[go: up one dir, main page]

WO2009110149A1 - Izoスクラップからの有価金属の回収方法 - Google Patents

Izoスクラップからの有価金属の回収方法 Download PDF

Info

Publication number
WO2009110149A1
WO2009110149A1 PCT/JP2008/072297 JP2008072297W WO2009110149A1 WO 2009110149 A1 WO2009110149 A1 WO 2009110149A1 JP 2008072297 W JP2008072297 W JP 2008072297W WO 2009110149 A1 WO2009110149 A1 WO 2009110149A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
izo
metal
zinc
scrap
Prior art date
Application number
PCT/JP2008/072297
Other languages
English (en)
French (fr)
Inventor
新藤 裕一朗
竹本 幸一
Original Assignee
日鉱金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属株式会社 filed Critical 日鉱金属株式会社
Priority to CN2008801278553A priority Critical patent/CN101981233B/zh
Priority to JP2010501771A priority patent/JP4782238B2/ja
Priority to EP08873155A priority patent/EP2248930A4/en
Priority to US12/863,750 priority patent/US8308934B2/en
Priority to KR1020107015573A priority patent/KR101155357B1/ko
Publication of WO2009110149A1 publication Critical patent/WO2009110149A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/045Leaching using electrochemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/22Electrolytic production, recovery or refining of metals by electrolysis of solutions of metals not provided for in groups C25C1/02 - C25C1/20
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering valuable metals from used indium-zinc oxide (IZO) sputtering targets or IZO scrap generated during production (in the present specification, these are collectively referred to as “IZO scrap”).
  • IZO scrap used indium-zinc oxide
  • the “recovery of valuable metal” described in the present specification includes a metal having a valuable metal as a component, a solution containing the metal, an alloy, a hydroxide, an oxide, and a suboxide.
  • indium-zinc oxide In 2 O 3 —ZnO: generally referred to as IZO
  • IZO indium-zinc oxide
  • sputtering targets have been widely used in many electronic components such as transparent conductive thin films and gas sensors of liquid crystal display devices. In many cases, it is formed using a thin film forming means by sputtering.
  • IZO is a typical conductive oxide.
  • the thin film forming means by this sputtering method is an excellent method, when a transparent conductive thin film is formed using a sputtering target, for example, the target is not consumed uniformly. A part of the target that is heavily consumed is generally called an erosion part, but the sputtering operation is continued until the erosion part is consumed and the backing plate supporting the target is exposed. After that, it is replaced with a new target. Therefore, many non-erosion portions, that is, unused target portions remain in the used sputtering target, and all of these IZO becomes scrap. In addition, even during the production of the sputtering target, scrap (end material) is generated from the abrasive powder and the cutting powder.
  • indium used for IZO sputtering target material is expensive, indium is generally recovered from such scrap material, and zinc is also recovered as required.
  • this indium recovery method a method combining wet purification such as an acid dissolution method, an ion exchange method, and a solvent extraction method has been conventionally used.
  • IZO scrap is washed and ground, then dissolved in hydrochloric acid, hydrogen sulfide is passed through the solution, and impurities such as zinc, tin, lead, copper are precipitated and removed as sulfides, and then alkali is added to neutralize them.
  • a method of recovering as indium hydroxide is used for example, IZO scrap is washed and ground, then dissolved in hydrochloric acid, hydrogen sulfide is passed through the solution, and impurities such as zinc, tin, lead, copper are precipitated and removed as sulfides, and then alkali is added to neutralize them.
  • indium hydroxide obtained by this method has poor filterability and takes a long time to operate, and there are many impurities such as Si and Al, and the indium hydroxide produced depends on its neutralization and aging conditions, etc. Since the particle size and the particle size distribution fluctuate, there is a problem in that the characteristics of the IZO target cannot be stably maintained when the IZO target is manufactured thereafter.
  • ITO is dissolved with hydrochloric acid, and alkali is added thereto to adjust the pH to 0.5 to 4, tin is removed as a hydroxide, and hydrogen sulfide gas is then added.
  • a technique is disclosed in which harmful substances such as blown copper and lead are removed as sulfides, and then indium metal is electrolyzed by electrolysis using this solution (see Patent Document 4). This technique also has a problem that the purification process is complicated. The materials are also basically different.
  • the ITO indium-containing scrap is dissolved in hydrochloric acid to form an indium chloride solution.
  • an aqueous sodium hydroxide solution is added to remove tin as tin hydroxide.
  • an aqueous sodium hydroxide solution is further added to form indium hydroxide.
  • This is filtered, and the indium hydroxide after filtration is indium sulfate, and this is used to indium by electrowinning (see Patent Document 5).
  • This is an effective method having a large purification effect, but has a disadvantage that the process is complicated.
  • the present invention is to provide a method for efficiently recovering valuable metals from IZO scraps or scraps such as IZO scraps generated during target production.
  • the present invention provides a method for recovering valuable metals from IZO scrap by electrolyzing using an insoluble electrode as an anode and using IZO scrap as a cathode, thereby reducing the cathode scrap to metal or suboxide.
  • “Recovery of valuable metal” includes a metal having a valuable metal as a constituent element, a solution containing the metal, an alloy, a hydroxide, an oxide, and a suboxide.
  • scrap such as IZO is an oxide-based ceramic, and therefore it cannot be expected to recover valuable metals by an electrolytic method.
  • this IZO itself is an oxide ceramic, it has conductivity.
  • the present invention pays attention to this, and attempts to recover valuable metals by electrolysis (for example, in the case of IZO, indium or zinc and compounds thereof).
  • electrolysis for example, in the case of IZO, indium or zinc and compounds thereof.
  • metal scrap which is a raw material to be recovered, is usually used as an anode, and there is no reverse conception technique as in the present invention, and there is no literature that suggests this method.
  • the method for recovering valuable metals from scrap containing conductive oxide according to the present invention is a basic invention.
  • IZO itself has electrical conductivity, it is considered that this is due to oxygen deficiency of an oxide that is a sintered body.
  • the present invention utilizes the conductivity of the oxide itself, but the knowledge and judgment that the conductivity of the oxide itself enables the recovery of valuable metals by electrolysis and many experiments were conducted. It should be understood that it cannot be achieved without it.
  • the present invention also relates to a method for recovering valuable metals from the IZO scrap, wherein the IZO scrap is reduced to indium and zinc metal or suboxide by hydrogen generated at the cathode during electrolysis, and the metal or suboxide generated on the cathode is acid.
