WO2009141923A1 - 内部パラメータの自動キャリブレーション機能付きの車両用abs制御装置 - Google Patents
内部パラメータの自動キャリブレーション機能付きの車両用abs制御装置 Download PDFInfo
- Publication number
- WO2009141923A1 WO2009141923A1 PCT/JP2008/064967 JP2008064967W WO2009141923A1 WO 2009141923 A1 WO2009141923 A1 WO 2009141923A1 JP 2008064967 W JP2008064967 W JP 2008064967W WO 2009141923 A1 WO2009141923 A1 WO 2009141923A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- abs
- abs control
- brake pressure
- wheel speed
- control program
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 44
- 238000004422 calculation algorithm Methods 0.000 claims description 8
- 238000012360 testing method Methods 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 8
- 238000012937 correction Methods 0.000 description 8
- 230000006837 decompression Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000012530 fluid Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T8/00—Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
- B60T8/17—Using electrical or electronic regulation means to control braking
- B60T8/176—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
- B60T8/1761—Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
- B60T8/17616—Microprocessor-based systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60T—VEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
- B60T2270/00—Further aspects of brake control systems not otherwise provided for
- B60T2270/10—ABS control systems
- B60T2270/14—ABS control systems hydraulic model
Definitions
- the present invention relates to an ABS control device that controls the brake pressure of a wheel by an electronic control unit (ECU) mounted on a vehicle, and more particularly to an ABS control device having a function of automatically calibrating internal parameters.
- the present invention also relates to an ABS control program having a function of automatically calibrating internal parameters, and a method for calibrating internal parameters of the ABS control program.
- ABS Antilock Brake System
- the ABS is mainly composed of a hydraulic pressure modulator, a wheel speed sensor, and an electronic control unit (ECU).
- the ECU processes the signal and controls the actuator in the hydraulic pressure modulator to control the brake pressure.
- the ECU sends a control signal to the modulator that adjusts the brake pressure. Is output. Thereby, the modulator adjusts the brake pressure so that the skid state of the braking wheel is eliminated.
- the ABS software usually models ABS braking, and a control program is designed according to the model. Various parameters are used in the ABS control program. By optimizing (calibrating) this parameter, ABS braking according to the model is realized.
- the parameters used for ABS control vary depending on the ABS braking model, control algorithm, etc., but there are parameters relating to the operating characteristics of the hydraulic modulator, parameters required by the ABS braking model, parameters relating to the braking characteristics of the vehicle, etc. obtain. These parameters related to ABS control can be temporarily determined by the specifications of each component, simulation, or the like in the initial design stage. However, optimum ABS braking is not always obtained with parameters temporarily set by simulation or the like.
- ABS braking experiment was performed using an actual vehicle equipped with ABS software with provisional parameters, and the wheel speed, hydraulic pressure, vehicle motion, etc. during ABS braking were measured. Based on these measured values, Each parameter is optimized (calibrated) so as to obtain an optimum ABS braking.
- ABS control parameters has been based on analysis of measured values such as wheel speed and brake pressure during ABS braking in actual vehicle tests, and based on the analysis results based on design guidelines, designer experience, and know-how. The optimal parameters were determined.
- FIG. 8 schematically shows a procedure for determining parameters of the conventional ABS software.
- ABS braking is performed with an actual vehicle test using ABS software in which temporary parameters are set, and wheel speed, hydraulic pressure value, vehicle motion, and the like during ABS braking are measured. Thereafter, these measured values are analyzed. Then, new parameters are artificially determined from the analysis results based on the design guidelines and the experience and know-how of the designer. Then, the ABS software is changed based on the determined parameters. Then, the changed ABS software is downloaded to the ECU. Furthermore, it is further tested whether optimal ABS braking is obtained based on the changed parameters. Here, if the optimum ABS braking is obtained, the parameter calibration is finished, but if the optimum ABS braking is not obtained, the above procedure is further repeated.
- ABS braking models and ABS software algorithms have become more complex in order to meet various brake performance requirements, and parameters have increased accordingly, so it takes more time to develop ABS software. It has become like this.
- the present invention provides an ABS control device and software with an automatic parameter calibration function.
- the ABS control device includes an electronic control unit, a wheel speed sensor, and a brake pressure sensor.
- the wheel speed sensor and brake pressure sensor measure the wheel speed and brake pressure
- the electronic control unit automatically calibrates internal parameters used for ABS control according to the measurement results of wheel speed and brake pressure. Do.
- An ABS control apparatus includes (a) a wheel speed sensor and a brake pressure sensor that measure wheel speed and brake pressure during ABS braking, and an electronic control unit that measures the wheel speed and brake pressure measurement results. Accordingly, the internal parameters used for ABS control are calculated, and the calculated internal parameters are set as new internal parameters used for ABS control, whereby the internal parameters used for ABS control can be automatically calibrated.
