WO2009104568A1 - Single-axis drive aligner - Google Patents
Single-axis drive aligner Download PDFInfo
- Publication number
- WO2009104568A1 WO2009104568A1 PCT/JP2009/052616 JP2009052616W WO2009104568A1 WO 2009104568 A1 WO2009104568 A1 WO 2009104568A1 JP 2009052616 W JP2009052616 W JP 2009052616W WO 2009104568 A1 WO2009104568 A1 WO 2009104568A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- wafer
- turntable
- axis direction
- circular
- Prior art date
Links
- 238000005259 measurement Methods 0.000 claims abstract description 35
- 230000002093 peripheral effect Effects 0.000 claims abstract description 29
- 239000004065 semiconductor Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 25
- 238000001514 detection method Methods 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 9
- 238000006073 displacement reaction Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 7
- 230000007246 mechanism Effects 0.000 abstract description 6
- 235000012431 wafers Nutrition 0.000 description 127
- 238000012546 transfer Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/68—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
- H01L21/681—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/04—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving
- G01B11/043—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness specially adapted for measuring length or width of objects while moving for measuring length
Definitions
- the present invention relates to an optical non-contact aligner for semiconductor wafers.
- the position of the orientation flat cut out in a string shape or the notch cut out in a V shape or U shape always matches the reference rotation position. It is required to be set in the processing stage under the condition of
- Patent Document 1 after the orientation flat or notch aligning position is aligned with the reference rotation position by the orientation flat aligning machine or the notch aligning machine, the wafer taken out from the cassette is set on the processing stage.
- one or a plurality of process chambers for performing processes such as etching, sputtering, cleaning, or heating, and an aligning chamber for aligning the semiconductor wafer are provided.
- a structure connected to a transfer chamber having a transfer robot for transferring is generally adopted.
- the semiconductor wafer to be processed is transferred to the aligning chamber by the transfer robot, and after the center position and direction are identified, the transfer is again transferred to the predetermined processing chamber by the transfer robot.
- the notch alignment is usually performed by a vacuum suction method, and the holding means for holding the wafer is rotated by vacuum sucking an area from the outer periphery of the wafer to 5 mm, and the notch position is detected during the rotation. The position is adjusted to match the reference rotation position.
- the drive axis is two axes, the X axis and the Y axis, and the spindle is the rotation axis.
- 4 stepping motors are used for driving, and a positioning sensor is provided for each of the X-axis and Y-axis origin sensors.
- One sensor and one alignment position sensor are provided.
- the wafer on the spindle is held by vacuum suction by a vacuum solenoid valve and a vacuum switch.
- the turntable When the robot hand on which the wafer is placed reaches the center of the turntable (vacuum chuck) at the set height, the turntable rises, receives the wafer, stops at the upper limit position, and simultaneously sucks the vacuum. Next, the robot hand moves backward and returns to the home position, and the wafer (rotary table) rotates at a specified angle, and the line sensor measures the dimensions from the center to the end face before rotation and stops, and releases the vacuum.
- the wafer sizes to be measured are 100 mm, 125 mm, 150 mm, and 200 mm semiconductor wafers, the positioning accuracy is about ⁇ 0.1 mm, and the positioning time from the start to the end of the spindle is about 3 seconds. .
- the conventional optical non-contact aligner for semiconductor wafers has four functions, that is, the turntable rotates, moves up and down, and operates in the X and Y directions, and its mechanism is complicated and therefore adjustment is complicated. It was a thing.
- the conventional methods indicate the position information divided into the X axis and the Y axis by calculation, the probability of returning to the predetermined position (origin) is low and the position accuracy is also low.
- Patent Document 2 discloses an aligner provided in a semiconductor wafer transfer robot that can transfer and align a semiconductor wafer with high accuracy and contribute to a reduction in the area occupied by a semiconductor manufacturing apparatus.
- the aligner provided in the transfer robot disclosed in Patent Document 2 the turntable of the aligner is mounted on the driving body of the transfer robot, and the center position of the semiconductor wafer W detected by the optical sensor by the turntable is the fork. Rotate and stop the semiconductor wafer W so that it is located on the trajectory where it moves, extend and retract the telescopic arm appropriately so that the fork and the center position of the semiconductor wafer W are aligned, and then the turntable descends The semiconductor wafer W is placed on the fork, and the eccentricity of the semiconductor wafer W is corrected.
- the aligner disclosed in Patent Document 2 corrects the amount of eccentricity of the semiconductor wafer W by rotating the semiconductor wafer W so that the center position of the semiconductor wafer W detected by the optical sensor is located on the track where the fork moves. .
- an aligner turntable must be mounted on the driving body of the transfer robot, and this method cannot be applied when aligning a semiconductor wafer by providing an aligning chamber.
- the conventional aligner is mainly used to align the notch position of the wafer in the cassette by alignment, and an error of several millimeters is not a problem, and there is room for the method of Patent Document 2 in that respect. .
- the contact type aligner and the method described in Patent Document 2 cannot sufficiently meet the needs.
- An object of the present invention is to provide an aligner that has a simple mechanism, is not complicated to adjust, is space-saving, and is highly accurate in view of problems in the prior art.
- the aligner of the present invention is configured to measure a rotary table that is rotated by holding a circular positioning target in the X-axis, Y-axis, and Z-axis three-dimensional coordinate space, and a circular positioning target that is held by the rotary table.
- a detection unit that detects the position of the point in the X-axis direction and a positioning calculation processing unit that performs positioning calculation based on the measurement data of the X-axis direction position of the measurement point measured by the detection unit. Based on this, the circular positioning object is displaced in the X-axis direction to position the circular positioning object with respect to the turntable.
- the aligning method of the present invention includes a step of holding a circular positioning target on the rotary table in the X-axis / Y-axis / Z-axis three-dimensional coordinate space, and rotating the circular positioning target held on the rotary table.
- Holding means for holding the circular object to be positioned and displacing in the X-axis / Z-axis direction may be provided, and the rotating table may be fixed in the X-axis / Y-axis / Z-axis direction.
- Holding means for holding the circular object to be positioned and fixing it at least in the X-axis and Y-axis directions may be provided so that the turntable can be displaced in the X-axis direction.
- the detection unit may be configured to be displaceable in the X-axis direction.
- the X-axis direction position of the said measurement point be an outer peripheral position of the circular positioning target rotated on a turntable.
- a difference ⁇ between the shortest distance and the longest distance between the outer peripheral position of the circular positioning target obtained by the detection unit and the positioning calculation processing unit and the rotation center of the turntable is calculated, and the displacement of the circular positioning target in the X-axis direction is calculated.
- the circular object to be positioned can be a semiconductor wafer.
- the detection unit may be an optical non-contact measuring instrument (line sensor).
- the aligner according to the present invention applies the circular positioning target to the X based on the positioning calculation calculation result based on the measurement data of the X axis direction position of the measurement point measured by the detection unit that detects the X axis direction position of the measurement point of the circular positioning target. Since the circular positioning object is positioned with respect to the turntable by being displaced in the axial direction, the displacement is performed only by movement on a single axis (one axis) in the X-axis direction, so that extremely high control accuracy can be obtained.
- the height and center position of, for example, a semiconductor wafer that is a circular positioning target remains unchanged, and accuracy when measuring the outer periphery of the wafer or searching for a specific position And reliability will be improved dramatically.
- the position of the turntable for receiving the wafer is fixed, it is not necessary to change the positional relationship between the wafer transfer robot and the turntable of the aligner even when the wafer size is changed.
- the lift pins are moved up and down, the vertical movement is performed regardless of the positioning measurement function, so that it is not necessary to consider the control accuracy of the lift pins up and down movement.
- the aligner and aligning method of the present invention it is easy to adjust with a simple mechanism, and high-precision aligning is possible with a space-saving aligner.
- FIGS. 1 to 3 show an aligner according to an embodiment of the present invention.
- the aligner 1 according to the embodiment of the present invention includes a turntable 5 that holds a line sensor 3 and a wafer 4 on the upper surface of a frame 2.
- the turntable 5 has a rotation shaft 5 a, and lift pins 6 that are holding means are disposed at four positions surrounding the turntable 5.