  • a method for recovering valuable metals from the IZO scrap which is dissolved in and recovered as a solution.
  • the present invention provides a metal or suboxide produced on the cathode by dissolving with acid or alkali, removing zinc from the solution, and recovering indium metal from the removed solution by electrowinning.
  • a method for recovering valuable metal a method for recovering valuable metal from the IZO scrap that is recovered as a hydroxide from the recovered metal solution, and an IZO scrap that recovers the recovered metal solution as a metal or alloy by electrolysis
  • a method for recovering valuable metals is provided.
  • a method for recovering valuable metals from the IZO scrap wherein the hydroxide or suboxide of indium and / or zinc or a mixture thereof is roasted and recovered as a mixture of these oxides or composite oxides or oxides.
  • the pH of the electrolyte can be adjusted to an acidic region for electrolysis, and the cathode IZO scrap can be reduced to metal.
  • the metal solution recovered above can remove a part of its constituent metal (zinc) by neutralization method, solvent extraction method, etc., and further recover valuable metals of indium from the solution by electrowinning. Become.
  • the solution recovered as described above can be recovered as a hydroxide or a mixture of two hydroxides by adjusting the pH of the solution to 3 to 11.
  • the indium or zinc hydroxide and the mixture of indium and zinc hydroxide thus recovered can be further roasted to recover these oxides or a mixture of oxides.
  • the recovery of the valuable metal from the IZO scrap of the present invention can be maintained as it is if the IZO scrap used for electrolysis is a scrap made of a high-purity material.
  • Indium and / or zinc metals, solutions containing these metals, high purity alloys, high purity indium and / or zinc hydroxides or mixtures of these hydroxides, high purity indium and / or zinc It can be recovered as an oxide or suboxide of these or a mixture thereof.
  • this is a significant advantage of the present invention. It does not require a conventional complicated process and a process of removing impurities mixed in the course of production, and has an excellent merit that production efficiency is increased and high-purity valuable metals can be recovered.
  • the electrolysis conditions such as current density are not uniquely determined because the scrap is scraps such as mill ends, and the current density is appropriately selected according to the amount of the mill ends and the properties of the materials.
  • the temperature of the electrolyte solution is usually in the range of 0 to 100 ° C, but room temperature (15 to 30 ° C) is sufficient.
  • a sputtering target such as indium-zinc oxide (IZO) or IZO scrap generated during production is used and an insoluble electrode and IZO scrap are used as a cathode for electrolysis as an anode, indium and / or zinc metal
  • IZO indium-zinc oxide
  • IZO scrap is used as a cathode for electrolysis as an anode, indium and / or zinc metal
  • It can be efficiently recovered as a metal-containing solution, an alloy of indium and zinc, an indium and / or zinc hydroxide or hydroxide mixture, an indium and / or zinc oxide or suboxide or a mixture thereof. This is an excellent way to do it.
  • the recovery of the valuable metal from the IZO scrap of the present invention can maintain the purity as it is if the IZO scrap to be electrolyzed itself is a scrap made of a high purity material, and the above material can be recovered.
  • This is a significant advantage of the present invention. There is an advantage that the conventional complicated process and the process of removing impurities mixed in the course of production are not required, the production efficiency is increased, and high-purity valuable metals can be recovered.
  • scraps containing valuable metals such as IZO targets can be easily electrolyzed by indium and / or zinc metals, solutions containing these metals, alloys of indium and zinc, indium and / or zinc hydroxide. Can be efficiently recovered as a mixture of products and hydroxides. Furthermore, by baking the obtained hydroxide or a mixture of hydroxides, it can be efficiently recovered as an oxide or a mixture of indium and / or zinc.
  • the roasting temperature is 100 to 1000 ° C. The temperature is preferably 100 to 500 ° C. If it is less than 100 ° C., moisture remains, and if it exceeds 1000 ° C., it will sinter, so the above range. However, it goes without saying that this range may be exceeded depending on the material. It is proposed as a standard for general roasting conditions.
  • a solution of sodium sulfate, sodium chloride, sodium nitrate, ammonium sulfate, ammonium chloride, ammonium nitrate, potassium chloride, potassium nitrate, potassium sulfate or the like can be arbitrarily selected and used as the electrolytic solution.
  • the cation is ammonia-based, there is a nitrogen load in the generation of ammonia gas and wastewater treatment, so care must be taken in the treatment.
  • the anion is chlorine-based, chlorine gas is generated, and when it is nitric acid-based, there is generation of NOx gas and nitrogen load of the waste water.
  • the sulfuric acid system can be said to be a suitable material.
  • a publicly known additive in order to increase current efficiency.
  • an IZO scrap to be electrolyzed may be used as a cathode, and an anode may be used for electrolysis using an insoluble electrode made of carbon, a noble metal or the like.
  • an insoluble electrode made of carbon, a noble metal or the like As a result, it is possible to avoid an increase or contamination of impurities beyond that contained in the IZO scrap.
  • the preferable pH is illustrated and can be changed depending on the difference in scrap materials.
  • It is desirable to appropriately adjust the electrolysis conditions depending on the type of raw material. The factor to be adjusted in this case is only the production efficiency. In general, it can be said that productivity is better when electrolysis is performed at a high current and a high voltage. However, it is not necessary to be limited to these conditions, and the selection is arbitrary.
  • the electrolysis temperature is not particularly limited, but it is desirable to perform electrolysis by adjusting to 0 to 100 ° C. Electrolysis can be sufficiently performed at room temperature.
  • the scrap that has become scrap material may be electrolyzed in a cathode box ( ⁇ ⁇ ⁇ ⁇ ).
  • the scrap itself having a predetermined size can be used as an electrode plate as it is.
  • indium can be recovered by removing zinc from the solution after neutralization, substitution, hydrolysis, etc., and further by electrowinning from the solution after zinc removal.
  • neutralization is performed with an alkaline solution such as sodium hydroxide, potassium hydroxide, ammonia, etc., indium hydroxide is precipitated at pH 3 to 5, and zinc remains in the solution and separated.
  • indium and zinc hydroxide In addition, at pH 5 or higher, it can be recovered as a mixture of indium and zinc hydroxide.
  • the hydroxide thus recovered can be further roasted at 100 to 1000 ° C. and recovered as an oxide.