- the ABS control device further determines (b) whether or not the calculated internal parameter satisfies a predetermined condition, and (c) if the calculated internal parameter satisfies a predetermined condition. If it is determined, the calibration is terminated, and if it is determined that the calculated internal parameter does not satisfy the predetermined condition, the above steps (a) and (b) are executed again, thereby performing ABS control.
- the internal parameters used can be automatically calibrated.
- the present invention provides an ABS control program for controlling wheel brake pressure by an electronic control unit.
- the ABS control program of the present invention can automatically calibrate the internal parameters of the ABS control program according to the wheel speed and brake pressure measured during ABS braking.
- An ABS control program includes: (a) calculating internal parameters of an ABS control program according to wheel speed and brake pressure measured during ABS braking, and calculating the calculated internal parameters of the ABS control program. By setting as a new internal parameter, the internal parameter of the ABS control program can be automatically calibrated.
- the ABS control program further determines (b) whether the calculated internal parameter satisfies a predetermined condition, and (c) the calculated internal parameter satisfies the predetermined condition. If it is determined, the calibration is terminated, and if it is determined that the calculated internal parameter does not satisfy the predetermined condition, the ABS control program is executed by executing the steps (a) and (b) again.
- the internal parameters can be automatically calibrated.
- the present invention also provides a method for calibrating internal parameters of an ABS control program for controlling the brake pressure of a wheel by an electronic control unit.
- the calibration method of the present invention includes (a) a step of measuring wheel speed and brake pressure during ABS braking, and (b) an internal control according to a predetermined algorithm of the ABS control program according to the measured wheel speed and brake pressure. Automatically calibrating the parameters.
- step (b) in step (b), (b-1) according to the predetermined algorithm of the ABS control program according to the measured wheel speed and brake pressure. And (b-2) setting the calculated internal parameter as a new internal parameter of the ABS control program.
- the method for calibrating internal parameters of an ABS control program further includes a step (b-3) of determining whether or not the calculated internal parameters satisfy a predetermined condition in step (b). (B-4) If it is determined that the calculated internal parameter satisfies the predetermined condition, the calibration is terminated, and if it is determined that the calculated internal parameter does not satisfy the predetermined condition, (a) , (B-1), (b-2) and (b-3) are executed again.
- the ABS control device of the present invention includes an ECU, a fluid pressure modulator (various valves, cylinders, pistons, electromagnetic solenoids, etc.), a wheel speed sensor and a fluid that incorporate the ABS control program (software) according to the present invention. It consists of various measurement sensors such as a pressure sensor.
- the system configuration shown in FIG. 1 does not limit the system configuration of the ABS control device of the present invention, and system components can be increased or decreased without departing from the spirit of the present invention.
- the hardware configuration of the ABS control device of the present invention is the same as that of a conventional ABS control device except that it includes a hydraulic pressure sensor, and can be arbitrarily configured, and thus will not be described in detail in this specification.
- the hydraulic pressure sensor is used for measuring a brake pressure during an actual vehicle test described later, and may not be used for ABS braking.
- the ABS control program according to the present invention can be realized by incorporating a parameter calibration function into a conventional ABS control program.
- the conventional ABS control program referred to here is an ABS control program in which only an ABS control function is implemented and which does not have a function of calibrating internal parameters. That is, the ABS control program of the present invention has a function of calibrating internal parameters in addition to the conventional function of judging the skid tendency of the wheel from the signal from the wheel speed sensor or the like and controlling the hydraulic modulator based on the judgment. It can be realized by mounting. Since the conventional ABS control function is known and any one can be used, only the internal parameter calibration function will be described below without being described in detail in this specification.
- the calibration function of the ABS software of the present invention has a function of receiving measurement data from each measuring device such as a wheel speed sensor and a hydraulic pressure sensor and analyzing the received data.
- the calibration function of the ABS software has a function of calculating a new parameter using the data analysis result and changing the parameter to the calculated new numerical value. Further, the calibration function has a function of determining whether the calculated new parameter is optimal.
- FIG. 2 schematically shows a flow of parameter calibration using the ABS software with an internal parameter calibration function according to the present invention.
- the ABS software according to the present invention data analysis, parameter calculation, and parameter change can be automated. Therefore, it is possible to immediately acquire data with the actual vehicle using the changed new parameter. Then, by incorporating a function for determining whether or not the parameter is optimized into the software, parameter calibration can be automated. As described above, if the ABS software according to the present invention is used, it is not necessary to change the ABS software accompanying the parameter change that has been required in the past and to download the changed ABS software to the ECU, so that the calibration process can be shortened.