- the first drive unit 7 and the second drive unit 8 are housed in the internal rules of the frame 2.
- the turntable 5 rotates in the circumferential direction of the rotary shaft 5a in the horizontal plane by driving the rotary shaft 5a. However, it does not move in the X-axis direction in the upper horizontal plane, the Y-direction, and the Z-axis direction perpendicular to the horizontal plane in FIG.
- the lift pin 6 is driven and moved in the X-axis direction by the first drive unit 7 and is lifted and lowered in the Z-axis direction by the drive of the second drive unit 8.
- the turntable 5 and lift pins 6 include a vacuum chuck driven by a vacuum (not shown), whereby the wafer 4 is sucked and held by the turntable 5 and lift pins 6.
- the line sensor 3 is arranged so as to be movable in the direction of the rotation center of the turntable 5, that is, in the X-axis direction, and is operated on one axis fixed in the Y-direction and the Z-axis direction. I do.
- the rotary shaft 5a of the turntable 5 is arranged extending in the Z-axis direction on the X-axis direction, which is the operation direction on one axis of the line sensor 3.
- This line sensor 3 is mounted on a precision ball slide (not shown), which is a linear movement mechanism in which steel balls that contact the track at four points are arranged in two rows, thereby performing a stable and highly accurate linear motion. .
- the main body 3a is provided with a detection recess 3b formed so as to be cut out in the X-axis direction for sensing, and the height of the intermediate portion in the vertical direction of the detection recess 3b substantially coincides with the upper surface height of the turntable 5.
- the line sensor 3 is disposed on the frame 2.
- the above-described line sensor 3 and other units are electrically connected to a positioning calculation processing unit configured by a semiconductor substrate unit or a computer (not shown), and control signals are input / output between them.
- the aligner 1 has the above-described configuration, and the rotation axis 5a of the turntable 5 and the outer peripheral position of the wafer 4 rotated by the turntable 5 by the X-axis operation on one axis of the line sensor 3
- the shortest distance and the longest distance are measured, and the position of the wafer 4 is adjusted based on the measurement data.
- the shortest distance is a distance that the rotation axis 5a and the outer peripheral position of the wafer 4 are closest to each other in the X-axis direction.
- the longest distance is a distance in which the rotation shaft 5a and the wafer 4 outer peripheral position are farthest apart in the X-axis direction.
- FIG. 4 shows a state in which the turntable 5 and the lift pins 6 are at their home positions and are waiting for the wafer 4 to be transferred.
- the lift pins 6 are raised by driving the second drive unit 8, the vacuum is operated, the vacuum chuck provided on the lift pins 6 sucks and holds the wafer 4 transported by a robot arm (not shown), and further sucks the wafer 4.
- the wafer 4 is sucked and held by the vacuum chuck provided on the turntable 5 (FIGS. 5 and 6). In this state, as shown in FIG.
- a displacement distance (hereinafter referred to as “deviation distance”) between the rotation shaft 5a and the center position of the wafer 4 is denoted as ⁇ 1.
- the line sensor 3 for detecting the outer peripheral position of the wafer 4 is moved to a predetermined position in the X-axis direction at the time of determining the wafer size to be measured or processed (FIG. 7), and is fixed after the movement.
- the predetermined position of the line sensor 3 is a position where the outer periphery of the wafer 4 to be measured coincides with the center of the measurement range of the line sensor 3 based on the calculated radius calculated from the calculation result based on the wafer size.
- the wafer 4 indicated by a solid line in FIG. 8 shows a state where the rotation axis 5a and the outer peripheral position of the wafer 4 are the shortest distance when measured by the line sensor 3. Further, the wafer 4 indicated by an imaginary line in FIG. 8A shows a case where the wafer 4 is precisely adjusted, and the center position thereof coincides with the center position of the rotating shaft 5a.
- the wafer 4 held by the turntable 5 rotates as indicated by an imaginary line with the rotation shaft 5a as a core.
- the rotating direction of the rotating shaft 5a and the rotating direction of the wafer 4 are indicated by arrows on the drawing.
- the solid line wafer 4 shown in FIG. 8C shows a state where the rotation axis 5a and the outer peripheral position of the wafer 4 are at the shortest distance
- the imaginary line wafer 4 shows a state where the rotation axis 5a and the outer peripheral position of the wafer 4 are at the longest distance.
- a difference ⁇ 4 between the shortest distance ⁇ 2 and the longest distance ⁇ 3 is calculated based on the measurement data of the shortest distance ⁇ 2 and the longest distance ⁇ 3 between the rotation axis 5a measured by the line sensor 3 and the outer peripheral position of the wafer 4. 1/2 of the measured dimension difference ⁇ 4 and the deviation distance ⁇ 1 shown in FIG.
- the rotation of the rotating shaft 5a is stopped and the rotation of the wafer 4 held by the turntable 5 is in a state where the outer peripheral position of the wafer 4 is the shortest distance or the outer peripheral position of the wafer 4 is the longest. Stop in either of the distance states.
- the first drive unit 7 is driven while the lift pin 6 is in the lowered position, and the first drive unit 7 is moved by a half of the measurement dimension difference ⁇ 4.
- the lift pin 6 is moved up by the drive of the second drive unit 8, and the vacuum 9 is operated to operate the lift pin 6
- the wafer 4 is sucked and held by the vacuum chuck provided in (FIGS. 10 and 11).
- the lift pin 6 drives the first drive unit 7 to return to the home position and descend (FIGS. 12 and 13).
- the wafer 4 in a stopped state is held by the lift pins 6 and is transported in the X-axis direction by a half of the measured dimension difference ⁇ 4.
- the transfer direction is the direction from the rotating shaft 5a toward the line sensor 3, and the outer peripheral position of the wafer 4 is the longest distance. Is stopped from the line sensor 3 toward the rotating shaft 5a.
- the wafer 4 that is precisely positioned and held with respect to the turntable 5 in the above process is rotated, and necessary edges and the like are measured. After the measurement is completed, the lift pins 6 are raised and transferred to a robot hand (not shown), and the wafer 4 is unloaded by the robot hand.
- the wafer 4 is transported in the required direction by 1/2 of the measurement dimension difference ⁇ 4, so that 1/2 of the measurement dimension difference ⁇ 4 and the deviation distance ⁇ 1 shown in FIG. Therefore, the deviation of the deviation distance ⁇ 1 between the rotation shaft 5a and the center of the wafer 4 is eliminated, the rotation shaft 5a and the center position of the wafer 4 coincide with each other, and the two are positioned precisely.
- the position of the wafer transfer robot or the like can be changed even when the size of the wafer 4 is changed by disposing the turntable 5 that receives the wafer 4 and performs rotation work at a fixed position. Since there is no need to change the relationship, the height and center position of the wafer 4 can be precisely positioned and held, so the position accuracy and reliability when measuring the outer periphery of the wafer 4 or searching for a specific position, etc. And can be improved dramatically.
- the turntable 5 since the turntable 5 is fixed, the movement of the lift pin 6 movable in the Z-axis direction and the X-axis direction does not interfere with the measurement by the line sensor 3, and the lift pin 6 is positioned in the Z-axis direction. A control mechanism or the like is not required.
- the wafer 4 is transported and moved only in the X-axis direction except for the rotation operation, the Y-direction movement is not performed, and it is not necessary to consider movement control in the Y-direction, so that high control accuracy can be obtained. Further, when particularly necessary, it is easy to forcibly return the members such as the turntable 5 and the lift pins 6 to the home position.
- FIG. 14 and 15 show another example of the alignment process performed using the aligner 1 according to the embodiment of the present invention.
- the wafer 4 rotation state and the wafer 4 rotation stop state in the state where the wafer 4 outer peripheral position shown in FIG. 15 is the longest distance are different from the process examples shown in FIGS. .
- an X-axis direction deviation distance ⁇ 1 and a Y-direction deviation distance ⁇ 5 indicate a positional deviation distance between the rotation shaft 5a and the wafer 4 center position.
- the shortest distance ⁇ 2 and the longest distance between the rotating shaft 5a of the turntable 5 and the outer peripheral position of the wafer 4 rotated by the turntable 5 are rotated as in the process example shown in FIGS. ⁇ 3 is measured, and the position of the wafer 4 is adjusted based on the measurement data.