  • the oxide thus obtained can be used as it is as a raw material for products. Further, if necessary, an oxide can be further replenished or added to change the amount of the component, or another element or compound can be added to sinter and make a reproduction target easily.
  • the present invention includes all of these. On the other hand, it can also be recovered as an alloy by electrolyzing the recovered metal solution of indium and zinc.
  • an insoluble electrode is used for the anode
  • the IZO scrap of the cathode is reduced to metal, and a metal solution obtained by further dissolving the metal with an acid is used. From this metal solution, as further required forms, ie indium and zinc metal, alloys thereof, indium and / or zinc metal solution, indium and / or zinc hydroxide, indium and / or zinc oxide. It becomes possible to collect.
  • Example 1 290 g of IZO (indium oxide-zinc oxide) plate-like end material (scrap) was used as a raw material. Components in this raw material were 10.7 wt% of zinc oxide (ZnO) and the balance was indium oxide (In 2 O 3 ). This raw material was used as a cathode, and carbon as an insoluble electrode was used for the anode.
  • IZO indium oxide-zinc oxide
  • Electrolysis was performed using 1 L of an electrolytic solution containing 70 g / L of sodium sulfate, pH: 2.0, and electrolysis temperature: 30 ° C.
  • the voltage was 10V (constant voltage).
  • the surface of the IZO end material was In and Zn metal, and the inside was a suboxide sponge.
  • Example 2 In and Zn metal and suboxide obtained by electrolysis were acid leached with sulfuric acid to obtain a solution of indium and zinc, and this solution was adjusted to pH 4.0 to obtain indium as indium hydroxide. Further, this indium hydroxide was dissolved in sulfuric acid and electrolyzed at an electrolysis temperature of 30 ° C. and a current density of 2 A / dm 2 . As described above, about 20 g of In valuable metal could be recovered from the IZO scrap.
  • Example 3 Electrolysis was carried out at a pH of 1.0 and an electrolysis temperature of 30 ° C. using the IZO milling material of Example 1 as a cathode, Pt as an anode, and a solution of sodium nitrate 100 g / L. The voltage was 10V (constant voltage).
  • the surface of the IZO end material was In and Zn metal, the inside was a suboxide sponge, and indium, zinc, and these suboxides were obtained.
  • the total amount by electrolysis was about 24 g in terms of metal of indium and zinc.
  • Example 4 The voltage was kept constant at 5 V, and the other conditions were electrolysis under the same conditions as in Example 1. The integrated current amount was also the same. As a result, as in Example 1, the surface of the IZO end material was In and Zn metal, and the inside was a suboxide sponge. Indium, zinc and their suboxides were obtained, and the total amount by electrolysis was about 15 g in terms of metal of indium and zinc.
  • Example 5 The voltage was kept constant at 2 V, and the other conditions were electrolysis under the same conditions as in Example 1. The integrated current amount was also the same.
  • the surface of the IZO end material was In and Zn metal, and the inside was a suboxide sponge. Indium, zinc, and their suboxides were obtained, and the total amount by electrolysis was about 10 g in terms of metal of indium and zinc.
  • Example 6 The voltage was kept constant at 20 V, and the other conditions were electrolysis under the same conditions as in Example 1. The integrated current amount was also the same. As a result, as in Example 1, the surface of the IZO end material was In and Zn metal, and the inside was a suboxide sponge. Indium, zinc, and their suboxides were obtained, and the total amount by electrolysis was about 22 g in terms of metal of indium and zinc.
  • Example 7 10 kg of the plate-like end material (scrap) was put into the cathode box as a raw material. Components in this raw material were 10.7 wt% of zinc oxide (ZnO) and the balance was indium oxide (In 2 O 3 ). This raw material was used as the cathode, and Pt was used as the anode. Electrolysis was performed using 1 L of an electrolytic solution containing 100 g / L of sodium chloride, pH: 3.0, and electrolysis temperature: 30 ° C. The test was carried out at a voltage of 10 V (constant voltage). As a result, indium, zinc and their suboxides were obtained, and the total amount by electrolysis was about 2.5 kg in terms of metal of indium and zinc. The purity of this mixture was comparable to that of Example 1.
  • Example 1 As a raw material, 2 kg of IZO (indium oxide-zinc oxide) scrap similar to that in Example 1 was used. Components in this raw material were 10.7 wt% of zinc oxide (ZnO 2 ) and the remainder indium oxide (In 2 O 3 ). This was used as a cathode, and insoluble carbon was used for the anode. Electrolysis was performed at pH 12 as electrolysis conditions. As a result, no change appeared on the cathode, and indium, zinc and their suboxides could not be recovered.
  • IZO indium oxide-zinc oxide
  • both zinc oxide (ZnO) is 9.7 wt%
  • the electrolysis conditions such as current density and pH can be arbitrarily changed according to the component amounts of O 3 and ZnO, and there is no need to be particularly limited by the component amount of this raw material.
  • IZO may change the content of zinc oxide (ZnO) from 5 wt% to 30 wt%. Even in such a case, the present invention can be sufficiently applied.
  • there are some in which a small amount of subcomponents are added to IZO but it goes without saying that the present invention can be applied to these as long as IZO is basically a basic component.
  • the present invention uses an insoluble electrode for the anode and IZO scrap for the cathode, and electrolyzes it to form indium-zinc metal on the cathode, which is further dissolved with sulfuric acid, and then Indium or zinc metal containing valuable metals to be used as a constituent, solution containing these metals, high purity indium-zinc alloy, high purity indium hydroxide and zinc hydroxide or metazinc acid mixture, high It can be recovered as a mixture of pure indium oxide and zinc oxide, and it can be seen that valuable metals can be efficiently recovered from IZO scrap.
  • the present invention uses an indium-zinc oxide (IZO) sputtering target or an IZO scrap such as a target end material generated during production, and uses only an insoluble electrode as an anode and an IZO scrap as a cathode.
  • Indium and / or zinc metals which are simply composed of valuable metals, solutions containing these metals, alloys of indium and zinc, hydroxides of indium and / or zinc, oxides of indium and / or zinc, indium and Alternatively, it can be efficiently recovered as zinc suboxide or a mixture thereof.
  • the recovery of valuable metals from the IZO scrap of the present invention can maintain the purity of IZO as it is subjected to electrolysis. This is a significant advantage of the present invention. It does not require a conventional complicated process and a process for removing impurities mixed in the course of production, has an excellent merit that production efficiency is increased and high-purity valuable metals can be recovered. It is extremely useful as a method for recovering valuable metals.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 アノードに不溶性電極を使用すると共に、カソードにIZOスクラップを使用して電解することにより、IZOスクラップをインジウム及び亜鉛のメタル又は亜酸化物として回収することを特徴とするIZOスクラップからの有価金属の回収方法。インジウム-亜鉛酸化物(IZO)スパッタリングターゲット又は製造時に発生するIZO端材等のIZOスクラップからインジウム及び亜鉛を効率良く回収する方法を提供する。

Description

IZOスクラップからの有価金属の回収方法
 この発明は、使用済みインジウム-亜鉛酸化物(IZO)スパッタリングターゲット又は製造時に発生するIZOスクラップ(本願明細書においては、これらを「IZOスクラップ」と総称する)からの有価金属の回収方法に関する。なお、本願明細書で記載する「有価金属の回収」は、有価金属を構成要素とするメタル、メタルを含有する溶解液、合金、水酸化物、酸化物、亜酸化物を含むものとする。
 近年、インジウム-亜鉛酸化物(In-ZnO:一般にIZOと称呼されている)スパッタリングターゲットは液晶表示装置の透明導電性薄膜やガスセンサーなど多数の電子部品に広く使用されているが、多くの場合スパッタリング法による薄膜形成手段を用いて形成されている。IZOは導電性のある代表的な酸化物である。
 このスパッタリング法による薄膜形成手段は優れた方法であるが、スパッタリングターゲットを用いて、例えば透明導電性薄膜を形成していくと、該ターゲットは均一に消耗していく訳ではない。このターゲットの一部の消耗が激しい部分を一般にエロージョン部と呼んでいるが、このエロージョン部の消耗が進行し、ターゲットを支持するバッキングプレートが剥き出しになる直前までスパッタリング操作を続行する。そして、その後は新しいターゲットと交換している。
 したがって、使用済みのスパッタリングターゲットには多くの非エロージョン部、すなわち未使用のターゲット部分が残存することになり、これらのIZOは全てスクラップとなる。また、スパッタリングターゲットの製造時においても、研磨粉や切削粉からスクラップ(端材)が発生する。
 IZOスパッタリングターゲット材料に使用されるインジウムは価格が高いので、一般にこのようなスクラップ材からインジウムを回収することが、そしてまた、必要に応じて亜鉛を回収することも行われている。このインジウム回収方法として、従来酸溶解法、イオン交換法、溶媒抽出法などの湿式精製を組合せた方法が用いられている。
 例えば、IZOスクラップを洗浄及び粉砕後、塩酸に溶解し、溶解液に硫化水素を通して、亜鉛、錫、鉛、銅などの不純物を硫化物として沈殿除去した後、これにアルカリを加えて中和し、水酸化インジウムとして回収する方法である。
 しかし、この方法によって得られた水酸化インジウムは、ろ過性が悪く操作に長時間を要し、Si、Al等の不純物が多く、また生成する水酸化インジウムはその中和条件及び熟成条件等により、粒径や粒度分布が変動するため、その後IZOターゲットを製造する際に、IZOターゲットの特性を安定して維持できないという問題があった。
 以下に、従来技術とその利害得失を紹介する。
 その一つとして、基板上に被着されたITO膜を電解液中で電気化学的反応により還元させ、さらにこの還元された透明導電膜を電解液に溶解させる透明導電膜のエッチング方法がある(特許文献1参照)。但し、目的がマスクパターンを高精度で得る方法であり、回収方法とは異なる技術である。材料も基本的に異なる。
 ITOからの有価金属を回収するための事前処理として、バッキングプレートとの接合に用いていたIn系のロウ材に含まれる不純物を電解液中で分離する技術がある(特許文献2参照)。しかし、これはITOから有価金属を回収する直接的な技術に関するものではない。この技術は、IZOでなく、材料が基本的に異なる。
 亜鉛精錬工程の副産物として得られる中間物又はITOスクラップからインジウムを回収する際に、錫をハロゲン化錫酸塩として分離した後、塩酸又は硝酸水溶液で還元処理し、次いでこの水溶液のpHを2~5に調整して、鉄、亜鉛、銅、タリウム等の金属イオンを還元し沈殿しにくい物質とし、水溶液中のインジウム成分を分離する技術が開示されている(特許文献3参照)。この技術は精製工程が複雑で、精製効果もそれほど期待できない問題がある。
 また、高純度インジウムの回収方法として、ITOを塩酸で溶解し、これにアルカリを加えてpHが0.5~4となるようにし、錫を水酸化物として除去し、次に硫化水素ガスを吹き込み銅、鉛等の有害物を硫化物として除去し、次いでこの溶解液を用いて電解によりインジウムメタルを電解採取する技術が開示されている(特許文献4参照)。この技術も精製工程が複雑であるという問題がある。材料も基本的に異なる。
 ITOインジウム含有スクラップを塩酸で溶解して塩化インジウム溶液とし、この溶液に水酸化ナトリウム水溶液を添加して錫を水酸化錫として除去し、除去後さらに水酸化ナトリウム水溶液を添加して水酸化インジウムとして、これをろ過し、ろ過後の水酸化インジウムを硫酸インジウムとし、これを用いて電解採取によりインジウムとする方法がある(特許文献5参照)。これは精製効果が大きく有効な方法であるが、工程が複雑であるという不利な点がある。
 ITOインジウム含有スクラップを塩酸で溶解して塩化インジウム溶液とする工程、該塩化インジウム溶液に水酸化ナトリウム水溶液を添加してスクラップ中に含有する錫を水酸化錫として除去する工程、該水酸化錫を除去した後液から亜鉛によりインジウムを置換、回収する工程からなるインジウムの回収方法がある(特許文献6参照)。この方法も、精製効果が大きく有効な方法であるが、工程が複雑であるという不利な点がある。この技術は、IZOでなく、材料も本願発明とは、基本的に異なる。
 溶融金属インジウムの上に浮上する亜酸化物含有鋳造スクラップを取り出して雰囲気炉に挿入し、一度炉を真空にした後、アルゴンガスを導入し、所定温度に加熱して亜酸化物含有鋳造スクラップを還元する金属インジウムの回収方法を開示する(特許文献7参照)。
 これ自体は有効な方法であるが、IZOのスクラップの基本的な回収方法ではないという欠点がある。また、この技術はIZOでなく、材料も本願発明とは、基本的に異なる。
 以上から、効率的かつ回収工程に汎用性がある方法が求められている。
特開昭62-290900号公報 特開平8-41560号公報 特開平3-82720号公報 特開2000-169991号公報 特開2002-69684号公報 特開2002-69544号公報 特開2002-241865号公報
 本発明は、上記の問題を解決するために、IZOスクラップ又はターゲットの製造時等に発生するIZO端材等のスクラップから、有価金属を効率良く回収する方法を提供することにある。
 本発明は、アノードに不溶性電極を使用し、カソードにIZOスクラップを使用して電解することにより、当該カソードのスクラップをメタル又は亜酸化物に還元するIZOスクラップからの有価金属の回収方法を提供する。「有価金属の回収」は、有価金属を構成要素とするメタル、メタルを含有する溶解液、合金、水酸化物、酸化物、亜酸化物を含むものである。
 一般に、例えばIZO等のスクラップは酸化物系セラミックスであるから、本来電解法で有価金属を回収することを予想することはできない。しかし、このIZO自体が酸化物系セラミックスであるにもかかわらず導電性を有する。本願発明はここに着目し、電解による有価金属(例えば、IZOの場合は、インジウム又は亜鉛及びこれらの化合物)の回収を試み、それを可能としたものである。
 このことが本願発明の大きな特徴の一つである。従来は、回収すべき原材料である金属スクラップをアノードにすることが常であり、本願発明のように逆転した発想の技術は存在せず、またこの方法を示唆するような一切の文献も存在していない。
 したがって、本願発明の導電性のある酸化物を含有するスクラップからの有価金属の回収方法は基本発明となるものである。
 IZOは、それ自体が導電性を備えていることは既に知られていることであるが、これは焼結体である酸化物の酸素欠損によるものと考えられている。本願発明は、この酸化物それ自体の導電性を利用するものであるが、酸化物自体に備わる導電性が、電解による有価金属の回収が可能であるという知見と判断さらには多くの実験を行わなければ実現できないものであることは理解されるべきものである。