- FIG. 3 shows in more detail a typical flow when calibrating parameters using the ABS software with internal parameter calibration function according to the present invention.
- the calibration function is started (step 10).
- the environment necessary for actual vehicle testing is prepared. That is, an actual vehicle equipped with an ECU having an internal parameter calibration function of the present invention is prepared.
- the ASAP file is a standardized calibration file that includes information about related data objects in the ECU such as characteristic values (parameters, curves, maps), actual measured values, virtual measured values, and dependent values.
- characteristic values parameters, curves, maps
- actual measured values virtual measured values
- dependent values dependent values.
- the initial parameters can be recorded in an external file, and the ABS software can read the external file and set it as a variable in the ABS software.
- the initial parameters are determined in advance based on the specifications of each component such as a hydraulic pressure modulator, simulation, and the like.
- the initial parameters may be determined based on the results of testing in a virtual simple experimental environment.
- the parameter can be defined as an internal variable (for example, a global variable) so that it can be rewritten by the ABS software itself.
- an actual vehicle test is started (step 16). That is, the ABS software is activated in the calibration mode.
- the number and timing of ABS braking are defined, and the operator of the actual vehicle test operates the vehicle according to the calibration mode.
- the brake operation procedure in the calibration mode can be arbitrarily determined. In other words, the brake operation procedure may be determined according to the parameter calculation algorithm described in the ABS software. For example, when performing ABS braking a plurality of times under the same conditions to obtain a plurality of measured values and calculating parameters from the plurality of measured values under the same conditions (for example, when using an average value), What is necessary is just to determine so that ABS braking may be repeated several times on the same conditions.
- ABS software receives these measured values and calculates each parameter according to these measured values (step 18). Then, the calculated parameter is set as a new internal parameter of the ABS software.
- the ABS software has functions F1 to Fn for each parameter to be calculated and can be programmed to calculate each parameter based on the received measurements.
- the parameter determination function is preferably created for each parameter from the viewpoint of maintainability and the like.
- the measured value utilized for parameter calculation is not limited only to a wheel speed or a hydraulic pressure. That is, the measurement values necessary for the parameter calculation function are measured, and these may be used as necessary.
- an acceleration sensor, a temperature sensor, and the like may be mounted on the test vehicle and programmed to calculate parameters using these measured values.
- step 20 it is determined inside the ABS software whether the parameter calculated in step 18 is optimized (step 20). Specifically, it is determined in the ABS software whether or not the calculated new parameter satisfies a predetermined condition.
- the determination of whether or not a parameter is optimized can be performed for each parameter in various ways. For example, if the difference between the parameter before the change and the parameter calculated in step 18 is within a predetermined value, it may be determined that the parameter has been sufficiently converged, and the parameter determined this time may be determined as the optimum parameter. Alternatively, a plurality of measurements and parameter calculations may be repeated, and the variance of the calculated parameters may be within a predetermined value as a criterion for optimization.
- the average value of the calculated parameters may be determined as the optimum parameter on condition that actual vehicle measurement and parameter calculation are repeated a predetermined number of times. In any case, it is desirable to determine the optimization conditions in consideration of the type and number of measurement data necessary for parameter calculation, the parameter calculation algorithm, and the influence of the parameter on the ABS control. An example of an automated parameter calculation procedure and an optimization determination method will be described later.
- step 20 If it is determined in step 20 that the parameters are optimized, the optimized parameters are stored in an external file (step 22), and the calibration is terminated (step 24). If it is determined in step 20 that the parameter has not been optimized, the process returns to step 16, and ABS braking, measurement data acquisition, and parameter calculation are newly performed with the newly set parameter, and the parameter is optimized. Repeat until.
- any parameter used for ABS control can be automatically calibrated by the ABS software. Further, as long as the method can be expressed by software, the parameter calibration method is also arbitrary.
- the algorithm for calculating and optimizing parameters in the ABS software according to the present invention, the types of measurement data required for them (wheel speed, brake pressure, etc.), the number of data measurements, etc. are determined by those skilled in the art according to the parameters It can be changed as appropriate.
- ABS control parameters and calibration methods that can be employed in the present invention will be described.
- Example 1 The calibration of the brake fluid pressure characteristic curve in the wheel pressure model will be described.
- a predetermined fluid pressure for example, about 10 MPa
- the pressure reducing valve is driven at a certain interval for a certain time, and the fluid pressure value is measured.
- the gradient (MPa / s) of the hydraulic pressure at each hydraulic pressure can be calculated.
- a hydraulic pressure-hydraulic pressure gradient characteristic curve as shown in FIG. 5 can be obtained for each wheel.
- the value of this characteristic curve is set in the ABS software as a new parameter.
- the average value can be set as the optimum value by measuring a plurality of times.