- 15A and 15B show a state in which the rotation of the wafer 4 is stopped in a state where the outer peripheral position of the wafer 4 is the longest distance.
- the X directed from the line sensor 3 to the rotation shaft 5a.
- the deviation of the X-axis direction deviation distance ⁇ 1 and the Y-direction deviation distance ⁇ 5 between the rotation axis 5a and the center of the wafer 4 is eliminated, so that the rotation axis 5a and the center position of the wafer 4 are located. They are coincident and are positioned precisely with respect to each other.
- the wafer 4 mounted on the turntable 5 is rotated, the longest point and the shortest point are measured by the line sensor 3, and it is confirmed that the sum matches the diameter of the wafer 4. Therefore, it can be determined that the operation state is in a steady state based on the fact that the diameter matches the diameter of the wafer 4. In this case, when the longest point and the shortest point are measured and the sum does not coincide with the diameter of the wafer 4, a singular point such as a notch on the wafer 4 may be the cause.
- the wafer 4 is further rotated by a specified angle on the turntable 5 and stopped, and a predetermined distance is moved in the X-axis direction while the lift pins 6 are lowered, and the lift pins 6 are lifted to raise the wafer. 4, the lift pin 6 is moved to the home position while the lift pin 6 is moved down, and the lift pin 6 is lowered and placed on the turntable 5, whereby the measurement point leaves the singular point of the wafer 4, and the above embodiment is performed again. By performing the alignment operation in this step, the wafer 4 can be positioned.
- FIGS. 16 to 23 show process examples of the second embodiment of the aligner and aligning method of the present invention.
- the second embodiment is different from the first embodiment shown in FIGS. 8 to 15 in that the turntable 5 can be displaced in the XZ-axis direction and the lift pin 6 is fixed in the X-axis / Y-axis directions. . By doing so, the cycle speed can be made faster in the second embodiment than in the first embodiment.
- the home position of the turntable 5 is the lowest point, and the rotation shaft 5a is set at the same position as the center position of the lift pin.
- FIG. 16 shows a state in which the turntable 5 and the lift pins 6 are in the home position in the second embodiment.
- the wafer 4 is transferred to the rotating shaft 5 a of the turntable 5 at a set height by a robot hand (not shown).
- the turntable 5 is raised, and the wafer 4 is held by the vacuum chuck (FIGS. 17 and 19A).
- the wafer 4 is rotated by the turntable 5 and the shortest distance ⁇ 2 and the longest distance ⁇ 3 of the outer periphery of the wafer 4 are measured by the line sensor 3 (FIGS. 18 and 19B).
- the stop position is a position where the distance between the outer peripheral position of the wafer 4 and the rotation shaft 5a of the turntable 5 is the longest distance ⁇ 3 or the shortest distance ⁇ 2.
- the turntable 5 is lowered and the wafer 4 is held by the lift pins 6 (FIG. 21).
- the rotary table 5 moves along the X-axis direction by 1/2 of the measurement dimension difference ⁇ 4 while keeping the lowered position, and ascends and holds the wafer 4 by the vacuum chuck (FIGS. 22 and 23).
- the turntable 5 returns to the home position (FIG. 24), rotates with the wafer 4 held by the turntable 5 and measures necessary edges and the like.
- the wafer 4 is unloaded by the robot hand.
- the displacement direction in which the rotary table 5 moves along the X-axis direction by 1 ⁇ 2 of the measurement dimension difference ⁇ 4 while being in the lowered position is the shortest distance between the wafer 4 and the outer peripheral position of the wafer 4 as in the first embodiment. If the wafer 4 is stopped in a state where the outer peripheral position of the wafer 4 is the longest distance, the wafer 4 is displaced toward the line sensor 3. Thereby, the center position of the rotating shaft 5a and the wafer 4 is precisely positioned.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
An aligner which has a simple mechanism, can be easily adjusted, occupies less space, and is highly accurate. The minimum distance (δ2) and the maximum distance (δ3) between a rotating axis (5a) and an outer peripheral position of a wafer (4) are measured by a line sensor (3), the difference (δ4) between the minimum and maximum distances (δ2, δ3) is calculated based on data obtained by the measurement, and the rotation of the rotating axis (5a) is stopped at either a state in which the outer peripheral position of the wafer (4) is located at the minimum distance or a state in which the outer peripheral position of the wafer (4) is located at the maximum distance. Then, a first drive section (7) is driven, with a lift pin (6) located at a lowered position, to move the lift pin (6) by half the measured difference (δ4). Then the pin (6) is lifted by drive of a second drive section (8), and a vacuum (9) is operated to convey the wafer (4) in the X-axis direction by half the measured difference (δ4) with the wafer (4) held at the lift pin (6) by a vacuum chuck provided to the lift pin (6).
Description
本発明は、半導体ウェハ用光学非接触式アライナーに関する。
The present invention relates to an optical non-contact aligner for semiconductor wafers.
半導体ウェハに対し半導体のゲート形成などの処理を行なう際、個々のウェハは、弦状に切欠かれたオリフラやV字状又はU字状に切欠かれたノッチの位置が基準回転位置と常に一致している状態の下で処理ステージにセットされることが要求される。
When processing a semiconductor wafer such as forming a semiconductor gate on a semiconductor wafer, the position of the orientation flat cut out in a string shape or the notch cut out in a V shape or U shape always matches the reference rotation position. It is required to be set in the processing stage under the condition of
When processing a semiconductor wafer such as forming a semiconductor gate on a semiconductor wafer, the position of the orientation flat cut out in a string shape or the notch cut out in a V shape or U shape always matches the reference rotation position. It is required to be set in the processing stage under the condition of
そのため、特許文献1に示すようにオリフラ合わせ機又はノッチ合わせ機によってオリフラ又はノッチの位置を基準回転位置に一致させた後、カセットから取り出されたウェハを処理ステージにセットする方法がとられている。
Therefore, as shown in
この一連の処理を効率よく行うため、エッチング、スパッタ、洗浄或は加熱等の各処理を行う1又は複数の処理室と、半導体ウェハの位置合わせを行うためのアライニング室とを、半導体ウェハの搬送を行う搬送ロボットを有する搬送室に連結した構成が一般に採用されている。
In order to efficiently perform this series of processes, one or a plurality of process chambers for performing processes such as etching, sputtering, cleaning, or heating, and an aligning chamber for aligning the semiconductor wafer are provided. A structure connected to a transfer chamber having a transfer robot for transferring is generally adopted.
係る構成の半導体装置では処理対象となる半導体ウェハは、搬送ロボットによってアライニング室に搬送され、中心位置及び方向が識別された後、再び搬送ロボットによって所定の処理室へ搬送される。
In the semiconductor device having such a configuration, the semiconductor wafer to be processed is transferred to the aligning chamber by the transfer robot, and after the center position and direction are identified, the transfer is again transferred to the predetermined processing chamber by the transfer robot.
ノッチ合わせは、通常真空吸着方式によって行われ、ウェハの外周から5mmまでのエリアを真空吸着することによってウェハを保持している保持手段を回転駆動するとともに回転中にノッチ位置を検出し、ノッチの位置が基準回転位置に一致するよう調整される。
The notch alignment is usually performed by a vacuum suction method, and the holding means for holding the wafer is rotated by vacuum sucking an area from the outer periphery of the wafer to 5 mm, and the notch position is detected during the rotation. The position is adjusted to match the reference rotation position.
以上のようにアライニング室において半導体ウェハのアライニングを行う従来の半導体ウェハ用光学非接触式アライナーにあっては駆動軸は、平面はX軸とY軸の2軸とされ、スピンドルは回転軸と上下軸の2軸とされ、例えばステッピングモータを4軸使用して駆動され、また位置決めセンサを、X軸、Y軸には原点位置用センサが各1個設けられ、上下軸には原点位置センサとアライメント位置用センサが各1個設けてある。またスピンドル上のウェハは真空用の電磁弁と真空スイッチによって真空吸着により保持される。
As described above, in the conventional optical non-contact type aligner for semiconductor wafers for aligning semiconductor wafers in the aligning chamber, the drive axis is two axes, the X axis and the Y axis, and the spindle is the rotation axis. For example, 4 stepping motors are used for driving, and a positioning sensor is provided for each of the X-axis and Y-axis origin sensors. One sensor and one alignment position sensor are provided. The wafer on the spindle is held by vacuum suction by a vacuum solenoid valve and a vacuum switch.