 従来のIZOスクラップの回収を行なう場合には、IZOスクラップを粉砕し、これを強酸で溶解し、還元、置換、硫化、析出、中和、濾過、溶媒抽出、イオン交換、鋳造等の複数の工程を、適宜組合せる工程を経て製造されている。
 これらの工程において問題となるのは、IZOスクラップの粉砕工程で不純物が混入することであり、その後の工程で、粉砕工程で混入した不純物を、さらに除去する必要があるので、工程がより煩雑になるということである。
 したがって、IZOスクラップから電解により直接有価金属を回収できることは、極めて大きな利点を持つことが理解できるであろう。
 また、本発明は電解時にカソードに発生する水素によりIZOスクラップをインジウム及び亜鉛のメタル又は亜酸化物に還元する前記IZOスクラップからの有価金属の回収方法及びカソードに生成したメタル又は亜酸化物を酸で溶解し、溶解液として回収する前記IZOスクラップからの有価金属の回収方法を提供する。
 また、本発明は、カソードに生成したメタル又は亜酸化物を酸又はアルカリで溶解し、その溶解液から亜鉛を除去し、除去後の溶液から電解採取によりインジウムメタルを回収する前記IZOスクラップからの有価金属の回収方法、回収したメタル溶解液から水酸化物として回収する前記IZOスクラップからの有価金属の回収方法、及び回収したメタルの溶解液を電解により、メタル又は合金として回収する前記IZOスクラップからの有価金属の回収方法を提供する。
 さらに、インジウム及び又は亜鉛の水酸化物若しくは亜酸化物若しくはこれらの混合物を焙焼して、これらの酸化物又は複合酸化物若しくは酸化物の混合物として回収する前記IZOスクラップからの有価金属の回収方法を提供する。
 IZOスクラップからの有価金属の回収に際しては、電解液のpHを酸性領域に調整して電解し、カソードのIZOスクラップをメタルに還元することができる。上記で回収したメタル溶解液は、その構成メタルの一部(亜鉛)を、中和法、溶媒抽出法等により除去し、さらにその溶液から電解採取によりインジウムの有価金属を回収することが可能となる。
 また、上記に回収した溶解液は、該溶液のpHを3~11に調整して、水酸化物又は2種の水酸化物の混合物として回収することができる。このようにして回収したインジウム又は亜鉛の水酸化物とインジウム及び亜鉛の水酸化物の混合物は、さらに焙焼して、これらの酸化物とし又は酸化物の混合物として回収することができる。
 上記の通り、本願発明のIZOスクラップからの有価金属の回収は、電解に供するIZOスクラップ自体が高純度の材料からなるスクラップであれば、その純度はそのまま維持でき、高純度の有価金属を構成要素とするインジウム及び又は亜鉛のメタル、これらのメタルを含有する溶解液、高純度の合金、高純度のインジウム及び又は亜鉛の水酸化物又はこれらの水酸化物の混合物、高純度のインジウム及び又は亜鉛の酸化物又は亜酸化物若しくはこれらの混合物として回収することが可能である。
 これは、本願発明の著しい利点であることは言うまでもない。従来の煩雑な工程及び製造途中で混入する不純物を除去する工程を必要とせず、生産効率を上昇させ、高純度の有価金属の回収が可能となるという優れたメリットを有するものである。
 また、電流密度等の電解条件は、端材等のスクラップであるために一義的に決められるものではなく、電流密度はその端材の量や材料の性質に応じて適宜選択して実施する。電解質溶液の液温は、通常0~100°Cの範囲とするが、室温(15~30°C)で十分である。
 インジウム-亜鉛酸化物(IZO)等のスパッタリングターゲット又は製造時に発生するIZOスクラップを使用し、アノードに不溶性電極及びIZOスクラップをカソードとして電解するだけなので、極めて簡便にインジウム及び又は亜鉛のメタル、これらのメタルを含有する溶解液、インジウム及び亜鉛の合金、インジウム及び又は亜鉛の水酸化物又は水酸化物の混合物、インジウム及び又は亜鉛の酸化物若しくは亜酸化物又はこれらの混合物として効率良く回収することができるという優れた方法である。
 さらに、本願発明のIZOスクラップからの有価金属の回収は、電解に供するIZOスクラップ自体が高純度の材料からなるスクラップであれば、その純度はそのまま維持でき、上記の材料を回収することができる。これは、本願発明の著しい利点である。従来の煩雑な工程及び製造途中で混入する不純物を除去する工程を必要とせず、生産効率を上昇させ、高純度の有価金属の回収が可能となるという優れたメリットを有する。
 本発明は、IZOターゲット等の有価金属を含有するスクラップを、電解により、簡便にインジウム及び又は亜鉛のメタル、これらのメタルを含有する溶解液、インジウム及亜鉛の合金、インジウム及び又は亜鉛の水酸化物、水酸化物の混合物として効率良く回収することができる。さらに得られた水酸化物又は水酸化物の混合物を焙焼することにより、インジウム及び又は亜鉛の酸化物又は酸化物の混合物として効率良く回収することができる。
 焙焼温度としては、100~1000°Cとする。好ましくは100~500°Cとするのが良い。100°C未満では水分が残り、1000°Cを超えると焼結してしまうので、上記の範囲とする。但し、材料によっては、この範囲を超えることがあることは言うまでもない。一般的な焙焼条件の目安として提案したものである。
 電解液としては、上記の通り、硫酸ナトリウム、塩化ナトリウム、硝酸ナトリウム、硫酸アンモニウム、塩化アンモニウム、硝酸アンモニウム、塩化カリウム、硝酸カリウム、硫酸カリウムなどの溶液を任意に選択して使用することができる。なお、陽イオンがアンモニア系の場合は、アンモニアガスの発生、排水処理での窒素負荷があるので、その処理に注意を要する。また、陰イオンが塩素系の場合は、塩素ガスの発生があり、また硝酸系の場合はNOxガスの発生と排水の窒素負荷があるので、その処理に注意を要する。
 硫酸系ではこれらの問題は殆んどないので、硫酸系は好適な材料と言える。しかし、その他の電解液の使用も、上記の問題を解決できれば、使用を妨げる理由は存在しない。
 この他に、電流効率を上げるために、一般に知られている公知の添加材を使用することも可能である。このように、再生した2種以上の酸化物が同時に回収でき、再生製品に近いものであれば、再生効率が高くなることは容易に理解されるであろう。
 電解装置として特別なものは必要としない。例えば電解するIZOスクラップをカソードとし、アノードとしてはカーボン、貴金属等からなる不溶性の電極を用いて電解すれば良い。これによって、IZOスクラップに含有されている以上の不純物の増加又は混入を避けることができる。
 また、電解液のpHを7以下に調整して電解することが望ましい。これは還元する好適な条件であり、それはカソードより水素ガスを発生させて酸化物をメタルに還元させるという理由による。なお、好ましいpHは例示したものであって、スクラップ材料の相異により替え得るものであることは、容易に理解されるべきものである。
 電解条件は原料の種類により、適宜に調整することが望ましい。この場合に調整する要素は、生産効率のみである。一般に、大電流、高電圧で電解する方が、生産性が良いと言える。しかし、これらの条件に限定される必要はなく、その選択は任意である。
 また、電解温度も特に制限はないが、0~100°Cに調整して電解することが望ましい。室温で十分電解することができる。端材となったスクラップは、それぞれカソードボックス(籠)に入れて電解すれば良い。スクラップ自体が所定の大きさ(電極として使用できるサイズ)を有するものは、そのまま電極板として使用することができる。
 不溶性の電極からなるアノード及びIZOスクラップからなるカソードに通電し、電解を開始すると、アノードでは酸素ガスが発生するが、特に問題となるものではない。
 他方、IZOスクラップのカソードでは、通電開始と共に水素ガスが発生し、IZOスクラップが水素還元され、メタルとなる(IZO+H→In-Znメタル)。水素の発生は水の電気分解による(HO→1/2H+OH)。
 しかし、通電時間が長くなると、IZOスクラップのカソードの表面に若干の厚みのメタル(In、Sn)が蓄積し、このメタル表層の下に、スポンジ状のメタルの亜酸化物が形成され、それ以上の還元が抑制されるので、電解を中止するなどして、生成したメタル及び当該メタルの亜酸化物を、酸を用いて溶解させ、新しいIZO表面を露出させることが望ましい。これによって、新生面が現れさらに還元が進行する。
 上記に回収したメタル溶解液は、中和法、置換法、加水分解法等により亜鉛を除去し、さらに亜鉛除去後の溶液から電解採取により、インジウムを回収することが可能となる。中和法では、水酸化ナトリウム、水酸化カリウム、アンモニア等のアルカリ性の液で中和し、pH3~5で水酸化インジウム沈殿させ、亜鉛を溶液中に残存させて分離する。
 また、pH5以上では、インジウムと亜鉛の水酸化物の混合物として回収することもできる。このようにして回収した水酸化物は、さらに100~1000°Cで焙焼して酸化物として回収することができる。
 このようにして得た酸化物を、そのまま製品の原料として使用することができる。また、必要に応じ、さらに酸化物を補充又は添加して、その成分量を替え、あるいは他の元素又は化合物を添加して、焼結し再生ターゲットとすることも容易になし得るものである。本願発明はこれらを全て包含する。
 一方、上記に回収したインジウム及び亜鉛のメタル溶解液を電解することにより、合金として回収することもできる。
 いずれも、アノードに不溶性電極を使用し、カソードのIZOスクラップをメタルに還元し、このメタルを、さらに酸で溶解して得たメタル溶解液を使用することを前提としたものである。
 このメタル溶解液から、さらに必要とする形態、すなわちインジウム及び亜鉛のメタル、これらの合金、インジウム及び又は亜鉛のメタルの溶解液、インジウム及び又は亜鉛の水酸化物、インジウム及び又は亜鉛の酸化物として回収することが可能となる。
 次に、実施例について説明する。なお、本実施例は発明の一例を示すためのものであり、本発明はこれらの実施例に制限されるものではない。すなわち、本発明の技術思想に含まれる他の態様及び変形を含むものである。
 (実施例1)
 IZO(酸化インジウム-酸化亜鉛)の板状端材(スクラップ)290gを原料とした。この原料中の成分は酸化亜鉛(ZnO)が10.7wt%、残部酸化インジウム(In)であった。
 この原料をカソードとし、アノードには、不溶性電極であるカーボンを使用した。硫酸ナトリウム70g/Lを含有する電解液1Lを使用し、pH:2.0、電解温度:30°Cとして電解を行った。電圧は10V(定電圧)で実施した。
 この結果、IZO端材の表面はIn及びZnメタルと、内部は亜酸化物のスポンジ状となっていた。
(実施例2)
 電解することにより得たIn及びZnメタル及び亜酸化物を硫酸で酸浸出してインジウムと亜鉛の溶液とし、この溶液をpH4.0に調整してインジウムを水酸化インジウムとして得た。さらに、この水酸化インジウムを硫酸で溶解し、電解温度30°C、電流密度2A/dmで電解採取した。
 以上により、IZOスクラップから約20gのInの有価金属を回収することができた。
(実施例3)
 実施例1のIZO端材をカソードに、アノードにPtを用い、硝酸ナトリウム100g/Lの液を用いて、pH:1.0、電解温度:30°Cとして電解を行った。電圧は10V(定電圧)で実施した。
 この結果、実施例1と同様に、IZO端材の表面はIn及びZnメタルであり、内部は亜酸化物のスポンジ状となっており、インジウム、亜鉛及びこれらの亜酸化物が得られた。電解による合計量は、インジウムと亜鉛のメタル換算で約24gであった。
(実施例4)
 電圧を5Vで一定とし、他の条件は実施例1と同様の条件で電解した。積算電流量も同じとした。この結果、実施例1と同様に、IZO端材の表面はIn及びZnメタルであり、内部は亜酸化物のスポンジ状となっていた。インジウム、亜鉛及びこれらの亜酸化物が得られ、電解による合計量はインジウムと亜鉛のメタル換算で約15gであった。
(実施例5)
 電圧を2Vで一定とし、他の条件は実施例1と同様の条件で電解した。積算電流量も同じとした。この結果、実施例1と同様に、IZO端材の表面はIn及びZnメタルであり、内部は亜酸化物のスポンジ状となっていた。インジウム、亜鉛及びこれらの亜酸化物が得られ、電解による合計量はインジウムと亜鉛のメタル換算で約10gであった。
(実施例6)
 電圧を20Vで一定とし、他の条件は実施例1と同様の条件で電解した。積算電流量も同じとした。この結果、実施例1と同様に、IZO端材の表面はIn及びZnメタルであり、内部は亜酸化物のスポンジ状となっていた。インジウム、亜鉛及びこれらの亜酸化物が得られ、電解による合計量はインジウムと亜鉛のメタル換算で約22gであった。
(実施例7)
 板状端材(スクラップ)をカソードボックスに10kg入れ原料とした。この原料中の成分は酸化亜鉛(ZnO)が10.7wt%、残部酸化インジウム(In)であった。
 この原料をカソードとし、アノードにはPtを使用した。塩化ナトリウム100g/Lを含有する電解液1Lを使用し、pH:3.0、電解温度:30°Cとして電解を行った。電圧10V(定電圧)で実施した。この結果、インジウム、亜鉛及びこれらの亜酸化物が得られ、電解による合計量はインジウムと亜鉛のメタル換算で約2.5kgであった。この混合物の純度は、実施例1と同程度であった。
(比較例1)
 実施例1と同様のIZO(酸化インジウム-酸化亜鉛)スクラップ2kgを原料とした。この原料中の成分は酸化亜鉛(ZnO)が10.7wt%、残部酸化インジウム(In)であった。これをカソードとし、アノードに不溶性カーボンを用いた。電解条件としてpH12で電解した。
 この結果、カソードには何らの変化も現れず、インジウム、亜鉛及びこれらの亜酸化物の回収はできなかった。
 上記の実施例においては、いずれも酸化亜鉛(ZnO)が9.7wt%、残部酸化インジウム(In)であるIZO(酸化インジウム-酸化亜鉛)端材又はスクラップを使用したが、In及びZnOの成分量に応じて、電流密度、pH等の電解条件を任意に変えることが可能であり、この原料の成分量に特に制限される必要がないことは言うまでもない。特に、IZOは酸化亜鉛(ZnO)の含有量を5wt%~30wt%まで、変化させることがあるが、このような場合でも、本発明は十分に適用できる。
 また、IZOにさらに少量の副成分を添加したものもあるが、基本的にIZOが基本成分であれば、本願発明は、これらにも適用できることは言うまでもない。
 本願発明は、アノードに不溶性電極を使用すると共にカソードにIZOスクラップを使用し、これを電解することにより、カソード上にインジウム-亜鉛のメタルを形成し、これをさらに硫酸により溶解させて、その後に使用する有価金属を構成要素とするインジウム又は亜鉛のメタル、これらのメタルを含有する溶解液、高純度のインジウム-亜鉛合金、高純度の水酸化インジウムと水酸化亜鉛又はメタ亜鉛酸の混合物、高純度の酸化インジウム及び酸化亜鉛の混合物として回収することが可能であり、IZOスクラップから有価金属を効率良く回収できることが分る。
 本発明は、インジウム-亜鉛酸化物(IZO)のスパッタリングターゲット又は製造時に発生するターゲット端材等のIZOスクラップを使用し、アノードに不溶性電極及びカソードにIZOスクラップを使用して電解するだけなので、極めて簡便に有価金属を構成要素とするインジウム及び又は亜鉛のメタル、これらのメタルを含有する溶解液、インジウム及び亜鉛の合金、インジウム及び又は亜鉛の水酸化物、インジウム及び又は亜鉛の酸化物、インジウム及び又は亜鉛の亜酸化物、又はこれらの混合物として効率良く回収することができる。
 さらに、本願発明のIZOスクラップからの有価金属の回収はIZOの純度は、電解に供するそのまま維持できる。これは、本願発明の著しい利点である。従来の煩雑な工程及び製造途中で混入する不純物を除去する工程を必要とせず、生産効率を上昇させ、高純度の有価金属の回収が可能となるという優れたメリットを有し、IZOスクラップからの有価金属の回収方法として極めて有用である。