- the current measurement result may be determined as the optimum value.
- the deceleration a can be estimated from the amount of change in wheel speed.
- a method of estimating the deceleration a from the amount of change in wheel speed is well known and can be performed by any method and will not be described here. Since the braking force transmission coefficient CP depends on temperature, it is repeated several times and the average value is set as the optimum parameter value in the ABS software.
- the braking force transmission coefficient can be determined for the rear shaft in the same procedure.
- Example 3 Parameters relating to the master cylinder hydraulic pressure model will be described.
- the initial value of the master cylinder pressure model value at the start of ABS can be estimated from the deceleration of the wheel.
- the master cylinder pressure P at the start of the ABS control and the wheel deceleration a at that time can be measured, and an approximate curve can be obtained as an optimum parameter.
- the approximate curve can be obtained by an arbitrary approximation method such as a least square method.
- the front axis and the rear axis may be different parameters.
- a threshold for enabling the overbrake correction is obtained. That is, when the overbrake correction value is equal to or greater than a certain threshold value (parameter), the calculated correction value is added to the master cylinder hydraulic pressure model value. This threshold is set in the ABS software.
- the ABS decompression amount will be described.
- the basic pressure reduction amount of ABS is defined by, for example, a table as shown in FIG. 7 in order to adjust according to each lock pressure.
- the pressure reduction calibration is performed according to the wheel acceleration after the pressure reduction. Specifically, the wheel acceleration after the pressure reduction is adjusted to a predetermined target value. Basically, if the amount of decompression is small, the acceleration is small, and if the amount of decompression is large, the acceleration increases. Therefore, a new decompression amount can be calculated from the difference between the target value of the wheel acceleration after decompression and the measured value. A plurality of new decompression amounts can be calculated, and the average value can be made the optimum value.
- the difference between the target value of the wheel acceleration after depressurization and the actual measurement value is equal to or less than a predetermined value, it may be determined that the optimization has been performed.
- the determined decompression amount table (parameter) is set in the ABS software.
- parameters and calibration methods that can be adopted in the ABS software with an automatic calibration function according to the present invention have been described.
- the parameters and calibration methods that can be used in the present invention are described above. Not limited. Necessary parameters and calibration methods thereof can be freely designed by the designer according to the ABS control method, the ABS system configuration, the ABS braking model, and the like. Some parameters may be described in the ABS software and the calibration cannot be automated. In such a case, parameters that cannot be automatically calibrated may be calibrated by a conventional method, and only a calibration procedure for parameters that can be automated may be incorporated into the ABS software.