ウェハを乗せたロボットハンドが設定された高さで、回転台(バキュームチャック)のセンター迄来ると回転台が上昇してウェハを受け取り上限位置で停止すると同時に真空吸着する。次にロボットハンドが後退しホームポジションに戻ると共にウェハ(回転台)が指定された角度回転しラインセンサにより回転前、停止時の中心から端面までの寸法の計測を行い真空を解除する。
When the robot hand on which the wafer is placed reaches the center of the turntable (vacuum chuck) at the set height, the turntable rises, receives the wafer, stops at the upper limit position, and simultaneously sucks the vacuum. Next, the robot hand moves backward and returns to the home position, and the wafer (rotary table) rotates at a specified angle, and the line sensor measures the dimensions from the center to the end face before rotation and stops, and releases the vacuum.
次に回転台を下限位置まで下降させウェハをリフトピンに置き、角度と計測寸法によりウェハの中心点を計算し、下限位置のままX軸、Y軸を夫々移動させて回転台のセンターをウェハセンターと思われる位置に移動させる。次いで回転台を上昇させウェハを真空吸着して回転し必要なエッジ等の測定を行い、完了後真空を解除し、回転台が下限位置に下降し、ロボットハンドがウェハを搬出する。
Next, lower the turntable to the lower limit position, place the wafer on the lift pins, calculate the center point of the wafer based on the angle and measurement dimensions, and move the X and Y axes respectively at the lower limit position to set the center of the turntable to the wafer center. Move it to the position you think. Next, the turntable is raised, the wafer is sucked and rotated to measure necessary edges and the like, the vacuum is released after completion, the turntable is lowered to the lower limit position, and the robot hand carries out the wafer.
測定の対象となるウェハサイズは、100mm、125mm、150mm、200mm半導体ウェハであり、位置決め精度±0.1mm程度、スピンドルが動作を開始してから終了までの位置決め時間は約3秒程度であった。
The wafer sizes to be measured are 100 mm, 125 mm, 150 mm, and 200 mm semiconductor wafers, the positioning accuracy is about ± 0.1 mm, and the positioning time from the start to the end of the spindle is about 3 seconds. .
以上のように、従来の半導体ウェハ用光学非接触式アライナーは回転台が回転、上下運動、X、Y方向への動作と四つの機能を持っており、その機構は複雑で従って調整も煩雑なものであった。
またこれまでの方式は位置情報を計算によりX軸、Y軸に分割して指示している為、正確に所定位置(原点)に戻る確率が低く又その位置精度も低い。
As described above, the conventional optical non-contact aligner for semiconductor wafers has four functions, that is, the turntable rotates, moves up and down, and operates in the X and Y directions, and its mechanism is complicated and therefore adjustment is complicated. It was a thing.
In addition, since the conventional methods indicate the position information divided into the X axis and the Y axis by calculation, the probability of returning to the predetermined position (origin) is low and the position accuracy is also low.
特許文献2には高精度で半導体ウェハの搬送及びアライニングをなしえ、かつ、半導体製造装置の占有面積の縮小化に寄与し得る半導体ウェハの搬送ロボットに設けられたアライナが開示された。この特許文献2に開示された搬送ロボットに設けられたアライナによれば搬送ロボットの駆動体にアライナーのターンテーブルが搭載され、ターンテーブルによって光センサにより検出された半導体ウェハWの中心位置が、フォークの移動する軌道に位置するように半導体ウェハWを回転させて停止し、フォークと半導体ウェハWの中心位置との位置が合うように伸縮アームを適度に伸縮し、その後、ターンテーブルが降下して、半導体ウェハWをフォーク上に載置して半導体ウェハWの偏心量が補正される。
特許文献2に開示されたアライナは光センサにより検出された半導体ウェハWの中心位置が、フォークの移動する軌道に位置するように半導体ウェハWを回転させて半導体ウェハWの偏心量が補正される。
しかし、この様な方式では搬送ロボットの駆動体にアライナーのターンテーブルが搭載されなければならず、アライニング室を設けて半導体ウェハの位置合わせを行う場合には適用できない。
The aligner disclosed in
However, in such a system, an aligner turntable must be mounted on the driving body of the transfer robot, and this method cannot be applied when aligning a semiconductor wafer by providing an aligning chamber.
しかもこれまでのアライナーはアライメントによりカセット内のウェハのノッチ位置を合わせる事が主たる使用目的であり、数ミリの誤差は問題とならず、その点で特許文献2の方式でも対応できる余地はあった。
しかし、今後、デバイスの歩留まり向上を目的としてウェハ端面及び外周の状態を精密に観測するなどアライナーのアライメント精度を向上させることの必要性が飛躍的に高まってくると、前述の半導体ウェハ用光学非接触式アライナーや特許文献2に記載された方式では充分にニーズに応えることはできない。
本発明は、従来技術における問題点に鑑み、機構が簡単で調整も煩雑ではなく、省スペースであり、しかも高精度なアライナーを提供することを目的とする。
Moreover, the conventional aligner is mainly used to align the notch position of the wafer in the cassette by alignment, and an error of several millimeters is not a problem, and there is room for the method of
However, if the necessity for improving the alignment accuracy of the aligner, such as precisely observing the wafer end face and the outer peripheral state for the purpose of improving the device yield, will increase dramatically in the future. The contact type aligner and the method described in
An object of the present invention is to provide an aligner that has a simple mechanism, is not complicated to adjust, is space-saving, and is highly accurate in view of problems in the prior art.
すなわち本発明のアライナーは、X軸・Y軸・Z軸3次元座標空間内で円形被位置決め対象を保持して回転可能にされた回転台と、回転台に保持された円形被位置決め対象の計測ポイントのX軸方向位置を検出する検出部と、検出部によって計測した計測ポイントのX軸方向位置の計測データに基づき位置決め計算を行う位置決め計算処理部とを備え、位置決め計算処理部における計算結果に基づき円形被位置決め対象をX軸方向に変位して回転台に対し円形被位置決め対象を位置決めすることを特徴とする。
In other words, the aligner of the present invention is configured to measure a rotary table that is rotated by holding a circular positioning target in the X-axis, Y-axis, and Z-axis three-dimensional coordinate space, and a circular positioning target that is held by the rotary table. A detection unit that detects the position of the point in the X-axis direction and a positioning calculation processing unit that performs positioning calculation based on the measurement data of the X-axis direction position of the measurement point measured by the detection unit. Based on this, the circular positioning object is displaced in the X-axis direction to position the circular positioning object with respect to the turntable.
また本発明のアライニング方法は、X軸・Y軸・Z軸3次元座標空間内で回転台に円形被位置決め対象を保持する工程と、回転台に保持された円形被位置決め対象を回転して円形被位置決め対象の計測ポイントのX軸方向位置を検出する工程と、回転台にて回転する円形被位置決め対象の計測ポイントのX軸方向位置の計測データに基づき位置決め計算を行う工程と、位置決め計算結果に基づき円形被位置決め対象を回転台に対しX軸方向に変位して位置決めして保持する工程とよりなる。
Further, the aligning method of the present invention includes a step of holding a circular positioning target on the rotary table in the X-axis / Y-axis / Z-axis three-dimensional coordinate space, and rotating the circular positioning target held on the rotary table. A step of detecting a position of a circular positioning target measurement point in the X-axis direction, a step of performing a positioning calculation based on measurement data of an X-axis direction position of a circular positioning target measurement point rotating on a turntable, and a positioning calculation Based on the result, the circular positioning target is displaced in the X-axis direction with respect to the turntable and positioned and held.
前記円形被位置決め対象を保持してX軸・Z軸方向に変位する保持手段が設けられ、前記回転台がX軸・Y軸・Z軸方向に固定される様にしてもよい。
Holding means for holding the circular object to be positioned and displacing in the X-axis / Z-axis direction may be provided, and the rotating table may be fixed in the X-axis / Y-axis / Z-axis direction.
前記円形被位置決め対象を保持して少なくともX軸・Y軸方向に固定される保持手段が設けられ、前記回転台がX軸方向に変位可能とされる様にしてもよい。
Holding means for holding the circular object to be positioned and fixing it at least in the X-axis and Y-axis directions may be provided so that the turntable can be displaced in the X-axis direction.
前記検出部がX軸方向に変位可能とすることもできるる様にしてもよい。
The detection unit may be configured to be displaceable in the X-axis direction.
前記計測ポイントのX軸方向位置が回転台にて回転する円形被位置決め対象の外周位置である様にしてもよい。
You may make it the X-axis direction position of the said measurement point be an outer peripheral position of the circular positioning target rotated on a turntable.
前記検出部及び前記位置決め計算処理部によって得られた円形被位置決め対象の外周位置と回転台の回転中心との最短距離と最長距離の差分δが算出され、円形被位置決め対象のX軸方向の変位がδ/2変位とされる様にすることができる。
A difference δ between the shortest distance and the longest distance between the outer peripheral position of the circular positioning target obtained by the detection unit and the positioning calculation processing unit and the rotation center of the turntable is calculated, and the displacement of the circular positioning target in the X-axis direction is calculated. Can be made to be δ / 2 displacement.
前記円形被位置決め対象を半導体ウェハとすることができる。
The circular object to be positioned can be a semiconductor wafer.
前記検出部を光学非接触式計測器(ラインセンサ)とすることができる。
The detection unit may be an optical non-contact measuring instrument (line sensor).
[作用]
本発明のアライナーは、円形被位置決め対象の計測ポイントのX軸方向位置を検出する検出部によって計測した計測ポイントのX軸方向位置の計測データに基づく位置決め計算計算結果に基づき円形被位置決め対象をX軸方向に変位して回転台に対し円形被位置決め対象を位置決めするので、変位はX軸方向の単軸(1軸)上の移動のみで行われることからきわめて高い制御精度が得られる。
また特に回転台を固定し回転のみを行う様にすることで円形被位置決め対象である例えば半導体ウェハの高さ及び中心位置が不変となり、ウェハの外周の計測或いは特定位置の検索を行う時の精度と信頼性が飛躍的に向上する。しかも、ウェハを受け取る回転台の位置が固定である様にした場合には、ウェハサイズが変更された場合でもウェハ搬送用ロボットとアライナーの回転台との位置関係を変更する必要は生じない。
またリフトピンによって昇降移動を行う様にした場合、上下動作が位置決め計測機能とは無関係に行われるので、リフトピン昇降移動につき制御精度の考慮は不要である。
[Action]
The aligner according to the present invention applies the circular positioning target to the X based on the positioning calculation calculation result based on the measurement data of the X axis direction position of the measurement point measured by the detection unit that detects the X axis direction position of the measurement point of the circular positioning target. Since the circular positioning object is positioned with respect to the turntable by being displaced in the axial direction, the displacement is performed only by movement on a single axis (one axis) in the X-axis direction, so that extremely high control accuracy can be obtained.
In particular, by fixing the turntable and performing only rotation, the height and center position of, for example, a semiconductor wafer that is a circular positioning target remains unchanged, and accuracy when measuring the outer periphery of the wafer or searching for a specific position And reliability will be improved dramatically. In addition, when the position of the turntable for receiving the wafer is fixed, it is not necessary to change the positional relationship between the wafer transfer robot and the turntable of the aligner even when the wafer size is changed.
Further, when the lift pins are moved up and down, the vertical movement is performed regardless of the positioning measurement function, so that it is not necessary to consider the control accuracy of the lift pins up and down movement.
本発明のアライナー及びアライニング方法によれば、簡単な機構で調整が容易で、しかも省スペースなアライナーによって高精度なアライニングが可能となる。
According to the aligner and aligning method of the present invention, it is easy to adjust with a simple mechanism, and high-precision aligning is possible with a space-saving aligner.
[第一の実施の形態] 図1~図3に本発明の一実施の形態であるアライナーを示す。
図1~図3に示すように、本発明の実施の形態のアライナ1はフレーム2の上面にラインセンサ3及びウェハ4を保持する回転台5を配置してなる。回転台5は回転軸5aを有し、また回転台5を囲む4方向位置には保持手段であるリフトピン6が配置される。さらにフレーム2の内則には第一駆動部7及び第2駆動部8が収納される。
First Embodiment FIGS. 1 to 3 show an aligner according to an embodiment of the present invention.
As shown in FIGS. 1 to 3, the
回転台5は回転軸5aの駆動によって水平面内で回転軸5aの周方向に回転する。しかし、図2上水平面内X軸方向、Y方向及び水平面と垂直なZ軸方向には移動せず、固定される。一方リフトピン6はX軸方向に第一駆動部7によって駆動されて移動すると共にZ軸方向に第2駆動部8の駆動によって昇降する。
回転台5及びリフトピン6はバキューム(図示せず)によって駆動されるバキュームチャックを備え、それにより回転台5及びリフトピン6によってウェハ4が吸着保持される。
The
The
一方、図3に示すようにラインセンサ3は回転台5の回転中心方向に向けて、すなわちX軸方向に移動可能に配置され、Y方向及びZ軸方向には固定される1軸上の動作を行う。
換言すれば、ラインセンサ3の1軸上の動作方向であるX軸方向上に回転台5の回転軸5aがZ軸方向に延長して配置される。
このラインセンサ3は、軌道と4点で接触する鋼球を2条列に配置した直線移動機構である精密ボールスライド(図示せず)に装着され、それによって安定した高い精度の直線運動を行う。
またその本体3aにはセンシングのためにX軸方向に切り欠く態様で形成された検知凹部3bが設けられ、その検知凹部3bの天地方向中間部の高さが回転台5の上面高さとほぼ一致するように、ラインセンサ3はフレーム2上に配置される。
なお以上のラインセンサ3その他の各部は図示しない半導体基板部若しくはコンピュータによって構成される位置決め計算処理部と電気的に接続されて、その間で相互に制御信号が入出力される。
On the other hand, as shown in FIG. 3, the
In other words, the
This
Further, the
The above-described
本発明の実施の形態のアライナ1は以上の構成を備え、ラインセンサ3の1軸上X軸方向動作によって、回転台5の回転軸5aと、回転台5にて回転するウェハ4外周位置と、の最短距離及び、最長距離を計測し、その計測データに基づきウェハ4の位置調整を行う。 ここに最短距離とは、回転軸5aとウェハ4外周位置とがX軸方向上最も近づく距離である。
ここに最長距離とは、回転軸5aとウェハ4外周位置とがX軸方向上最も離れる距離である。
The
Here, the longest distance is a distance in which the
以下に以上の本発明の実施の形態のアライナ1を用いたアライニングの工程につき具体的に説明する。図4~図13に係るアライニングの工程の一例を示す。
図4は回転台5及びリフトピン6が各々ホームポジションにあって、ウェハ4の搬送を待機する状態を示す。
まずリフトピン6を第2駆動部8の駆動によって上昇させ、バキュームを作動してリフトピン6に備えられたバキュームチャックによって図示しないロボットアームによって搬送されたウェハ4を吸着保持し、さらに、ウェハ4を吸着保持したリフトピン6を下降させることによって、回転台5に備えられたバキュームチャックによってウェハ4を吸着保持する(図5、図6)。
その状態では、図8(a)に示すように、特に位置調整をした配置は行われず、図に実線で示すウェハ4の中心位置と回転軸5aの中心位置とは一致しない状態で配置される。
この回転軸5aとウェハ4中心位置との位置ずれ距離(以下「ズレ距離」とする)をδ1として示す。
The aligning process using the
FIG. 4 shows a state in which the
First, the lift pins 6 are raised by driving the
In this state, as shown in FIG. 8 (a), the arrangement with the position adjusted is not particularly performed, and the center position of the
A displacement distance (hereinafter referred to as “deviation distance”) between the
その際、ウェハ4外周位置を検知するラインセンサ3は測定若しくは加工の対象となるウエハサイズを決定した時点でX軸方向に所定の位置に移動させられており(図7)、移動後は固定され、ウエハサイズ変更のときに改めて移動が行われる。このラインセンサ3の所定位置は、ウエハサイズに基づく演算結果によって算出される計算上の半径に基づき、ラインセンサ3の測定範囲の中心に被測定ウェハ4の外周が一致する位置とされる。
この様にラインセンサ3の位置を設定することによってセンターずれし、回転軸5aとウェハ4中心位置との位置ずれによってウエハの最長、最短距離の差が最も大きくなる場合にも可及的に対応することが可能となる。
At that time, the
By setting the position of the
なお、以下の説明の便宜のため、図8に実線で示すウェハ4はラインセンサ3で計測した場合に回転軸5aとウェハ4外周位置とが最短距離となる状態を示す。
また、図8(a)に想像線で示すウェハ4は、精密に位置調整して配置された場合を示し、その中心位置は回転軸5aの中心位置と一致する。
For convenience of the following description, the
Further, the
図8(b)に示すように回転台5で保持するウェハ4は、回転軸5aを芯にして想像線で示す様に回転する。この回転軸5aの回転方向及びウェハ4の回転方向を図上矢印で示す。
図8(c)に示す実線ウエハ4は回転軸5aとウェハ4外周位置が最短距離にある状態を示し、想像線ウエハ4は回転軸5aとウェハ4外周位置が最長距離にある状態を示す。
その状態でラインセンサ3で計測した回転軸5aとウェハ4外周位置との最短距離δ2及び最長距離δ3の計測データに基づき最短距離δ2と最長距離δ3との差δ4が算出される。その測定寸法差δ4の1/2と図8(a)に示すズレ距離δ1とは全く同一の寸法となる。
As shown in FIG. 8B, the
The
In this state, a difference δ4 between the shortest distance δ2 and the longest distance δ3 is calculated based on the measurement data of the shortest distance δ2 and the longest distance δ3 between the
図9に示すように第二工程では、回転軸5aの回転を停止して、回転台5で保持したウェハ4の回転をウェハ4外周位置が最短距離となる状態または、ウェハ4外周位置が最長距離となる状態のどちらかの状態で停止する。
次にリフトピン6を下降位置のまま第一駆動部7を駆動して、測定寸法差δ4の1/2だけ移動し、第2駆動部8の駆動によって上昇させ、バキューム9を作動してリフトピン6に備えられたバキュームチャックによってウェハ4を吸着保持する(図10、図11)。
As shown in FIG. 9, in the second step, the rotation of the
Next, the
その後リフトピン6は第一駆動部7を駆動させてホームポジションに戻り下降する(図12、図13)。
以上の工程では、回転停止した状態のウェハ4がリフトピン6に保持されて測定寸法差δ4の1/2だけX軸方向に搬送される。
その搬送の方向はウェハ4がウェハ4外周位置が最短距離となる状態で停止された場合には回転軸5aからラインセンサ3に向かう方向とし、ウェハ4がウェハ4外周位置が最長距離となる状態で停止された場合にはラインセンサ3から回転軸5aに向かう方向とする。
Thereafter, the
In the above steps, the
When the
以上の工程で回転台5に対し精密位置決めされて保持されたウェハ4を回転し、必要なエッジ等の測定を行う。
測定終了後リフトピン6が上昇しロボットハンド(図示せず)に移送され、ロボットハンドによってウェハ4を搬出する。
The
After the measurement is completed, the lift pins 6 are raised and transferred to a robot hand (not shown), and the
以上の工程ではウェハ4を測定寸法差δ4の1/2だけ所要の方向に向かって搬送することによって、測定寸法差δ4の1/2と図8(a)に示すズレ距離δ1とは全く同一の寸法であることから、回転軸5aとウェハ4中心とのズレ距離δ1のずれが解消されて回転軸5aとウェハ4の中心位置とが一致し、相互が精密に位置決めされる。
In the above process, the
したがってこの実施の形態のアライナ1によれば、ウェハ4を受け取り回転作業を担う回転台5を固定位置に配設することによって、ウェハ4のサイズを変更する際でもウェハ搬送用ロボット等との位置関係を変更する必要がなく、ウェハ4の高さ及び中心位置を精密に位置決めして保持することができるので、ウェハ4の外周の計測や特定位置の検索等を行う際の位置精度と信頼性とを飛躍的に向上することができる。
Therefore, according to the
また回転台5を固定しているのでZ軸方向及びX軸方向に可動なリフトピン6のZ軸方向動作は、ラインセンサ3による計測に支障をきたすことがなく、リフトピン6のZ軸方向の位置決めのための制御機構等が不要である。
しかもウェハ4は回転動作以外はX軸方向のみに搬送されて移動し、Y方向の移動は行われず、Y方向の移動制御を考慮する必要もないので、高い制御精度を得ることができる。
また特に必要な場合には、回転台5、リフトピン6等の各部材をホームポジションに強制復帰させる事も容易である。
Further, since the
In addition, the
Further, when particularly necessary, it is easy to forcibly return the members such as the
図14、図15に本発明の実施の形態のアライナ1を用いて行われるアライメント工程の他の例を示す。
図14(a)に示す様に、ウェハ4のずれ状態及び図15に示すウェハ4外周位置が最長距離となる状態におけるウェハ4回転停止状態が図4~図13に示した工程例と相違する。
14 and 15 show another example of the alignment process performed using the
As shown in FIG. 14A, the
図14(a)に示すように、実線で示すウェハ4の中心位置は、X軸方向及びY方向共に回転軸5aからずれた位置にある。
図中X軸方向ズレ距離δ1及びY方向ズレ距離δ5は、回転軸5aとウェハ4中心位置との位置ずれ距離を示す。
この場合にも図4~図13に示す工程例と同様にウェハ4を回転し、回転台5の回転軸5aと、回転台5にて回転するウェハ4外周位置との最短距離δ2及び最長距離δ3を計測し、その計測データに基づきウェハ4の位置調整を行う。
As shown in FIG. 14A, the center position of the
In the drawing, an X-axis direction deviation distance δ1 and a Y-direction deviation distance δ5 indicate a positional deviation distance between the
Also in this case, the shortest distance δ2 and the longest distance between the
図15(a)(b)はウェハ4の回転をウェハ4外周位置が最長距離となる状態で停止した状態を示し、図15(c)に示すようにラインセンサ3から回転軸5aに向かうX軸方向にウェハ4を所要に搬送するだけで回転軸5aとウェハ4中心とのX軸方向ズレ距離δ1及びY方向ズレ距離δ5のずれが解消されて回転軸5aとウェハ4の中心位置とが一致し、相互が精密に位置決めされる。
15A and 15B show a state in which the rotation of the
なお、以上の実施の形態で、回転台5上に装着されたウェハ4を回転させ、ラインセンサ3により最長点及び、最短点を計測しその和がウェハ4の径と一致することを確認し、ウェハ4の径と一致することを根拠として定常作動状態である旨の判断を行わせることができる。
その場合に最長点及び、最短点を計測しその和がウェハ4の径と一致しない場合には、ウェハ4上のノッチ等の特異点が原因となっている場合がある。その場合にはウェハ4を回転台5上で更に指定された角度だけ回転させて停止し、リフトピン6を下降させたまま予め設定した距離をX軸方向に移動し、リフトピン6を上昇させてウェハ4を保持した状態でリフトピン6をホームポジションに移動し、リフトピン6を下降させて回転台5上に置くという一連の動作によって、計測ポイントはウェハ4の特異点を離れ、再度以上の実施の形態の工程でアライメント動作を行う事によりウェハ4の位置決めを行うことが可能となる。
In the above embodiment, the
In this case, when the longest point and the shortest point are measured and the sum does not coincide with the diameter of the
[第二の実施の形態]
図16~ 図23に本発明のアライナおよびアライニング方法の第二実施形態の工程例を示す。
第二実施形態は回転台5がXZ軸方向に変位可能とされ、前記リフトピン6がX軸・Y軸方向に固定される点で図8~図15に示した第一実施形態とは相違する。
その様にすることで第二実施形態では第一実施形態よりもサイクル速度を速くすることができる。なお本実施の形態では回転台5のホームポジションは最下点であり、その回転軸5aはリフトピン中心位置と同位置とされる。
[Second Embodiment]
FIGS. 16 to 23 show process examples of the second embodiment of the aligner and aligning method of the present invention.
The second embodiment is different from the first embodiment shown in FIGS. 8 to 15 in that the
By doing so, the cycle speed can be made faster in the second embodiment than in the first embodiment. In the present embodiment, the home position of the
図16は第二実施形態で回転台5及びリフトピン6がホームポジションにある状態を示す。
先ずロボットハンド(図示せず)が設定された高さで、回転台5の回転軸5aにウェハ4を搬送する。その状態で回転台5が上昇し、ウェハ4をバキュームチャックによって保持する(図17、図19(a))。
ロボットハンドが後退しホームポジションに戻ると共にウェハ4を回転台5によって回転しラインセンサ3によってウェハ4外周の最短距離δ2及び最長距離δ3を計測する(図18、図19(b))。
FIG. 16 shows a state in which the
First, the
As the robot hand moves backward and returns to the home position, the
計測後、ウェハ4の回転を停止する(図19(c))。その停止位置は、ウェハ4の外周位置と回転台5の回転軸5aとの間隔が最長距離δ3もしくは最短距離δ2となる位置とする。
次いで回転台5が下降しウェハ4はリフトピン6によって保持される(図21)。その状態で回転台5が下降位置のまま測定寸法差δ4の1/2だけX軸方向に沿って移動し、上昇しウェハ4をバキュームチャックによって保持する(図22、図23)。その後回転台5はホームポジションに戻り(図24)、回転台5によってウェハ4を保持した状態で回転し必要なエッジ等の測定を行う。測定終了後ロボットハンドによってウェハ4を搬出する。
After the measurement, the rotation of the
Next, the
以上の回転台5が下降位置のまま測定寸法差δ4の1/2だけX軸方向に沿って移動する変位の方向は前記第一実施形態と同様に、ウェハ4がウェハ4外周位置が最短距離となる状態で停止された場合にはラインセンサ3から離間する方向に変位させ、ウェハ4がウェハ4外周位置が最長距離となる状態で停止された場合にはラインセンサ3に向けて変位させる。それにより回転軸5aとウェハ4の中心位置が精密に位置決めされる。
The displacement direction in which the rotary table 5 moves along the X-axis direction by ½ of the measurement dimension difference δ4 while being in the lowered position is the shortest distance between the
1・・・アライナー、3・・・ラインセンサ、5・・・回転台、6・・・リフトピン、4・・・ウェハ、δ1・・・X軸方向ズレ距離、δ5・・・Y方向ズレ距離、δ2・・・最短距離、δ3・・・最長距離、δ4・・・測定寸法差
DESCRIPTION OF
Claims (15)
-
X軸・Y軸・Z軸3次元座標空間内で円形被位置決め対象を保持して回転可能にされた回転台と、回転台に保持された円形被位置決め対象の計測ポイントのX軸方向位置を検出する検出部と、検出部によって計測した計測ポイントのX軸方向位置の計測データに基づき位置決め計算を行う位置決め計算処理部とを備え、位置決め計算処理部における計算結果に基づき円形被位置決め対象をX軸方向に変位して回転台に対し円形被位置決め対象を位置決めすることを特徴とするアライナー。
The X-axis / Y-axis / Z-axis three-dimensional coordinate space holds the circular positioning target and makes it possible to rotate, and the X-axis position of the measurement point of the circular positioning target held on the rotary base A detection unit for detecting, and a positioning calculation processing unit for performing positioning calculation based on measurement data of the position in the X-axis direction of the measurement point measured by the detection unit. An aligner that is displaced in the axial direction to position a circular positioning target with respect to a turntable.
-
前記円形被位置決め対象を保持してX軸・Z軸方向に変位する保持手段が設けられ、前記回転台がX軸・Y軸・Z軸方向に固定された請求項1に記載のアライナー。
The aligner according to claim 1, wherein holding means for holding the circular object to be positioned and displacing in the X-axis / Z-axis direction is provided, and the turntable is fixed in the X-axis / Y-axis / Z-axis direction.
-
前記円形被位置決め対象を保持して少なくともX軸・Y軸方向に固定される保持手段が設けられ、前記回転台がX軸方向に変位可能とされた請求項1に記載のアライナー。
The aligner according to claim 1, wherein holding means for holding the circular object to be positioned and fixing at least in the X-axis and Y-axis directions is provided, and the turntable is displaceable in the X-axis direction.
-
前記検出部がX軸方向に変位可能な請求項1~請求項3のいずれか一に記載のアライナー。
The aligner according to any one of claims 1 to 3, wherein the detection unit is displaceable in the X-axis direction.
-
前記計測ポイントのX軸方向位置が回転台にて回転する円形被位置決め対象の外周位置である請求項1~請求項4のいずれか一に記載のアライナー。
The aligner according to any one of claims 1 to 4, wherein a position of the measurement point in the X-axis direction is an outer peripheral position of a circular positioning target that rotates on a turntable.
-
前記検出部及び前記位置決め計算処理部によって得られた円形被位置決め対象の外周位置と回転台の回転中心との最短距離と最長距離の差分δが算出され、円形被位置決め対象のX軸方向の変位がδ/2変位とされる請求項5に記載のアライナー。
A difference δ between the shortest distance and the longest distance between the outer peripheral position of the circular positioning target obtained by the detection unit and the positioning calculation processing unit and the rotation center of the turntable is calculated, and the displacement of the circular positioning target in the X-axis direction is calculated. The aligner according to claim 5, wherein is a δ / 2 displacement.
-
前記円形被位置決め対象が半導体ウェハである請求項1~請求項6のいずれか一に記載のアライナー。
The aligner according to any one of claims 1 to 6, wherein the circular object to be positioned is a semiconductor wafer.
-
前記検出部が光学非接触式計測器(ラインセンサ)である請求項1~請求項7のいずれか一に記載のアライナー。
The aligner according to any one of claims 1 to 7, wherein the detection unit is an optical non-contact measuring instrument (line sensor).
-
X軸・Y軸・Z軸3次元座標空間内で回転台に円形被位置決め対象を保持する工程と、回転台に保持された円形被位置決め対象を回転して円形被位置決め対象の計測ポイントのX軸方向位置を検出する工程と、回転台にて回転する円形被位置決め対象の計測ポイントのX軸方向位置の計測データに基づき位置決め計算を行う工程と、位置決め計算結果に基づき円形被位置決め対象を回転台に対しX軸方向に変位して位置決めして保持する工程とよりなるアライニング方法。
The step of holding the circular positioning target on the turntable in the X-axis / Y-axis / Z-axis three-dimensional coordinate space, and the measurement point X of the circular positioning target by rotating the circular positioning target held on the turntable A step of detecting the position in the axial direction, a step of performing positioning calculation based on the measurement data of the X-axis direction position of the measurement point of the circular positioning target rotating on the turntable, and rotating the circular positioning target based on the positioning calculation result An aligning method comprising a step of displacing, positioning, and holding the base in the X-axis direction.
-
前記回転台をX軸・Y軸・Z軸方向に固定し、前記円形被位置決め対象をZ軸方向に変位する保持手段をX軸方向に変位させる請求項9に記載のアライニング方法。
The aligning method according to claim 9, wherein the rotating table is fixed in the X-axis / Y-axis / Z-axis directions, and the holding means for displacing the circular object to be positioned in the Z-axis direction is displaced in the X-axis direction.
-
前記円形被位置決め対象を保持する保持手段をX軸・Y軸方向に固定し、前記回転台をX軸方向に変位させる請求項9に記載のアライニング方法。
The aligning method according to claim 9, wherein holding means for holding the circular object to be positioned is fixed in the X-axis / Y-axis directions, and the turntable is displaced in the X-axis direction.
-
前記検出部をX軸方向に変位させる請求項9~請求項11のいずれか一に記載のアライニング方法。
The aligning method according to any one of claims 9 to 11, wherein the detector is displaced in the X-axis direction.
-
前記計測ポイントのX軸方向位置を回転台にて回転する円形被位置決め対象の外周位置とする請求項9~請求項12のいずれか一に記載のアライニング方法。
The aligning method according to any one of claims 9 to 12, wherein a position of the measurement point in the X-axis direction is an outer peripheral position of a circular positioning target that is rotated by a turntable.
-
前記検出工程及び前記位置決め計算工程によって得られた円形被位置決め対象の外周位置と回転台の回転中心との最短距離と最長距離の差分δを算出し、円形被位置決め対象の最長距離外周位置から回転台の回転中心に向かい円形被位置決め対象をδ/2変位させる請求項13に記載のアライニング方法。
The difference δ between the shortest distance and the longest distance between the outer peripheral position of the circular positioning target obtained by the detection step and the positioning calculation step and the rotation center of the turntable is calculated, and the rotation is started from the longest distance outer peripheral position of the circular positioning target. The aligning method according to claim 13, wherein the circular object to be positioned is displaced by δ / 2 toward the center of rotation of the table.
-
前記円形被位置決め対象が半導体ウェハである請求項9~請求項14のいずれか一に記載のアライニング方法。
The aligning method according to any one of claims 9 to 14, wherein the circular object to be positioned is a semiconductor wafer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008036706A JP2009194346A (en) | 2008-02-18 | 2008-02-18 | Uniaxial drive aligner |
JP2008-036706 | 2008-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009104568A1 true WO2009104568A1 (en) | 2009-08-27 |
Family
ID=40985448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/052616 WO2009104568A1 (en) | 2008-02-18 | 2009-02-17 | Single-axis drive aligner |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2009194346A (en) |
WO (1) | WO2009104568A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160305022A1 (en) * | 2015-04-14 | 2016-10-20 | Ebara Corporation | Substrate processing apparatus and substrate processing method |
US20200185241A1 (en) * | 2018-12-11 | 2020-06-11 | Disco Corporation | Cutting apparatus and wafer processing method using cutting apparatus |
CN111968927A (en) * | 2019-05-20 | 2020-11-20 | 爱思开海力士有限公司 | Apparatus for processing wafer and method of operating the same |
JP2021086894A (en) * | 2019-11-27 | 2021-06-03 | 株式会社Screenホールディングス | Substrate processing apparatus |
CN116254599A (en) * | 2023-05-16 | 2023-06-13 | 南京原磊纳米材料有限公司 | Dynamic seal deposition device for epitaxy |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009037939A1 (en) * | 2009-08-19 | 2011-06-30 | ERS electronic GmbH, 82110 | Method and device for determining the deflection of a disk-shaped workpiece |
JP6885031B2 (en) | 2016-11-18 | 2021-06-09 | 東京エレクトロン株式会社 | Exposure device, exposure method and storage medium |
JP6756600B2 (en) * | 2016-12-14 | 2020-09-16 | 株式会社Screenホールディングス | Substrate processing equipment and substrate processing method |
US11456203B2 (en) | 2018-07-13 | 2022-09-27 | Taiwan Semiconductor Manufacturing Co., Ltd | Wafer release mechanism |
US10636693B2 (en) | 2018-09-11 | 2020-04-28 | Kawasaki Jukogyo Kabushiki Kaisha | Substrate transfer device and control method therefor |
JP7227729B2 (en) * | 2018-10-23 | 2023-02-22 | 株式会社Screenホールディングス | SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1070177A (en) * | 1996-08-27 | 1998-03-10 | Matsushita Electric Ind Co Ltd | Method and apparatus for positioning disc-shaped body |
JPH1126556A (en) * | 1997-06-30 | 1999-01-29 | Sony Corp | Wafer positioning apparatus |
JP2001230303A (en) * | 2001-01-15 | 2001-08-24 | Daihen Corp | Centering method for semiconductor wafer |
-
2008
- 2008-02-18 JP JP2008036706A patent/JP2009194346A/en active Pending
-
2009
- 2009-02-17 WO PCT/JP2009/052616 patent/WO2009104568A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1070177A (en) * | 1996-08-27 | 1998-03-10 | Matsushita Electric Ind Co Ltd | Method and apparatus for positioning disc-shaped body |
JPH1126556A (en) * | 1997-06-30 | 1999-01-29 | Sony Corp | Wafer positioning apparatus |
JP2001230303A (en) * | 2001-01-15 | 2001-08-24 | Daihen Corp | Centering method for semiconductor wafer |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160305022A1 (en) * | 2015-04-14 | 2016-10-20 | Ebara Corporation | Substrate processing apparatus and substrate processing method |
US10458020B2 (en) * | 2015-04-14 | 2019-10-29 | Ebara Corporation | Substrate processing apparatus and substrate processing method |
US11180853B2 (en) | 2015-04-14 | 2021-11-23 | Ebara Corporation | Substrate processing apparatus and substrate processing method |
US20200185241A1 (en) * | 2018-12-11 | 2020-06-11 | Disco Corporation | Cutting apparatus and wafer processing method using cutting apparatus |
CN111968927A (en) * | 2019-05-20 | 2020-11-20 | 爱思开海力士有限公司 | Apparatus for processing wafer and method of operating the same |
JP2021086894A (en) * | 2019-11-27 | 2021-06-03 | 株式会社Screenホールディングス | Substrate processing apparatus |
WO2021106515A1 (en) * | 2019-11-27 | 2021-06-03 | 株式会社Screenホールディングス | Substrate processing apparatus |
JP7426808B2 (en) | 2019-11-27 | 2024-02-02 | 株式会社Screenホールディングス | Substrate processing equipment |
CN116254599A (en) * | 2023-05-16 | 2023-06-13 | 南京原磊纳米材料有限公司 | Dynamic seal deposition device for epitaxy |
CN116254599B (en) * | 2023-05-16 | 2023-08-08 | 南京原磊纳米材料有限公司 | Dynamic seal deposition device for epitaxy |
Also Published As
Publication number | Publication date |
---|---|
JP2009194346A (en) | 2009-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2009104568A1 (en) | Single-axis drive aligner | |
US7140655B2 (en) | Precision soft-touch gripping mechanism for flat objects | |
JP4163950B2 (en) | Self teaching robot | |
EP2859993B1 (en) | Substrate processing apparatus and substrate processing method | |
EP1866958B1 (en) | High speed substrate aligner apparatus | |
JP5114805B2 (en) | Robot and teaching method thereof | |
JP4219579B2 (en) | Wafer transfer system, wafer transfer method, and automatic guided vehicle system | |
CN101403785B (en) | Probe apparatus and probing method | |
JP2009515318A (en) | High-speed substrate array device | |
JPWO2008153086A1 (en) | Substrate detection apparatus, substrate positioning apparatus, substrate bonding apparatus having these, wafer outline detection apparatus, wafer positioning apparatus, and wafer bonding apparatus having wafer outline detection apparatus and wafer outline detection apparatus | |
JP4226241B2 (en) | Wafer positioning method, positioning apparatus and processing system | |
CN106920775A (en) | The processing method of chip | |
JP2002118162A (en) | Method for transfer alignment in object processing system and object processing system | |
JP2008218903A (en) | Centripetal apparatus and centripetal method for wafer | |
JP2002076097A (en) | Wafer transferring apparatus and method for wafer alignment | |
JP5239220B2 (en) | Wafer positioning apparatus and wafer bonding apparatus having the same | |
JP2558484B2 (en) | Wafer positioning device | |
JP2002151577A (en) | Edge hold aligner of substrate | |
JP5413529B2 (en) | Wafer positioning apparatus and wafer bonding apparatus having the same | |
JP2011210827A (en) | Adjusting method of wafer carrying mechanism | |
JPH09260460A (en) | Wafer carrier device and method and semiconductor exposure system | |
JP2014060429A (en) | Wafer bonding device and wafer bonding method | |
JP5165450B2 (en) | Grinding apparatus and plate thickness calculation method | |
CN119132988B (en) | Bonding device and bonding method thereof | |
JP2547212Y2 (en) | Measurement equipment for substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09713592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09713592 Country of ref document: EP Kind code of ref document: A1 |