[go: up one dir, main page]

WO2007119682A1 - 電池パックおよびその断線検知方法 - Google Patents

電池パックおよびその断線検知方法 Download PDF

Info

Publication number
WO2007119682A1
WO2007119682A1 PCT/JP2007/057654 JP2007057654W WO2007119682A1 WO 2007119682 A1 WO2007119682 A1 WO 2007119682A1 JP 2007057654 W JP2007057654 W JP 2007057654W WO 2007119682 A1 WO2007119682 A1 WO 2007119682A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
short
cells
disconnection
connection point
Prior art date
Application number
PCT/JP2007/057654
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Nakatsuji
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to JP2008510924A priority Critical patent/JP5113741B2/ja
Priority to KR1020087027711A priority patent/KR101230223B1/ko
Priority to US12/296,759 priority patent/US8030893B2/en
Priority to CN2007800128944A priority patent/CN101421883B/zh
Publication of WO2007119682A1 publication Critical patent/WO2007119682A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack and a method for detecting disconnection thereof, and in particular, includes a battery pack in which a plurality of cells of a secondary battery are connected in series, and a connection line to a connection point between cells.
  • the present invention relates to what is suitably performed to detect disconnection, that is, floating of an intermediate tap.
  • Patent Document 1 A typical prior art that can detect the floating of the intermediate tap is disclosed in Patent Document 1, for example.
  • the connection line from the intermediate tap to the voltage detection means is connected to the power supply line via a pull-up resistor or pull-down resistor, and if the intermediate tap is disconnected, the voltage of the connection line is prohibited from charging.
  • a secondary battery protection circuit that prevents overvoltage and overcharge by increasing the voltage to the voltage has been proposed.
  • the terminal voltage of each cell is detected, a threshold force abnormality equal to or higher than that of the charge / discharge control means is detected, and a protection operation is performed to perform a protective operation.
  • ICs are often provided.
  • the double protection IC is provided, the battery pack charging terminals are connected with a uniform internal resistance in the double protection IC, so that the measured cell voltage is between the charging terminals.
  • the actual overcharged state cannot be detected because the total voltage is divided into equally divided voltages.
  • the cell balance disruption force is also in an overcharged state (originally, the abnormality should be detected even in the double protection IC).
  • the intermediate tap is floating, it is equalized by the partial pressure resistance of the double protection IC, overcharge detection by the voltage detection means and charge / discharge control means, and The overcharge detection by the double protection IC does not work together and overcharge Charging will continue even in the state.
  • Patent Document 1 JP-A-10-150721
  • An object of the present invention is to provide a battery pack and a method for detecting disconnection thereof that can stop charging before being overcharged in an abnormal state by reliably detecting disconnection with low loss. That is.
  • a battery pack includes an assembled battery in which a plurality of cells of a secondary battery are connected in series, a voltage detection unit that detects a terminal voltage of each cell, and the voltage detection.
  • a charging / discharging control unit that controls charging / discharging of the assembled battery based on a terminal voltage of each cell detected by the unit, and a connection point between the cells is short-circuited to a high-side or low-side power line, or The short-circuit portion that is short-circuited between the connection points between the cells, and the conduction Z cutoff control of the short-circuit portion, the mode of the conduction Z cutoff control, and the voltage at the connection point between the cells detected by the voltage detection unit Detecting disconnection of the connection line from the voltage detection unit to the connection point between the cells based on at least one of the voltage of the high-side or low-side power line and the terminal voltage of each cell With disconnection detector That
  • the charge / discharge control unit Based on the terminal voltage of each cell detected by the voltage detection unit, the charge / discharge control unit detects that a specific cell is overvoltaged due to a cell balance deviation during charging.
  • the connection point between cells that is, the intermediate tap is set to the high side or The short-circuited part is short-circuited to the low-side power supply line or short-circuited between the connection points, and the short-circuited part is controlled to shut off Z.
  • a disconnection detection unit is provided for detecting disconnection of the connection line from the voltage detection unit to the connection point, that is, floating (disconnection) of the intermediate tap from at least one of the line voltage and the terminal voltage of each cell.
  • the voltage detection unit force can detect the disconnection of the connection line to the connection point only by the terminal voltage force of each cell by the input resistance or capacitance of the circuit connected to the terminal of each cell.
  • the disconnection detector selectively drives the short circuit, so that at least one of the voltage at the connection point between cells, the voltage at the power supply line, and the terminal voltage at each cell can be The disconnection of the connection line can be reliably detected from the difference between the voltage expected from them and the voltage actually detected by the voltage detector. As a result, the continuation of charging in an abnormal state can be stopped before overcharging.
  • the short circuit is driven when disconnection is detected, no loss occurs at all times, and the loss can be reduced.
  • FIG. 1 is a block diagram showing an electrical configuration of a charging system using a disconnection detection method according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing an internal configuration of the battery pack 1 of FIG.
  • FIG. 3 is a block diagram showing a configuration example of the ASIC 40 and the control IC 18 in FIG.
  • FIG. 4 is a waveform diagram for explaining an intermediate tap floating (disconnection) detection operation according to the first embodiment of the present invention.
  • FIG. 5 is a waveform diagram for explaining an intermediate tap floating (disconnection) detection operation according to the first embodiment of the present invention.
  • FIG. 6 is a waveform diagram for explaining an intermediate tap floating (disconnection) detection operation according to the first embodiment of the present invention.
  • FIG. 7 is a waveform diagram for explaining an intermediate tap floating (disconnection) detection operation according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart showing a processing procedure for an intermediate tap floating (disconnection) detection operation according to the first embodiment of the present invention.
  • FIG. 9 is a block diagram showing an electrical configuration of a battery pack using the disconnection detection method according to Embodiment 2 of the present invention.
  • FIG. 10 is a block diagram showing an electrical configuration of a charging system using a disconnection detection method according to another embodiment of the present invention.
  • FIG. 11 is a block diagram showing a configuration example of the ASIC 40 and the control IC 18 in FIG.
  • FIG. 1 is a block diagram showing an electrical configuration of a charging system using the disconnection detection method according to Embodiment 1 of the present invention.
  • This charging system includes a battery pack 1 and a charger 2 that charges the battery pack 1.
  • the electronic device system may be configured to further include a load device (not shown) to which power is supplied from the battery pack 1.
  • the battery pack 1 may be attached to the load device and charged through the load device.
  • Battery pack 1 and charger 2 are connected to each other by DC high-side terminals Til, T21 that supply power, communication signal terminals T12, T22, and GND terminals T13, T23 for power supply and communication signals.
  • the Similar terminals are also provided when the load device is provided.
  • a DC high-side power line extending from the terminal Tl 1 is connected to the charging path 11 with fuses 24 and 25, and for charging and discharging.
  • FETs 12 and 13 having different conductivity types are interposed, and the charging path 11 is connected to the high-side terminal of the assembled battery 14.
  • the low side terminal of the assembled battery 14 is connected to the GND terminal T13 via a charging path 15 which is a DC low side power line.
  • the charging path 15 converts charging current and discharging current into voltage values.
  • Current detection resistor 16 is interposed.
  • the assembled battery 14 includes a plurality of secondary battery cells connected in series, and a plurality of cells may be connected in parallel as needed.
  • the cell temperature is detected by the temperature sensor 17 and input to the analog Z-digital converter 19 in the control IC 18. Is done.
  • the terminal voltage of each cell is selectively taken out by an ASIC (Application Specific Integrated Circuit) 40 and input to the analog Z digital converter 19 in the control IC 18 as described later.
  • the cell is selected by the charge / discharge control unit 21 serving as the charge / discharge control means via the communication unit 20.
  • the current value detected by the current detection resistor 16 is also taken out by the ASIC 40 and input to the analog Z digital converter 19 in the control IC 18.
  • the ASIC 40 for extracting the terminal voltage of each cell and the analog Z-digital variation for measuring the terminal voltage of each cell are separated from each other, but this embodiment is not limited to this. For example, you may configure analog ⁇ ⁇ digital transformation 19 in ASIC40.
  • the charge / discharge control unit 21 includes a microcomputer and its peripheral circuits, and requests an output from the charger 2 in response to each input value via the analog / digital converter 19.
  • the voltage value and current value of the charging current are calculated and transmitted from the communication unit 22 to the charger 2 via the terminals T12, ⁇ 22; ⁇ 13, ⁇ 23.
  • the charge / discharge control unit 21 detects an abnormality outside the battery pack 1 such as a short circuit between the terminals Til and T13 or an abnormal current from the charger 2 from each input value via the analog / digital converter 19.
  • a protective operation such as blocking the FETs 12 and 13 is performed.
  • the terminal voltage of each cell of the assembled battery 14 is taken in by the ASIC 40 and also in the double protection IC 23 connected to the assembled battery 14 in parallel with the ASI C40.
  • the double protection IC 23 turns on the FET 27.
  • the FET 27 is provided with respect to the fuses 24 and 25 interposed in series in the charging path 11, and the connection point of the fuses 24 and 25 is grounded via the heating resistor 26 and the FET 27. Therefore, when the charge / discharge control unit 21 turns on the FET 27, the fuses 24 and 25 are blown by the heat generated by the heating resistor 26.
  • the fuses 24 and 25 are blown so that a double protection operation is realized. Become Yes.
  • the threshold voltage of the overvoltage during normal charge / discharge when the charge / discharge control unit 21 turns off the FETs 12, 13 is 4.35V per cell, and the double protection IC 23 has the fuses 24, 25.
  • the threshold voltage for fusing is, for example, 4.4V per cell. Therefore, it can be recovered at an overvoltage level during normal use, and the battery pack 1 cannot be reused at an overvoltage level during an abnormality, thereby improving safety.
  • the FET 27 When the FET 27 is turned ON by the double protection IC 23, the two fuses 24 and 25 are blown by the heat generated by the heating resistor 26. At this time, in the charged state, even if the fuse 25 on the assembled battery 14 side is blown first, the charging current is supplied from the charger 2 so that the fuse 24 on the charger 2 side is also blown later. Even if the fuse 24 on the charger 2 side is blown first, the fuse 25 on the battery pack 14 side can also be blown if the battery pack 14 can supply a current for driving the FET 27 to the double protection IC 23. If the battery pack 14 cannot supply current, the fuse 25 on the battery pack 14 side will not melt, but will remain, but the battery pack 1 external force will surely stay on the battery pack 14 side from the connection point. Can be separated.