- the ABS software according to the present invention can automatically calibrate internal parameters, the calibration process can be greatly shortened as compared with the conventional calibration method.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Regulating Braking Force (AREA)
Abstract
Description
車輪圧モデルにおけるブレーキ液圧特性曲線のキャリブレーションについて説明する。
図4に示すように、所定の液圧(例えば、約10MPa)から、減圧用バルブを一定時間、一定の間隔で駆動させ、液圧値を測定する。これにより、各液圧における、液圧の勾配(MPa/s)を算出することができる。これを各車輪ごとに行うことで、各車輪ごとに図5のような液圧-液圧勾配の特性曲線を求めることができる。この特性曲線の値を新しいパラメータとしてABSソフトウェアに設定する。この特性曲線の値の最適化の手法については、例えば複数回測定して、平均値を最適値とすることができる。あるいは、前回の測定から算出した特性曲線と、今回の測定から算出した特性曲線との差分が所定値以下であれば、今回の測定結果を最適値であると判断してもよい。
制動力モデルにおける制動力伝達係数のキャリブレーションについて説明する。制動力の関係は以下の式で表すことができる。
F(制動力)=m(車両質量)×a(減速度)=CP_FA×(P_FL+P_FR)+CP_RA×(P_RL+P_FR)
ここで、CP_FAは前輪の制動力伝達係数、CP_RAは後輪の制動力伝達係数であり、P_FLは左前輪の液圧、P_FRは右前輪の液圧、P_RLは左後輪の液圧、P_FRは右後輪の液圧を示す。
マスターシリンダ液圧モデルに関するパラメータについて説明する。ABS開始時のマスターシリンダ圧モデル値の初期値は、車輪の減速度より推定することができる。図6のように、ABS制御開始時のマスターシリンダ圧Pとそのときの車輪減速度aを測定し、近似曲線を求めて最適パラメータとすることができる。近似曲線は最小二乗法などの任意の近似法で求めることができる。なお、前軸と後軸では別パラメータとしてもよい。
ABS減圧量について説明する。ABSの基本減圧量は、各ロック圧に合わせて調整するため、例えば、図7のようなテーブルで定義される。減圧量のキャリブレーションは、減圧後の車輪加速度に応じて行う。具体的には、減圧後の車輪加速度が所定の目標値になるように調節する。基本的には、減圧量が小さいと加速度も小さく、減圧量が大きいと加速度も大きくなる。従って、減圧後の車輪加速度の目標値と測定値との差から新しい減圧量を算出することができる。新しい減圧量を複数算出して、平均値を最適値とすることができる。あるいは、減圧後の車輪加速度の目標値と実測値との差分が所定値以下になれば最適化されたと判断してもよい。決定した減圧量テーブル(パラメータ)をABSソフトウェアに設定する。
Claims (9)
- 電子制御ユニットによって車輪のブレーキ圧を制御するABS制御装置であって、
車輪速センサと、
ブレーキ圧センサと、を有し、
ABS制動中に前記車輪速センサ及び前記ブレーキ圧センサが、車輪速度及びブレーキ圧を測定し、前記電子制御ユニットが、前記車輪速度及びブレーキ圧の測定結果に応じて、ABS制御に用いる内部パラメータを自動的にキャリブレーションする、ABS制御装置。 - 請求項1に記載のABS制御装置であって、
(a)ABS制動中に前記車輪速センサ及び前記ブレーキ圧センサが、車輪速度及びブレーキ圧を測定し、前記電子制御ユニットが、前記車輪速度及びブレーキ圧の測定結果に応じて、ABS制御に用いる内部パラメータを計算し、前記計算した内部パラメータをABS制御に用いる新しい内部パラメータとして設定する
ことでABS制御に用いる内部パラメータを自動的にキャリブレーションする、ABS制御装置。 - 請求項2に記載のABS制御装置であって、さらに、
(b)前記計算した内部パラメータが所定の条件を満たしているか否かを判断し、
(c)前記計算された内部パラメータが前記所定の条件を満たしていると判断されれば、キャリブレーションを終了し、前記計算された内部パラメータが所定の条件を満たしていないと判断されれば、(a)及び(b)の手順を再度実行する、
ことでABS制御に用いる内部パラメータを自動的にキャリブレーションする、ABS制御装置。 - 電子制御ユニットによって車輪のブレーキ圧を制御するABS制御プログラムであって、
ABS制動中に測定された車輪速度及びブレーキ圧に応じて、前記ABS制御プログラムの内部パラメータを自動的にキャリブレーションする、ABS制御プログラム。 - 請求項4に記載のABS制御プログラムであって、
(a)ABS制動中に測定された車輪速度及びブレーキ圧に応じて、ABS制御プログラムの内部パラメータを計算し、前記計算された内部パラメータをABS制御プログラムの新しい内部パラメータとして設定する
ことでABS制御プログラムの内部パラメータを自動的にキャリブレーションする、ABS制御プログラム。 - 請求項5に記載のABS制御プログラムであって、さらに、
(b)前記計算された内部パラメータが所定の条件を満たしているか否かを判断し、
(c)前記計算された内部パラメータが前記所定の条件を満たしていると判断されれば、キャリブレーションを終了し、前記計算された内部パラメータが前記所定の条件を満たしていないと判断されれば、(a)及び(b)の手順を再度実行する、
ことでABS制御プログラムの内部パラメータを自動的にキャリブレーションする、ABS制御プログラム。 - 電子制御ユニットによって車輪のブレーキ圧を制御するABS制御プログラムの内部パラメータのキャリブレーション方法であって、
(a)ABS制動中に車輪速度及びブレーキ圧を測定するステップと、
(b)測定された前記車輪速度及び前記ブレーキ圧に応じて、ABS制御プログラムの所定のアルゴリズムに従って内部パラメータを自動的にキャリブレーションするステップと、
を有する、キャリブレーション方法。 - 請求項7に記載のキャリブレーション方法であって、
前記ステップ(b)は、
(b-1)測定された前記車輪速度及び前記ブレーキ圧に応じて、ABS制御プログラムの所定のアルゴリズムに従って内部パラメータを計算するステップと、
(b-2)前記計算された内部パラメータを、前記ABS制御プログラムの新たな内部パラメータとして設定するステップと、
を有する、キャリブレーション方法。 - 請求項8に記載の方法であって、
前記ステップ(b)はさらに、
(b-3)前記計算された内部パラメータが所定の条件を満たすか否かを判断するステップと、
(b-4)前記計算された内部パラメータが前記所定の条件を満たすと判断されれば、キャリブレーションを終了し、前記計算された内部パラメータが前記所定の条件を満たさないと判断されれば、(a)、(b-1)、(b-2)及び(b-3)のステップを再度実行するステップと、
を有する、キャリブレーション方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/992,777 US8706376B2 (en) | 2008-05-23 | 2008-08-22 | Vehicular ABS control system with internal parameter automatic calibration function |
CN200880129393.9A CN102036864B (zh) | 2008-05-23 | 2008-08-22 | 带有内部参数自动校准功能的车辆用abs控制装置 |
