WO2010044188A1 - ナビゲーション装置 - Google Patents
ナビゲーション装置 Download PDFInfo
- Publication number
- WO2010044188A1 WO2010044188A1 PCT/JP2009/004635 JP2009004635W WO2010044188A1 WO 2010044188 A1 WO2010044188 A1 WO 2010044188A1 JP 2009004635 W JP2009004635 W JP 2009004635W WO 2010044188 A1 WO2010044188 A1 WO 2010044188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lane
- vehicle
- distance
- correction
- branching
- Prior art date
Links
- 238000012937 correction Methods 0.000 claims description 175
- 238000004364 calculation method Methods 0.000 claims description 36
- 238000005452 bending Methods 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 abstract 2
- 238000000034 method Methods 0.000 description 32
- 238000012545 processing Methods 0.000 description 13
- 238000009795 derivation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 238000003491 array Methods 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 5
- 238000009434 installation Methods 0.000 description 3
- 241000032989 Ipomoea lacunosa Species 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 101001093748 Homo sapiens Phosphatidylinositol N-acetylglucosaminyltransferase subunit P Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/167—Driving aids for lane monitoring, lane changing, e.g. blind spot detection
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
- G08G1/0962—Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
- G08G1/0967—Systems involving transmission of highway information, e.g. weather, speed limits
- G08G1/096766—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
- G08G1/096783—Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element
Definitions
- the present invention relates to a navigation apparatus having a function of correcting a distance error in map matching.
- dead reckoning using a result obtained by obtaining a traveling direction using a gyro sensor and a travel distance using a vehicle speed sensor is generally performed.
- a reference point is first measured by GPS (Global Positioning System) or the like, a traveling vector from the point and a travel distance are calculated, and a movement vector is calculated.
- the current position is obtained by adding to the reference position.
- the position error is corrected by the GPS positioning result at an arbitrary time.
- an error of about 10 m may occur even in GPS positioning, and even if the vehicle position is corrected using the GPS positioning result during dead reckoning, the exact position coordinates of the vehicle may not be obtained. is there.
- the gyro sensor installed in the current car navigation system does not have angle detection accuracy that can handle all conditions during travel, and the detection result is straight ahead in narrow-angle branching or lane change of the vehicle. Difficult to distinguish. For this reason, it is difficult to quickly and accurately determine which direction the vehicle has traveled at the branch.
- the travel route estimation device disclosed in Patent Document 1 when the vehicle is turning when passing an intersection (when the vehicle is turning right or left), the course of the vehicle is changed by the turn. In consideration of the fact that the vehicle cannot be accurately identified, if the vehicle is turning when exceeding a predetermined distance for determining whether or not the course has changed since entering the intersection, the travel path is estimated at that time. If the vehicle is not turning, it is determined that the vehicle has traveled straight and the travel path is estimated. In this way, even if the estimation of the travel path is prohibited when passing the intersection so that the travel path in which an error has occurred due to the branching of the vehicle is not used for vehicle control, the information on the travel path is quickly obtained after passing the intersection. Based vehicle control can be restored.
- Patent Document 1 the inaccurate travel path estimated when the vehicle turns is not used for vehicle control, but the travel path is not estimated every time the vehicle branches at an intersection, and the travel error is accumulated. There is a possibility to make it.
- the length of the vehicle varies depending on the vehicle type and application, and the installation position of the gyro sensor varies depending on the user, which is caused by the distance between the installation position of the gyro sensor and the start position of the vehicle. An error occurs.
- the present invention has been made to solve the above-described problems, and it is an object of the present invention to obtain a navigation apparatus capable of performing map matching with high accuracy by appropriately correcting a distance error at a branch point of a vehicle or the like. Objective.
- a navigation device is mounted on a moving body, and includes positioning means for measuring the position of the moving body, turning angle detecting means for detecting a turning angle of the moving body, and detecting a traveling lane of the moving body.
- the mobile body starts to bend and ends at the branch point of the travel path based on the map data and the turning angle of the mobile body detected by the turning angle detecting means.
- Turn determination means for determining the travel lane of the mobile body detected by the travel lane detection means and the determination result of the turn determination means, the travel path before and after the branch at the branch point of the mobile body
- Driving lane information acquisition means for acquiring the lane width and the lane number assigned for each lane number of the driving path before and after branching from the map data, and the positioning Map matching the position of the mobile body measured at the stage on the road link of the travel path in the map data, and travel before and after branching of the mobile body at the branch point acquired by the travel lane information acquisition means From the lane width and lane number of the road and the turning angle of the moving body at the branch point detected by the turning angle detecting means, the position of the moving body on the road link and the branching that are map-matched And a matching correction unit that calculates a distance difference between the actual position of the moving body at a point and a perpendicular map position to the road link and corrects the position of the movable body to be the perpendicular map position.
- the position and branch of the moving body on the road link that is map-matched from the lane width and lane number of the traveling road before and after the branching of the moving body at the branch point and the turning angle of the moving body at the branch point.
- the distance difference between the actual position of the moving object at the point and the perpendicular map position to the road link is calculated, and the position of the moving object is corrected to be the perpendicular map position.
- FIG. 1 is a block diagram showing a configuration of a navigation device according to Embodiment 1 of the present invention, and shows an example in which the present invention is applied to an in-vehicle navigation device.
- a navigation device 1 according to Embodiment 1 is mounted on a moving body such as a vehicle, and includes a GPS receiver (positioning means) 2, a vehicle speed sensor 3, a gyro sensor (turning angle detection means) 4, a travel lane determination sensor (travel lane detection). Means) 5, sensor interface unit 6, locator 7, map database 8, memory 9, gyro input method setting unit (passage side setting unit) 10, gyro sensor arrangement distance setting unit (mounting distance setting unit) 11, and display unit 12.
- a GPS receiver positioning means
- vehicle speed sensor 3 a gyro sensor (turning angle detection means) 4
- travel lane determination sensor travel lane detection
- Means 5
- sensor interface unit 6 locator 7, map database 8
- memory memory
- gyro input method setting unit (
- the GPS receiver 2 is a component that receives time and position information of the own vehicle using radio navigation by receiving radio waves from GPS satellites.
- the vehicle speed sensor 3 detects information related to the travel distance of the host vehicle using vehicle speed pulses.
- the gyro sensor 4 is a sensor that measures the turning angle of the traveling vehicle using a gyroscope.
- the traveling lane determination sensor 5 is a component that determines the traveling lane of the vehicle. For example, the traveling lane determination sensor 5 determines a white line of a road from a camera image captured by an in-vehicle camera, and identifies a road lane, DSRC (Dedicated Short Range It consists of sensors that determine lanes based on information from Communication.
- DSRC Dedicated Short Range It
- the sensor interface unit 6 is an interface between the GPS receiver 2 and various sensors 3 to 5 and the locator 7, and transmits information obtained by the GPS receiver 2 and various sensors 3 to 5 to the locator 7.
- the locator 7 is a component that calculates the position and azimuth information estimated as the current position of the host vehicle using the information transmitted to the sensor interface unit 6, and includes a turn determination unit (turn determination unit) 7-1. , A turn start flag 7-2, an angle counter 7-3, a moving distance counter 7-4, a current position correction unit (matching correction unit) 7-5, and a travel lane determination unit (travel lane information acquisition unit) 7-6.
- the turning determination unit 7-1 determines whether or not the host vehicle is bent based on the angle change between the arrays in the gyro angle arrays ⁇ (Tt) to ⁇ (T) acquired from the sensor interface unit 6 (whether the vehicle has turned). Or not).
- T is the number of cycles for obtaining angle information from the sensor interface unit 6 after the turn determination unit 7-1 is started, and t is for determining a turn set in advance in the navigation device 1 according to the first embodiment. Sampling number.
- the bend start flag 7-2 is set to a digital value of 1 when the vehicle reaches a branch point where the vehicle starts to bend, and is set to a digital value of 0 when the vehicle finishes turning.
- the angle counter 7-3 is a counter to which the gyro angle ⁇ detected by the gyro sensor 4 is sequentially added from the start to the end of the turn of the host vehicle.
- the movement distance counter 7-4 is a counter to which the movement distance ⁇ d detected by the vehicle speed sensor 3 is sequentially added from the start of the vehicle to the end of the turn.
- the current location correction unit 7-5 is a component that corrects the vehicle position using the correction information acquired by the branch current location correction processing and the gyro sensor arrangement distance, and includes a branch current location correction unit 7-5a.
- the branch current position correction unit 7-5a reads the lane number before branching of the vehicle, the road lane width before branching, the lane number after branching, and the road lane after branching read from the storage units 9-1 to 9-4 of the memory 9. Using the width, a correction distance for correcting the distance error at the vehicle position on the road link at the branch point recognized by the navigation device 1 is calculated.
- the own vehicle position on the road link recognized by the navigation device 1 is the map database 8 in consideration of the own vehicle position measured by the GPS receiver 2 and the travel distance of the own vehicle detected by the vehicle speed sensor 3. It is the position corrected (map matching) on the road (road link) in the map in light of the map data.
- the driving lane judging unit 7-6 uses the information acquired through the sensor interface unit 6 and the information in the map database 8 to determine the lane number before branching obtained at the point where the vehicle starts to bend and the point where the vehicle has finished bending,
- the road lane width before branching, the lane number after branching, and the road lane width after branching are obtained and stored in the storage units 9-1 to 9-4 of the memory 9, respectively.
- the map database 8 is a database that stores map data related to buildings and roads on the map, and includes road lane width, number of lanes, and branch point information as road map information.
- the memory 9 is a memory mounted on the navigation device 1 according to the first embodiment.
- the memory unit 9-1 stores the lane number B before branching of the host vehicle, and the lane width K of the road before branching of the host vehicle. It has a storage unit 9-2 for storing, a storage unit 9-3 for storing the lane number A after branching of the host vehicle, and a storage unit 9-4 for storing the lane width N of the road after branching of the host vehicle.
- the gyro input method setting unit 10 is a component that displays a selection screen for left-hand traffic or right-hand traffic on the display unit 12 and provides a GUI (Graphical User Interface) that allows the user to select one, and right-hand traffic is selected. Then, the branch current position correction unit 7-5a is instructed to invert the value of the angle counter 7-3.
- GUI Graphic User Interface
- the gyro sensor arrangement distance setting unit 11 is a component that provides a GUI for inputting the arrangement distance of the gyro sensor 4 via the display unit 12. For example, “Enter the distance on the display screen of the display unit 12. When the user inputs the arrangement distance of the gyro sensor 4 using an input device (not shown), the branching position correction unit 7-5a is notified of the arrangement distance.
- the display unit 12 includes a display device such as a liquid crystal display, and displays a navigation screen and the like.
- FIG. 2 is a flowchart showing a flow of processing for initially setting whether the own vehicle is left-hand traffic or right-hand traffic with respect to the navigation device in FIG.
- the gyro input method setting unit 10 displays a selection screen for left-hand traffic or right-hand traffic on the display screen of the display unit 12.
- Step ST1 the gyro input method setting unit 10 shifts to a waiting state until the user answers an inquiry about left-hand traffic or right-hand traffic, that is, until either the left-hand traffic or the right-hand traffic is input using the input device.
- the selection screen is continuously displayed on the display unit 12 (step ST2).
- the gyro input method setting unit 10 determines whether left-hand traffic is selected (step ST3).
- the gyro input method setting unit 10 ends the process as it is. In the navigation device 1, it is assumed that left-hand traffic is set by default.
- the gyro input method setting unit 10 instructs the branch current position correction unit 7-5a to invert the value of the angle counter 7-3 (step ST4). Thereafter, the process is terminated.
- FIG. 3 is a flowchart showing a flow of processing for initially setting the gyro sensor arrangement distance for the navigation apparatus in FIG.
- the gyro sensor arrangement distance setting unit 11 displays a setting screen for setting the arrangement distance of the gyro sensor 4 on the display screen of the display unit 12. It is displayed (step ST1a). For example, a setting screen including a message “Please enter a distance” is displayed on the display unit 12.
- the gyro sensor arrangement distance setting unit 11 shifts to a waiting state until the user inputs and inputs the arrangement distance of the gyro sensor 4, that is, until the user inputs the arrangement distance of the gyro sensor 4 using the input device.
- the screen is continuously displayed on the display unit 12 (step ST2a).
- the gyro sensor arrangement distance setting unit 11 sets the input arrangement distance of the gyro sensor 4 in the branch current position correction unit 7-5a (step ST3a). .
- FIG. 4 is a diagram showing the relationship between the traveling vehicle and the gyro sensor arrangement distance.
- FIG. 4 (a) shows the relationship between the vehicle size and the gyro sensor arrangement distance
- FIG. 4C shows a case where the vehicle makes a right turn.
- the position with the black star symbol is the installation position of the gyro sensor 4
- the position with the white star symbol is the head position of the vehicle.
- the above-described gyro sensor arrangement distance is the distances D1 and D2 between the position with the black star symbol and the position with the white star symbol.
- the gyro sensor 4 is attached by the user even if the vehicles are the same size. May be different.
- the gyro sensor arrangement distance D1 of the vehicle 13a with a long vehicle length is longer than the gyro sensor arrangement distance D2 of the vehicle 13b with a short vehicle length.
- the travel distance error is generated by the gyro sensor arrangement distance. Therefore, as shown in FIGS.
- FIG. 5 is a flowchart showing a flow of turning determination processing of the own vehicle by the navigation device in FIG.
- the turning determination unit 7-1 in the locator 7 is started by a timer and periodically requests the sensor interface unit 6 to acquire angle information detected by the gyro sensor 4 via the sensor interface unit 6.
- the turning determination unit 7-1 substitutes the gyro sensor angle ⁇ acquired as the angle information into the gyro angle array ⁇ (T) of the angle counter 7-3 (step ST1b). Note that T is the number of cycles for obtaining angle information from the sensor interface unit 6 after the turning determination unit 7-1 is activated.
- the turning determination unit 7-1 monitors the value of the bend start flag 7-2 and determines whether or not the digital value 1 indicating the start of the turn of the host vehicle is set (step ST2b).
- the turning determination unit 7-1 determines the gyro angle array ⁇ (T ⁇ t) of the angle counter 7-3.
- ⁇ (T) To ⁇ (T), it is determined whether or not the vehicle is bent due to an angle change between the arrays (step ST3b).
- t is the number of samplings for determining a preset turn in the navigation device 1 according to the first embodiment.
- the turning determination unit 7-1 returns to the process of step ST3b again and is based on the angle change between the gyro angle arrays ⁇ (Tt) to ⁇ (T). Repeat the determination. If it is determined that the host vehicle is bent, the turn determination unit 7-1 reads road branch information from the map database 8, and determines whether or not the current position of the host vehicle is near the branch point (step ST4b). Here, if it is determined that the vehicle position is not a branch point, the turn determination unit 7-1 ends the turn determination.
- step ST4b When it is determined in step ST4b that the vehicle position is a branch point, the turning determination unit 7-1 sets a digital value 1 to the bend start flag 7-2 (step ST5b), and the angle counter 7-3 The value is initialized to 0 (step ST6b), and the value of the movement distance counter 7-4 is also initialized to 0 (step ST7b), and then a bending start process described later with reference to FIG. 6 is started (step ST8b).
- step ST2b if the value of the curve start flag 7-2 is 1, the turning determination unit 7-1 determines whether the angle counter 7-3 has a gyro angle array ⁇ (Tt) to ⁇ (T). Based on the change in angle between the arrays, it is determined whether or not the vehicle has finished bending (step ST9b). If it is determined that the bending has not been completed, the turning determination unit 7-1 uses the gyro angle ⁇ detected by the gyro sensor 4 acquired through the sensor interface unit 6 at this time as the gyro angle array of the angle counter 7-3. Add to ⁇ (step ST10b).
- the turning determination unit 7-1 adds the movement distance ⁇ d of the own vehicle detected by the vehicle speed sensor 3 acquired through the sensor interface unit 6 to the movement distance counter 7-4 (step ST11b). Thereafter, the turning determination unit 7-1 returns to the process of step ST9b.
- step ST9b If it is determined in step ST9b that the turn has been completed, the turning determination unit 7-1 initializes the value of the turn start flag 7-2 to 0 (step ST12b), and performs a turn end process to be described later with reference to FIG. Is started (step ST13b). When the turning end process is completed, the turning determination unit 7-1 activates the branch current position correction unit 7-5a and starts a branch current position correction process described later with reference to FIG. 8 (step ST14b). When this process is completed, the turning determination process is terminated.
- FIG. 6 is a flowchart showing the flow of the bending start processing by the navigation device in FIG.
- the turn determination unit 7-1 starts the turn start process (starts the turn start processing program)
- the turn determination unit 7-1 instructs the travel lane determination unit 7-6 to acquire information on the travel lane of the host vehicle.
- the travel lane determination unit 7-6 follows the instruction from the turn determination unit 7-1 and acquires sensor information (the own vehicle detected by the travel lane determination sensor 5) via the sensor interface unit 6 and the turn determination unit 7-1.
- Lane number of the road on which the vehicle is traveling at the local point as information on the traveling lane at the current position of the vehicle, using the information identifying the traveling lane of the vehicle) and the information (branch point information) in the map database 8 Is stored in the storage unit 9-1 of the memory 9 as the pre-branch lane number B (step ST1c).
- the traveling lane determining unit 7-6 specifies the lane width K of the road before branching at the local point of the vehicle based on the branching point information read from the map database 8, and the storage unit 9- 2 is stored (step ST2c), and the bend start process is terminated.
- FIG. 7 is a flowchart showing the flow of the bending end processing by the navigation device in FIG.
- the turn determination unit 7-1 starts the turn end processing (starts the turn end processing program)
- the turn determination unit 7-1 instructs the travel lane determination unit 7-6 to acquire information on the travel lane of the host vehicle.
- the travel lane determination unit 7-6 follows the instruction from the turn determination unit 7-1 and acquires sensor information (the own vehicle detected by the travel lane determination sensor 5) via the sensor interface unit 6 and the turn determination unit 7-1.
- Lane number of the road on which the vehicle is traveling at the local point as information on the traveling lane at the current position of the vehicle, using the information identifying the traveling lane of the vehicle) and the information (branch point information) in the map database 8 Is stored in the storage unit 9-3 of the memory 9 as the post-branch lane number A (step ST1d).
- the traveling lane determination unit 7-6 specifies the lane width N of the road after branching at the local point of the vehicle based on the branch point information read from the map database 8, and the storage unit 9- 4 is stored (step ST2d), and the bending end process is terminated.
- FIG. 8 is a flowchart showing the flow of branch current location correction processing by the navigation device in FIG.
- the turn determination unit 7-1 starts the branch current location correction process (starts the branch current location correction program)
- the turn determination unit 7-1 instructs the branch current location correction unit 7-5a to compare and determine the lane numbers B and A before and after the branch. Put out.
- the branch current position correction unit 7-5a reads the pre-branch lane number B and the post-branch lane number A from the storage units 9-1 and 9-3 of the memory 9 according to the instruction from the turning determination unit 7-1, and the pre-branch lane It is determined whether the branched lane number A is larger than the number B (whether the lane number after the turn is larger than before the vehicle is turned) (step ST1e).
- the rightmost side (inner side) in the running direction is the first lane, and in order from the left side to the second lane, third lane,... ) Is the first lane, and the second lane, the third lane,...
- tan ( ⁇ / 2) (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2) is selected (step ST2e).
- the branch current position correction unit 7-5a reads the lane width N of the road after branching, the lane number B before branching, the lane number A after branching, and the sensor interface unit 6 read from the storage unit 9-4 of the memory 9. Using the gyro angle ⁇ acquired through the turning determination unit 7-1, the correction distance is calculated according to the selected calculation formula.
- step ST1e determines whether the post-branch lane number A is smaller than the pre-branch lane number B. (Whether or not the lane number after the turn is smaller than before the turn of the host vehicle) is determined (step ST3e).
- ( ⁇ / 2) (BA) (K / sin ⁇ ) + (N / 2) tan ( ⁇ / 2) is selected (step ST4e).
- the branch current position correction unit 7-5a reads the lane width K of the road before branching, the lane width N of the road after branching, the lane number B before branching, and the lane after branching read from the storage unit 9-2 of the memory 9. Using the number A and the gyro angle ⁇ acquired through the sensor interface unit 6 and the turning determination unit 7-1, the correction distance is calculated according to the selected calculation formula.
- the branch current position correction unit 7-5a reads the road lane width N after the branch read from the storage unit 9-4 of the memory 9, and the gyro acquired through the sensor interface unit 6 and the turn determination unit 7-1. Using the angle ⁇ , the correction distance is calculated according to the selected calculation formula.
- step ST6e When the branch current location correction unit 7-5a calculates the correction distance using the calculation formula selected in any of step ST2e, step ST4e, and step ST5e, the current location correction unit 7- 5 (step ST6e).
- FIG. 9 is a flowchart showing the flow of current location correction processing by the navigation device in FIG.
- the current position correction unit 7-5 includes the vehicle position measured by the GPS receiver 2 via the sensor interface unit 6 and the turning determination unit 7-1, the travel distance of the vehicle detected by the vehicle speed sensor 3, and a map.
- the map data of the database 8 is acquired, and the vehicle position measured by the GPS receiver 2 is compared with the map data of the map database 8 in consideration of the travel distance of the vehicle detected by the vehicle speed sensor 3 in the map. Find the map-matched position on the road link.
- the current position correction unit 7-5 acquires the correction information (correction distance) from the branch current position correction unit 7-5a
- the branch current position correction unit 7-5a with respect to the vehicle position map-matched as described above.
- the correction distance acquired from the above is added to correct the vehicle position (step ST1f).
- the current position correction unit 7-5 adds the value of the gyro sensor arrangement distance preset in the preprocessing to the branch current position correction unit 7-5a to the own vehicle position calculated in step ST1f.
- the vehicle position is corrected (step ST2f).
- the current position correction unit 7-5 displays the corrected vehicle position on the display screen of the display unit 12 (step ST3f).
- FIG. 10 is a diagram illustrating the principle of deriving the calculation formula for the correction distance when the vehicle turns to the left with left-hand traffic.
- the lane numbers are first lane, second lane,.
- the white circle symbol is the actual vehicle position (assuming that the vehicle is traveling along the center line of the road indicated by a dashed line in FIG. 10), and the black star symbol is recognized by the navigation device 1.
- the vehicle position on the road link at the branch point, and the black circle symbol is a correction position in consideration of the distance error at the branch point of the vehicle.
- the position indicated by the black star symbol is determined by comparing the vehicle position measured by the GPS receiver 2 with the map data in the map database 8 in consideration of the travel distance of the vehicle detected by the vehicle speed sensor 3.
- a road link that is corrected (map matching) on the road (road link) and passes through the position indicated by the black star symbol is called a matching link.
- the road link before the branch has a contact point, and the arc defined by the turning angle of the vehicle (where the vehicle width is r) is in contact with the road link after the branch Is obtained as the vehicle position recognized by the navigation device 1 indicated by the black star symbol in FIG.
- the error on the matching link of the actual vehicle position indicated by the white circle symbol is corrected. That is, the vehicle position indicated by the black circle symbol so that the vehicle position indicated by the black circle symbol corresponding to the perpendicular map from the actual vehicle position indicated by the white circle symbol to the matching link is displayed on the screen of the display unit 12.
- the distance error from the position indicated by the black star symbol described above is corrected.
- the gyro angle ⁇ is counted in the angle counter 7-3.
- the lane number of lanes
- the correction positions indicated by the black circle symbols are as follows: Divided into three patterns.
- the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
- the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
- FIG. 11 is a diagram showing the derivation principle of the calculation formula for the correction distance when the vehicle turns to the right in left-hand traffic.
- the lane numbers are first lane, second lane,.
- the white circle symbol is the actual vehicle position
- the black star symbol is the vehicle position on the matching link recognized by the navigation device 1
- the black circle symbol is the correction position in consideration of the distance error at the branch point of the vehicle. It is.
- the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
- the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
- Correction distance Y ⁇ (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
- (AB) is 1 times (2-1), and in the case of 3 lanes or more, M is multiplied by (AB), so the formula for calculating the correction distance in case of (b) Can be expressed by the following relationship.
- Correction distance (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
- FIG. 12 is a diagram showing the derivation principle of the calculation formula for the correction distance when the vehicle turns to the left in right-hand traffic.
- the lane numbers are first lane, second lane,.
- the white circle symbol is the actual vehicle position
- the black star symbol is the vehicle position on the matching link recognized by the navigation device 1
- the black circle symbol is the correction position in consideration of the distance error at the branch point of the vehicle. It is.
- the angle counter 7-3 counts the gyro angle - ⁇ .
- the lane number of lanes
- the correction positions indicated by the black circle symbols are as follows: Divided into three patterns.
- (a) and (a ′) it is a case where the vehicle travels on the same lane before and after bending.
- (a) is the case where the vehicle travels in the first lane even after turning in the first lane
- (a ′) is the case where the vehicle travels in the second lane even after turning in the second lane. .
- the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
- the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
- correction distance can be expressed by the following relationship.
- Correction distance Y ⁇ (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
- (AB) is 1 times (2-1)
- M is multiplied by (AB)
- Correction distance (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
- FIG. 13 is a diagram showing the derivation principle of the calculation formula for the correction distance when the vehicle turns to the right in right-hand traffic.
- the lane numbers are first lane, second lane,.
- the white circle symbol is the actual vehicle position
- the black star symbol is the vehicle position on the matching link recognized by the navigation device 1
- the black circle symbol is the correction position in consideration of the distance error at the branch point of the vehicle. It is.
- the correction distance does not change in the case of (a) or (a ′), but in the case of (b), M is multiplied by (AB), and in the case of (c), V is Calculate by multiplying (BA).
- the lane number B of the road before branching, the lane number A of the road after branching, the lane width K of the road before branching, the lane width N of the road after branching (the center line of the road after branching) The distance width L from the center line of the road after branching and the value ⁇ of the angle counter 7-3 are used.
- correction distance can be expressed by the following relationship.
- Correction distance Y ⁇ (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
- (AB) is 1 times (2-1)
- M is multiplied by (AB)
- Correction distance (BA) (N / tan ⁇ ) + (N / 2) tan ( ⁇ / 2)
- required by the GPS positioning result can be correct
- the information on the lanes before and after branching is obtained by determining the timing of the vehicle's start of bending and the timing of the end of bending, and using this to correct, correct the distance error at the branch point of the vehicle etc.
- Highly accurate map matching can be performed.
- the present invention can be applied to any navigation device that is used with a mobile object.
- a motorcycle or a bicycle that can be equipped with a gyro sensor may be used.
- the navigation device can correct the position of the moving body at the branch point obtained from the GPS positioning result to an accurate position in consideration of the turning at the branch point of the moving body. It is suitable for use in a navigation device having a function of correcting the above.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Navigation (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
実施の形態1.
図1は、この発明の実施の形態1によるナビゲーション装置の構成を示すブロック図であり、本発明を車載ナビゲーション装置に適用した場合を例に示している。実施の形態1によるナビゲーション装置1は、車両等の移動体に搭載され、GPS受信機(測位手段)2、車速センサ3、ジャイロセンサ(旋回角検出手段)4、走行レーン判断センサ(走行レーン検出手段)5、センサインタフェース部6、ロケータ7、地図データベース8、メモリ9、ジャイロ入力方法設定部(通行側設定手段)10、ジャイロセンサ配置距離設定部(取り付け距離設定手段)11及び表示部12を備える。
(1)ジャイロ入力方法の設定
図2は、図1中のナビゲーション装置に対して自車が左側通行であるか右側通行であるかを初期設定する処理の流れを示すフローチャートである。
先ず、ユーザが、不図示の入力装置を用いてジャイロ入力方法設定部10を起動させると、ジャイロ入力方法設定部10は、表示部12の表示画面上に左側通行又は右側通行の選択画面を表示させる(ステップST1)。この後、ジャイロ入力方法設定部10は、ユーザが左側通行か右側通行かの問い合わせに回答するまで、すなわち入力装置を用いて左側通行及び右側通行のうちのいずれかを入力するまで待ち状態に移行し、上記選択画面を表示部12に表示し続ける(ステップST2)。
図3は、図1中のナビゲーション装置に対してジャイロセンサの配置距離を初期設定する処理の流れを示すフローチャートである。
ユーザが、不図示の入力装置を用いてジャイロセンサ配置距離設定部11を起動させると、ジャイロセンサ配置距離設定部11は、表示部12の表示画面上にジャイロセンサ4の配置距離の設定画面を表示させる(ステップST1a)。例えば、「距離を入力して下さい」というメッセージを含む設定画面を表示部12に表示させる。
図2から図4までを用いて走行前に行う前処理を説明したが、以降では自車の走行中の処理について説明する。
図5は、図1中のナビゲーション装置による自車の旋回判定処理の流れを示すフローチャートである。先ず、ロケータ7内の旋回判定部7-1は、タイマで起動して周期的にセンサインタフェース部6を要求し、センサインタフェース部6を介してジャイロセンサ4によって検出された角度情報を取得する。旋回判定部7-1は、角度情報として取得したジャイロセンサ角Θを角度カウンタ7-3のジャイロ角配列Θ(T)に代入する(ステップST1b)。なお、Tは、旋回判定部7-1が起動した後、センサインタフェース部6から角度情報を得る周期回数である。
図6は、図1中のナビゲーション装置による曲がり始め処理の流れを示すフローチャートである。旋回判定部7-1は、曲がり始め処理を開始(曲がり始め処理用プログラムを起動)すると、走行レーン判断部7-6に対して自車の走行レーンに関する情報を取得するよう指示を出す。
図7は、図1中のナビゲーション装置による曲がり終わり処理の流れを示すフローチャートである。旋回判定部7-1は、曲がり終わり処理を開始(曲がり終わり処理用プログラムを起動)すると、走行レーン判断部7-6に対して自車の走行レーンに関する情報を取得するよう指示を出す。
図8は、図1中のナビゲーション装置による分岐現在地補正処理の流れを示すフローチャートである。旋回判定部7-1は、分岐現在地補正処理を開始(分岐現在地補正用プログラムを起動)すると、分岐現在地補正部7-5aに対して、分岐前後のレーン番号B,Aを比較判定するよう指示を出す。
図9は、図1中のナビゲーション装置による現在地補正処理の流れを示すフローチャートである。先ず、現在地補正部7-5は、センサインタフェース部6及び旋回判定部7-1を介してGPS受信機2で測位された自車位置、車速センサ3で検出された自車の走行距離及び地図データベース8の地図データを取得し、GPS受信機2で測位された自車位置を、車速センサ3で検出された自車の走行距離を考慮して地図データベース8の地図データに照らし合わせて地図における道路リンク上にマップマッチングした位置を求める。
上述のように、分岐現在地補正部7-5aには、車両の分岐前後での状況に応じた補正距離の計算式が予め設定される。これらの計算式は、下記のような状況を考慮して導出される。
(5-1)左側通行で車両が左折する場合
図10は、左側通行で車両が左折する場合における補正距離の計算式の導出原理を示す図である。図10に示すように、左側通行の場合、レーン番号は右から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置(図10中で一点破線で示す道路の中央線に沿って車両が走行していると仮定した場合)であり、黒星記号はナビゲーション装置1で認識した分岐点における道路リンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
(a)及び(a’)の場合
マッチングリンク上の自車位置(黒星記号)を補正距離(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。但し、Xは、車両幅をrとすると、X=rtan(Θ/2)で求められる。ここで、Z=Y-Xであることから、(Z+X)=(Y-X+X)となり、補正距離はYとなる。また、N=2Lであることを考慮すると、下記式のようになる。
Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
このように補正距離は正の値となるので、左折を進める方向に補正される。
なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
補正距離=(N/2)tan(β/2)となる。
マッチングリンク上の自車位置(黒星記号)を補正距離-(X+M-X-Z-X)だけ走行方向とは反対方向(負方向)に遅れた補正位置(黒丸記号)に補正する必要がある。ここで、補正距離Y=X+Zであり、Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であることを考慮すると、-M+X+Z=-M+Yとなる。
従って、-M+Y=-M+Ltan(β/2)となり、M=N/tanΘ=N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。
この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
マッチングリンク上の自車位置(黒星記号)を補正距離(V-X+X+Z+X)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、(V+Z+X)=V+(Y-X)+Xとなる。
また、補正距離Y=V+Yとなり、Y=Ltan(Θ/2)=Ltan(β/2)であり、N=2L、V=K/sinΘ=K/sinβであることから、補正距離Yは下記式で表せる。
Y=V+Y=(K/sinβ)+(N/2)tan(β/2)
2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
図11は、左側通行で車両が右折する場合における補正距離の計算式の導出原理を示す図である。図11に示すように、左側通行の場合、レーン番号は右から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置であり、黒星記号はナビゲーション装置1で認識したマッチングリンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
(a)及び(a’)の場合
曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
(a)及び(a’)の場合
マッチングリンク上の自車位置(黒星記号)を補正距離-(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであることから、-(Z+X)=-(Y-X+X)となり、補正距離は-Yとなる。また、N=2Lであることを考慮すると、下記式のようになる。
-Y=Ltan(-Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
このように補正距離は負の値となるので、右折が遅れる方向に補正される。なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
補正距離=(N/2)tan(β/2)となる。
マッチングリンク上の自車位置(黒星記号)を補正距離(M-Z-X)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、-Y=Ltan(-Θ/2)=Ltan(β/2)であることを考慮すると、M-Z-X=M-Yとなる。
従って、M-Y=M+Ltan(β/2)となり、M=-N/tan(-Θ)=-N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。
この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
マッチングリンク上の自車位置(黒星記号)を補正距離-(X+V+Z)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、-(X+V+Z)=-(X+V+Y-X)となる。また、補正距離Y=-V-Yとなり、-Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であり、-V=K/sin(-Θ)=K/sinβであることから、補正距離Yは下記式で表せる。
Y=-V-Y=(K/sinβ)+(N/2)tan(β/2)
2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
図12は、右側通行で車両が左折する場合における補正距離の計算式の導出原理を示す図である。図12に示すように、右側通行の場合、レーン番号は左から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置であり、黒星記号はナビゲーション装置1で認識したマッチングリンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
(a)及び(a’)の場合
曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
(a)及び(a’)の場合
マッチングリンク上の自車位置(黒星記号)を補正距離-(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであることから、-(Z+X)=(Y-X+X)となり、補正距離は-Yとなる。また、N=2Lであることを考慮すると、下記式のようになる。
-Y=Ltan(-Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
このように補正距離は負の値となるので、左折が走行方向とは反対に遅れるように補正される。なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
補正距離=(N/2)tan(β/2)となる。
マッチングリンク上の自車位置(黒星記号)を補正距離(M-X-Z)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、補正距離Y=X+Zであり、-Y=Ltan(-Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であることを考慮すると、M-Z-X=M-(X+Z)=M-Yとなる。
従って、M-Y=M+Ltan(β/2)となり、M=-N/tan(-Θ)=-N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。
この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
マッチングリンク上の自車位置(黒星記号)を補正距離-(X+V+Z)だけ走行方向とは反対方向(負方向)に遅れた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、-(X+V+Z)=-(X+V+Y-X)となる。また、補正距離Y=-V-Yとなり、-Y=Ltan(-Θ/2)=Ltan(β/2)であり、N=2L、-V=K/sin(-Θ)=K/sinβであることから、補正距離Yは下記式で表せる。
Y=-V-Y=(K/sinβ)+(N/2)tan(β/2)
2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
図13は、右側通行で車両が右折する場合における補正距離の計算式の導出原理を示す図である。図13に示すように、右側通行の場合、レーン番号は左から順に第1レーン、第2レーン、・・・となる。ここで、白丸記号は実際の自車位置であり、黒星記号はナビゲーション装置1で認識したマッチングリンク上の自車位置であり、黒丸記号は自車の分岐点での距離誤差を考慮した補正位置である。
(a)及び(a’)の場合
曲がる前と曲がった後が同一レーンを走行する場合である。(a)が曲がる前が第1レーンで曲がった後も第1レーンを走行する場合であり、(a’)が曲がる前が第2レーンで曲がった後も第2レーンを走行する場合である。
(b)の場合
曲がる前は内側(第1レーン)を走行し、曲がった後は外側(第2レーン)を走行する場合である。
(c)の場合
曲がる前は外側(第2レーン)を走行し、曲がった後は内側(第1レーン)を走行する場合である。なお、車線判定ができない場合は、全て(a)又は(a’)とみなす。
(a)及び(a’)の場合
マッチングリンク上の自車位置(黒星記号)を補正距離(Z+X)だけ走行方向(正方向)に進めて補正位置(黒丸記号)に補正する必要がある。
ここで、Z=Y-Xであることから、(Z+X)=(Y-X+X)となり、補正距離はYとなる。また、N=2Lであることを考慮すると、下記式のようになる。
Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)
このように補正距離は正の値となるので、右折が進む方向に補正される。なお、3車線以上の場合であっても同じ補正距離の計算式を用いることができるので、(a)及び(a’)の場合の補正距離は、下記の関係で表せる。
補正距離=(N/2)tan(β/2)となる。
マッチングリンク上の自車位置(黒星記号)を補正距離-(X+M-X-Z-X)だけ走行方向とは反対方向(負方向)に遅れた補正位置(黒丸記号)に補正する必要がある。
ここで、Y=X+Zであり、Y=Ltan(-Θ/2)=Ltan(β/2)であることを考慮すると、-M+X+Z=-M+Yとなる。従って、-M+Y=-M+Ltan(β/2)となり、M=N/tanΘ=N/tanβであることから、Y=-(N/tanβ)+Ltan(β/2)となる。この式にN=2Lの関係を代入することにより、補正距離は下記の関係で表せる。
補正距離Y=-(N/tanβ)+(N/2)tan(β/2)
2車線の場合、(A-B)は(2-1)で1倍となり、3車線以上の場合は、Mを(A-B)倍するので、(b)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(N/tanβ)+(N/2)tan(β/2)
マッチングリンク上の自車位置(黒星記号)を補正距離(V-X+X+Z+X)だけ走行方向(正方向)に進めた補正位置(黒丸記号)に補正する必要がある。ここで、Z=Y-Xであり、(V+Z+X)=V+(Y-X)+Xとなる。
また、補正距離Y=V+Yとなり、Y=Ltan(Θ/2)=Ltan(β/2)=(N/2)tan(β/2)であり、V=K/sinΘ=K/sinβであることから、補正距離Yは下記式で表せる。
Y=V+Y=(K/sinβ)+(N/2)tan(β/2)
2車線の場合、(B-A)は(2-1)で1倍となり、3車線以上の場合は、Vを(B-A)倍するので、(c)の場合の補正距離の計算式は、下記の関係で表せる。
補正距離=(B-A)(K/sinβ)+(N/2)tan(β/2)
Claims (4)
- 移動体に搭載され、前記移動体の位置を測定する測位手段と、前記移動体の旋回角を検出する旋回角検出手段と、前記移動体の走行レーンを検出する走行レーン検出手段とを備えたナビゲーション装置において、
地図データで特定された走行路の分岐点において、前記旋回角検出手段にて検出された前記移動体の旋回角に基づいて、前記分岐点における前記移動体の曲がり始め及び曲がり終わりを判定する旋回判定手段と、
前記走行レーン検出手段にて検出された前記移動体の走行レーン及び前記旋回判定手段の判定結果を用いて、前記移動体の前記分岐点における分岐前後の走行路のレーン幅及び分岐前後の走行路のレーン数ごとに割り振られたレーン番号を、地図データから取得する走行レーン情報取得手段と、
前記測位手段にて測位された前記移動体の位置を地図データにおける走行路の道路リンク上にマップマッチングするとともに、前記走行レーン情報取得手段にて取得された前記分岐点における前記移動体の分岐前後の走行路のレーン幅及びレーン番号と、前記旋回角検出手段にて検出された前記分岐点における前記移動体の旋回角とから、前記マップマッチングされた前記道路リンク上の前記移動体の位置と前記分岐点における前記移動体の実位置から当該道路リンクへの垂線写像位置との距離差を算出し、前記移動体の位置が前記垂線写像位置となるように補正するマッチング補正手段とを備えたことを特徴とするナビゲーション装置。 - マッチング補正手段は、
マップマッチングされた分岐点における道路リンク上の移動体の位置と、前記分岐点における前記移動体の実位置から当該道路リンクへの垂線写像位置との距離差を、
分岐前後で前記移動体が同一レーン番号のレーンを走行する場合、
分岐後の走行路のレーン幅をN、前記分岐点における前記移動体の旋回角をΘとして、
計算式(N/2)tan(Θ/2)を用いて算出し、
分岐前に前記移動体が走行していたレーンのレーン番号より分岐後のレーン番号が大きくなった場合、
分岐前のレーン番号をBとし、分岐後のレーン番号をAとして、
計算式(B-A)(N/tanΘ)+(N/2)tan(Θ/2)を用いて算出し、
分岐前に前記移動体が走行していたレーンのレーン番号より分岐後のレーン番号が小さくなった場合、
分岐前の走行路のレーン幅をKとして、
計算式(B-A)(K/sinΘ)+(N/2)tan(Θ/2)を用いて算出することを特徴とする請求項1記載のナビゲーション装置。 - 移動体の先頭位置から前記移動体への旋回角検出手段の取り付け位置までの距離を設定する取り付け距離設定手段を備え、
マッチング補正手段は、分岐点における前記移動体の実位置から道路リンクへの垂線写像位置に対し、前記取り付け距離設定手段にて設定された前記取り付け位置までの距離を加算して、前記移動体の補正位置を算出することを特徴とする請求項1記載のナビゲーション装置。 - 移動体が走行する道路が右側通行か左側通行かを設定する通行側設定手段を備え、
旋回判定手段は、旋回角検出手段にて検出された前記移動体の旋回角を右側通行と左側通行とで符号を反転させて、分岐点における前記移動体の曲がり始め及び曲がり終わりを判定し、
マッチング補正手段は、前記旋回角検出手段にて検出された前記移動体の旋回角を右側通行と左側通行とで符号を反転させて前記移動体の位置を補正することを特徴とする請求項1記載のナビゲーション装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010533789A JP4864161B2 (ja) | 2008-10-17 | 2009-09-16 | ナビゲーション装置 |
DE112009002300.2T DE112009002300B4 (de) | 2008-10-17 | 2009-09-16 | Navigationsgerät |
US13/055,776 US8200424B2 (en) | 2008-10-17 | 2009-09-16 | Navigation device |
CN2009801361540A CN102150015B (zh) | 2008-10-17 | 2009-09-16 | 导航装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008268802 | 2008-10-17 | ||
JP2008-268802 | 2008-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010044188A1 true WO2010044188A1 (ja) | 2010-04-22 |
Family
ID=42106365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/004635 WO2010044188A1 (ja) | 2008-10-17 | 2009-09-16 | ナビゲーション装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8200424B2 (ja) |
JP (1) | JP4864161B2 (ja) |
CN (1) | CN102150015B (ja) |
DE (1) | DE112009002300B4 (ja) |
WO (1) | WO2010044188A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102226700A (zh) * | 2011-03-16 | 2011-10-26 | 山东大学 | 一种用于立交桥路网电子地图匹配的方法 |
JP2012118028A (ja) * | 2010-12-03 | 2012-06-21 | Aisin Aw Co Ltd | 道路ノード位置管理システム |
JP2012118027A (ja) * | 2010-12-03 | 2012-06-21 | Aisin Aw Co Ltd | 道路ノード位置管理システム |
WO2013065629A1 (ja) * | 2011-11-04 | 2013-05-10 | 三菱重工業株式会社 | 移動経路特定装置および移動経路特定方法ならびにそのプログラム |
CN110475198A (zh) * | 2018-05-08 | 2019-11-19 | 上海大唐移动通信设备有限公司 | 一种城市道路用户轨迹纠偏处理方法及装置 |
CN111401255A (zh) * | 2020-03-17 | 2020-07-10 | 北京百度网讯科技有限公司 | 用于识别分歧路口的方法和装置 |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4506790B2 (ja) * | 2007-07-05 | 2010-07-21 | アイシン・エィ・ダブリュ株式会社 | 道路情報生成装置、道路情報生成方法および道路情報生成プログラム |
PL2431712T3 (pl) * | 2010-09-17 | 2013-09-30 | Kapsch Trafficcom Ag | Sposób określania długości drogi pokonanej przez pojazd |
US9087213B2 (en) * | 2011-02-22 | 2015-07-21 | Fedex Corporate Services, Inc. | Systems and methods for rule-driven management of sensor data across geographic areas and derived actions |
CN102322868A (zh) * | 2011-09-15 | 2012-01-18 | 鸿富锦精密工业(深圳)有限公司 | 汽车导航装置及汽车导航方法 |
JP5831308B2 (ja) * | 2012-03-13 | 2015-12-09 | アイシン・エィ・ダブリュ株式会社 | 移動体位置検出システム、移動体位置検出装置、移動体位置検出方法及びコンピュータプログラム |
DE112013004044T5 (de) * | 2012-08-13 | 2015-05-13 | Honda Motor Co., Ltd. | Straßenumgebungs-Erkennungsvorrichtung |
WO2014059386A1 (en) * | 2012-10-11 | 2014-04-17 | Imsi Design, Llc | Method for calibrating the physical position and orientation of an electronic device |
JP6351235B2 (ja) * | 2013-11-06 | 2018-07-04 | アルパイン株式会社 | ナビゲーションシステム、コンピュータプログラム及び現在位置算出方法 |
JP5902665B2 (ja) * | 2013-12-27 | 2016-04-13 | 本田技研工業株式会社 | 鞍乗型車両 |
EP2894616B1 (de) * | 2014-01-14 | 2015-11-18 | Kapsch TrafficCom AG | Onboard-Unit und Verfahren zur Information eines Fahrers |
JP6280856B2 (ja) * | 2014-10-31 | 2018-02-14 | 株式会社シマノ | 自転車用制御システム |
US10262213B2 (en) * | 2014-12-16 | 2019-04-16 | Here Global B.V. | Learning lanes from vehicle probes |
US9644972B2 (en) * | 2015-03-06 | 2017-05-09 | Tallysman Wireless Inc. | Method for tracking a path taken by a vehicle |
JP6344275B2 (ja) * | 2015-03-18 | 2018-06-20 | トヨタ自動車株式会社 | 車両制御装置 |
US9593959B2 (en) * | 2015-03-31 | 2017-03-14 | International Business Machines Corporation | Linear projection-based navigation |
US9551583B1 (en) * | 2015-07-06 | 2017-01-24 | International Business Machines Corporation | Hybrid road network and grid based spatial-temporal indexing under missing road links |
KR102138557B1 (ko) * | 2016-03-02 | 2020-07-28 | 미쓰비시덴키 가부시키가이샤 | 자동 주행 지원 장치, 노측기 및 자동 주행 지원 시스템 |
US10145691B2 (en) * | 2016-05-18 | 2018-12-04 | Here Global B.V. | Ambiguity map match rating |
US9666067B1 (en) * | 2016-08-30 | 2017-05-30 | Allstate Insurance Company | Vehicle turn detection |
US10147316B2 (en) | 2016-09-12 | 2018-12-04 | Here Global B.V. | Method, apparatus and computer program product for indexing traffic lanes for signal control and traffic flow management |
US10252717B2 (en) | 2017-01-10 | 2019-04-09 | Toyota Jidosha Kabushiki Kaisha | Vehicular mitigation system based on wireless vehicle data |
US10677599B2 (en) * | 2017-05-22 | 2020-06-09 | At&T Intellectual Property I, L.P. | Systems and methods for providing improved navigation through interactive suggestion of improved solutions along a path of waypoints |
CN109307517B (zh) * | 2017-07-28 | 2021-04-13 | 阿里巴巴(中国)有限公司 | 交叉路口定位方法和装置 |
JP7120444B2 (ja) * | 2019-03-19 | 2022-08-17 | 日本電信電話株式会社 | 情報処理装置、方法およびプログラム |
CN111750878B (zh) * | 2019-03-28 | 2022-06-24 | 北京魔门塔科技有限公司 | 一种车辆位姿的修正方法和装置 |
CN111422204B (zh) * | 2020-03-24 | 2022-03-04 | 北京京东乾石科技有限公司 | 自动驾驶车辆通行判定方法及相关设备 |
CN111982157A (zh) * | 2020-09-14 | 2020-11-24 | 深圳中科超远科技有限公司 | 一种道路测绘划线车辆坐标校正装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221427A (ja) * | 2004-02-06 | 2005-08-18 | Kenwood Corp | ナビゲーション装置、マップマッチング方法、およびナビゲーション用プログラム |
JP2006003166A (ja) * | 2004-06-16 | 2006-01-05 | Denso Corp | 走行路推定装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289654A (ja) | 2000-04-11 | 2001-10-19 | Equos Research Co Ltd | ナビゲーション装置、ナビゲーション装置の制御方法、及びそのプログラムを記録した記録媒体 |
US6581005B2 (en) * | 2000-11-30 | 2003-06-17 | Nissan Motor Co., Ltd. | Vehicle position calculation apparatus and method |
JP2003185453A (ja) * | 2001-12-20 | 2003-07-03 | Mitsubishi Electric Corp | ナビゲーション装置および経路探索方法 |
EP1593936B1 (en) * | 2004-04-30 | 2013-02-27 | Koito Manufacturing Co., Ltd | Lighting system for vehicle |
JP2006189325A (ja) | 2005-01-06 | 2006-07-20 | Aisin Aw Co Ltd | 車両の現在地情報管理装置 |
JP4889272B2 (ja) * | 2005-09-30 | 2012-03-07 | アルパイン株式会社 | ナビゲーション装置及び車両位置推定方法 |
JP5013738B2 (ja) * | 2006-04-25 | 2012-08-29 | アルパイン株式会社 | 地図データ作成装置 |
JP4724043B2 (ja) * | 2006-05-17 | 2011-07-13 | トヨタ自動車株式会社 | 対象物認識装置 |
KR100873474B1 (ko) * | 2006-12-04 | 2008-12-15 | 한국전자통신연구원 | 영상상의 교통 시설물의 픽셀 사이즈 및 위치를 이용한차량 위치 추정 장치 및 그 방법 |
JPWO2009084135A1 (ja) * | 2007-12-28 | 2011-05-12 | 三菱電機株式会社 | ナビゲーション装置 |
-
2009
- 2009-09-16 DE DE112009002300.2T patent/DE112009002300B4/de not_active Expired - Fee Related
- 2009-09-16 US US13/055,776 patent/US8200424B2/en active Active
- 2009-09-16 CN CN2009801361540A patent/CN102150015B/zh not_active Expired - Fee Related
- 2009-09-16 JP JP2010533789A patent/JP4864161B2/ja not_active Expired - Fee Related
- 2009-09-16 WO PCT/JP2009/004635 patent/WO2010044188A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005221427A (ja) * | 2004-02-06 | 2005-08-18 | Kenwood Corp | ナビゲーション装置、マップマッチング方法、およびナビゲーション用プログラム |
JP2006003166A (ja) * | 2004-06-16 | 2006-01-05 | Denso Corp | 走行路推定装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012118028A (ja) * | 2010-12-03 | 2012-06-21 | Aisin Aw Co Ltd | 道路ノード位置管理システム |
JP2012118027A (ja) * | 2010-12-03 | 2012-06-21 | Aisin Aw Co Ltd | 道路ノード位置管理システム |
CN102226700A (zh) * | 2011-03-16 | 2011-10-26 | 山东大学 | 一种用于立交桥路网电子地图匹配的方法 |
CN102226700B (zh) * | 2011-03-16 | 2013-01-30 | 山东大学 | 一种用于立交桥路网电子地图匹配的方法 |
WO2013065629A1 (ja) * | 2011-11-04 | 2013-05-10 | 三菱重工業株式会社 | 移動経路特定装置および移動経路特定方法ならびにそのプログラム |
CN110475198A (zh) * | 2018-05-08 | 2019-11-19 | 上海大唐移动通信设备有限公司 | 一种城市道路用户轨迹纠偏处理方法及装置 |
CN110475198B (zh) * | 2018-05-08 | 2021-01-26 | 上海大唐移动通信设备有限公司 | 一种城市道路用户轨迹纠偏处理方法及装置 |
CN111401255A (zh) * | 2020-03-17 | 2020-07-10 | 北京百度网讯科技有限公司 | 用于识别分歧路口的方法和装置 |
CN111401255B (zh) * | 2020-03-17 | 2023-05-12 | 阿波罗智联(北京)科技有限公司 | 用于识别分歧路口的方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN102150015A (zh) | 2011-08-10 |
JP4864161B2 (ja) | 2012-02-01 |
US20110125402A1 (en) | 2011-05-26 |
CN102150015B (zh) | 2013-09-25 |
DE112009002300B4 (de) | 2020-06-18 |
DE112009002300T5 (de) | 2012-01-19 |
JPWO2010044188A1 (ja) | 2012-03-08 |
US8200424B2 (en) | 2012-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4864161B2 (ja) | ナビゲーション装置 | |
CN111380539B (zh) | 车辆定位、导航方法和装置及相关系统 | |
EP0738877B1 (en) | System for vehicle odometer correction | |
US8571789B2 (en) | Navigation system | |
KR100275189B1 (ko) | 차량의 진행 거리를 산출하기 위한 거리 계수를 보정하는 현재 위치 산출장치 | |
JP5422111B2 (ja) | 走行経路検出用の車載器 | |
EP2159541A1 (en) | Navigation device, navigation method, and navigation program | |
US20150192657A1 (en) | Method for determining a position of a vehicle, and a vehicle | |
WO2015131464A1 (zh) | 一种车辆定位纠偏方法及装置 | |
JP2009115587A (ja) | 走行経路検出用の車載器 | |
JP2009008590A (ja) | 自車位置認識装置及び自車位置認識プログラム | |
JPH0518774A (ja) | 車両位置方位算出装置 | |
KR20190044988A (ko) | 자이로 센싱값 보상 장치, 그를 포함한 시스템 및 그 방법 | |
CN111623794A (zh) | 车辆导航的显示控制方法及车辆、可读存储介质 | |
KR20140025244A (ko) | 차량 항법 장치의 자이로센서 보상장치 및 그 방법 | |
JPH0833302B2 (ja) | 位置検出装置 | |
JP4848931B2 (ja) | 角速度センサの信号補正装置 | |
CN110645994A (zh) | 一种车载实景增强导航系统及方法 | |
JP2006153565A (ja) | 車載ナビゲーション装置及び自車位置補正方法 | |
JP2008241446A (ja) | ナビゲーション装置及びその制御方法 | |
JP2007033395A (ja) | 位置補正方法及びナビゲーション装置 | |
JP2006275619A (ja) | 高度算出装置及びナビゲーション装置 | |
JP4328173B2 (ja) | 車載ナビゲーション装置 | |
JP6173714B2 (ja) | 車載装置及びその位置補正方法並びに位置補正プログラム | |
CN115917253A (zh) | 自身车辆位置推断装置及自身车辆位置推断方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980136154.0 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09820367 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010533789 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13055776 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09820367 Country of ref document: EP Kind code of ref document: A1 |