  • the battery pack 1 can supply a current for driving the FET 27 to the double protection IC 23 in a discharged state where the battery pack 1 is not set in the charger 2, the battery pack 1 side first Even if the fuse 24 is blown, the fuse 25 on the assembled battery 14 side is also blown later. If the fuse 25 on the assembled battery 14 side is blown first, the force that the fuse 24 on the charger 2 side remains unfused. The battery pack 1 side can be reliably disconnected from the outside of the battery pack 1 beyond the connection point. it can.
  • connection point of the fuses 24, 25 connected in series is grounded by the heating resistor 26 and the FET 27, so that the connection point is determined regardless of whether or not the battery pack 1 is set in the charger 2.
  • the external force of the battery pack 1 can be reliably separated from the assembled battery 14 side.
  • the output request from battery pack 1 is received by communication unit 32 of control IC 30, and charge control unit 31 controls charge current supply circuit 33 to control the voltage value and current value. Then, the charging current is supplied.
  • the charging current supply circuit 33 is composed of an AC-DC converter, a DC-DC converter, and the like, and the input voltage is set to a voltage value indicated by the charge control unit 31. The current value and the pulse width are converted and supplied to charging paths 11 and 15 via terminals T21, T11; T23, T13.
  • FIG. 2 is a block diagram for explaining the configuration in the battery pack 1 in more detail.
  • the assembled battery 14 is composed of four cells ⁇ 1 to ⁇ 4, and the terminal ⁇ 4 is connected to the charging path 11 on the high side from the terminal T11, and the charging on the low side from the terminal T13.
  • the GND terminal TO is connected to the path 15.
  • the four cells E1 to E4 are connected in series between the terminals TO and T4, and each cell E1 to E4 may also be configured with a plurality of cell forces connected in parallel to each other. And it is connected to terminals T1 to T3 which become connection point force intermediate taps of the cells E1 to E4.
  • FIG. 3 is a block diagram showing a configuration example of the ASIC 40 and a configuration of a part related to voltage measurement of the control IC 18. 2 and 3, the connection lines LO to L4 are connected to the terminals ⁇ 0 to ⁇ 4.
  • the voltage Vinl at the terminals T1 to T4 is excluded except for the GND terminal TO.
  • ⁇ Vin4 force is taken from terminals Ding 30 to Ding 34; Ding 40 to Ding 44 through input resistances Rl 1 to R14 and input resistances R21 to R24, respectively, without affecting each other's voltage detection .
  • noise removing capacitors C11 to C14 and C21 to C24 may be provided between the terminals 30 to 34; These capacitors C11 to C14; C21 to C24 may be provided not between the terminals T30 to T34; ⁇ 40 to ⁇ 44 but between the terminals T30 to T34; T40 to T44 and GND. Between the input terminals ⁇ 40 to ⁇ 44 of the double protection IC23, resistors R31 to R34 for equally dividing the voltage Vin4 are provided.
  • the temperature sensor 17 is composed of a thermistor, and one end is biased with a predetermined voltage VO and the other end is ONZOFF driven by a control IC 18 from a switch 28 via the current detection resistor 16 to the low side.
  • the voltage at the connection point with the switch 28 is taken into the analog Z / digital conversion 19 of the control IC 18.
  • Each of the terminals T30 to T34 is selectively connected to an analog / digital converter 19 of the control IC 18 for performing voltage measurement via an input switching unit 41.
  • the input switching unit 41 includes switches SOL; SX, S1H; S2L, S2H; S3L, S3H; S4H; STL, STH. [0027]
  • the switches SOL; S1L, S1H; S2L, S2H; S3L, S3H; S4H have one end connected to the terminals T30 to T34 and the other end connected to the high input terminal 19H of the analog-digital converter 19. Or connected to the low side input 19L.
  • each of the switches STL and STH is connected to each terminal of the current detection resistor 16, and the other end is connected to the high-side input terminal 19H and the low-side input terminal 19L of the analog-digital change.
  • the switches S0L; S1L, S1H; S2L, S2H; S3L, S3H; S4H; STL, STH are selectively driven ONZOFF by the cell selector 42.
  • the analog Z digital converter 19 is connected to the terminal of the current detection resistor 16. It is possible to detect the inter-voltage and hence the charge / discharge current of each of the cells E1 to E4. Also, for example, by turning on the switches SOL, S4H and turning off the switches S1L, S1H; S2L, S2H; S3L, S3H; S5L, S5H, the analog Z digital converter 19 is charged on the entire battery pack 14. The voltage or discharge voltage can be detected.
  • the switching signals of the switches SOL; S1L, S1H; S2L, S2H; S3L, S3H; S4H; STL, STH are generated by the switching control unit 211 in the charge / discharge control unit 21 on the control IC 18 side.
  • the data is supplied from the communication unit 20 to the cell selection unit 42 via the communication unit 43 on the ASIC 40 side. Then, from the detection result obtained by the analog Z digital conversion 19, the disconnection detection unit 212 in the charge / discharge control unit 21 performs disconnection detection as described later.
  • each of the terminals T31 to T34 has a short circuit resistance R41 to R44 and a pair of switches Q1 to Q4 force between them and the GND terminal 30.
  • the short circuit circuit 44 configured to include is provided.
  • the switches Ql to Q4 are ONZOFF-controlled by the cell selection unit 42 in response to a switching signal from the switching control unit 211 received via the communication unit 43.
  • the switches Q1 to Q4 are turned on, the terminals T31 to T34 connected to the switches Q1 to Q4 are short-circuited to the GND terminal T30 via the short-circuit resistors R41 to R44.
  • FIGS. 4 to 7 are waveform diagrams for explaining an operation of detecting disconnection of the connection lines L1 to L3 by the disconnection detection unit 212, that is, floating (disconnection) of the terminals T1 to T3 which are intermediate taps. .
  • the switching control unit 211 keeps the switches STL and STH OFF.
  • FIGS. 4 and 5 are waveform diagrams in a normal state
  • FIGS. 6 and 7 are waveform diagrams when a floating (disengagement) occurs in the terminal T3.
  • FIG. 4 shows changes in the voltages Vinl to Vin4.
  • the switching control unit 211 1S turns on the switch SOL corresponding to the connection line LO of the GND, and switches on the low side S1 L, S2L. , S3L is turned off, and the analog / digital conversion 19 is switched from the voltage Vinl to Vin4 by selectively turning on the switches S1H, S2H, S3H, S4H corresponding to the high side connection lines L1 to L4.
  • the short-circuit switches Q1 to Q4 corresponding to the corresponding connection lines L1 to L4 are selectively turned on by the cell selector 42, so that the voltages Vinl to Vin4 are input resistances R11 to R14.
  • the short-circuit resistance R41 to R44 the voltage drops to a voltage of the voltage division ratio (approximately 1: 2).
  • FIG. 5 is a waveform diagram showing changes in the cell voltages A1 to A4 between the terminals T0 to T4.
  • the switching control unit 211 is connected to the low-side switches SOL, S1L, S2L, and S3L.
  • the analog Z digital converter 19 can read changes in the cell voltages A1 to A4. If no abnormality has occurred, the cell voltages A1 to A4 change at a voltage having a similar voltage division ratio (approximately 1: 2) determined by the input resistors R11 to R14 and the short-circuit resistors R41 to R44. .
  • the resistance values of the input resistors 1 ⁇ 11 to 1 ⁇ 14; 1 ⁇ 21 to 1 ⁇ 24 are, for example, in the order, the voltage dividing resistors R31 to R34 in the double protection IC23
  • the resistance value is equal to each other, for example, on the order of ⁇ . Therefore, if the short circuit switch Q3 is turned OFF even if the terminal T3 floats (disconnects), the voltage Vin3 is divided by the voltage dividing resistor R31 to R34 in the double protection IC23 with the voltage Vin4.
  • the pressed voltage appears as it is and becomes equal to the normal state (here, the balance (generated voltage) of cells E1 to E4 is assumed to be equal).
  • the short-circuit switch Q3 is turned ON, the voltage Vin4 is changed to the voltage dividing resistor having a large resistance value. As described above, the voltage Vin3 at the terminal T3 drops to approximately the GND potential.
  • FIG. 8 is a flowchart for explaining the disconnection detection operation by the disconnection detection unit 212 as described above.
  • the change force of the cell voltages A1 to A4 shown in FIG. 5 and FIG. For example, analog / digital conversion 19 uses 3.3V as the power source and the input voltage dynamic range as 2.5V. Therefore, it is assumed that the voltage between the input terminals 19H and 19L is input after being divided by one or three.
  • step S1 a detection target line is selected by a switching signal from the switching control unit 211 of the control IC 18. Then, the cell selection unit 42 connects the connection lines L0 to L4 from the terminals TO to T4 of the target cell to the analog Z / digital converter 19 using the switches S0L; S1L, S1H; S2L, S2H; S3L, S3H; S4H. Is connected to the input terminals 19L and 19H, and the voltage is measured by analog Z digital variation 9. Furthermore, the cell selector 42 alternatively turns on the short-circuit switches Q1 to Q4. Thereafter, voltage measurement by the analog Z / digital converter 19 is performed again.
  • step S2 the voltage difference between the OFF state and the ON state of the short-circuit switches Q1 to Q4.
  • the threshold voltage predetermined by the input resistance R11 to R14, the short-circuit resistance R41 to R44, the cell voltage, etc. It is determined whether it is greater than 0.5V. When it is smaller (step S2NO), it is determined whether or not the measurement of the cell voltages A1 to A4 is completed for all detection target lines at step S3. When it is not completed (step S3N 0), the step S1 Return to. If it has been completed (step S3 YES), it is determined in step S4 that all detection target lines are normal, and the process ends.
  • step S2 the difference between the detected cell voltages A1 to A4 is a threshold value.
  • step S5 it is determined in step S5 that an abnormality, that is, floating (disengagement) has occurred, and in step S6, FETs 12 and 13 are connected to the charge / discharge control unit 21 of the control IC 18.
  • step S6 FETs 12 and 13 are connected to the charge / discharge control unit 21 of the control IC 18.
  • the current value of the requested charging current is set to 0, an error state is further reported, and the process is terminated.
  • the disconnection detection unit 212 is connected to the voltage Vinl to Vin4 or cell of the connection point depending on the control mode of the short-circuit switches Q1 to Q4 and the switches SOL; S1 L, S1H; S2L, S2H; S3L, S3H; Disconnection of the connection lines L1 to L3, that is, floating of the terminals T1 to T3, which are intermediate taps, from the difference between the voltage expected as the voltages A1 to A4 and the voltage actually detected by the analog Z digital converter 19 (Displacement) can be reliably detected. As a result, the continuation of charging in an abnormal state can be stopped before overcharging. In addition, since the short-circuit resistors R41 to R44 are driven when disconnection is detected, no loss occurs at all times, and the loss can be reduced.
  • the detection result in the disconnection detection unit 212 is used for charge / discharge control in the charge / discharge control unit 21.
  • the terminals TO and T4 are disconnected, charging / discharging becomes impossible and there is no safety problem.
  • the terminals T1 to T3 serving as intermediate taps are disconnected from the connection lines L1 to L3 to the ASIC 40 and the double protection IC23, the applied voltage for each cell is not known, and the charger 2 uses the terminal TO ⁇ Even if the charging voltage between T4 is kept at the specified voltage, the cell balance may cause overvoltage or overcharge in certain cells.
  • the charging / discharging control unit 21 OFFs the FETs 12 and 13 to prohibit charging / discharging. As a result, safety against floating (disengagement) of the terminals T1 to T3 can be ensured.
  • the charge / discharge control unit 21 may completely stop the charge / discharge by blowing the fuses 27 and 25 by turning on the FET 27 when the floating (disconnection) of the terminals ⁇ 1 to ⁇ 3 is detected. .
  • the terminal voltage of each of the cells E1 to E4 is detected, a threshold force abnormality equal to or greater than that of the charge / discharge control unit 21 is detected, and a protection operation is performed.