EP08792638.2A EP2281725B1 (en) | 2008-05-23 | 2008-08-22 | Vehicle abs control device with internal parameter auto-calibration function |
JP2010512903A JP5276656B2 (ja) | 2008-05-23 | 2008-08-22 | 内部パラメータの自動キャリブレーション機能付きの車両用abs制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-135456 | 2008-05-23 | ||
JP2008135456 | 2008-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009141923A1 true WO2009141923A1 (ja) | 2009-11-26 |
Family
ID=41339871
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/064967 WO2009141923A1 (ja) | 2008-05-23 | 2008-08-22 | 内部パラメータの自動キャリブレーション機能付きの車両用abs制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8706376B2 (ja) |
EP (1) | EP2281725B1 (ja) |
JP (1) | JP5276656B2 (ja) |
CN (1) | CN102036864B (ja) |
WO (1) | WO2009141923A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102426425A (zh) * | 2011-11-08 | 2012-04-25 | 重庆邮电大学 | 一种汽车abs虚拟现实仿真系统 |
JP2016538533A (ja) * | 2013-10-17 | 2016-12-08 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | 自動車安全機能の検査 |
KR20220038467A (ko) * | 2019-08-01 | 2022-03-28 | 로베르트 보쉬 게엠베하 | 제동 시스템의 자동 파라미터화를 위한 방법 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013029056A1 (en) * | 2011-08-25 | 2013-02-28 | Cnh America Llc | Method of calibration of a park brake of a continuously variable transmission |
AT513370B1 (de) | 2013-11-05 | 2015-11-15 | Avl List Gmbh | Virtuelle Testoptimierung für Fahrerassistenzsysteme |
US9440632B2 (en) * | 2014-11-05 | 2016-09-13 | Bendix Commercial Vehicle Systems Llc | Method, controller and system for monitoring brake operation |
EP3421312B1 (en) | 2016-02-24 | 2020-11-25 | Nabtesco Automotive Corporation | Air supply system |
CN108833572B (zh) * | 2018-06-28 | 2021-01-15 | 无锡沃尔福汽车技术有限公司 | 一种使ecu与未集成asap3协议的客户机建立通讯的方法和系统 |
US11161487B2 (en) | 2019-08-15 | 2021-11-02 | Bendix Commercial Vehicle Systems Llc | System and method for controlling wheel brakes in a vehicle platooning with another vehicle |
CN112857819A (zh) * | 2019-11-28 | 2021-05-28 | 罗伯特·博世有限公司 | 车辆制动调控标定方法和系统、车辆以及可读存储介质 |
WO2022144331A1 (en) * | 2020-12-30 | 2022-07-07 | RAICAM DRIVELINE S.r.l. | Method and system for the control of an electro-hydraulic abs braking system |
IT202100000428A1 (it) * | 2021-01-12 | 2022-07-12 | Faiveley Transport Italia Spa | Procedimento di calibrazione di una catena di acquisizione di un dispositivo o sistema di frenatura di almeno un veicolo ferroviario |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10108840A (ja) * | 1996-10-09 | 1998-04-28 | Canon Inc | 視線検出装置 |
JP2005532219A (ja) * | 2002-07-05 | 2005-10-27 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | 車両の安定性を高める方法 |
JP2007500643A (ja) * | 2003-07-31 | 2007-01-18 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | アクチュエータの駆動電流の検出方法 |
JP2008017515A (ja) * | 2007-08-27 | 2008-01-24 | Kyocera Corp | アダプティブアレイ基地局における送受信系調整方法およびアダプティブアレイ無線装置 |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3723876A1 (de) * | 1987-07-18 | 1989-01-26 | Daimler Benz Ag | Sicherheitseinrichtung fuer ein mit einem antiblockiersystem ausgeruestetes strassenfahrzeug |
DE3723875A1 (de) * | 1987-07-18 | 1989-02-02 | Daimler Benz Ag | Sicherheitseinrichtung fuer ein mit einem antiblockiersystem ausgeruestetes strassenfahrzeug |
DE3829951A1 (de) * | 1988-09-03 | 1990-03-15 | Daimler Benz Ag | Verfahren zur lastabhaengigen regelung des bremsdruckes an fahrzeugen und vorrichtung zur durchfuehrung des verfahrens |
DE4007360A1 (de) * | 1990-03-08 | 1991-09-12 | Daimler Benz Ag | Verfahren zur bremsdruckverteilung auf die achsen eines kraftfahrzeugs mit abs-druckmittelbremse |