Claims (7)

  1.  アノードに不溶性電極を使用すると共に、カソードにIZOスクラップを使用して電解することにより、IZOスクラップをインジウム及び亜鉛のメタル又は亜酸化物として回収することを特徴とするIZOスクラップからの有価金属の回収方法。
  2.  電解時にカソードに発生する水素によりIZOスクラップをメタル又は亜酸化物に還元することを特徴とする請求項1記載のIZOスクラップからの有価金属の回収方法。
  3.  カソードに生成したメタル又は亜酸化物を酸で溶解し、溶解液として回収することを特徴とする請求項1又は2記載のIZOスクラップからの有価金属の回収方法。
  4.  カソードに生成したメタル又は亜酸化物を酸又はアルカリで溶解し、その溶解液から亜鉛を除去し、除去後の溶液から電解採取によりインジウムを回収することを特徴とする請求項1~3のいずれかに記載のIZOスクラップからの有価金属の回収方法。
  5.  回収したメタル又は亜酸化物の溶解液から水酸化物として回収することを特徴とする請求項1~3のいずれかに記載のIZOスクラップからの有価金属の回収方法。
  6.  回収したメタルの溶解液を電解により、インジウム亜鉛合金として回収することを特徴とする請求項1~3のいずれかに記載のIZOスクラップからの有価金属の回収方法。
  7.  インジウム及び又は亜鉛の水酸化物又は亜酸化物を焙焼し、これらの酸化物として回収することを特徴とする請求項5記載のIZOスクラップからの有価金属の回収方法。
PCT/JP2008/072297 2008-03-06 2008-12-09 Izoスクラップからの有価金属の回収方法 WO2009110149A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2008801278553A CN101981233B (zh) 2008-03-06 2008-12-09 从izo废料中回收有价值金属的方法
JP2010501771A JP4782238B2 (ja) 2008-03-06 2008-12-09 Izoスクラップからの有価金属の回収方法
EP08873155A EP2248930A4 (en) 2008-03-06 2008-12-09 Recycling process of valuable metals from Izo scrap
US12/863,750 US8308934B2 (en) 2008-03-06 2008-12-09 Method of recovering valuable metals from IZO scrap
KR1020107015573A KR101155357B1 (ko) 2008-03-06 2008-12-09 Izo 스크랩으로부터의 유가 금속의 회수 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-056208 2008-03-06
JP2008056208 2008-03-06

Publications (1)

Publication Number Publication Date
WO2009110149A1 true WO2009110149A1 (ja) 2009-09-11

Family

ID=41055719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072297 WO2009110149A1 (ja) 2008-03-06 2008-12-09 Izoスクラップからの有価金属の回収方法

Country Status (8)