  • the protection IC23 When the protection IC23 is provided, the double protection IC23, the ASIC40, and the power are connected in parallel to the terminals T0 to T4 of each cell El to E4, and the input resistances R11 to R14, R21 to R2 4 And capacitance C11 to C14, C21 to C24, and internal voltage dividing resistors R31 to R3 as described above 4 or the like, it is more difficult to detect disconnection of the connection lines L0 to L4, that is, floating (disconnection) of the terminals T0 to T4, and the present invention is particularly effective.
  • connection lines L1 to L4 are short-circuited to the GND line L0 to detect the floating (disconnection) of the terminals T1 to T3.
  • connection lines L0 to L3 are connected to the high side. Short circuit to L4 connection line or short circuit between each connection line LO ⁇ L3.
  • FIG. 9 is a block diagram showing an electrical configuration of battery pack 1a using the disconnection detection method according to Embodiment 2 of the present invention.
  • This battery pack la is similar to the above-described battery pack 1 shown in FIG. 2, and corresponding portions are denoted by the same reference numerals, and description thereof is omitted.
  • This battery pack la can be combined with the charger 2 shown in FIG. 1 to form a similar charging system.
  • connection lines L1 to L4 connected to the terminals T1 to T4 are connected to the GND line LO by the short-circuit switches Q1 to Q4 provided on the input side of the double protection IC23.
  • the short circuit switches Q1 to Q4 are ONZOFF controlled by the control IC 18a.
  • a conventional ASIC 40a that is not provided with the short circuit 44 can be used.
  • the input resistances R21 to R24 of the double protection IC 23 function as the short-circuit resistance, but the threshold voltage (0.5 V described above) for performing the floating (disconnection) determination is different in the circuit configuration. It is determined as appropriate according to
  • the battery pack and the disconnection detection method thereof include an assembled battery including a plurality of secondary battery cells connected in series, and voltage detection means. And charge / discharge control means, and based on the terminal voltage of each cell detected by the voltage detection means, the charge / discharge control means may cause a specific cell to become overvoltage due to, for example, a shift in cell balance during charging.
  • the connection point between the cells i.e., the intermediate tap between the power line or connection point on the high side or the low side.
  • the short-circuit means that is short-circuited by the continuity Z is controlled to shut off the Z.
  • a disconnection detecting means is provided for detecting disconnection of a connection line from at least one of the voltages to the connection point from the voltage detection means, that is, floating (disconnection) of the intermediate tap.
  • the disconnection detection means selectively drives the short-circuit means, so that the voltage expected from the voltage of the connection point, the voltage of the power supply line, and the terminal voltage of each cell, and the actual voltage
  • the disconnection can be reliably detected from the deviation from the voltage detected by the detection means.
  • the continuation of charging in an abnormal state can be stopped before overcharging.
  • the short-circuit means is driven when disconnection is detected, no loss occurs at all times, and the loss can be reduced.
  • Embodiments 1 and 2 are related to the charging system provided with the double protection IC 23.
  • the present invention is not limited to this. As shown in FIG. 10, the present invention is applicable even to a configuration in which the double protection IC 23 is not provided from the battery pack 1 of FIG.
  • the charge / discharge control unit 21 may turn off the FETs 12 and 13 to stop the charge / discharge control.By turning on the FET 27, the fuses 24 and 25 are blown to completely charge / discharge. You may stop it.
  • a battery pack according to the present invention includes an assembled battery in which a plurality of cells of a secondary battery are connected in series, a voltage detection unit that detects a terminal voltage of each cell, and the voltage detection unit.
  • a charge / discharge control unit for controlling charge / discharge of the assembled battery based on the detected terminal voltage of each cell, and a connection point between the cells is short-circuited to a high-side or low-side power line, or the cell Short circuit between the connection points of the
  • the conduction Z cutoff control mode, the voltage at the connection point between the cells detected by the voltage detection unit, the voltage at the power line on the node side, the low side or the low side, and the voltage of each cell are controlled.
  • a disconnection detector for detecting disconnection of a connection line from the voltage detector to the connection point between the cells based on at least one of the terminal voltages.
  • the charge / discharge control unit Based on the terminal voltage of each cell detected by the voltage detection unit, the charge / discharge control unit detects that a specific cell is overvoltaged due to a cell balance deviation during charging.
  • the connection point between cells that is, the intermediate tap is short-circuited to the high-side or low-side power line or short-circuited between the connection points.
  • the short-circuited part is connected to the short-circuited part and the Z-off control is performed, and the control mode, the voltage at the connection point detected by the voltage detecting part, the voltage of the power supply line, and the terminal voltage of each cell Both the one, disconnection of the connection lines from the voltage detector to the connection point, i.e. providing a disconnection detecting unit that detects a center tap float (out).
  • the voltage detection unit force can detect the disconnection of the connection line to the connection point only by the terminal voltage force of each cell by the input resistance or capacitance of the circuit connected to the terminal of each cell.
  • the disconnection detector selectively drives the short circuit, so that at least one of the voltage at the connection point between cells, the voltage at the power supply line, and the terminal voltage at each cell can be The disconnection of the connection line can be reliably detected from the difference between the voltage expected from them and the voltage actually detected by the voltage detector. As a result, the continuation of charging in an abnormal state can be stopped before overcharging.
  • the short circuit is driven when disconnection is detected, no loss occurs at all times, and the loss can be reduced.
  • the short-circuit unit also has a short-circuit resistance and a series circuit force of the switch for short-circuiting the connection point between the high-side power line and the cell to the low-side power line, respectively.
  • a short-circuit resistance and a series circuit force of the switch for short-circuiting the connection point between the high-side power line and the cell to the low-side power line, respectively.
  • it consists of:
  • the input resistance is such that the terminals of each cell are connected to the high-side power line or the connection point between the cells by ONZOFF control of the switch in response to a request from the disconnection detection unit. It will be connected to the low-side power line through a force short-circuit resistor.
  • the disconnection detection unit is connected from the voltage detection unit based on the voltage input to the voltage detection unit via the input resistance when the switch is OFF and the divided voltage due to the input resistance and short-circuit resistance when the switch is ON. The disconnection of the connection line to the point can be detected.
  • the voltage detecting unit selectively measures the voltage at the connection point between the cells and the analog Z digital converter, and selectively connects the connection point between the cells. It is preferable that the connection point between the cells is short-circuited by the short-circuit unit after being connected to the analog Z-digital converter by the input switching unit. .
  • the battery pack further includes a cell selection unit that connects the connection point between the cells to the analog Z / digital converter by the input switching unit and then short-circuits by the short-circuit unit.
  • the cell selection unit controls both the connection between the analog Z digital change and the connection point between the cells and the short-circuiting of the connection point between the cells, before and after the short-circuiting of the connection point between the cells.
  • the voltage can be reliably measured.
  • the voltage detection unit and the short-circuit unit are preferably configured as a single ASIC.
  • the charge / discharge control unit compares the detection result of the voltage detection unit with a predetermined threshold value, and performs a protection operation when an abnormality is detected.
  • the charge / discharge control unit is separate from the voltage detection unit.
  • a double protection that detects a terminal voltage of each cell, compares the detected voltage with a threshold equal to or higher than that of the charge / discharge control unit, and performs a protection operation when an abnormality is detected. It is preferable to further include an IC.
  • the terminal voltage of each cell is detected, and the detection result is compared with a threshold equal to or higher than that of the charge / discharge control unit, thereby detecting abnormalities such as overvoltage and overcharge.
  • the double protection IC and the voltage detector are connected in parallel to the terminals of each cell, and the input resistance Detection of the disconnection of the connection line to each cell terminal becomes more difficult due to the capacity, capacity, and internal voltage dividing resistance.
  • the present invention is particularly effective when an IC for double protection is provided.
  • the disconnection detection method for a battery pack according to the present invention is a disconnection detection method for a battery pack having an assembled battery formed by connecting at least a plurality of cells of a secondary battery in series, the connection point between the cells Short circuit to the high-side or low-side power line or short-circuit between the connection points between the cells, the short-circuit mode of the short-circuit process, and the connection point between the cells by the short-circuit of the short-circuit process
  • a disconnection detecting step of detecting disconnection of the connection line to the connection point between the cells based on at least one of the appearing voltage, the voltage of the high-side or low-side power line and the terminal voltage of each cell With.
  • the connection point between cells that is, the intermediate tap is short-circuited to the high-side or low-side power line or short-circuited between the connection points, and the short-circuit control mode and the voltage at the connection point that appears due to the short-circuit.
  • the disconnection of the connection line to the connection point that is, the floating (disconnection) of the intermediate tap is detected from at least one of the voltage of the power supply line and the terminal voltage of each cell.
  • connection line it is difficult to detect disconnection of the connection line to the connection point simply by the terminal voltage force of each cell due to the input resistance or capacitance of the circuit connected to the terminal of each cell.
  • the short circuit of the connection point between cells causes the expected voltage from at least one of the voltage at the connection point between cells, the voltage at the power supply line, and the terminal voltage of each cell.
  • the disconnection of the connection line can be reliably detected from the difference between the voltage and the actually detected voltage. As a result, the continuation of charging in an abnormal state can be stopped before overcharging.
  • the connection point between cells is short-circuited when disconnection is detected, no loss occurs at all times, and the loss can be reduced.
  • the present invention it is possible to suppress the influence of the input resistance that does not always cause a loss such as a pull-up resistor, and to suppress the influence of the input capacity, and in the assembled battery formed by connecting at least a plurality of secondary battery cells in series. Tap lift can be reliably detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池のセルが複数個少なくとも直列に接続されて成る組電池と、各セルの端子電圧を検出する電圧検出部と、電圧検出部によって検出された各セルの端子電圧に基づいて組電池の充放電を制御する充放電制御部と、セル間の接続点をハイ側またはロー側の電源ラインに短絡させ若しくはセル間の接続点間で短絡させる短絡部と、短絡部を導通/遮断制御すると共に、導通/遮断制御の態様と、電圧検出部で検出されたセル間の接続点の電圧、ハイ側またはロー側の電源ラインの電圧および各セルの端子電圧のうちの少なくとも1つと、に基づいて電圧検出部からセル間の接続点への接続ラインの断線を検知する断線検知部とを備える電池パックであって、常時の損失を生じることなく、二次電池のセルの中間タップの浮き(外れ)を確実に検知することができる。

Description

明 細 書
電池パックおよびその断線検知方法
技術分野
[0001] 本発明は、電池パックおよびその断線検知方法に関し、特に、二次電池のセルが 複数個少なくとも直列に接続されて成る組電池を有し、セル間の接続点への接続ラ インの断線、すなわち中間タップの浮きを検知するために好適に実施されるものに関 する。
背景技術
[0002] 前記中間タップの浮きを検知することができる典型的な従来技術は、たとえば特許 文献 1で示されている。その従来技術によれば、中間タップから電圧検出手段への 接続ラインをプルアップ抵抗またはプルダウン抵抗を介して電源ラインに接続してお き、前記中間タップが外れると、接続ラインの電圧が充電禁止電圧まで上昇すること で、過電圧や過充電を防止するようにした二次電池の保護回路が提案されて ヽる。
[0003] し力しながら、上述の従来技術では、定常状態で前記プルアップ抵抗またはブルダ ゥン抵抗によって損失が発生するという問題がある。したがって、損失を少なくするた めにはプルアップ抵抗またはプルダウン抵抗の抵抗値を大きくする必要がある。
[0004] 一方、電池パック内には、電圧検出手段とは別途に、各セルの端子電圧を検出し、 充放電制御手段と同等以上の閾値力 異常を検出し、保護動作を行う二重保護用 の ICなどが設けられることが多い。前記二重保護用の ICが設けられると、前記二重 保護用の IC内の均一な内部抵抗で電池パックの充電端子間が接続されるために、 測定されるセル電圧が前記充電端子間のトータル電圧を均等に分担した電圧に分 圧されてしまい、実際の過充電状態を検出できないという問題もある。すなわち、実 電池における前記トータル電圧が異常でなくても、セルバランスの崩れ力も一部のセ ルが過充電状態 (本来、前記二重保護用の ICでも異常が検出されるべき状態)とな つた場合に、前記中間タップに浮きが生じていると、前記二重保護用の ICの分圧抵 抗で均一化されてしまい、前記電圧検出手段および充放電制御手段による過充電 検出、ならびに、前記二重保護用の ICによる過充電検出は、共に機能せず、過充電 状態でも充電が継続されてしまう。
[0005] したがって、前記二重保護用の ICのような他の回路が前記電圧検出手段と並列に 設けられることになると、その他の回路の入力の抵抗や容量、さらには内部の分圧抵 抗などによって、各セルの端子への接続ラインの断線検知は一層困難になる。特に、 上述のように損失を小さくするために前記プルアップ抵抗またはプルダウン抵抗の抵 抗値を大きくしていると、前記中間タップが外れた際に電圧検出手段に入力される電 圧に大きな変化が生じず、検出が困難になる。
特許文献 1 :特開平 10— 150721号公報
発明の開示
[0006] 本発明の目的は、低損失で、断線を確実に検知することで、異常状態での充電継 続を過充電前に停止することができる電池パックおよびその断線検知方法を提供す ることである。
[0007] 本発明の一局面に従う電池パックは、二次電池のセルが複数個少なくとも直列に 接続されて成る組電池と、前記各セルの端子電圧を検出する電圧検出部と、前記電 圧検出部によって検出された前記各セルの端子電圧に基づいて前記組電池の充放 電を制御する充放電制御部と、前記セル間の接続点をハイ側またはロー側の電源ラ インに短絡させ若しくは前記セル間の接続点間で短絡させる短絡部と、前記短絡部 を導通 Z遮断制御すると共に、前記導通 Z遮断制御の態様と、前記電圧検出部で 検出された前記セル間の接続点の電圧、前記ハイ側またはロー側の電源ラインの電 圧および前記各セルの端子電圧のうちの少なくとも 1つと、に基づいて前記電圧検出 部から前記セル間の接続点への接続ラインの断線を検知する断線検知部とを備える
[0008] 上記の電池パックでは、二次電池のセルが複数個少なくとも直列に接続 (必要に応 じて適宜並列にも複数のセルが接続されて 、てもよ 、)されて成る組電池、電圧検出 部および充放電制御部を備え、電圧検出部によって検出された各セルの端子電圧 に基づいて、充放電制御部が、たとえば充電時にセルバランスのずれによって特定 のセルが過電圧になったり過充電になったりすることがないように充放電を制御する ようにした電池パックにおいて、セル間の接続点、すなわち中間タップをハイ側また はロー側の電源ラインに短絡させ若しくは接続点間で短絡させる短絡部に、その短 絡部を導通 Z遮断制御すると共に、その制御態様と、電圧検出部で検出された接続 点の電圧、電源ラインの電圧および各セルの端子電圧のうちの少なくとも 1つとから、 電圧検出部から接続点への接続ラインの断線、すなわち中間タップの浮き (外れ)を 検知する断線検知部を設ける。
[0009] したがって、各セルの端子に接続される回路の入力抵抗や容量などによって、単に 各セルの端子電圧力 だけでは、電圧検出部力も接続点への接続ラインの断線を検 知するのが困難であるのに対して、断線検知部が短絡部を選択駆動することで、セ ル間の接続点の電圧、電源ラインの電圧および各セルの端子電圧のうちの少なくと も 1つから、それらに期待される電圧と、実際に電圧検出部によって検出された電圧 とのずれから、接続ラインの断線を確実に検知することができる。これによつて、異常 状態での充電継続を、過充電前に停止することができる。また、短絡部は断線検知 の際に駆動されるので、常時に損失は生じず、損失を低減することができる。
図面の簡単な説明
[0010] [図 1]本発明の実施の形態 1に係る断線検知方法を用いる充電システムの電気的構 成を示すブロック図である。
[図 2]図 1の電池パック 1の内部構成を示すブロック図である。
[図 3]図 2の ASIC40および制御 IC18の一構成例を示すブロック図である。
[図 4]本発明の実施の形態 1に係る中間タップの浮き (外れ)検知動作を説明するた めの波形図である。
[図 5]本発明の実施の形態 1に係る中間タップの浮き (外れ)検知動作を説明するた めの波形図である。
[図 6]本発明の実施の形態 1に係る中間タップの浮き (外れ)検知動作を説明するた めの波形図である。
[図 7]本発明の実施の形態 1に係る中間タップの浮き (外れ)検知動作を説明するた めの波形図である。
[図 8]本発明の実施の形態 1に係る中間タップの浮き (外れ)検知動作の処理手順を 示すフローチャートである。 [図 9]本発明の実施の形態 2に係る断線検知方法を用いる電池パックの電気的構成 を示すブロック図である。
[図 10]本発明の他の実施の形態に係る断線検知方法を用 ヽる充電システムの電気 的構成を示すブロック図である。
[図 11]図 10の ASIC40および制御 IC18の一構成例を示すブロック図である。
発明を実施するための最良の形態
[0011] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の 図面の記載において、同じ要素または類似する要素には、同じまたは類似の符号を 付しており、説明を省略する場合がある。
[0012] (実施の形態 1)
図 1は、本発明の実施の形態 1に係る断線検知方法を用いる充電システムの電気 的構成を示すブロック図である。この充電システムは、電池パック 1と、電池パック 1を 充電する充電器 2と、を備えて構成される。電池パック 1から給電が行われる図示しな い負荷機器をさらに含めて電子機器システムが構成されてもよい。その場合、電池パ ック 1は、図 1では充電器 2から充電が行われるけれども、該電池パック 1が前記負荷 機器に装着されて、負荷機器を通して充電が行われてもよい。電池パック 1および充 電器 2は、給電を行う直流ハイ側の端子 Ti l, T21と、通信信号の端子 T12, T22と 、給電および通信信号のための GND端子 T13, T23とによって相互に接続される。 前記負荷機器が設けられる場合も、同様の端子が設けられる。
[0013] 前記電池パック 1内で、前記の端子 Tl 1から延びる直流ハイ側の電源ラインである 充電経路 11には、ヒューズ 24, 25力介在されるととも〖こ、充電用と放電用とで相互に 導電形式が異なる FET12, 13が介在されており、その充電経路 11が組電池 14の ハイ側端子に接続される。前記組電池 14のロー側端子は、直流ロー側の電源ライン である充電経路 15を介して前記 GND端子 T13に接続され、この充電経路 15には、 充電電流および放電電流を電圧値に変換する電流検出抵抗 16が介在されている。
[0014] 前記組電池 14は、複数の二次電池のセルが少なくとも直列に接続されて成り、必 要に応じて適宜並列にも複数のセルが接続されていてもよい。前記セルの温度は温 度センサ 17によって検出され、制御 IC 18内のアナログ Zデジタル変換器 19に入力 される。
[0015] また、前記各セルの端子電圧は、後述するようにして、 ASIC (Application Specific I ntegrated Circuit) 40によって選択的に取出され、前記制御 IC18内のアナログ Zデ ジタル変換器 19に入力される。そのセルの選択は、充放電制御手段である充放電 制御部 21が、通信部 20を介して行う。さらに、前記電流検出抵抗 16によって検出さ れた電流値も、前記 ASIC40によって取出され、前記制御 IC18内のアナログ Zデジ タル変換器 19に入力される。なお、図 1では、各セルの端子電圧を取出す ASIC40 と各セルの端子電圧を測定するアナログ Zデジタル変 は互いに分離した構 成となっているが、本実施の形態はこれに限られない。例えば、 ASIC40内でアナ口 グ Ζデジタル変 19を構成しても構わな 、。
[0016] 充放電制御部 21は、マイクロコンピュータおよびその周辺回路などを備えて成り、 前記アナログ Ζデジタル変換器 19を介する各入力値に応答して、充電器 2に対して 、出力を要求する充電電流の電圧値および電流値を演算し、通信部 22から端子 T1 2, Τ22 ;Τ13, Τ23を介して充電器 2へ送信する。また、前記充放電制御部 21は、 前記アナログ Ζデジタル変換器 19を介する各入力値から、端子 Ti l, T13間の短 絡や充電器 2からの異常電流などの電池パック 1の外部における異常が検出されると 、また、前記温度センサ 17によって組電池 14の異常な温度上昇が検出されると、前 記 FET12, 13を遮断するなどの保護動作を行う。
[0017] 一方、前記組電池 14の各セルの端子電圧は、 ASIC40による取込みと共に、 ASI C40と並列的に組電池 14に接続された二重保護 IC23にも取込まれる。二重保護 IC 23による検出結果が、前記充放電制御部 21における異常判定の閾値以上に設定さ れるこの二重保護 IC23での閾値以上となると、二重保護 IC23は FET27を ONする 。前記 FET27は、充電経路 11に直列に介在された前記ヒューズ 24, 25に関して設 けられており、前記ヒューズ 24, 25の接続点は、発熱抵抗 26およびこの FET27を介 して接地されている。したがって、前記充放電制御部 21が FET27を ONすることで、 発熱抵抗 26が発生した熱で前記ヒューズ 24, 25が溶断する。これによつて、前記充 放電制御部 21の異常などでセルの過電圧などに対応できない深刻な異常時には、 前記ヒューズ 24, 25が溶断されることで、二重の保護動作が実現されるようになって いる。
[0018] たとえば、前記充放電制御部 21が FET12, 13を OFFする通常の充放電時にお ける過電圧の閾値電圧は、セル当り 4. 35Vであり、二重保護 IC23がヒューズ 24, 2 5を溶断する閾値電圧は、たとえばセル当り 4. 4Vである。したがって、通常使用時の 過電圧程度では復旧可能であり、異常時の過電圧では、電池パック 1は再使用不能 となって安全性の向上が図られるようになつている。
[0019] そして、二重保護 IC23によって FET27が ONされると、発熱抵抗 26で発生された 熱で、 2つのヒューズ 24, 25は溶断する。この時、充電状態では、先に組電池 14側 のヒューズ 25が溶断しても、充電器 2から充電電流が供給されることで、充電器 2側 のヒューズ 24も後に溶断する。先に充電器 2側のヒューズ 24が溶断しても、組電池 1 4が前記二重保護 IC23に FET27を駆動する電流を供給できれば組電池 14側のヒ ユーズ 25も溶断することができる。組電池 14が電流を供給できなければ、該組電池 1 4側のヒューズ 25は溶断しな 、ままとなるが、前記接続点よりも組電池 14側を電池パ ック 1の外部力も確実に切り離すことができる。
[0020] これに対して、電池パック 1が充電器 2にセットされていない放電状態で、組電池 14 が前記二重保護 IC23に FET27を駆動する電流を供給できれば、先に充電器 2側 のヒューズ 24が溶断しても、後に組電池 14側のヒューズ 25も溶断する。先に組電池 14側のヒューズ 25が溶断した場合には充電器 2側のヒューズ 24は溶断しないままと なる力 前記接続点よりも組電池 14側を電池パック 1の外部から確実に切り離すこと ができる。
[0021] こうして、直列接続されたヒューズ 24, 25の接続点を発熱抵抗 26および FET27に よって接地することで、電池パック 1が充電器 2にセットされているか否かに拘わらず、 前記接続点よりも組電池 14側を電池パック 1の外部力も確実に切り離すことができる ようになっている。
[0022] 一方、充電器 2では、電池パック 1からの出力要求を制御 IC30の通信部 32で受信 し、充電制御部 31が充電電流供給回路 33を制御して、前記の電圧値および電流値 で、充電電流を供給させる。充電電流供給回路 33は、 AC— DCコンバータや DC— DCコンバータなど力 成り、入力電圧を、前記充電制御部 31で指示された電圧値、 電流値および、パルス幅に変換して、端子 T21, T11 ;T23, T13を介して、充電経 路 11, 15へ供給する。
[0023] 図 2は、前記電池パック 1内の構成をさらに詳しく説明するブロック図である。図 2の 例では、前記組電池 14は、 4つのセル Ε1〜Ε4から構成されており、前記端子 T11 からハイ側の充電経路 11には端子 Τ4が接続され、前記端子 T13からロー側の充電 経路 15には GND端子 TOが接続される。前記端子 TO— T4間には、前記 4つのセル E 1〜E4が直列に接続されており、各セル E 1〜E4は相互に並列に接続される複数 のセル力も構成されていてもよい。そして、各セル E1〜E4の接続点力 中間タップと なる端子 T1〜T3に接続されている。
[0024] 図 3は、前記 ASIC40の一構成例および制御 IC18の電圧測定に係わる部分の構 成を示すブロック図である。図 2及び 3において各端子 Τ0〜Τ4には、接続ライン LO 〜L4が接続されており、前記 ASIC40と二重保護 IC23とにおいては、前記 GND端 子 TOを除き、端子 T1〜T4における電圧 Vinl〜Vin4力 互いの電圧検出に影響を 与えな 、ように、入力抵抗 Rl 1〜R14と入力抵抗 R21〜R24とをそれぞれ介して、 端子丁30〜丁34 ;丁40〜丁44から取込まれる。そして、各端子丁30〜丁34 ;丁40〜丁 44間には、必要に応じて、ノイズ除去用のコンデンサ C11〜C14 ;C21〜C24が設 けられることもある。これらのコンデンサ C11〜C14 ;C21〜C24は、各端子 T30〜T 34 ;Τ40〜Τ44間ではなく、各端子T30〜T34 ;T40〜T44とGNDとの間に設けら れてもよい。二重保護 IC23の各入力端子 Τ40〜Τ44間には、前記電圧 Vin4を等 分圧する抵抗 R31〜R34が設けられて 、る。
[0025] 前記温度センサ 17は、サーミスタなどから成り、一端が予め定める電圧 VOでバイァ スされ、他端が制御 IC18によって ONZOFF駆動されるスィッチ 28から前記電流検 出抵抗 16を介して前記ロー側の充電経路 15に接続され、そのスィッチ 28との接続 点の電圧が、前記制御 IC18のアナログ Zデジタル変翻 19に取込まれる。
[0026] 前記各端子 T30〜T34は、入力切換え部 41を介して、電圧測定を行うための前記 制御 IC 18のアナログ Ζデジタル変換器 19に選択的に接続される。前記入力切換え 部 41は、スィッチ SOL ; S X, S1H ; S2L, S2H ; S3L, S3H ; S4H ; STL, STHを 備えて構成される。 [0027] 前記スィッチ SOL; S1L, S1H;S2L, S2H;S3L, S3H;S4Hは、一端側が前記 各端子 T30〜T34に接続され、他端側が前記アナログ Ζデジタル変換器 19のハイ 側入力端 19Hまたはロー側入力端 19Lに接続される。前記スィッチ STL, STHは、 一端側が前記電流検出抵抗 16の各端子に接続され、他端側が前記アナログ Ζデジ タル変 のハイ側入力端 19Hとロー側入力端 19Lとにそれぞれ接続される。前 記スィッチ S0L;S1L, S1H;S2L, S2H;S3L, S3H;S4H;STL, STHは、セル選 択部 42によって選択的に ONZOFF駆動される。
[0028] したがって、たとえばスィッチ STL, STHを ONし、スィッチ S0L;S1L, S1H;S2L , S2H;S3L, S3H;S4Hを OFFすることで、アナログ Zデジタル変換器 19は、電流 検出抵抗 16の端子間電圧、したがって各セル E1〜E4の充放電の電流を検出する ことができる。また、たとえばスィッチ SOL, S4Hを ONし、スィッチ S1L, S1H;S2L, S2H;S3L, S3H;S5L, S5Hを OFFすることで、アナログ Zデジタル変^^ 19は、 組電池 14の全体に掛かる充電電圧または放電電圧を検出することができる。
[0029] 前記スィッチ SOL; S1L, S1H;S2L, S2H;S3L, S3H;S4H;STL, STHの切 換え信号は、制御 IC18側の充放電制御部 21内の切換え制御部 211によって発生 され、前記通信部 20から ASIC40側の通信部 43を介して、前記セル選択部 42に与 えられる。そして、アナログ Zデジタル変 19で得られた検出結果から、前記充放 電制御部 21内の断線検知部 212は、後述するようにして断線検知を行う。
[0030] 注目すべきは、本実施の形態では、前記各端子 T31〜T34には、 GND端子 Τ30 との間に、短絡抵抗 R41〜R44およびそれに対を成すスィッチ Q1〜Q4力 成る直 列回路を備えて構成される短絡回路 44が設けられることである。前記スィッチ Ql〜 Q4は、前記通信部 43を介して受信された切換え制御部 211からの切換え信号に応 じて、前記セル選択部 42によって ONZOFF制御される。スィッチ Q1〜Q4が ONし た時に、各スィッチ Q1〜Q4に接続された各端子 T31〜T34は、短絡抵抗 R41〜R 44を介して、 GND端子 T30に短絡されることになる。
[0031] 図 4〜図 7は、前記断線検知部 212による接続ライン L1〜L3の断線、すなわち中 間タップである端子 T1〜T3の浮き (外れ)検知動作を説明するための波形図である 。この断線検知時には、切換え制御部 211は、スィッチ STL, STHを OFFしたままと する。図 4および図 5は正常時の波形図であり、図 6および図 7は端子 T3に浮き(外 れ)が生じた時の波形図である。
[0032] 先ず、図 4は、前記電圧 Vinl〜Vin4の変化を示すものであり、切換え制御部 211 1S GNDの接続ライン LOに対応したスィッチ SOLを ONし、かつロー側のスィッチ S1 L, S2L, S3Lを OFFしたまま、ハイ側の接続ライン L1〜L4に対応したスィッチ S1H , S2H, S3H, S4Hを択一的に ONすることで、アナログ/デジタル変翻 19は、前 記電圧 Vinl〜Vin4の変化を読込むことができる。そして期間 W1においては、対応 する接続ライン L 1〜L4に対応した短絡スィッチ Q 1〜Q4がセル選択部 42によって 択一的に ONされることで、各電圧 Vinl〜Vin4は入力抵抗 R11〜R14と短絡抵抗 R41〜R44とによる分圧比(略 1: 2)の電圧までそれぞれ低下する。
[0033] 一方、図 5は、各端子 T0〜T4間のセル電圧 A1〜A4の変化を示す波形図であり、 切換え制御部 211が、ロー側のスィッチ SOL, S1L, S2L, S3Lと、ハイ側のスィッチ S1H, S2H, S3H, S4Hとを一対で ONすることで、アナログ Zデジタル変^^ 19 は、前記セル電圧 A1〜A4の変化を読込むことができる。そして、異常が生じていな ければ、各セル電圧 A1〜A4は、入力抵抗 R11〜R14と短絡抵抗 R41〜R44とに よって決定される同様の分圧比(略 1: 2)の電圧で変化する。
[0034] これに対して、たとえば端子 T3に浮き(外れ)が生じると、図 6で示すように、前記電 圧 Vinl〜Vin4のうち、該当ライン以外の電圧 Vinl, Vin2, Vin4は前述の図 4と同 様の変化を示すのに対して、外れているライン L3に該当する電圧 Vin3は、短絡スィ ツチ Q3が ONすると、短絡抵抗 R43によって略 GND電位まで低下する。以下に、こ の短絡抵抗 R43による略 GND電位までの電圧低下について説明する。
[0035] 前記入カ抵抗1^11〜1^14 ;1^21〜1^24の抵抗値は、たとえば オーダーである のに対して、前記二重保護 IC23内の分圧抵抗 R31〜R34の抵抗値は、相互に等し ぐたとえば Μ Ωオーダーである。したがって、端子 T3に浮き(外れ)が生じても、短 絡スィッチ Q3が OFFしていると、電圧 Vin3としては、前記二重保護 IC23内で電圧 Vin4力ゝら分圧抵抗 R31〜R34で分圧された電圧がそのまま現れ、正常状態と等しく なる(ここでは、セル E1〜E4のバランス (発生電圧)が均等であるとしている)。これに 対して、短絡スィッチ Q3が ONすると、前記電圧 Vin4は抵抗値の大きい前記分圧抵 抗 R34で消費され、上述したように、端子 T3の電圧 Vin3は略 GND電位まで低下す ることになる。
[0036] また、図 7では、端子 T3に浮き (外れ)が生じると、浮き (外れ)の生じたライン L3を 電圧検出に使用しないセル電圧 Al, A2は、前述の図 6と同様の変化を示す。これ に対して、外れているライン L3をハイ側として電圧検出に使用するセル電圧 A3は、 短絡スィッチ Q3が ONすると、上述の説明と同様に短絡抵抗 R43によって略 GND 電位まで低下する。したがって、外れているライン L3をロー側として電圧検出に使用 するセル電圧 A4は、短絡スィッチ Q4が ONすると、略 Vin4まで上昇する。
[0037] 図 8は、上述のような断線検知部 212による断線検知動作を説明するためのフロー チャートである。図 8の例では、前記図 5および図 7で示すセル電圧 A1〜A4の変化 力も断線検知を行う場合を示している。なお、アナログ/デジタル変翻 19は、たと えば 3. 3Vを電源とし、入力電圧のダイナミックレンジを 2. 5Vとする。したがって、前 記入力端 19H, 19L間の電圧は、 1,3分圧して入力されるものとする。
[0038] ステップ S1では、前記制御 IC18の切換え制御部 211からの切換え信号によって 検出対象ラインが選定される。そして、セル選択部 42は、対象となるセルの端子 TO 〜T4からの接続ライン L0〜L4を、スィッチ S0L; S1L, S1H ; S2L, S2H ; S3L, S3 H ; S4Hによってアナログ Zデジタル変換器 19の入力端 19L, 19Hに接続させ、ァ ナログ Zデジタル変 9による電圧測定が行われる。さらに、セル選択部 42は短 絡スィッチ Q1〜Q4を択一的に ONする。その後、再び、アナログ Zデジタル変換器 19による電圧測定が行われる。
[0039] ステップ S2では、短絡スィッチ Q1〜Q4の OFF状態と ON状態との電圧の差力 前 記入力抵抗 R11〜R14および短絡抵抗 R41〜R44ならびにセル電圧などによって 予め決定される閾値電圧、たとえば 0. 5Vより大きいか否かが判断される。小さいとき には (ステップ S2NO)、ステップ S3で総ての検出対象ラインについてセル電圧 A1 〜A4の測定が終了した力否かが判断され、終了していないときには (ステップ S3N 0)、前記ステップ S1に戻る。終了しているときには (ステップ S3YES)、ステップ S4 で総ての検出対象ラインが正常であると判定して、処理を終了する。
[0040] これに対して、前記ステップ S2において、検出されたセル電圧 A1〜A4の差が閾 値電圧、たとえば 0. 5Vより大きいときには (ステップ S2YES)、ステップ S5で異常、 すなわち浮き(外れ)が生じていると判定し、ステップ S6で前記制御 IC18の充放電 制御部 21に FET12, 13を OFFさせるとともに、要求する充電電流の電流値を 0とし 、さらにエラー状態を報告して処理を終了する。
[0041] このようにして、断線検知部 212は、短絡スィッチ Q1〜Q4およびスィッチ SOL ; S1 L, S1H ; S2L, S2H ; S3L, S3H; S4Hの制御態様によって接続点の電圧 Vinl〜 Vin4またはセル電圧 A1〜A4として期待される電圧と、前記アナログ Zデジタル変 19で実際に検出された電圧とのずれから、接続ライン L1〜L3の断線、すなわ ち中間タップである端子 T1〜T3の浮き(外れ)を確実に検知することができる。これ によって、異常状態での充電継続を、過充電前に停止することができる。また、前記 短絡抵抗 R41〜R44は断線検知の際に駆動されるので、常時に損失は生じず、損 失を低減することもできる。
[0042] 前記断線検知部 212での検出結果は、充放電制御部 21での充放電の制御に使 用される。ここで、端子 TO, T4が外れると充放電は不能となり、安全上の問題はない 。これに対して、中間タップとなる前記端子 T1〜T3が前記 ASIC40や二重保護 IC2 3への接続ライン L1〜L3から外れると、セル毎の印加電圧が分らなくなり、充電器 2 によって端子 TO— T4間の充電電圧が規定の電圧に保たれていても、セルバランス のずれによって、特定のセルに過電圧や過充電のおそれが生じる。そこで前記充放 電制御部 21は、前記端子 T1〜T3の浮き (外れ)が検知されると、 FET12, 13を OF Fして、充放電を禁止する。これによつて、前記端子 T1〜T3の浮き (外れ)に対する 安全性を確保することができる。なお、充放電制御部 21は、端子 Τ1〜Τ3の浮き (外 れ)が検知されると、 FET27を ONすることにより、ヒューズ 24、 25を溶断し、充放電 を完全に停止させても良い。
[0043] 特に、電圧検出を行う ASIC40とは別途に、各セル E1〜E4の端子電圧を検出し、 前記充放電制御部 21と同等以上の閾値力 異常を検出し、保護動作を行う二重保 護 IC23が設けられている場合、その二重保護 IC23と、 ASIC40と力 各セル El〜 E4の端子 T0〜T4に並列に接続されることになり、入力抵抗 R11〜R14, R21〜R2 4や容量 C11〜C14, C21〜C24、さらには上述のように内部の分圧抵抗 R31〜R3 4などによって、各接続ライン L0〜L4の断線、すなわち端子 T0〜T4の浮き (外れ) の検知は一層困難であり、本発明が特に効果的である。
[0044] なお、上述の例では、各接続ライン L1〜L4を GNDのライン L0に短絡することで端 子 T1〜T3の浮き (外れ)を検出したが、各接続ライン L0〜L3をハイ側の接続ライン L4に短絡したり、各接続ライン LO〜L3間を短絡するようにしてもょ 、。
[0045] (実施の形態 2)
図 9は、本発明の実施の形態 2に係る断線検知方法を用 ヽる電池パック 1 aの電気 的構成を示すブロック図である。この電池パック laは、図 2で示す上述の電池パック 1 に類似し、対応する部分には同一の参照符号を付して示し、その説明を省略する。こ の電池パック laも、前記図 1で示す充電器 2と組合わせて、同様の充電システムを構 成することができる。
[0046] この電池パック laでは、前記端子 T1〜T4に接続される各接続ライン L1〜L4は、 二重保護 IC23の入力側に設けられた短絡スィッチ Q1〜Q4によって前記 GNDのラ イン LOに短絡され、その短絡スィッチ Q 1〜Q4は制御 IC 18aによって ONZOFF制 御される。この場合、 ASIC40aには、前記短絡回路 44が設けられていない従来のも のを使用することができる。
[0047] また、この場合、二重保護 IC23の入力抵抗 R21〜R24が前記短絡抵抗として機 能するが、浮き (外れ)判定を行う閾値電圧 (前記の 0. 5V)は、回路構成の違いに応 じて適宜定められる。
[0048] 以上説明したように、本発明の実施の形態 1および 2に係る電池パックおよびその 断線検知方法は、二次電池のセルが複数個少なくとも直列に接続されて成る組電池 、電圧検出手段および充放電制御手段を備え、前記電圧検出手段によって検出さ れた各セルの端子電圧に基づいて、前記充放電制御手段が、たとえば充電時にセ ルバランスのずれによって特定のセルが過電圧になったり過充電になったりすること がな 、ように充放電を制御するようにした電池パックにぉ 、て、前記セル間の接続点 、すなわち中間タップをハイ側またはロー側の電源ラインもしくは接続点間で短絡す る短絡手段に、その短絡手段を導通 Z遮断制御するとともに、その制御態様と、前記 電圧検出手段で検出された接続点の電圧、電源ラインの電圧および各セルの端子 電圧の内の少なくとも 1つとから、電圧検出手段カゝら前記接続点への接続ラインの断 線、すなわち前記中間タップの浮き (外れ)を検知する断線検知手段を設ける。
[0049] したがって、各セルの端子に接続される回路の入力抵抗や容量などによって、単に 前記各セルの端子電圧力もだけでは、前記接続ラインの断線を検知するのが困難で あるのに対して、断線検知手段が短絡手段を選択駆動することで、前記接続点の電 圧、電源ラインの電圧および各セルの端子電圧の内の少なくとも 1つとから、それらに 期待される電圧と、実際に電圧検出手段によって検出された電圧とのずれから、前 記断線を確実に検知することができる。これによつて、異常状態での充電継続を、過 充電前に停止することができる。また、前記短絡手段は断線検知の際に駆動される ので、常時に損失は生じず、損失を低減することができる。
[0050] 上記の実施の形態 1および 2は、二重保護 IC23を設けた充電システムに係るもの であった力 本発明はこれに限られるものではない。図 10に示すように、図 1の電池 パック 1から二重保護 IC23を設けない構成であっても、本発明は適用可能である。 断線検知した場合には、充放電制御部 21が FET12、 13を OFFして、充放電制御 を停止させても良い、 FET27を ONすることにより、ヒューズ 24、 25を溶断し、充放電 を完全に停止させても良い。
[0051] なお、図 11に示すように、二重保護 IC23が無い場合であっても、 R11〜R14が同 抵抗で、 C11〜C14が同容量であると、例えば L1が断線した場合に端子 T31の電 位は次のようになる、すなわち、セル E1および E2の各セル電圧 A1および A2の平均 値となる。このように、二重保護 IC23が無い場合であっても、従来の方法では、断線 を検知できないことがあり得る。従って、本発明は二重保護 IC23が無い場合にも有 効である。
[0052] 上記の各実施の形態から本発明を要約すると、以下のようになる。すなわち、本発 明に係る電池パックは、二次電池のセルが複数個少なくとも直列に接続されて成る 組電池と、前記各セルの端子電圧を検出する電圧検出部と、前記電圧検出部によつ て検出された前記各セルの端子電圧に基づいて前記組電池の充放電を制御する充 放電制御部と、前記セル間の接続点をハイ側またはロー側の電源ラインに短絡させ 若しくは前記セル間の接続点間で短絡させる短絡部と、前記短絡部を導通 Z遮断制 御すると共に、前記導通 Z遮断制御の態様と、前記電圧検出部で検出された前記セ ル間の接続点の電圧、前記ノ、ィ側またはロー側の電源ラインの電圧および前記各セ ルの端子電圧のうちの少なくとも 1つと、に基づいて前記電圧検出部から前記セル間 の接続点への接続ラインの断線を検知する断線検知部とを備える。
[0053] 上記の電池パックでは、二次電池のセルが複数個少なくとも直列に接続 (必要に応 じて適宜並列にも複数のセルが接続されて 、てもよ 、)されて成る組電池、電圧検出 部および充放電制御部を備え、電圧検出部によって検出された各セルの端子電圧 に基づいて、充放電制御部が、たとえば充電時にセルバランスのずれによって特定 のセルが過電圧になったり過充電になったりすることがないように充放電を制御する ようにした電池パックにおいて、セル間の接続点、すなわち中間タップをハイ側また はロー側の電源ラインに短絡させ若しくは接続点間で短絡させる短絡部に、その短 絡部を導通 Z遮断制御すると共に、その制御態様と、電圧検出部で検出された接続 点の電圧、電源ラインの電圧および各セルの端子電圧のうちの少なくとも 1つとから、 電圧検出部から接続点への接続ラインの断線、すなわち中間タップの浮き (外れ)を 検知する断線検知部を設ける。
[0054] したがって、各セルの端子に接続される回路の入力抵抗や容量などによって、単に 各セルの端子電圧力 だけでは、電圧検出部力も接続点への接続ラインの断線を検 知するのが困難であるのに対して、断線検知部が短絡部を選択駆動することで、セ ル間の接続点の電圧、電源ラインの電圧および各セルの端子電圧のうちの少なくと も 1つから、それらに期待される電圧と、実際に電圧検出部によって検出された電圧 とのずれから、接続ラインの断線を確実に検知することができる。これによつて、異常 状態での充電継続を、過充電前に停止することができる。また、短絡部は断線検知 の際に駆動されるので、常時に損失は生じず、損失を低減することができる。
[0055] 上記の電池パックにぉ 、て、前記短絡部は、前記ハイ側の電源ラインおよび前記 セル間の接続点を前記ロー側の電源ラインにそれぞれ短絡させる短絡抵抗およびス イッチの直列回路力も成ることが好ましい。
[0056] この場合、断線検知部からの要求に応じて、スィッチを ONZOFF制御することで、 各セルの端子は、ハイ側の電源ラインやセル間の接続点に接続されて ヽる入力抵抗 力 短絡抵抗を介してロー側の電源ラインに接続されることになる。
[0057] したがって、断線検知部は、電圧検出部に入力されるスィッチ OFF時における入 力抵抗を介する電圧と、スィッチ ON時における入力抵抗および短絡抵抗による分圧 電圧とから、電圧検出部から接続点への接続ラインの断線を検知することができる。
[0058] 上記の電池パックにぉ 、て、前記電圧検出部は、前記セル間の接続点の電圧を測 定するアナログ Zデジタル変換器と、前記セル間の接続点を選択的に前記アナログ Zデジタル変換器に接続可能な入力切換え部と、を含み、前記セル間の接続点は、 前記入力切換え部により前記アナログ Zデジタル変換器に接続された後に前記短 絡部により短絡されることが好ましい。
[0059] この場合、セル間の接続点の短絡部による短絡後の電圧を確実に測定することが できる。
[0060] 上記の電池パックにおいて、前記セル間の接続点を前記アナログ Zデジタル変換 器に前記入力切換え部により接続した後に前記短絡部により短絡させるセル選択部 をさらに備えることが好まし 、。
[0061] この場合、セル選択部がアナログ Zデジタル変^^とセル間の接続点との接続お よび、セル間の接続点の短絡を共に制御するので、セル間の接続点の短絡前後の 電圧を確実に測定することができる。
[0062] 上記の電池パックにおいて、前記電圧検出部および前記短絡部は、 ASICとして一 体で構成されることが好まし 、。
[0063] この場合、汎用的な電池パックにこの ASICを搭載するだけで、セル間の接続点と 電圧検出部との間に断線が生じた状態で組電池の充放電が継続されてしまうことを 防止することができる。そして、この ASIC内の短絡部は、断線検知の際のみ二次電 池のセルの端子を短絡させるため、短絡部により常時電流が消費されることが無 、。 このため、短絡部による損失の増大を抑制することができる。
[0064] 上記の電池パックにおいて、前記充放電制御部は、前記電圧検出部の検出結果 を予め定める閾値と比較して、異常が検出されると保護動作を行い、前記電圧検出 部とは別途に前記各セルの端子電圧を検出し、前記検出された電圧を前記充放電 制御部と同等以上の閾値と比較して、異常が検出されると保護動作を行う二重保護 用の ICをさらに備えることが好ましい。
[0065] この場合、電圧検出部とは別途に、各セルの端子電圧を検出し、その検出結果を 充放電制御手段と同等以上の閾値と比較することによって、過電圧や過充電などの 異常を検出し、保護動作を行う二重保護用の ICが設けられると、その二重保護用の I Cと、電圧検出部とが、各セルの端子に並列に接続されることになり、入力の抵抗や 容量、さらには内部の分圧抵抗などによって、各セルの端子への接続ラインの断線 検知は一層困難となる。本発明は、二重保護用の ICを設けたときに特に効果的であ る。
[0066] 本発明に係る電池パックの断線検知方法は、二次電池のセルを複数個少なくとも 直列に接続されて成る組む電池を有する電池パックの断線検知方法であって、前記 セル間の接続点をハイ側またはロー側の電源ラインに短絡させ若しくは前記セル間 の接続点間で短絡させる短絡工程と、前記短絡工程の短絡の態様と、前記短絡ェ 程の短絡によって前記セル間の接続点に現れた電圧、前記ハイ側またはロー側の 電源ラインの電圧および前記各セルの端子電圧のうちの少なくとも 1つと、に基づい て前記セル間の接続点への接続ラインの断線を検知する断線検知工程とを備える。
[0067] 上記の電池パックの断線検知方法では、二次電池のセルが複数個少なくとも直列 に接続 (必要に応じて適宜並列にも複数のセルが接続されて 、てもよ 、)されて成る 組電池を備え、各セルの端子電圧に基づいて、たとえば充電時にセルバランスのず れによって特定のセルが過電圧になったり過充電になったりすることがないように充 放電を制御するようにした電池パックにおいて、セル間の接続点、すなわち中間タツ プをハイ側またはロー側の電源ラインに短絡させ若しくは接続点間で短絡させ、その 短絡の制御態様と、その短絡によって現れた接続点の電圧、電源ラインの電圧およ び各セルの端子電圧のうちの少なくとも 1つとから、接続点への接続ラインの断線、す なわち中間タップの浮き (外れ)を検知する。
[0068] したがって、各セルの端子に接続される回路の入力抵抗や容量などによって、単に 各セルの端子電圧力もだけでは、接続点への接続ラインの断線を検知するのが困難 であるのに対して、セル間の接続点の短絡によりセル間の接続点の電圧、電源ライン の電圧および各セルの端子電圧のうちの少なくとも 1つから、それらに期待される電 圧と、実際に検出された電圧とのずれから、接続ラインの断線を確実に検知すること ができる。これによつて、異常状態での充電継続を、過充電前に停止することができ る。また、セル間の接続点の短絡は断線検知の際に行われるので、常時に損失は生 じず、損失を低減することができる。
産業上の利用可能性
本発明によれば、プルアップ抵抗などのように常時の損失を生じることなぐ入力抵 抗ゃ入力容量の影響を抑え、二次電池のセルが複数個少なくとも直列に接続されて 成る組電池における中間タップの浮き (外れ)を確実に検知することができる。

Claims

請求の範囲
[1] 二次電池のセルが複数個少なくとも直列に接続されて成る組電池と、
前記各セルの端子電圧を検出する電圧検出部と、
前記電圧検出部によって検出された前記各セルの端子電圧に基づ!/、て前記組電 池の充放電を制御する充放電制御部と、
前記セル間の接続点をハイ側またはロー側の電源ラインに短絡させ若しくは前記 セル間の接続点間で短絡させる短絡部と、
前記短絡部を導通 Z遮断制御すると共に、前記導通 Z遮断制御の態様と、前記電 圧検出部で検出された前記セル間の接続点の電圧、前記ハイ側またはロー側の電 源ラインの電圧および前記各セルの端子電圧のうちの少なくとも 1つと、に基づいて 前記電圧検出部から前記セル間の接続点への接続ラインの断線を検知する断線検 知部と
を備えることを特徴とする電池パック。
[2] 前記短絡部は、前記ハイ側の電源ラインおよび前記セル間の接続点を前記ロー側 の電源ラインにそれぞれ短絡させる短絡抵抗およびスィッチの直列回路カゝら成ること を特徴とする請求項 1に記載の電池パック。
[3] 前記電圧検出部は、
前記セル間の接続点の電圧を測定するアナログ Zデジタル変換器と、 前記セル間の接続点を選択的に前記アナログ Zデジタル変換器に接続可能な入 力切換え部と、を含み、
前記セル間の接続点は、前記入力切換え部により前記アナログ Zデジタル変換器 に接続された後に前記短絡部により短絡されることを特徴とする請求項 1または 2〖こ 記載の電池パック。
[4] 前記セル間の接続点を前記アナログ Zデジタル変換器に前記入力切換え部により 接続した後に前記短絡部により短絡させるセル選択部をさらに備えることを特徴とす る請求項 3に記載の電池パック。
[5] 前記電圧検出部および前記短絡部は、 ASICとして一体で構成されることを特徴と する請求項 1または 2に記載の電池パック。
[6] 前記充放電制御部は、前記電圧検出部の検出結果を予め定める閾値と比較して、 異常が検出されると保護動作を行い、
前記電圧検出部とは別途に前記各セルの端子電圧を検出し、前記検出された電 圧を前記充放電制御部と同等以上の閾値と比較して、異常が検出されると保護動作 を行う二重保護用の ICをさらに備えることを特徴とする請求項 1〜5のいずれか 1項 に記載の電池パック。
[7] 二次電池のセルを複数個少なくとも直列に接続されて成る組む電池を有する電池 ノ ックの断線検知方法であって、
前記セル間の接続点をハイ側またはロー側の電源ラインに短絡させ若しくは前記 セル間の接続点間で短絡させる短絡工程と、
前記短絡工程の短絡の態様と、前記短絡工程の短絡によって前記セル間の接続 点に現れた電圧、前記ノ、ィ側またはロー側の電源ラインの電圧および前記各セルの 端子電圧のうちの少なくとも 1つと、に基づいて前記セル間の接続点への接続ライン の断線を検知する断線検知工程と
を備えることを特徴とする電池パックの断線検知方法。
PCT/JP2007/057654 2006-04-13 2007-04-05 電池パックおよびその断線検知方法 WO2007119682A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008510924A JP5113741B2 (ja) 2006-04-13 2007-04-05 電池パックおよびその断線検知方法
KR1020087027711A KR101230223B1 (ko) 2006-04-13 2007-04-05 전지 팩 및 그 단선 검지 방법
US12/296,759 US8030893B2 (en) 2006-04-13 2007-04-05 Battery pack and method for detecting disconnection of same
CN2007800128944A CN101421883B (zh) 2006-04-13 2007-04-05 电池组件及其断路检测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006110434 2006-04-13
JP2006-110434 2006-04-13

Publications (1)

Publication Number Publication Date
WO2007119682A1 true WO2007119682A1 (ja) 2007-10-25

Family

ID=38609442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057654 WO2007119682A1 (ja) 2006-04-13 2007-04-05 電池パックおよびその断線検知方法

Country Status (5)

Country Link
US (1) US8030893B2 (ja)
JP (1) JP5113741B2 (ja)
KR (1) KR101230223B1 (ja)
CN (1) CN101421883B (ja)
WO (1) WO2007119682A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254008A (ja) * 2008-04-01 2009-10-29 Seiko Instruments Inc 充放電制御回路及びバッテリ装置
JP2010025925A (ja) * 2008-06-17 2010-02-04 Sanyo Electric Co Ltd 組電池の電圧検出装置及びこれを具えたバッテリシステム
WO2010082609A1 (ja) * 2009-01-14 2010-07-22 ミツミ電機株式会社 保護監視回路及び電池パック
US20110148425A1 (en) * 2009-12-23 2011-06-23 Black & Decker Inc. Systems and methods for detecting an open cell tap in a battery pack
JP2011137805A (ja) * 2009-12-28 2011-07-14 Samsung Sdi Co Ltd バッテリーパック及びその断線検出方法
JP2012122856A (ja) * 2010-12-08 2012-06-28 Toshiba Corp 組電池装置
JP2012520996A (ja) * 2009-03-18 2012-09-10 ヴィト ナムローゼ フェンノートシャップ 不連続性を検出するための手段を有する動力電池システム
JP2013029362A (ja) * 2011-07-27 2013-02-07 Toshiba Corp 電池セル監視回路、電池セルモジュール、電池セルモジュールを備えた自動車
JP2013162722A (ja) * 2012-02-08 2013-08-19 Asahi Kasei Electronics Co Ltd バランス回路
EP2700965A2 (en) 2012-08-24 2014-02-26 Renesas Electronics Corporation Semiconductor device and battery voltage monitoring device
JP2014219277A (ja) * 2013-05-08 2014-11-20 株式会社デンソー 組電池システム
WO2014192134A1 (ja) * 2013-05-31 2014-12-04 日立オートモティブシステムズ株式会社 蓄電池監視装置
JPWO2014057724A1 (ja) * 2012-10-10 2016-09-05 住友建機株式会社 ショベル及びショベルの制御方法
JP2016223797A (ja) * 2015-05-27 2016-12-28 株式会社マキタ バッテリの断線検出装置、充電装置及びバッテリパック
JP2017005989A (ja) * 2011-05-31 2017-01-05 日立オートモティブシステムズ株式会社 電池システム監視装置
WO2024224909A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 異常検知装置および電池システム
WO2024224908A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 異常検知装置および電池システム
WO2024224907A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 異常検知装置および電池システム

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5349021B2 (ja) * 2008-11-26 2013-11-20 三洋電機株式会社 バッテリシステム
JP4696291B2 (ja) * 2009-06-04 2011-06-08 三菱自動車工業株式会社 二次電池異常検出装置
JP4746694B2 (ja) * 2009-08-11 2011-08-10 株式会社バッファロー 接続装置
JP5529652B2 (ja) * 2009-08-27 2014-06-25 セイコーインスツル株式会社 充放電制御回路及び充電式電源装置
WO2011037022A1 (ja) 2009-09-24 2011-03-31 日産自動車株式会社 高電圧回路の異常検出装置及び異常検出方法
KR101093982B1 (ko) * 2009-10-30 2011-12-15 삼성에스디아이 주식회사 배터리 팩 및 그의 구동 방법
CN101777781B (zh) * 2009-12-30 2012-07-04 湖南科力远高技术控股有限公司 一种电动汽车模块化电池管理系统
KR101137376B1 (ko) * 2010-04-12 2012-04-20 삼성에스디아이 주식회사 배터리 팩
KR101047831B1 (ko) * 2010-06-17 2011-07-08 에스케이이노베이션 주식회사 수동적 안전장치를 이용한 배터리의 센싱 라인의 단락으로 인한 2차 사고 방지장치
WO2012029221A1 (ja) * 2010-08-31 2012-03-08 パナソニック株式会社 電池電源装置、及び電池電源システム
US8797043B2 (en) * 2010-10-04 2014-08-05 Intersil Americas Inc. System and method for detection of open connections between an integrated circuit and a multi-cell battery pack
JP5135506B2 (ja) * 2010-12-09 2013-02-06 三菱重工業株式会社 電池システム
US8648610B2 (en) * 2011-01-11 2014-02-11 Denso Corporation Signal input circuit and integrated circuit
JP2012208120A (ja) 2011-03-17 2012-10-25 Ricoh Co Ltd 二次電池の保護用半導体装置
CN103827998B (zh) * 2011-09-29 2017-11-17 鲍尔拜普罗克西有限公司 无线可充电电池及其部件
KR101889558B1 (ko) * 2011-12-15 2018-08-21 현대모비스 주식회사 이차전지 배터리의 단선검출장치
JP5811874B2 (ja) * 2012-02-02 2015-11-11 ミツミ電機株式会社 電池保護回路及び電池保護装置、並びに電池パック
KR101434093B1 (ko) * 2012-03-19 2014-08-25 가부시키가이샤 리코 2차 전지의 보호용 반도체 장치
CN102569923A (zh) * 2012-03-28 2012-07-11 力帆实业(集团)股份有限公司 一种电池组高压连接管理系统
CN102623767B (zh) * 2012-03-28 2014-09-17 力帆实业(集团)股份有限公司 一种电池组高压连接管理方法
DE102012205144A1 (de) * 2012-03-29 2013-10-02 Robert Bosch Gmbh Verfahren zum Verschalten von Batteriezellen in einer Batterie, Batterie und Überwachungseinrichtung
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
JP6202632B2 (ja) * 2012-09-18 2017-09-27 Necエナジーデバイス株式会社 蓄電システムおよび電池保護方法
KR101417461B1 (ko) * 2012-12-11 2014-07-09 기아자동차주식회사 배터리 단선검출장치 및 방법
JP6310640B2 (ja) * 2013-04-24 2018-04-11 ローム株式会社 蓄電素子監視回路、充電システム、及び集積回路
US9893547B2 (en) * 2013-06-14 2018-02-13 Mediatek Inc. Method for reading, writing, or updating information for battery cell via connecting interface between portable device and battery pack including battery cell so as to obtain precise information
CA2927508C (en) * 2013-10-16 2019-01-22 Aleees Eco Ark Co. Ltd. Locking confirmation device of multiple electrode contacts and locking confirmation device for detecting fault electrode contacts of nodes of multiple electrodes
CN108134432B (zh) 2014-01-28 2021-01-15 Oppo广东移动通信有限公司 电子设备充电控制装置及方法
WO2016143280A1 (ja) * 2015-03-11 2016-09-15 パナソニックIpマネジメント株式会社 異常検出装置
FR3041827B1 (fr) * 2015-09-24 2019-09-13 Saft Dispositif electronique de connexion/deconnexion pour batterie a haute-tension et procede associe
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
GB2546281A (en) * 2016-01-13 2017-07-19 Energy Control Ltd Connecting cable for a composite battery
CN109168325B (zh) * 2016-03-15 2022-03-18 三洋电机株式会社 管理装置和电源装置
US11218006B2 (en) 2017-04-13 2022-01-04 Enphase Energy, Inc. Method and system for an AC battery
US12074460B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Rechargeable wireless power bank and method of using
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
US12074452B2 (en) 2017-05-16 2024-08-27 Wireless Electrical Grid Lan, Wigl Inc. Networked wireless charging system
US10481215B2 (en) * 2017-08-31 2019-11-19 GM Global Technology Operations LLC Method and apparatus for evaluating a battery cell
KR102200551B1 (ko) * 2017-10-31 2021-01-07 주식회사 엘지화학 배터리 팩
CN109904896A (zh) * 2017-12-11 2019-06-18 苏州宝时得电动工具有限公司 电动工具
CN110350262B (zh) * 2018-04-02 2021-03-05 南京德朔实业有限公司 电池包及充电组合
MX2019009334A (es) 2018-08-06 2020-07-20 Tti Macao Commercial Offshore Ltd Sistemas y metodos para la habilitacion selectiva de la operacion de un dispositivo.
US11894702B2 (en) * 2018-09-06 2024-02-06 Panasonic Intellectual Property Management Co., Ltd. Energy transfer circuit and power storage system
JP6985999B2 (ja) 2018-09-18 2021-12-22 カシオ計算機株式会社 充電保護回路、充電装置、電子機器及び充電保護方法
TWI698060B (zh) * 2019-01-14 2020-07-01 宏碁股份有限公司 電池保護系統及電池保護方法
WO2020163574A1 (en) 2019-02-06 2020-08-13 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
CN110346682B (zh) * 2019-07-12 2021-08-31 奇瑞新能源汽车股份有限公司 电动汽车dcdc变换器输出连接状态检测电路及方法
JP7334676B2 (ja) * 2020-06-01 2023-08-29 トヨタ自動車株式会社 バッテリー状態判定装置、方法、プログラム、及び車両
EP3958428B1 (en) * 2020-06-15 2023-01-11 Contemporary Amperex Technology Co., Limited Control device, energy converting system, energy converting method, and storage medium
US20220029431A1 (en) * 2020-07-23 2022-01-27 Aurora Flight Sciences Corporation, a subsidiary of The Boeing Company Switchable Battery Management System
US10992149B1 (en) * 2020-10-08 2021-04-27 Element Energy, Inc. Safe battery energy management systems, battery management system nodes, and methods
KR20220102454A (ko) * 2021-01-13 2022-07-20 주식회사 엘지에너지솔루션 배터리 시스템 진단 장치 및 방법
CN114744694A (zh) * 2022-03-09 2022-07-12 深圳卓锐思创科技有限公司 应用于多节锂电池的电压检测、保护电路
CN116774092B (zh) * 2023-08-18 2024-04-09 荣耀终端有限公司 电池检测方法、电路、设备、芯片及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170335A (ja) * 2002-11-22 2004-06-17 Shin Kobe Electric Mach Co Ltd 電池電圧検出線の検査方法、検査回路及び電池モジュール
JP2004180395A (ja) * 2002-11-26 2004-06-24 Honda Motor Co Ltd 蓄電装置の電圧検出線の断線検知装置
JP3603901B2 (ja) * 2002-08-23 2004-12-22 日産自動車株式会社 組電池の異常検出装置
JP2005168118A (ja) * 2003-12-01 2005-06-23 Nissan Motor Co Ltd 組電池の異常検出装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424413B2 (ja) * 1995-12-04 2003-07-07 日産自動車株式会社 組電池の過電圧検出装置
JP3420672B2 (ja) 1996-11-15 2003-06-30 東芝電池株式会社 二次電池の保護回路
US6104164A (en) * 1998-10-20 2000-08-15 Denso Corporation Cell voltage detecting device for combination battery
JP2001157367A (ja) * 1999-11-24 2001-06-08 Taiyo Yuden Co Ltd 組み電池セルの接続不良検出方法及び電源装置
CN1445903A (zh) * 2002-03-14 2003-10-01 阮志成 大电流个别电池充电管理及检测装置
US6977483B2 (en) 2002-08-23 2005-12-20 Nissan Motor Co., Ltd. Battery pack malfunction detection apparatus and method for detecting a disconnection at a connecting line between a given cell and a corresponding detection terminal
KR100624944B1 (ko) * 2004-11-29 2006-09-18 삼성에스디아이 주식회사 배터리 팩의 보호회로

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3603901B2 (ja) * 2002-08-23 2004-12-22 日産自動車株式会社 組電池の異常検出装置
JP2004170335A (ja) * 2002-11-22 2004-06-17 Shin Kobe Electric Mach Co Ltd 電池電圧検出線の検査方法、検査回路及び電池モジュール
JP2004180395A (ja) * 2002-11-26 2004-06-24 Honda Motor Co Ltd 蓄電装置の電圧検出線の断線検知装置
JP2005168118A (ja) * 2003-12-01 2005-06-23 Nissan Motor Co Ltd 組電池の異常検出装置

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254008A (ja) * 2008-04-01 2009-10-29 Seiko Instruments Inc 充放電制御回路及びバッテリ装置
KR101442855B1 (ko) * 2008-04-01 2014-09-23 세이코 인스트루 가부시키가이샤 충방전 제어 회로 및 배터리 장치
JP2010025925A (ja) * 2008-06-17 2010-02-04 Sanyo Electric Co Ltd 組電池の電圧検出装置及びこれを具えたバッテリシステム
WO2010082609A1 (ja) * 2009-01-14 2010-07-22 ミツミ電機株式会社 保護監視回路及び電池パック
JP2010187531A (ja) * 2009-01-14 2010-08-26 Mitsumi Electric Co Ltd 保護監視回路、及び電池パック
US8890482B2 (en) 2009-01-14 2014-11-18 Mitsumi Electric Co., Ltd. Protection monitoring circuit and battery pack
JP2012520996A (ja) * 2009-03-18 2012-09-10 ヴィト ナムローゼ フェンノートシャップ 不連続性を検出するための手段を有する動力電池システム
US9638759B2 (en) 2009-03-18 2017-05-02 Vito Nv Power cell system with means for detecting a discontinuity
US8907676B2 (en) 2009-03-18 2014-12-09 Vito Nv Power cell system with means for detecting a discontinuity
US20110148425A1 (en) * 2009-12-23 2011-06-23 Black & Decker Inc. Systems and methods for detecting an open cell tap in a battery pack
US8717035B2 (en) * 2009-12-23 2014-05-06 Black & Decker Inc. Systems and methods for detecting an open cell tap in a battery pack
JP2011137805A (ja) * 2009-12-28 2011-07-14 Samsung Sdi Co Ltd バッテリーパック及びその断線検出方法
US8872477B2 (en) 2009-12-28 2014-10-28 Samsung Sdi Co., Ltd. Battery pack and line open detecting method thereof
JP2012122856A (ja) * 2010-12-08 2012-06-28 Toshiba Corp 組電池装置
JP2018050454A (ja) * 2011-05-31 2018-03-29 日立オートモティブシステムズ株式会社 電池システム監視装置
JP2017005989A (ja) * 2011-05-31 2017-01-05 日立オートモティブシステムズ株式会社 電池システム監視装置
JP2013029362A (ja) * 2011-07-27 2013-02-07 Toshiba Corp 電池セル監視回路、電池セルモジュール、電池セルモジュールを備えた自動車
JP2013162722A (ja) * 2012-02-08 2013-08-19 Asahi Kasei Electronics Co Ltd バランス回路
US10630067B2 (en) 2012-08-24 2020-04-21 Renesas Electronics Corporation Semiconductor device and battery voltage monitoring device
EP2700965A2 (en) 2012-08-24 2014-02-26 Renesas Electronics Corporation Semiconductor device and battery voltage monitoring device
US9735567B2 (en) 2012-08-24 2017-08-15 Renesas Electronics Corporation Semiconductor device and battery voltage monitoring device
JPWO2014057724A1 (ja) * 2012-10-10 2016-09-05 住友建機株式会社 ショベル及びショベルの制御方法
JP2014219277A (ja) * 2013-05-08 2014-11-20 株式会社デンソー 組電池システム
JPWO2014192134A1 (ja) * 2013-05-31 2017-02-23 日立オートモティブシステムズ株式会社 蓄電池監視装置
CN105723230A (zh) * 2013-05-31 2016-06-29 日立汽车系统株式会社 蓄电池监视装置
US9863993B2 (en) 2013-05-31 2018-01-09 Hitachi Automotive Systems, Ltd. Storage battery monitoring device with wiring disconnection detection
WO2014192134A1 (ja) * 2013-05-31 2014-12-04 日立オートモティブシステムズ株式会社 蓄電池監視装置
JP2016223797A (ja) * 2015-05-27 2016-12-28 株式会社マキタ バッテリの断線検出装置、充電装置及びバッテリパック
WO2024224909A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 異常検知装置および電池システム
WO2024224908A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 異常検知装置および電池システム
WO2024224907A1 (ja) * 2023-04-26 2024-10-31 パナソニックIpマネジメント株式会社 異常検知装置および電池システム

Also Published As

Publication number Publication date
JP5113741B2 (ja) 2013-01-09
KR20090010052A (ko) 2009-01-28
US20090051324A1 (en) 2009-02-26
CN101421883A (zh) 2009-04-29
US8030893B2 (en) 2011-10-04
CN101421883B (zh) 2012-05-23
JPWO2007119682A1 (ja) 2009-08-27
KR101230223B1 (ko) 2013-02-05

Similar Documents

Publication Publication Date Title
WO2007119682A1 (ja) 電池パックおよびその断線検知方法
US10630067B2 (en) Semiconductor device and battery voltage monitoring device
JP3172095B2 (ja) 充放電制御回路と充電式電源装置
JP6854750B2 (ja) 地絡検出装置
JP5219486B2 (ja) パック電池
US7586727B2 (en) Inrush current limiting switching circuit for power supply
JP4836729B2 (ja) 車両用の電源装置とこの電源装置の断線検出方法
JP5928509B2 (ja) 電池監視装置
US20090130542A1 (en) Abnormality detection apparatus for battery pack
TWI491139B (zh) Charge and discharge control circuit and rechargeable power supply device
JP5097365B2 (ja) 電池パックおよびその断線検知方法
KR20110096202A (ko) 셀 밸런싱부의 고장 진단 장치 및 방법
JP2007236065A (ja) 充電制御用半導体集積回路、その充電制御用半導体集積回路を使用した充電装置及び2次電池接続検出方法
JP2012016174A (ja) 車両用の電源装置
JP2008089322A (ja) 電圧検出装置
JP4945206B2 (ja) 電池パックおよびその断線検知方法
JP2008245400A (ja) 電池パック
JP6787705B2 (ja) 異常検出装置、および組電池システム
US10627453B2 (en) Integrated circuit with built-in status monitoring unit and power supply device provided with said integrated circuit
JP2009150779A (ja) 非接地回路の絶縁性検出装置
JP5661414B2 (ja) 電源装置
JP5443013B2 (ja) バッテリー保護回路及びバッテリー装置
JP2006280171A (ja) 車両用の電源装置
JP2012185051A (ja) 中間端子はずれ検出装置
JP3780993B2 (ja) 組電池の異常検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008510924

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780012894.4

Country of ref document: CN

Ref document number: 12296759

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4515/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087027711

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07741090

Country of ref document: EP

Kind code of ref document: A1