DE4314448A1 (de) * | 1993-05-03 | 1994-11-10 | Teves Gmbh Alfred | Bremsanlage für Kraftfahrzeuge mit elektrischem Antrieb |
KR0150481B1 (en) * | 1994-06-22 | 1998-12-01 | Daewoo Electronics Co Ltd | Simulator of abs (anti-lock brake system) modulator |
US6325469B1 (en) * | 1996-09-06 | 2001-12-04 | General Motors Corporation | Brake control system |
JP3768685B2 (ja) * | 1998-07-01 | 2006-04-19 | 株式会社日立製作所 | ブレーキ液圧制御装置 |
WO2000023384A1 (en) | 1998-10-16 | 2000-04-27 | 02 Technologies, Inc. | Bottled water cooler with built-in oxygen generator and oxygen injection system |
WO2000051861A1 (de) * | 1999-02-27 | 2000-09-08 | Continental Teves Ag & Co. Ohg | Verfahren zur regelung des fahrverhaltens eines fahrzeugs |
JP2000335393A (ja) * | 1999-05-25 | 2000-12-05 | Unisia Jecs Corp | ブレーキ制御装置 |
DE10224058A1 (de) * | 2001-08-11 | 2003-05-15 | Continental Teves Ag & Co Ohg | Verfahren zur Prüfung eines Stromreglers eines elektronisch ansteuerbaren Ventils einer hydraulischen Fahrzeugbremsanlage |
US20040243290A1 (en) * | 2001-08-11 | 2004-12-02 | Robert Schmidt | Method for determining a fault in a pressure sensor or brake circuit |
US6859712B2 (en) * | 2001-08-31 | 2005-02-22 | General Motors Corporation | Adaptive compensation method for an anti-lock brake control |
DE10216564B4 (de) * | 2002-04-15 | 2015-12-17 | Wabco Gmbh | Verfahren zum Datenaustausch in einem Fahrzeug, bei dem die einzelnen Fahrzeugteile über einen PLC-Datenbus miteinander verbunden sind |
DE10218973A1 (de) * | 2002-04-27 | 2003-11-06 | Continental Teves Ag & Co Ohg | Verfahren zur Steuerung einer hydraulischen Fahrzeugbremsanlage mit aktiver hydraulischer Bremskraftverstärkung und hydraulischer Bremsanlage |
US6732038B2 (en) * | 2002-05-31 | 2004-05-04 | General Motors Corporation | Transmission gear selection method for enhancing the effectiveness of vehicle rocking maneuvers |
JP4211330B2 (ja) * | 2002-09-04 | 2009-01-21 | 日産自動車株式会社 | 車両用アンチロックブレーキシステムの開発支援装置及び開発支援方法 |
US6799132B2 (en) * | 2003-01-08 | 2004-09-28 | Westinghouse Air Brake Technologies Corporation | Smart resolution valve pressure control |
CN101445100B (zh) * | 2003-07-31 | 2013-11-13 | 大陆-特韦斯贸易合伙股份公司及两合公司 | 确定调节设备的致动电流的方法 |
US7225060B2 (en) * | 2004-07-30 | 2007-05-29 | Novariant, Inc. | Vehicle control system with user-guided calibration |
ITRM20040498A1 (it) * | 2004-10-13 | 2005-01-13 | Stefano Bertazzoni | Sistema di controllo automatico della manovra di imbarcazioni a motore, relativo metodo, ed imbarcazione provvista del sistema. |
US7762360B2 (en) * | 2006-02-21 | 2010-07-27 | Fabio Saposnik | Vehicle calibration and trajectory control system |
JP5119646B2 (ja) * | 2006-03-06 | 2013-01-16 | 株式会社アドヴィックス | 車両用ブレーキ制御装置 |
US7841673B2 (en) * | 2006-05-11 | 2010-11-30 | Gm Global Technology Operations, Inc. | Vehicle braking system |
US20080111342A1 (en) * | 2006-11-09 | 2008-05-15 | Volkswagen Of America, Inc. | Bicycle having an antilock brake |
JP2008269080A (ja) * | 2007-04-17 | 2008-11-06 | Nsk Ltd | 電動パワーステアリング装置の制御装置の設計支援装置及び電動パワーステアリング装置の制御装置 |
JP4759591B2 (ja) | 2008-05-12 | 2011-08-31 | 有限会社アンディクス | 冷水器 |
US8626962B2 (en) * | 2009-07-02 | 2014-01-07 | Marine Canada Acquisition Inc. | Tilt and trim sensor apparatus |
-
2008
- 2008-08-22 US US12/992,777 patent/US8706376B2/en active Active
- 2008-08-22 EP EP08792638.2A patent/EP2281725B1/en active Active
- 2008-08-22 CN CN200880129393.9A patent/CN102036864B/zh active Active