Country Link
US (1) US8308934B2 (ja)
EP (1) EP2248930A4 (ja)
JP (1) JP4782238B2 (ja)
KR (1) KR101155357B1 (ja)
CN (1) CN101981233B (ja)
MY (1) MY146379A (ja)
TW (1) TWI471422B (ja)
WO (1) WO2009110149A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101528984B (zh) * 2006-10-24 2012-10-24 Jx日矿日石金属株式会社 从ito废料中回收有价金属的方法
KR20090055649A (ko) * 2006-10-24 2009-06-02 닛코 킨조쿠 가부시키가이샤 Ito 스크랩으로부터의 유가 금속의 회수 방법
WO2008053619A1 (en) * 2006-10-24 2008-05-08 Nippon Mining & Metals Co., Ltd. Method for collection of valuable metal from ito scrap
CA2666230C (en) * 2006-10-24 2011-11-15 Nippon Mining & Metals Co., Ltd. Method for collection of valuable metal from ito scrap
JP4210715B2 (ja) * 2007-02-16 2009-01-21 日鉱金属株式会社 導電性のある酸化物を含有するスクラップからの有価金属の回収方法
WO2008099774A1 (ja) * 2007-02-16 2008-08-21 Nippon Mining & Metals Co., Ltd. 導電性のある酸化物を含有するスクラップからの有価金属の回収方法
CA2674069C (en) * 2007-03-27 2011-07-19 Nippon Mining & Metals Co., Ltd. Method of recovering valuable metal from scrap containing conductive oxide
CN101946026B (zh) * 2008-02-12 2012-04-18 Jx日矿日石金属株式会社 从izo废料中回收有价值金属的方法
EP2241656B1 (en) * 2008-02-12 2013-05-15 JX Nippon Mining & Metals Corporation Method of recovering valuable metals from izo scrap
CN109183057B (zh) * 2018-11-13 2020-07-07 云南锡业集团(控股)有限责任公司研发中心 电解法制备高纯氧化铟粉末的方法及装置
CN114808036B (zh) * 2022-04-21 2023-12-05 柳州华锡有色设计研究院有限责任公司 一种从ito靶材废料回收高纯锡铟合金的方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290900A (ja) 1986-06-11 1987-12-17 Oki Electric Ind Co Ltd 透明導電膜のエツチング方法およびその装置
JPH01219186A (ja) * 1988-02-26 1989-09-01 Sumitomo Metal Mining Co Ltd インジウムの精製方法
JPH0382720A (ja) 1989-08-25 1991-04-08 Tosoh Corp インジウムを回収する方法
JPH0841560A (ja) 1994-07-26 1996-02-13 Dowa Mining Co Ltd 金属ろう材付着itoの処理方法
JPH0860264A (ja) * 1994-08-19 1996-03-05 Nikko Kinzoku Kk 電解採取によるインジウムの回収方法
JP2000169991A (ja) 1998-12-04 2000-06-20 Dowa Mining Co Ltd 高純度インジウムの回収方法
JP2002069684A (ja) 2000-08-28 2002-03-08 Nikko Materials Co Ltd インジウムの回収方法
JP2002069544A (ja) 2000-08-28 2002-03-08 Nikko Materials Co Ltd インジウムの回収方法
JP2002241865A (ja) 2000-12-15 2002-08-28 Nikko Materials Co Ltd 金属インジウムの回収方法
JP2003247089A (ja) * 2002-02-25 2003-09-05 Nikko Materials Co Ltd インジウムの回収方法
JP2007131953A (ja) * 2006-12-26 2007-05-31 Dowa Holdings Co Ltd インジウムの回収方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2915444A (en) * 1955-12-09 1959-12-01 Enthone Process for cleaning and plating ferrous metals
NL124986C (ja) * 1961-09-26
US4330377A (en) * 1980-07-10 1982-05-18 Vulcan Materials Company Electrolytic process for the production of tin and tin products
US4981564A (en) * 1988-07-06 1991-01-01 Technic Inc. Additives for electroplating compositions and methods for their use
US4950326A (en) * 1989-05-01 1990-08-21 Tektronix, Inc. Process for removal of dissolved copper from solution
JPH04210714A (ja) * 1990-12-10 1992-07-31 Hitachi Cable Ltd 長尺布設体の異常変位検知装置
JP2738192B2 (ja) 1991-12-02 1998-04-08 住友金属鉱山株式会社 電解用粗インジウムの回収方法
JPH0641778A (ja) * 1992-07-23 1994-02-15 Mitsubishi Materials Corp 金属の電解精錬設備における電着金属の剥離装置
US5417816A (en) * 1992-12-09 1995-05-23 Nikko Kyodo, Ltd. Process for preparation of indium oxide-tin oxide powder
US5580496A (en) * 1993-04-05 1996-12-03 Sumitomo Metal Mining Company Limited Raw material for producing powder of indium-tin oxide aciculae and method of producing the raw material, powder of indium-tin oxide aciculae and method of producing the powder, electroconductive paste and light-transmitting
JP3203587B2 (ja) 1993-11-22 2001-08-27 株式会社ジャパンエナジー インジウムの回収方法
JP3972464B2 (ja) 1998-05-29 2007-09-05 三菱マテリアル株式会社 高純度錫の製造方法
US6117209A (en) * 1998-11-02 2000-09-12 Gnb Technologies, Inc. Hydrometallurgical process for treating alloys and drosses to recover the metal components
DE60142831D1 (de) * 2000-05-22 2010-09-30 Nippon Mining Co Verfahren zur herstellung von metall mit höherem reinheitsgrad
US7435325B2 (en) * 2001-08-01 2008-10-14 Nippon Mining & Metals Co., Ltd Method for producing high purity nickle, high purity nickle, sputtering target comprising the high purity nickel, and thin film formed by using said spattering target
CN1191380C (zh) * 2002-11-07 2005-03-02 长沙矿冶研究院 从铟锡氧化物废料中提取精铟的方法
US7157024B2 (en) * 2003-05-26 2007-01-02 Nissan Chemical Industries, Ltd. Metal oxide particle and process for producing same
JP2005314786A (ja) 2004-03-31 2005-11-10 Mitsui Mining & Smelting Co Ltd インジウムの回収方法
WO2008053619A1 (en) 2006-10-24 2008-05-08 Nippon Mining & Metals Co., Ltd. Method for collection of valuable metal from ito scrap
US8007652B2 (en) * 2006-10-24 2011-08-30 Jx Nippon Mining & Metals Corporation Method for collection of valuable metal from ITO scrap
KR20090055649A (ko) * 2006-10-24 2009-06-02 닛코 킨조쿠 가부시키가이샤 Ito 스크랩으로부터의 유가 금속의 회수 방법
CN101528984B (zh) 2006-10-24 2012-10-24 Jx日矿日石金属株式会社 从ito废料中回收有价金属的方法
CA2666230C (en) * 2006-10-24 2011-11-15 Nippon Mining & Metals Co., Ltd. Method for collection of valuable metal from ito scrap
JP4210715B2 (ja) * 2007-02-16 2009-01-21 日鉱金属株式会社 導電性のある酸化物を含有するスクラップからの有価金属の回収方法
WO2008099774A1 (ja) 2007-02-16 2008-08-21 Nippon Mining & Metals Co., Ltd. 導電性のある酸化物を含有するスクラップからの有価金属の回収方法
CA2674069C (en) * 2007-03-27 2011-07-19 Nippon Mining & Metals Co., Ltd. Method of recovering valuable metal from scrap containing conductive oxide
EP2241656B1 (en) * 2008-02-12 2013-05-15 JX Nippon Mining & Metals Corporation Method of recovering valuable metals from izo scrap
CN101946026B (zh) * 2008-02-12 2012-04-18 Jx日矿日石金属株式会社 从izo废料中回收有价值金属的方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290900A (ja) 1986-06-11 1987-12-17 Oki Electric Ind Co Ltd 透明導電膜のエツチング方法およびその装置
JPH01219186A (ja) * 1988-02-26 1989-09-01 Sumitomo Metal Mining Co Ltd インジウムの精製方法
JPH0382720A (ja) 1989-08-25 1991-04-08 Tosoh Corp インジウムを回収する方法
JPH0841560A (ja) 1994-07-26 1996-02-13 Dowa Mining Co Ltd 金属ろう材付着itoの処理方法
JPH0860264A (ja) * 1994-08-19 1996-03-05 Nikko Kinzoku Kk 電解採取によるインジウムの回収方法
JP2000169991A (ja) 1998-12-04 2000-06-20 Dowa Mining Co Ltd 高純度インジウムの回収方法
JP2002069684A (ja) 2000-08-28 2002-03-08 Nikko Materials Co Ltd インジウムの回収方法
JP2002069544A (ja) 2000-08-28 2002-03-08 Nikko Materials Co Ltd インジウムの回収方法
JP2002241865A (ja) 2000-12-15 2002-08-28 Nikko Materials Co Ltd 金属インジウムの回収方法
JP2003247089A (ja) * 2002-02-25 2003-09-05 Nikko Materials Co Ltd インジウムの回収方法
JP2007131953A (ja) * 2006-12-26 2007-05-31 Dowa Holdings Co Ltd インジウムの回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2248930A4

Also Published As

Publication number Publication date
EP2248930A4 (en) 2012-07-11
KR20100094574A (ko) 2010-08-26
JP4782238B2 (ja) 2011-09-28
CN101981233B (zh) 2013-02-13
CN101981233A (zh) 2011-02-23
MY146379A (en) 2012-08-15
JPWO2009110149A1 (ja) 2011-07-14
TWI471422B (zh) 2015-02-01
KR101155357B1 (ko) 2012-06-19
TW200938638A (en) 2009-09-16
US8308934B2 (en) 2012-11-13
US20100288645A1 (en) 2010-11-18
EP2248930A1 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
JP4210714B2 (ja) 導電性のある酸化物を含有するスクラップからの有価金属の回収方法
JP4782238B2 (ja) Izoスクラップからの有価金属の回収方法
JP5043027B2 (ja) Itoスクラップからの有価金属の回収方法
JP4210715B2 (ja) 導電性のある酸化物を含有するスクラップからの有価金属の回収方法
JP4210713B2 (ja) 導電性のある酸化物を含有するスクラップからの有価金属の回収方法
JP4745400B2 (ja) Itoスクラップからの有価金属の回収方法
JP4647695B2 (ja) Itoスクラップからの有価金属の回収方法
JP5512771B2 (ja) Izoスクラップからの有価金属の回収方法
US8308933B2 (en) Method of recovering valuable metals from IZO scrap

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880127855.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08873155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010501771

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2008873155

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107015573

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12863750

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PI 2010003710

Country of ref document: MY

WWE Wipo information: entry into national phase

Ref document number: 12010501999

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE