角-Θがカウントされる。車線(レーン数)が2車線で右折した場合、考えられる実際の自車位置は、図11中に4つの白丸記号で示すように4パターンあるが、黒丸記号で示した補正位置は、下記の3つのパターンに分かれる。
(a)及び(a’)の場合
 曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
 曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
 曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
 3車線以上の場合、補正距離は、(a)又は(a’)の場合は変更がないが、(b)の場合はMを(A-B)倍し、(c)の場合はVを(B-A)倍して計算する。補正距離の計算には、分岐前の道路のレーン番号B、分岐後の道路のレーン番号A、分岐前の道路のレーン幅K、分岐後の道路のレーン幅N(分岐後の道路の中央線からの距離幅Lの2倍がNとなる)、分岐後の道路の中央線からの距離幅L及び角度カウンタ7-3の値βを用いる。
補正距離の計算
(a)及び(a’)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離-(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであることから、-(Z+X)=-(Y-X+X)となり、補正距離は-Yとなる。また、N=2Lであることを考慮すると、下記式のようになる。
 -Y=Ltan(-Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
 このように補正距離は負の値となるので、右折が遅れる方向に補正される。なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
 補正距離=(N/2)tan(β/2)となる。
(b)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離(M-Z-X)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-であり、-Y=Ltan(-Θ/2)=Ltan(β/2)であることを考慮すると、M-Z-X=M-Yとなる。
 従って、M-Y=M+Ltan(β/2)となり、M=-N/tan(-Θ)=-N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。
 この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
 補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
 2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
 補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
(c)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離-(X+V+Z)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、-(X+V+Z)=-(X+V+Y-X)となる。また、補正距離Y=-V-Yとなり、-Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であり、-V=K/sin(-Θ)=K/sinβであることから、補正距離Yは下記式で表せる。
 Y=-V-Y=(K/sinβ)+(N/2)tan(β/2)
 2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
 補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
(5-3)右側通行で車両が左折する場合
 図12は、右側通行で車両が左折する場合における補正距離の計算式の導出原理を示す図である。図12に示すように、右側通行の場合、レーン番号は左から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置であり、黒星記号はナビゲーション装置1で認識したマッチングリンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
 左折の場合は、角度カウンタ7-3にジャイロ角-Θがカウントされる。車線(レーン数)が2車線で左折した場合、考えられる実際の自車位置は、図12中に4つの白丸記号で示すように4パターンあるが、黒丸記号で示した補正位置は、下記の3つのパターンに分かれる。
(a)及び(a’)の場合
 曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
 曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
 曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
 3車線以上の場合、補正距離は、(a)又は(a’)の場合は変更がないが、(b)の場合はMを(A-B)倍し、(c)の場合はVを(B-A)倍して計算する。補正距離の計算には、分岐前の道路のレーン番号B、分岐後の道路のレーン番号A、分岐前の道路のレーン幅K、分岐後の道路のレーン幅N(分岐後の道路の中央線からの距離幅Lの2倍がNとなる)、分岐後の道路の中央線からの距離幅L及び角度カウンタ7-3の値βを用いる。
補正距離の計算
(a)及び(a’)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離-(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであることから、-(Z+X)=(Y-X+X)となり、補正距離は-Yとなる。また、N=2Lであることを考慮すると、下記式のようになる。
 -Y=Ltan(-Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
 このように補正距離は負の値となるので、左折が走行方向とは反対に遅れるように補正される。なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
 補正距離=(N/2)tan(β/2)となる。
(b)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離(M-X-Z)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、補正距離Y=X+Zであり、-Y=Ltan(-Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であることを考慮すると、M-Z-X=M-(X+Z)=M-Yとなる。
 従って、M-Y=M+Ltan(β/2)となり、M=-N/tan(-Θ)=-N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。
 この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
 補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
 2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
(c)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離-(X+V+Z)だけ走行方向とは反対方向(負方向)に遅れた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、-(X+V+Z)=-(X+V+Y-X)となる。また、補正距離Y=-V-Yとなり、-Y=Ltan(-Θ/2)=Ltan(β/2)であり、N=2L、-V=K/sin(-Θ)=K/sinβであることから、補正距離Yは下記式で表せる。
 Y=-V-Y=(K/sinβ)+(N/2)tan(β/2)
 2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
 補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
(5-4)左側通行で車両が右折する場合
 図13は、右側通行で車両が右折する場合における補正距離の計算式の導出原理を示す図である。図13に示すように、右側通行の場合、レーン番号は左から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置であり、黒星記号はナビゲーション装置1で認識したマッチングリンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
 右折の場合は、角度カウンタ7-3にジャイロ角Θがカウントされる。車線(レーン数)が2車線で右折した場合、考えられる実際の自車位置は、図13中に4つの白丸記号で示すように4パターンあるが、黒丸記号で示した補正位置は、下記の3つのパターンに分かれる。
(a)及び(a’)の場合
 曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
 曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
 曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
 3車線以上の場合、補正距離は、(a)又は(a’)の場合は変更がないが、(b)の場合はMを(A-B)倍し、(c)の場合はVを(B-A)倍して計算する。補正距離の計算には、分岐前の道路のレーン番号B、分岐後の道路のレーン番号A、分岐前の道路のレーン幅K、分岐後の道路のレーン幅N(分岐後の道路の中央線からの距離幅Lの2倍がNとなる)、分岐後の道路の中央線からの距離幅L及び角度カウンタ7-3の値βを用いる。
補正距離の計算
(a)及び(a’)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。
ここで、Z=Y-Xであることから、(Z+X)=(Y-X+X)となり、補正距離はYとなる。また、N=2Lであることを考慮すると、下記式のようになる。
 Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
 このように補正距離は正の値となるので、右折が進む方向に補正される。なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
 補正距離=(N/2)tan(β/2)となる。
(b)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離-(X+M-X-Z-X)だけ走行方向とは反対方向(負方向)に遅れた補正位置(黒丸記号)に補正する必要がある。
ここで、Y=X+Zであり、Y=Ltan(-Θ/2)=Ltan(β/2)であることを考慮すると、-M+X+Z=-M+Yとなる。従って、-M+Y=-M+Ltan(β/2)となり、M=N/tanΘ=N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
 補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
 2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
(c)の場合
 マッチングリンク上の自車位置(黒星記号)を補正距離(V-X+X+Z+X)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、(V+Z+X)=V+(Y-X)+Xとなる。
 また、補正距離Y=V+Yとなり、Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であり、V=K/sinΘ=K/sinβであることから、補正距離Yは下記式で表せる。
 Y=V+Y=(K/sinβ)+(N/2)tan(β/2)
 2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
 補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
 以上のように、この実施の形態1によれば、分岐点における自車の分岐前後の走行路のレーン幅K,N及びレーン番号B,Aと、分岐点における自車の旋回角Θとから、マップマッチングされた道路リンク上の自車位置と分岐点における自車の実位置から当該道路リンクへの垂線写像位置との距離差を算出し、自車位置が前記垂線写像位置となるように補正する。このようにすることにより、GPS測位結果によって求めた分岐点における自車位置を、自車の分岐点での旋回を考慮して正確な位置に補正することができる。特に、車両の曲がり始めのタイミングと曲がり終わりのタイミングを判定して分岐前後のレーンに関する情報を取得し、これを用いて補正するので、車両等の分岐点での距離誤差を適切に補正して精度の高いマップマッチングを行うことができる。
 なお、上記実施の形態1では、本発明を自動車に搭載される車載ナビゲーション装置に適用する場合を示したが、移動体とともに使用されるナビゲーション装置であれば適用可能である。例えば、ジャイロセンサを搭載することが可能な自動二輪車や自転車などであっても構わない。
 この発明に係るナビゲーション装置は、GPS測位結果によって求めた分岐点における移動体位置を、移動体の分岐点での旋回を考慮して正確な位置に補正することができるため、マップマッチングの距離誤差を補正する機能を有したナビゲーション装置等に用いるのに適している。

Claims (4)

  1.  移動体に搭載され、前記移動体の位置を測定する測位手段と、前記移動体の旋回角を検出する旋回角検出手段と、前記移動体の走行レーンを検出する走行レーン検出手段とを備えたナビゲーション装置において、
     地図データで特定された走行路の分岐点において、前記旋回角検出手段にて検出された前記移動体の旋回角に基づいて、前記分岐点における前記移動体の曲がり始め及び曲がり終わりを判定する旋回判定手段と、
     前記走行レーン検出手段にて検出された前記移動体の走行レーン及び前記旋回判定手段の判定結果を用いて、前記移動体の前記分岐点における分岐前後の走行路のレーン幅及び分岐前後の走行路のレーン数ごとに割り振られたレーン番号を、地図データから取得する走行レーン情報取得手段と、
     前記測位手段にて測位された前記移動体の位置を地図データにおける走行路の道路リンク上にマップマッチングするとともに、前記走行レーン情報取得手段にて取得された前記分岐点における前記移動体の分岐前後の走行路のレーン幅及びレーン番号と、前記旋回角検出手段にて検出された前記分岐点における前記移動体の旋回角とから、前記マップマッチングされた前記道路リンク上の前記移動体の位置と前記分岐点における前記移動体の実位置から当該道路リンクへの垂線写像位置との距離差を算出し、前記移動体の位置が前記垂線写像位置となるように補正するマッチング補正手段とを備えたことを特徴とするナビゲーション装置。
  2.  マッチング補正手段は、
     マップマッチングされた分岐点における道路リンク上の移動体の位置と、前記分岐点における前記移動体の実位置から当該道路リンクへの垂線写像位置との距離差を、
     分岐前後で前記移動体が同一レーン番号のレーンを走行する場合、
     分岐後の走行路のレーン幅をN、前記分岐点における前記移動体の旋回角をΘとして、
     計算式(N/2)tan(Θ/2)を用いて算出し、
     分岐前に前記移動体が走行していたレーンのレーン番号より分岐後のレーン番号が大きくなった場合、
     分岐前のレーン番号をBとし、分岐後のレーン番号をAとして、
     計算式(B-A)(N/tanΘ)+(N/2)tan(Θ/2)を用いて算出し、
     分岐前に前記移動体が走行していたレーンのレーン番号より分岐後のレーン番号が小さくなった場合、
     分岐前の走行路のレーン幅をKとして、
     計算式(B-A)(K/sinΘ)+(N/2)tan(Θ/2)を用いて算出することを特徴とする請求項1記載のナビゲーション装置。
  3.  移動体の先頭位置から前記移動体への旋回角検出手段の取り付け位置までの距離を設定する取り付け距離設定手段を備え、
     マッチング補正手段は、分岐点における前記移動体の実位置から道路リンクへの垂線写像位置に対し、前記取り付け距離設定手段にて設定された前記取り付け位置までの距離を加算して、前記移動体の補正位置を算出することを特徴とする請求項1記載のナビゲーション装置。
  4.  移動体が走行する道路が右側通行か左側通行かを設定する通行側設定手段を備え、
     旋回判定手段は、旋回角検出手段にて検出された前記移動体の旋回角を右側通行と左側通行とで符号を反転させて、分岐点における前記移動体の曲がり始め及び曲がり終わりを判定し、
     マッチング補正手段は、前記旋回角検出手段にて検出された前記移動体の旋回角を右側通行と左側通行とで符号を反転させて前記移動体の位置を補正することを特徴とする請求項1記載のナビゲーション装置。
PCT/JP2009/004635 2008-10-17 2009-09-16 ナビゲーション装置 WO2010044188A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010533789A JP4864161B2 (ja) 2008-10-17 2009-09-16 ナビゲーション装置
DE112009002300.2T DE112009002300B4 (de) 2008-10-17 2009-09-16 Navigationsgerät
US13/055,776 US8200424B2 (en) 2008-10-17 2009-09-16 Navigation device
CN2009801361540A CN102150015B (zh) 2008-10-17 2009-09-16 导航装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008268802 2008-10-17
JP2008-268802 2008-10-17

Publications (1)

Publication Number Publication Date
WO2010044188A1 true WO2010044188A1 (ja) 2010-04-22

Family

ID=42106365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004635 WO2010044188A1 (ja) 2008-10-17 2009-09-16 ナビゲーション装置

Country Status (5)

Country Link
US (1) US8200424B2 (ja)
JP (1) JP4864161B2 (ja)
CN (1) CN102150015B (ja)
DE (1) DE112009002300B4 (ja)
WO (1) WO2010044188A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226700A (zh) * 2011-03-16 2011-10-26 山东大学 一种用于立交桥路网电子地图匹配的方法
JP2012118028A (ja) * 2010-12-03 2012-06-21 Aisin Aw Co Ltd 道路ノード位置管理システム
JP2012118027A (ja) * 2010-12-03 2012-06-21 Aisin Aw Co Ltd 道路ノード位置管理システム
WO2013065629A1 (ja) * 2011-11-04 2013-05-10 三菱重工業株式会社 移動経路特定装置および移動経路特定方法ならびにそのプログラム
CN110475198A (zh) * 2018-05-08 2019-11-19 上海大唐移动通信设备有限公司 一种城市道路用户轨迹纠偏处理方法及装置
CN111401255A (zh) * 2020-03-17 2020-07-10 北京百度网讯科技有限公司 用于识别分歧路口的方法和装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506790B2 (ja) * 2007-07-05 2010-07-21 アイシン・エィ・ダブリュ株式会社 道路情報生成装置、道路情報生成方法および道路情報生成プログラム
PL2431712T3 (pl) * 2010-09-17 2013-09-30 Kapsch Trafficcom Ag Sposób określania długości drogi pokonanej przez pojazd
US9087213B2 (en) * 2011-02-22 2015-07-21 Fedex Corporate Services, Inc. Systems and methods for rule-driven management of sensor data across geographic areas and derived actions
CN102322868A (zh) * 2011-09-15 2012-01-18 鸿富锦精密工业(深圳)有限公司 汽车导航装置及汽车导航方法
JP5831308B2 (ja) * 2012-03-13 2015-12-09 アイシン・エィ・ダブリュ株式会社 移動体位置検出システム、移動体位置検出装置、移動体位置検出方法及びコンピュータプログラム
DE112013004044T5 (de) * 2012-08-13 2015-05-13 Honda Motor Co., Ltd. Straßenumgebungs-Erkennungsvorrichtung
WO2014059386A1 (en) * 2012-10-11 2014-04-17 Imsi Design, Llc Method for calibrating the physical position and orientation of an electronic device
JP6351235B2 (ja) * 2013-11-06 2018-07-04 アルパイン株式会社 ナビゲーションシステム、コンピュータプログラム及び現在位置算出方法
JP5902665B2 (ja) * 2013-12-27 2016-04-13 本田技研工業株式会社 鞍乗型車両
EP2894616B1 (de) * 2014-01-14 2015-11-18 Kapsch TrafficCom AG Onboard-Unit und Verfahren zur Information eines Fahrers
JP6280856B2 (ja) * 2014-10-31 2018-02-14 株式会社シマノ 自転車用制御システム
US10262213B2 (en) * 2014-12-16 2019-04-16 Here Global B.V. Learning lanes from vehicle probes
US9644972B2 (en) * 2015-03-06 2017-05-09 Tallysman Wireless Inc. Method for tracking a path taken by a vehicle
JP6344275B2 (ja) * 2015-03-18 2018-06-20 トヨタ自動車株式会社 車両制御装置
US9593959B2 (en) * 2015-03-31 2017-03-14 International Business Machines Corporation Linear projection-based navigation
US9551583B1 (en) * 2015-07-06 2017-01-24 International Business Machines Corporation Hybrid road network and grid based spatial-temporal indexing under missing road links
KR102138557B1 (ko) * 2016-03-02 2020-07-28 미쓰비시덴키 가부시키가이샤 자동 주행 지원 장치, 노측기 및 자동 주행 지원 시스템
US10145691B2 (en) * 2016-05-18 2018-12-04 Here Global B.V. Ambiguity map match rating
US9666067B1 (en) * 2016-08-30 2017-05-30 Allstate Insurance Company Vehicle turn detection
US10147316B2 (en) 2016-09-12 2018-12-04 Here Global B.V. Method, apparatus and computer program product for indexing traffic lanes for signal control and traffic flow management
US10252717B2 (en) 2017-01-10 2019-04-09 Toyota Jidosha Kabushiki Kaisha Vehicular mitigation system based on wireless vehicle data
US10677599B2 (en) * 2017-05-22 2020-06-09 At&T Intellectual Property I, L.P. Systems and methods for providing improved navigation through interactive suggestion of improved solutions along a path of waypoints
CN109307517B (zh) * 2017-07-28 2021-04-13 阿里巴巴(中国)有限公司 交叉路口定位方法和装置
JP7120444B2 (ja) * 2019-03-19 2022-08-17 日本電信電話株式会社 情報処理装置、方法およびプログラム
CN111750878B (zh) * 2019-03-28 2022-06-24 北京魔门塔科技有限公司 一种车辆位姿的修正方法和装置
CN111422204B (zh) * 2020-03-24 2022-03-04 北京京东乾石科技有限公司 自动驾驶车辆通行判定方法及相关设备
CN111982157A (zh) * 2020-09-14 2020-11-24 深圳中科超远科技有限公司 一种道路测绘划线车辆坐标校正装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221427A (ja) * 2004-02-06 2005-08-18 Kenwood Corp ナビゲーション装置、マップマッチング方法、およびナビゲーション用プログラム
JP2006003166A (ja) * 2004-06-16 2006-01-05 Denso Corp 走行路推定装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001289654A (ja) 2000-04-11 2001-10-19 Equos Research Co Ltd ナビゲーション装置、ナビゲーション装置の制御方法、及びそのプログラムを記録した記録媒体
US6581005B2 (en) * 2000-11-30 2003-06-17 Nissan Motor Co., Ltd. Vehicle position calculation apparatus and method
JP2003185453A (ja) * 2001-12-20 2003-07-03 Mitsubishi Electric Corp ナビゲーション装置および経路探索方法
EP1593936B1 (en) * 2004-04-30 2013-02-27 Koito Manufacturing Co., Ltd Lighting system for vehicle
JP2006189325A (ja) 2005-01-06 2006-07-20 Aisin Aw Co Ltd 車両の現在地情報管理装置
JP4889272B2 (ja) * 2005-09-30 2012-03-07 アルパイン株式会社 ナビゲーション装置及び車両位置推定方法
JP5013738B2 (ja) * 2006-04-25 2012-08-29 アルパイン株式会社 地図データ作成装置
JP4724043B2 (ja) * 2006-05-17 2011-07-13 トヨタ自動車株式会社 対象物認識装置
KR100873474B1 (ko) * 2006-12-04 2008-12-15 한국전자통신연구원 영상상의 교통 시설물의 픽셀 사이즈 및 위치를 이용한차량 위치 추정 장치 및 그 방법
JPWO2009084135A1 (ja) * 2007-12-28 2011-05-12 三菱電機株式会社 ナビゲーション装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221427A (ja) * 2004-02-06 2005-08-18 Kenwood Corp ナビゲーション装置、マップマッチング方法、およびナビゲーション用プログラム
JP2006003166A (ja) * 2004-06-16 2006-01-05 Denso Corp 走行路推定装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118028A (ja) * 2010-12-03 2012-06-21 Aisin Aw Co Ltd 道路ノード位置管理システム
JP2012118027A (ja) * 2010-12-03 2012-06-21 Aisin Aw Co Ltd 道路ノード位置管理システム
CN102226700A (zh) * 2011-03-16 2011-10-26 山东大学 一种用于立交桥路网电子地图匹配的方法
CN102226700B (zh) * 2011-03-16 2013-01-30 山东大学 一种用于立交桥路网电子地图匹配的方法
WO2013065629A1 (ja) * 2011-11-04 2013-05-10 三菱重工業株式会社 移動経路特定装置および移動経路特定方法ならびにそのプログラム
CN110475198A (zh) * 2018-05-08 2019-11-19 上海大唐移动通信设备有限公司 一种城市道路用户轨迹纠偏处理方法及装置
CN110475198B (zh) * 2018-05-08 2021-01-26 上海大唐移动通信设备有限公司 一种城市道路用户轨迹纠偏处理方法及装置
CN111401255A (zh) * 2020-03-17 2020-07-10 北京百度网讯科技有限公司 用于识别分歧路口的方法和装置
CN111401255B (zh) * 2020-03-17 2023-05-12 阿波罗智联(北京)科技有限公司 用于识别分歧路口的方法和装置

Also Published As

Publication number Publication date
CN102150015A (zh) 2011-08-10
JP4864161B2 (ja) 2012-02-01
US20110125402A1 (en) 2011-05-26
CN102150015B (zh) 2013-09-25
DE112009002300B4 (de) 2020-06-18
DE112009002300T5 (de) 2012-01-19
JPWO2010044188A1 (ja) 2012-03-08
US8200424B2 (en) 2012-06-12

Similar Documents

Publication Publication Date Title
JP4864161B2 (ja) ナビゲーション装置
CN111380539B (zh) 车辆定位、导航方法和装置及相关系统
EP0738877B1 (en) System for vehicle odometer correction
US8571789B2 (en) Navigation system
KR100275189B1 (ko) 차량의 진행 거리를 산출하기 위한 거리 계수를 보정하는 현재 위치 산출장치
JP5422111B2 (ja) 走行経路検出用の車載器
EP2159541A1 (en) Navigation device, navigation method, and navigation program
US20150192657A1 (en) Method for determining a position of a vehicle, and a vehicle
WO2015131464A1 (zh) 一种车辆定位纠偏方法及装置
JP2009115587A (ja) 走行経路検出用の車載器
JP2009008590A (ja) 自車位置認識装置及び自車位置認識プログラム
JPH0518774A (ja) 車両位置方位算出装置
KR20190044988A (ko) 자이로 센싱값 보상 장치, 그를 포함한 시스템 및 그 방법
CN111623794A (zh) 车辆导航的显示控制方法及车辆、可读存储介质
KR20140025244A (ko) 차량 항법 장치의 자이로센서 보상장치 및 그 방법
JPH0833302B2 (ja) 位置検出装置
JP4848931B2 (ja) 角速度センサの信号補正装置
CN110645994A (zh) 一种车载实景增强导航系统及方法
JP2006153565A (ja) 車載ナビゲーション装置及び自車位置補正方法
JP2008241446A (ja) ナビゲーション装置及びその制御方法
JP2007033395A (ja) 位置補正方法及びナビゲーション装置
JP2006275619A (ja) 高度算出装置及びナビゲーション装置
JP4328173B2 (ja) 車載ナビゲーション装置
JP6173714B2 (ja) 車載装置及びその位置補正方法並びに位置補正プログラム
CN115917253A (zh) 自身车辆位置推断装置及自身车辆位置推断方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980136154.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820367

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010533789

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13055776

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09820367

Country of ref document: EP

Kind code of ref document: A1