- 2008-08-22 WO PCT/JP2008/064967 patent/WO2009141923A1/ja active Application Filing
- 2008-08-22 JP JP2010512903A patent/JP5276656B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10108840A (ja) * | 1996-10-09 | 1998-04-28 | Canon Inc | 視線検出装置 |
JP2005532219A (ja) * | 2002-07-05 | 2005-10-27 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | 車両の安定性を高める方法 |
JP2007500643A (ja) * | 2003-07-31 | 2007-01-18 | コンティネンタル・テーベス・アクチエンゲゼルシヤフト・ウント・コンパニー・オッフェネ・ハンデルスゲゼルシヤフト | アクチュエータの駆動電流の検出方法 |
JP2008017515A (ja) * | 2007-08-27 | 2008-01-24 | Kyocera Corp | アダプティブアレイ基地局における送受信系調整方法およびアダプティブアレイ無線装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102426425A (zh) * | 2011-11-08 | 2012-04-25 | 重庆邮电大学 | 一种汽车abs虚拟现实仿真系统 |
JP2016538533A (ja) * | 2013-10-17 | 2016-12-08 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | 自動車安全機能の検査 |
KR20220038467A (ko) * | 2019-08-01 | 2022-03-28 | 로베르트 보쉬 게엠베하 | 제동 시스템의 자동 파라미터화를 위한 방법 |
KR102807396B1 (ko) | 2019-08-01 | 2025-05-15 | 로베르트 보쉬 게엠베하 | 제동 시스템의 자동 파라미터화를 위한 방법 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2009141923A1 (ja) | 2011-09-29 |
EP2281725A1 (en) | 2011-02-09 |
EP2281725B1 (en) | 2017-10-11 |
US20110071744A1 (en) | 2011-03-24 |
CN102036864A (zh) | 2011-04-27 |
US8706376B2 (en) | 2014-04-22 |
CN102036864B (zh) | 2014-07-23 |
JP5276656B2 (ja) | 2013-08-28 |
EP2281725A4 (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276656B2 (ja) | 内部パラメータの自動キャリブレーション機能付きの車両用abs制御装置 | |
CN104169142B (zh) | 用于运行制动系统的方法以及制动系统 | |
KR101525637B1 (ko) | 솔레노이드 밸브의 제어 방법 및 상기 방법을 실행하기 위한 수단을 포함하는 장치 | |
CN101832419B (zh) | 仲裁阀门位置传感器冗余的方法及装置 | |
CN112124277B (zh) | 轨道车辆制动缸压力控制方法、装置及轨道车辆 | |
US8757735B2 (en) | Velocity sensitive passenger vehicle trailer brake controller | |
US7204564B2 (en) | Vehicle trailer brake controller with wheel speed selection | |
KR101924248B1 (ko) | 브레이크 시스템을 동작시키는 방법 및 브레이크 시스템 | |
US20100121548A1 (en) | Correction method for the correction of characteristic curves for analogized hydraulic valves in motor vehicle braking systems | |
US20150321653A1 (en) | Switchover method for a solenoid valve operated in analogized form, electrohydraulic brake system, and use of the electrohydraulic brake system | |
JP2009534253A (ja) | 圧力制限弁によるブレーキ圧力の制御装置および方法 | |
CN103857569B (zh) | 用于优化压力调节精度的方法 | |
US8417429B2 (en) | Vehicle brake fluid pressure control apparatus | |
CN114935455B (zh) | 一种电控空压机节油测试方法及记录媒体 | |
CN106438979B (zh) | 用于控制自动变速器的装置及其方法 | |
JP2008544923A (ja) | オットーエンジンを有する車両のサーボブレーキ内の低圧を計算する方法 | |
JP7577198B2 (ja) | モータ駆動式ピストン・シリンダ装置を搭載した車両のブレーキシステムのパラメータ推定装置および方法 | |
CN108223114B (zh) | 一种增压器控制阀流量特性的在线自学习方法和系统 | |
JP4211330B2 (ja) | 車両用アンチロックブレーキシステムの開発支援装置及び開発支援方法 | |
US20230113864A1 (en) | Method and arrangement for simulating the motion of a rotatable body | |
US12084028B2 (en) | Method for the automatic parameterization of a braking system | |
JP2002019593A (ja) | ブレーキ装置の少なくとも1つの測定変数の基本値の決定方法および装置 | |
EP2371586A1 (en) | Method for controlling the fluidic actuation of a brake or suspension system | |
US9315183B2 (en) | Brake pressure apply | |
CN114879625B (zh) | 一种车辆真空度的模拟方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200880129393.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08792638 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010512903 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2008792638 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008792638 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12992777 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |